WO2023232381A1 - Verfahren zum erzeugen eines recyclats aus trockenbeschichtungsmaterial, recyclat, verfahren zur lösungsmittelfreien elektrodenherstellung sowie elektrode - Google Patents
Verfahren zum erzeugen eines recyclats aus trockenbeschichtungsmaterial, recyclat, verfahren zur lösungsmittelfreien elektrodenherstellung sowie elektrode Download PDFInfo
- Publication number
- WO2023232381A1 WO2023232381A1 PCT/EP2023/061777 EP2023061777W WO2023232381A1 WO 2023232381 A1 WO2023232381 A1 WO 2023232381A1 EP 2023061777 W EP2023061777 W EP 2023061777W WO 2023232381 A1 WO2023232381 A1 WO 2023232381A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- recyclate
- coating material
- electrode
- coating
- forces
- Prior art date
Links
- 239000011248 coating agent Substances 0.000 title claims abstract description 69
- 238000000576 coating method Methods 0.000 title claims abstract description 69
- 239000000463 material Substances 0.000 title claims abstract description 68
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 239000012876 carrier material Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 12
- 239000011262 electrochemically active material Substances 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 239000002482 conductive additive Substances 0.000 claims description 3
- 238000004146 energy storage Methods 0.000 claims description 3
- 238000000227 grinding Methods 0.000 claims description 3
- 210000000352 storage cell Anatomy 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 239000004570 mortar (masonry) Substances 0.000 claims description 2
- 230000000717 retained effect Effects 0.000 abstract description 2
- 238000010008 shearing Methods 0.000 abstract 1
- 239000000843 powder Substances 0.000 description 5
- 239000002245 particle Substances 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 3
- -1 polytetrafluoroethylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 206010061592 cardiac fibrillation Diseases 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000002600 fibrillogenic effect Effects 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011164 primary particle Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- SOXUFMZTHZXOGC-UHFFFAOYSA-N [Li].[Mn].[Co].[Ni] Chemical compound [Li].[Mn].[Co].[Ni] SOXUFMZTHZXOGC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- NDPGDHBNXZOBJS-UHFFFAOYSA-N aluminum lithium cobalt(2+) nickel(2+) oxygen(2-) Chemical compound [Li+].[O--].[O--].[O--].[O--].[Al+3].[Co++].[Ni++] NDPGDHBNXZOBJS-UHFFFAOYSA-N 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/54—Reclaiming serviceable parts of waste accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
Definitions
- the present invention relates to a method for producing a recyclate from dry coating material, a recyclate, a method for solvent-free electrode production and an electrode.
- DE 699 05 134 T2 relates to the recovery of material from coated substrates, which consist of a substrate sheet with a coating applied thereon which contains this material.
- the coating comprising particles or powder, is “ground up”.
- simply grinding dry-coated electrodes is not optimal, as the coating material is exposed to an unacceptably high load.
- a method for producing a recyclate from dry coating material comprises the steps:
- the term “recyclate” means a material or substance that has already been processed at least once, in other words that comes from a recycling process. Alternatively, one can also speak of a secondary raw material.
- dry coating material of battery electrodes is advantageously processed in such a way that the fibril structure is preserved.
- the fibrils serve as a binder in the dry coating material.
- a processing method in which the agglomerate structure is dissolved without damaging the advantageous fibril structure has proven to be particularly advantageous.
- the application of force is expediently carried out in such a way that disagglomeration is caused without causing disaggregation. Unspecific shredding of the coating material would lead to reduced recyclate quality.
- the nature or quality of the recyclate is recorded, in particular by measurement. This makes it possible to determine whether the fibril structure is preserved in the recyclate or whether the force is introduced in such a way that the aggregate structure is preserved.
- the use of electron microscopy has proven to be suitable for determining the condition/quality.
- X-ray diffraction X-ray diffraction
- IR vibration spectroscopy
- Raman vibration spectroscopy
- the method expediently includes the step:
- one or more of the following devices are used to introduce the forces: grinding media mill, ball mill, mortar mill, crusher, hammer mill.
- the most suitable tool has to be determined on a case-by-case basis. same for for the process parameters/machine parameters used when using the devices.
- the nature of the recyclate is preferably monitored using measurement technology so that any process parameters can be adjusted accordingly.
- One goal in particular is to maintain the advantageous fibril structure.
- the method comprises the step:
- the coating material is agglomerated and solidified.
- the terms “agglomerated” and “solidified” serve in particular to distinguish between a powdery or particulate state of the coating material.
- the coating material is also agglomerated or solidified when it is applied to the or a carrier material, also called carrier film.
- the method comprises the steps:
- an electrode comprising a carrier material coated with the coating material
- the dissolved and separated coating material which is still agglomerated or solidified, is then expediently deagglomerated by applying the forces, whereby the fibrils forming the aggregates are advantageously retained.
- This embodiment is, in particular, a variant of the method which is suitable for reprocessing electrodes that have already been used.
- the invention further relates to a recyclate which is produced by the process according to the invention.
- a recyclate is present, for example, in powder or particle form.
- the aforementioned powders or particles are formed by the aggregates, which in turn are held together by the fibril structure.
- the invention also relates to a method for solvent-free electrode production, the recyclate according to the invention being used for production.
- the method for solvent-free electrode production comprises the steps:
- the procedure includes the steps:
- a continuous mixing process can advantageously be implemented, which enables an increase in productivity as well as a reduction in costs and energy requirements compared to batch mixing processes or semi-continuous processes, such as those that can be implemented in a jet mill.
- degradation of the electrochemically active components in particular intercalation graphite, but also other materials such as oxides and silicon materials
- the degree of fibrillation can be specifically adjusted using the multi-screw extruder.
- the coating material is in powder form.
- a powder includes particles, granules, etc.
- the binder component is fibrillated.
- the grain size of the aforementioned elements can also expediently be adjusted via the multi-screw extruder.
- the present recyclate therefore advantageously does not need to be further processed or is advantageously suitable directly for coating a carrier material or as an addition to an (already fibrillated) coating material.
- the coating material can consist entirely (100%) of the recyclate.
- the recyclate can also be added to the coating material as a component. According to one embodiment, this can be done when producing the coating material in the (multi-screw) extruder.
- the recyclate is added to the extruder together with other materials, such as active material etc., and processed there.
- the recyclate can be subsequently added to the coating material produced, for example in a (multi-shaft) extruder, in particular, for example, “subjected” (e.g. by adding it to the collecting container/buffer container on the extruder, which is mixed thoroughly).
- the invention further relates to an electrode for an electrical energy storage cell, comprising a carrier material which has a coating, the coating being at least partially made from the recyclate according to the invention.
- the electrode is produced using the method according to the invention for solvent-free electrode production.
- the coating has as components electrochemically active material, a conductive additive and a fibrillatable material.
- the components are expediently provided entirely or at least partially by the recyclate.
- the coating material of the electrode can consist entirely of the recycled material.
- the proportion of recyclate in percent by weight is only up to 10%, up to 20%, up to 30%, up to 40%, up to 50%, up to 60%, up to 70%, up to 80% or up to to 90%.
- the fibrillatable material is PTFE (polytetrafluoroethylene, Teflon).
- the coating also comprises several fibrillatable materials or mixture components, with further fibrillable components being, for example, PVDF (polyvinylidene fluoride) or PE (polyethylene).
- recyclates can be used which were obtained from different coating materials. Different coating materials mean, in particular, coating materials that differ in their composition.
- the electrochemically active material is, for example, cathode material
- the conductive additive is a conductive carbon black
- the fibrillatable component is PTFE.
- Preferred cathode materials are: LOO (lithium cobalt oxide), LMS or LMO (lithium manganese oxide spinel), NMC or NOM (lithium nickel cobalt manganese), LFP (lithium iron phosphate), NCA (lithium-nickel-cobalt-aluminum oxide) or NCMA (nickel-cobalt-manganese-aluminum).
- the electrochemically active material comprises
- Figure 1 a schematic sketch of an embodiment of an electrode, comprising a carrier material and a coating
- Figure 2 a schematic sketch to illustrate the structure of the coating material
- Figure 3 a schematic view of a multi-screw extruder.
- Figure 1 shows a small section of an electrode extending along a web direction B, comprising a carrier material or a carrier film 10, on which, in the present example, coating material 20 is applied on one side.
- coating material 20 is solidified or is agglomerated.
- an area of the coating material 20 is shown enlarged.
- a “partial agglomerate” 22 can be seen, which includes a large number of aggregates 24.
- the aggregates 24 in turn include primary particles (electrochemically active material, lead additive). The primary particles are connected by the fibrils.
- FIG. 2 shows the partial agglomerate 22 known from Figure 1.
- the arrow with the reference number F is intended to outline an introduction of force.
- a processing method is proposed which is suitable for breaking up the agglomerates without, however, damaging the advantageous fibril structure.
- disagglomeration is desirable, disaggregation is not.
- This is sketched schematically in the right half of the picture.
- the aggregates 24 can be seen there, which are self-contained and held together by the fibrils.
- the agglomerate structure has broken down.
- Such a material or such a recyclate is ideal for further use or
- Figure 3 shows schematically a multi-screw extruder 30.
- a recyclate see Figure 2 can be fed to this as a partial or main component in order to produce a coating material for the dry coating of electrodes.
- the recyclate similar to the other components of the coating, is added to the multi-screw extruder 30. Since the present recyclate is advantageously an intact or has a largely intact fibril structure, (re)processing in a multi-shaft extruder is advantageously not necessary at all. A subsequent addition of the recyclate, as outlined by the reference number s2, is therefore also advantageously possible, additionally or alternatively.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial, umfassend die Schritte: - Bereitstellen von agglomeriertem, verfestigtem Beschichtungsmaterial, wobei das Beschichtungsmaterial als Binder Fibrillen aufweist, welche Aggregate formen; - Erzeugen eines Recyclats durch Einbringen von Kräften, insbesondere Scherkräften, in das Beschichtungsmaterial derart, dass das Agglomerat aufgebrochen und die die Aggregate bildenden Fibrillen erhalten bleiben.
Description
Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial, Recyc- lat, Verfahren zur lösungsmittelfreien Elektrodenherstellung sowie Elektrode
Die vorliegende Erfindung betrifft ein Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial, ein Recyclat, ein Verfahren zur lösungsmittelfreien Elektrodenherstellung sowie eine Elektrode.
Teil- oder vollelektrisch betriebene Kraftfahrzeuge werden in absehbarer Zeit das Straßenbild dominieren. Aus Nachhaltigkeitsgründen aber auch um Kosten zu sparen, müssen Mittel und Wege gefunden werden, die verwendeten Energiespeicherzellen, derzeit oftmals Li- thium-lonen-Zellen, zu recyceln. Auch im Herstellungsprozess anfallende Rückstände oder Ausschüsse gilt es wieder- bzw. weiterzuverwenden. Die DE 699 05 134 T2 betrifft die Zurückgewinnung von Material aus beschichteten Substraten, die aus einem Substratblech mit einer darauf aufgetragenen Beschichtung bestehen, welches dieses Material enthält. Die Beschichtung, umfassend Partikel oder Pulver, wird „zermahlen“. Es hat sich allerdings herausgestellt, dass ein einfaches Zermahlen bei trockenbeschichteten Elektroden nicht optimal ist, da das Beschichtungsmaterial hierbei einer unzulässig hohen Belastung ausgesetzt wird.
Es ist daher eine Aufgabe der vorliegenden Erfindung, ein Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial, ein Recyclat, ein Verfahren zur lösungsmittelfreien Elektrodenherstellung sowie eine Elektrode anzugeben, welche die vorgenannten Nachteil beseitigen und insbesondere die Wieder- bzw. Weiterverwendung von Trockenbeschichtungsmaterial von Batterieelektroden ermöglichen.
Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 , ein Recyclat nach Anspruch 7, durch ein Verfahren gemäß Anspruch 8 sowie durch eine Elektrode gemäß Anspruch 11 gelöst. Weitere Vorteile und Merkmale ergeben sich aus den Unteransprüchen sowie der Beschreibung und den beigefügten Figuren.
Erfindungsgemäß umfasst ein Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial die Schritte:
Bereitstellen von agglomeriertem, verfestigtem Beschichtungsmaterial, insbesondere Trockenbeschichtungsmaterial, wobei das Beschichtungsmaterial als Binder Fibrillen aufweist, welche Aggregate formen;
Erzeugen eines Recyclats durch Einbringen von Kräften, insbesondere Scherkräften, in das Beschichtungsmaterial derart, dass das Agglomerat aufgelöst oder aufgebrochen und die die Aggregate bildenden Fibrillen erhalten bleiben oder zumindest möglichst o- der im Wesentlichen erhalten bleiben.
Unter dem Ausdruck „Recyclat“ wird vorliegend ein Material oder Stoff verstanden, welcher bereits zumindest einmal verarbeitet wurde, mit anderen Worten einem Recyclingprozess entstammt. Alternativ kann auch von einem Sekundärrohstoff gesprochen werden. Vorliegend wurde gefunden, dass Trockenbeschichtungsmaterial von Batterieelektroden vorteilhafterweise derart aufbereitet wird, dass die Fibrillenstruktur erhalten bleibt. Die Fibrillen dienen in dem Trockenbeschichtungsmaterial als Binder. Als besonders vorteilhaft hat sich eine Aufbereitungsmethode herausgestellt, bei welcher die Agglomerat-Struktur aufgelöst wird, ohne die vorteilhafte Fibrillenstruktur zu beschädigen. Hierzu wird die Krafteinbringung zweckmäßigerweise derart geführt, dass eine Desagglomeration bewirkt wird, ohne eine Desaggregation zu bewirken. Ein unspezifisches Zerkleinern des Beschichtungsmaterials würde zu einer verminderten Recyclat-Qualität führen.
Gemäß einer Ausführungsform wird die Beschaffenheit oder Qualität des Recyclats, insbesondere messtechnisch, erfasst. Damit kann festgestellt werde, ob die Fibrillenstruktur im Recyclat erhalten ist bzw. die Krafteinleitung derart erfolgt, dass die Aggregatstruktur erhalten bleibt. Zum Erfassen der Beschaffenheit/Qualität hat sich der Einsatz der Elektronenmikroskopie als geeignet erwiesen. Geeignet sind auch die Röntgendiffraktometrie (XRD, X-Ray Diffraktion), auch Röntgenbeugung genannt, oder die Schwingungsspektroskopie (IR, Raman). Die vorgenannten Beispiele sind nicht abschließen zu verstehen.
Es hat sich herausgestellt, dass eine besonders schonende Krafteinleitung über das Einbringen von Scherkräften erzeugt wird. Zweckmäßigerweise umfasst das Verfahren den Schritt:
Einbringen der Kräfte, insbesondere der Scherkräfte, über eine Druck-, Schlag-, Reib-, Schneid- und/oder Prallzerkleinerung.
Zweckmäßigerweise gibt es für jede der vorgenannten Wirkmechanismen geeignete Vorrichtungen bzw. Maschinen, welche zweckmäßigerweise vorliegend verwendet werden können.
Gemäß einer Ausführungsform werden zum Einbringen der Kräfte eine oder mehrere der folgenden Vorrichtungen verwendet: Mahlkörpermühle, Kugelmühle, Mörsermühle, Brecher, Hammermühle.
Als besonders vorteilhaft hat sich das Zerkleinern mittels einer Prallmühle herausgestellt.
Tatsächlich ist aber das geeignetste Werkzeug einzelfallabhängig zu ermitteln. Gleiches gilt
für die verwendeten Verfahrensparameter/Maschinenparameter beim Verwenden der Vorrichtungen. Wie bereits erwähnt, wird die Beschaffenheit des Recyclats bevorzugt messtechnisch überwacht, sodass etwaige Verfahrensparameter entsprechend angepasst werden können. Ein Ziel ist insbesondere das Erhalten der vorteilhaften Fibrillenstruktur.
Gemäß einer Ausführungsform umfasst das Verfahren den Schritt:
Bereitstellen des Beschichtungsmaterials als freistehenden Elektrodenfilm.
Hierbei kann es sich um Ausschussmaterial handeln, welches in der Produktion angefallen ist. In einem derartigen Elektrodenfilm liegt das Beschichtungsmaterial agglomeriert und verfestigt vor. Die Begriffe „agglomeriert“ und „verfestigt“ dienen insbesondere als Abgrenzung zu einem pulver- oder partikelförmigen Zustand des Beschichtungsmaterials.
Das Beschichtungsmaterial liegt auch dann agglomeriert oder verfestigt vor, wenn es auf dem oder einem Trägermaterial, auch Trägerfolie genannt, aufgebracht ist. Gemäß einer Ausführungsform umfasst das Verfahren die Schritte:
Bereitstellen einer Elektrode, umfassend ein Trägermaterial, welches mit dem Beschichtungsmaterial beschichtet ist;
Lösen/T rennen des Beschichtungsmaterials von dem Trägermaterial.
Das gelöste und getrennte Beschichtungsmaterial, welches immer noch agglomeriert bzw. verfestigt ist, wird im Anschluss zweckmäßigerweise über das Einbringen der Kräfte desag- glomeriert, wobei vorteilhafterweise die die Aggregate bildenden Fibrillen erhalten bleiben. Bei dieser Ausführungsform handelt es sich insbesondere um eine Variante des Verfahrens, welche zur Wiederaufbereitung bereits verwendeter Elektroden geeignet ist.
Die Erfindung betrifft weiter ein Recyclat, welches nach dem erfindungsgemäßen Verfahren hergestellt ist. Ein derartiges Recyclat liegt beispielsweise pulver- oder partikelförmig vor. Die vorgenannten Pulver oder Partikel werden durch die Aggregate gebildet, welche wiederum über die Fibrillenstruktur zusammengehalten werden.
Die Erfindung betrifft auch ein Verfahren zur lösungsmittelfreien Elektrodenherstellung, wobei zur Herstellung das erfindungsgemäße Recyclat verwendet wird.
Gemäß einer Ausführungsform umfasst das Verfahren zur lösungsmittelfreien Elektrodenherstellung die Schritte:
Verarbeiten des erfindungsgemäßen Recyclats in einem (Mehrwellen-)Extruder zum Erzeugen eines Beschichtungsmaterials;
Aufbringen des Beschichtungsmaterials auf ein Trägermaterial.
Alternativ oder zusätzlich umfasst das Verfahren die Schritte:
Erzeugen von Beschichtungsmaterial, insbesondere in einem Mehrwellenextruder; Zugeben des Recyclats dem Beschichtungsmaterial.
Vorteilhafterweise kann bei Verwendung eines Mehrwellenextruders ein kontinuierlicher Mischprozess realisiert werden, welcher gegenüber Batch-Mischprozessen oder semikontinuierlichen Prozessen, wie sie beispielsweise in einer Jet-Mill realisiert werden können, eine Steigerung der Produktivität sowie eine Kosten- und Energiebedarfsreduktion ermöglichen. Bei der Verwendung von z. B. Jet-Mills kann zudem eine Degradation der elektrochemisch aktiven Komponenten (insbesondere von Interkalations-Graphiten, aber auch anderer Materialien, wie Oxiden und Silicium-Materialien) auftreten, da die zur Fibrillierung des Binders nötige Beanspruchung auch ein Mahlen der übrigen Komponenten bewirkt. Als besonders vorteilhaft hat sich erwiesen, dass über den Mehrwellenextruder der Fibrillierungsgrad gezielt eingestellt werden kann. Hierzu stehen eine Reihe von Parametern zur Verfügung, wie beispielsweise die Prozesstemperatur, der Durchsatz, die Drehzahl sowie die Konfiguration der verwendeten Knet- und/oder Mischelemente im Mehrwellenextruder. Im Anschluss an die Verarbeitung im Mehrwellenextruder liegt das Beschichtungsmaterial pulverförmig vor. Ein derartiges Pulver umfasst Partikel, Granulate etc. Die Binderkomponente liegt fibrilliert vor. Die Korngröße der vorgenannten Elemente ist zweckmäßigerweise ebenfalls über den Mehrwellenextruder einstellbar.
Da über das Einbringen der Kräfte, wie insbesondere der Scherkräfte, bzw. die Verwendung geeigneter Techniken (vgl. die vorgenannte Prallmühle) keine Degradation der Binder-Fibrillen bewirkt wird, ist eine weitere Fibrillierung des Recyclats in einem (Mehrwellen-) Extruder nicht zwingend nötig. Das vorliegende Recyclat muss also mit Vorteil nicht weiter aufbereitet werden bzw. ist vorteilhafterweise direkt zur Beschichtung eines Trägermaterials oder als Zugabe für ein (bereits fibrilliertes) Beschichtungsmaterial geeignet.
Das Beschichtungsmaterial kann gemäß einer Ausführungsform vollständig (zu 100 %) aus dem Recyclat bestehen. Dem Beschichtungsmaterial kann das Recyclat auch als ein Bestandteil hinzugegeben werden. Dies kann gemäß einer Ausführungsform beim Erzeugen des Beschichtungsmaterials im (Mehrwellen-)Extruder erfolgen. Das Recyclat wird hierbei zusammen mit den weiteren Materialien, wie Aktivmaterial etc., dem Extruder zugegeben und dort mit verarbeitet. Alternativ oder zusätzlich kann das Recyclat dem, beispielsweise in einem (Mehrwellen-)Extruder erzeugten Beschichtungsmaterial, nachträglich zugegeben werden, insbesondere beispielsweise „untergehoben“ werden (z.B. durch Zugabe in den Auffangbehälter / Pufferbehälter am Extruder, der durchmischt wird).
Weiter betrifft die Erfindung eine Elektrode für eine elektrische Energiespeicherzelle, umfassend ein Trägermaterial, welches eine Beschichtung aufweist, wobei die Beschichtung zumindest teilweise aus dem erfindungsgemäßen Recyclat hergestellt ist.
Gemäß einer bevorzugten Ausführungsform ist die Elektrode nach dem erfindungsgemäßen Verfahren zur lösungsmittelfreien Elektrodenherstellung hergestellt.
Gemäß einer Ausführungsform weist die Beschichtung als Bestandteile elektrochemisch aktives Material, einen Leitzusatz sowie ein fibrillierbares Material auf. Zweckmäßigerweise sind die Bestandteile vollständig oder zumindest teilweise durch das Recyclat bereitgestellt.
Das Beschichtungsmaterial der Elektrode kann vollständig aus dem Recyclat bestehen. Alternativ beträgt der Anteil des Recyclats in Gewichtsprozent lediglich bis zu 10 %, bis zu 20 %, bis zu 30 %, bis zu 40 %, bis zu 50 %, bis zu 60 %, bis zu 70 %, bis zu 80 % oder bis zu 90 %.
Das fibrillierbare Material ist gemäß einer Ausführungsform PTFE (Polytetrafluorethylen, Teflon). Gemäß einer Ausführungsform umfasst die Beschichtung auch mehrere fibrillierbare Materialien oder Gemischbestandteile, wobei weitere fibrillierbare Bestandteile, beispielsweise PVDF (Polyvinylidenfluorid) oder PE (Polyethylen) sind. Gemäß einer Ausführungsform können Recyclate verwendet werden, welche aus unterschiedlichen Beschichtungsmaterialien gewonnen wurden. Mit unterschiedlichen Beschichtungsmaterialien sind dabei insbesondere Beschichtungsmaterialien gemeint, welche sich in ihrer Zusammensetzung unterscheiden.
Gemäß einer Ausführungsform ist das elektrochemisch aktive Material beispielsweise Katho- denmaterial, der Leitzusatz ein Leitruß, und der fibrillierbare Bestandteile PTFE. Bevorzugte Kathodenmaterialien sind: LOO (Lithium-Cobalt-Oxid), LMS oder LMO (Lithium-Mangan- Oxid-Spinell), NMC oder NOM (Lithium-Nickel-Cobalt-Mangan), LFP (Lithium-Eisen-Phos- phat), NCA (Lithium-Nickel-Cobalt-Aluminium-Oxid) oder NCMA (Nickel-Cobalt-Mangan-Alu- minium).
Gemäß einer bevorzugten Ausführungsform umfasst das elektrochemisch aktive Material
92 - 99 Gew.-%, der Leitzusatz 0,5 - 5 Gew.-% und der fibrillierbare Bestandteil
0,5 - 3 Gew.-%.
Weitere Vorteile und Merkmale ergeben sich aus der nachfolgenden Beschreibung einer Ausführungsform des Verfahrens mit Bezug auf die beigefügten Figuren.
Es zeigen:
Figur 1 : eine schematische Skizze einer Ausführungsform einer Elektrode, umfassend ein Trägermaterial nebst Beschichtung;
Figur 2: eine schematische Skizze zum Veranschaulichen der Struktur des Beschichtungsmaterials;
Figur 3: eine schematische Ansicht eines Mehrwellenextruders.
Figur 1 zeigt einen kleinen Ausschnitt einer sich entlang einer Bahnrichtung B erstreckenden Elektrode, umfassend ein Trägermaterial oder eine Trägerfolie 10, auf welcher, vorliegend beispielhaft einseitig, Beschichtungsmaterial 20 aufgebracht ist. In der oberen Bildhälfte ist eine Seitenansicht zu sehen, in der darunterliegenden Ansicht eine Draufsicht. Das Beschichtungsmaterial 20 ist verfestigt bzw. liegt agglomeriert vor. In der rechten Bildhälfte ist ein Bereich des Beschichtungsmaterials 20 vergrößert dargestellt. Zu erkennen ist ein „Teilagglomerat“ 22, welches eine Vielzahl von Aggregaten 24 umfasst. Die Aggregate 24 wiederum umfassen Primärpartikel (elektrochemisch aktives Material, Leitzusatz). Die Verbindung der Primärpartikel erfolgt durch die Fibrillen.
Figur 2 zeigt das aus der Figur 1 bekannte Teilagglomerat 22. Der Pfeil mit dem Bezugszeichen F soll eine Krafteinleitung skizzieren. Vorliegend wird eine Aufbereitungsmethode vorgeschlagen, welche geeignet ist, die Agglomerate aufzubrechen, ohne allerdings die vorteilhafte Fibrillenstruktur zu beschädigen. Mit anderen Worten ist eine Desagglomeration erwünscht, eine Desaggregation nicht. Dies ist in der rechten Bildhälfte schematisch skizziert. Zu erkennen sind dort die Aggregate 24, welche in sich geschlossen sind, zusammengehalten durch die Fibrillen. Die Agglomeratstruktur jedoch ist aufgebrochen. Ein derartiges Material bzw. ein derartiges Recyclat eignet sich hervorragend für die Weiterverwendung bzw.
Weiterverarbeitung.
Figur 3 zeigt schematisch einen Mehrwellenextruder 30. Diesem kann als Teil- oder auch Hauptbestandteil ein Recyclat, vgl. die Figur 2, zugeführt werden, um daraus ein Beschichtungsmaterial für die Trockenbeschichtung von Elektroden zu erzeugen. Gemäß Option s1 wird das Recyclat, ähnlich den übrigen Bestandteilen der Beschichtung, dem Mehrwellenextruder 30 zugegeben. Da das vorliegende Recyclat vorteilhafterweise eine intakte oder
weitgehend intakte Fibrillenstruktur aufweist, ist eine (erneute) Aufbereitung in einem Mehr- wellen-)Extruder vorteilhafterweise gar nicht nötig. Eine nachträgliche Zugabe des Recyclats, wie über das Bezugszeichen s2 skizziert, ist daher mit Vorteil ebenfalls, zusätzlich oder alternativ, möglich.
Bezugszeichenliste
10 Trägermaterial
20 Beschichtungsmaterial 22 Teilagglomerat
24 Aggregat
30 Mehrwellenextruder
F Kraft
B Bahnrichtung s1, s2 Optionen
Claims
1. Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial, umfassend die Schritte:
- Bereitstellen von agglomeriertem, verfestigtem Beschichtungsmaterial (20), wobei das Beschichtungsmaterial (20) als Binder Fibrillen aufweist, welche Aggregate formen;
- Erzeugen eines Recyclats durch Einbringen von Kräften, insbesondere Scherkräften, in das Beschichtungsmaterial (20) derart, dass das Agglomerat aufgebrochen und die die Aggregate bildenden Fibrillen erhalten bleiben.
2. Verfahren nach Anspruch 1 , umfassend den Schritt:
- Einbringen der Kräfte, insbesondere der Scherkräfte, über eine Druck-, Schlag-, Reib-, Schneid- und/oder Prallzerkleinerung.
3. Verfahren nach Anspruch 1 oder 2, wobei zum Einbringen der Kräfte eine oder mehrere der folgenden Vorrichtungen verwendet wird/werden: Mahlkörpermühle, Kugelmühle, Mörsermühle, Brecher, Hammermühle.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei zum Zerkleinern eine Prallmühle verwendet wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, umfassend den Schritt:
- Bereitstellen des Beschichtungsmaterials (20) als freistehenden Elektrodenfilm.
6. Verfahren nach einem der vorhergehenden Ansprüche, umfassend die Schritte:
- Bereitstellen einer Elektrode, umfassend ein Trägermaterial (10), welches mit dem Beschichtungsmaterial (20) beschichtet ist;
- Lösen/T rennen des Beschichtungsmaterials (20) von dem Trägermaterial (10).
Recyclat, hergestellt nach einem Verfahren gemäß einem der vorhergehenden Ansprüche. Verfahren zur lösungsmittelfreien Elektrodenherstellung, wobei ein Recyclat nach Anspruch 7 verwendet wird. Verfahren nach Anspruch 8, umfassend die Schritte:
Verarbeiten des Recyclats in einem Extruder, insbesondere einem Mehrwellenextruder (30), zum Erzeugen eines Beschichtungsmaterials;
Aufbringen des Beschichtungsmaterials (20) auf ein Trägermaterial (10). Verfahren nach Anspruch 8 oder 9, umfassend die Schritte:
Erzeugen von Beschichtungsmaterial, insbesondere in einem Mehrwellenextruder (30);
Zugeben des Recyclats dem Beschichtungsmaterial. Elektrode für eine elektrische Energiespeicherzelle, umfassend ein Trägermaterial (10), welches eine Beschichtung aufweist, wobei die Beschichtung zumindest teilweise aus einem Recyclat nach Anspruch 7 hergestellt ist. Elektrode nach Anspruch 11 , wobei die Elektrode nach einem Verfahren gemäß einem der Ansprüche 8 bis 10 hergestellt ist. Elektrode nach Anspruch 11 oder 12, wobei die Beschichtung als Bestandteile elektrochemisch aktives Material, einen Leitzusatz und ein fibrillierbares Material umfasst. Elektrode nach Anspruch 13, wobei die Bestandteile vollständig oder zumindest teilweise durch das Recyclat bereitgestellt sind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380026849.3A CN118843953A (zh) | 2022-05-30 | 2023-05-04 | 用于从干式涂覆材料产生可回收物的方法、可回收物、用于无溶剂地制造电极的方法以及电极 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102022113504.7 | 2022-05-30 | ||
DE102022113504.7A DE102022113504A1 (de) | 2022-05-30 | 2022-05-30 | Verfahren zum Erzeugen eines Recyclats aus Trockenbeschichtungsmaterial, Recyclat, Verfahren zur lösungsmittelfreien Elektrodenherstellung sowie Elektrode |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023232381A1 true WO2023232381A1 (de) | 2023-12-07 |
Family
ID=86378636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/061777 WO2023232381A1 (de) | 2022-05-30 | 2023-05-04 | Verfahren zum erzeugen eines recyclats aus trockenbeschichtungsmaterial, recyclat, verfahren zur lösungsmittelfreien elektrodenherstellung sowie elektrode |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN118843953A (de) |
DE (1) | DE102022113504A1 (de) |
WO (1) | WO2023232381A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118299498A (zh) * | 2024-06-06 | 2024-07-05 | 宁波容百新能源科技股份有限公司 | 干法电极膜片和检测其中粘结剂纤维化程度的方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69905134T2 (de) | 1998-07-21 | 2003-10-23 | Eveready Battery Co., Inc. | Rückgewinnung von material aus beschichteten substraten |
US20130157141A1 (en) * | 2003-07-09 | 2013-06-20 | Maxwell Technologies, Inc. | Battery with a recyclable dry particle based electrode |
US20190260100A1 (en) * | 2018-02-20 | 2019-08-22 | Hulico LLC | Recycling of coated electrode materials |
US20190280289A1 (en) * | 2016-10-28 | 2019-09-12 | Adven Industries, Inc. | Conductive-Flake Strengthened, Polymer Stabilized Electrode Composition And Method Of Preparing |
WO2021178284A1 (en) * | 2020-03-02 | 2021-09-10 | Navitas Systems, Llc | Compositions and methods for electrochemical cell component fabrication |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6127474A (en) | 1997-08-27 | 2000-10-03 | Andelman; Marc D. | Strengthened conductive polymer stabilized electrode composition and method of preparing |
US20050266298A1 (en) | 2003-07-09 | 2005-12-01 | Maxwell Technologies, Inc. | Dry particle based electro-chemical device and methods of making same |
CN106252774A (zh) | 2016-08-25 | 2016-12-21 | 株洲鼎端装备股份有限公司 | 一种废旧镍氢动力电池的回收处理方法 |
-
2022
- 2022-05-30 DE DE102022113504.7A patent/DE102022113504A1/de active Pending
-
2023
- 2023-05-04 CN CN202380026849.3A patent/CN118843953A/zh active Pending
- 2023-05-04 WO PCT/EP2023/061777 patent/WO2023232381A1/de unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE69905134T2 (de) | 1998-07-21 | 2003-10-23 | Eveready Battery Co., Inc. | Rückgewinnung von material aus beschichteten substraten |
US20130157141A1 (en) * | 2003-07-09 | 2013-06-20 | Maxwell Technologies, Inc. | Battery with a recyclable dry particle based electrode |
US20190280289A1 (en) * | 2016-10-28 | 2019-09-12 | Adven Industries, Inc. | Conductive-Flake Strengthened, Polymer Stabilized Electrode Composition And Method Of Preparing |
US20190260100A1 (en) * | 2018-02-20 | 2019-08-22 | Hulico LLC | Recycling of coated electrode materials |
WO2021178284A1 (en) * | 2020-03-02 | 2021-09-10 | Navitas Systems, Llc | Compositions and methods for electrochemical cell component fabrication |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118299498A (zh) * | 2024-06-06 | 2024-07-05 | 宁波容百新能源科技股份有限公司 | 干法电极膜片和检测其中粘结剂纤维化程度的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE102022113504A1 (de) | 2023-11-30 |
CN118843953A (zh) | 2024-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69417011T2 (de) | Verfahren zur herstellung von kathoden komponenten und zu ihrer verwendung in elektrochemischen zellen | |
DE102011110083B4 (de) | Verfahren zum Wiedergewinnen von Aktivmaterial aus einer galvanischen Zelle und Aktivmaterial-Separationsanlage, insbesondere Aktivmetall-Separationsanlage | |
DE69905134T2 (de) | Rückgewinnung von material aus beschichteten substraten | |
EP1240103B1 (de) | Verfahren zur herstellung von graphitpulvern mit erhöhter schüttdichte | |
EP2678891A1 (de) | Elektrodenmaterial mit hoher kapazität | |
EP3716380A1 (de) | Verfahren zum behandeln gebrauchter batterien, insbesondere wieder aufladbarer batterien und batterie-verarbeitungsanlage | |
WO2023232381A1 (de) | Verfahren zum erzeugen eines recyclats aus trockenbeschichtungsmaterial, recyclat, verfahren zur lösungsmittelfreien elektrodenherstellung sowie elektrode | |
WO2018050314A1 (de) | Verfahren zur herstellung eines elektrodenfilms | |
EP3424097B1 (de) | Verfahren zur verarbeitung von elektrodenmaterialien für batterien | |
WO2012084764A1 (de) | Verfahren zur herstellung von pulverförmigen polymer-kohlenstoffnanoröhren-gemischen | |
DE102017128713A1 (de) | Verfahren zur Herstellung eines Festelektrolyten und einer Festkörperbatterie, welche diesen aufweist | |
DE102016217373A1 (de) | Verfahren zur Herstellung einer homogenen partikulären Materialzusammensetzung | |
DE2145728A1 (de) | Verfahren zum kryogenen Regenerieren von Altgummi | |
EP4020615A1 (de) | Verfahren zur herstellung einer elektrodenpulvermischung einer batteriezelle | |
EP1027389A1 (de) | Kontinuierliches verfahren zur wiederverwendung von pulverlackabfällen und die erhaltenen pulverlacke | |
DE102019218736A1 (de) | Verfahren und eine Vorrichtung zur Material selektiven Zerlegung eines Werkstückes mit Anode und Kathode | |
WO2023198692A1 (de) | Verfahren sowie anlage zum recycling von batterie-zellen oder teilen hiervon | |
DE102023201760A1 (de) | Verfahren und Anlage zur Gewinnung von Grafit | |
WO2022214411A2 (de) | Trockenbeschichtung und selbsttragende schichten mit ausgerichteten partikeln | |
DE60102984T2 (de) | Herstellverfahren für eine dünne lithiumbatterie | |
JP2011018687A (ja) | 電極シートの製造方法及び電極体の製造方法 | |
WO2023170108A1 (de) | Verfahren zur kontinuierlichen herstellung einer batterieelektrode | |
DE102022105662A1 (de) | Verfahren zur kontinuierlichen Herstellung einer Batterieelektrode | |
WO2023179969A1 (de) | Verfahren zur lösungsmittelfreien elektrodenherstellung sowie elektrode | |
WO2024165555A1 (de) | Verfahren und vorrichtung zur herstellung eines trockenfilms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23723556 Country of ref document: EP Kind code of ref document: A1 |