WO2023231476A1 - 一种天线结构 - Google Patents

一种天线结构 Download PDF

Info

Publication number
WO2023231476A1
WO2023231476A1 PCT/CN2023/078414 CN2023078414W WO2023231476A1 WO 2023231476 A1 WO2023231476 A1 WO 2023231476A1 CN 2023078414 W CN2023078414 W CN 2023078414W WO 2023231476 A1 WO2023231476 A1 WO 2023231476A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
antenna structure
gap
structure according
radiation
Prior art date
Application number
PCT/CN2023/078414
Other languages
English (en)
French (fr)
Inventor
尹柳中
骆家辉
Original Assignee
深圳Tcl数字技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳Tcl数字技术有限公司 filed Critical 深圳Tcl数字技术有限公司
Publication of WO2023231476A1 publication Critical patent/WO2023231476A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/0006Particular feeding systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/30Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

Definitions

  • the present application relates to the field of antenna technology, and in particular to an antenna structure.
  • the beam width changes greatly, resulting in a large change in the antenna gain, resulting in poor broadband characteristics of the pattern in the directional radiation area of the antenna.
  • the purpose of this application is to provide an antenna structure that can achieve basically the same main lobe width of the pattern in the entire frequency band through the coexistence of two radiation modes, the slot antenna and the dipole antenna, that is, the broadband characteristics of the pattern.
  • This embodiment of the present application provides an antenna structure, including:
  • a dielectric substrate including an opposing first surface and a second surface
  • the first radiation sheet is arranged on the first surface and includes a first part and a second part connected to the first part;
  • the second radiation sheet is arranged with the first surface and includes a third part and a fourth part connected to the third part, with a gap between the second radiation sheet and the first radiation sheet;
  • the feed line is arranged on the second surface and includes opposite first and second ends.
  • the first end of the feed line is used to input an excitation signal, and the second end of the feed line is used to feed excitation to the first radiating plate and the second radiating plate. Signal;
  • the first part, the third part and the gap form a slot antenna, and the second part and the fourth part form a dipole antenna.
  • the first part and the third part are symmetrical about the gap and form a broadband balun structure.
  • the gap expands in a direction away from the first part and the third part to form a horn-shaped gap.
  • the first part includes an opposite first end and a second end
  • the second part includes an opposite first end and a second end
  • the second end of the second part is connected to the first end of the first part. connect.
  • the width of the second end of the second part is greater than the width of the first end of the first part.
  • the width of the first portion gradually increases along the gap in a direction away from the second portion.
  • the width of the third part gradually increases along the gap in a direction away from the fourth part.
  • the edge of the first part away from the gap is an arc-shaped line.
  • the edge of the third part away from the gap is an arc-shaped line.
  • the side length of the second part away from the gap is smaller than the distance between the first end of the second part and the second end of the second part.
  • the side length of the fourth part away from the gap is smaller than the distance between the first end of the fourth part and the second end of the fourth part.
  • the feeder line includes a first section and a second section, and a via hole is provided on the dielectric substrate; one end of the first section corresponds to the first end of the feeder line, and the other end of the first section is connected to the second section. One end is connected, and the other end of the second section is connected to the first radiation plate through a via hole.
  • the first section is parallel to the gap, and the projection of the first section on the first surface is located on the first radiation piece, and the second section is perpendicular to the gap and the projection on the first surface spans the gap.
  • the feed line is locally short-circuited to the first radiation plate on the first surface through a via hole to form a strong feed structure.
  • the feeder includes a first section, a second section and a third section; one end of the first section corresponds to the first end of the feeder, one end of the second section is connected to the other end of the first section, and the third section The other end of the second section is connected to one end of the third section, and the other end of the third section is coupled to the first radiating plate and the second radiating plate, and feeds power to the first radiating plate and the second radiating plate in a coupling feeding manner.
  • Motivational signal is provided to the first section, a second section and a third section;
  • both the first section and the third section are parallel to the gap, and the projection of the first section on the first surface is located on the first radiating piece, and the projection of the third section on the first surface is located on the second radiating plate. slice, the projection of the second segment onto the first surface spans the gap.
  • the feed line includes a microstrip feed line.
  • the antenna structure further includes a reflection plate, the dielectric substrate is vertically arranged on the reflection plate and the reflection plate evenly forms a first reflection area and a second reflection area, the first reflection area is close to the first surface, The second reflective area is close to the second surface.
  • a feed port is provided on the second reflection area, and the first end of the feed line is connected to the feed port.
  • the dielectric substrate is an FR4 dielectric board.
  • this application provides an antenna structure, which is composed of a slot antenna and a dipole antenna, and can transition from the dipole antenna working mode to the slot working mode from low frequency to high frequency. It can achieve ultra-wide frequency bands while keeping the pattern basically consistent within the ultra-wide range, thereby achieving broadband characteristics of the pattern and ensuring that the antenna beam width is basically consistent.
  • FIG. 1 is a schematic diagram of the antenna structure provided by this application.
  • Figure 2 is a schematic three-dimensional structural diagram of the antenna structure provided by this application.
  • FIG. 3 is a schematic diagram of an embodiment of the antenna structure provided by this application.
  • FIG. 4 is a schematic diagram of the feeder of the antenna structure provided by this application.
  • Figure 5 is a standing wave ratio curve diagram of the antenna structure provided by this application.
  • FIGS 6, 7 and 8 are pattern diagrams of the antenna structure provided by this application at different frequencies.
  • the purpose of this application is to provide an antenna structure that can achieve basically the same main lobe width of the pattern in the entire frequency band through the coexistence of two radiation modes, the slot antenna and the dipole antenna, that is, the broadband characteristics of the pattern.
  • the present application provides an antenna structure, including a dielectric substrate 10 , a first radiating plate 11 , a second radiating plate 12 and a feeder 14 .
  • the dielectric substrate 10 includes an opposite first surface and a second surface.
  • the first radiation sheet 11 is disposed on the first surface
  • the second radiation sheet 12 is disposed on the first surface.
  • the first radiation sheet 11 and the second radiation sheet 12 are both metal sheets.
  • the first radiation sheet 11 includes a first part A and a second part B connected to the first part A
  • the second radiation sheet 12 includes a third part C and a fourth part D connected to the third part C.
  • the first radiation sheet 11 There is a gap 13 between the second radiation plate 12 and the second radiation plate 12 .
  • the feeder 14 is disposed on the second surface and includes opposite first and second ends.
  • the first end of the feeder 14 is used to input the excitation signal
  • the second end of the feeder 14 is used to transmit the excitation signal to the first radiation plate 11 and the second radiation plate.
  • 12 Feed in the excitation signal.
  • the first part A, the third part C and the gap 13 form a slot antenna
  • the second part B and the fourth part D form a dipole antenna.
  • the antenna structure in this application coexists the two radiation modes of slot antenna and dipole antenna, so that the antenna structure has two different radiation principles, that is, high frequency is equivalent to slot antenna radiation, and low frequency is equivalent to slot antenna radiation.
  • the dipole antenna radiates to achieve basically the same main lobe width of the pattern in the entire frequency band, that is, the broadband characteristics of the pattern.
  • the antenna structure also includes a reflection plate 20.
  • the dielectric substrate 10 is vertically disposed on the reflection plate 20 and the reflection plate 20 evenly forms a first reflection area 21 and a second reflection area 22.
  • a reflective area 21 is close to the first surface, and a second reflective area 22 is close to the second surface.
  • a feed port 23 is provided on the second reflective area 22, and the first end of the feed line 14 is connected to the feed port 23.
  • the dielectric substrate 10 is an FR4 dielectric board, and the thickness of the dielectric substrate 10 is 1.6 mm. It has low cost, high process precision, and good consistency.
  • the first part A and the third part C are symmetrically arranged with the gap 13 as the axis of symmetry to form a broadband balun structure.
  • the length of the broadband balun structure in this embodiment (h in Figure 3) is also along the axis of symmetry.
  • the size of the direction parallel to the first surface and the gap 13 is 1/4 wavelength of the center frequency point, and the width of the gap 13 may be 1.6 mm, that is, c in Figure 3 is 1.6 mm.
  • the third part C and the fourth part D are arranged symmetrically with the gap 13 as the axis of symmetry. It can be seen that the entire first radiation plate 11 and the second radiation plate 12 are arranged symmetrically with the gap 13 as the axis of symmetry.
  • the arrangement of the broadband balun structure in this embodiment can maintain the power feed balance of the first radiating plate 11 and the second radiating plate 12 on both sides of the gap 13 .
  • the gap 13 expands in a direction away from the first part A and the third part C to form a trumpet-shaped gap; in this embodiment, it is equivalent to the gap 13 in the second part B and the fourth part D close to the gap 13
  • One side is symmetrically beveled to form a horn-shaped notch at one end of the gap 13.
  • the first part A includes an opposite first end and a second end
  • the second part B includes an opposite first end and a second end
  • the second part of the second part B includes an opposite first end and a second end.
  • the two ends are connected to the first end of the first part A; the width of the second end of the second part B is greater than the width of the first end of the first part A, as shown in Figure 3, d is greater than b; the width of the first part A is along the gap 13 gradually increases away from the second part B.
  • the second part B and the fourth part D form a dipole antenna, and the second part B and the fourth part D are equivalent to two antenna arms.
  • the length of the antenna arm may be 22 mm.
  • the structure of the third part C and the structure of the first part A are arranged symmetrically with the gap 13 as the axis of symmetry.
  • the structure of the second part B and the structure of the fourth part D are arranged symmetrically with the gap 13 as the axis of symmetry. Equivalent to the connection between the first part A and the second part B and the connection between the third part C and the fourth part D in this embodiment, there will be a sudden change in width, and the width of the first part A and the third part C The gap 13 gradually increases in the direction away from the second part B and the fourth part D.
  • the edge line of the first part A and the third part C away from the gap 13 is an arc line.
  • the minimum width of the first part A and the third part C is based on the feeder 14 being able to transmit the TEM mode normally.
  • the maximum widths of the first part A and the third part C are set based on the pattern that actually guarantees the antenna structure as the target pattern.
  • the side length of the second part B away from the gap 13 is smaller than the distance between the first end of the second part B and the second end of the second part B, that is, in FIG. 3 f is less than g.
  • the side length of the fourth part D away from the gap 13 is smaller than the length of the first end of the fourth part D and the third part of the fourth part D. The distance between the two ends.
  • the difference from the antenna arm of the existing dipole antenna is that the side of the second part B and the fourth part D in this embodiment away from the gap 13 is beveled, that is, the second part B is beveled.
  • a chamfer-shaped inclination is made on the outside of the fourth part D, so that the resonant current points to the reflection plate 20 at a certain inclination angle.
  • the feeder line 14 includes a first section 141 and a second section 142 , and the dielectric substrate 10 is provided with a via hole 30 .
  • the first section 141 is arranged along the direction parallel to the second surface and the gap 13.
  • One end of the first section 141 is arranged on the edge of the dielectric substrate 10 and is connected to the feed port 23 on the reflective plate 20, and one end of the first section 141 is on
  • the projection of the first surface is located in the first part A, and the projection of the other end of the first section 141 on the first surface is located in the second part B.
  • first section 141 corresponds to the first end of the feeder 14 , the other end of the first section 141 is connected to one end of the second section 142 , and the other end of the second section 142 is connected to the first radiation plate 11 through the via hole 30 .
  • the first section 141 is parallel to the gap 13 , and the projection of the first section 141 on the first surface is located on the first radiation sheet 11 .
  • the second section 142 is perpendicular to the gap 13 and the projection on the first surface spans the gap 13 .
  • the feed line 14 is partially short-circuited to the first radiation plate 11 on the first surface of the dielectric substrate 10 through the via hole 30 to form a strong feed structure.
  • the feeder line includes the first, second and third sections.
  • the first section is arranged along the direction parallel to the second surface and the gap 13.
  • One end of the first section is arranged on the edge of the dielectric substrate 10 and is connected to the feed port 23 on the reflective plate 20, and the first section The projection of one end of the first segment on the first surface is located in the first part A, and the projection of the other end of the first segment on the first surface is located in the second part B.
  • One end of the first section corresponds to the first end of the feeder, one end of the second section is connected to the other end of the first section, the other end of the second section is connected to one end of the third section, and the other end of the third section is connected to the first radiation
  • the plate 11 and the second radiating plate 12 are coupled, and the excitation signal is fed into the first radiating plate 11 and the second radiating plate 12 through coupling feeding; the first section and the third section are both parallel to the gap 13, and the first section
  • the projection of the segment on the first surface is located on the first radiation sheet 11
  • the projection of the third segment on the first surface is located on the second radiation sheet 12
  • the projection of the second segment on the first surface spans the gap 13 .
  • the via hole 30 is not provided on the dielectric substrate 10 .
  • the second section of the feed line is extended to form a third section.
  • One end of the third section is connected to the second section.
  • the other end of the third section is connected, and the other end of the third section extends along the second surface to the position where the reflection plate 20 is located by a suitable length, so as to form a coupling feed structure.
  • the feeder in this embodiment may be a microstrip feeder, and may also be other feed methods in the design, such as coaxial feed, which is not limited in this application.
  • Figure 5 is the standing wave ratio curve of the antenna structure in Figure 2.
  • the standing wave ratio of the antenna structure in the whole frequency band is less than or equal to 2
  • the impedance bandwidth is 4.3GHz-8.47GHz
  • the relative bandwidth reaches 65%
  • the half power width of the pattern within the frequency band near is the impedance bandwidth 4.3GHz-8.47GHz
  • Figures 6, 7 and 8 respectively show the radiation 2D patterns of this application operating at 5.01GHz, 6.5GHz and 7.12GHz based on the antenna structure diagram in Figure 2.
  • the inner curve represents the E surface
  • the outer curve represents the H surface.
  • the H plane and the E plane are two reference planes that are orthogonal to each other.
  • the E plane 3DB beam width ranges from 73° to 86° in the entire frequency band and the gain changes within the normal ⁇ 35° range is less than 3dB.
  • the H-plane 3dB beamwidth is about 180°.
  • the antenna structure provided by this application is composed of a slot antenna and a dipole antenna. It can transition from the dipole antenna working mode to the slot working mode from low frequency to high frequency. It can not only achieve ultra-wide frequency band, but also facilitate Keep the pattern basically consistent across the ultra-wide range.
  • this application provides an antenna structure, which includes a dielectric substrate, including a first surface and a second surface that are opposite to each other; a first radiation piece, which is disposed on the first surface, includes a first part and is connected to the first part. a second part; a second radiation sheet, arranged with the first surface, including a third part and a fourth part connected to the third part; between the second radiation sheet and the first radiation sheet There is a gap; a feeder line is provided on the second surface and includes an opposite first end and a second end. The first end of the feeder line is used to input an excitation signal, and the second end of the feeder line is used to send the excitation signal to the third surface.
  • a radiating plate and the second radiating plate feed the excitation signal; wherein the first part, the third part and the gap form a slot antenna, and the second part and the fourth part form a dipole sub-antenna.
  • the antenna structure of this application is composed of a slot antenna and a dipole antenna. It can transition from the dipole antenna working mode to the slot working mode from low frequency to high frequency. It can not only achieve ultra-wide frequency band, but also be conducive to maintaining The pattern beamwidth is basically the same in the ultra-wide range.

Abstract

本申请公开了一种天线结构,包括介质基板,包括相对的第一表面和第二表面;第一辐射片,设置于第一表面,包括第一部分及与第一部分连接的第二部分;第二辐射片,设置与第一表面,包括第三部分及与第三部分连接的第四部分,第二辐射片与第一辐射片之间具有间隙;馈线,设置于第二表面,包括相对的第一端和第二端,馈线的第一端用于输入激励信号,馈线的第二端用于向第一辐射片、第二辐射片馈入激励信号;其中,第一部分、第三部分和间隙形成槽缝天线,第二部分和第四部分形成偶极子天线。

Description

一种天线结构
本申请要求于2022年05月31日提交中国专利局、申请号为202210611123.3、申请名称为“一种天线结构”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及天线技术领域,特别涉及一种天线结构。
背景技术
目前的信标天线多采用喇叭天线,由于喇叭天线的高低频是同一个辐射口面,相应的辐射方向图波束宽度因共口面导致越往高频越尖锐,波束变窄显著。
技术问题
因此,随着频率的变化,波束宽度变化大,导致天线增益变化大,从而使天线的定向辐射区域的方向图宽带特性差。
技术解决方案
本申请的目的在于提供一种天线结构,通过槽缝天线和偶极子天线两种辐射模式共存的方式能够实现全频段内方向图主瓣宽度基本一致,即方向图的宽带特性。
为了达到上述目的,本申请采取了以下技术方案:
本申请实施例提供一种天线结构,包括:
介质基板,包括相对的第一表面和第二表面;
第一辐射片,设置于第一表面,包括第一部分及与第一部分连接的第二部分;
第二辐射片,设置与第一表面,包括第三部分及与第三部分连接的第四部分,第二辐射片与第一辐射片之间具有间隙;
馈线,设置于第二表面,包括相对的第一端和第二端,馈线的第一端用于输入激励信号,馈线的第二端用于向第一辐射片、第二辐射片馈入激励信号;
其中,第一部分、第三部分与间隙形成槽缝天线,第二部分和第四部分形成偶极子天线。
在一些实施例中的天线结构,第一部分和第三部分以间隙为对称轴对称构成宽带巴伦结构。
在一些实施例中的天线结构,间隙向远离第一部分和第三部分的方向扩展形成喇叭状缺口。
在一些实施例中的天线结构,第一部分包括相对的第一端和第二端,第二部分包括相对的第一端和第二端,第二部分的第二端与第一部分的第一端连接。
在一些实施例中的天线结构,第二部分的第二端的宽度大于第一部分的第一端的宽度。
在一些实施例中的天线结构,第一部分的宽度沿着间隙向远离第二部分的方向逐渐增大。
在一些实施例中的天线结构,第三部分的宽度沿着间隙向远离第四部分的方向逐渐增大。
在一些实施例中的天线结构,第一部分中远离间隙的一侧边沿线为弧形线。
在一些实施例中的天线结构,第三部分中远离间隙的一侧边线为弧形线。
在一些实施例中的天线结构,第二部分中远离间隙的一侧边长小于第二部分的第一端与第二部分的第二端之间的间距。
在一些实施例中的天线结构,第四部分中远离间隙的一侧边长小于第四部分的第一端与第四部分的第二端之间的间距。
在一些实施例中的天线结构,馈线包括第一段和第二段,介质基板上设置有过孔;第一段的一端对应馈线的第一端,第一段的另一端与第二段的一端连接,第二段的另一端与通过过孔与第一辐射片连接。
在一些实施例中的天线结构,第一段与间隙平行,且第一段在第一表面上的投影位于第一辐射片,第二段与间隙垂直且在第一表面的投影横跨间隙。
在一些实施例中的天线结构,馈线通过过孔与第一表面的第一辐射片局部短路连接,形成强馈结构。
在一些实施例中的天线结构,馈线包括第一段、第二段和第三段;第一段的一端对应馈线的第一端,第二段的一端与第一段的另一端连接,第二段的另一端与第三段的一端连接,第三段的另一端与第一辐射片、第二辐射片耦合,以通过耦合馈电的方式向第一辐射片、第二辐射片馈入激励信号。
在一些实施例中的天线结构,第一段和第三段均与间隙平行,且第一段在第一表面的投影位于第一辐射片,第三段在第一表面的投影位于第二辐射片,第二段在第一表面的投影横跨间隙。
在一些实施例中的天线结构,馈线包括微带馈线。
在一些实施例中的天线结构,天线结构还包括反射板,介质基板垂直设置于反射板上并将反射板均分形成第一反射区域和第二反射区域,第一反射区域靠近第一表面,第二反射区域靠近第二表面。
在一些实施例中的天线结构,第二反射区域上设置有一馈电端口,馈线的第一端与馈电端口连接。
在一些实施例中的天线结构,介质基板为FR4介质板。
有益效果
相较于现有技术,本申请提供了一种天线结构,由槽缝天线和偶极子天线共同构成,能够在由低频向高频从偶极子天线工作模式过度到槽缝工作模式,既能实现超宽频带,同时保持方向图在超宽范围内的基本一致,进而实现方向图宽带特性,保证天线波束宽度基本一致。
附图说明
图1为本申请提供的天线结构的示意图。
图2为本申请提供的天线结构的立体结构示意图。
图3为本申请提供的天线结构中一实施例的示意图。
图4为本申请提供的天线结构的馈线的示意图。
图5为本申请提供的天线结构的驻波比曲线图。
图6、图7和图8为本申请提供的天线结构在不同频点方向图。
本发明的实施方式
本申请的目的在于提供一种天线结构,通过槽缝天线和偶极子天线两种辐射模式共存的方式能够实现全频段内方向图主瓣宽度基本一致,即方向图的宽带特性。
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参阅图1,本申请提供一种天线结构,包括介质基板10、第一辐射片11、第二辐射片12和馈线14。其中,介质基板10包括相对的第一表面和第二表面,第一辐射片11设置于第一表面,第二辐射片12设置在第一表面。本实施例中的第一辐射片11和第二辐射片12均为金属片。第一辐射片11包括第一部分A及与第一部分A连接的第二部分B,第二辐射片12则包括第三部分C以及与第三部分C连接的第四部分D,第一辐射片11与第二辐射片12之间具有间隙13。馈线14设置于第二表面,包括相对的第一端和第二端,馈线14的第一端用于输入激励信号,馈线14的第二端用于向第一辐射片11、第二辐射片12馈入激励信号。其中,第一部分A、第三部分C和间隙13形成槽缝天线,第二部分B和第四部分D形成偶极子天线。
本申请中的天线结构通过将槽缝天线和偶极子天线两种辐射模式共存的方式,使得天线结构具有两种不同的辐射原理,即高频等效于槽缝天线辐射,低频等效于偶极子天线辐射,实现全频段内方向图主瓣宽度基本一致,即方向图的宽带特性。
请一并参阅图2,本实施例中天线结构还包括反射板20,介质基板10垂直设置于反射板20上并将反射板20均分形成第一反射区域21和第二反射区域22,第一反射区域21靠近第一表面,第二反射区域22靠近第二表面,第二反射区域22上设置有一馈电端口23,馈线14的第一端与馈电端口23连接。本实施例中介质基板10为FR4介质板,介质基板10的厚度为1.6mm,成本低,工艺精度高,一致性好。
在一些实施例中的第一部分A和第三部分C以间隙13为对称轴对称设置以形宽带巴伦结构,本实施例中的宽带巴伦结构的长度(图3中的h)也即沿着第一表面与间隙13平行的方向的尺寸为中心频点的1/4波长,其中间隙13的宽度可以是1.6mm,也即图3中的c为1.6mm。第三部分C和第四部分D以间隙13为对称轴对称设置,可以看成整个第一辐射片11和第二辐射片12以间隙13为对称轴对称设置。本实施例中宽带巴伦结构的设置能够保持间隙13两侧的第一辐射片11和第二辐射片12馈电平衡。
在一些实施例中的间隙13向远离所述第一部分A和所述第三部分C的方向扩展形成喇叭状缺口;本实施例中相当于第二部分B和第四部分D中靠近间隙13的一侧进行了对称斜切在间隙13的一端形成一喇叭状缺口,通过设置喇叭状缺口确保天线结构工作在本频带内的较高频段时,其天线辐射是一种槽缝天线工作模式而不是偶极子天线工作模式,由此确保天线结构从低频到高频这种宽带条件下的方向图基本不变,使得天线结构在高频段工作时的方向图不会发生分裂,进而确保天线波束宽度基本一致。
进一步地,请一并参阅图3,在一些实施例中第一部分A包括相对的第一端和第二端,第二部分B包括相对的第一端和第二端,第二部分B的第二端与第一部分A的第一端连接;第二部分B的第二端的宽度大于第一部分A的第一端的宽度,如图3所示的d大于b;第一部分A的宽度沿着间隙13向远离第二部分B的方向逐渐增大。其中第二部分B和第四部分D形成偶极子天线,第二部分B和第四部分D相当于两个天线臂,本实施例中天线臂的长度也即d的值可以是22mm。而第三部分C的结构与第一部分A的结构以间隙13为对称轴对称设置,同样,第二部分B的结构与第四部分D的结构以间隙13为对称轴对称设置。相当于本实施例中的第一部分A和第二部分B的连接处以及第三部分C与第四部分D的连接处在宽度上会有一个突变,而第一部分A和第三部分C的宽度沿着间隙13向远离第二部分B和第四部分D的方向逐渐增大,本实施例中的第一部分A和第三部分C中远离间隙13的一侧边沿线为弧形线。其中,第一部分A和第三部分C的最小宽度的宽度值以馈线14能够正常传输TEM模为依据。而第一部分A和第三部分C的最大宽度则以实际保证天线结构的方向图为目标方向图为依据进行设置。
进一步地,在一些实施例中,第二部分B中远离间隙13的一侧边长小于第二部分B的第一端与第二部分B的第二端之间的间距,也即图3中的f小于g。同样,因第二部分B和第四部分D以间隙13为对称轴对称设置,第四部分D中远离间隙13的一侧边长小于第四部分D的第一端与第四部分D的第二端之间的间距。相当于与现有的偶极子天线的天线臂不同之处在于,本实施例中的第二部分B和第四部分D中远离间隙13的一侧进行了斜切,也即将第二部分B和第四部分D外侧做了倒角状的倾斜,使得谐振电流呈一定倾角指向反射板20。
进一步地,请一并参阅图4,馈线14包括第一段141和第二段142,介质基板10上设置有过孔30。第一段141沿着第二表面与间隙13平行的方向设置,第一段141的一端设置于介质基板10的边沿与反射板20上的馈电端口23连接,且第一段141的一端在第一表面的投影位于第一部分A,第一段141的另一端在第一表面的投影位于第二部分B。第一段141的一端对应馈线14的第一端,第一段141的另一端与第二段142的一端连接,第二段142的另一端与通过过孔30与第一辐射片11连接。第一段141与间隙13平行,且第一段141在第一表面上的投影位于第一辐射片11,第二段142与间隙13垂直且在第一表面的投影横跨间隙13。本实施例中的馈线14通过过孔30与介质基板10第一表面的第一辐射片11局部短路连接,形成强馈结构。
当然在一些实施例中也可以不设置过孔30。馈线包括第一段、第二段和第三段。同样,本实施例中第一段沿着第二表面与间隙13平行的方向设置,第一段的一端设置于介质基板10的边沿与反射板20上的馈电端口23连接,且第一段的一端在第一表面的投影位于第一部分A,第一段的另一端在第一表面的投影位于第二部分B。第一段的一端对应馈线的第一端,第二段的一端与第一段的另一端连接,第二段的另一端与第三段的一端连接,第三段的另一端与第一辐射片11、第二辐射片12耦合,以通过耦合馈电的方式向第一辐射片11、第二辐射片12馈入激励信号;第一段和第三段均与间隙13平行,且第一段在第一表面的投影位于第一辐射片11,第三段在第一表面的投影位于第二辐射片12,第二段在第一表面的投影横跨间隙13。也即本实施例中不在介质基板10设置过孔30,相对于设置过孔30的馈电方式而言,将馈线的第二段进行延长形成第三段,第三段的一端与第二段的另一端连接,第三段的另一端沿着第二表面向反射板20所在的位置延伸合适长度,以便于形成耦合馈电结构。
需要说明的是,本实施例中的馈线可以是微带馈线,在设计中也可以是其它馈电方式,比如同轴馈电等方式,对此本申请对此不作限定。
图5为图2中的天线结构驻波比曲线图,天线结构的驻波比全频段小于等于2的阻抗带宽4.3GHz-8.47GHz,相对带宽达65%,且在频带内方向图半功率宽度接近。
图6、图7和图8分别为本申请根据图2中的天线结构图工作在5.01GHz、6.5GHz和7.12GHz下的辐射2D方向图。其中内侧曲线代表E面,外侧曲线代表H面。H面和E面是两个彼此正交的两个参考面,E面3DB波束宽度在整个频带内从73°~86°,法向±35°范围内增益变化小于3dB。H面3dB波束宽度约180°。
本申请提供的天线结构由槽缝天线和偶极子天线共同构成,能够在由低频向高频下从偶极子天线工作模式过度到槽缝工作模式,既能实现超宽频带,又有利于保持方向图在超宽范围内的基本一致。
综上,本申请提供的一种天线结构,包括介质基板,包括相对的第一表面和第二表面;第一辐射片,设置于所述第一表面,包括第一部分及与所述第一部分连接的第二部分;第二辐射片,设置与所述第一表面,包括第三部分及与所述第三部分连接的第四部分,所述第二辐射片与所述第一辐射片之间具有间隙;馈线,设置于所述第二表面,包括相对的第一端和第二端,所述馈线的第一端用于输入激励信号,所述馈线的第二端用于向所述第一辐射片、所述第二辐射片馈入所述激励信号;其中,所述第一部分、所述第三部分和间隙形成槽缝天线,所述第二部分和所述第四部分形成偶极子天线。本申请的天线结构由槽缝天线和偶极子天线共同构成,能够在由低频向高频下从偶极子天线工作模式过度到槽缝工作模式,既能实现超宽频带,又有利于保持方向图波束宽度在超宽范围内的基本一致。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其申请构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种天线结构,其中,包括:
    介质基板,包括相对的第一表面和第二表面;
    第一辐射片,设置于所述第一表面,包括第一部分及与所述第一部分连接的第二部分;
    第二辐射片,设置与所述第一表面,包括第三部分及与所述第三部分连接的第四部分,所述第二辐射片与所述第一辐射片之间具有间隙;
    馈线,设置于所述第二表面,包括相对的第一端和第二端,所述馈线的第一端用于输入激励信号,所述馈线的第二端用于向所述第一辐射片、所述第二辐射片馈入所述激励信号;
    其中,所述第一部分、所述第三部分与所述间隙形成槽缝天线,所述第二部分和所述第四部分形成偶极子天线。
  2. 根据权利要求1所述的天线结构,其中,所述第一部分和所述第三部分以所述间隙为对称轴对称构成宽带巴伦结构。
  3. 根据权利要求2所述的天线结构,其中,所述间隙向远离所述第一部分和所述第三部分的方向扩展形成喇叭状缺口。
  4. 根据权利要求2所述的天线结构,其中,所述第一部分包括相对的第一端和第二端,所述第二部分包括相对的第一端和第二端,所述第二部分的第二端与所述第一部分的第一端连接。
  5. 根据权利要求4所述的天线结构,其中,所述第二部分的第二端的宽度大于所述第一部分的第一端的宽度。
  6. 根据权利要求4所述的天线结构,其中,所述第一部分的宽度沿着所述间隙向远离所述第二部分的方向逐渐增大。
  7. 根据权利要求4所述的天线结构,其中,所述第三部分的宽度沿着所述间隙向远离所述第四部分的方向逐渐增大。
  8. 根据权利要求6所述的天线结构,其中,所述第一部分中远离所述间隙的一侧边沿线为弧形线。
  9. 根据权利要求8所述的天线结构,其中,所述第三部分中远离所述间隙的一侧边线为弧形线。
  10. 根据权利要求1-9任一项所述的天线结构,其中,所述第二部分中远离所述间隙的一侧边长小于所述第二部分的第一端与所述第二部分的第二端之间的间距。
  11. 根据权利要求10所述的天线结构,其中,所述第四部分中远离所述间隙的一侧边长小于所述第四部分的第一端与所述第四部分的第二端之间的间距。
  12. 根据权利要求1所述的天线结构,其中,所述馈线包括第一段和第二段,所述介质基板上设置有过孔;所述第一段的一端对应所述馈线的第一端,所述第一段的另一端与所述第二段的一端连接,所述第二段的另一端与通过所述过孔与所述第一辐射片连接。
  13. 根据权利要求12所述的天线结构,其中,所述第一段与所述间隙平行,且所述第一段在所述第一表面上的投影位于所述第一辐射片,所述第二段与所述间隙垂直且在所述第一表面的投影横跨所述间隙。
  14. 根据权利要求13所述的天线结构,其中,所述馈线通过所述过孔与所述第一表面的所述第一辐射片局部短路连接,形成强馈结构。
  15. 根据权利要求1所述的天线结构,其中,所述馈线包括第一段、第二段和第三段;所述第一段的一端对应所述馈线的第一端,所述第二段的一端与所述第一段的另一端连接,所述第二段的另一端与所述第三段的一端连接,所述第三段的另一端与所述第一辐射片、所述第二辐射片耦合,以通过耦合馈电的方式向所述第一辐射片、所述第二辐射片馈入所述激励信号。
  16. 根据权利要求15所述的天线结构,其中,所述第一段和所述第三段均与所述间隙平行,且所述第一段在所述第一表面的投影位于所述第一辐射片,所述第三段在所述第一表面的投影位于所述第二辐射片,所述第二段在所述第一表面的投影横跨所述间隙。
  17. 根据权利要求16所述的天线结构,其中,所述馈线包括微带馈线。
  18. 根据权利要求12或15所述的天线结构,其中,所述天线结构还包括反射板,所述介质基板垂直设置于所述反射板上并将所述反射板均分形成第一反射区域和第二反射区域,所述第一反射区域靠近所述第一表面,所述第二反射区域靠近所述第二表面。
  19. 根据权利要求17所述的天线结构,其中,所述第二反射区域上设置有一馈电端口,所述馈线的第一端与所述馈电端口连接。
  20. 根据权利要求19所述的天线结构,其中,所述介质基板为FR4介质板。
PCT/CN2023/078414 2022-05-31 2023-02-27 一种天线结构 WO2023231476A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210611123.3 2022-05-31
CN202210611123.3A CN114883796A (zh) 2022-05-31 2022-05-31 一种天线结构

Publications (1)

Publication Number Publication Date
WO2023231476A1 true WO2023231476A1 (zh) 2023-12-07

Family

ID=82679505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078414 WO2023231476A1 (zh) 2022-05-31 2023-02-27 一种天线结构

Country Status (2)

Country Link
CN (1) CN114883796A (zh)
WO (1) WO2023231476A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114883796A (zh) * 2022-05-31 2022-08-09 深圳Tcl数字技术有限公司 一种天线结构

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070257851A1 (en) * 2005-01-19 2007-11-08 Samsung Electronics Co., Ltd. Small ultra wideband antenna having unidirectional radiation pattern
CN102800956A (zh) * 2012-08-18 2012-11-28 哈尔滨工业大学(威海) 集成式巴伦馈电的宽带双极化天线
CN105870616A (zh) * 2016-04-21 2016-08-17 南京邮电大学 一种新型宽带多模组合天线
CN109935971A (zh) * 2019-03-21 2019-06-25 电子科技大学 一种紧凑型超宽带缝隙天线
CN113540782A (zh) * 2021-07-20 2021-10-22 西安电子科技大学 一种基于结构复用的大频率比双频天线
CN114447629A (zh) * 2020-10-30 2022-05-06 华为技术有限公司 天线、天线模组和电子设备
CN114883796A (zh) * 2022-05-31 2022-08-09 深圳Tcl数字技术有限公司 一种天线结构

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070257851A1 (en) * 2005-01-19 2007-11-08 Samsung Electronics Co., Ltd. Small ultra wideband antenna having unidirectional radiation pattern
CN102800956A (zh) * 2012-08-18 2012-11-28 哈尔滨工业大学(威海) 集成式巴伦馈电的宽带双极化天线
CN105870616A (zh) * 2016-04-21 2016-08-17 南京邮电大学 一种新型宽带多模组合天线
CN109935971A (zh) * 2019-03-21 2019-06-25 电子科技大学 一种紧凑型超宽带缝隙天线
CN114447629A (zh) * 2020-10-30 2022-05-06 华为技术有限公司 天线、天线模组和电子设备
CN113540782A (zh) * 2021-07-20 2021-10-22 西安电子科技大学 一种基于结构复用的大频率比双频天线
CN114883796A (zh) * 2022-05-31 2022-08-09 深圳Tcl数字技术有限公司 一种天线结构

Also Published As

Publication number Publication date
CN114883796A (zh) 2022-08-09

Similar Documents

Publication Publication Date Title
US7978149B2 (en) Dielectric resonator antenna with bending metallic planes
JP3990735B2 (ja) アンテナ素子
CN105490016B (zh) 基于谐振式反射器的宽带定向天线
CN106129593B (zh) 一种二维宽角度扫描的全金属相控阵雷达天线单元
CN102800956A (zh) 集成式巴伦馈电的宽带双极化天线
CN109728431A (zh) 一种带宽提高的四单元微带阵列天线
CN104103906A (zh) 一种多层pcb工艺的低成本微波毫米波圆极化天线
CN109524782B (zh) 一种双极化圆锥喇叭天线
CN109768380B (zh) 基于三模谐振的超低剖面贴片天线、无线通信系统
CN111755809A (zh) 小型化的双极化宽频带法布里-珀罗谐振腔天线
US20210135347A1 (en) Communication antenna and radiation unit thereof
WO2023231476A1 (zh) 一种天线结构
JPWO2008018230A1 (ja) アンテナ装置
CN106207430B (zh) 一种新型ltcc宽频带圆极化微带贴片阵列天线
WO2018133428A1 (zh) 宽带双极化孔径耦合馈电天线
JP2010050700A (ja) アンテナ装置およびそれを備えたアレーアンテナ装置
CN107359410B (zh) 采用额外介质层加载技术与混合型波纹边缘的新型平衡Vivaldi天线
WO2019090927A1 (zh) 天线单元及天线阵列
CN112054305B (zh) 一种基于复合左右手结构增益高度稳定的周期性漏波天线
CN113794045A (zh) 一种加载引向器的Vivaldi天线
EP0174068B1 (en) Improvements in or relating to microstrip antennas
JP2000196344A (ja) アンテナ装置
WO2023221594A1 (zh) 一种微带阵列天线
WO2021192560A1 (ja) 平面アンテナおよびそれを備える高周波モジュール
CN112366455B (zh) 一种非对称双脊喇叭天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814675

Country of ref document: EP

Kind code of ref document: A1