WO2023232155A1 - 燃烧装置和烧结设备 - Google Patents

燃烧装置和烧结设备 Download PDF

Info

Publication number
WO2023232155A1
WO2023232155A1 PCT/CN2023/104033 CN2023104033W WO2023232155A1 WO 2023232155 A1 WO2023232155 A1 WO 2023232155A1 CN 2023104033 W CN2023104033 W CN 2023104033W WO 2023232155 A1 WO2023232155 A1 WO 2023232155A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
box
heat exchange
air
exchange box
Prior art date
Application number
PCT/CN2023/104033
Other languages
English (en)
French (fr)
Inventor
左国军
唐洪湘
磨建新
吴勇茂
Original Assignee
常州捷佳创智能装备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州捷佳创智能装备有限公司 filed Critical 常州捷佳创智能装备有限公司
Publication of WO2023232155A1 publication Critical patent/WO2023232155A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B15/00Machines or apparatus for drying objects with progressive movement; Machines or apparatus with progressive movement for drying batches of material in compact form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B23/00Heating arrangements
    • F26B23/02Heating arrangements using combustion heating

Definitions

  • the utility model relates to the technical field of solar cell heat treatment, in particular to combustion devices and sintering equipment.
  • the conductive paste When preparing solar photovoltaic cells, the conductive paste needs to be dried and cured after printing on the surface of the silicon wafer. During the drying and curing process of conductive paste, organic matter will volatilize, accompanied by a large amount of harmful pollutants, causing pollution to the working environment.
  • organic matter is often integrated into the combustion chamber for combustion.
  • the hot air flow discharged by combustion can easily cause damage to the external pipes.
  • the heat generated after combustion cannot be recovered, resulting in a waste of resources.
  • water-cooling equipment is usually installed at the exhaust port of the combustion chamber to cool down the high-temperature gas discharged from the combustion chamber to achieve heat recovery. Since the cooling equipment is only water-cooling equipment, when the water-cooling equipment stops working, the high-temperature airflow It will continue to heat the water-cooling equipment, causing damage to the water-cooling equipment and posing a major safety hazard. Therefore, after the water-cooling equipment stops working, how to continue to cool the hot air flow discharged from the combustion chamber to avoid damage to the water-cooling equipment and ensure the normal operation of the equipment has become an urgent technical problem to be solved.
  • the main purpose of the utility model is to provide a combustion device and sintering equipment, which is designed to continue to cool the high-temperature gas generated in the combustion chamber after the water-cooling equipment stops working, so as to avoid damage to the water-cooling equipment.
  • the present utility model proposes a combustion device, which includes a combustion box with a combustion chamber, an air inlet connected to an air outlet of the combustion box, and an exchanger for cooling the hot air flow discharged from the combustion box.
  • the heat box, and the cooling component located on one side of the air outlet of the combustion box cools the hot air flow in the heat exchange box when the heat exchange box stops working.
  • the cooling assembly includes an air pump that can blow out cold air, and a third unit that can guide the cold air blown out by the air pump into the heat exchange box to exchange heat with the hot air in the heat exchange box. Blow through the body of the air tube.
  • the air pump is also connected to at least one device that can guide part of the cold air blown out by the air pump to the air outlet of the heat exchange box to cool down the hot air flow discharged from the heat exchange box.
  • the second blow tube body is also connected to at least one device that can guide part of the cold air blown out by the air pump to the air outlet of the heat exchange box to cool down the hot air flow discharged from the heat exchange box.
  • the combustion box is provided with a temperature detector for monitoring the temperature of the combustion chamber.
  • the combustion chamber is provided with heat shields spaced apart along the horizontal direction to divide the combustion chamber into at least three parallel combustion spaces, and the air inlet of the combustion box is located at the combustion chamber.
  • the bottom of the combustion box is connected to the outermost combustion space, and the air outlet of the combustion box is located at the top of the combustion box and connected to the outermost combustion space.
  • the air inlet of the combustion box is connected to the outermost combustion space of the combustion box.
  • the air outlets are respectively connected to different combustion spaces.
  • the heat insulation board is provided with a ventilation area that connects two adjacent combustion spaces.
  • the ventilation areas of any two adjacent heat insulation boards are staggered in the vertical direction.
  • the combustion The number of cavities is an odd number.
  • an insulating cotton board is provided on the inner wall of the combustion chamber.
  • the combustion box is provided with a disassembly handle.
  • the heat exchange box is provided with a water inlet and a water outlet, and the heat exchange box is provided with a condensation tube extending in a curve that is connected to the water inlet and the water outlet.
  • the condensation tube has a plurality of straight tube portions distributed in an array and a bent tube portion connecting adjacent straight tube portions.
  • any two adjacent rows or columns of straight tubes in an array are arranged staggered to each other.
  • This application also discloses a sintering equipment, which includes a heating chamber for heating the workpiece to be processed, a transmission component disposed in the heating chamber for transporting the workpiece to be processed, and a heating chamber that is connected to the heating chamber for generating the heat of the workpiece to be processed.
  • a combustion device as described in any one of the above for burning organic gas.
  • Figure 1 is a schematic structural diagram of the first embodiment of the present invention.
  • Figure 2 is a cross-sectional view taken along line A-A in Figure 1 .
  • Figure 3 is an enlarged structural diagram of position A in Figure 2.
  • Figure 4 is a front view of the heat shield.
  • Figure 5 is a side view of the heat shield.
  • Figure 6 is a schematic diagram of the explosion structure of the combustion box in Figure 1.
  • FIG 7 is a schematic diagram of the internal structure of the heat exchange box in Figure 1.
  • the present utility model proposes a combustion device, which includes a combustion box 30 with a combustion chamber, an air inlet connected to the air outlet 33 of the combustion box, and used to control the combustion.
  • the heat exchange box 40 is used to cool the hot air discharged from the box 30, and is provided on one side of the air outlet of the combustion box 30 to cool the hot air flow in the heat exchange box 40 when the heat exchange box 40 stops working. Cooling components for cooling.
  • a combustion device includes a combustion box 30, a heat exchange box 40, and a cooling assembly.
  • the combustion box 30 is made of metal materials, such as aluminum alloy materials and alloy steel materials.
  • the combustion box 30 made of metal materials has the advantages of strong support capacity, wear resistance, and good thermal conductivity. According to design requirements, the combustion box 30 can also be made of other inorganic materials.
  • the combustion box 30 made of inorganic materials has the advantage of low cost.
  • the combustion box 30 is provided with a combustion chamber for incineration of organic matter produced in the solar panel production process.
  • the combustion box 30 has an air inlet and an air outlet.
  • the air inlet is located at the bottom of the combustion box 30 for introducing gas containing organic matter into the combustion chamber in the combustion box 30.
  • the air outlet is located at the bottom of the combustion box.
  • the top of 30 is used to discharge the gas that has completed combustion.
  • a heat source is provided in the combustion box 30.
  • the heat source can be generated by energizing a resistance wire or by burning combustible gas. In this application, it is preferably generated after the resistance wire is energized
  • the heat exchange box 40 has an air inlet and an air outlet.
  • the air inlet of the heat exchange box 40 is connected with the air outlet 33 of the combustion box.
  • the air outlet of the heat exchange box 40 can be connected to the atmosphere or the atmosphere through the guide tube body. Other devices are turned on.
  • the heat exchange box 40 is provided with a cold source that can exchange heat with the hot air flow discharged from the combustion box 30 .
  • the cold source can be the condenser pipe 43 , or cold air introduced from the outside, or the like.
  • the heat exchange box 40 is also made of metal materials, such as aluminum alloy materials, alloy steel materials, etc.
  • the heat exchange box 40 made of metal materials has the advantages of good thermal conductivity and wear resistance. Of course, it can also be made of other inorganic materials according to the needs of the design, and its effects are consistent with the above content, so I will not go into details here.
  • a cooling component is provided at the connection between the air outlet 33 of the combustion box and the air inlet of the heat exchange box 40.
  • the cooling assembly includes an air pump (not shown in the figure) that can blow out cold air, and can guide the cold air blown out by the air pump (not shown in the figure) to the heat exchange box.
  • the first blowing pipe 10 is used for exchanging heat with the hot air in the heat exchange box.
  • the cooling assembly includes an air pump (not shown in the figure) and the first air blowing pipe 10 .
  • the air pump (not shown in the figure) adopts a pneumatic vacuum pump commonly used in the prior art.
  • the pneumatic vacuum pump has the advantages of small size, light weight, and low noise.
  • the first blow pipe 10 is made of metal material, such as aluminum alloy material.
  • the first blow pipe 10 made of aluminum alloy material has the advantages of strong support capacity, wear resistance, and stable operation.
  • One end of the first blowing pipe 10 is connected to the air outlet of the air pump (not shown in the figure), and the other end is connected to the air inlet of the heat exchange box 40 for blowing out the air pump (not shown in the figure).
  • the cold air is guided to the inside of the heat exchange box 40 .
  • the heat exchange box 40 in this application adopts a water-cooled heat exchange box 40.
  • the water-cooled heat exchange box 40 is equipped with an electromagnetic valve.
  • the electromagnetic valve can be used to open or close the circulation pipe in the water-cooled heat exchange box 40. , and at the same time, the water flow velocity in the circulation pipe of the water-cooled heat exchange box 40 can also be monitored.
  • the solenoid valve detects that the water flow velocity in the circulation pipe in the water-cooled heat exchange box 40 is less than the preset threshold, it means that the water-cooled heat exchange box The body 40 stops working.
  • the solenoid valve sends the signal to the air pump (not shown in the figure) through the industrial computer (not shown in the figure).
  • the air pump (not shown in the figure) starts to work, and the air pump (not shown in the figure) starts to work. Cold air is pumped into the box 40 to cool down the hot air flow in the heat exchange box 40 .
  • the above technical solution has a simple structure and is easy to implement.
  • the air pump (not shown in the figure) is also connected to an air outlet that can guide part of the cold air blown out by the air pump (not shown in the figure) to the air outlet of the heat exchange box 40
  • the air pump (not shown in the figure) is also connected to at least one second air blowing pipe 20 that can guide part of the cold air blown out by the air pump (not shown in the figure) to the air outlet of the heat exchange box 40 .
  • the body of the second blow pipe 20 is made of metal material, which is the same material as the body of the first blow pipe 10 and has the same technical effect, which will not be described again here.
  • the number of the second air blowing tubes 20 is two, and the air outlets of the two air blowing tubes are evenly distributed on the edges of the air outlets of the heat exchange box 40 . Evenly distributed arrangement can make the cold air and the hot air flow discharged from the heat exchange box 40 evenly exchange heat, and the heat exchange effect is better.
  • the second air blowing pipe 20 can also be connected to a separate air pump (not shown in the figure), and a separate air pump (not shown in the figure) is used to blow cold air into the second air blowing pipe 20 body. , simple control, convenient for adjusting the cold air volume.
  • the hot air flow discharged from the heat exchange box 40 is cooled again through the second blowing pipe 20, which reduces the cooling pressure of the first blowing pipe 10 and improves the stability of the overall operation of the combustion device.
  • the combustion box 30 is provided with a temperature detector 50 for monitoring the temperature of the combustion chamber.
  • the combustion box 30 is also provided with a temperature detector 50 for monitoring the temperature of the combustion chamber inside the combustion box 30.
  • the temperature of the combustion chamber is monitored in real time through the temperature detector 50, which facilitates monitoring of the temperature of the combustion chamber and is convenient.
  • the temperature adjustment in the combustion chamber since there is a maximum limit for the temperature in the combustion chamber, when the temperature of the combustion chamber is higher than the maximum limit, it will cause damage to the components of the combustion chamber. Therefore, it is necessary to ensure that the temperature of the combustion chamber is lower than the maximum limit. .
  • the temperature inside the combustion box 30 can be effectively prevented from reaching the maximum limit, thus ensuring the safety of the combustion box 30 .
  • heat shielding plates 31 are arranged in the combustion chamber at intervals along the horizontal direction to divide the combustion chamber into at least three parallel combustion spaces.
  • the air inlet of the combustion box 30 The air outlet 33 of the combustion box is located at the bottom of the combustion box 30 and communicates with the outermost combustion space.
  • the air outlet 33 of the combustion box 30 is located at the top of the combustion box 30 and communicates with the outermost combustion space.
  • the air intake of the combustion box 30 The air outlet 33 of the combustion box is connected to different combustion spaces respectively.
  • the heat insulation plate 31 is provided with a ventilation area that connects two adjacent combustion spaces.
  • the ventilation areas of any two adjacent heat insulation plates 31 The zones are staggered along the vertical direction, and the number of combustion chambers is an odd number.
  • At least two heat shielding plates 31 are provided in the combustion chamber along the horizontal direction of the combustion chamber.
  • the two heat shielding plates 31 divide the combustion chamber into three corresponding parallel ones. Burning space.
  • the four heat shielding plates 31 divide the combustion chamber into corresponding five parallel combustion spaces.
  • the number of heat shielding plates 31 is an even number. The even number of heat shielding plates 31 can divide the combustion chamber into an odd number of combustion spaces, so that the inlet and outlet of the combustion box 30 can be on two opposite surfaces.
  • the heat insulation board 31 is made of calcium aluminum silicate board.
  • the calcium aluminum silicate board has a catalytic effect, can catalyze the combustion of organic matter, and can improve the combustion efficiency of the burning matter.
  • a number of blind holes 311 are arranged in a matrix on the surface of the calcium aluminum silicate board that can contact with organic matter to increase the contact area between the calcium aluminum silicate board and gas containing organic matter and improve the catalytic effect of the calcium aluminum silicate board.
  • the use of calcium aluminum silicate boards can also have a thermal insulation effect and reduce heat loss.
  • the air inlet of the combustion box 30 is located at the bottom of the combustion box 30.
  • the air inlet of the combustion box 30 is connected to the outermost combustion space and is used to introduce gas containing organic matter into the combustion space.
  • the cross-sectional area of the air inlet of the combustion box 30 is equal to the cross-sectional area of the combustion space connected thereto.
  • the air outlet 33 of the combustion box is located at the top of the combustion box 30.
  • the air outlet 33 of the combustion box is connected to the outermost combustion space and is used to guide the burned gas out of the combustion space.
  • the cross-sectional area of the air outlet 33 of the combustion box is equal to the cross-sectional area of the combustion space connected thereto.
  • the air outlet 33 of the combustion box and the air inlet of the combustion box 30 are respectively connected to different combustion spaces. With this arrangement, the passage path of the gas containing organic matter can be extended, thereby realizing the protection of the combustion space against the gas containing organic matter. Complete combustion of gas.
  • the heat insulation board 31 is provided with a ventilation area that connects two adjacent combustion spaces.
  • the ventilation areas on the two adjacent heat insulation boards 31 are staggered, which can extend the passage path of the gas containing organic matter, thereby achieving a better understanding of the combustion space. Complete combustion with organic matter.
  • the ventilation area is provided at the end of the heat insulation plate 31, which allows the gas containing organic matter to pass completely through all the combustion spaces and achieves complete combustion of the gas containing organic matter.
  • the combustion chamber is divided into an odd number of combustion spaces through the heat shield 31, and then two staggered openings are opened at the top and bottom of the combustion box 30, and the two openings are respectively connected to the outermost combustion space. , extending the passage path of gas containing organic matter to achieve full combustion of organic matter.
  • the structure is simple and easy to implement.
  • an insulating cotton board 32 is provided on the inner wall of the combustion chamber.
  • a heat insulation cotton board 32 is provided on the inner wall of the combustion chamber.
  • the heat insulation cotton board 32 By providing the heat insulation cotton board 32, the heat exchange effect between the heat source in the combustion chamber and the outer shell of the combustion box 30 is reduced, thereby reducing heat loss. At the same time, it also prevents the outer shell of the combustion box 30 from being damaged in a high temperature environment.
  • the heat exchange effect between the heat source in the combustion chamber and the outer shell of the combustion box 30 is reduced by arranging the insulating cotton board 32, thereby reducing the heat loss in the combustion chamber, and at the same time preventing the outer shell of the combustion box 30 from being exposed in a high temperature environment. The bottom is damaged.
  • the combustion box 30 is provided with a disassembly handle 35 .
  • the combustion box 30 is provided with a disassembly handle 35.
  • the disassembly handle 35 facilitates the assembly and disassembly of the combustion box 30 and facilitates subsequent maintenance.
  • the heat exchange box 40 is provided with a water inlet 41 and a water outlet 42, and the heat exchange box 40 is provided with a curved extension connected to the water inlet 41 and the water outlet 42.
  • the condensation tube 43 has a plurality of straight tube portions distributed in an array and bent tube portions connecting adjacent straight tube portions.
  • the heat exchange box 40 is provided with a water inlet 41 and a water outlet 42.
  • the heat exchange box 40 is provided with a condensation tube 43 with both ends connected to the water inlet 41 and the water outlet 42 respectively.
  • the condensation tube 43 is curved. Extending in the heat exchange box 40, the length of the condensation tube 43 in the heat exchange box 40 can be extended by extending in a curved manner, thereby increasing the heat exchange area between the condensation tube 43 and the hot air in the heat exchange box 40.
  • the condensation tube 43 is made of metal material, such as metal aluminum, copper, etc.
  • the condensation tube 43 made of metal material has the advantages of light weight and good heat conduction effect.
  • the condensation tube 43 has a plurality of straight tube portions distributed in an array and bent tube portions connecting adjacent straight tube portions, further extending the length of the condensation tube 43 in the heat exchange box 40, with a simple structure and easy implementation.
  • any two adjacent rows or columns of straight tubes in an array are arranged staggered to each other.
  • any two adjacent rows or columns of straight tubes in the array are arranged staggered to each other, so that the air flow will exchange heat with at least one layer of straight tubes, further improving the heat exchange effect of the condenser tube 43 .
  • This application also discloses a sintering equipment that includes a heating chamber for heating the workpiece to be processed, a transmission assembly disposed in the heating chamber for transporting the workpiece to be processed, and a heating chamber that is connected to the heating chamber for generating the workpiece to be processed.
  • a combustion device as described in any one of the above for burning organic gas.
  • the heating chamber is used to heat the workpiece to be processed so that the material coated on the workpiece is solidified.
  • the transmission component is used to transport the workpiece to be processed so that the workpiece to be processed is placed in the heating chamber. Movement, the combustion device is connected to the heating chamber. When the heating chamber heats the workpiece to be processed, part of the coating material will volatilize into the gas. The combustion device burns the gas mixed with the coating material, thereby preventing the coating material from being discharged into the atmosphere. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本实用新型公开了一种燃烧装置和烧结设备,涉及太阳能电池热处理技术领域。一种燃烧装置具体包括:带有燃烧腔的燃烧箱体、进气口与燃烧箱体的出气口连通用于对燃烧箱体排出的热气流进行冷却降温的换热箱体、以及设于所述燃烧箱体出气口的一侧当换热箱体停止工作时对换热箱体内热气流进行冷却降温的冷却组件。旨在当水冷设备停止工作后,继续对燃烧室产生的高温气体进行降温,避免水冷设备的损坏。

Description

燃烧装置和烧结设备 技术领域
本实用新型涉及太阳能电池热处理技术领域,特别涉及燃烧装置和烧结设备。
背景技术
太阳能光伏电池制备时,硅片表面印刷完导电浆后需要进行烘干、固化。在烘干、固化导电浆的过程中,会有有机物挥发,伴有大量有害污染物,对工作环境造成污染。
目前,为了避免有机物挥发带来的污染问题,常常会将有机物融入燃烧室进行燃烧,由于燃烧排出的热气流容易对外接管路造成损坏,同时燃烧后产生的热量无法回收,造成了资源的浪费。
为了解决上述技术问题,通常会在燃烧室的排气口处安装水冷设备对燃烧室排出的高温气体进行降温,实现热量回收,由于其冷却设备只有水冷设备,当水冷设备停止工作后,高温气流会持续给水冷设备加热,导致水冷设备损坏,存在较大的安全隐患。因此在水冷设备停止工作以后如何继续对燃烧室排出的热气流进行降温,避免水冷设备的损坏,保证设备的正常运行成为了亟待解决的技术难题。
实用新型内容
本实用新型的主要目的是提供燃烧装置和烧结设备,旨在当水冷设备停止工作后,继续对燃烧室产生的高温气体进行降温,避免水冷设备的损坏。
为了实现上述目的,本实用新型提出一种燃烧装置,包括带有燃烧腔的燃烧箱体、进气口与燃烧箱体的出气口连通用于对燃烧箱体排出的热气流进行冷却降温的换热箱体、以及设于所述燃烧箱体出气口的一侧当换热箱体停止工作时对换热箱体内热气流进行冷却降温的冷却组件。
在本申请的一实施例中,所述冷却组件包括可吹出冷空气的空气泵、和可将空气泵吹出的冷空气引流至换热箱内与换热箱内的热空气进行换热的第一吹气管体。
在本申请的一实施例中,所述空气泵上还连接有可将空气泵吹出的冷空气部分引流至换热箱体的出气口处以对换热箱体排出的热气流进行降温的至少一个第二吹气管体。
在本申请的一实施例中,所述燃烧箱体上设有用于监测所述燃烧腔温度的温度检测件。
在本申请的一实施例中,所述燃烧腔内沿水平方向间隔设置有将所述燃烧腔分隔成至少三个并列的燃烧空间的隔热板,所述燃烧箱体的进气口位于燃烧箱体的底部并与最外侧燃烧空间连通,所述燃烧箱体的出气口位于燃烧箱体的顶部并与最外侧燃烧空间连通,其中,所述燃烧箱体的进气口与燃烧箱体的出气口分别与不同的燃烧空间导通,所述隔热板上设有连通两个相邻燃烧空间的通气区,任意两个相邻的隔热板的通气区沿竖直方向错开设置,燃烧腔的数量为奇数。
在本申请的一实施例中,所述燃烧腔的内壁上设有隔热棉板。
在本申请的一实施例中,所述燃烧箱体上设有拆卸把手。
在本申请的一实施例中,所述换热箱体上设有进水口和出水口,所述换热箱体内设有与进水口和出水口连通的呈曲线延伸的冷凝管,所述冷凝管具有多个呈阵列分布的直管部分和连接相邻直管部分的弯管部分。
在本申请的一实施例中,阵列排布的直管中的任意相邻两行或两列直管相互错开排布。
本申请还公开了一种烧结设备,包括对待加工件进行加热的加热室、设于所述加热室内对待加工件进行传送的传送组件、以及与所述加热室导通用于对待加工件加热室产生的有机气体进行燃烧的如上任意一项所述的燃烧装置。
采用上述技术方案,通过设置在换热箱体停止工作时对换热箱体内的热气流继续进行冷却时冷却组件,避免换热箱体停止工作后,因其内部的温度持续升高而导致的换热箱体损坏。同时也保证燃烧箱体排出的热气流的温度降至预设温度后再进行排放,提高了设备工作的安全性。
附图说明
下面结合具体实施例和附图对本实用新型进行详细的说明,其中:
图1为本实用新型第一种实施例的结构示意图。
图2为图1中A-A处的剖视图。
图3为图2中A处的放大结构示意图。
图4为隔热板的主视图。
图5为隔热板的侧视图。
图6为图1中燃烧箱体的爆炸结构示意图。
图7为图1中换热箱体的内部结构示意图。
具体实施方式
为了使本实用新型的目的、技术方案及优点更加清楚,以下结合附图和实施例对本实用新型进行详细的说明。应当理解,以下具体实施例仅用以解释本实用新型,并不对本实用新型构成限制。
如图1至图7所示,为了实现上述目的,本实用新型提出一种燃烧装置,包括带有燃烧腔的燃烧箱体30、进气口与燃烧箱体的出气口33连通用于对燃烧箱体30排出的热气流进行冷却降温的换热箱体40、以及设于所述燃烧箱体30出气口的一侧当换热箱体40停止工作时对换热箱体40内热气流进行冷却降温的冷却组件。
具体的,一种燃烧装置包括燃烧箱体30、换热箱体40、以及冷却组件。
燃烧箱体30由金属材料制成,例如铝合金材料、合金钢材料制成,采用金属材料制成的燃烧箱体30具有支撑能力强、耐磨损、导热性能好等优点。当根据设计的需要,燃烧箱体30也可以采用其他无机材料制成,采用无机材料制成的燃烧箱体30具有成本低等优点。燃烧箱体30内设有燃烧腔室,用于对太阳能电池板生产工艺中产生的有机物进行焚烧。燃烧箱体30带有进气口和出气口,其中进气口位于燃烧箱体30的底部用于向燃烧箱体30内的燃烧腔体通入带有有机物的气体,出气口位于燃烧箱体30的顶部用于排出完成燃烧的气体。燃烧箱体30内设置有热源,热源可以为电阻丝通电后产生,也可以为可燃气体燃烧产生。本申请中优选为电阻丝通电后产生。
换热箱体40带有进气口和出气口,换热箱体40的进气口与燃烧箱体的出气口33连通,换热箱体40的出气口可通过导流管体与大气或者其他设备导通。换热箱体40内设有可与燃烧箱体30排出的热气流进行换热的冷源,该冷源可以为冷凝管43、或者为外界导入的冷空气等等。换热箱体40同样采用金属材料制成,例如铝合金材料、合金钢材料等等,采用金属材料制成的换热箱体40,具有导热性能好、耐磨损等优点。当然根据设计的需要也可以采用其他的无机材料制成,其所具备的效果与上文内容一致,在此不在一一赘述。
在燃烧箱体的出气口33与换热箱体40的进气口的连接处设置有冷却组件,冷却组件在换热箱体40停止工作时,即冷凝管43、或者冷空气停止工作时,对换热箱体40内的高温气流进行冷却。以保证燃烧箱体30排出的热气流达到预设的排放条件,保护换热箱体40,避免换热箱体40出现损坏。
采用上述技术方案,通过设置在换热箱体40停止工作时对换热箱体40内的热气流继续进行冷却时冷却组件,避免换热箱体40停止工作后,因其内部的温度持续升高而导致的换热箱体40损坏。同时也保证燃烧箱体30排出的热气流的温度降至预设温度后再进行排放,提高了设备工作的安全性。
在本申请的一实施例中,所述冷却组件包括可吹出冷空气的空气泵(图中未示出)、和可将空气泵(图中未示出)吹出的冷空气引流至换热箱内与换热箱内的热空气进行换热的第一吹气管10。
具体的,冷却组件包括空气泵(图中未示出)和第一吹气管10。
空气泵(图中未示出)采用现有技术中常用的气动式真空泵,采用气动式真空泵具有体积小、重量轻、噪音低等优点。
第一吹气管10采用金属材料制成,例如铝合金材料、采用铝合金材料制成的第一吹气管10具有支撑能力强、耐磨损、工作稳定等优点。
第一吹气管10的一端连接在空气泵(图中未示出)的出气口、另一端连接在换热箱体40的进气口处用于将空气泵(图中未示出)吹出的冷空气导流至换热箱体40内部。
本申请中的换热箱体40采用水冷式换热箱体40,水冷式换热箱体40内设有电磁阀门,该电磁阀门可用于打开或关闭水冷式换热箱体40内的循环管道,同时也可以监测水冷式换热箱体40循环管道内的水流速度,当电磁阀检测到水冷式换热箱体40内的循环管道水流速度小于预设阈值时,即表示水冷式换热箱体40停止工作,此时电磁阀门将该信号通过工控机(图中未示出)发送给空气泵(图中未示出),此时空气泵(图中未示出)开始工作,向换热箱体40内泵入冷空气,对换热箱体40内的热气流进行降温处理。
采用上述技术方案,结构简单,便于实施。
在本申请的一实施例中,所述空气泵(图中未示出)上还连接有可将空气泵(图中未示出)吹出的冷空气部分引流至换热箱体40的出气口处以对换热箱体40排出的热气流进行降温的至少一个第二吹气管20体。
具体的,空气泵(图中未示出)上还连接有可将空气泵(图中未示出)吹出的冷空气部分引流至换热箱体40出气口处的至少一个第二吹气管20体,第二吹气管20体采用金属材料制成,其与第一吹气管10体所采用的材料相同,具有相同的技术效果,在此不再一一赘述。第二吹气管20体的数量为两个,两个吹气管体的出气口均匀的分布在换热箱体40的出气口的边缘。采用均匀分布的方式设置,可使得冷空气与换热箱体40排出的热气流均匀换热,换热效果更佳。
当然可以想到的是,第二吹气管20也可以连接于单独的空气泵(图中未示出),采用单独的空气泵(图中未示出)向第二吹气管20体吹入冷空气,控制简单,便于冷空气气量的调节。
采用上述技术方案,通过第二吹气管20对换热箱体40排出的热气流再次进行冷却降温,减小了第一吹气管10的冷却压力,提高了燃烧装置整体工作时的稳定性。
在本申请的一实施例中,所述燃烧箱体30上设有用于监测所述燃烧腔温度的温度检测件50。
具体的,在燃烧箱体30上还设有用于监测燃烧箱体30内部燃烧腔温度的温度检测件50,通过温度检测件50实时的监测燃烧腔的温度,便于对燃烧腔温度的监控,方便对燃烧腔内的温度调节,由于燃烧腔内的温度存在最高界限,当燃烧腔的温度高于最高界限时,会对燃烧腔的构成部件造成损伤,因此需要保证燃烧腔的温度低于最高界限。通过对燃烧箱体30的温度监测,可有效避免燃烧箱体30内的温度达到最高界限,保证了燃烧箱体30的安全性。
在本申请的一实施例中,所述燃烧腔内沿水平方向间隔设置有将所述燃烧腔分隔成至少三个并列的燃烧空间的隔热板31,所述燃烧箱体30的进气口位于燃烧箱体30的底部并与最外侧燃烧空间连通,所述燃烧箱体的出气口33位于燃烧箱体30的顶部并与最外侧燃烧空间连通,其中,所述燃烧箱体30的进气口与燃烧箱体的出气口33分别与不同的燃烧空间导通,所述隔热板31上设有连通两个相邻燃烧空间的通气区,任意两个相邻的隔热板31的通气区沿竖直方向错开设置,燃烧腔的数量为奇数。
具体的,燃烧腔内沿着燃烧腔的水平方向设置有至少两个隔热板31,当隔热板31为两个时,两个隔热板31将燃烧腔分隔成对应的三个并列的燃烧空间。当隔热板31为四个时,四个隔热板31将燃烧腔分隔成对应的五个并列的燃烧空间。其中隔热板31的数量为偶数,数量为偶数的隔热板31可以将燃烧腔分隔成数量为奇数的燃烧空间,从而使得,燃烧箱体30入口和出口可以处于相对的两个面上。
隔热板31为硅酸铝钙板制成,采用硅酸铝钙板具有催化效果,可以对有机物的燃烧进行催化,可以提高燃烧物的燃烧效率。硅酸铝钙板上可与有机物接触的面上设有若干呈矩阵分布的盲孔311,以增加硅酸铝钙板与含有有机物的气体的接触面积,提高硅酸铝钙板的催化效果。同时采用硅酸铝钙板还可以起到保温的效果,降低热量的流失。
燃烧箱体30的进气口位于燃烧箱体30的底部,燃烧箱体30的进气口与位于最外侧的燃烧空间导通,用于向燃烧空间内导入含有有机物的气体。为了实现对燃烧箱体30的最大进气设定,燃烧箱体30的进气口的横截面的面积与与其连通的燃烧空间的横截面积相等。
燃烧箱体的出气口33位于燃烧箱体30的顶部,燃烧箱体的出气口33与位于最外侧的燃烧空间导通,用于向燃烧空间外导出已经完成燃烧的气体。为了实现对燃烧箱体30的最大排气设定,燃烧箱体的出气口33的横截面的面积与与其连通的燃烧空间的横截面的面积相等。
燃烧箱体的出气口33与燃烧箱体30的进气口分别与不同的燃烧空间导通,采用此种设置,可以延长带有有机物的气体的通过路径,从而实现燃烧空间对带有有机物的气体的充分燃烧。
在隔热板31上设有连通两个相邻燃烧空间的通气区,两个相邻隔热板31上的通气区错开设置,可以延长带有有机物的气体的通过路径,从而实现对燃烧空间带有有机物的充分燃烧。优选的,通气区设置在隔热板31的端部,可使得带有有机物的气体完整的经过所有的燃烧空间,实现对带有有机物的气体的充分燃烧。
采用上述技术方案,通过隔热板31将燃烧腔分隔成奇数个燃烧空间,然后在燃烧箱体30的顶部和底部分别开设两个错开的开口,两个开口分别与最外侧的燃烧空间导通,延长带有有机物的气体的通过路径,实现对有机物的充分燃烧。结构简单,便于实施。
在本申请的一实施例中,所述燃烧腔的内壁上设有隔热棉板32。
具体的,在燃烧腔的内壁上设置有隔热棉板32,通过设置隔热棉板32降低燃烧腔内的热源与燃烧箱体30的外壳体的换热效果,降低了热量的损失。同时也避免燃烧箱体30外壳在高温的环境下损坏。
采用上述技术方案,通过设置隔热棉板32降低燃烧腔内的热源与燃烧箱体30的外壳的换热效果,降低燃烧腔内的热量损失,同时避免燃烧箱体30的外壳在高温的环境下被损坏。
在本申请的一实施例中,所述燃烧箱体30上设有拆卸把手35。
具体的,燃烧箱体30上设有拆卸把手35,通过拆卸把手35便于燃烧箱体30的组装与拆卸,便于后期的维护。
在本申请的一实施例中,所述换热箱体40上设有进水口41和出水口42,所述换热箱体40内设有与进水口41和出水口42连通的呈曲线延伸的冷凝管43,所述冷凝管43具有多个呈阵列分布的直管部分和连接相邻直管部分的弯管部分。
具体的,换热箱体40上设有进水口41和出水口42,换热箱体40内设有两端分别与进水口41和出水口42连通的冷凝管43,冷凝管43成曲线状在换热箱体40内延伸,通过曲线的方式延伸可延长冷凝管43在换热箱体40内的长度,从而增大冷凝管43与换热箱体40内热空气之间的换热面积。
冷凝管43采用金属材料制成,例如金属铝、铜等,采用金属材料制成的冷凝管43具有重量轻,导热效果好等优点。冷凝管43具有多个呈阵列分布的直管部分和连接相邻直管部分的弯管部分,进一步延长了冷凝管43在换热箱体40内的长度,结构简单,便于实施。
在本申请的一实施例中,阵列排布的直管中的任意相邻两行或两列直管相互错开排布。
具体的,阵列排布的直管中的任意相邻的两行或者两列直管相互错开排布,使得气流至少会与一层直管进行换热,进一步提高了冷凝管43的换热效果。
本申请还公开了一种烧结设备包括对待加工件进行加热的加热室、设于所述加热室内对待加工件进行传送的传送组件、以及与所述加热室导通用于对待加工件加热室产生的有机气体进行燃烧的如上任意一项所述的燃烧装置。
具体的,加热室用于对待加工件进行加热,使待加工件上涂覆的材料固化,在加热室内还设有传送组件,传送组件用于对待加工件进行传送,使待加工件在加热室内运动,燃烧装置与加热室导通,加热室对待加工件加热时会使得部分涂覆材料挥发至气体中,燃烧装置对混有涂覆材料的气体进行燃烧,从而避免有涂覆材料排出大气中。
以上所述仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是在本实用新型的实用新型构思下,利用本实用新型说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本实用新型的专利保护范围内。

Claims (10)

  1. 一种燃烧装置,其特征在于,包括带有燃烧腔的燃烧箱体、进气口与燃烧箱体的出气口连通用于对燃烧箱体排出的热气流进行冷却降温的换热箱体、以及设于所述燃烧箱体出气口的一侧当换热箱体停止工作时对换热箱体内热气流进行冷却降温的冷却组件。
  2. 如权利要求1所述的燃烧装置,其特征在于,所述冷却组件包括可吹出冷空气的空气泵、和可将空气泵吹出的冷空气引流至换热箱内与换热箱内的热空气进行换热的第一吹气管体。
  3. 如权利要求2所述的燃烧装置,其特征在于,所述空气泵上还连接有可将空气泵吹出的冷空气部分引流至换热箱体的出气口处以对换热箱体排出的热气流进行降温的至少一个第二吹气管体。
  4. 如权利要求1所述的燃烧装置,其特征在于,所述燃烧箱体上设有用于监测所述燃烧腔温度的温度检测件。
  5. 如权利要求1所述的燃烧装置,其特征在于,所述燃烧腔内沿水平方向间隔设置有将所述燃烧腔分隔成至少三个并列的燃烧空间的隔热板,所述燃烧箱体的进气口位于燃烧箱体的底部并与最外侧燃烧空间连通,所述燃烧箱体的出气口位于燃烧箱体的顶部并与最外侧燃烧空间连通,其中,所述燃烧箱体的进气口与燃烧箱体的出气口分别与不同的燃烧空间导通,所述隔热板上设有连通两个相邻燃烧空间的通气区,任意两个相邻的隔热板的通气区沿竖直方向错开设置,燃烧腔的数量为奇数。
  6. 如权利要求1所述的燃烧装置,其特征在于,所述燃烧腔的内壁上设有隔热棉板。
  7. 如权利要求1所述的燃烧装置,其特征在于,所述燃烧箱体上设有拆卸把手。
  8. 如权利要求1所述的燃烧装置,其特征在于,所述换热箱体上设有进水口和出水口,所述换热箱体内设有与进水口和出水口连通的呈曲线延伸的冷凝管,所述冷凝管具有多个呈阵列分布的直管部分和连接相邻直管部分的弯管部分。
  9. 如权利要求8所述的燃烧装置,其特征在于,阵列排布的直管中的任意相邻两行或两列直管相互错开排布。
  10. 一种烧结设备,其特征在于,包括如权利要求1至9中任意一项所述的燃烧装置。
PCT/CN2023/104033 2022-05-30 2023-06-29 燃烧装置和烧结设备 WO2023232155A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221323113.1U CN217764313U (zh) 2022-05-30 2022-05-30 燃烧装置和烧结设备
CN202221323113.1 2022-05-30

Publications (1)

Publication Number Publication Date
WO2023232155A1 true WO2023232155A1 (zh) 2023-12-07

Family

ID=83888718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/104033 WO2023232155A1 (zh) 2022-05-30 2023-06-29 燃烧装置和烧结设备

Country Status (2)

Country Link
CN (1) CN217764313U (zh)
WO (1) WO2023232155A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217764312U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 辅助燃烧装置和烧结设备
CN217764313U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 燃烧装置和烧结设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023422A1 (de) * 2004-05-12 2005-12-08 Patentpool Gmbh Verfahren zur Entsorgung toxischer Abprodukte mit einer Radialverdränger-Turbine
CN201476597U (zh) * 2009-05-12 2010-05-19 江西省陶瓷研究所 陶瓷窑炉烟气净化及余热综合利用装置
CN102012034A (zh) * 2010-12-06 2011-04-13 山东三维石化工程股份有限公司 硫磺回收装置多功能尾气焚烧炉
CN105157036A (zh) * 2015-09-30 2015-12-16 洪知瑜 多功能高速焚烧炉
CN105937766A (zh) * 2016-06-08 2016-09-14 北京航天动力研究所 一种处理含氮废气、废液的低氮氧化物焚烧装置和方法
CN205897160U (zh) * 2016-07-09 2017-01-18 东莞市科隆威自动化设备有限公司 一种双线烘干燃烧塔
CN213160080U (zh) * 2020-08-19 2021-05-11 苏州炳日科技有限公司 用于太阳能电池固化设备的燃烧塔
CN213930984U (zh) * 2020-12-15 2021-08-10 上海惠志环保科技有限公司 一种高效的催化燃烧装置
CN214745788U (zh) * 2021-01-28 2021-11-16 喜而诺盛自动化科技(苏州)有限公司 一种电容除胶废气燃烧装置
CN217764313U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 燃烧装置和烧结设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004023422A1 (de) * 2004-05-12 2005-12-08 Patentpool Gmbh Verfahren zur Entsorgung toxischer Abprodukte mit einer Radialverdränger-Turbine
CN201476597U (zh) * 2009-05-12 2010-05-19 江西省陶瓷研究所 陶瓷窑炉烟气净化及余热综合利用装置
CN102012034A (zh) * 2010-12-06 2011-04-13 山东三维石化工程股份有限公司 硫磺回收装置多功能尾气焚烧炉
CN105157036A (zh) * 2015-09-30 2015-12-16 洪知瑜 多功能高速焚烧炉
CN105937766A (zh) * 2016-06-08 2016-09-14 北京航天动力研究所 一种处理含氮废气、废液的低氮氧化物焚烧装置和方法
CN205897160U (zh) * 2016-07-09 2017-01-18 东莞市科隆威自动化设备有限公司 一种双线烘干燃烧塔
CN213160080U (zh) * 2020-08-19 2021-05-11 苏州炳日科技有限公司 用于太阳能电池固化设备的燃烧塔
CN213930984U (zh) * 2020-12-15 2021-08-10 上海惠志环保科技有限公司 一种高效的催化燃烧装置
CN214745788U (zh) * 2021-01-28 2021-11-16 喜而诺盛自动化科技(苏州)有限公司 一种电容除胶废气燃烧装置
CN217764313U (zh) * 2022-05-30 2022-11-08 常州捷佳创智能装备有限公司 燃烧装置和烧结设备

Also Published As

Publication number Publication date
CN217764313U (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2023232155A1 (zh) 燃烧装置和烧结设备
WO2023232156A1 (zh) 辅助燃烧装置和烧结设备
CN107254576A (zh) 退火炉旋流喷射热风循环结构
CN216573998U (zh) 一种气浮干燥箱
CN211120513U (zh) 一种蒸汽热风循环干燥窑
CN212692644U (zh) 一种高效的板式换热器
CN206715613U (zh) 挥发性有机化合物释放用热能循环利用系统
CN110964879A (zh) 一种热处理窑炉的冷却段结构
CN214747212U (zh) 一种可降低热量损失的加热炉
CN212320404U (zh) 一种集中加热式电加热炉
CN216744379U (zh) 一种有机废气净化联合热回收装置
CN219729418U (zh) 一种用于固体物料显热回收和控制扬尘的一体化集气罩
CN210801966U (zh) 一种木片烤箱用旋风排气装置
CN205208612U (zh) 一种热管式空气预热器
CN211620560U (zh) 一种热处理窑炉的冷却段结构
CN217179357U (zh) 节能环保型秸秆生物颗粒燃烧炉
CN217210258U (zh) 一种基于余热节能处理的烘干装置
CN221055020U (zh) 高效节能的有机废气焚烧炉结构
CN218620962U (zh) 一种铸管退火炉间接风冷却系统
CN220489668U (zh) 一种高效热能烘干机
CN214406956U (zh) 一种环保节能型燃烧炉
CN215003126U (zh) 热交换器散热管布局结构
CN220283902U (zh) 一种tft液晶玻璃窑炉烟道冷却结构
CN219745419U (zh) 一种涂装生产线用烘干装置
CN216711883U (zh) 一种废热回收污泥低温带式干化机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815331

Country of ref document: EP

Kind code of ref document: A1