WO2023231317A1 - 纳滤膜的制备方法和由其制备的纳滤膜 - Google Patents

纳滤膜的制备方法和由其制备的纳滤膜 Download PDF

Info

Publication number
WO2023231317A1
WO2023231317A1 PCT/CN2022/132774 CN2022132774W WO2023231317A1 WO 2023231317 A1 WO2023231317 A1 WO 2023231317A1 CN 2022132774 W CN2022132774 W CN 2022132774W WO 2023231317 A1 WO2023231317 A1 WO 2023231317A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride
preparation
nanofiltration membrane
oil phase
membrane
Prior art date
Application number
PCT/CN2022/132774
Other languages
English (en)
French (fr)
Inventor
梁松苗
胡利杰
章冰洁
Original Assignee
沃顿科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 沃顿科技股份有限公司 filed Critical 沃顿科技股份有限公司
Publication of WO2023231317A1 publication Critical patent/WO2023231317A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/28Polymers of vinyl aromatic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Definitions

  • the present disclosure relates to the technical field of water treatment membranes, and in particular to a preparation method of a nanofiltration membrane and a nanofiltration membrane prepared therefrom.
  • Petroleum products are an important pillar industry of the current national economy. With the intensification of oil and gas exploration and development, the proportion of reserves and production of low-grade oil and gas fields is increasing year by year. The use of artificial water injection technology to maintain oil layer pressure for secondary and tertiary oil recovery has become a way to improve crude oil recovery. important means of yield.
  • Oily wastewater from oil fields not only carries various components such as petroleum, dissolved salts, suspended solids, harmful gases, organic matter and chemicals, but also contains a large number of microorganisms and bacteria.
  • As national and local governments have increasingly stringent requirements for environmental protection and governance, oilfield produced water reinjection has become an important way to sustainably utilize water resources and protect the ecological environment.
  • traditional water treatment processes are difficult to meet the water quality requirements of oilfield reinjection water. When the reinjection water is incompatible with the reservoir fluid, it will cause damage to the reservoir, directly affecting the water injection recovery rate and even the life of the reservoir.
  • front-end treatment technologies such as ultrafiltration and microfiltration can effectively remove oil, suspended solids, bacteria and other substances in the water.
  • the effluent water quality can meet the reuse standards.
  • this type of water has high salinity and still contains calcium, Scale ions such as magnesium and sulfate are present, as well as residual components of organic matter such as crude oil and humic acid. Severe corrosion and scaling phenomena still occur, making it difficult to achieve a virtuous cycle of water injection development in low-permeability reservoirs.
  • Nanofiltration membrane desalination technology has high rejection characteristics for divalent ions and can remove most of the total dissolved solids (TDS) and divalent scaling ions such as Ba 2+ , Ca 2+ , and Mg 2+ , SO 4 2- , CO 3 2-, etc., can effectively reduce the salinity and residual organic matter in the water while meeting the oilfield water reuse requirements.
  • TDS total dissolved solids
  • divalent scaling ions such as Ba 2+ , Ca 2+ , and Mg 2+ , SO 4 2- , CO 3 2-, etc.
  • Patent document CN103601314A discloses a processing system and process for producing oilfield reinjection water using seawater, which uses ultrafiltration membranes for pretreatment and nanofiltration membranes to desalinate seawater to obtain qualified oilfield reinjection water. It solves the problems of corrosion and scaling in oil wells in the existing technology, achieves high oil recovery rate of oil well platforms and reduces oil production production costs.
  • Jin Limei et al. reported in the non-patent document "Preparation of composite nanofiltration membrane using PAMAM/TMC as monomer and its application in oilfield produced water treatment, Membrane Science and Technology, 37(4), pp. 100-106"
  • a method of preparing a negatively charged nanofiltration membrane using PAMAM/TMC as a monomer is used for oilfield produced water treatment.
  • the membrane has poor retention capacity for divalent cations, with a removal rate of only 68% of MgCl 2 , and pollutants are easily A gel layer is formed and some membrane pores are blocked. Poor anti-fouling ability leads to rapid membrane flux decay.
  • Liu et al. proposed a method with opposite charges in the non-patent document "One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration, J.Mater.Chem.A, 2017(5) pp. 22988-22996" Preparation method of Janus structural polyamide membrane. Control the water phase temperature to 70°C and the organic phase temperature to -5°C.
  • the ratio of amine groups to carboxyl groups in the membrane can be adjusted by controlling the concentration of piperazine near the reaction zone, and then the surface and With a polyamide functional layer with opposite charges on the back, the prepared membrane material has a removal rate of Na 2 SO 4 between 82% and 96.5%, and a removal rate of MgCl 2 between 97% and 99%.
  • this method The requirements for equipment and technology are too high, making it difficult to achieve large-scale preparation.
  • Patent document CN109200833A discloses a method for preparing a nanofiltration membrane for removing divalent cations and positively charged PPCPs.
  • the prepared nanofiltration membrane shows a high removal rate for high-valent cation salt solutions, but cannot remove sulfate radicals. The rate is only 78.13%.
  • the purpose of this disclosure is to provide a nanofiltration membrane whose functional layer has a mixed charged Janus structure to improve the performance of the nanofiltration membrane for oilfield wastewater.
  • the removal rate of divalent cations and divalent anions such as Mg 2+ , Ca 2+ and SO 4 2- in the membrane is improved, and the flux attenuation problems caused by membrane fouling, oil pollution and organic pollution are also solved.
  • the inventor of the present disclosure conducted intensive research and found that in the process of forming the functional layer, positive charges are loaded on the back of the functional layer by adding a positive charge regulator, and -COOH is loaded on the surface of the functional layer itself. Therefore, a functional layer with a mixed charge Janus structure can be formed. After adding a positive charge regulator, the polymer network structure of the functional layer may become loose while loading positive charges. At the same time, adding a pore size regulator can ensure the high stability of the polymer network.
  • the cross-linked structure, synergistic mixed charging and pore size adjustment ensure a high removal rate of divalent cations and divalent anions; the positive charges loaded on the back of the functional layer and the -COOH loaded on the surface give the nanofiltration membrane stronger Hydrophilicity and the addition of positive charge regulators limit the diffusion of water phase monomers.
  • the reduction of nodular substances on the surface of the functional layer improves the flatness of the membrane surface, which can effectively alleviate pollution caused by oil substances and organic matter. .
  • the present disclosure provides a method for preparing a nanofiltration membrane, which is characterized by comprising the following steps:
  • the base film is contacted with an aqueous phase solution and an oil phase solution in sequence to form a functional layer on the base film through interfacial polymerization, wherein the aqueous phase solution contains a water phase monomer, an acid binding agent and a positive charge regulator,
  • the oil phase solution contains oil phase monomer, solvent and pore size regulator;
  • the positive charge regulator is selected from the group consisting of octaaminopropyl polyhedral oligomeric silsesquioxane hydrochloride, amino-functionalized mesoporous silica, and aminated multi-arm carbon nanoparticles.
  • the polymer is selected from the group consisting of bisphenol A polysulfone, polyethersulfone, sulfonated polyethersulfone, polyarylsulfone, polyetherimide, polyetheretherketone, polyethersulfone, At least one of vinylidene fluoride, polyacrylonitrile, polyvinyl chloride and polystyrene, preferably, the mass percentage concentration of the polymer is 15wt% to 25wt% based on the total mass of the casting liquid.
  • the hydrophilic nanofiller is selected from bentonite, graphene oxide, dopamine, hydrotalcite, nano-attapulgite, cellulose nanocrystals, functionalized carbon nanotubes, carbon nitride At least one of quantum dots and nano-metal organic framework materials, preferably, the mass percentage concentration of the hydrophilic nanofiller is 0.5wt% to 5.0wt% based on the total mass of the casting liquid.
  • the aqueous phase monomer is at least one selected from polyamidoamine, polyethyleneimine, piperazine and m-phenylenediamine; preferably, in the aqueous phase solution Based on the total mass, the mass percentage concentration of the water phase monomer is 1.0 to 5.0 wt%.
  • the acid binding agent is selected from the group consisting of sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, potassium phosphate, triethylamine, sodium camphorsulfonate, and triethylamine hydrochloride. At least one of, preferably, the mass percentage concentration of the acid binding agent is 0.1 to 2.0 wt% based on the total mass of the aqueous solution.
  • the oil phase monomer is selected from trimesoyl chloride, 1,3,5-benzenestrisulfonyl chloride, 3,4,5-biphenyltrisulfonyl chloride and 3,3' , at least one of 5,5'-biphenyltetrayl chloride, preferably, based on the total mass of the oil phase solution, the mass percentage concentration of the oil phase monomer is 0.1 to 1.0 wt%.
  • the pore size regulator is selected from the group consisting of terephthaloyl chloride, isophthaloyl chloride, 2,6-pyridinedicarboxyl chloride, and 2,5-bis(chloroformyl)thiophene , 2,5-furandicarboxyl chloride, 4,4'-biphenyl diacetyl chloride, 4,4'-biphenyl diacetyl chloride, glutaryl chloride, adipoyl chloride, pimeloyl chloride, suberoyl chloride, nonanedi At least one of acid chloride, sebacyl chloride, 1,4-cyclohexanedioyl chloride and 1,3-adamantanedicarboxyl chloride, preferably, the mass of the pore size regulator based on the total mass of the oil phase solution The percentage concentration is 0.05wt% ⁇ 0.5wt%.
  • the present disclosure also provides a nanofiltration membrane prepared according to the preparation method of the present disclosure.
  • the functional layer of the nanofiltration membrane prepared by the preparation method of the present disclosure has a mixed charge Janus structure.
  • the nanofiltration membrane has a high removal rate for both divalent cations and divalent anions.
  • the surface of the nanofiltration membrane is smooth and hydrophilic. High, it can effectively alleviate the pollution of the membrane surface caused by oil substances and organic matter, thereby alleviating the problem of flux attenuation.
  • Figure 1 shows the comparative results of the anti-fouling properties of the nanofiltration membranes prepared in Comparative Example 1 and Example 1.
  • the present disclosure provides a method for preparing a nanofiltration membrane, which includes the following steps:
  • the base film is sequentially contacted with an aqueous phase solution and an oil phase solution to form a functional layer on the base film through interfacial polymerization, wherein the aqueous phase solution includes an aqueous phase monomer, an acid binding agent and a positive charge regulator.
  • the oil phase solution contains oil phase monomers, solvents and pore size regulators;
  • the technical concept of the present disclosure is that in the process of forming the functional layer, positive charges are loaded on the back of the functional layer by adding a positive charge regulator.
  • the surface of the functional layer itself is loaded with -COOH, so a Janus structure with mixed charge can be formed.
  • the polymer network structure of the functional layer may become loose while loading positive charges.
  • adding a pore size regulator can ensure the high cross-linking structure of the polymer network and synergistically mix the charging effect.
  • the positive charge loaded on the back of the functional layer and the -COOH loaded on the surface give the nanofiltration membrane stronger hydrophilicity, which can promote the nanofiltration membrane.
  • the increase in water flux and the addition of positive charge regulators limit the diffusion of water phase monomers and reduce the nodular substances on the surface of the functional layer obtained through interfacial polymerization, thereby improving the surface flatness of the membrane and effectively Reduce pollution caused by oil and organic matter.
  • the positive charge regulator is selected from the group consisting of octaaminopropyl polyhedral oligomeric silsesquioxane hydrochloride (POSS-NH 3 Cl), amino-functionalized mesoporous silica, At least one of aminated multi-arm carbon nanotubes, quaternized cellulose nanofibers and branched chain amino acids.
  • the positive charge regulator is octaaminopropyl polyhedral oligomeric silsesquioxane hydrochloride (POSS-NH 3 Cl).
  • the mass percentage concentration of the positive charge regulator is 0.5 wt% to 5.0 wt% based on the total mass of the aqueous solution.
  • the polymer is selected from bisphenol A-type polysulfone, polyethersulfone, sulfonated polyethersulfone, polyarylsulfone, polyetherimide, polyetheretherketone, polyvinylidene At least one of vinyl fluoride, polyacrylonitrile, polyvinyl chloride and polystyrene.
  • the polyarylsulfone includes, for example, polyphenylsulfone, polyphenylenesulfone, etc.
  • the polyethersulfone includes, for example, polyphenylene sulfide sulfone, etc.
  • the polymer is bisphenol A polysulfone or polyethersulfone.
  • the mass percentage concentration of the polymer is 15 wt% to 25 wt%.
  • the solvent in the film casting liquid is not particularly limited as long as it can fully dissolve the polymer.
  • the solvent is N,N-dimethylformamide (DMF), N,N-dimethylethyl At least one of amide (DMAC), dimethyl sulfoxide, N-methylpyrrolidone, tetrahydrofuran and imidazolinone.
  • the reinforcing materials used in the present disclosure may be polypropylene (PP) non-woven fabrics, nylon (PA) non-woven fabrics, and ethylene (HDPE) non-woven fabrics, with polypropylene (PP) non-woven fabrics being preferred.
  • PP polypropylene
  • PA nylon
  • HDPE ethylene
  • the method of coating the casting liquid on the non-woven fabric is not particularly limited. Coating methods commonly used in the field of nanofiltration membrane preparation can be used, such as casting, dip coating, blade coating, and spin coating. etc., and the blade coating method is more preferred. After coating on the non-woven fabric, it is then immersed in a coagulation bath to solidify the casting liquid into a film.
  • the film casting liquid optionally contains a non-solvent.
  • the non-solvent is alcohols with 1 to 6 carbon atoms, polyethylene glycol, polyvinylpyrrolidone, polypropylene glycol and polybutylene glycol. At least one.
  • alcohols having 1 to 6 carbon atoms include at least one of methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, tert-butanol, n-amyl alcohol, isoamyl alcohol, hexanol, and the like. kind.
  • the non-solvent is preferably at least one of ethanol, n-propanol, isopropanol, n-butanol, polyethylene glycol, polypropylene glycol, polybutylene glycol, and polyvinylpyrrolidone.
  • the mass percentage concentration of the non-solvent is 0.5 wt% to 5.0 wt%.
  • thermodynamic stability of the components used to form the base film is a key factor affecting the formation of the film structure.
  • hydrophilic Sexual nanofillers can affect the thermodynamic and kinetic parameters during the phase transformation process, thereby regulating the pore structure and hydrophilicity and hydrophobicity of the base film, and further provide a good reaction site for interfacial polymerization to form a functional layer (also known as a desalination layer), so
  • the hydrophilic nanofiller is at least one selected from the group consisting of bentonite, graphene oxide, dopamine, hydrotalcite, nano-attapulgite, cellulose nanocrystals, functionalized carbon nanotubes, carbon nitride quantum dots and nano-metal organic framework materials.
  • the hydrophilic nanofiller is bentonite.
  • the mass percentage concentration of the hydrophilic nanofiller is 0.5wt% ⁇ 5.0wt%.
  • the water phase monomer is at least one selected from the group consisting of polyamidoamine, polyethyleneimine, piperazine and m-phenylenediamine.
  • the water phase monomer is polyamidoamine.
  • the mass percentage concentration of the aqueous phase monomer is 1.0 to 5.0 wt%.
  • the acid binding agent is selected from the group consisting of sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, potassium phosphate, triethylamine, sodium camphorsulfonate, and triethylamine hydrochloride. At least one of them, preferably, the mass percentage concentration of the acid binding agent is 0.1 to 2.0 wt% based on the total mass of the aqueous solution.
  • the pH value of the aqueous solution can be adjusted in the range of 9 to 10 by adding an acid binding agent.
  • the oil phase monomer is selected from trimesoyl chloride, 1,3,5-benzenestrisulfonyl chloride, 3,4,5-biphenyltrisulfonyl chloride and 3,3', At least one of 5,5'-biphenyltetrayl chloride.
  • the oil phase monomer is trimesoyl chloride.
  • the mass percentage concentration of the oil phase monomer is 0.1 to 1.0 wt%.
  • the positive charge regulator will expand the pore size of the polymer network, and the pore size is adjusted by adding the pore size regulator.
  • the pore size regulator with smaller steric hindrance is more easily stretched into the formed polymer network structure, thereby polymerizing with the aqueous phase monomer primary amine that does not participate in the interfacial polymerization reaction to produce a relatively dense functional layer, thereby shrinking the polymerization
  • the pore size of the physical network is reduced, that is, the pore size of the resulting nanofiltration membrane is reduced, and the aggregated structure of the nanofiltration membrane is changed.
  • the pore size regulator is selected from the group consisting of terephthaloyl chloride, isophthaloyl chloride, and 2,6-pyridine bis.
  • the mass percentage concentration of the pore size regulator is 0.05wt% ⁇ 0.5wt%.
  • non-limiting examples are as follows:
  • Nanofiltration membrane with Janus structure desalination layer is immersed in an aqueous solution containing 5wt% N,N-dimethylformamide (DMF) for 0.5 to 1 min for post-processing. After taking it out, wash it with ultrapure water, and then immerse it in hot water with a temperature of 70 to 80°C for heat treatment for 1 to 3 minutes. After washing with pure water, soak it in an aqueous solution containing glycerin for 1 to 3 minutes, and then dry it to obtain a mixed charge.
  • Nanofiltration membrane with Janus structure desalination layer is an aqueous solution containing 5wt% N,N-dimethylformamide (DMF) for 0.5 to 1 min for post-processing. After taking it out, wash it with ultrapure water, and then immerse it in hot water with a temperature of 70 to 80°C for heat treatment for 1 to 3 minutes. After washing with pure water, soak it in an aqueous solution containing glycerin for 1 to 3 minutes,
  • the present disclosure also provides nanofiltration membranes prepared according to the preparation methods of the present disclosure.
  • the functional layer of the nanofiltration membrane prepared by the above preparation method of the present disclosure has a mixed charge Janus structure.
  • the nanofiltration membrane has a high removal rate for both divalent cations and divalent anions.
  • the nanofiltration membrane has high hydrophilicity.
  • the smooth surface of the membrane can effectively alleviate the pollution of the membrane surface caused by oil substances and organic matter, thereby alleviating the problem of flux attenuation.
  • step (2) Apply the casting liquid obtained in step (1) on the non-woven fabric to prepare a porous polymer support layer by the liquid-solid phase conversion method.
  • the phase conversion time is 0.5 min, the water bath temperature is 18°C, and the thermal curing water bath temperature is 80°C, the film thickness is controlled at 5.3mil, and the prepared base film is stored in deionized water;
  • step (2) Apply the casting liquid obtained in step (1) on the non-woven fabric to prepare a porous polymer support layer by the liquid-solid phase conversion method.
  • the phase conversion time is 0.5 min, the water bath temperature is 18°C, and the thermal curing water bath temperature is 80°C, the film thickness is controlled at 5.2mil, and the prepared base film is stored in deionized water;
  • step (2) Apply the casting liquid obtained in step (1) on the non-woven fabric to prepare a porous polymer support layer by the liquid-solid phase conversion method.
  • the phase conversion time is 0.5 min, the water bath temperature is 18°C, and the thermal curing water bath temperature is 80°C, the film thickness is controlled at 5.2mil, and the prepared base film is stored in deionized water;
  • step (2) Prepare the porous polymer support layer by applying the casting liquid of step (1) on the non-woven fabric through the liquid-solid phase conversion method.
  • the phase conversion time is 0.5 min
  • the water bath temperature is 18°C
  • the thermal curing water bath temperature is 80 °C
  • the film thickness is controlled at 5.2mil
  • the prepared base film is stored in deionized water;
  • the nanofiltration membranes prepared in Comparative Examples 1 to 3 and Example 1 were characterized for roughness and hydrophilicity, and the results are shown in Table 2 below. It can be seen from the data in the table that the hydrophilicity and membrane surface smoothness of the membrane can be improved by adding a positive charge regulator.
  • the nanofiltration membranes prepared in Comparative Examples 1 to 3 and Example 1 were respectively subjected to membrane performance tests on a cross-flow membrane testing platform.
  • Use deionized water to prepare 2000ppm Na 2 SO 4 , MgSO 4 , MgCl 2 , CaCl 2 and NaCl solutions respectively.
  • Test conditions operating pressure 100psi, solution temperature 25°C, pH value 6.5 ⁇ 7.5.
  • the water flux and rejection rate of the membrane were measured after running for 30 minutes. The results are shown in Table 3 below.
  • the rejection rate of the membrane is in the order of MgSO 4 ⁇ Na 2 SO 4 >MgCl 2 >CaCl 2 >NaCl.
  • the rejection rate for SO 4 2- is generally higher than other anions and cations; adding positive charges After the regulator forms a Janus mixed charge structure, the retention capacity of the nanofiltration membrane for divalent cations is improved, and the flux is increased. After further adding a pore size regulator, the retention capacity of the nanofiltration membrane is further significantly improved, and the flux is slightly reduced.
  • Bovine serum albumin was selected as a pollutant to measure and compare the anti-fouling properties of the nanofiltration membranes prepared in Comparative Example 1 and Example 1. The measurement steps are as follows:
  • the anti-pollution parameters are calculated as follows:
  • the present disclosure provides a method for preparing a nanofiltration membrane.
  • the functional layer of the nanofiltration membrane prepared by this method has a mixed charged Janus structure and a controllable polymer pore size structure, and has high removal of both divalent cations and divalent anions.
  • the high hydrophilicity and high flatness of the membrane surface can effectively alleviate membrane fouling caused by oil substances and organic matter, which is helpful to alleviate the flux operation attenuation problem and improve the long-term operation stability of the nanofiltration membrane, which can It is widely used in oil field reinjection water treatment, water softening, material concentration and purification, dyes, pigments, printing and dyeing, textile, chemical and pharmaceutical industries, wastewater (liquid) decolorization treatment and other industries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种纳滤膜的制备方法及其制备的纳滤膜,制备方法包括以下步骤:制备铸膜液,使铸膜液在增强材料上固化形成基膜,其中铸膜液包含聚合物、溶剂和任选的亲水性纳米填料;将基膜依次与水相溶液和油相溶液接触以在基膜上通过界面聚合反应形成功能层,其中水相溶液包含水相单体、缚酸剂和正电荷调节剂,油相溶液包含油相单体、溶剂和孔径调节剂;经后处理得到纳滤膜。

Description

纳滤膜的制备方法和由其制备的纳滤膜 技术领域
本公开涉及水处理膜的技术领域,尤其涉及纳滤膜的制备方法和由其制备的纳滤膜。
背景技术
石油制品是当前国民经济的重要支柱产业,随着油气勘探开发程度加剧,低品位油气田的储量和产量所占比例逐年增加,利用人工注水技术保持油层压力进行石油二次、三次开采成为提高原油采收率的重要手段。油田含油废水中不仅携带石油、溶入的盐类、固体悬浮物、有害气体、有机物以及化学药剂等多种成分,同时还含有大量的微生物和细菌。随着国家和地方政府对环境保护和治理的要求越益严苛,油田采出水回注成为水资源持续利用和保护生态环境的重要途径。然而传统的水处理工艺难以达到油田回注水的水质要求,当回注水与储层流体不配伍时会造成储层伤害,直接影响注水采收率甚至储层寿命。
目前,通过超滤、微滤等前端处理技术可有效地去除水中的油类、悬浮物以及细菌等物质,出水水质可满足回用标准,但此类产水矿化度高,仍然含有钙、镁、硫酸根等结垢离子,同时存在原油、腐殖酸等有机物的残留成分,严重的腐蚀以及结垢现象依旧发生,导致低渗透油藏注水开发的良性循环难以实现。
纳滤膜脱盐技术对于二价离子具有高截留特性,可以脱除油田水中的大部分总溶解性固体物质(Total Dissolved Solids,简称TDS)和二价结垢离子如Ba 2+、Ca 2+、Mg 2+、SO 4 2-、CO 3 2-等,在满足油田水回用要求的同时有效地降低水中的矿化度和残留有机物。鉴于此,将纳滤膜分离技术与其他技术集成起来各施所长,在油田采油废水处理回注与回用领域具有广阔应用前景。
在专利文献CN103601314A中公开了一种利用海水制取油田回注水的处理系统和工艺,其利用超滤膜进行预处理、同时利用纳滤膜对海水进行淡化处理以获得合格的油田回注水,解决了现有技术中油井中腐蚀及结垢的问题,实现油井平台的高采油率并降低 采油生产成本。
Mondal等在非专利文献“Produced water treatment by nanofiltration and reverse osmosis membranes,Journal of Membrane Science,2008,322(1),第162-170页”中公开了采用不同纳滤膜处理Colorado油田的采出水,在较高的回收率(>62%)的情况下,NF270纳滤膜能够有效地将采出水的矿化度降低至1000mg/L以下,几种不同的纳滤膜对总有机碳(简称TOC)、悬浮物、盐和油均表现出较高的去除率,验证了纳滤膜用于处理油田采出水的可行性。
金丽梅等在非专利文献“以PAMAM/TMC为单体的复合纳滤膜制备及其在油田采出水处理中的应用,膜科学与技术,37(4),第100-106页”中报导了以PAMAM/TMC为单体制备荷负电纳滤膜的方法,并且用于油田采出水处理,但该膜对二价阳离子的截留能力较差,对MgCl 2的去除率仅68%,污染物易形成凝胶层,并造成部分膜孔堵塞,较差的抗污染能力导致膜通量衰减较快。
Liu等在非专利文献“One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration,J.Mater.Chem.A,2017(5)第22988–22996页”中提出了一种具有相反电荷的Janus结构聚酰胺膜的制备方法。控制水相温度为70℃,有机相温度为-5℃,由于界面聚合的自抑性,可以通过控制反应区附近的哌嗪浓度来调节膜内胺基与羧基的比例,继而制备出表面和背面电荷相反的聚酰胺功能层,制备的膜材料对于Na 2SO 4的脱除率在82%–96.5%之间,对于MgCl 2的脱除率在97%–99%之间,但是该方法对设备与技术的要求过高,难以实现规模化制备。
在专利文献CN109200833A中公开了一种去除二价阳离子及荷正电PPCPs的纳滤膜的制备方法,制备所得的纳滤膜表现出对高价阳离子盐溶液的高去除率,但对硫酸根的去除率仅有78.13%。
在将纳滤技术用于油田回注水的过程中,仍然存在以下问题有待解决:(1)纳滤膜难以同时高效地截留二价阳离子和二价阴离子;(2)市售纳滤膜广泛采用聚酰胺复合纳滤膜,最高工作温度只有45℃,而经过前端预处理后采油废水温度仍在30℃以上,可能会造成膜结构的不可逆破坏;(3)严重的膜污染问题导致通量降低、水质恶化、膜寿命缩短。比较遗憾的是目前针对油田回注水的深度处理应用需求的相关研究及应用报道不多,开发 对二价离子同时具备高脱除率、稳定性好且有效去除油污和有机污染的纳滤膜材料依旧存在挑战。
发明内容
发明要解决的问题
针对现有技术中的用于油田回注水的纳滤膜存在的上述技术问题,本公开的目的在于一种纳滤膜,其功能层具有混合荷电Janus结构,以提高纳滤膜对于油田废水中的Mg 2+、Ca 2+和SO 4 2-等二价阳离子和二价阴离子的脱除率,同时解决膜的结垢、油污及有机污染导致的通量衰减问题。
用于解决问题的方案
本公开的发明人为了实现以上目的,进行锐意研究之后发现:在形成功能层的过程中,通过添加正电荷调节剂从而在功能层的背面负载正电荷,功能层的表面本身负载有-COOH,因此可以形成具有混合荷电Janus结构的功能层,添加正电荷调节剂后,功能层在负载正电荷的同时聚合物网络结构可能会变得疏松,同时添加孔径调节剂能够保证聚合物网络的高交联结构,协同混合荷电作用和孔径调节作用从而确保了对于二价阳离子和二价阴离子的高脱除率;功能层背面负载的正电荷和表面负载的-COOH赋予纳滤膜更强的亲水性,正电荷调节剂的添加使得水相单体的扩散受限,功能层表面的结节状物质减少使得膜面平整度得以提升,能够有效地缓解因油类物质和有机物导致的污染。
本公开提供一种纳滤膜的制备方法,其特征在于,包括以下步骤:
制备铸膜液,使所述铸膜液在增强材料上固化形成基膜,其中所述铸膜液包含聚合物、溶剂和任选的亲水性纳米填料;
将所述基膜依次与水相溶液和油相溶液接触以在所述基膜上通过界面聚合反应形成功能层,其中所述水相溶液包含水相单体、缚酸剂和正电荷调节剂,所述油相溶液包含油相单体、溶剂和孔径调节剂;
经后处理得到纳滤膜。
根据本公开所述的制备方法,其中所述正电荷调节剂为选自八氨丙基多面体低聚倍半硅氧烷盐酸盐、氨基功能化介孔二氧化硅、氨基化多臂碳纳米管、季铵化纤维素纳米 纤维和支链氨基酸中的至少一种,优选地,基于所述水相溶液的总质量,所述正电荷调节剂的质量百分比浓度为0.5wt%~5.0wt%。
根据本公开所述的制备方法,其中所述聚合物为选自双酚A型聚砜、聚醚砜、磺化聚醚砜、聚芳砜、聚醚酰亚胺、聚醚醚酮、聚偏氟乙烯、聚丙烯腈、聚氯乙烯和聚苯乙烯中的至少一种,优选地,基于所述铸膜液的总质量,所述聚合物的质量百分比浓度为15wt%~25wt%。
根据本公开所述的制备方法,其中所述亲水性纳米填料为选自膨润土、氧化石墨烯、多巴胺、水滑石、纳米凸凹棒石、纤维素纳米晶体、功能化碳纳米管、氮化碳量子点和纳米金属有机框架材料中的至少一种,优选地,基于所述铸膜液的总质量,所述亲水性纳米填料的质量百分比浓度为0.5wt%~5.0wt%。
根据本公开所述的制备方法,其中所述水相单体为选自聚酰胺胺、聚乙烯亚胺、哌嗪和间苯二胺中的至少一种;优选地,以所述水相溶液的总质量计,所述水相单体的质量百分比浓度为1.0~5.0wt%。
根据本公开所述的制备方法,其中所述缚酸剂为选自氢氧化钠、碳酸钠、碳酸钾、磷酸钠、磷酸钾、三乙胺、樟脑磺酸钠、三乙胺盐酸盐中的至少一种,优选地,基于所述水相溶液的总质量,所述缚酸剂的质量百分比浓度为0.1~2.0wt%。
根据本公开所述的制备方法,其中所述油相单体为选自均苯三甲酰氯、1,3,5-苯三磺酰氯、3,4,5-联苯三酰氯和3,3',5,5'-联苯四酰氯中的至少一种,优选地,以所述油相溶液的总质量计,所述油相单体的质量百分比浓度为0.1~1.0wt%。
根据本公开所述的制备方法,其中所述孔径调节剂为选自对苯二甲酰氯、间苯二甲酰氯、2,6-吡啶二甲酰氯、2,5-二(氯甲酰)噻吩、2,5-呋喃二甲酰氯、4,4'-联苯二甲酰氯、4,4'-联苯二乙酰氯、戊二酰氯、己二酰氯、庚二酰氯、辛二酰氯、壬二酰氯、癸二酰氯、1,4-环己二酰氯和1,3-金刚烷二甲酰氯中的至少一种,优选地,基于所述油相溶液的总质量,所述孔径调节剂的质量百分比浓度为0.05wt%~0.5wt%。
本公开还提供一种根据本公开所述的制备方法制得的纳滤膜。
发明的效果
采用本公开的制备方法制备的纳滤膜的功能层具有混合荷电Janus结构,纳滤膜对于 二价阳离子和二价阴离子都具有高的脱除率,纳滤膜的表面平整、亲水性高,能够有效地缓解由于油类物质和有机物导致的对于膜表面的污染,从而缓解通量衰减的问题。
附图说明
图1示出在比较例1和实施例1中制备的纳滤膜的抗污染性能对比结果。
具体实施方式
本公开提供一种纳滤膜的制备方法,其包括以下步骤:
制备铸膜液,使所述铸膜液在增强材料上固化形成基膜,其中所述铸膜液包含聚合物、溶剂和任选的亲水性纳米填料;
将所述基膜依次与水相溶液和油相溶液接触以在所述基膜上通过界面聚合反应形成功能层,其中所述水相溶液包含水相单体、缚酸剂和和正电荷调节剂,所述油相溶液包含油相单体、溶剂和孔径调节剂;
经后处理得到纳滤膜。
本公开的技术构思在于:在形成功能层的过程中,通过添加正电荷调节剂从而在功能层的背面负载正电荷,功能层的表面本身负载有-COOH,因此可以形成具有混合荷电Janus结构的功能层,添加正电荷调节剂后,功能层在负载正电荷的同时聚合物网络结构可能会变得疏松,同时添加孔径调节剂能够保证聚合物网络的高交联结构,协同混合荷电作用和孔径调节作用从而确保了对于二价阳离子和二价阴离子的高脱除率;功能层背面负载的正电荷和表面负载的-COOH赋予纳滤膜更强的亲水性,可以促进纳滤膜的水通量的提高,正电荷调节剂的添加使得水相单体的扩散受限使得通过界面聚合反应得到的功能层表面的结节状物质减少,从而使得膜的表面平整度提升,能够有效地缓解因油类物质和有机物导致的污染。
本公开所述的制备方法,其中所述正电荷调节剂为选自八氨丙基多面体低聚倍半硅氧烷盐酸盐(POSS-NH 3Cl)、氨基功能化介孔二氧化硅、氨基化多臂碳纳米管、季铵化纤维素纳米纤维和支链氨基酸中的至少一种。优选地,所述正电荷调节剂为八氨丙基多面体低聚倍半硅氧烷盐酸盐(POSS-NH 3Cl)。
优选地,基于所述水相溶液的总质量,所述正电荷调节剂的质量百分比浓度为0.5wt%~5.0wt%。
本公开所述的制备方法,其中所述聚合物为选自双酚A型聚砜、聚醚砜、磺化聚醚砜、聚芳砜、聚醚酰亚胺、聚醚醚酮、聚偏氟乙烯、聚丙烯腈、聚氯乙烯和聚苯乙烯中的至少一种。所述聚芳砜包括例如聚苯砜、聚亚苯基砜等,聚醚砜包括例如聚苯硫醚砜等。优选地,所述聚合物为双酚A型聚砜、聚醚砜。
优选地,基于所述铸膜液的总质量,所述聚合物的质量百分比浓度为15wt%~25wt%。
所述铸膜液中的溶剂没有特别限制,只要其能够充分溶解聚合物即可,优选地,所述溶剂为N,N-二甲基甲酰胺(DMF)、N,N-二甲基乙酰胺(DMAC)、二甲基亚砜、N-甲基吡咯烷酮、四氢呋喃和咪唑啉酮中的至少一种。
在本公开中使用的增强材料可以为聚丙烯(PP)无纺布、锦纶(PA)无纺布和乙纶(HDPE)无纺布,优选为聚丙烯(PP)无纺布。
对于将铸膜液涂覆在无纺布上的方法没有特别限定,可以使用纳滤膜制备领域中通常使用的涂覆方法,例如流延法、浸涂法、刮涂法、旋转涂覆法等,更优选为刮涂法。涂覆在无纺布上之后接着浸在凝固浴中,使得铸膜液凝固成膜。
在所述铸膜液中任选地含有非溶剂,优选地,所述非溶剂为碳数为1~6的醇类、聚乙二醇、聚乙烯吡咯烷酮、聚丙二醇和聚丁二醇中的至少一种。作为碳数为1~6的醇类可以列举甲醇、乙醇、正丙醇、异丙醇、正丁醇、异丁醇、叔丁醇、正戊醇、异戊醇和己醇等中的至少一种。所述非溶剂优选为乙醇、正丙醇、异丙醇、正丁醇、聚乙二醇、聚丙二醇、聚丁二醇、聚乙烯吡咯烷酮中的至少一种。优选地,基于所述铸膜液的总质量,所述非溶剂的质量百分比浓度为0.5wt%~5.0wt%。
本公开所述的制备方法,在形成基膜时的液-固相转化过程中,用于形成基膜的组分的热力学稳定性是影响膜结构形成的关键因素,优选地,通过引入亲水性纳米填料可以影响相转化过程中的热力学和动力学参数,从而调控基膜的孔型结构和亲疏水性,进一步为用于形成功能层(又称脱盐层)的界面聚合提供良好反应场所,所述亲水性纳米填料为选自膨润土、氧化石墨烯、多巴胺、水滑石、纳米凸凹棒石、纤维素纳米晶体、功能化碳纳米管、氮化碳量子点和纳米金属有机框架材料中的至少一种。优选地,所述亲水性 纳米填料为膨润土。
优选地,基于所述铸膜液的总质量,所述亲水性纳米填料的质量百分比浓度为0.5wt%~5.0wt%。
本公开所述的制备方法,其中所述水相单体为选自聚酰胺胺、聚乙烯亚胺、哌嗪和间苯二胺中的至少一种。优选地,所述水相单体为聚酰胺胺。
优选地,以所述水相溶液的总质量计,所述水相单体的质量百分比浓度为1.0~5.0wt%。
在本公开的制备方法中,优选地,所述缚酸剂为选自氢氧化钠、碳酸钠、碳酸钾、磷酸钠、磷酸钾、三乙胺、樟脑磺酸钠、三乙胺盐酸盐中的至少一种,优选地,基于所述水相溶液的总质量,所述缚酸剂的质量百分比浓度为0.1~2.0wt%。通过添加缚酸剂可以将水相溶液的pH值调节在9至10的范围内。
本公开所述的制备方法,其中所述油相单体为选自均苯三甲酰氯、1,3,5-苯三磺酰氯、3,4,5-联苯三酰氯和3,3',5,5'-联苯四酰氯中的至少一种。优选地,所述油相单体为均苯三甲酰氯。
优选地,以所述油相溶液的总质量计,所述油相单体的质量百分比浓度为0.1~1.0wt%。
本公开所述的制备方法,正电荷调节剂会扩大聚合物网络孔径,通过添加孔径调节剂来调节孔径。空间位阻较小的孔径调节剂更容易被拉伸到形成的聚合物网络结构中,从而与未参加界面聚合反应的水相单体伯胺发生聚合以产生相对致密的功能层,从而缩小聚合物网络的孔径,即,缩小所得纳滤膜的孔径,改变纳滤膜的聚集态结构,所述孔径调节剂为选自对苯二甲酰氯、间苯二甲酰氯、2,6-吡啶二甲酰氯、2,5-二(氯甲酰)噻吩、2,5-呋喃二甲酰氯、4,4'-联苯二甲酰氯、4,4'-联苯二乙酰氯、戊二酰氯、己二酰氯、庚二酰氯、辛二酰氯、壬二酰氯、癸二酰氯、1,4-环己二酰氯和1,3-金刚烷二甲酰氯中的至少一种。
优选地,基于所述油相溶液的总质量,所述孔径调节剂的质量百分比浓度为0.05wt%~0.5wt%。
作为本公开的纳滤膜的制备方法,其非限制性实例如下:
将双酚A型聚砜或聚醚砜(15~25wt%)作为聚合物溶解于二甲基甲酰胺(DMF)或二甲基乙酰胺(DMAC)中,加入膨润土(0.5~5.0wt%)和聚乙烯吡咯烷酮(0.5~5.0wt%),在100~150℃下搅拌2~6h直到聚合物完全溶解、膨润土分散均匀,真空静置脱泡;将铸膜液在无纺布上经液-固相转化法形成基膜,将制备的基膜在去离子水中保存待用。
将制备的基膜浸泡于包含聚酰胺胺(1.0~5.0wt%)、正电荷调节剂(如八氨丙基多面体倍半硅氧烷低聚物盐酸盐(POSS-NH 3Cl),0.5~5.0wt%)和氢氧化钠(0.1~2.0wt%)的水相溶液中0.5~2min,沥干表面水珠。
接着浸入含有均苯三甲酰氯(0.1~1.0wt%)、孔径调节剂(如对苯二甲酰氯,0.05~0.5wt%)的有机溶剂(正己烷、环己烷、乙基环己烷、正辛烷、正庚烷等)中反应0.5~2min;
接着浸入包含5wt%N,N-二甲基甲酰胺(DMF)的水溶液中浸泡0.5~1min以进行后处理。取出后用超纯水洗涤,再浸入温度为70~80℃的热水中热处理1~3min,纯水清洗后再用含甘油的水溶液浸泡1~3min,然后烘干,制得具有混合荷电Janus结构的脱盐层的纳滤膜。
本公开还提供根据本公开所述的制备方法制备的纳滤膜。采用本公开的上述制备方法制备的纳滤膜的功能层具有混合荷电Janus结构,纳滤膜对于二价阳离子和二价阴离子都具有高的脱除率,纳滤膜的亲水性高,膜的表面平整,能够有效地缓解由于油类物质和有机物导致的对于膜表面的污染,从而缓解通量衰减的问题。
实施例
下面结合实施例对本公开的技术方案作进一步的详细说明,但不作为对本公开的限制。需要说明的是,本公开实施例中采用的试剂和原料除非特别说明,皆为商购可得的常规产品。
比较例1
(1)将双酚A型聚砜溶解于DMAC中使得双酚A型聚砜的浓度为20wt%,向其中加入0.5wt%聚乙烯吡咯烷酮,在120℃下搅拌2h直到双酚A型聚砜完全溶解,将所得溶液真空静置脱泡,获得铸膜液;
(2)将步骤(1)获得的铸膜液在无纺布上经液-固相转化法制备多孔聚合物支撑层,相 转化时间为0.5min,水浴温度为18℃,热固化水浴温度为80℃,膜厚度控制在5.3mil,将制备的基膜在去离子水中保存;
(3)将哌嗪、磷酸钠加入超纯水中使得两者的浓度分别为2.0wt%、0.2wt%,搅拌溶解完全得到水相溶液;将步骤(2)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
(4)将均苯三甲酰氯溶解于正己烷中使得均苯三甲酰氯的浓度为0.1wt%,搅拌溶解得到油相溶液;将步骤(3)中浸泡了水相溶液的基膜浸泡于油相溶液中1min,得到初生纳滤膜;
(5)将初生纳滤膜浸入包含5wt%二甲基甲酰胺(DMF)的水溶液中浸泡0.5min,取出后用超纯水洗涤,再浸入温度为75℃的热水中热处理2min,用纯水清洗后再用含甘油的水溶液浸泡2min,烘干后制得纳滤膜NF-J1。
比较例2
(1)将双酚A型聚砜溶解于DMAC中使得双酚A型聚砜的浓度为20wt%,向其中加入0.5wt%聚乙烯吡咯烷酮,在120℃下搅拌2h直到聚合物完全溶解,将所得溶液真空静置脱泡,获得铸膜液;
(2)将步骤(1)获得的铸膜液在无纺布上经液-固相转化法制备多孔聚合物支撑层,相转化时间为0.5min,水浴温度为18℃,热固化水浴温度为80℃,膜厚度控制在5.2mil,将制备的基膜在去离子水中保存;
(3)将聚酰胺胺、POSS-NH 3Cl、磷酸钠加入超纯水中使得三者的浓度分别为2.0wt%、0.5wt%、0.2wt%加入超纯水中,搅拌溶解完全得到水相溶液;将步骤(2)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
(4)将均苯三甲酰氯溶解于正己烷中使得均苯三甲酰氯的浓度为0.1wt%,搅拌溶解得到油相溶液;将步骤(3)中浸泡了水相溶液的基膜浸泡于油相溶液中1min,得到初生纳滤膜;
(5)将初生纳滤膜浸入包含5wt%二甲基甲酰胺(DMF)的水溶液中浸泡0.5min,取出后用超纯水洗涤,再浸入温度为75℃的热水中热处理2min,用纯水清洗后再用含甘油的水溶液浸泡2min,烘干后制得纳滤膜NF-J2。
比较例3
(1)将双酚A型聚砜溶解于DMAC中使得双酚A型聚砜的浓度为20wt%,向其中加入2wt%膨润土和1wt%聚乙烯吡咯烷酮,在120℃下搅拌3h直到聚合物完全溶解,将所得溶液真空静置脱泡,获得铸膜液;
(2)将步骤(1)获得的铸膜液在无纺布上经液-固相转化法制备多孔聚合物支撑层,相转化时间为0.5min,水浴温度为18℃,热固化水浴温度为80℃,膜厚度控制在5.2mil,将制备的基膜在去离子水中保存;
(3)将聚酰胺胺、POSS-NH 3Cl、磷酸钠加入超纯水中使得三者的浓度分别为2.0wt%、0.5wt%、0.2wt%加入超纯水中,搅拌溶解完全得到水相溶液;将步骤(2)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
(4)将均苯三甲酰氯溶解于正己烷中使得均苯三甲酰氯的浓度为0.1wt%,搅拌溶解得到油相溶液;将步骤(3)中浸泡了水相溶液的基膜浸泡于油相溶液中1min,得到初生纳滤膜;
(5)将初生纳滤膜浸入包含5wt%二甲基甲酰胺(DMF)的水溶液中浸泡0.5min,取出后用超纯水洗涤,再浸入温度为75℃的热水中热处理2min,用纯水清洗后再用含甘油的水溶液浸泡2min,烘干后制得纳滤膜NF-J3。
实施例1
(1)将双酚A型聚砜溶解于DMAC中使得双酚A型聚砜的浓度为20wt%,向其中加入2wt%膨润土和1wt%聚乙烯吡咯烷酮,在120℃下搅拌3h直到聚合物完全溶解,将所得溶液真空静置脱泡,获得铸膜液;
(2)将步骤(1)的铸膜液在无纺布上经液-固相转化法制备多孔聚合物支撑层,相转化时间为0.5min,水浴温度为18℃,热固化水浴温度为80℃,膜厚度控制在5.2mil,制备的基膜于去离子水中保存;
(3)将水相单体聚酰胺胺、正电荷调节剂POSS-NH 3Cl和缚酸剂磷酸钠加入超纯水中使得三者的浓度分别为2.0wt%、0.5wt%、0.2wt%加入超纯水中,搅拌溶解完全得到水相 溶液;将步骤(2)中制备的基膜在水相溶液中浸泡2min,沥干膜面水珠;
(4)将油相单体均苯三甲酰氯和孔径调节剂对苯二甲酰氯溶解于正己烷中使得二者的浓度分别为0.1wt%和0.05wt%,搅拌溶解得到油相溶液;将步骤(3)中浸泡了水相溶液的基膜浸泡于油相溶液中1min,得到初生纳滤膜;
(5)将初生纳滤膜浸入包含5wt%二甲基甲酰胺(DMF)的水溶液中浸泡0.5min,取出后用超纯水洗涤,再浸入温度为75℃的热水中热处理2min,用纯水清洗后再用含甘油的水溶液浸泡2min,烘干后制得纳滤膜NF-J4。
实施例2至6
除了按照下表1进行改变以外,以与实施例1相同的方式进行实施例2至6。
表1
Figure PCTCN2022132774-appb-000001
性能表征与测试结果
(1)接触角与粗糙度
对比较例1至3和实施例1中制备的纳滤膜进行粗糙度和亲水性表征,结果如下表2所示。从表中数据可知,通过添加正电荷调节剂能使得膜的亲水性和膜面平整度提高。
表2
样品 接触角(°) 粗糙度(nm)
NF-J1 43.6 4.35
NF-J2 29.5 3.82
NF-J3 28.7 3.77
NF-J4 27.5 3.63
(2)离子脱除性能
将比较例1至3和实施例1中制备的纳滤膜分别在错流式膜片检测台上进行膜片性能测试。利用去离子水分别配制2000ppm的Na 2SO 4、MgSO 4、MgCl 2、CaCl 2和NaCl溶液,测试条件:操作压力100psi、溶液温度25℃、pH值6.5~7.5。测得膜片运行30min后的水通量和截留率,结果如下表3所示。
由下表3可得,膜的截留率顺序为MgSO 4≈Na 2SO 4>MgCl 2>CaCl 2>NaCl,其中对于SO 4 2-的截留能力率普遍高于其它阴离子和阳离子;加入正电荷调节剂形成Janus混合电荷结构后,纳滤膜对二价阳离子的截留能力都得到提升,通量提高;进一步加入孔径调节剂后,纳滤膜的截留能力进一步显著提升,通量略有降低。
表3
Figure PCTCN2022132774-appb-000002
(3)抗污染性能
选用牛血清蛋白作为污染物对比较例1和实施例1中制备纳滤膜的抗污染性能进行 测定和比对。测定步骤如下:
(a)纯水运行0.5h,测试膜的纯水通量J w;(b)污染物溶液(2000ppm MgSO 4+50ppm BSA)运行12h,测定污染后膜的通量J p;(c)2000ppm NaOH冲洗膜表面1h,测定冲洗后膜的纯水通量J e
抗污染参数计算方法如下:
通量衰减率:100×(1-J p/J w)       式1
通量恢复率:100×(1-J e/J w)       式2
经测定,NF-J0通量衰减率为58.1%,通量恢复率为86.6%;NF-J3通量衰减率为76.9%,通量恢复率为99.6%。
通过对比比较例1与实施例1可知,NF-J4的抗污染性能整体优于NF-J1,如图1所示。该结果与亲水性和粗糙度测试结果相互印证,证实了:根据本公开的方法获得的纳滤膜具有更优异的抗污染性能,同时由于NF-J4膜表面的光滑程度更高,污染后清洗效果更好,通量恢复性更好。
产业上的可利用性
本公开提供了一种纳滤膜的制备方法,通过该方法制备的纳滤膜功能层具有混合荷电Janus结构且聚合物孔径结构可调控,对二价阳离子和二价阴离子都具有高的脱除率,此外,膜表面的高亲水性和高平整度能有效缓解因油类物质和有机物导致的膜污染,有利于缓解通量运行衰减问题并提高纳滤膜的长期运行稳定性,可推广应用于油田回注水处理、水软化、物料浓缩提纯、染料、色素、印染、纺织、化工和医药行业中废水(液)脱色处理等行业。

Claims (9)

  1. 一种纳滤膜的制备方法,其特征在于,包括以下步骤:
    制备铸膜液,使所述铸膜液在增强材料上固化形成基膜,其中所述铸膜液包含聚合物、溶剂和任选的亲水性纳米填料;
    将所述基膜依次与水相溶液和油相溶液接触以在所述基膜上通过界面聚合反应形成功能层,其中所述水相溶液包含水相单体、缚酸剂和正电荷调节剂,所述油相溶液包含油相单体、溶剂和孔径调节剂;
    经后处理得到纳滤膜。
  2. 根据权利要求1所述的制备方法,其中所述正电荷调节剂为选自八氨丙基多面体低聚倍半硅氧烷盐酸盐、氨基功能化介孔二氧化硅、氨基化多臂碳纳米管、季铵化纤维素纳米纤维和支链氨基酸中的至少一种,优选地,基于所述水相溶液的总质量,所述正电荷调节剂的质量百分比浓度为0.5wt%~5.0wt%。
  3. 根据权利要求1或2所述的制备方法,其中所述聚合物为选自双酚A型聚砜、聚醚砜、磺化聚醚砜、聚芳砜、聚醚酰亚胺、聚醚醚酮、聚偏氟乙烯、聚丙烯腈、聚氯乙烯和聚苯乙烯中的至少一种,优选地,基于所述铸膜液的总质量,所述聚合物的质量百分比浓度为15wt%~25wt%。
  4. 根据权利要求1或2所述的制备方法,其中所述亲水性纳米填料为选自膨润土、氧化石墨烯、多巴胺、水滑石、纳米凸凹棒石、纤维素纳米晶体、功能化碳纳米管、氮化碳量子点和纳米金属有机框架材料中的至少一种,优选地,基于所述铸膜液的总质量,所述亲水性纳米填料的质量百分比浓度为0.5wt%~5.0wt%。
  5. 根据权利要求1或2所述的制备方法,其中所述水相单体为选自聚酰胺胺、聚乙烯亚胺、哌嗪和间苯二胺中的至少一种;优选地,以所述水相溶液的总质量计,所述水相单体的质量百分比浓度为1.0~5.0wt%。
  6. 根据权利要求1或2所述的制备方法,其中所述缚酸剂为选自氢氧化钠、碳酸钠、碳酸钾、磷酸钠、磷酸钾、三乙胺、樟脑磺酸钠、三乙胺盐酸盐中的至少一种,优选地,基于所述水相溶液的总质量,所述缚酸剂的质量百分比浓度为0.1~2.0wt%。
  7. 根据权利要求1或2所述的制备方法,其中所述油相单体为选自均苯三甲酰氯、1,3,5-苯三磺酰氯、3,4,5-联苯三酰氯和3,3',5,5'-联苯四酰氯中的至少一种,优选地,以所 述油相溶液的总质量计,所述油相单体的质量百分比浓度为0.1~1.0wt%。
  8. 根据权利要求1或2所述的制备方法,其中所述孔径调节剂为选自对苯二甲酰氯、间苯二甲酰氯、2,6-吡啶二甲酰氯、2,5-二(氯甲酰)噻吩、2,5-呋喃二甲酰氯、4,4'-联苯二甲酰氯、4,4'-联苯二乙酰氯、戊二酰氯、己二酰氯、庚二酰氯、辛二酰氯、壬二酰氯、癸二酰氯、1,4-环己二酰氯和1,3-金刚烷二甲酰氯中的至少一种,优选地,基于所述油相溶液的总质量,所述孔径调节剂的质量百分比浓度为0.05wt%~0.5wt%。
  9. 一种根据权利要求1~8任一项所述的制备方法制备的纳滤膜。
PCT/CN2022/132774 2022-05-30 2022-11-18 纳滤膜的制备方法和由其制备的纳滤膜 WO2023231317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210603787.5 2022-05-30
CN202210603787.5A CN117181020A (zh) 2022-05-30 2022-05-30 纳滤膜的制备方法和由其制备的纳滤膜

Publications (1)

Publication Number Publication Date
WO2023231317A1 true WO2023231317A1 (zh) 2023-12-07

Family

ID=88991094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132774 WO2023231317A1 (zh) 2022-05-30 2022-11-18 纳滤膜的制备方法和由其制备的纳滤膜

Country Status (2)

Country Link
CN (1) CN117181020A (zh)
WO (1) WO2023231317A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118001925A (zh) * 2024-04-07 2024-05-10 杭州水处理技术研究开发中心有限公司 纳滤膜及其制备方法和锂提取装置
CN118059684A (zh) * 2024-04-24 2024-05-24 杭州水处理技术研究开发中心有限公司 具有抗污染功能的平板膜组件、膜过滤装置及净水系统
CN118161990A (zh) * 2024-05-14 2024-06-11 山东海化集团有限公司 一种表面疏松的复合纳滤膜的制备方法及其应用
CN118491330A (zh) * 2024-07-17 2024-08-16 杭州水处理技术研究开发中心有限公司 纳滤膜及其制备方法和锂提取装置
CN118649558A (zh) * 2024-08-20 2024-09-17 吉林金赛科技开发有限公司 一种中空纳滤膜及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117959956B (zh) * 2024-03-11 2024-06-28 江苏泷膜科技有限公司 一种选择透过性抗污染特种分离膜的制备方法
CN118320619B (zh) * 2024-06-14 2024-08-23 北京大学 一种亲水荷电改性纳滤膜的制备方法和在水处理中的应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934201A (zh) * 2009-06-29 2011-01-05 北京时代沃顿科技有限公司 一种高选择性复合纳滤膜及其制备方法
CN104667759A (zh) * 2013-11-29 2015-06-03 贵阳时代沃顿科技有限公司 一种高通量抗污染复合纳滤膜的制备方法
CN105013333A (zh) * 2014-04-25 2015-11-04 天津大学 一种高通量高截留率正电荷复合纳滤膜及其制备方法
CN105498547A (zh) * 2015-11-26 2016-04-20 中国科学院生态环境研究中心 一种低压正电荷中空纤维纳滤膜的制备方法
JP2019130481A (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 親水性多孔質膜の製造方法
CN110975622A (zh) * 2019-12-25 2020-04-10 恩泰环保科技(常州)有限公司 一种新型荷电纳滤膜及其制备方法
CN112844046A (zh) * 2021-01-19 2021-05-28 恩泰环保科技(常州)有限公司 一种荷正电纳滤膜及其制备方法
CN113262644A (zh) * 2021-04-28 2021-08-17 蓝星(杭州)膜工业有限公司 一种新型的高通量荷正电纳滤膜及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101934201A (zh) * 2009-06-29 2011-01-05 北京时代沃顿科技有限公司 一种高选择性复合纳滤膜及其制备方法
CN104667759A (zh) * 2013-11-29 2015-06-03 贵阳时代沃顿科技有限公司 一种高通量抗污染复合纳滤膜的制备方法
CN105013333A (zh) * 2014-04-25 2015-11-04 天津大学 一种高通量高截留率正电荷复合纳滤膜及其制备方法
CN105498547A (zh) * 2015-11-26 2016-04-20 中国科学院生态环境研究中心 一种低压正电荷中空纤维纳滤膜的制备方法
JP2019130481A (ja) * 2018-01-31 2019-08-08 富士フイルム株式会社 親水性多孔質膜の製造方法
CN110975622A (zh) * 2019-12-25 2020-04-10 恩泰环保科技(常州)有限公司 一种新型荷电纳滤膜及其制备方法
CN112844046A (zh) * 2021-01-19 2021-05-28 恩泰环保科技(常州)有限公司 一种荷正电纳滤膜及其制备方法
CN113262644A (zh) * 2021-04-28 2021-08-17 蓝星(杭州)膜工业有限公司 一种新型的高通量荷正电纳滤膜及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118001925A (zh) * 2024-04-07 2024-05-10 杭州水处理技术研究开发中心有限公司 纳滤膜及其制备方法和锂提取装置
CN118059684A (zh) * 2024-04-24 2024-05-24 杭州水处理技术研究开发中心有限公司 具有抗污染功能的平板膜组件、膜过滤装置及净水系统
CN118161990A (zh) * 2024-05-14 2024-06-11 山东海化集团有限公司 一种表面疏松的复合纳滤膜的制备方法及其应用
CN118491330A (zh) * 2024-07-17 2024-08-16 杭州水处理技术研究开发中心有限公司 纳滤膜及其制备方法和锂提取装置
CN118649558A (zh) * 2024-08-20 2024-09-17 吉林金赛科技开发有限公司 一种中空纳滤膜及其制备方法和应用

Also Published As

Publication number Publication date
CN117181020A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
WO2023231317A1 (zh) 纳滤膜的制备方法和由其制备的纳滤膜
Wu et al. A novel nanofiltration membrane with [MimAP][Tf2N] ionic liquid for utilization of lithium from brines with high Mg2+/Li+ ratio
Ye et al. Sulfated polyelectrolyte complex nanoparticles structured nanoflitration membrane for dye desalination
Zhao et al. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination
Zhang et al. Alkaline-induced superhydrophilic/underwater superoleophobic polyacrylonitrile membranes with ultralow oil-adhesion for high-efficient oil/water separation
Zhu et al. pH-Induced non-fouling membrane for effective separation of oil-in-water emulsion
Ashraf et al. Enhancement in Li+/Mg2+ separation from salt lake brine with PDA–PEI composite nanofiltration membrane
CN108325389B (zh) 一种吖内酯基聚酰胺膜及其制备方法
Wei et al. Structure–performance study of polyamide composite nanofiltration membranes prepared with polyethyleneimine
CN113856501A (zh) 一种复合纳滤膜及其制备方法和应用
Bandehali et al. A new type of [PEI-glycidyl POSS] nanofiltration membrane with enhanced separation and antifouling performance
Xiang et al. Preparation of highly permeable electropositive nanofiltration membranes using quaternized polyethyleneimine for dye wastewater treatment
WO2022127637A1 (zh) 复合反渗透膜及其制备方法
Yao et al. Seawater pretreatment with an NF-like forward osmotic membrane: Membrane preparation, characterization and performance comparison with RO-like membranes
CN112844046A (zh) 一种荷正电纳滤膜及其制备方法
Liu et al. Thin-film composite nanofiltration membranes with poly (amidoxime) as organic interlayer for effective desalination
Song et al. Custom-tailoring loose nanocomposite membrane incorporated bipiperidine/graphene quantum dots for high-efficient dye/salt fractionation in hairwork dyeing effluent
Woo et al. Preparation method of crack-free PVDF microfiltration membrane with enhanced antifouling characteristics
Abdolmaleki et al. Novel positively charged PVDF/SPES membranes surface grafted by hyperbranched polyethyleneimine (HBPEI): fabrication, characterization, antifouling properties, and performance on the removal of cationic E-coat paint
CN113274897A (zh) 一种酰胺键原位交联的聚醚功能化油水分离膜的制备方法
Myung et al. Use of fouling resistant nanofiltration and reverse osmosis membranes for dyeing wastewater effluent treatment
WO2023198214A1 (zh) 一种适用于油田回注水处理聚酰胺纳滤膜的制备方法
CN114768555B (zh) 一种改性聚酰胺分离膜及其制备方法
Roy Composite membrane: fabrication, characterization, and applications
CN112755814B (zh) 一种黑滑石纳米颗粒改性的聚酰胺复合纳滤膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944619

Country of ref document: EP

Kind code of ref document: A1