WO2023231316A1 - 回转曲面硬质合金涂层的超精加工方法 - Google Patents

回转曲面硬质合金涂层的超精加工方法 Download PDF

Info

Publication number
WO2023231316A1
WO2023231316A1 PCT/CN2022/132747 CN2022132747W WO2023231316A1 WO 2023231316 A1 WO2023231316 A1 WO 2023231316A1 CN 2022132747 W CN2022132747 W CN 2022132747W WO 2023231316 A1 WO2023231316 A1 WO 2023231316A1
Authority
WO
WIPO (PCT)
Prior art keywords
exceed
curved surface
spherical
coating
super
Prior art date
Application number
PCT/CN2022/132747
Other languages
English (en)
French (fr)
Inventor
普桂元
王玲奇
王继江
顾川涯
李如琰
赵成
陈聪聪
韩齐峰
Original Assignee
上海市轴承技术研究所有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海市轴承技术研究所有限公司 filed Critical 上海市轴承技术研究所有限公司
Publication of WO2023231316A1 publication Critical patent/WO2023231316A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technical field of alloy processing, and in particular, to a method for super-finishing of cemented carbide coatings on curved surfaces of revolution, in particular, on super-finishing methods of cemented carbide coatings on spherical surfaces of spherical joint bearings.
  • the bearing design uses a carbide coating to improve the wear resistance of the working surface.
  • the coating has a very high surface hardness, and the bearing is a rotary structure.
  • the traditional grinding method requires repeated dressing of the grinding wheel, which results in extremely low processing efficiency.
  • the loss block and manufacturing cost are high, and special processing methods such as electrolytic grinding require expensive equipment and difficult process control. Therefore, traditional carbide processing methods are not very applicable to bearings of rotary structures.
  • the patent document with publication number CN110527965A discloses a processing device and method for preparing a surface coating of a rotary body.
  • the device includes a vacuum chamber, an electron gun device and rotary body parts; the electron gun device includes a gun body shell, a top cover, and an annular cathode. , conical anode, with yoke housing and focusing coil.
  • this patent document still has the shortcomings of extremely low processing efficiency and difficult process control, and is different from the technical solution of the present application.
  • the patent document with publication number CN113718245A discloses a method for preparing a high-hardness cladding coating for rotating parts, which includes the following steps: 1) Fix the rotating part on the rotating workbench, and a layer of alloy or alloy is preset on the surface of the rotating part.
  • Ceramic composite powder layer 2) Turn on the induction heating device so that the rotating part located in the induction heating circle is heated by induction, and the alloy or alloy ceramic composite powder layer on its surface melts and solidifies to form a coating combined with the substrate; 3) Wrap the asbestos rope around the solidified part of the cladding end of the rotating part by itself; 4) After the coating on the surface of the rotating part is cladded, turn off the induction heating device; 5) The rotating part continues to rotate until the asbestos rope on the surface of the cladding layer is insulated The layer winding is completed; 6) Place the rotating part with the complete asbestos rope layer wound on the surface into a heat preservation furnace for insulation, and slowly cool the furnace to room temperature.
  • this patent document is completely different from the technical solution of this application.
  • the purpose of one or more embodiments of the present invention is to provide a super-finishing method for a cemented carbide coating on a curved surface of revolution.
  • a super-finishing method for a revolution curved surface cemented carbide coating includes the following steps:
  • Step 1 Carbide spraying. Use spraying equipment to spray the carbide coating on the outer spherical surface of the curved surface part;
  • Step 2 Semi-precision CNC hard turning, using hard turning equipment to perform semi-precision CNC hard turning on the outer spherical surface of the curved surface part, to obtain the preliminary outline of the curved surface;
  • Step 3 Precision CNC hard turning, using hard turning equipment to perform precision CNC hard turning on the outer spherical surface of the curved surface part;
  • Step 4 Rough grinding process, using grinding process to trim the spherical difference of the curved surface parts
  • Step 5 Precision grinding, using the grinding process to modify the surface roughness of the curved surface parts
  • Step 6 Mirror polishing. Use the mirror polishing process to polish the surface of the curved surface parts so that the surface of the curved surface parts can achieve a mirror effect.
  • step 1 the WC-Co coating is sprayed on the outer spherical surface of the curved surface part using supersonic flame spraying;
  • the Co content in the WC-Co coating is 5% to 25%, the coating hardness after spraying is 800 to 1500HV0.3, the coating porosity is ⁇ 5%, the bonding strength between the coating and the substrate is ⁇ 40MPa, and the coating surface The roughness is Ra3.2 or above.
  • step 2 the spherical ellipticity of the outer spherical surface of the CNC hard-turned curved surface part does not exceed 0.008mm, the spherical symmetry does not exceed 0.05mm, the spherical difference does not exceed 0.015mm, and the surface roughness does not exceed Ra1.0.
  • step 3 the machining allowance does not exceed 0.05mm, the spherical ellipticity of the outer spherical surface of the curved surface part after CNC hard turning does not exceed 0.005mm, the spherical symmetry does not exceed 0.03mm, and the spherical difference does not exceed 0.012mm, surface roughness does not exceed Ra0.5.
  • step 4 the machining allowance does not exceed 0.02mm, the spherical ellipticity of the outer spherical surface of the polished curved surface part does not exceed 0.004mm, the spherical symmetry does not exceed 0.03mm, and the spherical difference does not exceed 0.005mm. , the surface roughness does not exceed Ra0.4;
  • step 5 the machining allowance does not exceed 0.01mm, the spherical ellipticity of the outer spherical surface of the grinded curved surface part does not exceed 0.004mm, the spherical symmetry does not exceed 0.03mm, the spherical difference does not exceed 0.005mm, and the surface is rough. Degree does not exceed Ra0.2;
  • step 6 the surface roughness of the outer spherical surface of the polished curved surface part does not exceed Ra0.03.
  • the hard turning equipment uses a static pressure spindle and a marble bed.
  • the turning tool of the hard turning equipment is a PCBN tool
  • the binding material of the turning tool is a Co compound
  • the hardness is ⁇ 40 GPa.
  • the cutting linear speed of the hard turning equipment is 100 ⁇ 200m/min
  • the feed amount is 0.01 ⁇ 0.1mm/r
  • the back cutting amount is 0.01 ⁇ 0.1mm.
  • the grinding process adopts the Fan Cheng method, and the abrasive used is green silicon carbide abrasive.
  • step 6 the mirror polishing process adopts the Fan Cheng method, and the abrasive is diamond polishing agent.
  • Figure 1 is a step flow chart of a super-finishing method for a cemented carbide coating on a revolution curved surface according to one embodiment of the present invention.
  • this embodiment provides a super-finishing method for a cemented carbide coating on a curved surface of revolution, which includes the following steps:
  • Step 1 Carbide spraying.
  • WC- The Co content in the Co coating is 5% ⁇ 25%, the coating hardness after spraying is 800 ⁇ 1500HV0.3, the porosity of the coating is ⁇ 5%, the bonding strength between the coating and the substrate is ⁇ 40MPa, and the surface roughness of the coating is Ra3 .2 or above;
  • Step 2 Semi-precision CNC hard turning.
  • the ovality does not exceed 0.008mm, the spherical symmetry does not exceed 0.05mm, the spherical difference does not exceed 0.015mm, and the surface roughness does not exceed Ra1.0
  • the hard turning equipment uses a hydrostatic spindle and a marble bed, and the turning tool of the hard turning equipment is PCBN tool, the turning tool's binding material is Co compound, the hardness is ⁇ 40GPa, the cutting linear speed of the hard turning equipment is 100 ⁇ 200m/min, the feed amount is 0.01 ⁇ 0.1mm/r, and the back cutting amount is 0.01 ⁇ 0.1mm .
  • Step 3 Precision CNC hard turning.
  • the machining allowance shall not exceed 0.05mm.
  • the outer spherical surface of the curved surface part after CNC hard turning shall be a spherical ellipse.
  • the degree of symmetry does not exceed 0.005mm, the spherical symmetry does not exceed 0.03mm, the spherical difference does not exceed 0.012mm, and the surface roughness does not exceed Ra0.5;
  • the hard turning equipment uses a hydrostatic spindle and a marble bed, and the turning tools of the hard turning equipment are PCBN
  • the binding material of the cutting tool and turning tool is Co compound with a hardness of ⁇ 40GPa.
  • the cutting linear speed of the hard turning equipment is 100 ⁇ 200m/min, the feed rate is 0.01 ⁇ 0.1mm/r, and the back cutting amount is 0.01 ⁇ 0.1mm.
  • Step 4 Rough grinding, using grinding process to trim the spherical difference of the curved surface parts; the machining allowance does not exceed 0.02mm, the spherical ovality of the outer spherical surface of the grinded curved surface parts does not exceed 0.004mm, and the spherical symmetry Not exceeding 0.03mm, the spherical difference not exceeding 0.005mm, and the surface roughness not exceeding Ra0.4; the grinding process adopts the Fan Cheng method, and the abrasive used is green silicon carbide abrasive.
  • Step 5 Fine grinding and processing. Use the grinding process to modify the surface roughness of the curved surface parts; the machining allowance does not exceed 0.01mm.
  • the spherical ellipticity of the outer spherical surface of the grinded curved surface parts does not exceed 0.004mm, and the spherical surface is symmetrical.
  • the thickness does not exceed 0.03mm, the spherical difference does not exceed 0.005mm, and the surface roughness does not exceed Ra0.2; the grinding process adopts the Fan Cheng method, and the abrasive is green silicon carbide abrasive.
  • Step 6 Mirror polishing, use the mirror polishing process to polish the surface of the curved surface part, so that the surface of the curved surface part achieves a mirror effect; the surface roughness of the outer spherical surface of the polished curved surface part does not exceed Ra0.03; mirror surface
  • the polishing process adopts the Fan Cheng method, and the abrasive is diamond polishing agent.
  • This embodiment provides a method for super-finishing the cemented carbide coating on the rotational curved surface, including steps such as precision CNC hard turning, rough spherical surface grinding, fine spherical surface grinding, mirror polishing, etc., so that the cemented carbide coating can be more efficient and cost-effective.
  • Obtaining the required accuracy requirements cost-effective includes the following steps:
  • Step A Carbide spraying, using supersonic flame spraying or other methods to spray WC-Co coating on the outer spherical surface of the curved surface part;
  • Step B Precision CNC hard turning (semi-finishing). Precision CNC hard turning is performed on the outer spherical surface of the curved surface part to obtain the preliminary outline of the curved surface.
  • the spherical ovality after CNC processing does not exceed 0.008mm, and the spherical symmetry is Not exceeding 0.05mm, spherical difference not exceeding 0.015mm, surface roughness not exceeding Ra1.0;
  • Step C Precision CNC hard turning (finishing), perform precision CNC hard turning on the outer spherical surface of the curved surface part, the machining allowance does not exceed 0.05mm, the spherical ovality after CNC processing does not exceed 0.005mm, and the spherical symmetry Not exceeding 0.03mm, spherical difference not exceeding 0.012mm, surface roughness not exceeding Ra0.5;
  • Step D Rough grinding, trimming the spherical difference of the curved surface parts, the machining allowance does not exceed 0.02mm, the spherical ovality does not exceed 0.004mm, the spherical symmetry does not exceed 0.03mm, the spherical difference does not exceed 0.005mm, and the surface is rough
  • the temperature does not exceed Ra0.4;
  • Step E Precision grinding and processing, trim the surface roughness of the curved surface parts, the machining allowance does not exceed 0.01mm, the spherical ovality does not exceed 0.004mm, the spherical symmetry does not exceed 0.03mm, the spherical difference does not exceed 0.005mm, the surface Roughness does not exceed Ra0.2;
  • Step F Mirror polishing to achieve a mirror effect on the surface of the curved surface part, with the surface roughness Ra not exceeding 0.03.
  • the Co content in the WC-Co coating can range from 5% to 25%, the coating hardness after spraying is 800-1500HV0.3, the porosity of the coating is ⁇ 5%, and the bonding strength between the coating and the substrate is ⁇ 40MPa, the surface roughness of the coating is Ra3.2 or above.
  • steps B and C the hard turning equipment needs to use a hydrostatic spindle and a marble bed to resist the vibration generated during the hard turning process and provide machine tool rigidity;
  • the turning tools used are PCBN tools, and the binding material is Co compound with a hardness ⁇ 40GPa ;
  • the cutting linear speed is 100 ⁇ 200m/min, the feed amount is 0.01 ⁇ 0.1mm/r, and the back cutting amount is 0.01 ⁇ 0.1mm.
  • the grinding process adopts the Fan Cheng method, and the abrasive is green silicon carbide abrasive, which can significantly improve the spherical shape difference of the spherical surface.
  • the mirror polishing is also processed by the Fan Cheng method, and the abrasive is diamond polishing agent, which can significantly improve the spherical surface roughness.
  • the present invention can avoid repeated dressing of the grinding wheel during the grinding process, greatly shorten the processing time of parts, improve production efficiency, and reduce the cost of consumables and parts manufacturing.
  • the present invention has the following beneficial effects:
  • the present invention can avoid repeated dressing of the grinding wheel during the grinding process, greatly shortening the processing time of parts, improving production efficiency, and reducing consumables and parts manufacturing costs;
  • the present invention uses rough spherical surface grinding, fine spherical surface grinding, mirror polishing and other processing steps to perform super-finishing on the rotational curved surface cemented carbide coated parts, which can achieve a surface ovality within 0.003mm and a surface roughness below Ra0.03. degree requirements;
  • This invention uses precision super-finishing to remove most of the machining allowance and ensure a certain machining accuracy, and combines grinding processing and mirror polishing to further improve the spherical difference and surface roughness, so that the working surface can achieve a mirror effect. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Abstract

一种回转曲面硬质合金涂层的超精加工方法,包括如下步骤:通过喷涂设备对回转曲面零件的外球面处喷涂硬质合金涂层;通过硬车设备对回转曲面零件的外球面进行半精密数控硬车加工,得到回转曲面的初步轮廓;通过硬车设备对回转曲面零件的外球面进行精密数控硬车加工;采用研磨工艺对回转曲面零件的球形差进行修整;采用研磨工艺对回转曲面零件的表面粗糙度进行修整;采用镜面抛光工艺对回转曲面零件的表面进行抛光,使回转曲面零件的表面达到镜面效果。

Description

回转曲面硬质合金涂层的超精加工方法 技术领域
本发明涉及合金加工技术领域,具体地,涉及回转曲面硬质合金涂层的超精加工方法,尤其是关节轴承回转球面的硬质合金涂层的超精加工方法。
背景技术
在向心关节轴承中,随着轴承摩擦磨损寿命要求的不断提高,工作面的耐磨性能也不断严苛。轴承设计选用硬质合金涂层以提高工作面耐磨性,而该涂层有非常高的表面硬度,且轴承为回转结构,传统的磨削加工方式需要反复修整砂轮,加工效率极低、砂轮损耗块、制造成本高,而电解磨削加工等特种加工方式,其设备造价昂贵、工艺控制难度大。因此,传统的硬质合金加工方法在回转结构的轴承上适用性不强。
公开号为CN110527965A的专利文献公开了一种用于回转体表面涂层制备的加工装置及方法,该装置包括真空室,电子枪装置和回转体零件;电子枪装置包括枪体外壳,顶盖,环形阴极,锥面阳极,带磁轭外壳和聚焦线圈。但是该专利文献仍然存在加工效率极低、工艺控制难度大的缺点,且与本申请的技术方案不同。
公开号为CN113718245A的专利文献公开了一种回转件的高硬度熔覆涂层制备方法,包括以下步骤:1)将回转件固定在回转工作台上,回转件表面预置了一层合金或合金陶瓷复合粉末层;2)开启感应加热装置,使得位于感应加热圈中的回转件被感应加热,其表面的合金或合金陶瓷复合粉末层发生熔融,凝固后形成与基体结合的涂层;3)在回转件起始已熔覆端的凝固部分自行缠绕石棉绳;4)回转件表面的涂层熔覆完毕后,关闭感应加热装置;5)回转件继续旋转,直至熔覆层表面的石棉绳保温层缠绕完毕;6)将表面缠绕了完整石棉绳层的回转件放入保温炉中保温,缓慢炉冷至室温。但是该专利文献与本申请的技术方案完全不同。
发明内容
针对现有技术中的缺陷,本发明其中一个或多个实施例的目的是提供一种回转曲面硬质合金涂层的超精加工方法。
根据本发明提供的一种回转曲面硬质合金涂层的超精加工方法包括如下步骤:
步骤1:硬质合金喷涂,通过喷涂设备对回转曲面零件的外球面处喷涂硬质合金涂层;
步骤2:半精密数控硬车加工,通过硬车设备对回转曲面零件的外球面进行半精密数控硬车加工,得到回转曲面的初步轮廓;
步骤3:精密数控硬车加工,通过硬车设备对回转曲面零件的外球面进行精密数控硬车加工;
步骤4:粗研加工,采用研磨工艺对回转曲面零件的球形差进行修整;
步骤5:精研加工,采用研磨工艺对回转曲面零件的表面粗糙度进行修整;
步骤6:镜面抛光,采用镜面抛光工艺对回转曲面零件的表面进行抛光,使回转曲面零件的表面达到镜面效果。
进一步地,所述步骤1中,采用超音速火焰喷涂的方法对回转曲面零件的外球面处喷涂WC-Co涂层;
所述WC-Co涂层中的Co含量为5%~25%,喷涂后涂层硬度为800~1500HV0.3,涂层孔隙率≤5%,涂层与基体结合强度≥40MPa,涂层表面粗糙度为Ra3.2以上。
进一步地,所述步骤2中,数控硬车加工后的回转曲面零件的外球面的球面椭圆度不超过0.008mm,球面对称度不超过0.05mm,球形差不超过0.015mm,表面粗糙度不超过Ra1.0。
进一步地,所述步骤3中,加工余量不超过0.05mm,数控硬车加工后的回转曲面零件的外球面的球面椭圆度不超过0.005mm,球面对称度不超过0.03mm,球形差不超过0.012mm,表面粗糙度不超过Ra0.5。
进一步地,所述步骤4中,加工余量不超过0.02mm,研磨加工后的回转曲面零件的外球面的球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.4;
所述步骤5中,加工余量不超过0.01mm,研磨加工后的回转曲面零件的外球面的球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.2;
所述步骤6中,抛光加工后的回转曲面零件的外球面的表面粗糙度不超过Ra0.03。
进一步地,所述步骤2和步骤3中,所述硬车设备采用静压主轴和大理石床身。
进一步地,所述步骤2和步骤3中,所述硬车设备的车削刀具为PCBN刀具,所述 车削刀具的结合材为Co化合物,硬度≥40GPa。
进一步地,所述步骤2和步骤3中,所述硬车设备的切削线速度为100~200m/min,进给量为0.01~0.1mm/r,背吃刀量为0.01~0.1mm。
进一步地,所述步骤4和所述步骤5中,所述研磨工艺均采用范成法加工,采用磨料为绿色碳化硅磨料。
进一步地,所述步骤6中,所述镜面抛光工艺采用范成法加工,采用磨料为金刚石抛光剂。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明其中一个实施例的回转曲面硬质合金涂层的超精加工方法的步骤流程图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于本发明的保护范围。
实施例1:
如图1所示,本实施例提供一种回转曲面硬质合金涂层的超精加工方法,包括如下步骤:
步骤1:硬质合金喷涂,通过喷涂设备对回转曲面零件的外球面处喷涂硬质合金涂层;采用超音速火焰喷涂的方法对回转曲面零件的外球面处喷涂WC-Co涂层,WC-Co涂层中的Co含量为5%~25%,喷涂后涂层硬度为800~1500HV0.3,涂层孔隙率≤5%,涂层与基体结合强度≥40MPa,涂层表面粗糙度为Ra3.2以上;
步骤2:半精密数控硬车加工,通过硬车设备对回转曲面零件的外球面进行半精密数控硬车加工,得到回转曲面的初步轮廓;数控硬车加工后的回转曲面零件的外球面的球面椭圆度不超过0.008mm,球面对称度不超过0.05mm,球形差不超过0.015mm,表面粗糙度不超过Ra1.0;硬车设备采用静压主轴和大理石床身,硬车设备的车削刀具为PCBN刀具,车削刀具的结合材为Co化合物,硬度≥40GPa,硬车设备的切削线速度为100~200m/min,进给量为0.01~0.1mm/r,背吃刀量为0.01~0.1mm。
步骤3:精密数控硬车加工,通过硬车设备对回转曲面零件的外球面进行精密数控硬车加工;加工余量不超过0.05mm,数控硬车加工后的回转曲面零件的外球面的球面椭圆度不超过0.005mm,球面对称度不超过0.03mm,球形差不超过0.012mm,表面粗糙度不超过Ra0.5;硬车设备采用静压主轴和大理石床身,硬车设备的车削刀具为PCBN刀具,车削刀具的结合材为Co化合物,硬度≥40GPa,硬车设备的切削线速度为100~200m/min,进给量为0.01~0.1mm/r,背吃刀量为0.01~0.1mm。
步骤4:粗研加工,采用研磨工艺对回转曲面零件的球形差进行修整;加工余量不超过0.02mm,研磨加工后的回转曲面零件的外球面的球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.4;研磨工艺采用范成法加工,采用磨料为绿色碳化硅磨料。
步骤5:精研加工,采用研磨工艺对回转曲面零件的表面粗糙度进行修整;加工余量不超过0.01mm,研磨加工后的回转曲面零件的外球面的球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.2;研磨工艺均采用范成法加工,采用磨料为绿色碳化硅磨料。
步骤6:镜面抛光,采用镜面抛光工艺对回转曲面零件的表面进行抛光,使回转曲面零件的表面达到镜面效果;抛光加工后的回转曲面零件的外球面的表面粗糙度不超过Ra0.03;镜面抛光工艺采用范成法加工,采用磨料为金刚石抛光剂。
实施例2:
本领域技术人员可以将本实施例理解为实施例1的更为具体的说明。
本实施例提供一种回转曲面硬质合金涂层的超精加工方法,包括精密数控硬车加工、粗研球面、精研球面、镜面抛光等步骤,使硬质合金涂层可更高效、低成本地获得所需精度要求,具体包括如下步骤:
步骤A:硬质合金喷涂,采用超音速火焰喷涂等方法对回转曲面零件的外球面处喷涂WC-Co涂层;
步骤B:精密数控硬车加工(半精车),对回转曲面零件的外球面进行精密数控硬车加工,得到回转曲面的初步轮廓,数控加工后的球面椭圆度不超过0.008mm,球面对称度不超过0.05mm,球形差不超过0.015mm,表面粗糙度不超过Ra1.0;
步骤C:精密数控硬车加工(精车),对回转曲面零件的外球面进行精密数控硬车加工,加工余量不超过0.05mm,数控加工后的球面椭圆度不超过0.005mm,球面对称度不超过0.03mm,球形差不超过0.012mm,表面粗糙度不超过Ra0.5;
步骤D:粗研加工,对回转曲面零件的球形差进行修整,加工余量不超过0.02mm,球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.4;
步骤E:精研加工,对回转曲面零件的表面粗糙度进行修整,加工余量不超过0.01mm,球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.2;
步骤F:镜面抛光,使回转曲面零件的表面达到镜面效果,表面粗糙度Ra不超过0.03。
步骤A中,WC-Co涂层中的Co含量可为5%~25%不等,喷涂后涂层硬度为800~1500HV0.3,涂层孔隙率≤5%,涂层与基体结合强度≥40MPa,涂层表面粗糙度为Ra3.2以上。
步骤B和步骤C中:硬车设备需采用静压主轴和大理石床身以抵抗硬车过程中产生的震动,提供机床刚性;所用车削刀具为PCBN刀具,其结合材为Co化合物,硬度≥40GPa;切削线速度为100~200m/min,进给量为0.01~0.1mm/r,背吃刀量为0.01~0.1mm。
步骤D和步骤E中,研磨工艺均采用范成法加工,采用磨料为绿色碳化硅磨料,可显著改善球面的球形差。步骤F中,镜面抛光亦采用范成法加工,采用磨料为金刚石抛光剂,可显著提高球面粗糙度。
本发明通过以车代磨的方式,可避免磨削过程砂轮反复修整,大大缩短零件加工时长,提高生产效率,降低耗材及零件制造成本。
与现有技术相比,本发明具有如下的有益效果:
1、本发明通过以车代磨的方式,可避免磨削过程砂轮反复修整,大大缩短零件加工时长,提高生产效率,降低耗材及零件制造成本;
2、本发明通过粗研球面、精研球面和镜面抛光等加工步骤,对回转曲面硬质合金涂层零件进行超精加工,可达到0.003mm以内的曲面椭圆度和Ra0.03以下的表面粗糙度要求;
3、本发明通过采用精密超精加工的手段去除大部分加工余量并确保一定的加工精度基础上,结合研磨加工和镜面抛光等技术进一步提高球形差和表面粗糙度,使工作面达到镜面效果。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上 述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (10)

  1. 一种回转曲面硬质合金涂层的超精加工方法,其特征在于,包括如下步骤:
    步骤1:硬质合金喷涂,通过喷涂设备对回转曲面零件的外球面处喷涂硬质合金涂层;
    步骤2:半精密数控硬车加工,通过硬车设备对回转曲面零件的外球面进行半精密数控硬车加工,得到回转曲面的初步轮廓;
    步骤3:精密数控硬车加工,通过硬车设备对回转曲面零件的外球面进行精密数控硬车加工;
    步骤4:粗研加工,采用研磨工艺对回转曲面零件的球形差进行修整;
    步骤5:精研加工,采用研磨工艺对回转曲面零件的表面粗糙度进行修整;
    步骤6:镜面抛光,采用镜面抛光工艺对回转曲面零件的表面进行抛光,使回转曲面零件的表面达到镜面效果。
  2. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤1中,采用超音速火焰喷涂的方法对回转曲面零件的外球面处喷涂WC-Co涂层;
    所述WC-Co涂层中的Co含量为5%~25%,喷涂后涂层硬度为800~1500HV0.3,涂层孔隙率≤5%,涂层与基体结合强度≥40MPa,涂层表面粗糙度为Ra3.2以上。
  3. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤2中,数控硬车加工后的回转曲面零件的外球面的球面椭圆度不超过0.008mm,球面对称度不超过0.05mm,球形差不超过0.015mm,表面粗糙度不超过Ra1.0。
  4. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤3中,加工余量不超过0.05mm,数控硬车加工后的回转曲面零件的外球面的球面椭圆度不超过0.005mm,球面对称度不超过0.03mm,球形差不超过0.012mm,表面粗糙度不超过Ra0.5。
  5. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤4中,加工余量不超过0.02mm,研磨加工后的回转曲面零件的外球面的球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.4;
    所述步骤5中,加工余量不超过0.01mm,研磨加工后的回转曲面零件的外球面的 球面椭圆度不超过0.004mm,球面对称度不超过0.03mm,球形差不超过0.005mm,表面粗糙度不超过Ra0.2;
    所述步骤6中,抛光加工后的回转曲面零件的外球面的表面粗糙度不超过Ra0.03。
  6. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤2和步骤3中,所述硬车设备采用静压主轴和大理石床身。
  7. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤2和步骤3中,所述硬车设备的车削刀具为PCBN刀具,所述车削刀具的结合材为Co化合物,硬度≥40GPa。
  8. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤2和步骤3中,所述硬车设备的切削线速度为100~200m/min,进给量为0.01~0.1mm/r,背吃刀量为0.01~0.1mm。
  9. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤4和所述步骤5中,所述研磨工艺均采用范成法加工,采用磨料为绿色碳化硅磨料。
  10. 根据权利要求1所述的回转曲面硬质合金涂层的超精加工方法,其特征在于,所述步骤6中,所述镜面抛光工艺采用范成法加工,采用磨料为金刚石抛光剂。
PCT/CN2022/132747 2022-06-02 2022-11-18 回转曲面硬质合金涂层的超精加工方法 WO2023231316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210621259.2A CN114986261A (zh) 2022-06-02 2022-06-02 回转曲面硬质合金涂层的超精加工方法
CN202210621259.2 2022-06-02

Publications (1)

Publication Number Publication Date
WO2023231316A1 true WO2023231316A1 (zh) 2023-12-07

Family

ID=83031691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132747 WO2023231316A1 (zh) 2022-06-02 2022-11-18 回转曲面硬质合金涂层的超精加工方法

Country Status (2)

Country Link
CN (1) CN114986261A (zh)
WO (1) WO2023231316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114986261A (zh) * 2022-06-02 2022-09-02 上海市轴承技术研究所有限公司 回转曲面硬质合金涂层的超精加工方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892409A (zh) * 2010-07-22 2010-11-24 株洲华锐硬质合金工具有限责任公司 一种铣削涂层硬质合金及其制备方法
CN204420180U (zh) * 2014-12-08 2015-06-24 章华 一种具有高耐磨密封表面的球阀球体
JP2016041952A (ja) * 2014-08-18 2016-03-31 Ntn株式会社 セラミックスころの製造方法およびグリーン体成形装置
CN106704627A (zh) * 2017-02-08 2017-05-24 江苏神通阀门股份有限公司 球阀的对分球体的加工方法
CN107150264A (zh) * 2017-05-24 2017-09-12 上海市轴承技术研究所 喷涂陶瓷后的球面精密加工方法
CN108315687A (zh) * 2018-03-05 2018-07-24 无锡市福莱达石油机械有限公司 激光熔覆不锈钢涂层复合氮化工艺
CN109161856A (zh) * 2018-08-20 2019-01-08 江苏神通阀门股份有限公司 一种具有纳米陶瓷-金属复合涂层的硬面球阀及制造方法
CN114986261A (zh) * 2022-06-02 2022-09-02 上海市轴承技术研究所有限公司 回转曲面硬质合金涂层的超精加工方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5976716A (en) * 1996-04-04 1999-11-02 Kennametal Inc. Substrate with a superhard coating containing boron and nitrogen and method of making the same
JP6191839B2 (ja) * 2014-12-10 2017-09-06 日進工具株式会社 ダイヤモンド焼結体ボールエンドミルとその製造方法
CN107299309A (zh) * 2017-06-30 2017-10-27 大连透平机械技术发展有限公司 一种离心压缩机轴磨损修复方法
CN109397549B (zh) * 2018-09-26 2020-08-28 广东工业大学 金刚石涂层氮化硅陶瓷整体刀具及其制备方法与刀具在石墨中的应用
CN109333002A (zh) * 2018-10-24 2019-02-15 宁夏昀启昕机械再制造有限公司 一种煤矿立柱中缸外圆激光熔覆后的车削加工工艺
CN110527965A (zh) * 2019-09-05 2019-12-03 中国航空制造技术研究院 一种用于回转体表面涂层制备的加工装置及方法
CN112975299B (zh) * 2021-03-22 2023-03-24 张俊杰 一种制备高精度纯钛球体部件的精密加工工艺
CN113996795A (zh) * 2021-06-30 2022-02-01 南京中科煜宸激光技术有限公司 快速制备工件表面耐磨耐蚀涂层的复合工艺
CN113718245B (zh) * 2021-08-25 2024-01-30 无锡市福莱达石油机械有限公司 一种回转件的高硬度熔覆涂层制备方法
CN113881913A (zh) * 2021-10-11 2022-01-04 浙江翰德圣智能再制造技术有限公司 一种复合超音速火焰喷涂高硬度耐磨涂层工艺方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101892409A (zh) * 2010-07-22 2010-11-24 株洲华锐硬质合金工具有限责任公司 一种铣削涂层硬质合金及其制备方法
JP2016041952A (ja) * 2014-08-18 2016-03-31 Ntn株式会社 セラミックスころの製造方法およびグリーン体成形装置
CN204420180U (zh) * 2014-12-08 2015-06-24 章华 一种具有高耐磨密封表面的球阀球体
CN106704627A (zh) * 2017-02-08 2017-05-24 江苏神通阀门股份有限公司 球阀的对分球体的加工方法
CN107150264A (zh) * 2017-05-24 2017-09-12 上海市轴承技术研究所 喷涂陶瓷后的球面精密加工方法
CN108315687A (zh) * 2018-03-05 2018-07-24 无锡市福莱达石油机械有限公司 激光熔覆不锈钢涂层复合氮化工艺
CN109161856A (zh) * 2018-08-20 2019-01-08 江苏神通阀门股份有限公司 一种具有纳米陶瓷-金属复合涂层的硬面球阀及制造方法
CN114986261A (zh) * 2022-06-02 2022-09-02 上海市轴承技术研究所有限公司 回转曲面硬质合金涂层的超精加工方法

Also Published As

Publication number Publication date
CN114986261A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
KR101177346B1 (ko) 롤 그라인딩 애플리케이션용 그라인딩 휠 및 이의 롤그라인딩 방법
TW393384B (en) Abrasive tool
WO2023231316A1 (zh) 回转曲面硬质合金涂层的超精加工方法
US20090017736A1 (en) Single-use edging wheel for finishing glass
US20070218266A1 (en) Components with bearing or wear-resistant surfaces
KR20150063169A (ko) 작업편 내의 복잡한 형상을 마무리 가공하기 위한 연삭 공구 및 방법
CN111843634A (zh) 一种石英半球谐振子加工工装及方法
CN105437091A (zh) 一种不锈钢端面磨削用大气孔树脂结合剂超硬材料砂轮及其制备方法
KR20040085004A (ko) 메탈본드 휠
CN103648719B (zh) 超精加工砂轮、使用该砂轮的超精加工方法和球轴承
KR102241466B1 (ko) 펌프 축 슬리브 및 그 제조방법
CN102407483A (zh) 一种半导体晶圆高效纳米精度减薄方法
Fiocchi et al. Ultra-precision face grinding with constant pressure, lapping kinematics, and SiC grinding wheels dressed with overlap factor
US20060205321A1 (en) Super-abrasive machining tool and method of use
KR20150064222A (ko) 초연마재 가공대상물의 그라인딩에 사용하기 위한 연마 물품
CN103057206B (zh) 一种超耐磨陶瓷合金涂层刮刀及其制造方法
CN112008834A (zh) 一种陶瓷圆柱滚子的生产加工方法
CN105522172B (zh) 铝合金车轮镜面加工工艺
CN111235520A (zh) 一种基体表面超声滚压织构化AlCrN涂层及制备工艺
JP2008088849A (ja) ノズルベーン部材の製造方法およびノズルベーン部材
CN108555549A (zh) 一种轴套加工方法
JPH08506769A (ja) 脆性材料製部材の機械加工方法およびこの方法を実施する装置
Su et al. Dressing of monolayer brazed diamond wheel for grinding Li-Ti ferrite
JPS6396311A (ja) 高速回転部品
JPH0448580B2 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944618

Country of ref document: EP

Kind code of ref document: A1