WO2023231421A1 - 一种用于制氢系统的洗涤分离装置和制氢系统 - Google Patents

一种用于制氢系统的洗涤分离装置和制氢系统 Download PDF

Info

Publication number
WO2023231421A1
WO2023231421A1 PCT/CN2023/072551 CN2023072551W WO2023231421A1 WO 2023231421 A1 WO2023231421 A1 WO 2023231421A1 CN 2023072551 W CN2023072551 W CN 2023072551W WO 2023231421 A1 WO2023231421 A1 WO 2023231421A1
Authority
WO
WIPO (PCT)
Prior art keywords
washing
heat exchange
gas
liquid
production system
Prior art date
Application number
PCT/CN2023/072551
Other languages
English (en)
French (fr)
Inventor
陆淼
Original Assignee
无锡隆基氢能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 无锡隆基氢能科技有限公司 filed Critical 无锡隆基氢能科技有限公司
Publication of WO2023231421A1 publication Critical patent/WO2023231421A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • C25B15/08Supplying or removing reactants or electrolytes; Regeneration of electrolytes
    • C25B15/083Separating products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to the technical field of hydrogen or oxygen production, and in particular to a washing and separation device and a hydrogen production system for a hydrogen production system.
  • the hydrogen or oxygen obtained by electrolysis of an alkaline aqueous solution contains a certain amount of alkali liquid, resulting in a waste of electrolyte, and it is necessary to replenish alkali into the alkaline aqueous solution.
  • the alkali liquid in the hydrogen or oxygen needs to be removed.
  • a hydrogen or oxygen scrubber came into being.
  • An existing hydrogen-oxygen scrubber used for water electrolysis to produce hydrogen is installed between a hydrogen or oxygen separator and a gas cooler. After being fully washed, the hydrogen or oxygen enters the gas cooler along the air outlet pipe, and then enters the gas-water separator. The washing liquid in the hydrogen-oxygen scrubber enters the hydrogen or oxygen separator along the overflow port for alkali replenishment.
  • the object of the present invention is to provide a washing separation device and a hydrogen production system for a hydrogen production system, It reduces the complexity and large-scale of the equipment, reduces the use site and equipment investment, and improves the economy of the gas washing and separation device.
  • the present invention provides a washing and separation device for a hydrogen production system, including a housing, a washing component and a heat exchange component.
  • the casing has a first air inlet, a first air outlet and a liquid outlet.
  • the first air inlet is used to introduce gas to be washed into the casing.
  • the first air outlet is provided above the casing and is used to discharge the washed gas. gas after.
  • the washing component includes a breather pipe, one end of the breather pipe is connected to the first air inlet, and the other end extends below the liquid level of the washing liquid in the housing.
  • the heat exchange component is arranged in the shell, located above the washing component, and is used to cool the washed gas.
  • the heat exchange component has a plurality of heat exchange pipes for circulating the cooling medium. The outer walls of the plurality of heat exchange pipes are formed between A circulation space for circulating the washed gas.
  • the washing and separation device used in the hydrogen production system includes a housing, a washing component and a heat exchange component.
  • the housing is filled with washing liquid, and the housing has a first air inlet, a first air outlet and a liquid outlet.
  • the washing component includes a breather pipe, one end of the breather pipe is connected to the first air inlet, and the other end extends below the liquid level of the washing liquid in the housing.
  • the vent pipe is used to pass the gas to be washed into the washing liquid, so that the gas can be washed by the washing liquid, and the liquid outlet is used to release the washing liquid in the housing.
  • the heat exchange component is arranged in the casing, located above the washing component, and is used to cool the washed gas.
  • the gas introduced from the first air inlet is washed and cooled sequentially in the casing and discharged from the third part of the casing. Exhaust through an air outlet.
  • the washing and separation device for the hydrogen production system provided by the present invention completes the washing and cooling processes of the gas in the casing, that is, the washing and cooling processes of the gas are integrated into one, thereby reducing the complexity and large-scale of the equipment. , reduce the investment in site and equipment, and save costs.
  • the heat exchange assembly provided by the present invention has a plurality of heat exchange pipes for circulating cooling medium, and a circulation space for circulating the washed gas is formed between the outer walls of the multiple heat exchange pipes, so that the gas is close to or close to the The outer wall of the heat exchange pipe flows.
  • the arrangement of the present invention has a larger gas circulation space and a longer and more tortuous flow path, which is more conducive to the heat exchange assembly.
  • the heat exchange component also includes an inlet header and an outlet header.
  • the inlet header is used to introduce and distribute the cooling medium
  • the outlet header is used to collect and output the cooling medium.
  • Multiple heat exchange pipes are connected to form multiple cooling medium flow channels. One end of the cooling medium flow channels is connected to the inlet header. The other end is connected to the outlet header.
  • the inlet header is used to introduce and divert the cooling medium
  • the outlet header is used to collect and output the cooling medium.
  • Multiple heat exchange pipes are connected to form multiple cooling medium flow channels. One end of the cooling medium flow channel is connected to The inlet header is connected, and the other end is connected to the outlet header, so that the cooling medium diverted by the inlet header passes through multiple cooling medium flow channels, and then is collected and flowed out through the outlet header.
  • the arrangement of multiple heat exchange pipes makes reasonable use of the space in the shell and enhances the cooling effect of the heat exchange components on the circulating gas. Not only that, multiple heat exchange pipes are connected to form multiple cooling medium flow channels.
  • the flow path of the cooling medium in the shell is shortened, allowing the cooling medium to be collected close to the outlet.
  • the temperature difference between the heat exchange pipes of the box and the heat exchange pipes close to the inlet header is small, which not only strengthens the cooling effect of the gas, but also facilitates the uniformity of the cooling effect of the heat exchange components on the gas.
  • the heat exchange component further includes fins arranged outside the heat exchange pipe along the length direction of the heat exchange pipe.
  • the fins are continuous spiral fins, or the fins are spirally arranged discrete fins. .
  • the arrangement of the fins not only increases the contact area between the gas and the heat exchange component, that is, increases the heat exchange area, strengthens heat transfer, and allows the gas to be fully cooled; moreover, the fins can be segmented and
  • the mixed gas flow changes the flow direction of the gas, reduces the flow speed of the gas, prolongs the contact time between the gas and the heat exchange component, and achieves sufficient cooling of the gas by the heat exchange component.
  • the thickness of the fins is 0.5mm-6mm, the spacing between the fins is 2.5mm-30mm, and the height of the fins is 8mm-30mm.
  • the axis of the heat exchange pipe is parallel to the axis of the shell, and the plurality of heat exchange pipes are arranged in a row or in a cross row.
  • the axis of the heat exchange pipe is parallel to the axis of the shell, and multiple heat exchange pipes are arranged in a row or in a cross row, which is beneficial to the uniformity of the gas cooling effect of the heat exchange assembly.
  • the scrubber separation device used in the hydrogen production system further includes a gas-water separation component, which is disposed in the housing and located between the heat exchange component and the first gas outlet.
  • the gas-water separation component is used to remove water mist from the cooled gas, further purify the gas, reduce the water mist in the gas, and reduce the load of subsequent purification equipment.
  • the washing separation device for the hydrogen production system further includes a first baffle fixed on the inner wall of the housing and located at one end of the heat exchange component close to the washing liquid.
  • a first through hole connected to the circulation space of the heat exchange component is provided on the board.
  • a first through hole connected to the circulation space of the heat exchange component is opened on the first baffle.
  • the first through hole not only provides an installation space for the heat exchange component, but also forces the gas to pass through the first through hole. , and then make the gas flow close to or close to the outer wall of the heat exchange pipe, thereby increasing the heat transfer coefficient and allowing the gas to be fully cooled.
  • the washing separation device for the hydrogen production system further includes a second baffle fixed on the inner wall of the housing and located on the side of the first baffle away from the washing liquid, and the first baffle is connected to the inner wall of the housing.
  • the second baffle is provided with a third through hole connected to the circulation space of the heat exchange component.
  • a fourth through hole is provided between the second baffle and the inner wall of the housing. The second through hole and the fourth through hole are located in the first The projection on the bezel is misaligned.
  • a third through hole connected to the circulation space of the heat exchange component is opened on the second baffle, and the third through hole provides an avoidance space for the installation of the heat exchange component.
  • the projection misalignment is set so that the gas passes through the first through hole or the second through hole and then passes through the third through hole or the fourth through hole, forcing the flow direction of the gas to change, causing the gas to sweep across the heat exchange component, extending the
  • the flow path of the gas in the heat exchange component increases the heat exchange time between the gas and the heat exchange component, which is conducive to sufficient cooling of the gas.
  • the complicated flow direction of the gas causes the gas to be mixed, which is beneficial to the uniformity of the temperature of the gas cooled by the heat exchange component.
  • the washing separation device for the hydrogen production system further includes a third baffle, which is fixed on the inner wall of the housing and located at an end of the heat exchange component away from the washing liquid.
  • the third baffle is provided with a fifth through hole connected to the circulation space of the heat exchange assembly.
  • a sixth through hole is provided between the third baffle and the inner wall of the housing. The sixth through hole and the fourth through hole are located in the second baffle. Projection misalignment settings on the board.
  • the third baffle is provided with a fifth through hole connected to the circulation space of the heat exchange component, and the fifth through hole provides an avoidance space for the installation of the heat exchange component.
  • the heat exchange time is conducive to sufficient cooling of the gas.
  • the flow direction of the gas is complicated, which increases the mixing of the gas and is conducive to the uniformity of the temperature of the gas cooled by the heat exchange component.
  • the washing separation device for the hydrogen production system further includes two phases For the first enclosure plate provided, the first enclosure plate is arranged outside the heat exchange pipe, and the second through hole, the fourth through hole and the sixth through hole are located between the two first enclosure plates.
  • the gas is caused to flow between the two first hoardings.
  • the first hoarding is arranged outside the heat exchange pipe, forcing the gas to flow close to or close to the outer wall of the heat exchange pipe and preventing the gas from flowing along the inside of the shell.
  • the wall flows upward without passing through the circulation space between the heat exchange pipes, which increases the heat transfer coefficient and allows the gas to be fully cooled.
  • the washing and separation device used in the hydrogen production system further includes two second coaming plates arranged opposite each other, and the heat exchange pipe is located in an enclosed space formed by the first cooping plate and the second cooping plate. Inside, a circulation space is formed between the first enclosure plate, the second enclosure plate and the first baffle plate.
  • the gas is forced to flow close to or close to the outer wall of the heat exchange pipe, thereby increasing the heat transfer coefficient and allowing the gas to be fully cooled.
  • a first liquid inlet is provided on the housing, and washing liquid is injected into the housing through the first liquid inlet.
  • the washing separation device for the hydrogen production system also includes a liquid level gauge.
  • the liquid level gauge is arranged on the side wall of the housing. The liquid level gauge is used to detect the level of the washing liquid in the housing. , and output liquid level high and low signals.
  • the washing separation device used in the hydrogen production system further includes a controller, the liquid level gauge is connected to the controller, and the controller is used to control the injection or release of washing liquid into the housing according to the liquid level signal.
  • the liquid level gauge is used to detect the liquid level of the washing liquid in the housing and output a liquid level signal.
  • the liquid level gauge is connected to the controller.
  • the controller is used to control the injection or release of washing liquid into the housing according to the liquid level signal, so as to facilitate real-time monitoring of the amount of washing liquid in the housing and avoid the occurrence of too little washing liquid and the contact time between gas and washing liquid.
  • Too short, insufficient washing, and too high washing liquid level leads to insufficient alkali liquid replenished to the electrolytic tank.
  • the excessively high washing liquid level and the too close distance between the heat exchange components affect the cooling effect of the heat exchange components on the gas. .
  • the washing separation device used in the hydrogen production system also includes a pH value detector, which is arranged on the housing and used to detect the pH value of the washing liquid and output a pH value signal.
  • the pH value detector is connected to the controller, and the controller is used to control the injection or release of washing liquid according to the pH value.
  • the pH value detector is used to detect the pH value of the washing liquid and output a pH value signal.
  • the pH value detector is connected to the controller to facilitate real-time monitoring of the washing liquid in the housing. pH value.
  • the controller controls the release of the washing liquid to avoid insufficient cleaning effect of the washing liquid on the gas.
  • the vent pipe is provided with a vent hole, and the vent hole is located in the washing liquid.
  • the ventilation pipe is provided with a ventilation hole located in the washing liquid, so that the gas introduced from the ventilation pipe flows into the washing liquid, ensuring that the gas is in contact with the washing liquid, and realizing the washing effect of the gas.
  • the gas flows into the washing liquid from the vent hole to avoid the occurrence of large bubbles, so that the gas in the bubbles cannot be washed, which improves the washing effect of the gas and reduces the disturbance to the liquid level, making the detection of the liquid level gauge more acurrate.
  • the length ratio of the washing component and the heat exchange component is (2-3):2.
  • the length ratio of the washing component, the heat exchange component and the gas-water separation component is (2-3):2:(0.8-1).
  • the air-water separation component includes a wire mesh demister.
  • the wire mesh demister is made of metal woven into a mesh and rolled into a disk shape, which can further remove the water mist entrained in the gas, purify the gas at the same time, and reduce impurities in the gas.
  • the shape of the housing is cylindrical.
  • the washing liquid is pure water or an alkali aqueous solution.
  • the present invention also provides a hydrogen production system, including a gas-liquid separation framework and electrolysis equipment.
  • the gas-liquid separation framework includes the hydrogen production system described in the first aspect or any possible implementation of the first aspect. Washing and separation device of hydrogen system.
  • the electrolysis equipment is connected to the washing and separation device, and is used to pass the gas produced by electrolysis into the washing and separation device.
  • the electrolysis equipment produces gas by electrolyzing the electrolyte, and passes the produced gas into the washing and separation device, and the washing and separation device fully and effectively removes the electrolyte mist in the gas.
  • the gas-liquid separation framework further includes: a gas-liquid separator, which is connected to the electrolysis equipment.
  • the gas-liquid separator has a second liquid inlet and a second air outlet.
  • the second liquid inlet is connected with the liquid outlet and is used to receive the washing liquid released from the liquid outlet.
  • the first air inlet is connected with the second air outlet and is used for receiving the gas to be cleaned.
  • the gas-liquid separator has a second liquid inlet and a second air outlet.
  • the second liquid inlet is connected with the liquid outlet and is used to receive the washing liquid released from the liquid outlet, which not only avoids the waste of washing liquid. , and by realizing the recycling of the washing liquid, the electrolyte to be taken away by the washing gas can be replenished. Charge.
  • the hydrogen production system further includes a purification device for drying the gas, and the first gas outlet of the washing and separation device is connected to the second gas inlet of the purification device.
  • the electrolysis equipment is an alkaline water electrolyzer.
  • Figure 1 is a schematic structural diagram of a hydrogen production system provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a washing and separation device for a hydrogen production system provided by an embodiment of the present invention
  • Figure 3 is a schematic cross-sectional view of a heat exchange assembly provided by an embodiment of the present invention.
  • Figure 4 is a schematic diagram of multiple heat exchange pipes arranged in a row according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram of multiple heat exchange pipes arranged in a cross row according to an embodiment of the present invention.
  • Figure 6 is a schematic axial cross-sectional view of a ventilator provided by an embodiment of the present invention.
  • Fig. 7 is a schematic radial cross-sectional view of the ventilation tube provided by the embodiment of the present invention.
  • 200 gas-liquid separator
  • 210 second liquid inlet
  • 220 second gas outlet
  • 300 purification equipment
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • plurality means two or more than two, unless otherwise explicitly and specifically limited.
  • Several means one or more than one, unless otherwise expressly and specifically limited.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection or a detachable connection.
  • Connection, or integral connection can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interaction between two elements.
  • connection or integral connection
  • connection, or integral connection can be a mechanical connection or an electrical connection
  • it can be a direct connection or an indirect connection through an intermediate medium
  • it can be an internal connection between two elements or an interaction between two elements.
  • the washing and separation device for a hydrogen production system includes a housing 1, a washing component and a heat exchange component. 2.
  • the housing 1 is filled with washing liquid.
  • the housing 1 has a first air inlet 11, a first air outlet 12 and a liquid outlet 14.
  • the first air inlet 11 is used to pass the material to be washed into the washing liquid.
  • gas, the first gas outlet 12 is provided above the casing, and the first gas outlet 12 is used to discharge the cleaned gas.
  • the washing assembly includes a vent pipe 9 .
  • the washing and separation device for the hydrogen production system provided by the embodiment of the present invention also includes a gas-water separation component 3.
  • the gas-water separation component 3 is provided in the housing 1 and is located between the heat exchange component 2 and the first gas outlet 12. The gas-water separation component 3 is used to remove water mist from cooled hydrogen or oxygen.
  • the separation device includes a housing 1, a washing component and a heat exchange component 2.
  • the housing 1 contains washing liquid.
  • the housing 1 has a first air inlet 11 and a first air outlet 12.
  • the first air inlet 11 is used to The gas to be washed is introduced into the washing liquid so that the gas is washed by the washing liquid.
  • the first air outlet is provided above the casing for discharging the washed gas.
  • the washing and separation device used in the hydrogen production system also includes a heat exchange component 2 and a gas-water separation component 3 arranged in the housing 1.
  • the heat exchange component 2 is used to cool the washed gas, and the heat exchange component 2 is located above the washing component.
  • the washing assembly includes a vent pipe 9 .
  • One end of the vent pipe 9 is connected to the first air inlet 11 , and the other end extends below the liquid level of the washing liquid in the housing 1 .
  • the vent pipe 9 is used to pass the gas to be washed into the washing liquid, so that the gas can be washed by the washing liquid, and the liquid outlet is used to release the washing liquid in the housing.
  • the gas-water separation component 3 is used to remove water mist from the cooled hydrogen or oxygen, so that the hydrogen or oxygen introduced from the first air inlet 11 is washed, cooled, and separated from gas and water in sequence in the housing 1 , discharged from the first air outlet 12 of the housing 1, reducing the load of the subsequent purification equipment 300.
  • the washing, cooling and gas-water separation processes of hydrogen or oxygen are all completed in the casing 1, that is, the gas washing, cooling and gas-water separation processes are Integrated into one, reducing the complexity and large-scale equipment, reducing the use of space and equipment investment, and saving costs.
  • the specific materials of the shell 1, the heat exchange component 2 and the gas-water separation component 3 are not specifically limited here, and are set according to the actual situation to have acid resistance or alkali resistance.
  • the diameter ⁇ D of the housing 1 is not specifically limited here.
  • the heat exchange assembly 2 provided by the embodiment of the present invention has a plurality of heat exchange pipes 21 for circulating cooling medium, and a circulation space is formed between the outer walls of the plurality of heat exchange pipes 21 for circulating the washed gas, so that the gas The flow is close to or close to the outer wall of the heat exchange pipe 21.
  • the arrangement of the present invention has a larger gas circulation space and a longer and more tortuous flow path.
  • the electrolysis equipment electrolyzes water to produce hydrogen or oxygen and outputs it through the second outlet of the gas-liquid separator.
  • the electrolytic tank of the electrolysis equipment is filled with electrolyte. Direct current is passed into the electrolytic tank, and water molecules undergo electrochemical reactions on the electrodes and decompose into hydrogen and oxygen.
  • acidic or alkaline electrolytes such as sulfuric acid, sodium hydroxide or potassium hydroxide, are generally added to the aqueous solution.
  • the acidic or alkaline water mist adheres to the produced hydrogen or oxygen, and the acidic or alkaline water mist in the hydrogen or oxygen needs to be removed.
  • the produced hydrogen or oxygen contains alkaline water mist.
  • the washing liquid can be neutral water or, of course, a weak alkaline solution. That is to say, it is necessary to ensure that the pH value of the washing liquid is less than the pH value of the alkaline electrolyte and greater than or equal to 7 in order to achieve the washing effect of hydrogen or oxygen.
  • the produced hydrogen or oxygen contains acidic water mist.
  • the washing liquid can be neutral water or, of course, a weakly acidic solution. That is to say, it is necessary to ensure that the pH value of the washing liquid is greater than the pH value of the acidic electrolyte and less than or equal to 7.
  • hydrogen or oxygen is produced using an alkaline electrolyte.
  • the corresponding washing liquid is a pure aqueous solution or an alkali aqueous solution.
  • the washing and separation device for the hydrogen production system provided by the embodiment of the present invention is used to clean water containing alkaline water. Taking the mist of hydrogen or oxygen as an example, a detailed explanation will be given.
  • the shape of the housing 1 provided by the embodiment of the present invention is cylindrical, and the axis of the housing 1 can be set in a vertical direction.
  • the washing liquid is located at the bottom of the housing 1, and is arranged in sequence from bottom to top in the housing 1.
  • the heat exchange component 2 cools the flowing hydrogen or oxygen, causing the alkaline water mist in the hydrogen or oxygen to condense and form water droplets, thereby further removing the hydrogen or oxygen. Some alkaline water mist. Water droplets fall into the washing liquid under the action of gravity. Hydrogen or oxygen continues to flow in the direction of the first gas outlet 12.
  • the gas-water separation component 3 removes the water mist in the cooled hydrogen or oxygen, and finally allows the hydrogen or oxygen with low water content to pass through the second gas-water separation component 3.
  • An air outlet 12 discharges.
  • the heat exchange assembly 2 also includes an inlet header 22 and an outlet header 23.
  • the inlet header 22 is used to pass in and distribute the cooling medium
  • the outlet header 23 is used to collect and output the cooling medium.
  • a plurality of heat exchange pipes 21 are connected to form a plurality of cooling medium flow channels. One end of the cooling medium flow channel is connected to the inlet header 22 and the other end is connected to the outlet header 23 .
  • the inlet header 22 is used to pass in and divert the cooling medium
  • the outlet header 23 is used to collect and output the cooling medium
  • multiple heat exchange pipes 21 are connected to form multiple cooling medium flow channels.
  • One end of the flow channel is connected to the inlet header 22 , and the other end is connected to the outlet header 23 , so that the cooling medium diverted through the inlet header 22 passes through multiple cooling medium flow channels, and then is collected and flowed out through the outlet header 23 .
  • the arrangement of multiple heat exchange pipes 21 enables rational use of the space within the housing 1 and enhances the cooling effect of the heat exchange component 2 on the circulating hydrogen or oxygen. Not only that, multiple heat exchange pipes 21 are connected to form multiple cooling medium flow channels.
  • the flow path of the cooling medium in the housing 1 is shortened, making it closer to
  • the temperature difference between the heat exchange pipe 21 of the outlet header 23 and the heat exchange pipe 21 close to the inlet header 22 is small, which not only enhances the cooling effect on hydrogen or oxygen, but also facilitates the cooling effect of the heat exchange component 2 on hydrogen or oxygen. Uniformity of cooling effect.
  • the cooling medium may be cooling water or cooling brine, etc., and is not specifically limited here.
  • Multiple heat exchange pipes 21 are connected through 180° elbows to form cooling medium flow channels.
  • the branch pipes of the inlet header 22 and the branch pipes of the outlet header 23 correspond to the cooling medium flow channels. After the inlet header 22 shunts the incoming cooling medium, it flows to the outlet header 23 through a plurality of heat exchange pipes 21 and from there. The outlet header 23 flows out.
  • the number of cooling medium flow channels is set according to the actual situation and is not specifically limited here.
  • the inlet header 22 and the outlet header 23 can be round tubes or square tubes, preferably round tubes to withstand higher pressure.
  • the heat exchange assembly 2 further includes fins 24 arranged outside the heat exchange pipe 21 along the length direction of the heat exchange pipe 21 .
  • the fins 24 are arranged outside the heat exchange pipe 21 along the length direction of the heat exchange pipe 21.
  • the heat exchange pipe 21 and the fins 24 form a spiral fin tube.
  • the spiral fin tube is a high-efficiency heat transfer element. The heat transfer area of the spiral fin tube is greatly increased compared with the heat exchange pipe 21, which enhances the heat transfer effect.
  • the arrangement of the fins 24 not only increases the contact area between hydrogen or oxygen and the heat exchange component 2, that is, increases the heat exchange area, strengthens heat transfer, and allows the hydrogen or oxygen to be fully cooled; moreover, the fins 24 can be divided And mix the hydrogen or oxygen flow, change the flow direction of the hydrogen or oxygen, reduce the flow speed of the hydrogen or oxygen, extend the contact time between the hydrogen or oxygen and the heat exchange component 2, and achieve sufficient cooling of the hydrogen or oxygen by the heat exchange component 2.
  • the cooled water mist in the gas slowly falls into the washing liquid through the fins, thereby reducing interference with the washing liquid level.
  • fins 24 are wound around the outer wall of the heat exchange pipe 21 , and the connection between the fins 24 and the heat exchange pipe 21 may be hot rolling, high-frequency welding or laser welding.
  • the embodiment of the present invention provides the material of the heat exchange pipe 21, the material of the fins 24, the thickness and height of the fins 24, The surface structure of the fins 24, the spacing between the fins 24, the diameter d1 of the heat exchange pipe 21, etc. are not specifically limited here and are subject to actual conditions.
  • the material of the heat exchange pipe 21 and the fins can be high-strength heavy metal, such as carbon steel, stainless steel or corrosion-resistant steel.
  • the thickness of the fins is 0.5mm-6mm.
  • the thickness of the fins can be 1mm, 2mm, 3.5mm, etc.
  • the fin pitch is 2.5mm-30mm, and the fin pitch can be 5mm, 10mm, 15mm, 20mm, 25mm, etc.
  • the height of the heat exchange pipe 21 is 8mm-30mm, and the height of the heat exchange pipe 21 can be 10mm, 15mm, 20mm, etc.
  • the fins 24 are continuous spiral fins, that is, the surface of the fins 24 is a continuous structure, or the fins 24 are discrete fins arranged in a spiral, that is, the fins have an opening structure along the direction parallel to the surface of the fins. Set according to actual situation.
  • the surfaces of the pipes and fins are further coated with corrosion-resistant materials, such as nickel, nickel alloy, etc.
  • the axis of the heat exchange pipe 21 is parallel to the axis of the housing 1 , and multiple heat exchange pipes 21 are arranged in a row or in a cross row, which is beneficial to the heat exchange assembly. 2 For the uniformity of cooling effect of hydrogen or oxygen.
  • FIG. 4 illustrates that multiple heat exchange pipes 21 are arranged in a row.
  • a plurality of heat exchange pipes 21 are arranged in an array at equal intervals in a certain order.
  • FIG. 5 illustrates that multiple heat exchange pipes 21 are arranged in a cross row.
  • two adjacent rows of heat exchange pipes 21 are arranged to cross each other.
  • it is preferred that the plurality of heat exchange pipes 21 are arranged in a cross row.
  • the plurality of heat exchange pipes 21 are arranged in a cross row, so that the hydrogen or oxygen is greatly disturbed during the rising process, reducing the rising flow rate, prolonging the heat exchange time between the hydrogen or oxygen and the heat exchange component 2, and the heat transfer coefficient is high.
  • the orthographic projections of the central axes of three adjacent heat exchange pipes 21 form an equilateral triangle or an isosceles triangle. In this way, the cooling effect of the heat exchange component 2 on the hydrogen or oxygen is more uniform. It should be noted that the distance S1 between two adjacent heat exchange pipes in each row and the distance S2 between two adjacent rows of heat exchange pipes are subject to the actual situation and are not specifically limited here.
  • the washing and separation device for the hydrogen production system also includes a first baffle 4.
  • the first baffle 4 is fixed to the inner wall of the housing 1 and is located on the heat exchange assembly. 2. Near one end of the washing liquid, the first baffle 4 is provided with a first through hole communicating with the circulation space of the heat exchange component 2.
  • the arrangement of the first through hole not only provides installation space for the heat exchange component 2, but also forces the gas to pass through the first through hole, and then makes the gas flow close to or close to the outer wall of the heat exchange pipe to prevent the gas from flowing upward along the inner wall of the housing. flows without passing through the circulation space between heat exchange pipes, thereby increasing the heat transfer coefficient, making The gas is sufficiently cooled.
  • first baffle 4 can be connected to the heat exchange component 2, so that the first baffle 4 plays a supporting role for the heat exchange component 2, enhances the stability of the heat exchange component 2 in the shell 1, and improves the efficiency of the present invention.
  • the embodiment provides the structural robustness of the washing separation device used in the hydrogen production system.
  • the washing and separation device for the hydrogen production system also includes a second baffle 6.
  • the second baffle 6 is fixedly provided on the inner wall of the housing 1 and is located on the first baffle.
  • the side of the plate 4 away from the washing liquid has a second through hole between the first baffle 4 and the inner wall of the housing 1 .
  • the second baffle 6 is provided with a third through hole that communicates with the circulation space of the heat exchange component 2.
  • a fourth through hole is formed between the second baffle 6 and the inner wall of the housing 1.
  • the second through hole and the fourth through hole are disposed on the second baffle 6.
  • the projection of the holes on the first baffle 4 is offset. As shown in FIG.
  • the first baffle 4 and the second baffle 6 can be arranged in parallel along the height direction of the housing 1 , and the second baffle 6 is arranged at the middle position of the heat exchange pipe 21 .
  • the gas passes through the first through hole or the second through hole, it then passes through the third through hole or the fourth through hole, forcing the flow direction of the gas to change, causing the gas to sweep across the heat exchange component, prolonging the flow of the gas.
  • the flow path in the heat exchange component 2 increases the heat exchange time between the gas and the heat exchange component, which is conducive to sufficient cooling of the gas.
  • the flow direction of the gas is complicated, which causes the gas to be mixed, which is beneficial to the uniformity of the temperature of the gas cooled by the heat exchange component 2 .
  • the second baffle 6 can be connected to the heat exchange component 2, so that the second baffle 6 plays a supporting role for the heat exchange component 2, enhances the stability of the heat exchange component 2 in the shell 1, and improves the efficiency of the present invention.
  • the structural robustness of the washing and separation device used in the hydrogen production system provided by the embodiment extends the service life of the washing and separation device used in the hydrogen production system.
  • the washing and separation device for the hydrogen production system provided by the embodiment of the present invention also includes a third baffle 20, which is fixed to the inner wall of the housing 1 and located in the heat exchange assembly 2 The end away from the washing liquid.
  • the third baffle 20 is provided with a fifth through hole connected to the circulation space of the heat exchange component 2.
  • the sixth through hole and the fourth through hole are The projection on the second baffle 6 is offset. In this way, the arrangement of the fifth through hole provides an escape space for the installation of the heat exchange component 2 .
  • the second through hole, the fourth through hole, and the sixth through hole are arranged so that the flow direction of the gas is along the axis of the housing 1
  • the direction is S-shaped, which further extends the flow path of the gas in the heat exchange component, increases the heat exchange time between the gas and the heat exchange component, and is conducive to sufficient cooling of the gas.
  • the washing and separation device for the hydrogen production system provided by the embodiment of the present invention also includes two oppositely arranged first enclosures 5 , and the first enclosures 5 are arranged on the heat exchange pipe. 21, the second through hole, the fourth through hole and the sixth through hole are located between the two first enclosure plates. In this way, the gas flows between the two first hoardings 5.
  • the first hoarding 5 is arranged outside the heat exchange pipe, forcing the gas to flow close to or close to the outer wall of the heat exchange pipe, thereby increasing the heat transfer coefficient and causing the gas to be Cool well.
  • the first enclosure 5 can be arranged parallel to the axis of the housing 1, and the first enclosure 5 can be supported by at least one of the first baffle 4, the second baffle 6, and the third baffle 20, To enhance the structural solidity of the washing separation device.
  • the washing and separation device for the hydrogen production system provided by the embodiment of the present invention also includes two second coaming plates 30 arranged oppositely, and the heat exchange pipes are located on the first and second coaming plates 5 and 30 .
  • a circulation space is formed between the first enclosure plate 5 , the second enclosure plate 30 and the first baffle 4 . In this way, the gas is forced to flow close to or close to the outer wall of the heat exchange pipe, thereby increasing the heat transfer coefficient and allowing the gas to be fully cooled.
  • the hydrogen or oxygen produced by using alkaline electrolyte contains alkaline water mist, during the electrolysis process, on the one hand, the amount of alkaline electrolyte gradually decreases, resulting in the loss of alkali in the alkaline electrolyte.
  • the hydrogen or oxygen containing alkaline water mist enters the washing liquid and flows out of the washing liquid, most of the alkaline water mist in the hydrogen or oxygen remains in the washing liquid, causing the pH value of the washing liquid to change. increases, it will not have a cleaning effect on hydrogen or oxygen.
  • the water mist in the hydrogen or oxygen condenses into water droplets and falls into the washing liquid, which causes the level of the washing liquid to rise to a certain extent.
  • the housing 1 is provided with a first liquid inlet 13 and a liquid outlet 14 , and the liquid inlet 13 is provided into the housing 1 through the first liquid inlet 13 Washing liquid is injected, and the liquid outlet 14 is used to release the washing liquid in the housing 1 .
  • the position of the first liquid inlet 13 on the housing 1 can be lower than the heat exchange component 2 and the first baffle 4 to prevent the washing liquid from falling on the heat exchange component 2 when the washing liquid is injected into the housing 1 Or on the first baffle 4, which not only causes a waste of washing liquid, but also affects the cooling function of the heat exchange component 2.
  • the liquid outlet 14 is used to release the washing liquid in the housing 1 body, the liquid outlet 14 can be provided at the bottom of the housing 1, and the liquid outlet 14 is connected with the second air outlet 220 of the gas-liquid separator 200, and is used to release the washing liquid into the gas-liquid separator 200, which not only avoids The waste of washing liquid also makes up for the alkali carried away by hydrogen or oxygen in the alkaline electrolyte.
  • the housing 1 can be placed at a high place through the ear support 16 of the housing 1 so that the washing liquid flows to the gas-liquid separator 200 through its own gravity for gravity overflow replenishment, or it can Place the housing 1 in a low position, and use a pump to forcefully extract the washing liquid and transport it to the gas-liquid separator 200.
  • There are at least two ear supports 16 which are symmetrically fastened to the upper outer wall of the housing 1 and used to support the housing 1 .
  • the washing and separation device used in the hydrogen production system also includes a liquid level gauge 7 and a controller.
  • the liquid level gauge 7 is arranged on the side wall of the housing 1.
  • the liquid level The meter 7 is used to detect the level of the washing liquid in the housing 1 and output a level signal.
  • the liquid level gauge 7 is connected to a controller, and the controller is used to control the injection of washing liquid into the housing 1 according to the liquid level signal. In this way, it is convenient to monitor the amount of washing liquid in the housing 1 in real time, and avoid the occurrence of too little washing liquid, too short contact time between hydrogen or oxygen and the washing liquid, insufficient washing, and excessive washing liquid level causing circulation to the electrolyzer.
  • the axial direction of the housing 1 is set to the vertical direction.
  • the liquid level of the washing liquid has the highest liquid level value HL, the lowest liquid level value LL and the most suitable liquid level value NL.
  • the detection end of the liquid level gauge 7 Located in the washing liquid, when the liquid level of the washing liquid detected by the liquid level meter 7 is higher than HL, the controller controls to release the washing liquid through the liquid outlet 14. When the liquid level of the washing liquid detected by the liquid level gauge 7 is lower than NL, the controller controls the injecting of washing liquid into the housing 1 through the first liquid inlet 13 .
  • the washing separation device used in the hydrogen production system also includes a pH value detector 8, which is provided in the housing 1 and is used to detect the pH value of the washing liquid and output a pH value signal.
  • the pH value detector 8 is connected to the controller, and the controller is used to control the injection or release of washing liquid according to the pH value.
  • the pH value detector 8 is connected to the controller to facilitate real-time monitoring of the pH value of the washing liquid in the housing 1 .
  • the controller can control the addition of washing liquid to the washing liquid to reduce the pH value of the washing liquid, or the controller The pH value of the washing liquid can be reduced by controlling the release of the washing liquid and then re-injecting the washing liquid to avoid insufficient washing effect of the washing liquid on hydrogen or oxygen. Of course, make sure the washing liquid level is within the preset range.
  • the vent pipe 9 is provided with a vent hole 91 for inputting hydrogen or oxygen into the housing 1, and the vent hole 91 is located in the washing liquid.
  • the hydrogen or oxygen to be washed introduced from the receiving end of the vent pipe 9 is passed into the washing liquid, ensuring that the hydrogen or oxygen is in contact with the washing liquid, thereby realizing the washing effect of the hydrogen or oxygen.
  • hydrogen or oxygen is passed into the washing liquid from the vent hole 91 to avoid the occurrence of large bubbles, so that the hydrogen or oxygen in the bubbles cannot be washed, which improves the washing effect of hydrogen or oxygen and reduces the disturbance to the liquid level. , making the detection of the liquid level meter 7 more accurate.
  • the vent pipe 9 when the first air inlet 11 is located below the washing liquid level, the vent pipe 9 can be omitted.
  • the hydrogen or oxygen introduced from the first air inlet 11 is directly introduced into the washing liquid.
  • the first air inlet 11 is located above the liquid level of the washing liquid.
  • the vent tube 9 has an L-shaped structure.
  • the vent tube 9 has a receiving end and a closed end. The receiving end of the vent tube 9 is in contact with the gas and liquid.
  • the second gas outlet 220 of the separator 200 is connected, and the second gas outlet 220 is used to discharge hydrogen or oxygen.
  • the closed end of the vent pipe 9 is located on the axis of the housing 1 .
  • the vent pipe 9 is provided with a vent hole 91 near the closed end for inputting hydrogen or oxygen into the housing 1 .
  • a plurality of vent holes 91 are provided along the circumferential direction of the vent tube 9 , and multiple rows of vent holes 91 are formed along the axial direction of the vent tube 9 , so that hydrogen or oxygen can be discharged from the vent tube 9 relatively uniformly.
  • the vent hole 91 is arranged obliquely upward, and the axis of the vent hole 91 has an angle ⁇ with the horizontal plane. ⁇ is not specifically limited here and can be 55°.
  • the size of the vent hole 91 is not specifically limited here and is subject to actual conditions. In the embodiment provided by the present invention, the diameter ⁇ d2 of the ventilation hole 91 ranges from ⁇ 8 mm to ⁇ 12 mm.
  • the length ratio of the washing component and the heat exchange component 2 is (2-3):2, and the length ratio of the washing component, the heat exchange component 2 and the gas-water separation component 3 is (2-3):2: (0.8-1), the lengths of the washing component, the heat exchange component 2 and the gas-water separation component 3 are set according to the actual situation.
  • the lengths of the washing component and the heat exchange component 2 are designed to better realize the washing and cooling of the gas.
  • the principle is to simplify the structure of the washing separation device and reduce the space occupied.
  • the length of the washing component may be 974.9 mm
  • the length of the heat exchange component may be 1125 mm
  • the length of the gas-water separation component 3 may be 763 mm.
  • this is not a limitation.
  • the gas-water separation component 3 includes a wire mesh demister.
  • the design, manufacturing, and inspection standards for the wire mesh demister are HG/T21618-1998. It only needs to be selected according to the process requirements. Shortening The processing and manufacturing time of the washing and separation device used in the hydrogen production system is determined.
  • the wire mesh demister is made of metal woven into a mesh and rolled into a disk shape. It can further remove the water mist entrained in hydrogen or oxygen and purify it at the same time. Hydrogen or oxygen, reducing impurities in hydrogen or oxygen.
  • the cooled hydrogen or oxygen is entrained with fine liquid mist droplets.
  • the mist droplets hit the mesh and are adhered or adsorbed.
  • extremely small droplets become The mist droplets agglomerate and coalesce into large droplets.
  • the droplets move downward along the intersection of the woven wire mesh and the wires. At the same time, they continue to absorb the mist droplets entrained in the gas.
  • the growing mist The droplets flow to the bottom of the demister screen and fall down by their own gravity. The droplets drip along the fins 24 into the washing liquid.
  • a fourth baffle 10 is also provided in the housing 1.
  • the fourth baffle 10 is fastened to the inner wall of the housing 1, and the fourth baffle 10 Located at one end of the gas-water separation component 3 close to the heat exchange component.
  • the fourth baffle 10 is provided with a through hole corresponding to the gas-water separation component 3, forcing the hydrogen or oxygen cooled by the heat exchange component 2 to pass through the through hole on the fourth baffle 10, thereby maximizing the flow of hydrogen. Or the oxygen passes through the gas-water separation component 3 to remove the water mist in the hydrogen or oxygen.
  • the housing 1 provided in the embodiment of the present invention has a split structure, including an upper housing and a lower housing. Covered with the lower housing through flange 15, as shown in Figures 1 and 2.
  • embodiments of the present invention also provide a hydrogen production system, including electrolysis equipment and a gas-liquid separation framework, wherein the gas-liquid separation framework includes the method described in any of the above embodiments.
  • the washing and separation device of the hydrogen production system The electrolysis equipment is used to electrolyze the electrolyte to produce hydrogen or oxygen.
  • the electrolysis equipment is connected with the washing and separation device and is used to pass the hydrogen or oxygen produced by electrolysis into the washing and separation device.
  • the washing and separation device separates the gas. The electrolyte mist in the electrolyte is fully and effectively removed.
  • the gas-liquid separation framework provided by the embodiment of the present invention also includes a gas-liquid separator 200 connected to the electrolysis equipment.
  • the gas-liquid separator 200 has a second liquid inlet 210 and a second air outlet 220.
  • the second liquid inlet 210 is connected with the liquid outlet 14 and is used to receive the washing liquid released by the liquid outlet 14; the first air inlet 11 Communicated with the second gas outlet 220 for receiving hydrogen or oxygen to be washed. In this way, not only the waste of the washing liquid is avoided, but also the electrolyte that needs to be taken away by the washing hydrogen or oxygen can be replenished by realizing the recycling of the washing liquid.
  • the electrolysis equipment may specifically be an alkaline water electrolyzer.
  • the gas-liquid separator 200 is a hydrogen gas-liquid separator or an oxygen gas-liquid separator.
  • the hydrogen gas-liquid separator and the oxygen gas-liquid separator are connected to the electrolytic tank of the electrolysis equipment and are arranged side by side in the electrolysis equipment. Above the tank, the hydrogen and oxygen washing and separation devices can be arranged above the gas-liquid separator.
  • the hydrogen production system provided by the embodiment of the present invention also includes a purification device 300, a hydrogen gas scrubber
  • the first air outlet of the scrubber separation device is connected with the second air inlet 310 of the purification equipment 300.
  • the gas-liquid separation framework of the present invention can also include at least one set of gas coolers and gas-water separators. The washing and separation device described in the first aspect The first gas outlet is connected to the gas cooler and the gas-water separator in sequence, and then is connected to the purification equipment 300 to dry the gas.
  • the hydrogen and oxygen coming out of the electrolyzer enter the hydrogen gas-liquid separator and the oxygen gas-liquid separator respectively.
  • the gas-liquid separator most of the alkali mist carried by the gas is separated, and then the hydrogen and oxygen enter the hydrogen washing and separation device respectively.
  • the washing and separation device the residual electrolyte raw material liquid such as alkaline water mist is washed, and the small particle size droplets and water vapor carried by the gas are cooled and condensed once, and then pass through the gas-water separation component
  • the gas obtained after secondary cooling has a very low moisture content and can be directly entered into the purification equipment for drying treatment without further water removal by the gas cooler and gas-water separator, saving more than two equipment and the pipeline connections between them. , which can effectively reduce the height of the factory required by the existing gas-liquid separation framework.
  • the liquid In the oxygen gas-liquid separator, the liquid finally flows into the electrolytic tank under the action of gravity to realize the alkali circulation of the system and the replenishment of water to the system.
  • the beneficial effects of the hydrogen production system provided in the second aspect are the same as the beneficial effects of the washing and separation device for the hydrogen production system described in the first aspect or any possible implementation of the first aspect, and will not be described again here.

Abstract

本发明公开一种用于制氢系统的洗涤分离装置和制氢系统,涉及氢气或氧气制备技术领域,将氢气或氧气的洗涤、冷却、气水分离工艺过程集成为一体,降低设备的复杂化和大型化,减小使用场地和设备投入,提高了用于制氢系统的洗涤分离装置的经济性。用于制氢系统的洗涤分离装置包括壳体、洗涤组件和换热组件。壳体具有第一进气口、第一出气口和出液口。洗涤组件包含通气管,通气管一端与第一进气口连通,另一端延伸至壳体内洗涤液体的液面以下。换热组件具有多个用于流通冷却介质的换热管道,多个换热管道的外壁之间形成用于流通洗涤后的气体的流通空间。制氢系统包括气液分离框架和电解设备,所述气液分离框架包括上述的用于制氢系统的洗涤分离装置。

Description

一种用于制氢系统的洗涤分离装置和制氢系统
相关申请的交叉引用
本公开要求在2022年06月02日提交中国专利局、申请号为202210626286.9、名称为“一种用于制氢系统的洗涤分离装置和制氢系统”的专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本发明涉及氢气或氧气制备技术领域,尤其涉及一种用于制氢系统的洗涤分离装置和制氢系统。
背景技术
电解水制取氢气和氧气,是在充满电解液的氢氧分离器的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。电解时,由于纯水的电离度较小,导电能力低,所以为了增加溶液的导电能力,使水能够顺利地电解成为氢气和氧气,一般在水溶液中添加酸性或碱性电解质,例如硫酸、氢氧化钠或氢氧化钾等。
在碱性水溶液进行电解获得的氢气或氧气中含有一定量的碱液,造成了电解液的浪费,需要向碱性水溶液中补碱。另外,为了避免含有碱液的氢气或氧气损伤下游设备,需要将氢气或氧气中的碱液去除。
因此,为了去除氢气或氧气中的碱液,同时向碱性水溶液中补碱,氢气或氧气的洗涤装置应运而生。现有的一种用于水电解制氢的氢氧洗涤器,装设于氢气或氧气分离器与气体冷却器之间。氢气或氧气经过充分洗涤后沿出气管进入气体冷却器,之后进入气水分离器,氢氧洗涤器内的洗涤液体沿溢流口进入氢气或氧气分离器进行补碱。
但是,现有技术中的洗涤、冷却、除水三个工艺过程为单独设备,设备之间需要进行管道连接,且冷却器设置于洗涤器的上部,造成用于制氢系统的洗涤分离装置的复杂化和大型化,对厂房的高度提出要求,带来占据空间大、维护成本和材料成本高等一系列问题。
发明内容
本发明的目的在于提供一种用于制氢系统的洗涤分离装置和制氢系统, 降低设备的复杂化和大型化,减小使用场地和设备投入,提高了气体洗涤分离装置的经济性。
为了实现上述目的,第一方面,本发明提供一种用于制氢系统的洗涤分离装置,包括壳体、洗涤组件和换热组件。壳体具有第一进气口、第一出气口和出液口,第一进气口用于向壳体中通入待洗涤的气体,第一出气口设于壳体上方,用于排出洗涤后的气体。洗涤组件包含通气管,通气管一端与第一进气口连通,另一端延伸至壳体内洗涤液体的液面以下。换热组件设置于壳体内,位于洗涤组件的上方,用于冷却洗涤后的气体,换热组件具有多个用于流通冷却介质的换热管道,多个换热管道的外壁之间形成用于流通洗涤后的气体的流通空间。
采用上述技术方案时,用于制氢系统的洗涤分离装置包括壳体、洗涤组件和换热组件,壳体内盛装有洗涤液体,壳体具有第一进气口、第一出气口和出液口。洗涤组件包含通气管,通气管的一端与第一进气口连通,另一端延伸至壳体内洗涤液体的液面以下。通气管用于向洗涤液体中通入待洗涤气体,使得气体得到洗涤液体的洗涤作用,出液口用于释放壳体内的洗涤液体。换热组件设置于壳体内,位于洗涤组件的上方,用于冷却洗涤后的气体,最终使得从第一进气口通入的气体在壳体内依次经过洗涤、冷却作用后,从壳体的第一出气口排出。由此表明,本发明提供的用于制氢系统的洗涤分离装置对于气体的洗涤、冷却工艺均在壳体内完成,即将气体的洗涤、冷却工艺过程集成为一体,降低设备的复杂化和大型化,减小使用场地和设备投入,节约成本。
另外,本发明提供的换热组件具有多个用于流通冷却介质的换热管道,多个换热管道的外壁之间形成用于流通洗涤后的气体的流通空间,使得气体靠近或贴合着换热管道的外壁流动,相对于气体从管道内通过而冷却介质从管道外流过的方式,本发明的设置具有更大的气体流通空间,更长更曲折的流动路径,更有利于换热组件与气体充分的进行热交换,对气体进行充分的冷却,使得气体中的碱性水雾凝结成水滴,提高对气体携带的碱性水雾的冷凝分离效率,降低换热组件在壳体内的高度,减少后续气水分离组件的负荷。
在一种可能的实现方式中,换热组件还包括进口集箱和出口集箱。进口集箱用于通入并分流冷却介质,出口集箱用于收集并输出冷却介质。多个换热管道连接形成多个冷却介质流动通道,冷却介质流动通道的一端与进口集箱连 通,另一端与出口集箱连通。
采用上述技术方案时,进口集箱用于通入并分流冷却介质,出口集箱用于收集并输出冷却介质,多个换热管道连接形成多个冷却介质流动通道,冷却介质流动通道的一端与进口集箱连通,另一端与出口集箱连通,使得经进口集箱分流的冷却介质通过多个冷却介质流动通道后,经出口集箱汇集并流出。多个换热管道的设置使得壳体内的空间得到合理利用,增强了换热组件对于流通的气体的冷却作用。不仅如此,多个换热管道连接形成多个冷却介质流动通道,相较于多个换热管道连接形成一个冷却介质流动通道的情况,缩短了冷却介质在壳体内的流动路径,使得靠近出口集箱的换热管道的温度与靠近进口集箱的换热管道的温度相差较小,不仅加强了对于气体的冷却作用,而且有利于换热组件对于气体冷却作用的均匀性。
在一种可能的实现方式中,换热组件还包括沿换热管道的长度方向设置于换热管道外的翅片,翅片为连续螺旋翅片,或者翅片为螺旋排布的离散翅片。
采用上述技术方案时,翅片的设置不仅使气体与换热组件的接触面积增大,即增大了热交换面积,强化传热,使得气体得到充分的冷却;而且,翅片能够切分并混合气体流,改变气体的流动方向,降低气体的流动速度,延长气体与换热组件的接触时间,实现换热组件对于气体的充分冷却。
在一种可能的实现方式中,翅片的厚度为0.5mm-6mm,翅片间距为2.5mm-30mm,翅片的高度为8mm-30mm。
在一种可能的实现方式中,换热管道的轴线平行于壳体的轴线,多个换热管道呈顺排排布或叉排排布。
采用上述技术方案时,换热管道的轴线平行于壳体的轴线,多个换热管道呈顺排排布或叉排排布,有利于换热组件对于气体冷却作用的均匀性。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括气水分离组件,设置于壳体内,且位于换热组件和第一出气口之间。
采用上述技术方案时,气水分离组件用于除去冷却后的气体中的水雾,进一步净化气体,减少气体中的水雾,降低后续纯化设备的负荷。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括第一挡板,第一挡板固定于壳体的内壁,且位于换热组件靠近洗涤液体的一端,第一挡板上开设有与换热组件的流通空间连通的第一通孔。
采用上述技术方案时,第一挡板上开设有与换热组件的流通空间连通的第一通孔,第一通孔不仅为换热组件提供安装空间,而且迫使气体从第一通孔穿过,之后使得气体靠近或贴合着换热管道的外壁流动,提高换热系数,使得气体被充分冷却。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括第二挡板,固定于壳体的内壁,且位于第一挡板远离洗涤液体的一侧,第一挡板与壳体的内壁之间具有第二通孔。第二挡板上开设有与换热组件的流通空间连通的第三通孔,第二挡板与壳体的内壁之间具有第四通孔,第二通孔与第四通孔在第一挡板上的投影错位设置。
采用上述技术方案时,第二挡板上开设有与换热组件的流通空间连通的第三通孔,第三通孔为换热组件的安装提供避让空间。第一挡板与壳体的内壁之间具有第二通孔,第二挡板与壳体的内壁之间具有第四通孔,且第二通孔与第四通孔在第一挡板上的投影错位设置,使得气体从第一通孔或第二通孔穿过后,从第三通孔或第四通孔穿过,迫使气体的流动方向改变,使得气体横掠换热组件,延长了气体在换热组件内的流动路径,提升了气体与换热组件的热交换时间,有利于气体的充分冷却。另外,气体的流动方向错综复杂,使得气体进行混合,有利于被换热组件冷却后的气体温度的均匀性。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括第三挡板,固定于壳体的内壁,且位于换热组件远离洗涤液体的一端。第三挡板开设有与换热组件的流通空间连通的第五通孔,第三挡板与壳体的内壁之间具有第六通孔,第六通孔与第四通孔在第二挡板上的投影错位设置。
采用上述技术方案时,第三挡板开设有与换热组件的流通空间连通的第五通孔,第五通孔为换热组件的安装提供避让空间。第三挡板与壳体的内壁之间具有第六通孔,且第六通孔与第四通孔在第二挡板上的投影错位设置,使得气体从第三通孔或第四通孔穿过后,从第五通孔或第六通孔穿过,迫使气体的流动方向改变,使得气体横掠换热组件,延长了气体在换热组件内的流动路径,提升了气体与换热组件的热交换时间,有利于气体的充分冷却。另外,气体的流动方向错综复杂,加大了气体的混合,有利于被换热组件冷却后的气体的温度的统一均匀性。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括两个相 对设置的第一围板,第一围板设置于换热管道外,第二通孔、第四通孔和第六通孔位于两个第一围板之间。
采用上述技术方案时,使得气体在两个第一围板之间流动,第一围板设置于换热管道外,迫使气体靠近或贴合着换热管道的外壁流动,避免气体沿着壳体内壁向上流动而未经过换热管道之间的流通空间,提高换热系数,使得气体被充分冷却。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括两个相对设置的第二围板,换热管道位于第一围板、第二围板围设形成的围设空间内,第一围板、第二围板、第一挡板之间形成流通空间。
采用上述技术方案时,迫使气体靠近或贴合着换热管道的外壁流动,提高换热系数,使得气体被充分冷却。
在一种可能的实现方式中,壳体上设置有第一进液口,通过第一进液口向壳体内注入洗涤液体。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括液位计,液位计设置于壳体的侧壁,液位计用于探测壳体内的洗涤液体的液面高低,并输出液面高低信号。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括控制器,液位计与控制器连接,控制器用于根据液面高低信号控制向壳体内注入或释放洗涤液体。
采用上述技术方案时,液位计用于探测壳体内的洗涤液体的液面高低,并输出液面高低信号。液位计与控制器连接,控制器用于根据液面高低信号控制向壳体内注入或释放洗涤液体,便于实时监测壳体内的洗涤液体的量,避免出现洗涤液体过少,气体与洗涤液体接触时间过短,洗涤不充分,以及,洗涤液体液面过高导致向电解槽循环补入的碱液不足,同时过高的洗涤液面与换热组件距离太近影响换热组件对气体的冷却效果。
在一种可能的实现方式中,用于制氢系统的洗涤分离装置还包括pH值检测仪,设置于壳体,用于探测洗涤液体的pH值,并输出pH值信号。pH值检测仪与控制器连接,控制器用于根据pH值控制注入或释放洗涤液体。
采用上述技术方案时,pH值检测仪用于探测洗涤液体的pH值,并输出pH值信号。pH值检测仪与控制器连接,便于实时监测壳体内的洗涤液体的 pH值。当pH值检测仪检测到的洗涤液体的pH值超过预设范围时,控制器控制释放洗涤液体,以免出现洗涤液体对于气体的洗涤作用不充分的现象。
在一种可能的实现方式中,通气管开设有通气孔,通气孔位于洗涤液体内。
采用上述技术方案时,通气管开设有位于洗涤液体内的通气孔,如此,使得从通气管内通入的气体流入洗涤液体,保证气体与洗涤液体接触,实现对气体的洗涤作用。不仅如此,气体从通气孔通入洗涤液体,避免出现较大气泡,使得气泡内的气体得不到洗涤,提升了气体的洗涤作用,同时减少对液面的扰动作用,使得液位计的检测更准确。
在一种可能的实现方式中,洗涤组件和换热组件的长度比为(2-3):2。
在一种可能的实现方式中,洗涤组件、换热组件和气水分离组件的长度比为(2-3):2:(0.8-1)。
在一种可能的实现方式中,气水分离组件包含丝网除雾器。
采用上述技术方案时,丝网除雾器是由金属编织成网,卷成盘状,可以进一步将气体中夹带的水雾除去,同时净化气体,减少气体中的杂质。
在一种可能的实现方式中,壳体的形状为圆筒状。
在一种可能的实现方式中,洗涤液体为纯水或碱水溶液。
第二方面,本发明还提供了一种制氢系统,包括气液分离框架和电解设备,所述气液分离框架包括第一方面或第一方面任一可能的实现方式所描述的用于制氢系统的洗涤分离装置。电解设备与洗涤分离装置连通,用于向洗涤分离装置通入电解制得的气体。
采用上述技术方案时,电解设备通过电解电解液制得气体,并将制得的气体通入洗涤分离装置,由洗涤分离装置将气体中的电解液水雾充分有效地去除。
在一种可能的实现方式中,气液分离框架还包括:气液分离器,与电解设备连通。气液分离器具有第二进液口和第二出气口,第二进液口与出液口连通,用于接收出液口释放的洗涤液体。第一进气口与第二出气口连通,用于接收待洗涤气体。
采用上述技术方案时,气液分离器具有第二进液口和第二出气口,第二进液口与出液口连通,用于接收出液口释放的洗涤液体,不仅避免洗涤液体的浪费,而且通过实现洗涤液体的循环使用,使得待洗涤气体带走的电解液得以补 充。
在一种可能的实现方式中,制氢系统还包括纯化设备,用于对气体进行干燥处理,洗涤分离装置的第一出气口与纯化设备的第二进气口连通。
在一种可能的实现方式中,电解设备为碱性水电解槽。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例提供的制氢系统的结构示意图;
图2为本发明实施例提供的用于制氢系统的洗涤分离装置的结构示意图;
图3为本发明实施例提供的换热组件的截面示意图;
图4为本发明实施例提供的多个换热管道呈顺排排布的示意图;
图5为本发明实施例提供的多个换热管道呈叉排排布的示意图;
图6为本发明实施例提供的通气管的轴向剖视示意图;
图7为本发明实施例提供的通气管的径向剖视示意图。
附图标记:
1—壳体,11—第一进气口,12—第一出气口,13—第一进液口,
14—出液口,15—法兰,16—耳式支座,2—换热组件,21—换热管道,
22—进口集箱,23—出口集箱,24—翅片,3—气水分离组件,
4—第一挡板,5—第一围板,6—第二挡板,7—液位计,8—pH值检测仪,
9—通气管,91—通气孔,10—第四挡板,20—第三挡板,30—第二围板,
200—气液分离器,210—第二进液口,220—第二出气口,300—纯化设备,
310—第二进气口。
具体实施例
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者间接在该另一个元件上。当一个元件被称为是“连接于”另一个元件,它可以是直接连接到另一个元件或间接连接至该另一个元 件上。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。“若干”的含义是一个或一个以上,除非另有明确具体的限定。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
第一方面,本发明实施例提供一种用于制氢系统的洗涤分离装置,参见图1和图2所示,用于制氢系统的洗涤分离装置包括壳体1、洗涤组件和换热组件2,壳体1内盛装有洗涤液体,壳体1具有第一进气口11、第一出气口12和出液口14,第一进气口11用于向洗涤液体中通入待洗涤的气体,第一出气口12设于壳体上方,第一出气口12用于排出洗涤后的气体。洗涤组件包含通气管9,通气管9一端与第一进气口11连通,另一端延伸至壳体1内洗涤液体的液面以下。换热组件2设置于壳体1内,位于洗涤组件的上方,用于冷却洗涤后的气体,换热组件2具有多个用于流通冷却介质的换热管道21,多个换热管道21的外壁之间形成用于流通洗涤后的氢气或氧气的流通空间。本发明实施例提供的用于制氢系统的洗涤分离装置还包括气水分离组件3,气水分离组件3设置于壳体1内,且位于换热组件2和第一出气口12之间,气水分离组件3用于除去冷却后的氢气或氧气中的水雾。
采用上述技术方案的情况下,本发明实施例提供的用于制氢系统的洗涤 分离装置包括壳体1、洗涤组件和换热组件2,壳体1内盛装有洗涤液体,壳体1具有第一进气口11和第一出气口12,第一进气口11用于向洗涤液体中通入待洗涤气体,使得气体得到洗涤液体的洗涤作用,第一出气口设于壳体上方,用于排出洗涤后的气体。用于制氢系统的洗涤分离装置还包括设置于壳体1内的换热组件2和气水分离组件3,换热组件2用于冷却洗涤后的气体,换热组件2位于洗涤组件的上方。洗涤组件包含通气管9,通气管9一端与第一进气口11连通,另一端延伸至壳体1内洗涤液体的液面以下。通气管9用于向洗涤液体中通入待洗涤气体,使得气体得到洗涤液体的洗涤作用,出液口用于释放壳体内的洗涤液体。气水分离组件3用于除去冷却后的氢气或氧气中的水雾,最终使得从第一进气口11通入的氢气或氧气在壳体1内依次经过洗涤、冷却、气水分离作用后,从壳体1的第一出气口12排出,降低后续纯化设备300的负荷。由此表明,本发明实施例提供的用于制氢系统的洗涤分离装置对于氢气或氧气的洗涤、冷却和气水分离工艺均在壳体1内完成,即将气体的洗涤、冷却和气水分离工艺过程集成为一体,降低设备的复杂化和大型化,减小使用场地和设备投入,节约成本。需要说明的是,本发明提供的实施例中,关于壳体1、换热组件2和气水分离组件3的具体材质,此处不作具体限定,根据实际情况进行设置,以具有抗酸性或抗碱性腐蚀为准,壳体1的直径φD根据此处亦不作具体限定。
另外,本发明实施例提供的换热组件2具有多个用于流通冷却介质的换热管道21,多个换热管道21的外壁之间形成用于流通洗涤后的气体的流通空间,使得气体靠近或贴合着换热管道21的外壁流动,相对于气体从管道内通过而冷却介质从管道外流过的方式,本发明的设置具有更大的气体流通空间,更长更曲折的流动路径,更有利于换热组件与气体充分的进行热交换,对气体进行充分的冷却,使得气体中的碱性水雾凝结成水滴,提高对气体携带的碱性水雾的冷凝分离效率,降低换热组件在壳体内的高度,减少后续气水分离组件的负荷。
具体实施时,电解设备将水电解产生氢气或氧气并经气液分离器的第二出气口输出。电解设备的电解槽中盛装有电解液,在电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。电解时,由于纯水的电离度较小,导电能力低,所以为了增加电解液的导电能力,使水能够顺利地电解 成为氢气和氧气,一般在水溶液中添加酸性或碱性电解质,例如硫酸、氢氧化钠或氢氧化钾等。鉴于此,制得的氢气或氧气中粘附有酸性或碱性水雾,需要将氢气或氧气中的酸性或碱性水雾去除。当氢气或氧气是由碱性电解液电解制得时,制得的氢气或氧气中含有碱性水雾,此种情况下,洗涤液体可以为中性水,当然也可以为弱碱性溶液,即要保证洗涤液体的pH值小于碱性电解液的pH值,且大于等于7,才能起到对于氢气或氧气的洗涤作用。同样的,当氢气或氧气是由酸性电解液电解制得时,制得的氢气或氧气中含有酸性水雾,此种情况下,洗涤液体可以为中性水,当然也可以为弱酸性溶液,即要保证洗涤液体的pH值大于酸性电解液的pH值,且小于等于7。为了便于描述,现以使用碱性电解液制得氢气或氧气,对应的洗涤液体为纯水溶液或碱水溶液,对本发明实施例提供的用于制氢系统的洗涤分离装置用于清洁含有碱性水雾的氢气或氧气为例,进行详细的说明。
实际情况下,本发明实施例提供的壳体1的形状为圆筒状,壳体1的轴线可以设置为竖直方向,洗涤液体位于壳体1的底部,壳体1内由下至上依次设置有换热组件2和气水分离组件3。氢气或氧气被通入壳体1内后,经过洗涤液体的洗涤,由于氢气或氧气之间的压力作用,后通入的氢气或氧气迫使先通入的氢气或氧气向第一出气口12的方向流动。经洗涤液体的洗涤作用,能够除去氢气或氧气中的大部分碱性水雾。当洗涤后的氢气或氧气流经换热组件2时,换热组件2对流经的氢气或氧气冷却,使得氢气或氧气中的碱性水雾遇冷凝结,形成水滴,进一步除去氢气或氧气中的部分碱性水雾。水滴在重力作用下,落入洗涤液体中。氢气或氧气继续向第一出气口12的方向流动,经过气水分离组件3时,气水分离组件3除去冷却后的氢气或氧气中的水雾,最终使得低含水量的氢气或氧气从第一出气口12排出。
在一种可能的实现方式中,如图1、图2和图3所示,换热组件2还包括进口集箱22和出口集箱23。进口集箱22用于通入并分流冷却介质,出口集箱23用于收集并输出冷却介质。多个换热管道21连接形成多个冷却介质流动通道,冷却介质流动通道的一端与进口集箱22连通,另一端与出口集箱23连通。
如此,进口集箱22用于通入并分流冷却介质,出口集箱23用于收集并输出冷却介质,多个换热管道21连接形成多个冷却介质流动通道,冷却介质 流动通道的一端与进口集箱22连通,另一端与出口集箱23连通,使得经进口集箱22分流的冷却介质通过多个冷却介质流动通道后,经出口集箱23汇集并流出。多个换热管道21的设置使得壳体1内的空间得到合理利用,增强了换热组件2对于流通的氢气或氧气的冷却作用。不仅如此,多个换热管道21连接形成多个冷却介质流动通道,较于多个换热管道连接形成一个冷却介质流动通道的情况,缩短了冷却介质在壳体1内的流动路径,使得靠近出口集箱23的换热管道21的温度与靠近进口集箱22的换热管道21的温度相差较小,不仅加强了对于氢气或氧气的冷却作用,而且有利于换热组件2对于氢气或氧气冷却作用的均匀性。
实际情况下,冷却介质可以为冷却水或冷却盐水等,此处不作具体限定。多个换热管道21通过180°弯头连接形成冷却介质流动通道。进口集箱22的分管、出口集箱23的分管和冷却介质流动通道相对应,进口集箱22将通入的冷却介质分流后,经过多个换热管道21流动至出口集箱23,并从出口集箱23流出。冷却介质流动通道的数量根据实际情况进行设置,此处不作具体限定。另外,进口集箱22和出口集箱23可以为圆管也可以为方管,优选圆管,以承受较高的压力。
在一种可能的实现方式中,参见图2至图5所示,换热组件2还包括沿换热管道21的长度方向设置于换热管道21外的翅片24。翅片24沿换热管道21的长度方向设置于换热管道21外,换热管道21与翅片24形成螺旋翅片管。螺旋翅片管是一种高效传热元件,螺旋翅片管的传热面积相较于换热管道21大大增加,强化传热效果。翅片24的设置不仅使氢气或氧气与换热组件2的接触面积增大,即增大了热交换面积,强化传热,使得氢气或氧气得到充分的冷却;而且,翅片24能够切分并混合氢气流或氧气流,改变氢气或氧气的流动方向,降低氢气或氧气的流动速度,延长氢气或氧气与换热组件2的接触时间,实现换热组件2对于氢气或氧气的充分冷却。同时由于翅片24的作用,使得气体中被冷却的水雾经过翅片缓慢落入洗涤液中,减少对洗涤液液面的干扰。
具体实施时,在换热管道21的外壁缠绕设置翅片24,翅片24与换热管道21之间的连接方式可采用热滚压轧、高频焊接或激光焊接等方式。本发明实施例提供的换热管道21的材质、翅片24的材质、翅片24的厚度及高度、 翅片24的表面结构、翅片24的间距、换热管道21的直径d1等,此处不作具体限定,以实际情况为准。示例性的,换热管道21和翅片的材质可以采用高强度的重金属,如碳钢、不锈钢或耐腐蚀钢等。翅片的厚度为0.5mm-6mm,例如翅片的厚度可以为1mm、2mm、3.5mm等。翅片螺距为2.5mm-30mm,翅片螺距可以为5mm、10mm、15mm、20mm、25mm等。换热管道21的高度为8mm-30mm,换热管道21的高度可以为10mm、15mm、20mm等。翅片24为连续螺旋翅片,即翅片24的片表面为连续结构,或者翅片24为螺旋排布的离散翅片,即在片表面沿着平行于片表面的方向具有开口的结构,根据实际情况进行设置。为了避免换热管道的耐腐蚀性,管道和翅片表面均进一步涂敷耐腐蚀材料,例如可以为镍、镍合金等。
在一些实施例中,参见图2至图5所示,换热管道21的轴线平行于壳体1的轴线,多个换热管道21呈顺排排布或叉排排布,利于换热组件2对于氢气或氧气冷却作用的均匀性。
图4示例出多个换热管道21呈顺排排布。如图4所示,多个换热管道21按照一定顺序等间距阵列排布。图5示例出多个换热管道21呈叉排排布,如图5所示,相邻两排的换热管道21相互交叉设置。在本发明提供的实施例中,优选多个换热管道21呈叉排排布。多个换热管道21呈叉排排布,使得氢气或氧气在上升过程中受到的扰动大,减小上升的流速,延长氢气或氧气与换热组件2的热交换时间,换热系数高,使得氢气或氧气被充分冷却,提升对氢气或氧气携带的水雾的冷凝分离效果。而且,在本发明提供的实施例中,其中三个两两相邻的换热管道21的中轴线的正投影的连线形成等边三角形或等腰三角形。如此,使得换热组件2对于氢气或氧气的冷却作用更均匀。需要说明的是,每一行的两个相邻的换热管道之间的距离S1以及相邻两行的换热管道之间的距离S2,以实际情况为准,此处不作具体限定。
作为一种可能的实现方式,参见图2和图3,用于制氢系统的洗涤分离装置还包括第一挡板4,第一挡板4固定于壳体1的内壁,且位于换热组件2靠近洗涤液体的一端,第一挡板4上开设有与换热组件2的流通空间连通的第一通孔。第一通孔的设置不仅为换热组件2提供安装空间,而且迫使气体从第一通孔穿过,之后使得气体靠近或贴合着换热管道的外壁流动,避免气体沿着壳体内壁向上流动而未经过换热管道之间的流通空间,提高换热系数,使得 气体被充分冷却。另外,第一挡板4可以与换热组件2连接,使得第一挡板4对于换热组件2起到了支撑作用,增强了换热组件2在壳体1内的稳定性,提升了本发明实施例提供的用于制氢系统的洗涤分离装置的结构牢固性。
在一种可选方式中,本发明实施例提供的用于制氢系统的洗涤分离装置还包括第二挡板6,第二挡板6固定设置于壳体1的内壁,且位于第一挡板4远离洗涤液体的一侧,第一挡板4与壳体1的内壁之间具有第二通孔。第二挡板6上开设有与换热组件2的流通空间连通的第三通孔,第二挡板6与壳体1的内壁之间具有第四通孔,第二通孔与第四通孔在第一挡板4上的投影错位设置。如图2所示,第一挡板4与第二挡板6可以沿壳体1的高度方向平行设置,第二挡板6设置于换热管道21的中部位置处。如此,使得气体从第一通孔或第二通孔穿过后,之后从第三通孔或第四通孔穿过,迫使气体的流动方向改变,使得气体横掠换热组件,延长了气体在换热组件2内的流动路径,提升了气体与换热组件的热交换时间,有利于气体的充分冷却。另外,气体的流动方向错综复杂,使得气体进行混合,有利于被换热组件2冷却后的气体温度的均匀性。另外,第二挡板6可以与换热组件2连接,使得第二挡板6对于换热组件2起到了支撑作用,增强了换热组件2在壳体1内的稳定性,提升了本发明实施例提供的用于制氢系统的洗涤分离装置的结构牢固性,延长用于制氢系统的洗涤分离装置的使用寿命。
作为一种可选方式,如图2所示,本发明实施例提供的用于制氢系统的洗涤分离装置还包括第三挡板20,固定于壳体1的内壁,且位于换热组件2远离洗涤液体的一端。第三挡板20开设有与换热组件2的流通空间连通的第五通孔,第三挡板20与壳体1的内壁之间具有第六通孔,第六通孔与第四通孔在第二挡板6上的投影错位设置。如此,第五通孔的设置为换热组件2的安装提供避让空间。第三挡板20与壳体1的内壁之间具有第六通孔,且第六通孔与第四通孔在第二挡板6上的投影错位设置,使得气体从第三通孔或第四通孔穿过后,从第五通孔或第六通孔穿过,迫使气体的流动方向改变,使得气体横掠换热组件2,延长了气体在换热组件2内的流动路径,提升了气体与换热组件2的热交换时间,有利于气体的充分冷却。另外,气体的流动方向错综复杂,加大了气体的混合,有利于被换热组件冷却后的气体温度的均匀性。第二通孔、第四通孔、第六通孔的设置使得气体的流动方向沿壳体1的轴线 方向呈S形,进一步延长了气体在换热组件内的流动路径,提升了气体与换热组件的热交换时间,有利于气体的充分冷却。
在一些实施例中,参见图3所示,本发明实施例提供的用于制氢系统的洗涤分离装置还包括两个相对设置的第一围板5,第一围板5设置于换热管道21外,第二通孔、第四通孔和第六通孔位于两个第一围板之间。如此,使得气体在两个第一围板5之间流动,第一围板5设置于换热管道外,迫使气体靠近或贴合着换热管道的外壁流动,提高换热系数,使得气体被充分冷却。具体实施时,第一围板5可以平行于壳体1的轴线设置,第一围板5可以由第一挡板4、第二挡板6、第三挡板20中的至少一个进行支撑,以增强洗涤分离装置的结构牢固性。
在另一些实施例中,本发明实施例提供的用于制氢系统的洗涤分离装置还包括两个相对设置的第二围板30,换热管道位于第一围板5、第二围板30围设形成的围设空间内,第一围板5、第二围板30、第一挡板4之间形成流通空间。如此,迫使气体靠近或贴合着换热管道的外壁流动,提高换热系数,使得气体被充分冷却。
应理解的是,由于使用碱性电解液制得的氢气或氧气中含有碱性水雾,在电解的过程中,一方面使得碱性电解液的量逐渐减少,致使碱性电解液的碱流失,另一方面,当含有碱性水雾的氢气或氧气进入洗涤液体并从洗涤液体中流出后,使得氢气或氧气中的大部分碱性水雾存留在洗涤液体中,使洗涤液体的pH值增大,对于氢气或氧气起不到洗涤作用。当氢气或氧气经过换热组件2冷却后,氢气或氧气中的水雾凝结成水滴落入洗涤液体中,一定程度上会致使洗涤液体的液面升高。在洗涤液体的液面过高或洗涤液体的pH值超过预设范围(一般洗涤液体的pH=13)时,需要释放部分或全部洗涤液体,也可以采取向洗涤液体中添加洗涤液体的方式,以降低洗涤液体的pH值。
鉴于此,作为一种可能的实现方式,参见图1至图3所示,壳体1上设置有第一进液口13和出液口14,通过第一进液口13向壳体1内注入洗涤液体,出液口14用于释放壳体1内的洗涤液体。具体实施时,第一进液口13在壳体1上的位置可以低于换热组件2和第一挡板4,以免向壳体1内注入洗涤液体时,洗涤液体落在换热组件2或第一挡板4上,不仅造成洗涤液体的浪费,而且影响换热组件2的冷却功能。出液口14用于释放壳体1内的洗涤液 体,出液口14可以设置于壳体1的底部,出液口14与气液分离器200的第二出气口220连通,用于将洗涤液体释放于气液分离器200内,不仅避免了洗涤液体的浪费,而且弥补了碱性电解液中由氢气或氧气携带走的碱。本发明提供的实施例中,可以将壳体1通过壳体1的耳式支座16放置在高处,使得洗涤液体通过自身重力作用流向气液分离器200,进行重力溢流补液,也可以将壳体1放在低位,用泵强制将洗涤液体抽取并输送至气液分离器200中。耳式支座16的数量为至少两个,对称紧固设置于壳体1的上部外壁,用于支撑壳体1。
作为一种可选方式,参见图1和图2所示,用于制氢系统的洗涤分离装置还包括液位计7和控制器,液位计7设置于壳体1的侧壁,液位计7用于探测壳体1内的洗涤液体的液面高低,并输出液面高低信号。液位计7与控制器连接,控制器用于根据液面高低信号控制通过向壳体1内注入洗涤液体。如此,便于实时监测壳体1内的洗涤液体的量,避免出现洗涤液体过少,氢气或氧气与洗涤液体接触时间过短,洗涤不充分,以及,洗涤液体液面过高导致向电解槽循环补入的碱液不足,同时过高的洗涤液面与换热组件距离太近影响换热组件对气体的冷却效果。如图2所示,壳体1的轴向设置为竖直方向,洗涤液体的液面具有液面最高值HL、液面最低值LL和最合适的液面值NL,液位计7的探测端位于洗涤液体内,当液位计7探测到的洗涤液体的液面高于HL时,控制器控制通过出液口14释放洗涤液体。当液位计7探测到的洗涤液体的液面低于NL时,控制器控制通过第一进液口13向壳体1内注入洗涤液体。
进一步的,参见图1和图2所示,用于制氢系统的洗涤分离装置还包括pH值检测仪8,设置于壳体1,用于探测洗涤液体的pH值,并输出pH值信号。pH值检测仪8与控制器连接,控制器用于根据pH值控制注入或释放洗涤液体。pH值检测仪8与控制器连接,便于实时监测壳体1内的洗涤液体的pH值。当pH值检测仪8检测到的洗涤液体的pH值超过预设范围(pH=13)时,控制器可以通过控制向洗涤液体中添加洗涤液体以降低洗涤液体的pH值的作用,或控制器可以通过控制释放洗涤液体,然后再重新注入洗涤液体的方式,达到降低洗涤液体的pH值的目的,以免出现洗涤液体对于氢气或氧气的洗涤作用不充分的现象。当然,要保证洗涤液体的液面在预设范围内。
作为一种可选方式,参见图2、图6和图7所示,通气管9开设有通气孔91,用于向壳体1内输入氢气或氧气,通气孔91位于洗涤液体内。如此,使得从通气管9接收端通入的待洗涤的氢气或氧气通入洗涤液体内,保证氢气或氧气与洗涤液体接触,实现对于氢气或氧气的洗涤作用。不仅如此,氢气或氧气从通气孔91通入洗涤液体,避免出现较大气泡,使得气泡内的氢气或氧气得不到洗涤,提升了氢气或氧气的洗涤作用,同时减少对液面的扰动作用,使得液位计7的检测更准确。
具体实施时,当第一进气口11位于洗涤液体液面下时,可以省略通气管9。从第一进气口11通入的氢气或氧气直接通入洗涤液体中。在本发明提供的实施例中,第一进气口11位于洗涤液体的液面上方,通气管9为L形结构,通气管9具有接收端和封闭端,通气管9的接收端与气液分离器200的第二出气口220连通,第二出气口220用于排出氢气或氧气。通气管9的封闭端位于壳体1的轴线上,通气管9靠近封闭端开设有通气孔91,用于向壳体1内输入氢气或氧气。沿通气管9的周向开设多个通气孔91,且沿通气管9的轴向方向开设多排通气孔91,使得氢气或氧气较为均匀的从通气管9内排出。通气孔91倾斜向上设置,通气孔91的轴线与水平面具有夹角α,α此处不作具体限定,可以为55°。通气孔91的大小此处不作具体限定,以实际情况为准。在本发明提供的实施例中,通气孔91的直径φd2范围为φ8mm~φ12mm。
作为一种可选方式,洗涤组件和换热组件2的长度比为(2-3):2,洗涤组件、换热组件2和气水分离组件3的长度比为(2-3):2:(0.8-1),洗涤组件、换热组件2和气水分离组件3的长度根据实际情况进行设置,洗涤组件和换热组件2的长度以能够更好的实现对于气体的洗涤和冷却作用,同时简化洗涤分离装置的结构,减少占用空间为原则。例如,洗涤组件的长度可以为974.9mm,换热组件的长度可以为1125mm,气水分离组件3的长度可以为763mm,当然此处并不作为限定。
在本发明提供的实施例中,气水分离组件3包含丝网除雾器,丝网除雾器设计、制造、检验标准为HG/T21618-1998,只需按照工艺要求选型即可,缩短了用于制氢系统的洗涤分离装置的加工制造时间。丝网除雾器是由金属编织成网,卷成盘状,可以进一步将氢气或氧气中夹带的水雾除去,同时净化 氢气或氧气,减少氢气或氧气中的杂质。
冷却后的氢气或氧气中,夹带细小液体雾滴,过丝网除雾器的丝网时,雾滴碰到丝网上,被粘附或吸附下来,经过反复多次吸附雾滴,极小的雾滴附聚、聚结成为大的液滴,液滴在重力的作用下,沿着编织丝网丝与丝的交叉点向下运动,同时继续吸附气体中夹带的雾滴,长大的雾滴流到除雾器丝网的底部,以靠液滴自身的重力跌落下来,液滴沿着翅片24滴落至洗涤液体中。
实际情况下,如图1和图2所示,在壳体1内,还设置有第四挡板10,第四挡板10紧固设置在壳体1的内壁上,且第四挡板10位于气水分离组件3靠近换热组件的一端。第四挡板10上开设有与气水分离组件3相对应的通孔,迫使经换热组件2冷却后的氢气或氧气从第四挡板10上的通孔穿过,最大限度的使得氢气或氧气经过气水分离组件3,以除去氢气或氧气中的水雾。
另外,为了便于壳体1内的换热组件2和气水分离组件3的拆装、维修,本发明实施例提供的壳体1为分体式结构,包括上壳体和下壳体,上壳体通过法兰15盖设与下壳体,如图1和图2所示。
基于以上任一实施例所描述的洗涤分离装置,本发明实施例还提供了一种制氢系统,包括电解设备和气液分离框架,其中气液分离框架包含以上任一实施例所描述的用于制氢系统的洗涤分离装置,电解设备用于电解电解液产生氢气或氧气,电解设备与洗涤分离装置连通,用于向洗涤分离装置通入电解制得的氢气或氧气,由洗涤分离装置将气体中的电解液水雾充分有效地去除。
本发明实施例提供的气液分离框架还包括与电解设备连通的气液分离器200。气液分离器200具有第二进液口210和第二出气口220,第二进液口210与出液口14连通,用于接收出液口14释放的洗涤液体;第一进气口11与第二出气口220连通,用于接收待洗涤的氢气或氧气。如此,不仅避免洗涤液体的浪费,而且通过实现洗涤液体的循环使用,使得待洗涤氢气或氧气带走的电解液得以补充。
电解设备具体可以为碱性水电解槽。对于碱性水电解系统而言,气液分离器200为氢气气液分离器或氧气气液分离器,氢气气液分离器和氧气气液分离器与电解设备的电解槽连通,并排设置在电解槽的上方,氢气和氧气的洗涤分离装置可以设置在气液分离器的上方。
如图1所示,本发明实施例提供的制氢系统还包括纯化设备300,氢气洗 涤分离装置的第一出气口与纯化设备300的第二进气口310进行连通。根据生产的需要,在进入纯化设备300前需要极低水含量的气体时,本发明的气液分离框架还可以包含至少一组气体冷却器和气水分离器,第一方面所述的洗涤分离装置的第一出气口依次与气体冷却器和气水分离器连通,然后再与纯化设备300进行连通对气体进行干燥处理。
从电解槽出来的氢气和氧气分别进入氢气气液分离器和氧气气液分离器,在气液分离器中气体携带的绝大部分碱雾被分离,然后氢气和氧气分别进入氢气的洗涤分离装置和氧气洗涤分离装置中,在洗涤分离装置中对残留的电解质原料液如碱性水雾进行洗涤,并对气体携带的小粒径液滴和水蒸气进行一次冷却凝结,在经过气水分离组件的二次冷却后得到的气体含水量很低,可以不经过气体冷却器和气水分离器的进一步除水而直接进入纯化设备进行干燥处理,节约了两个以上的设备以及其之间的管道连接,可有效降低现有气液分离框架所需的厂房高度。
当氢气和氧气的洗涤分离装置中洗涤液体的液面过高或洗涤液体的pH值超过预设范围(一般洗涤液体的pH=13)时,则释放部分或全部洗涤液体进入氢气气液分离器和氧气气液分离器中,液体在重力作用下最终汇入电解槽中,实现系统的碱液循环和对系统的补水。
第二方面所提供的制氢系统的有益效果与第一方面或第一方面任一可能的实现方式所描述的用于制氢系统的洗涤分离装置的有益效果相同,此处不作赘述。
在上述实施方式的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种用于制氢系统的洗涤分离装置,其特征在于,包括壳体、洗涤组件和换热组件;
    所述壳体具有第一进气口、第一出气口和出液口,所述第一进气口用于向所述壳体中通入待洗涤的气体;所述第一出气口设于壳体上方;
    所述洗涤组件包含通气管,所述通气管的一端与所述第一进气口连通,另一端延伸至壳体内洗涤液体的液面以下;
    所述换热组件设置于所述壳体内,位于所述洗涤组件的上方;所述换热组件具有多个用于流通冷却介质的换热管道,多个所述换热管道的外壁之间形成用于流通洗涤后的所述气体的流通空间。
  2. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述换热组件还包括:
    进口集箱,用于通入并分流所述冷却介质;
    出口集箱,用于收集并输出所述冷却介质;
    多个所述换热管道连接形成多个冷却介质流动通道,所述冷却介质流动通道的一端与所述进口集箱连通,另一端与所述出口集箱连通。
  3. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述换热组件还包括沿所述换热管道的长度方向设置于所述换热管道外的翅片,所述翅片为连续螺旋翅片,或者所述翅片为螺旋排布的离散翅片。
  4. 根据权利要求3所述的用于制氢系统的洗涤分离装置,其特征在于,所述翅片的厚度为0.5mm-6mm,所述翅片间距为2.5mm-30mm,所述翅片的高度为8mm-30mm。
  5. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述换热管道的轴线平行于所述壳体的轴线;多个所述换热管道呈顺排排布或叉排排布。
  6. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,还包括气水分离组件,设置于所述壳体内,且位于所述换热组件和所述第一出气口之间。
  7. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,还包括第一挡板,固定于所述壳体的内壁,且位于所述换热组件靠近所述洗涤 液体的一端;所述第一挡板上开设有与所述换热组件的流通空间连通的第一通孔。
  8. 根据权利要求7所述的用于制氢系统的洗涤分离装置,其特征在于,还包括第二挡板,固定于所述壳体的内壁,且位于所述第一挡板远离所述洗涤液体的一侧;所述第一挡板与所述壳体的内壁之间具有第二通孔;所述第二挡板上开设有与所述换热组件的流通空间连通的第三通孔,所述第二挡板与所述壳体的内壁之间具有第四通孔,所述第二通孔与所述第四通孔在所述第一挡板上的投影错位设置。
  9. 根据权利要求8所述的用于制氢系统的洗涤分离装置,其特征在于,还包括第三挡板,固定于所述壳体的内壁,且位于所述换热组件远离所述洗涤液体的一端;所述第三挡板开设有与所述换热组件的流通空间连通的第五通孔;所述第三挡板与所述壳体的内壁之间具有第六通孔,所述第六通孔与所述第四通孔在所述第二挡板上的投影错位设置。
  10. 根据权利要求9所述的用于制氢系统的洗涤分离装置,其特征在于,还包括两个相对设置的第一围板,所述第一围板设置于所述换热管道外,所述第二通孔、所述第四通孔和所述第六通孔位于两个所述第一围板之间。
  11. 根据权利要求10所述的用于制氢系统的洗涤分离装置,其特征在于,还包括两个相对设置的第二围板,所述换热管道位于所述第一围板、所述第二围板围设形成的围设空间内;所述第一围板、所述第二围板、所述第一挡板之间形成所述流通空间。
  12. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述壳体上设置有第一进液口,通过所述第一进液口向所述壳体内注入所述洗涤液体。
  13. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,还包括:
    液位计,设置于所述壳体的侧壁,用于探测所述壳体内的洗涤液体的液面高低,并输出所述液面高低信号。
  14. 根据权利要求13所述的用于制氢系统的洗涤分离装置,其特征在于,还包括控制器,所述液位计与所述控制器连接,所述控制器用于根据所述液面高低信号控制向所述壳体内注入或释放所述洗涤液体。
  15. 根据权利要求14所述的用于制氢系统的洗涤分离装置,其特征在于,还包括pH值检测仪,设置于所述壳体,用于探测所述洗涤液体的pH值,并输出所述pH值信号;所述pH值检测仪与所述控制器连接,所述控制器用于根据所述pH值控制注入或释放所述洗涤液体。
  16. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述通气管开设有通气孔,所述通气孔位于所述洗涤液体内。
  17. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述洗涤组件和换热组件的长度比为(2-3):2。
  18. 根据权利要求6所述的用于制氢系统的洗涤分离装置,其特征在于,所述洗涤组件、换热组件和气水分离组件的长度比为(2-3):2:(0.8-1)。
  19. 根据权利要求6所述的用于制氢系统的洗涤分离装置,其特征在于,所述气水分离组件包含丝网除雾器。
  20. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述壳体的形状为圆筒状。
  21. 根据权利要求1所述的用于制氢系统的洗涤分离装置,其特征在于,所述洗涤液体为纯水溶液或碱水溶液。
  22. 一种制氢系统,其特征在于,包括:
    气液分离框架,所述气液分离框架包含如权利要求1至21任一项所述的用于制氢系统的洗涤分离装置;
    电解设备,与所述洗涤分离装置连通,用于向所述洗涤分离装置通入电解制得的气体。
  23. 根据权利要求22所述的一种制氢系统,其特征在于,所述气液分离框架还包括气液分离器,所述气液分离器与所述电解设备连通;所述气液分离器具有第二进液口和第二出气口,所述第二进液口与所述出液口连通,用于接收所述出液口释放的所述洗涤液体;所述第一进气口与所述第二出气口连通,用于接收待洗涤气体。
  24. 根据权利要求22或23所述的制氢系统,其特征在于,所述制氢系统还包括纯化设备,用于对气体进行干燥处理,所述洗涤分离装置的第一出气口与所述纯化设备的第二进气口连通。
  25. 根据权利要求23或24任一项所述的一种制氢系统,其特征在于,所 述电解设备为碱性水电解槽。
PCT/CN2023/072551 2022-06-02 2023-01-17 一种用于制氢系统的洗涤分离装置和制氢系统 WO2023231421A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210626286.9A CN115161706A (zh) 2022-06-02 2022-06-02 一种用于制氢系统的洗涤分离装置和制氢系统
CN202210626286.9 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231421A1 true WO2023231421A1 (zh) 2023-12-07

Family

ID=83483341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072551 WO2023231421A1 (zh) 2022-06-02 2023-01-17 一种用于制氢系统的洗涤分离装置和制氢系统

Country Status (2)

Country Link
CN (1) CN115161706A (zh)
WO (1) WO2023231421A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115161706A (zh) * 2022-06-02 2022-10-11 无锡隆基氢能科技有限公司 一种用于制氢系统的洗涤分离装置和制氢系统
CN116497368B (zh) * 2023-06-27 2023-11-17 上海联风气体有限公司 制氢设备及其气液分离装置以及电解液和氢气的分离方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526222A (zh) * 2013-10-11 2014-01-22 苏州竞立制氢设备有限公司 用于水电解制氢的氢氧洗涤器
CN203513801U (zh) * 2013-10-11 2014-04-02 苏州竞立制氢设备有限公司 用于水电解制氢的氢氧洗涤器
CN106119885A (zh) * 2016-07-26 2016-11-16 扬州中电制氢设备有限公司 一种碱溶液电解制氢装置及制氢方法
CN107192281A (zh) * 2017-05-11 2017-09-22 中国北方车辆研究所 圆管管径规律变化的燃烧余热利用换热装置
CN213708498U (zh) * 2020-11-13 2021-07-16 苏州竞立制氢设备有限公司 碱性水电解制氢气液分离集成系统和集成式制氢设备
CN113652700A (zh) * 2021-08-04 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种电解水制氢洗涤分离装置
CN215085877U (zh) * 2021-04-12 2021-12-10 阳光电源股份有限公司 一种制氢系统中气液分离一体化装置
CN115161706A (zh) * 2022-06-02 2022-10-11 无锡隆基氢能科技有限公司 一种用于制氢系统的洗涤分离装置和制氢系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104479761B (zh) * 2014-11-28 2017-07-07 新奥科技发展有限公司 洗涤塔及具有该洗涤塔的煤气净化除尘系统
JP7059063B2 (ja) * 2018-03-23 2022-04-25 株式会社東芝 洗浄器、水素製造装置及び電力供給システム
CN111256487B (zh) * 2020-01-17 2021-02-12 浙江大学 一种构成循环回路的蒸汽冷却装置及方法
CN213177652U (zh) * 2020-09-17 2021-05-11 绍兴橙氧科技有限公司 一种用于氧阴极电解装置的储气罐
CN113617176A (zh) * 2021-08-04 2021-11-09 中国华能集团清洁能源技术研究院有限公司 一种电解水制氢冷却洗涤器
CN114086197A (zh) * 2021-11-05 2022-02-25 无锡隆基氢能科技有限公司 水电解制氢装置的排放液回收系统及回收系统的控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103526222A (zh) * 2013-10-11 2014-01-22 苏州竞立制氢设备有限公司 用于水电解制氢的氢氧洗涤器
CN203513801U (zh) * 2013-10-11 2014-04-02 苏州竞立制氢设备有限公司 用于水电解制氢的氢氧洗涤器
CN106119885A (zh) * 2016-07-26 2016-11-16 扬州中电制氢设备有限公司 一种碱溶液电解制氢装置及制氢方法
CN107192281A (zh) * 2017-05-11 2017-09-22 中国北方车辆研究所 圆管管径规律变化的燃烧余热利用换热装置
CN213708498U (zh) * 2020-11-13 2021-07-16 苏州竞立制氢设备有限公司 碱性水电解制氢气液分离集成系统和集成式制氢设备
CN215085877U (zh) * 2021-04-12 2021-12-10 阳光电源股份有限公司 一种制氢系统中气液分离一体化装置
CN113652700A (zh) * 2021-08-04 2021-11-16 中国华能集团清洁能源技术研究院有限公司 一种电解水制氢洗涤分离装置
CN115161706A (zh) * 2022-06-02 2022-10-11 无锡隆基氢能科技有限公司 一种用于制氢系统的洗涤分离装置和制氢系统

Also Published As

Publication number Publication date
CN115161706A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2023231421A1 (zh) 一种用于制氢系统的洗涤分离装置和制氢系统
CN101520284A (zh) 壳管逆流式换热器
CN203687669U (zh) 酸性气体冷凝器
CN203928811U (zh) 一种线型玻璃管换热器
CN219314576U (zh) 集成式气体处理设备及水电解系统
CN204142055U (zh) 一种列管冷凝器
CN115682778A (zh) 一种冷却气体和去除水滴的一体容器
CN215713413U (zh) 一种碱法吸收提溴与无隔膜电解相结合生产溴酸钠的装置
CN108339375A (zh) 一种高温含氟废气处理装置
CN209901035U (zh) 一种炼铝用阳极材料排风净化设备
CN202380109U (zh) 一种电解锌液冷却装置
CN213515138U (zh) 一种落地式耐温耐蚀冷凝器
CN219776479U (zh) 一种带有玻璃管的管束式换热器
CN201040774Y (zh) 模块式次氯酸钠发生装置
CN216321016U (zh) 一种干燥塔进料管除水装置
CN218910557U (zh) 一种节能型电解铜箔系统
CN214106343U (zh) 一种湿气体冷却分离装置
CN214344540U (zh) 钛白粉用真空结晶器除沫装置
CN217900555U (zh) 一种油田加热炉用喷淋回热塔
CN219231440U (zh) 一种渐进式石墨制硫酸蒸发浓缩装置
CN218795045U (zh) 一种废气处理用喷淋装置
CN218871693U (zh) 一种冷却洗涤分离器
CN212158200U (zh) 生物柴油生产中甲醇气冷凝装置
CN211987746U (zh) 一种硫铁矿焙烧制硫酸技术中的烟气降温除尘装置
CN219072478U (zh) Hf反应转炉气体洗涤装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814620

Country of ref document: EP

Kind code of ref document: A1