WO2023232156A1 - 辅助燃烧装置和烧结设备 - Google Patents

辅助燃烧装置和烧结设备 Download PDF

Info

Publication number
WO2023232156A1
WO2023232156A1 PCT/CN2023/104044 CN2023104044W WO2023232156A1 WO 2023232156 A1 WO2023232156 A1 WO 2023232156A1 CN 2023104044 W CN2023104044 W CN 2023104044W WO 2023232156 A1 WO2023232156 A1 WO 2023232156A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
box
heat exchange
air
heat
Prior art date
Application number
PCT/CN2023/104044
Other languages
English (en)
French (fr)
Inventor
左国军
唐洪湘
磨建新
吴勇茂
Original Assignee
常州捷佳创智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州捷佳创智能装备有限公司 filed Critical 常州捷佳创智能装备有限公司
Publication of WO2023232156A1 publication Critical patent/WO2023232156A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating

Definitions

  • the utility model relates to the technical field of solar cell heat treatment, in particular to auxiliary combustion devices and sintering equipment.
  • the conductive paste When preparing solar photovoltaic cells, the conductive paste needs to be dried and cured after printing on the surface of the silicon wafer. During the drying and curing process of conductive paste, organic matter will volatilize, accompanied by a large amount of harmful pollutants, causing pollution to the working environment.
  • organic matter is often integrated into the combustion chamber for combustion.
  • the hot air flow discharged by combustion can easily cause damage to the external pipes.
  • the heat generated after combustion cannot be recovered, resulting in a waste of resources.
  • water-cooling equipment is usually installed at the exhaust port of the combustion chamber to cool down the high-temperature gas discharged from the combustion chamber. Since the hot air flow in the combustion chamber is directly discharged into the water-cooling equipment, the heat loss in the combustion chamber is serious. . Therefore, how to reduce heat loss in the combustion chamber and reduce equipment energy consumption has become an urgent technical problem to be solved.
  • the main purpose of the utility model is to provide an auxiliary combustion device and sintering equipment, aiming to reduce heat loss in the combustion chamber and reduce equipment energy consumption.
  • the utility model proposes an auxiliary combustion device, which includes a combustion box with a combustion chamber, an air inlet connected with an air outlet of the combustion box, and a device for cooling the hot air flow discharged from the combustion box.
  • the heat exchange box and the insulation component are arranged in the combustion box and close to the air outlet of the combustion box to reduce the heat loss in the combustion box.
  • the insulation component includes at least one insulation plate connected to the inner wall of the combustion box, and the insulation plate is provided with at least one through hole for hot air flow to pass through.
  • the diameter of the through hole is 20 mm to 30 mm.
  • a cooling component is provided on one side of the air outlet of the combustion box to cool the hot air flow in the heat exchange box when the heat exchange box stops working.
  • the cooling assembly includes an air pump that can blow out cold air, and a third unit that can guide the cold air blown out by the air pump into the heat exchange box to exchange heat with the hot air in the heat exchange box. Blow through the body of the air tube.
  • the air pump is also connected to at least one device that can guide part of the cold air blown out by the air pump to the air outlet of the heat exchange box to cool down the hot air flow discharged from the heat exchange box.
  • the second blow tube body is also connected to at least one device that can guide part of the cold air blown out by the air pump to the air outlet of the heat exchange box to cool down the hot air flow discharged from the heat exchange box.
  • the combustion box is provided with a temperature detector for monitoring the temperature of the combustion chamber.
  • At least one heat shield plate is arranged at intervals along the height direction in the combustion chamber to divide the combustion chamber into multiple combustion spaces, and the air inlet of the combustion box is located at the combustion chamber.
  • the bottom of the box is connected to the lowermost combustion space, and the air outlet of the combustion box is located at the top of the combustion box and connected to the uppermost combustion space.
  • the heat shielding plate is provided with two connecting parts. Ventilation areas of two adjacent combustion spaces, and the ventilation areas of any two adjacent heat insulation panels are staggered in the horizontal direction.
  • This application also discloses a sintering equipment, including the auxiliary combustion device described in any one of the above.
  • the thermal insulation component can reduce the heat loss in the combustion box, enhance the thermal insulation effect of the combustion chamber, and reduce the energy consumption of the equipment.
  • Figure 1 is a schematic structural diagram of the first embodiment of the present invention.
  • Figure 2 is a schematic diagram of the explosion structure of the first embodiment of the present invention.
  • FIG 3 is a schematic structural diagram of the heat insulation board in Figure 1.
  • the present utility model proposes an auxiliary combustion device, which includes a combustion box 100 with a combustion chamber.
  • the air inlet is connected with the air outlet of the combustion box 100 for combustion.
  • the heat exchange box 20 is used to cool down the hot air flow discharged from the combustion box 100, and the thermal insulation device is provided in the combustion box 100 and close to the air outlet of the combustion box 100 to reduce the heat loss in the combustion box 100. components.
  • a combustion device includes a combustion box 100, a heat exchange box 20, and a heat preservation component.
  • the combustion box 100 is made of metal materials, such as aluminum alloy materials and alloy steel materials.
  • the combustion box 100 made of metal materials has the advantages of strong support capacity, wear resistance, and good thermal conductivity. According to design requirements, the combustion box 100 can also be made of other inorganic materials.
  • the combustion box 100 made of inorganic materials has the advantage of low cost.
  • the combustion box 100 is provided with a combustion chamber for incineration of organic matter produced in the solar panel production process.
  • the combustion box 100 has an air inlet and an air outlet.
  • the air inlet is located at the bottom of the combustion box 100 for introducing gas containing organic matter into the combustion chamber in the combustion box 100.
  • the air outlet is located at the bottom of the combustion box.
  • the top of 100 is used to discharge the gases that have completed combustion.
  • the combustion box 100 is provided with a heat source.
  • the heat source can be generated by energizing a resistance wire or by burning combustible gas. In this application, it is preferably generated after the resistance wire is energize
  • the heat exchange box 20 has an air inlet and an air outlet.
  • the air inlet of the heat exchange box 20 is connected with the air outlet of the combustion box 100.
  • the air outlet of the heat exchange box 20 can be connected to the atmosphere or the atmosphere through the guide tube body. Other devices are turned on.
  • the heat exchange box 20 is provided with a cold source that can exchange heat with the hot air flow discharged from the combustion box 100.
  • the cold source can be a condenser tube, or cold air introduced from the outside, or the like.
  • the heat exchange box 20 is also made of metal materials, such as aluminum alloy materials, alloy steel materials, etc.
  • the heat exchange box 20 made of metal materials has the advantages of good thermal conductivity and wear resistance. Of course, it can also be made of other inorganic materials according to the needs of the design, and its effects are consistent with the above content, so I will not go into details here.
  • a heat preservation component is provided in the combustion box 100 .
  • the heat preservation component is fixedly connected in the combustion box 100 in a fixed connection manner, which improves the connection strength between the heat preservation component and the combustion box 100 .
  • the thermal insulation component can also be detachably connected in the combustion box 100 in a detachable manner, which facilitates the installation and disassembly of the thermal insulation component and facilitates later maintenance.
  • the heat preservation component is arranged on the side of the combustion box 100 close to the air outlet of the combustion box 100 to reduce the loss of heat in the box.
  • the thermal insulation component can reduce the heat loss in the combustion box 100, enhance the thermal insulation effect of the combustion chamber, and reduce the energy consumption of the equipment.
  • the insulation assembly includes at least one insulation plate 40 connected to the inner wall of the combustion box 100.
  • the insulation plate 40 is provided with at least one through hole for the hot air flow to pass through.
  • the insulation component includes at least one insulation board 40.
  • the insulation board 40 is made of calcium aluminum silicate board.
  • the insulation board 40 made of calcium aluminum silicate board has a catalytic effect on gases mixed with organic matter, which can make silicic acid
  • the aluminum-calcium board is fully burned, which improves the combustion efficiency of gases mixed with organic matter.
  • the thermal insulation board 40 is set at an angle to the flow direction of the airflow, and the angle is between 0° and 180°, excluding 0° and 180°.
  • the thermal insulation board 40 is provided with through holes in three groups. In order to further improve the thermal insulation effect of the thermal insulation board 40, any two adjacent groups of through holes are staggered.
  • the diameter of the through hole is 20 mm to 30 mm.
  • the diameter of the through hole is between 20mm and 30mm, which can achieve better thermal insulation effect.
  • a cooling component is provided on one side of the air outlet of the combustion box 100 to cool the hot air flow in the heat exchange box 20 when the heat exchange box 20 stops working.
  • a cooling component is provided at the connection between the air outlet of the combustion box 100 and the air inlet of the heat exchange box 20.
  • the cooling component stops working, that is, the condenser tube or the cold air stops working.
  • the high-temperature airflow in the heat exchange box 20 is cooled. This is to ensure that the hot air flow discharged from the combustion box 100 reaches the preset emission conditions, protect the heat exchange box 20, and avoid damage to the heat exchange box 20.
  • the cooling assembly by setting the cooling assembly to continue cooling the hot air flow in the heat exchange box 20 when the heat exchange box 20 stops working, it is avoided that the internal temperature of the heat exchange box 20 continues to rise after the heat exchange box 20 stops working.
  • the heat exchange box 20 may be damaged due to high temperature.
  • the cooling assembly includes an air pump that can blow out cold air, and a third unit that can guide the cold air blown out by the air pump into the heat exchange box to exchange heat with the hot air in the heat exchange box.
  • One blow tube has 30 bodies.
  • the cooling assembly includes an air pump (not shown in the figure) and a first air blowing pipe 30 .
  • the air pump (not shown in the figure) adopts a pneumatic vacuum pump commonly used in the prior art.
  • the pneumatic vacuum pump has the advantages of small size, light weight, and low noise.
  • the first blow pipe 30 is made of metal material, such as aluminum alloy material.
  • the first blow pipe 30 made of aluminum alloy material has the advantages of strong support capacity, wear resistance, and stable operation.
  • One end of the first blowing pipe 30 is connected to the air outlet of the air pump (not shown in the figure), and the other end is connected to the air inlet of the heat exchange box 20 for blowing out the air pump (not shown in the figure).
  • the cold air is guided to the inside of the heat exchange box 20 .
  • the heat exchange box 20 in this application adopts a water-cooled heat exchange box 20.
  • the water-cooled heat exchange box 20 is equipped with an electromagnetic valve.
  • the electromagnetic valve can be used to open or close the circulation pipe in the water-cooled heat exchange box 20. , and can also monitor the water flow velocity in the circulation pipe of the water-cooled heat exchange box 20.
  • the solenoid valve detects that the water flow velocity in the circulation pipe in the water-cooled heat exchange box 20 is less than the preset threshold, it means that the water-cooled heat exchange box The body 20 stops working.
  • the electromagnetic valve sends the signal to the air pump (not shown in the figure) through the industrial computer (not shown in the figure).
  • the air pump (not shown in the figure) starts to work and transfers the signal to the heat exchanger. Cold air is pumped into the box 20 to cool down the hot air flow in the heat exchange box 20 .
  • the above technical solution has a simple structure and is easy to implement.
  • the air pump is also connected to a device that can guide part of the cold air blown out by the air pump to the air outlet of the heat exchange box 20 to cool the hot air flow discharged from the heat exchange box 20 .
  • a device that can guide part of the cold air blown out by the air pump to the air outlet of the heat exchange box 20 to cool the hot air flow discharged from the heat exchange box 20 .
  • At least one second blowing pipe 10 body At least one second blowing pipe 10 body.
  • the air pump (not shown in the figure) is also connected to at least one second air blowing pipe 10 that can guide part of the cold air blown out by the air pump (not shown in the figure) to the air outlet of the heat exchange box 20 .
  • the body of the second blow pipe 10 is made of metal material, which is the same material as the body of the first blow pipe 30 and has the same technical effect, which will not be described again here.
  • the number of the second air blowing tubes 10 is two, and the air outlets of the two air blowing tubes are evenly distributed on the edges of the air outlets of the heat exchange box 20 . Evenly distributed arrangement can make the cold air and the hot air flow discharged from the heat exchange box 20 evenly exchange heat, and the heat exchange effect is better.
  • the second air blowing pipe 10 can also be connected to a separate air pump (not shown in the figure), and a separate air pump (not shown in the figure) is used to blow cold air into the second air blowing pipe 10 body. , simple control, convenient for adjusting the cold air volume.
  • the hot air flow discharged from the heat exchange box 20 is cooled again through the second blowing pipe 10, which reduces the cooling pressure of the first blowing pipe 30 and improves the stability of the overall operation of the combustion device.
  • the combustion box 100 is provided with a temperature detector 50 for monitoring the temperature of the combustion chamber.
  • the combustion box 100 is also provided with a temperature detector 50 for monitoring the temperature of the combustion chamber inside the combustion box 100.
  • the temperature of the combustion chamber is monitored in real time through the temperature detector 50, which facilitates monitoring of the temperature of the combustion chamber.
  • the temperature adjustment in the combustion chamber since there is a maximum limit for the temperature in the combustion chamber, when the temperature of the combustion chamber is higher than the maximum limit, it will cause damage to the components of the combustion chamber. Therefore, it is necessary to ensure that the temperature of the combustion chamber is lower than the maximum limit. .
  • the temperature inside the combustion box 100 can be effectively prevented from reaching the maximum limit, thus ensuring the safety of the combustion box 100.
  • At least one heat shield 60 is arranged in the combustion chamber at intervals along the height direction to divide the combustion chamber into a plurality of combustion spaces.
  • the air inlet of the combustion box 100 The air outlet of the combustion box 100 is located at the bottom of the combustion box 100 and communicates with the lowermost combustion space.
  • the air outlet of the combustion box 100 is located at the top of the combustion box 100 and communicates with the uppermost combustion space.
  • the heat shielding plate There is a ventilation area 70 on the 60 that connects two adjacent combustion spaces, and the ventilation areas 70 of any two adjacent heat insulation panels 60 are staggered in the horizontal direction.
  • At least one heat shield plate 60 is provided in the combustion chamber along the height direction of the combustion chamber.
  • one heat shield plate 60 divides the combustion chamber into two corresponding upper and lower combustion spaces.
  • the three heat-insulating plates 60 divide the combustion chamber into corresponding four combustion spaces arranged in sequence up and down.
  • the air inlet of the combustion box 100 is located at the bottom of the combustion box 100.
  • the air inlet of the combustion box 100 is connected to the combustion space located at the bottom and is used to introduce gas containing organic matter into the combustion space.
  • the air outlet of the combustion box 100 is located at the top of the combustion box 100.
  • the air outlet of the combustion box 100 is connected to the uppermost combustion space and is used to guide the burned gas out of the combustion space.
  • the heat insulation board 60 is provided with a ventilation area 70 that connects two adjacent combustion spaces.
  • the ventilation areas 70 on the two adjacent heat insulation boards 60 are staggered, which can extend the passage path of the gas containing organic matter, thereby achieving combustion.
  • the combustion space contains complete combustion of organic matter.
  • the ventilation area 70 is provided at the end of the heat insulation board 60, which allows the gas containing organic matter to completely pass through all combustion spaces, thereby achieving complete combustion of the gas containing organic matter.
  • the combustion chamber is divided into multiple combustion spaces through the heat shield 60, and then the gas passage path is extended through mutually staggered ventilation zones 70, so that the gas mixed with organic matter is fully burned.
  • the structure is simple and easy to implement.
  • This application also discloses a sintering equipment that includes a heating chamber for heating the workpiece to be processed, a transmission assembly disposed in the heating chamber for transporting the workpiece to be processed, and a heating chamber that is connected to the heating chamber for generating the workpiece to be processed.
  • An auxiliary combustion device as described in any one of the above for burning organic gas.
  • the heating chamber is used to heat the workpiece to be processed so that the material coated on the workpiece is solidified.
  • the transmission component is used to transport the workpiece to be processed so that the workpiece to be processed is placed in the heating chamber.
  • the auxiliary combustion device is connected to the heating chamber. When the heating chamber heats the workpiece to be processed, part of the coating material will volatilize into the gas.
  • the auxiliary combustion device burns the gas mixed with the coating material, thereby preventing the coating material from being discharged. In the atmosphere.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air Supply (AREA)

Abstract

本实用新型公开了一种辅助燃烧装置和烧结设备,涉及太阳能电池热处理技术领域。具体包括带有燃烧腔的燃烧箱体、进气口与燃烧箱体的出气口连通用于对燃烧箱体排出的热气流进行冷却降温的换热箱体、以及设置在燃烧箱体内并靠近所述燃烧箱体出气口一侧用于降低燃烧箱体内热量流失的保温组件。旨在减少燃烧室内的热量流失,降低设备能耗。

Description

辅助燃烧装置和烧结设备 技术领域
本实用新型涉及太阳能电池热处理技术领域,特别涉及辅助燃烧装置和烧结设备。
背景技术
太阳能光伏电池制备时,硅片表面印刷完导电浆后需要进行烘干、固化。在烘干、固化导电浆的过程中,会有有机物挥发,伴有大量有害污染物,对工作环境造成污染。
目前,为了避免有机物挥发带来的污染问题,常常会将有机物融入燃烧室进行燃烧,由于燃烧排出的热气流容易对外接管路造成损坏,同时燃烧后产生的热量无法回收,造成了资源的浪费。
为了解决上述技术问题,通常会在燃烧室的排气口处安装水冷设备对燃烧室排出的高温气体进行降温,由于燃烧室内的热气流直接排入到水冷设备中,导致燃烧室内的热量流失严重。因此如何减少燃烧室内的热量流失,降低设备能耗,成为了亟待解决的技术难题。
实用新型内容
本实用新型的主要目的是提供辅助燃烧装置和烧结设备,旨在减少燃烧室内的热量流失,降低设备能耗。
为了实现上述目的,本实用新型提出一种辅助燃烧装置,包括带有燃烧腔的燃烧箱体、进气口与燃烧箱体的出气口连通用于对燃烧箱体排出的热气流进行冷却降温的换热箱体、以及设置在燃烧箱体内并靠近所述燃烧箱体出气口一侧用于降低燃烧箱体内热量流失的保温组件。
在本申请的一实施例中,所述保温组件包括至少一个连接在燃烧箱体内壁上的保温板,所述保温板上设有至少一个供热气流穿过的通孔。
在本申请的一实施例中,所述通孔的直径为20mm至30mm。
在本申请的一实施例中,所述保温板为沿竖直方向依次设置的三个。
在本申请的一实施例中,还包括设于所述燃烧箱体出气口的一侧当换热箱体停止工作时对换热箱体内的热气流进行冷却降温的冷却组件。
在本申请的一实施例中,所述冷却组件包括可吹出冷空气的空气泵、和可将空气泵吹出的冷空气引流至换热箱内与换热箱内的热空气进行换热的第一吹气管体。
在本申请的一实施例中,所述空气泵上还连接有可将空气泵吹出的冷空气部分引流至换热箱体的出气口处以对换热箱体排出的热气流进行降温的至少一个第二吹气管体。
在本申请的一实施例中,所述燃烧箱体上设有用于监测所述燃烧腔温度的温度检测件。
在本申请的一实施例中,所述燃烧腔室内沿高度方向间隔设置有至少一个将所述燃烧腔室分隔成多个燃烧空间的隔热板,所述燃烧箱体的进气口位于燃烧箱体的底部并与最下方的燃烧空间连通,所述燃烧箱体的出气口位于所述燃烧箱体的顶部并与最上方的燃烧空间连通,其中,所述隔热板上设有连通两个相邻燃烧空间的通气区,任意两个相邻的隔热板的通气区沿水平方向错开设置。
本申请还公开了一种烧结设备,包括如上任意一项所述的辅助燃烧装置。
采用上述技术方案,通过在燃烧箱体内设置保温组件,通过保温组件减小燃烧箱体内的热量流失,加强燃烧室的保温效果,降低设备的能耗。
附图说明
下面结合具体实施例和附图对本实用新型进行详细的说明,其中:
图1为本实用新型第一种实施例的结构示意图。
图2为本实用新型第一种实施例的爆炸结构示意图。
图3为图1中隔热板的结构示意图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚,以下结合附图和实施例对本实用新型进行详细的说明。应当理解,以下具体实施例仅用以解释本实用新型,并不对本实用新型构成限制。
如图1至图3所示,为了实现上述目的,本实用新型提出一种辅助燃烧装置,包括带有燃烧腔的燃烧箱体100、进气口与燃烧箱体100的出气口连通用于对燃烧箱体100排出的热气流进行冷却降温的换热箱体20、以及设置在燃烧箱体100内并靠近所述燃烧箱体100出气口一侧用于降低燃烧箱体100内热量流失的保温组件。
具体的,一种燃烧装置包括燃烧箱体100、换热箱体20、以及保温组件。
燃烧箱体100由金属材料制成,例如铝合金材料、合金钢材料制成,采用金属材料制成的燃烧箱体100具有支撑能力强、耐磨损、导热性能好等优点。当根据设计的需要,燃烧箱体100也可以采用其他无机材料制成,采用无机材料制成的燃烧箱体100具有成本低等优点。燃烧箱体100内设有燃烧腔室,用于对太阳能电池板生产工艺中产生的有机物进行焚烧。燃烧箱体100带有进气口和出气口,其中进气口位于燃烧箱体100的底部用于向燃烧箱体100内的燃烧腔体通入带有有机物的气体,出气口位于燃烧箱体100的顶部用于排出完成燃烧的气体。燃烧箱体100内设置有热源,热源可以为电阻丝通电后产生,也可以为可燃气体燃烧产生。本申请中优选为电阻丝通电后产生。
换热箱体20带有进气口和出气口,换热箱体20的进气口与燃烧箱体100的出气口连通,换热箱体20的出气口可通过导流管体与大气或者其他设备导通。换热箱体20内设有可与燃烧箱体100排出的热气流进行换热的冷源,该冷源可以为冷凝管、或者为外界导入的冷空气等等。换热箱体20同样采用金属材料制成,例如铝合金材料、合金钢材料等等,采用金属材料制成的换热箱体20,具有导热性能好、耐磨损等优点。当然根据设计的需要也可以采用其他的无机材料制成,其所具备的效果与上文内容一致,在此不在一一赘述。
在燃烧箱体100内设置有保温组件,保温组件固定连接在燃烧箱体100内,采用固定连接的方式连接,提高了保温组件与燃烧箱体100之间的连接强度。当然根据设计的需要,保温组件也可以可拆卸的连接在燃烧箱体100内,采用可拆卸的方式连接,方便保温组件的安装与拆卸,便于后期的维护。保温组件设置在燃烧箱体100上靠近燃烧箱体100出气口的一侧用于降低箱体内热量的流失。
采用上述技术方案,通过在燃烧箱体100内设置保温组件,通过保温组件减小燃烧箱体100内的热量流失,加强燃烧室的保温效果,降低设备的能耗。
在本申请的一实施例中,所述保温组件包括至少一个连接在燃烧箱体100内壁上的保温板40,所述保温板40上设有至少一个供热气流穿过的通孔。
具体的,保温组件包括至少一个保温板40,保温板40采用硅酸铝钙板制成,采用硅酸铝钙板制成的保温板40对混有有机物的气体具有催化效果,可以使得硅酸铝钙板充分燃烧,提高了对混有有机物的气体的燃烧效率。为了提高保温板40的保温效果,保温板40与气流的流动方向之间呈角度设置,该角度在0°至180°之间,不包括0°和180°。
在保温板40上设置有通孔,通孔为三组,为了进一步提高保温板40的保温小效果,任意相邻两组通孔之间错开设置。
采用上述技术方案,通过在保温板40上设置通孔,在保证气流可以通过的前提下,减小气流通过的面积,进一步提高了保温板40的保温效果。
在本申请的一实施例中,所述通孔的直径为20mm至30mm。
具体的,通孔的直径为20mm至30mm之间,可以实现更优的保温效果。
在本申请的一实施例中,所述保温板40为沿竖直方向依次设置的三个。
具体的,保温板40的为沿竖直方向依次设置的三个,任意相邻的两个保温板40之间存在缓冲空间,通过此种设计,进一步减缓了气流的流动速度,进一步提高了保温板40的保温效果。
在本申请的一实施例中,还包括设于所述燃烧箱体100出气口的一侧当换热箱体20停止工作时对换热箱体20内的热气流进行冷却降温的冷却组件。
具体的,在燃烧箱体100的出气口与换热箱体20的进气口的连接处设置有冷却组件,冷却组件在换热箱体20停止工作时,即冷凝管、或者冷空气停止工作时,对换热箱体20内的高温气流进行冷却。以保证燃烧箱体100排出的热气流达到预设的排放条件,保护换热箱体20,避免换热箱体20出现损坏。
采用上述技术方案,通过设置在换热箱体20停止工作时对换热箱体20内的热气流继续进行冷却时冷却组件,避免换热箱体20停止工作后,因其内部的温度持续升高而导致的换热箱体20损坏。同时也保证燃烧箱体100排出的热气流的温度降至预设温度后再进行排放,提高了设备工作的安全性。
在本申请的一实施例中,所述冷却组件包括可吹出冷空气的空气泵、和可将空气泵吹出的冷空气引流至换热箱内与换热箱内的热空气进行换热的第一吹气管30体。
具体的,冷却组件包括空气泵(图中未示出)和第一吹气管30。
空气泵(图中未示出)采用现有技术中常用的气动式真空泵,采用气动式真空泵具有体积小、重量轻、噪音低等优点。
第一吹气管30采用金属材料制成,例如铝合金材料、采用铝合金材料制成的第一吹气管30具有支撑能力强、耐磨损、工作稳定等优点。
第一吹气管30的一端连接在空气泵(图中未示出)的出气口、另一端连接在换热箱体20的进气口处用于将空气泵(图中未示出)吹出的冷空气导流至换热箱体20内部。
本申请中的换热箱体20采用水冷式换热箱体20,水冷式换热箱体20内设有电磁阀门,该电磁阀门可用于打开或关闭水冷式换热箱体20内的循环管道,同时也可以监测水冷式换热箱体20循环管道内的水流速度,当电磁阀检测到水冷式换热箱体20内的循环管道水流速度小于预设阈值时,即表示水冷式换热箱体20停止工作,此时电磁阀门将该信号通过工控机(图中未示出)发送给空气泵(图中未示出),此时空气泵(图中未示出)开始工作,向换热箱体20内泵入冷空气,对换热箱体20内的热气流进行降温处理。
采用上述技术方案,结构简单,便于实施。
在本申请的一实施例中,所述空气泵上还连接有可将空气泵吹出的冷空气部分引流至换热箱体20的出气口处以对换热箱体20排出的热气流进行降温的至少一个第二吹气管10体。
具体的,空气泵(图中未示出)上还连接有可将空气泵(图中未示出)吹出的冷空气部分引流至换热箱体20出气口处的至少一个第二吹气管10体,第二吹气管10体采用金属材料制成,其与第一吹气管30体所采用的材料相同,具有相同的技术效果,在此不再一一赘述。第二吹气管10体的数量为两个,两个吹气管体的出气口均匀的分布在换热箱体20的出气口的边缘。采用均匀分布的方式设置,可使得冷空气与换热箱体20排出的热气流均匀换热,换热效果更佳。
当然可以想到的是,第二吹气管10也可以连接于单独的空气泵(图中未示出),采用单独的空气泵(图中未示出)向第二吹气管10体吹入冷空气,控制简单,便于冷空气气量的调节。
采用上述技术方案,通过第二吹气管10对换热箱体20排出的热气流再次进行冷却降温,减小了第一吹气管30的冷却压力,提高了燃烧装置整体工作时的稳定性。
在本申请的一实施例中,所述燃烧箱体100上设有用于监测所述燃烧腔温度的温度检测件50。
具体的,在燃烧箱体100上还设有用于监测燃烧箱体100内部燃烧腔温度的温度检测件50,通过温度检测件50实时的监测燃烧腔的温度,便于对燃烧腔温度的监控,方便对燃烧腔内的温度调节,由于燃烧腔内的温度存在最高界限,当燃烧腔的温度高于最高界限时,会对燃烧腔的构成部件造成损伤,因此需要保证燃烧腔的温度低于最高界限。通过对燃烧箱体100的温度监测,可有效避免燃烧箱体100内的温度达到最高界限,保证了燃烧箱体100的安全性。
在本申请的一实施例中,所述燃烧腔室内沿高度方向间隔设置有至少一个将所述燃烧腔室分隔成多个燃烧空间的隔热板60,所述燃烧箱体100的进气口位于燃烧箱体100的底部并与最下方的燃烧空间连通,所述燃烧箱体100的出气口位于所述燃烧箱体100的顶部并与最上方的燃烧空间连通,其中,所述隔热板60上设有连通两个相邻燃烧空间的通气区70,任意两个相邻的隔热板60的通气区70沿水平方向错开设置。
具体的,燃烧腔内沿着燃烧腔的高度方向设置有至少一个隔热板60,当隔热板60为一个时,一个隔热板60将燃烧腔分隔成对应的上下两个燃烧空间。当隔热板60为三个时,三个隔热板60将燃烧腔分隔成对应的上下依次设置的四个燃烧空间。
燃烧箱体100的进气口位于燃烧箱体100的底部,燃烧箱体100的进气口与位于最下方的燃烧空间导通,用于向燃烧空间内导入含有有机物的气体。
燃烧箱体100的出气口位于燃烧箱体100的顶部,燃烧箱体100的出气口与位于最上方的燃烧空间导通,用于向燃烧空间外导出已经完成燃烧的气体。
在隔热板60上设有连通两个相邻燃烧空间的通气区70,两个相邻隔热板60上的通气区70错开设置,可以延长带有有机物的气体的通过路径,从而实现对燃烧空间带有有机物的充分燃烧。优选的,通气区70设置在隔热板60的端部,可使得带有有机物的气体完整的经过所有的燃烧空间,实现对带有有机物的气体的充分燃烧。
采用上述技术方案,通过隔热板60将燃烧腔分隔成多个燃烧空间,然后通过相互错开的通气区70实现延长气体的通过路径,使得混有有机物的气体充分燃烧,结构简单,便于实施。
本申请还公开了一种烧结设备包括对待加工件进行加热的加热室、设于所述加热室内对待加工件进行传送的传送组件、以及与所述加热室导通用于对待加工件加热室产生的有机气体进行燃烧的如上任意一项所述的辅助燃烧装置。
具体的,加热室用于对待加工件进行加热,使待加工件上涂覆的材料固化,在加热室内还设有传送组件,传送组件用于对待加工件进行传送,使待加工件在加热室内运动,辅助燃烧装置与加热室导通,加热室对待加工件加热时会使得部分涂覆材料挥发至气体中,辅助燃烧装置对混有涂覆材料的气体进行燃烧,从而避免有涂覆材料排出大气中。
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的实用新型构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (10)

  1. 一种辅助燃烧装置,其特征在于,包括带有燃烧腔的燃烧箱体、进气口与燃烧箱体的出气口连通用于对燃烧箱体排出的热气流进行冷却降温的换热箱体、以及设置在燃烧箱体内并靠近所述燃烧箱体出气口一侧用于降低燃烧箱体内热量流失的保温组件。
  2. 如权利要求1所述的辅助燃烧装置,其特征在于,所述保温组件包括至少一个连接在燃烧箱体内壁上的保温板,所述保温板上设有至少一个供热气流穿过的通孔。
  3. 如权利要求2所述的辅助燃烧装置,其特征在于,所述通孔的直径为20mm至30mm。
  4. 如权利要求2所述的辅助燃烧装置,其特征在于,所述保温板为沿竖直方向依次设置的三个。
  5. 如权利要求1所述的辅助燃烧装置,其特征在于,还包括设于所述燃烧箱体出气口的一侧当换热箱体停止工作时对换热箱体内的热气流进行冷却降温的冷却组件。
  6. 如权利要求5所述的辅助燃烧装置,其特征在于,所述冷却组件包括可吹出冷空气的空气泵、和可将空气泵吹出的冷空气引流至换热箱内与换热箱内的热空气进行换热的第一吹气管体。
  7. 如权利要求6所述的辅助燃烧装置,其特征在于,所述空气泵上还连接有可将空气泵吹出的冷空气部分引流至换热箱体的出气口处以对换热箱体排出的热气流进行降温的至少一个第二吹气管体。
  8. 如权利要求1所述的辅助燃烧装置,其特征在于,所述燃烧箱体上设有用于监测所述燃烧腔温度的温度检测件。
  9. 如权利要求1所述的辅助燃烧装置,其特征在于,所述燃烧腔室内沿高度方向间隔设置有至少一个将所述燃烧腔室分隔成多个燃烧空间的隔热板,所述燃烧箱体的进气口位于燃烧箱体的底部并与最下方的燃烧空间连通,所述燃烧箱体的出气口位于所述燃烧箱体的顶部并与最上方的燃烧空间连通,其中,所述隔热板上设有连通两个相邻燃烧空间的通气区,任意两个相邻的隔热板的通气区沿水平方向错开设置。
  10. 一种烧结设备,其特征在于,包括如权利要求1至9中任意一项所述的辅助燃烧装置。
PCT/CN2023/104044 2022-05-30 2023-06-29 辅助燃烧装置和烧结设备 WO2023232156A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221323111.2 2022-05-30
CN202221323111.2U CN217764312U (zh) 2022-05-30 2022-05-30 辅助燃烧装置和烧结设备

Publications (1)

Publication Number Publication Date
WO2023232156A1 true WO2023232156A1 (zh) 2023-12-07

Family

ID=83889298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104044 WO2023232156A1 (zh) 2022-05-30 2023-06-29 辅助燃烧装置和烧结设备

Country Status (2)

Country Link
CN (1) CN217764312U (zh)
WO (1) WO2023232156A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217764312U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 辅助燃烧装置和烧结设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632378A (zh) * 2003-12-24 2005-06-29 樱井义次 废弃物的热分解处理装置和热分解处理控制系统
KR101152401B1 (ko) * 2011-08-29 2012-06-07 한국기계연구원 합성가스를 이용한 저열량가스 연소 장치 및 그 방법
CN205842673U (zh) * 2016-04-22 2016-12-28 中山市凯德环保设备有限公司 一种高效节能的热解金属回收炉
CN205897160U (zh) * 2016-07-09 2017-01-18 东莞市科隆威自动化设备有限公司 一种双线烘干燃烧塔
CN211204068U (zh) * 2019-12-20 2020-08-07 四川精丰机械有限公司 烟气余热冷却利用装置
CN212778631U (zh) * 2020-08-19 2021-03-23 苏州炳日科技有限公司 用于太阳能电池热处理设备的燃烧塔
CN217764312U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 辅助燃烧装置和烧结设备
CN217764313U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 燃烧装置和烧结设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632378A (zh) * 2003-12-24 2005-06-29 樱井义次 废弃物的热分解处理装置和热分解处理控制系统
KR101152401B1 (ko) * 2011-08-29 2012-06-07 한국기계연구원 합성가스를 이용한 저열량가스 연소 장치 및 그 방법
CN205842673U (zh) * 2016-04-22 2016-12-28 中山市凯德环保设备有限公司 一种高效节能的热解金属回收炉
CN205897160U (zh) * 2016-07-09 2017-01-18 东莞市科隆威自动化设备有限公司 一种双线烘干燃烧塔
CN211204068U (zh) * 2019-12-20 2020-08-07 四川精丰机械有限公司 烟气余热冷却利用装置
CN212778631U (zh) * 2020-08-19 2021-03-23 苏州炳日科技有限公司 用于太阳能电池热处理设备的燃烧塔
CN217764312U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 辅助燃烧装置和烧结设备
CN217764313U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 燃烧装置和烧结设备

Also Published As

Publication number Publication date
CN217764312U (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2023232155A1 (zh) 燃烧装置和烧结设备
WO2023232156A1 (zh) 辅助燃烧装置和烧结设备
CN205974597U (zh) 一种铝合金的淬火装置
CN107254576A (zh) 退火炉旋流喷射热风循环结构
CN106048162A (zh) 一种冷室高压气淬的结构
CN212620048U (zh) 一种节能高效红砖连续焙烧生产窑
CN206320784U (zh) 一种防止水冷壁高温腐蚀的高速贴壁风装置
CN205282940U (zh) 一种配电箱散热装置
CN209399380U (zh) 一种强制循环式水冷旋转炉排
CN207570267U (zh) 五金件烘干回火装置
CN106196125B (zh) 一种应用于焚烧装置的废气处理结构
CN211471298U (zh) 一种间接降低干熄焦炉循环风降温结构
CN211120513U (zh) 一种蒸汽热风循环干燥窑
CN210718700U (zh) 铝型材氟碳固化炉烟气回收燃烧系统
CN209279688U (zh) 一种具有废气回收装置的铝棒加热炉
CN209857576U (zh) 一种高效烘干窖
CN103884169B (zh) 一种节能环保锯材干燥窑
CN206715613U (zh) 挥发性有机化合物释放用热能循环利用系统
CN206950922U (zh) 挥发性有机化合物吸附装置用释放机构
CN219713980U (zh) 一种换热式节能熔铸炉
CN212253678U (zh) 可调节进风口面积的人工时效炉单区炉体结构
CN213208435U (zh) 一种高效快速釉线烘干器
CN219729418U (zh) 一种用于固体物料显热回收和控制扬尘的一体化集气罩
CN216532350U (zh) 一种水利水电工程设备防潮处理设备
CN217179357U (zh) 节能环保型秸秆生物颗粒燃烧炉

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815332

Country of ref document: EP

Kind code of ref document: A1