WO2023232350A1 - Rotor einer elektrischen maschine - Google Patents

Rotor einer elektrischen maschine Download PDF

Info

Publication number
WO2023232350A1
WO2023232350A1 PCT/EP2023/060632 EP2023060632W WO2023232350A1 WO 2023232350 A1 WO2023232350 A1 WO 2023232350A1 EP 2023060632 W EP2023060632 W EP 2023060632W WO 2023232350 A1 WO2023232350 A1 WO 2023232350A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
pole
conductor
conductors
bandage
Prior art date
Application number
PCT/EP2023/060632
Other languages
English (en)
French (fr)
Inventor
Karim Bahroun
Manuel Gaertner
Lin Feuerrohr
Stefan Klenge
Bastian Vogt
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102022211885.5A external-priority patent/DE102022211885A1/de
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2023232350A1 publication Critical patent/WO2023232350A1/de

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/527Fastening salient pole windings or connections thereto applicable to rotors only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/24Rotor cores with salient poles ; Variable reluctance rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/04Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of windings, prior to mounting into machines
    • H02K15/0435Wound windings
    • H02K15/0442Loop windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/064Windings consisting of separate segments, e.g. hairpin windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/06Embedding prefabricated windings in machines
    • H02K15/062Windings in slots; salient pole windings
    • H02K15/065Windings consisting of complete sections, e.g. coils, waves
    • H02K15/066Windings consisting of complete sections, e.g. coils, waves inserted perpendicularly to the axis of the slots or inter-polar channels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/18Windings for salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/12Impregnating, heating or drying of windings, stators, rotors or machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors

Definitions

  • the invention is based on a rotor of an electrical machine according to the preamble of the main claim.
  • a rotor of an electrical machine is already known from DE102019217464 A1, with several leg poles arranged along a circumferential direction of the rotor, between which pole slots are formed for arranging electrical conductors of a rotor winding, the leg poles having pole shoes on the radially outer pole ends, with between A groove slot is formed in each of the adjacent pole pieces, with the conductors lying in the same pole groove being connected to form a rod-shaped conductor composite by means of a composite material, in particular a resin.
  • the speed strength of the conductor composite rods is limited by the strength properties of the composite material.
  • a rotor of an electrical machine is already known from DE102019212391 A1, with several leg poles arranged along a circumferential direction of the rotor, between which pole slots are formed for arranging electrical conductors of a rotor winding, the leg poles having pole shoes on the radially outer pole ends, with between A slot slot is formed in each of the adjacent pole pieces, with the rotor winding being secured in the pole slots against centrifugal force by means of slot closure elements.
  • the slot closure elements reduce the copper filling factor in the respective pole slot.
  • the rotor according to the invention with the characterizing features of the main claim has the advantage that the speed stability of the rotor winding and thus of the rotor is increased by the electrical conductors of the respective pole slot becoming a very rigid unit with a high axial Section modulus can be connected.
  • the conductor filling factor for example the copper filling factor, can be further increased in the respective pole slot.
  • the respective conductor composite comprises a bandage which encloses the conductors of the conductor composite and which is connected to the conductor composite by the composite material, in particular in a materially bonded manner. In particular, the bandage is soaked in the composite material and is thereby materially connected to the conductor composite.
  • the bandage of the conductor assembly is a pole-nut-integrated bandage that does not lie in an air gap formed between the rotor and a stator of the electrical machine and advantageously does not increase the air gap, in contrast to a rotor sleeve that encloses the entire rotor and is arranged in the air gap .
  • the bandage is a fiber bandage or a fiber composite bandage that includes fibers, in particular glass fibers, carbon fibers or aramid fibers.
  • fibers in particular glass fibers, carbon fibers or aramid fibers.
  • this type of bandage requires little space in the pole grooves.
  • the bandage can advantageously be formed by a sliver which is wound helically around the conductors of the conductor assembly, in particular with or without axial overlap. In this way, a high level of rigidity of the bandage and thus of the conductor assembly is achieved. In this way, centrifugal forces acting in the area of the slot can be diverted into the pole pieces.
  • the bandage can be formed by a fiber sleeve, in particular a fiber sleeve, which is placed once around the conductors of the conductor assembly, in particular enclosing the cross section, with a joint of the circumferential sleeve ends being provided in particular at a groove base of the respective pole groove.
  • the fiber sleeve is closed in the radial area of the slot and can dissipate centrifugal forces acting there into the pole shoes.
  • the conductor assembly comprises conductors which are arranged in the circumferential direction outside the pole pieces of the two leg poles of the respective pole slot, since in this way a high conductor fill factor, for example copper fill factor, is achieved in the respective pole slot.
  • the rotor winding can comprise several individual coils or alternatively be designed as a wave winding.
  • the electrical conductors of the respective conductor group are individual conductor bars which can be connected to conductor bars of other conductor groups to form the rotor winding by means of separate connecting conductors located outside the pole slots and in particular form two coil sides of two individual coils.
  • rod-shaped conductor assemblies can be produced cost-effectively from an endless strand.
  • the electrical conductors of the respective conductor assembly form two coil sides of two individual coils, the individual coils each being formed by a coil wire which runs around the respective salient pole with a plurality of turns.
  • a thinner conductor can be used than in the first exemplary embodiment and thus an individual coil with a higher number of turns can be achieved than in the first exemplary embodiment.
  • the respective conductor assembly comprises a cooling channel for cooling the conductors of the conductor assembly, which is enclosed by the bandage of the conductor assembly and extends along the respective pole groove. In this way, very effective cooling of the conductors in the pole slots of the rotor can be achieved.
  • leg poles according to a first rotor variant are part of a rotor laminated core, which is arranged in particular on a rotor shaft, or if the leg poles according to a second rotor variant are separate components that can be mounted separately on a pole carrier, in particular a rotor shaft.
  • every second leg pole can be part of a rotor laminated core and every second remaining leg pole can be a separate component for attachment to the rotor laminated core.
  • the invention further relates to an electrical machine with a rotor according to the invention.
  • Fig.l shows a partial view of a rotor of an electrical machine with a rotor winding according to the invention according to a first exemplary embodiment
  • FIG. 2 is a sectional view of a conductor assembly according to the invention located in one of the pole slots of the rotor according to FIG. 1,
  • FIG. 3 is a view of the conductor assembly according to FIG. 2 according to a first embodiment
  • Fig.4 is a view of the conductor assembly according to Fig.2 according to a second
  • FIG. 5 shows a rotor of an electrical machine with a rotor winding according to the invention according to a second exemplary embodiment
  • FIG. 6 shows an arrangement of the individual coils according to the second exemplary embodiment according to FIG. 5 before assembly of the salient poles and the rotor shaft and
  • Fig.7 is a sectional view of the fully assembled rotor according to Fig.5.
  • Fig.l shows a partial view of a rotor of an electrical machine with a rotor winding according to the invention according to a first exemplary embodiment.
  • the rotor 1 according to the invention of an electrical machine, in particular an electrically excited synchronous machine, comprises a plurality of salient poles 3 which are arranged along a circumferential direction with respect to a rotor axis 2 of the rotor 1 and between which pole slots 4 are formed for the arrangement of electrical conductors 5 of a rotor winding 6.
  • the Salient poles 3 have pole shoes 7 at the pole ends that are radially outer with respect to the rotor axis 2. Between adjacent pole shoes 7 is in A groove slot 8 is formed in the radial region of the pole pieces 7 with respect to the rotor axis 2.
  • the leg poles 3 of the rotor 1 are, for example, part of a rotor laminated core, which is arranged in particular on a rotor shaft 1.1 of the rotor 1.
  • the conductors 5 of the rotor winding 6 lying in the same pole groove 4 are each connected by means of a curable composite material 9, in particular a resin, to form a conductor composite 10, which is, for example, rod-shaped.
  • the conductor composite 10 can be produced, for example, by a pultrusion or casting process that includes bandaging as a process step.
  • the conductor assembly 10 can include conductors 5 which are arranged in the circumferential direction in the area outside the pole shoes 7 of the two leg poles 3 of the respective pole groove 4.
  • the rotor winding 6 comprises several individual coils 6.1, but could also be expressly designed as a wave winding.
  • Fig.2 shows a sectional view of a conductor assembly according to the invention lying in one of the pole slots of the rotor according to Fig.l.
  • the respective conductor assembly 10 comprises a bandage 11 which encloses the conductors 5 of the conductor assembly 10 and which is connected to the conductor assembly 10 by the composite material 9, in particular in a materially bonded manner.
  • the bandage 11 is soaked in the composite material 9 and is thereby materially connected to the respective conductor composite 10.
  • the bandage 11 can, for example, be a fiber composite bandage that includes fibers, in particular glass fibers, carbon fibers or aramid fibers.
  • the electrical conductors 5 of the respective conductor assembly 10 are individual conductor bars which are connected to conductor bars of other conductor groups by means of separate connecting conductors 12 located outside the pole slots 4 10 can be connected to form the rotor winding 6 and, for example, form two coil sides 14 of two individual coils 6.1.
  • the two coil sides 14 of the same pole groove 4 each form two separate winding layers and each include the conductors from all layers of the respective coil side.
  • the rotor winding 6 is therefore a composite segment winding, which comprises, for example, several composite individual coils 6.1, with the individual coils 6.1 each enclosing one of the leg poles 3.
  • the rod-shaped conductor assemblies 10 are inserted into the pole slots 4 in the axial direction.
  • the connecting conductors 12 are then joined and connected to the corresponding conductor bars 5 in accordance with the desired connection of the rotor winding 6.
  • Fig.3 shows a view of the conductor assembly according to Fig.2 according to a first embodiment.
  • the bandage 11 can be formed, for example, by a fiber band 11.1, which is wound helically around the conductors 5 of the conductor assembly 10, in particular with or without axial overlap.
  • Fig.4 shows a view of the conductor assembly according to Fig.2 according to a second embodiment.
  • the bandage 11 can be formed by a fiber sleeve 11.2, which, similar to a flat slot insulation, is placed once around the conductor 5 of the conductor assembly 10, in particular enclosing the cross section, with a joint or an overlap of the circumferential sleeve ends, in particular on a groove base 4.1 of the respective pole groove 4 is provided.
  • the fiber sleeve 11.2 can also be referred to as a fiber sleeve.
  • FIG. 5 shows a rotor of an electrical machine with a rotor winding according to the invention according to a second exemplary embodiment.
  • the second exemplary embodiment differs from the first exemplary embodiment in that the rotor winding does not comprise assembled individual coils, but rather individual coils wound with a coil wire.
  • the electrical conductors 5 of the respective conductor assembly 10 form, as in FIG. 4, two coil sides 14 of two individual coils 6.1.
  • the individual coils 6.1 are each formed by a coil wire which runs around the respective salient pole 3 with a large number of turns in the fully assembled rotor 1.
  • Fig.6 shows an arrangement of the individual coils according to the second exemplary embodiment according to Fig.5 before assembly of the salient poles and the rotor shaft.
  • the several prefabricated individual coils 6.1 of the rotor winding 6 according to FIG. 6 are arranged in a circle and the coil sides 14 to be arranged in the same pole groove 4 are each wrapped or enclosed by a bandage 11.
  • the bandage 11 can be wetted with a still liquid composite material to form the respective conductor composite 10.
  • the bandage 11 can initially be wrapped or folded around the respective conductor 5 dry, i.e. without composite material, and the composite material 9 can be used to produce the conductor composites 10 in one be applied in the subsequent step, for example by drizzling, impregnating or potting.
  • Fig.7 shows a sectional view of the fully assembled rotor according to Fig.5.
  • the leg poles 3, which are designed separately in the second exemplary embodiment, are mounted in the radial direction on the individual coils 6.1 or inserted through the respective individual coil 6.1 in such a way that each individual coil 6.1 encloses one of the leg poles 3.
  • a pole carrier 15 is inserted in the axial direction into the pre-assembled unit in such a way that the separate leg poles 3 are anchored in the pole carrier 15, for example by positive locking.
  • the pole carrier 15 is, for example, a rotor shaft 1.1 of the rotor 1.
  • the respective conductor assembly 10 can additionally include a cooling channel 15, which is enclosed by the bandage 11 of the conductor assembly 10, extends along the respective pole groove 4 and is arranged, for example, between the two coil sides 14 of the respective pole groove 4.
  • a cooling channel 15 which is enclosed by the bandage 11 of the conductor assembly 10
  • every second leg pole 3 could be part of a rotor laminated core and every second remaining leg pole 3 could be a separate component for attachment to the rotor laminated core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

Rotor (1) einer elektrischen Maschine, insbesondere einer elektrisch erregten Synchronmaschine, mit mehreren entlang einer Umfangsrichtung bezüglich einer Rotorachse (2) des Rotors (1) angeordneten Schenkelpolen (3), zwischen denen Polnuten (4) gebildet sind zur Anordnung von elektrischen Leitern (5) einer Rotorwicklung (6), wobei die Schenkelpole (3) an den radial äußeren Polenden Polschuhe (7) aufweisen, wobei zwischen benachbarten Polschuhen (7) jeweils ein Nutschlitz (8) ausgebildet ist, wobei die in derselben Polnut (4) liegenden Leiter (5) mittels eines aushärtbaren Verbundmaterials (9), insbesondere eines Harzes, jeweils zu einem insbesondere stabförmigen Leiterverbund (10) verbunden sind, dadurch gekennzeichnet, dass der jeweilige Leiterverbund (10) eine Bandage (11) umfasst, die die Leiter (5) des Leiterverbundes (10) umschließt und die durch das Verbundmaterial (9) mit dem Leiterverbund (10) verbunden ist, insbesondere stoffschlüssig.

Description

Beschreibung
Titel
Rotor einer elektrischen Maschine
Stand der Technik
Die Erfindung geht aus von einem Rotor einer elektrischen Maschine nach der Gattung des Hauptanspruchs.
Es ist schon ein Rotor einer elektrischen Maschine aus der DE102019217464 Al bekannt, mit mehreren entlang einer Umfangsrichtung des Rotors angeordneten Schenkelpolen, zwischen denen Polnuten gebildet sind zur Anordnung von elektrischen Leitern einer Rotorwicklung, wobei die Schenkelpole an den radial äußeren Polenden Polschuhe aufweisen, wobei zwischen benachbarten Polschuhen jeweils ein Nutschlitz ausgebildet ist, wobei die in derselben Polnut liegenden Leiter mittels eines Verbundmaterials, insbesondere eines Harzes, jeweils zu einem stabförmigen Leiterverbund verbunden sind. Die Drehzahlfestigkeit der Leiterverbund- Stäbe ist jedoch durch die Festigkeitseigenschaften des Verbundmaterials begrenzt.
Es ist schon ein Rotor einer elektrischen Maschine aus der DE102019212391 Al bekannt, mit mehreren entlang einer Umfangsrichtung des Rotors angeordneten Schenkelpolen, zwischen denen Polnuten gebildet sind zur Anordnung von elektrischen Leitern einer Rotorwicklung, wobei die Schenkelpole an den radial äußeren Polenden Polschuhe aufweisen, wobei zwischen benachbarten Polschuhen jeweils ein Nutschlitz ausgebildet ist, wobei die Rotorwicklung in den Polnuten mittels von Nutverschlusselementen gegen Fliehkraft gesichert ist. Die Nutverschlusselemente verringern jedoch den Kupfer- Füllfaktor in der jeweiligen Polnut.
Vorteile der Erfindung
Der erfindungsgemäße Rotor mit den kennzeichnenden Merkmalen des Hauptanspruchs hat demgegenüber den Vorteil, dass die Drehzahlfestigkeit der Rotorwicklung und damit des Rotors erhöht wird, indem die elektrischen Leiter der jeweiligen Polnut jeweils zu einer sehr steifen Einheit mit einem hohen axialen Widerstandsmoment verbunden werden. Außerdem kann erfindungsgemäß der Leiter- Füllfaktor, beispielsweise der Kupfer- Füllfaktor, in der jeweiligen Polnut weiter erhöht werden. Dies wird erfindungsgemäß erreicht, indem der jeweilige Leiterverbund eine Bandage umfasst, die die Leiter des Leiterverbundes umschließt und die durch das Verbundmaterial mit dem Leiterverbund verbunden ist, insbesondere stoffschlüssig. Insbesondere ist die Bandage vom Verbundmaterial durchtränkt und dadurch mit dem Leiterverbund stoffschlüssig verbunden. Die Bandage des Leiterverbundes ist eine polnut-integrierte Bandage, die nicht in einem zwischen dem Rotor und einem Stator der elektrischen Maschine gebildeten Luftspalt liegt und den Luftspalt vorteilhafterweise nicht vergrößert, im Gegensatz zu einer Rotorhülse, die den gesamten Rotor umschließt und im Luftspalt angeordnet ist.
Durch die in den Unteransprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Rotors möglich.
Besonders vorteilhaft ist, wenn die Bandage eine Faserbandage oder eine Faserverbund-Bandage ist, die Fasern, insbesondere Glasfasern, Kohlefasern oder Aramidfasern, umfasst. Auf diese Weise kann die Rotorwicklung auch noch bei hohen Drehzahlen zuverlässig in den Polnuten gehalten werden. Außerdem erfordert diese Art der Bandage nur wenig Bauraum in den Polnuten.
Die Bandage kann in vorteilhafter Weise durch ein Faserband gebildet sein, das helixförmig um die Leiter des Leiterverbundes herumgewickelt ist, insbesondere mit oder ohne axialer Überlappung. Auf diese Weise wird eine hohe Steifigkeit der Bandage und somit des Leiterverbunds erreicht. Im Bereich des Nutschlitzes wirkende Fliehkräfte können auf diese Weise in die Polschuhe abgeleitet werden.
Alternativ kann die Bandage durch eine Faserhülse, insbesondere Fasermanschette, gebildet ist, die einmalig um die Leiter des Leiterverbundes herumgelegt ist, insbesondere querschnittsumschließend, wobei ein Stoß der umfänglichen Hülsenenden insbesondere an einem Nutgrund der jeweiligen Polnut vorgesehen ist. Auf diese Weise ist die Faserhülse im radialen Bereich des Nutschlitzes geschlossen und kann dort wirkende Fliehkräfte in die Polschuhe ableiten. Sehr vorteilhaft ist, wenn der Leiterverbund Leiter umfasst, die in Umfangsrichtung außerhalb der Polschuhe der beiden Schenkelpole der jeweiligen Polnut angeordnet sind, da auf diese Weise ein hoher Leiter- Füllfaktor, beispielsweise Kupfer- Füllfaktor, in der jeweiligen Polnut erreicht wird.
Die Rotorwicklung kann mehrere Einzelspulen umfassen oder alternativ als Wellenwicklung ausgebildet sein.
Gemäß einem vorteilhaften ersten Ausführungsbeispiel sind die elektrischen Leiter des jeweiligen Leiterverbundes einzelne Leiterstäbe, die mittels von separaten, außerhalb der Polnuten liegenden Verbindungsleitern mit Leiterstäben anderer Leiterverbünde zur Bildung der Rotorwicklung verbindbar sind und insbesondere zwei Spulenseiten zweier Einzelspulen bilden. Auf diese Weise können stabförmige Leiterverbünde kostengünstig aus einem Endlosstrang hergestellt werden.
Gemäß einem vorteilhaften zweiten Ausführungsbeispiel bilden die elektrischen Leiter des jeweiligen Leiterverbundes zwei Spulenseiten zweier Einzelspulen, wobei die Einzelspulen jeweils durch einen Spulendraht gebildet sind, der mit einer Vielzahl von Windungen um den jeweiligen Schenkelpol herumläuft. Auf diese Weise kann ein dünnerer Leiter als im ersten Ausführungsbeispiel verwendet und somit eine Einzelspule mit höherer Windungszahl als im ersten Ausführungsbeispiel erreicht werden.
Sehr vorteilhaft ist, wenn der jeweilige Leiterverbund einen Kühlkanal zur Kühlung der Leiter des Leiterverbundes umfasst, der von der Bandage des Leiterverbundes umschlossen ist und sich entlang der jeweiligen Polnut erstreckt. Auf diese Weise kann eine sehr wirksame Kühlung der Leiter in den Polnuten des Rotors erreicht werden.
Desweiteren vorteilhaft ist, wenn die Schenkelpole nach einer ersten Rotorvariante Teil eines Rotorblechpaketes sind, das insbesondere auf einer Rotorwelle angeordnet ist, oder wenn die Schenkelpole nach einer zweiten Rotorvariante separate Bauteile sind, die separat an einem Polträger, insbesondere einer Rotorwelle, montierbar sind. Nach einer dritten Rotorvariante kann jeder zweite Schenkelpol Teil eines Rotorblechpaketes und jeder zweite übrige Schenkelpol ein separates Bauteil zur Befestigung am Rotorblechpaket sein. Durch diese Rotorvarianten ist gewährleistet, dass der Rotor aus seinen Einzelkomponenten zusammenfügbar ist. Die jeweilige Rotorvariante wird abhängig von der gewählten Art der Rotorwicklung ausgewählt.
Weiterhin betrifft die Erfindung eine elektrische Maschine mit einem erfindungsgemäßen Rotor.
Zeichnung
Zwei Ausführungsbeispiel der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert.
Fig.l zeigt in einer Teilansicht einen Rotor einer elektrischen Maschine mit einer erfindungsgemäßen Rotorwicklung gemäß einem ersten Ausführungsbeispiel,
Fig.2 eine Schnittansicht eines in einer der Polnuten des Rotors nach Fig.l liegenden erfindungsgemäßen Leiterverbundes,
Fig.3 eine Ansicht des Leiterverbundes nach Fig.2 gemäß einer ersten Ausführung,
Fig.4 eine Ansicht des Leiterverbundes nach Fig.2 gemäß einer zweiten
Ausführung,
Fig.5 einen Rotor einer elektrischen Maschine mit einer erfindungsgemäßen Rotorwicklung gemäß einem zweiten Ausführungsbeispiel,
Fig.6 eine Anordnung der Einzelspulen gemäß dem zweiten Ausführungsbeispiel nach Fig.5 vor einer Montage der Schenkelpole und der Rotorwelle und
Fig.7 eine Schnittansicht des fertig montierten Rotors nach Fig.5.
Beschreibung der Ausführungsbeispiele
Fig.l zeigt in einer Teilansicht einen Rotor einer elektrischen Maschine mit einer erfindungsgemäßen Rotorwicklung gemäß einem ersten Ausführungsbeispiel.
Der erfindungsgemäße Rotor 1 einer elektrischen Maschine, insbesondere einer elektrisch erregten Synchronmaschine, umfasst mehrere Schenkelpole 3, die entlang einer Umfangsrichtung bezüglich einer Rotorachse 2 des Rotors 1 angeordnet sind und zwischen denen Polnuten 4 gebildet sind zur Anordnung von elektrischen Leitern 5 einer Rotorwicklung 6. Die Schenkelpole 3 haben an den bezüglich der Rotorachse 2 radial äußeren Polenden Polschuhe 7. Zwischen benachbarten Polschuhen 7 ist im bezüglich der Rotorachse 2 radialen Bereich der Polschuhe 7 jeweils ein Nutschlitz 8 ausgebildet.
Die Schenkelpole 3 des Rotors 1 sind nach dem ersten Ausführungsbeispiel beispielsweise Teil eines Rotorblechpaketes, das insbesondere auf einer Rotorwelle 1.1 des Rotors 1 angeordnet ist.
Die in derselben Polnut 4 liegenden Leiter 5 der Rotorwicklung 6 sind mittels eines aushärtbaren Verbundmaterials 9, insbesondere eines Harzes, jeweils zu einem Leiterverbund 10 verbunden, der beispielsweise stabförmig ist. Der Leiterverbund 10 kann beispielsweise durch ein Pultrusions- oder Gießverfahren hergestellt werden, das die Bandagierung als Verfahrensschritt umfasst.
Der Leiterverbund 10 kann Leiter 5 umfassen, die in Umfangsrichtung im Bereich außerhalb der Polschuhe 7 der beiden Schenkelpole 3 der jeweiligen Polnut 4 angeordnet sind.
Die Rotorwicklung 6 umfasst nach den beiden Ausführungsbeispielen in Fig.l und Fig.5 mehrere Einzelspulen 6.1, könnte aber ausdrücklich auch als Wellenwicklung ausgebildet sein.
Fig.2 zeigt eine Schnittansicht eines in einer der Polnuten des Rotors nach Fig.l liegenden erfindungsgemäßen Leiterverbundes.
Erfindungsgemäß ist vorgesehen, dass der jeweilige Leiterverbund 10 eine Bandage 11 umfasst, die die Leiter 5 des Leiterverbundes 10 umschließt und die durch das Verbundmaterial 9 mit dem Leiterverbund 10 verbunden ist, insbesondere stoffschlüssig. Beispielsweise ist die Bandage 11 vom Verbundmaterial 9 durchtränkt und dadurch mit dem jeweiligen Leiterverbund 10 stoffschlüssig verbunden.
Die Bandage 11 kann beispielsweise eine Faserverbund-Bandage sein, die Fasern, insbesondere Glasfasern, Kohlefasern oder Aramidfasern, umfasst.
Die elektrischen Leiter 5 des jeweiligen Leiterverbundes 10 sind nach dem ersten Ausführungsbeispiel einzelne Leiterstäbe, die mittels von separaten, außerhalb der Polnuten 4 liegenden Verbindungsleitern 12 mit Leiterstäben anderer Leiterverbünde 10 zur Bildung der Rotorwicklung 6 verbindbar sind und beispielsweise zwei Spulenseiten 14 zweier Einzelspulen 6.1 bilden. Die zwei Spulenseiten 14 derselben Polnut 4 bilden jeweils zwei voneinander getrennte Wicklungsschichten und umfassen jeweils die Leiter von allen Lagen der jeweiligen Spulenseite. Die Rotorwicklung 6 ist somit eine zusammengesetzte Segmentwicklung, die beispielsweise mehrere zusammengesetzte Einzelspulen 6.1 umfasst, wobei die Einzelspulen 6.1 jeweils einen der Schenkelpole 3 umschließen. Zum Zusammenfügen der Rotorwicklung 6 werden die erfindungsgemäßen stabförmigen Leiterverbünde 10 in axialer Richtung in die Polnuten 4 gesteckt. Anschließend werden die Verbindungsleiter 12 entsprechend der gewünschten Verschaltung der Rotorwicklung 6 mit den entsprechenden Leiterstäben 5 gefügt und verbunden.
Fig.3 zeigt eine Ansicht des Leiterverbundes nach Fig.2 gemäß einer ersten Ausführung.
Die Bandage 11 kann beispielsweise durch ein Faserband 11.1 gebildet sein, das helixförmig um die Leiter 5 des Leiterverbundes 10 herumgewickelt ist, insbesondere mit oder ohne axialer Überlappung.
Fig.4 zeigt eine Ansicht des Leiterverbundes nach Fig.2 gemäß einer zweiten Ausführung.
Alternativ kann die Bandage 11 durch eine Faserhülse 11.2 gebildet sein, die ähnlich zu einer flächigen Nutisolation einmalig um die Leiter 5 des Leiterverbundes 10 herumgelegt ist, insbesondere querschnittsumschließend, wobei ein Stoß oder ein Überlapp der umfänglichen Hülsenenden insbesondere an einem Nutgrund 4.1 der jeweiligen Polnut 4 vorgesehen ist. Die Faserhülse 11.2 kann auch als Fasermanschette bezeichnet werden.
Fig.5 zeigt einen Rotor einer elektrischen Maschine mit einer erfindungsgemäßen Rotorwicklung gemäß einem zweiten Ausführungsbeispiel.
Das zweite Ausführungsbeispiel unterscheidet sich gegenüber dem ersten Ausführungsbeispiel darin, dass die Rotorwicklung keine zusammengesetzten Einzelspulen, sondern mit einem Spulendraht gewickelte Einzelspulen umfasst. Die elektrischen Leiter 5 des jeweiligen Leiterverbundes 10 bilden wie in Fig.4 zwei Spulenseiten 14 zweier Einzelspulen 6.1. Die Einzelspulen 6.1 sind jedoch im Gegensatz zu Fig.4 jeweils durch einen Spulendraht gebildet, der im fertig zusammengebauten Rotor 1 mit einer Vielzahl von Windungen um den jeweiligen Schenkelpol 3 herumläuft.
Fig.6 zeigt eine Anordnung der Einzelspulen gemäß dem zweiten Ausführungsbeispiel nach Fig.5 vor einer Montage der Schenkelpole und der Rotorwelle.
Zur Montage des Rotors nach Fig.5 werden die mehreren vorgefertigten Einzelspulen 6.1 der Rotorwicklung 6 gemäß Fig.6 kreisförmig angeordnet und die in derselben Polnut 4 anzuordnenden Spulenseiten 14 jeweils von einer Bandage 11 umwickelt oder umschlossen. Hierbei kann die Bandage 11 mit einem noch flüssigen Verbundmaterial benetzt sein zur Bildung des jeweiligen Leiterverbunds 10. Alternativ kann die Bandage 11 zunächst trocken, also ohne Verbundmaterial, um die jeweiligen Leiter 5 gewickelt oder umgeschlagen und das Verbundmaterial 9 zur Herstellung der Leiterverbünde 10 in einem nachfolgenden Schritt aufgebracht werden, beispielsweise durch Beträufeln, Imprägnieren oder Vergießen.
Fig.7 zeigt eine Schnittansicht des fertig montierten Rotors nach Fig.5.
Nach der Bandagierung der Rotorwicklung 6 werden die im zweiten Ausführungsbeispiel separat ausgeführten Schenkelpole 3 in radialer Richtung derart an die Einzelspulen 6.1 montiert bzw. durch die jeweilige Einzelspule 6.1 gesteckt, dass jede Einzelspule 6.1 einen der Schenkelpole 3 umschließt. Nachfolgend wird ein Polträger 15 in axialer Richtung in die vormontierte Einheit derart eingeschoben, dass die separaten Schenkelpole 3 in dem Polträger 15 verankert werden, beispielsweise durch Formschluss. Der Polträger 15 ist beispielsweise eine Rotorwelle 1.1 des Rotors 1.
Der jeweilige Leiterverbund 10 kann zusätzlich einen Kühlkanal 15 umfassen, der von der Bandage 11 des Leiterverbundes 10 umschlossen ist, sich entlang der jeweiligen Polnut 4 erstreckt und beispielsweise zwischen den zwei Spulenseiten 14 der jeweiligen Polnut 4 angeordnet ist. Bei einer Wellenwicklung als Rotorwicklung 6 könnte jeder zweite Schenkelpol 3 Teil eines Rotorblechpaketes und jeder zweite übrige Schenkelpol 3 ein separates Bauteil zur Befestigung am Rotorblechpaket sein.

Claims

Ansprüche
1. Rotor (1) einer elektrischen Maschine, insbesondere einer elektrisch erregten Synchronmaschine, mit mehreren entlang einer Umfangsrichtung bezüglich einer Rotorachse (2) des Rotors (1) angeordneten Schenkelpolen (3), zwischen denen Polnuten (4) gebildet sind zur Anordnung von elektrischen Leitern (5) einer Rotorwicklung (6), wobei die Schenkelpole (3) an den radial äußeren Polenden Polschuhe (7) aufweisen, wobei zwischen benachbarten Polschuhen (7) jeweils ein Nutschlitz (8) ausgebildet ist, wobei die in derselben Polnut (4) liegenden Leiter (5) mittels eines aushärtbaren Verbundmaterials (9), insbesondere eines Harzes, jeweils zu einem insbesondere stabförmigen Leiterverbund (10) verbunden sind, dadurch gekennzeichnet, dass der jeweilige Leiterverbund (10) eine Bandage (11) umfasst, die die Leiter (5) des Leiterverbundes (10) umschließt und die durch das Verbundmaterial (9) mit dem Leiterverbund (10) verbunden ist, insbesondere stoffschlüssig.
2. Rotor nach Anspruch 1, dadurch gekennzeichnet, dass die Bandage (11) eine Faserverbund-Bandage ist, die Fasern, insbesondere Glasfasern, Kohlefasern oder Aramidfasern, umfasst.
3. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bandage (11) durch ein Faserband (11.1) gebildet ist, das helixförmig um die Leiter (5) des Leiterverbundes (10) herumgewickelt ist, insbesondere mit oder ohne axialer Überlappung.
4. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bandage (11) durch eine Faserhülse (11.2) gebildet ist, die einmalig um die Leiter (5) des Leiterverbundes (10) herumgelegt ist, insbesondere querschnittsumschließend, wobei ein Stoß oder ein Überlapp der umfänglichen Hülsenenden insbesondere an einem Nutgrund (4.1) der jeweiligen Polnut (4) vorgesehen ist.
5. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Leiterverbund (10) Leiter (5) umfasst, die in Umfangsrichtung außerhalb der Polschuhe (7) der beiden Schenkelpole (3) der jeweiligen Polnut (4) angeordnet sind.
6. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rotorwicklung (6) mehrere Einzelspulen (6.1) umfasst oder als Wellenwicklung ausgebildet ist.
7. Rotor nach Anspruch 6, dadurch gekennzeichnet, dass die elektrischen Leiter (5) des jeweiligen Leiterverbundes (10) einzelne Leiterstäbe sind, die mittels von separaten, außerhalb der Polnuten (4) liegenden Verbindungsleitern (12) mit Leiterstäben (5) anderer Leiterverbünde (10) zur Bildung der Rotorwicklung (6) verbindbar sind und insbesondere zwei Spulenseiten (14) zweier Einzelspulen (6.1) bilden.
8. Rotor nach Anspruch 6, dadurch gekennzeichnet, dass die elektrischen Leiter (5) des jeweiligen Leiterverbundes (10) zwei Spulenseiten (14) zweier Einzelspulen (6.1) bilden, wobei die Einzelspulen (6.1) jeweils durch einen Spulendraht gebildet sind, der mit einer Vielzahl von Windungen um den jeweiligen Schenkelpol (3) herumläuft.
9. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der jeweilige Leiterverbund (10) einen Kühlkanal umfasst, der von der Bandage (11) des Leiterverbundes (10) umschlossen ist und sich entlang der jeweiligen Polnut (4) erstreckt.
10. Rotor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schenkelpole (3) Teil eines Rotorblechpaketes sind, das insbesondere auf einer Rotorwelle (1.1) angeordnet ist, oder die Schenkelpole (3) separate Bauteile sind, die separat an einem Polträger (15), insbesondere einer Rotorwelle (1.1), montierbar sind, oder
- jeder zweite Schenkelpol (3) Teil eines Rotorblechpaketes und jeder zweite übrige Schenkelpol (3) ein separates Bauteil zur Befestigung am Rotorblechpaket ist.
11. Elektrische Maschine mit einem Rotor (1) nach einem der vorhergehenden Ansprüche.
PCT/EP2023/060632 2022-05-30 2023-04-24 Rotor einer elektrischen maschine WO2023232350A1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102022205344.3 2022-05-30
DE102022205344 2022-05-30
DE102022211885.5 2022-11-10
DE102022211885.5A DE102022211885A1 (de) 2022-05-30 2022-11-10 Rotor einer elektrischen Maschine

Publications (1)

Publication Number Publication Date
WO2023232350A1 true WO2023232350A1 (de) 2023-12-07

Family

ID=86328796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/060632 WO2023232350A1 (de) 2022-05-30 2023-04-24 Rotor einer elektrischen maschine

Country Status (1)

Country Link
WO (1) WO2023232350A1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122801A (en) * 1976-04-09 1977-10-15 Toyo Electric Mfg Co Ltd Method of winding glass binds in rotary electric machine
EP0356928A1 (de) * 1988-08-30 1990-03-07 Asea Brown Boveri Ab Elektrisches Isolierungsmaterial in Band- und Bogenform
DE102016205813A1 (de) * 2016-04-07 2017-10-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kunststoffumspritzung von Rotorwicklungen einer elektrischen Maschine
DE102019212391A1 (de) 2019-08-19 2021-02-25 Robert Bosch Gmbh Rotor mit einem Nutverschlusselement für eine elektrische Maschine
DE102019217464A1 (de) 2019-11-12 2021-05-12 Robert Bosch Gmbh Komponente einer elektrischen Maschine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122801A (en) * 1976-04-09 1977-10-15 Toyo Electric Mfg Co Ltd Method of winding glass binds in rotary electric machine
EP0356928A1 (de) * 1988-08-30 1990-03-07 Asea Brown Boveri Ab Elektrisches Isolierungsmaterial in Band- und Bogenform
DE102016205813A1 (de) * 2016-04-07 2017-10-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Kunststoffumspritzung von Rotorwicklungen einer elektrischen Maschine
DE102019212391A1 (de) 2019-08-19 2021-02-25 Robert Bosch Gmbh Rotor mit einem Nutverschlusselement für eine elektrische Maschine
DE102019217464A1 (de) 2019-11-12 2021-05-12 Robert Bosch Gmbh Komponente einer elektrischen Maschine

Similar Documents

Publication Publication Date Title
DE102018213567B3 (de) Rotor für fremderregte Innenläufer-Synchronmaschine, Innenläufer-Synchronmaschine, Kraftfahrzeug sowie Verfahren
WO2020099048A1 (de) Stützeinrichtung für einen rotor einer fremderregten innenläufer-synchronmaschine bestehend aus einem stützring und einer sternscheibe
EP2807726B1 (de) Rotor für eine rotierende elektrische maschine und elektromotor
CH699198A1 (de) Synchronmaschine sowie Verfahren zum Herstellen einer solchen Synchronmaschine.
DE102012202735A1 (de) Dynamoelektrische Maschine mit einer Einschichtbruchlochwicklung
EP3871319B1 (de) Isolierung von teilleitern einer dynamoelektrischen maschine
WO2023232350A1 (de) Rotor einer elektrischen maschine
WO2007113057A1 (de) Läufer einer permanenterregten synchronmaschine
DE102022211885A1 (de) Rotor einer elektrischen Maschine
DE102019214972A1 (de) Rotor, Verfahren zum Herstellen des Rotors und elektrische Maschine
DE102010064323A1 (de) Anker für eine elektrische Maschine, Herstellungsverfahren dafür und elektrische Maschine
WO2020016177A1 (de) Reluktanzmaschine
DE102011089058A1 (de) Rotor für eine elektrische Maschine
EP1588470B1 (de) Elektrische maschine mit permanentmagnet
WO2012061856A2 (de) Wickelkopfabstützung für einen generator
DE102020100963A1 (de) Elektrische Maschine und Kraftfahrzeug
DE102019217014A1 (de) Maschinenkomponente, Verfahren zum Herstellen der Maschinenkomponente und elektrische Maschine
WO2024061515A1 (de) Rotor einer elektrischen maschine
DE102019215343A1 (de) Rotor, Verfahren zur Herstellung des Rotors und elektrische Maschine
DE2443255A1 (de) Bandwickel-magnetkern
DE102013201908A1 (de) Lamelle für einen Rotor einer elektrischen Maschine
DE102017205351A1 (de) Käfigläufer einer elektrischen Asynchronmaschine
DE102021213813A1 (de) Elektrische Maschine, Rotor und Verfahren zur Herstellung eines Rotors
WO2023041257A1 (de) Stützeinrichtung für einen rotor mit rovingwicklung
WO2023110253A1 (de) Rotor einer elektrischen maschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23721706

Country of ref document: EP

Kind code of ref document: A1