JP2008088849A - ノズルベーン部材の製造方法およびノズルベーン部材 - Google Patents

ノズルベーン部材の製造方法およびノズルベーン部材 Download PDF

Info

Publication number
JP2008088849A
JP2008088849A JP2006268731A JP2006268731A JP2008088849A JP 2008088849 A JP2008088849 A JP 2008088849A JP 2006268731 A JP2006268731 A JP 2006268731A JP 2006268731 A JP2006268731 A JP 2006268731A JP 2008088849 A JP2008088849 A JP 2008088849A
Authority
JP
Japan
Prior art keywords
nozzle vane
vane
grinding
shaft portion
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006268731A
Other languages
English (en)
Inventor
Katsunori Ito
伊藤克憲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ITO PARTS KOGYO KK
ITOU PARTS KOGYO KK
Original Assignee
ITO PARTS KOGYO KK
ITOU PARTS KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ITO PARTS KOGYO KK, ITOU PARTS KOGYO KK filed Critical ITO PARTS KOGYO KK
Priority to JP2006268731A priority Critical patent/JP2008088849A/ja
Publication of JP2008088849A publication Critical patent/JP2008088849A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Supercharger (AREA)
  • Control Of Turbines (AREA)
  • Powder Metallurgy (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Abstract

【課題】ノズルベーン部材のベーンシャフト部の形状を、精度良くでき、かつノズルベーン部材を短時間に生産することが可能となること。
【構成】ノズルベーン部材1のベーンシャフト部1aを、シャフト受け台3に設けられた半円形で樋形状のシャフト受け凹部3aに載置し、ボス部を把持している回転保持部材を回転させるとともに、円形研削部材30の円形研削部30aを回転させながら当接しかつ左右に移動させながら研削または研磨する。
【選択図】図5

Description

本発明は、ノズルベーン部材の製造方法およびノズルベーン部材に関する。特に、内燃機関の過給システムとして用いられる可変容量ターボチャージャに適用して好ましいノズルベーン部材に関する。
一般に、内燃機関の出力向上のためには、燃焼室へ送り込まれる空気の量を増やすことが好ましい。したがって、ピストンの上下動によって、空気を燃焼室に送り込むだけでなく、空気を強制的に燃焼室へ送り込むことにより、燃焼室内の空気の量を増加させるターボチャージャが提案されている。
このような内燃機関のターボチャージャには、ノズルベーン部材が設けられている。図10を用いて具体的にノズルベーン部材100が、ターボチャージャ200にどのように使用されているか概略の説明をする。
図10(A)は、ターボチャージャ200の概略を示す断面図で、ターボチャージャ200はタービンハウジング101とコンプレッサーハウジング102と、タービンハウジング101とコンプレサーハウジング102を連結するベアリングハウジング103とで構成されている。タービンハウジング101内には、複数の回転羽根104が設けられているとともに、燃焼室(図示せず)から排出される排気ガスにより回転されるタービンホイール105が設けられている。また、コンプレッサーハウジング102内には、同様に複数の回転羽根104を有するとともに、吸気を圧縮して燃焼室(図示せず)へ圧縮された吸気を圧送するコンプレサーホイール106が設けられている。このタービンホイール105およびコンプレッサーホイール106は、ベアリングハウジング103内で回転可能に支持されているロータシャフト107で一体的に回転可能に連結されている。
タービンハウジング101は、タービンホイール105の外周を囲むように、渦巻き状に伸びる形でベアリングハウジング103の一端に配設されている。図10(B)は、タービンハウジング101の部分断面図を例示するもので、タービンハウジング101内には、燃焼室からの排気ガスが排気通路(図示せず)を通って環状ガス通路108に送り込まれる。そして、タービンハウジング101では、環状ガス通路108内の排気ガスがタービンホイール105に向けて吹き付けられるようになっている。この排気ガスが、タービンホイール105に吹き付けられることにより、タービンホイール105が回転される。環状ガス通路108の途中には、ノズルリング109に対して軸支された複数のノズルベーン部材100が設けられている。このノズルベーン部材100は、上述のタービンハウジング101とベアリングハウジング103との間に設けられている可変ノズル機構(図示せず)によって開閉可能となっていて、ノズルベーン部材100間の流路の断面積を任意に変更することができるようになっている。タービンホイール105に吹き付けられた排気ガスは、上述のベアリングハウジング103の反対側の排出口から排出される。
このようなノズルベーン部材100は、種々の工作が施されている(特許文献1,2参照)。特許文献1には、ノズルベーンとベーンシャフトの径の太さに関する記載がある。さらに特許文献2には、ハウジングとノズルベーンとの間隔を拡大するためにハウジング内に切り欠きを設けることの記載がある。
実公平8−7061号公報 特開2004−52589号公報
上述のような可変ノズルベーン部材100を有するターボチャージャ200では、ノズルベーン部材100がタービンハウジング101と所定の間隔を保持するように配設されたノズルリング109に対して、回動可能に軸支されている。このノズルベーン部材100は、その一端側に設けられた軸、すなわちベーンシャフト部を回動させることにより開閉動作がされる。このノズルベーン部材100の開閉動作をスムーズに行わせるために、環状ガス通路108の通路壁、すなわちタービンハウジング101にあるノズルリング109とノズルベーン部材100の両端面との間には、熱膨張等を考慮して、若干の隙間が設けられている。
この隙間が大きくなると、タービンホイール105側へ流れる排気ガスが、上記の隙間から漏れてしまうために、ノズルベーン部材100を通過するガスの流量の制御が困難で、したがってターボチャージャ200の効率が低下することとなる。また、上記の隙間を小さくすると、エンジンの稼働中は必然的に温度上昇が起こり、ノズルベーン部材100が熱膨張を起こすことにより、ノズルベーン部材100の端面がタービンハウジング101の内面、すなわちガス通路の内側の面に接触して、ノズルベーン部材100が円滑に開閉しなくなる。
このように、ノズルベーン部材100がタービンハウジング101内で適正な精度を持って安定的に開閉できるようにするためには、一つにはベーンシャフト部の偏心が極めて少ないことが要求されることとなる。
本出願人は、過去、ノズルベーン部材の加工に取り組んできた。そして、ベーンシャフト部の偏心をなくすための仕上げ方法を思いつき実施している。この加工方法を図8、図9を用いて説明する。図8(A)は、図8(B)の矢印A方向から見た図、すなわち出願人が現在実施しているノズルベーン部材51を軸方向から見た図である。ノズルベーン部材51には、ノズルベーン部52を挟んで設けられているベーンシャフト部51aの中心部に、芯出しのためそれぞれ回転保持具受け穴60が旋盤加工で設けられている。図8(B)は、図8(A)を矢印B方向から見た図である。この図に示されたように、ベーンシャフト部51aとボス部51b(ベーンシャフト部51aの中で長さが小さい側をボス部と呼ぶ)に設けられた回転保持具受け穴60とは、回転中心が一致する同軸上の位置に設けられている。
このノズルベーン部材51は、図8(C)で示すように、上述の回転保持具受け穴60を案内にして、ボス部51bとは反対となる側のベーンシャフト部51aおよびボス部51bを回転保持具61で押さえつけ、あるいは図8(D)に示すようにボス部51bを回転保持部材63、例えばチャックにくわえて、ノズルベーン部材51全体を高速回転させる。このように高速回転させたノズルベーン部材51のベーンシャフト部51aは、旋盤のバイト62が当接され、さらにバイト62が左右に移動させられることで、荒切削、仕上げ切削され、その後、荒研磨、仕上げ研磨を経て回転軸として仕上げられる。ついで、ノズルベーン部材51の不要な部分となるボス部51bの部分を切断除去したりして、最終製品として仕上げることが行われている。なお、ボス部51bは、除去するものとして説明したが、このボス部51bもノズルベーン部材51の一部として利用する場合は、位置を入れ替えて同じ作業が行われている。
しかしながら、このようにバイト62を用いての切削においては、旋盤の回転数によって切削条件が決定される。通常、旋盤を高速回転させたとしても2000RPM位の前後が限界と考えられている。すなわち、被切削物の直径が1〜2cmの場合、切削速度に直すと80m/分くらいが限界で、同軸性もせいぜい1/100mm程度までしか得られない。しかも、生産性を上げるために切削量を大きくしようとすれば、ベーンシャフト部51aの端部から中心部にかけて、バイト22から受ける切削抵抗と、切削による発熱によって垂直方向に曲げの応力が大きく加わり、被加工物が同一寸法または均一形状とならないような変形が起こることとなる。このため、ベーンシャフト部51aの均一な径寸法を得ることが困難となる。また、この曲げ応力や発熱を小さくしようとすれば、切削量を小さくする必要が生じてくる。このように切削量を小さくしようとすると、切削に多大な時間を要することとなり、生産性の低下を招くこととなる。
さらに、図9で示すように、切削面の高度な平滑度や精度が要求される場合は、円形研削部材となる砥石車70の円形砥石70aを利用して研削または研磨が行われる。このような研削あるいは研磨仕上げを行う機械装置は、切削加工用の旋盤とは兼用できず、異なった装置が必要となる。したがって、機械設備が増えることになり、機械装置を取り換えるための加工段取りにも時間を要することとなる。図9(A)は、ベーンシャフト部51a(ボス部51bを含む)を円形砥石70aで研削または研磨する様子を示す側面図で、ノズルベーン部材51は、回転保持具受け穴60に回転保持具61の尖った部分が挿入され、その押圧で保持されている。
図9(B)は、ボス部51bを回転保持部材63、例えばチャックで保持し研削または研磨している様子を示す側面図である。なお、切削加工後研削または研磨加工と2工程で例示したが、どちらかの1工程の場合もある。このような加工方法を採用すると、例えば図9(C)の実線で示すように、切削あるいは研削または研磨時に発生する研削抵抗等による応力や、加工時に発生する熱でベーンシャフト部51aが変形して、変形ベーンシャフト部51aaのように理想とする回転軸に対してズレが生じ、同軸性が失われる状態となり、同軸精度の低下をきたす。このような変形原因となる研削抵抗や発熱量を小さくするには、被切削物としてのベーンシャフト部51aと、バイト62または円形砥石70との相対速度を低下させる必要が生じ、生産性の向上に支障が生じる。
このような生産性や精度の問題を抱えながらノズルベーンを生産している中で、本出願人は、如何にしたら生産性や精度を向上させ得るかを日夜考察し続けてきた。その中で、特許文献1を見ると、特許文献1は、可変容量ターボチャージャ全体の構造に関するもので、具体的には制圧を高くする必要がある部分のベーンシャフトの径を、他の部分のベーンシャフトの径より太くするというもので、生産性に関するものは記載されていない。さらに、ベーンシャフトは、ノズルベーンの一方の端部に設けられたものが記載されているが、どのような加工によって得られたものであるのか不明である。すなわち、ベーンシャフトの精度を得るための具体的な手段の記載は見あたらないものである。
さらに、特許文献2には、ノズルベーンについての記載はあるものの、その形状の記載は不明確であるとともに、ここに開示されている技術は、ハウジングとノズルベーンとの間隔を拡大するためにハウジング内に切り欠きを設けるもので、特許文献1と同様ノズルベーン部材のベーンシャフト部の構造および加工方法につての具体的な記載は認められない。
本発明は、上述のような課題を解決し、ノズルベーン部材のベーンシャフト部の精度を上げることができるとともにノズルベーン部材の生産性を向上させることができるノズルベーン部材の製造方法を提供することを目的とする。また、他の発明は、強度や回動の安定性が向上したノズルベーン部材を提供することを目的とする。
本発明のノズルベーン部材の製造方法は、排気ガスの流量を調節するノズルベーン部と、ノズルベーン部を回転可能に軸支するベーンシャフト部とを有するノズルベーン部材の製造方法において、ノズルベーン部をはさんで両方向に伸びるベーンシャフト部の一方となるボス部が把持され、ボス部とは反対側となる円柱形状のベーンシャフト部が、シャフト受け台に設けられた半円形状で樋形状のシャフト受け凹部に載置され、ボス部を把持している回転保持部材を回動させることでノズルベーン部材が回動されるとともに、ベーンシャフト部に円形研削部材の円形研削部を回転させながら当接させかつ円形研削部がベーンシャフト部上をその軸方向に移動して研削または研磨している。これにより、ベーンシャフト部を撓ませることなく、しかも短時間で研削または研磨している。
また、本発明ノズルベーン部材の製造方法に用いる円形研削部は、ノズルベーン部材と硬度が同等またはそれ以上であることが好ましい。これにより、正確な精度と、平滑な研削面が得られる。
さらに、本発明のノズルベーン部材の製造方法に用いるノズルベーン部材は、金属粉末焼結成形されているのが好ましい。このように金属粉末成形部材を用いると、任意の形状に対応できるとともに研削量の少ないブランクを提供することができる。
さらにまた、本発明のノズルベーン部材の製造方法におけるベーンシャフト部の研削精度は、光学測定装置で測定、制御されることが好ましい。すなわち、光学測定器を用いることにより、正確な研削量が測定できるとともに、適正な研削量の制御を自動的に行うことができる。
他の本発明のベーンノズル部材の製造方法は、ベーンシャフト部のシャフト受け凹部で支持される先端角部が曲面とされている。このような方法を採用すると、ノズルベーン部材の回転が確実かつスムーズとなる。
本発明のノズルベーン部材は、排気ガスの流量を調節するノズルベーン部と、ノズルベーン部を回転可能に軸支するベーンシャフト部とを有するノズルベーン部材において、ベーンシャフト部はノズルベーン部の中央付近の回転中心位置から少なくとも一方側に連接されているとともに、ベーンシャフト部がノズルベーン部に連接されている反対側の端面は、成型面のままの平面形状をしかつ端面とベーンシャフト部の周面との境が曲面とされている。このようにすることにより、機構的に不必要な機械加工された穴となる部分がなく、強度が向上する。また、ベーンシャフト部の端部が曲面とされているので、組み込みの安定性と回動の安定性を向上させることができる。
本発明の製造方法によれば、ベーンシャフト部の精度を上げることができるとともに、ノズルベーン部材の生産性を向上させることができる。また、本発明のノズルベーン部材によれば、ベーンシャフト部の強度や回動の安定性が向上したものとなる。
以下、本発明の第1の実施の形態に係るノズルベーン部材1について図1を用いて説明する。
図1(A)は、回転軸部材となるノズルベーン部材1を回転軸部となるベーンシャフト部1aの軸方向、すなわち図1(B)の矢印A方向から見た側面図である。また、図1(B)は、図1(A)のノズルベーン部材1を上方から、すなわち、図1(A)の矢印B方向から見た平面図である。このノズルベーン部材1は、両面が凸状の円弧形状で羽根形状をしているノズルベーン部2と、そのノズルベーン部2を挟んで、同軸上に設けられた円柱形状をしているベーンシャフト部1a、1aと、ベーンシャフト部1aの端面に設けられた面取り部1bとで構成されている。なお、図1(B)の右側のベーンシャフト部1aは、加工補助のために設けられ、最後には切断除去される同軸上に設けられているボス部2bとされている。
面取り部1bは、ブランクの成形加工時に予め設けるようにするのが好ましいが、後述の研削または研磨で形成しても良い。この面取り部1bは、研削または研磨の際に後述のシャフト受け凹部3a(図5参照)あるいは回転保持部材となるチャック部材32(図5(B)参照)に載置または保持されたノズルベーン部材1がズレを起こさず、また回転をスムーズにする働きを有している。面取り部1bは、先端に行くに従いシャフト径が小さくなる曲面形状とされている。曲面形状としては、円弧、放物線曲面など種々なものが採用されるが、いずれにしても端面と周面との境が2つの直線が交わるときに生じる尖った角とならないようにされたものである。なお、図1(A)では、ノズルベーン部2は、両面が凸形状の流線形をしている羽根形状に形成されている。しかし、図示しないが片面のみが凸形状の三日月形の形状としたり、単なる平板形状としたりしても良い。また、上述の切断除去されるボス部2bは、切断除去せず他方のベーンシャフト部1aとしても利用することができる。
このノズルベーン部材1の複雑な形状を得るには、いくつかの手段が選択される。しかし、その形状の精度は極めて高度な水準が要求されている。例えば、機械加工でこの形状を得ようとする場合は、NC旋盤等の加工によって適している精度の加工物は得られるが、その加工が完成するまでには長時間加工をする必要があり、生産性は非常に低くなる。したがって、大量に生産しようとすれば、多くのNC旋盤等の機械と工場スペースが必要となるので、通常は試作的には利用されても大量生産には適していない。したがって、このような欠点をカバーするためには切削加工に頼らない方法として、成形加工を選択することが好ましい。
この成形加工には、熱間あるいは冷間鍛造法や、ダイキャスト法や、ロストワックス法などの手段が提案されている。しかし、使用される材質や、必要とされる成形精度によって成形加工方法は制限されてくる。ノズルベーン部材1の材質は、基本的にステンレスチールであることから、加工方法が制限をされてくる。すなわち、鍛造では、材料の展延性が小さいので、例えば、熱間鍛造であっても鍛造回数を増やして成形することとなる。また、鍛造による材料の伸び等により不必要な部分が必然的に発生したりして、旋盤や切断砥石等で切り落とし加工を行い、所定の形状とする必要が生じてくる欠点がある。さらに、鍛造時に変形によるひずみが発生し、そのためひずみ除去等の加熱工程も必要となってくる。
また、ダイキャストやロストワックスを用いる方法では、材料が比較的低温で溶融する金属またはその合金である場合に、より適しており、またこれらのキャスティング方法では、原型となる型と成形物との加工時における収縮率が変動しやすく、また収縮率を予測して工程設計することが困難である。さらに、鋳造等による湯口や発生するバリを、機械的に上述の鍛造同様切断砥石等で切断、除去する必要があり、余計な工程に時間を要することとなる。したがって、短時間に必要とする寸法精度に仕上げるのが困難で、生産性は好ましくない。また、キャスティング時の精度が良くないので、研削や研磨等の加工については、後述図示するシャフト受け台3に、安定して載置することができにくい。
このような欠点を解決するために、金属粉末成形が主流となっている。この金属粉末成形には、熱間等圧成形法(HIP)あるいはMIM法と呼ばれる成形方法を採用するのが好ましい。
これらの方法を採用するには、アトマイズ法を用いて原料となる金属微粉末を得ることが重要である。アトマイズ法は、ガスアトマイズ法と水アトマイズ法とに区分される。これらの方法のいずれを採用するかは、金属微粉末原料となる金属によって、より好ましい方法を採用すると良い。例えば、水噴霧による急冷噴霧処理の場合は、酸素や水素の含有量が少なく、また金属溶湯流の粉砕力が、ガスや各種混合気体を用いた場合に比較して大きいので、より微粉末を得ることができる。例えば、特開2004−107740号公報に記載されているように、あらかじめ合金組成を調整した材料を誘導炉加熱して溶解し、この溶湯流に水量1000l/min、水圧200kgf/cmで水噴霧して、生成粉末粒径10μm程度のものを生成させて、金属粉末の出発原料として用いることができる。
図2を用いて、上述の熱間等方加圧成形法(HIP)について説明する。図2(A)は、HIP処理装置の概念図で、外周は高圧円筒の容器20としてある。この高圧円筒容器20とカプセル(図示せず)に入った処理品21との間に断熱層22が設けられる。断熱層22の内側にはヒータ23が配置されて、処理品21を加熱するようになっている。高圧円筒容器20は、上蓋25と下蓋26とで密閉されるようになっている。上蓋25には高圧ガス導入口24が設けられている。
図2(B)に、概略の工程を示してある。すなわち、あらかじめ所定の形状となるカプセルを製作し、このカプセルにアトマイズ法で得られた原料粉末を充填する(ステップS11)。その後、ステップS12にて充填粉末の脱気封入を行い、カプセル内部を気密にシールする。これは、カプセル内の空気、吸着水分、吸着ガスを除去して、清浄な焼結体を製造することおよびカプセル内部に圧力が生じてカプセルが膨れたり、変形したりするのを防止するためである。その後加熱してHIP処理を行い(ステップS13)、カプセルを除去して(ステップS14)、成形品を得る。高精度を要求されるノズルベーン部材1では、このままでは要求される精度は満足し得ないので、後述の研削によってベーンシャフト部1aの寸法を所定のものに仕上げる。
図3に、MIM法による成形品の加工工程について概略を示してある。すなわち、アトマイズ法によって得られた金属の原料微粉末とワックスや樹脂等でできたバインダーとを混練する(ステップS41)。その混練りしたものを出発原料として用いる。別に作成した金型を射出成形機に取り付け、金型中に射出する(ステップS42)。この射出成形品を乾燥後、バインダーを炉中で加熱して脱脂(ステップS43)、この脱脂したものを焼結する(ステップS44)ことによって所定の成形品を得ることができる。MIM法に於いても、収縮は起こるが、バインダーや射出条件等を厳密に設定できることから、収縮率を正確に把握でき、目的寸法に近似したものが得られる。特に近年、バインダーや、微細金属粉末の製造方法等の進歩により、±0.02mmの成形品が得られるようになっている。
上記のようにして得られたブランクは、湯口が切断砥石で切断されてノズルベーン部材1の出発原料となる。本実施の形態では、上述の成形品が精度良く得られることもあって、切削加工を省略することもできる。すなわち、切削加工は、通常、ボス部2bの切断除去の場合以外は原則として旋盤加工を行う必要はなく、研削または研磨のみによってベーンシャフト部1aを仕上げることができる。なお、以後研削または研磨をまとめていうときは、研削等と表現することとする。
この研削または研磨加工について、図4用いて説明する。研削(加工)は、いわゆる切り屑を出す加工方法である。すなわち、砥石回転軸31に取り付けた円形砥石30aによって、ベーンシャフト部1aに相当する被研削材30bの表面を削る加工法である。この研削法の円形砥石30aの周速は、被研削材30bの相対速度に比較して非常に速く、削り代も数ミクロンと微小であるので、表面粗さがサブミクロン以下の精密加工が可能で、大量生産にも適している。しかし、円形砥石30aを用いた研削加工では、表面の異物等の摩耗的な除去は行われない。したがって、高度な表面の平滑さが要求されるときは、例えば超微粒子の砥粒で形成された円形砥石30aを用いて、超仕上げ加工を行うのが好ましい。
研磨(加工)は、いわゆる微小研削に相当するもので、被研削材30bの表面を滑らかにし、光沢を持たせるとともに表面に付着した異物を除去させる働きがある。このため、サブミクロン以下の精密加工に適している。この研磨(加工)は、摩耗的除去が主体であるとされていることから、円形砥石30aは、固さよりも融点の高いものが好ましい。したがって、目的によって研削または研磨を適宜組み合わせて加工するのが好ましい。この研削等には、円形研削部材となる砥石車30を用いる。図4(A)は、砥石車30を砥石回転軸31に対して垂直方向から見た断面図で、この砥石車30は、砥石回転軸31に円形研削部となる円形砥石30aが、砥石回転軸31に回転可能にネジで固定されている。
図4(B)は、砥石車30の円形砥石30aが、被研削材30bすなわちベーンシャフト部1aおよび後述図示する回転軸部材であるシャフト部1a1、1a2などの研削等を行う様子を模式的に示してある。被研削材30bと円形砥石30aとは、同方向に回転するようにしてある。この結果、被研削材30bと円形砥石30aとは、それぞれが当接する当接面35では、反対方向の力を受けることになり、この結果上述の当接面35では、被研削材30bの表面と、円形砥石30aの研削の面とは、反対方向に移動するが、後述するように円形砥石30aの回転速度の方が速いので、切りくず34は円形砥石30aの回転方向後方に排出される。
したがって、当接面35の速度は、被研削材30bと円形砥石30aの速度とを加えた速度となる。このため、被研削材30bの回転速度が遅くても、円形砥石30aの直径は比較的大きくすることができるので、周速、すなわち相対速度を速くでき、研削等を効率よく行なうことができる。円形砥石30aは、結合剤32で砥粒33が固められたものが用いられる。また、この円形砥石30aには気孔33aが介在している。この結合剤32の種類、砥粒33の種類や大きさ、および気孔33aの大きさや数などは、被研削材30bの材質や研削量および表面の粗さ等を考慮して任意に決定すれば良い。
一般に、切削以外の手段で切断する場合、例えば砥石車30の円形砥石30aに代わって切断砥石(図示せず)を用いる。被研削材30bを切断する場合、その被研削材30bが硬い材料の場合は、回転速度を速くし軟らかめの砥石材料を用い、また被研削材30bが軟らかめの材料の場合は、硬めの砥石材料で回転数を遅くして用いるのが好ましいとされている。しかし、研削等では、同等程度の硬度よりは高い硬度の砥粒を用いるのが好ましい。例えば、硬い物質の研削等に用いられる一般的な円形砥石30aには、砥粒33として、通常炭化珪素(SiC)あるいはアルミナ(Al)、さらにはエメリ(例えばAlFeを主成分としたもの)が用いられる。また、特殊で高性能な円形砥石30aの砥粒33として、超砥粒と呼ばれている立方晶窒化硼素(CBN)やダイヤモンドが用いられる。
これらのモースの硬度は、エメリは7.5〜9、炭化珪素およびアルミナでは9〜10で、超砥粒のCBNは、ダイヤモンドの硬度10にごく近い硬度を有している。また、ヌープ硬度で比較してみると、ダイヤモンドが7000kg/mm、CBNは4700kg/mm、SiCは2480kg/mm、Alが2100kg/mmとなっていて、ダイヤモンドやCBNが突出した値を有している。
炭化珪素(SiC)系(カーボランダム、グリーンカーボランダム等)は、アルミニウム、銅、超合金、非鉄、非金属の研削等に適している。アルミナ(Al)系(アランダム、ホワイトアランダム、エメリ等)は、一般の鉄鋼、工具鋼の研削等に適している。これらの砥粒33は、研削等の対象物となる被研削材30bの研削量を大きくする場合や、被研削材30bの硬度が高い場合などに適している。CBNは、高価だが上述したように硬度が高く耐摩耗性にすぐれており、各種の被研削材30bの材料に対応可能で、荒研削から仕上げ研削までができる。なお、酸化珪素(SiO)が主成分であるケイ砂やトリポリまたはドロマイト(CaCO・MgCO)などは、モースの硬度が7以下で、硬度が低いため研削量も低いが、硬度の低い被研削材30b、例えばアルミニウムおよびアルミニウム合金、銅および銅合金さらには通常の鉄製品の表面を平滑にするのに役立つ。
しかし、研削等の条件は、単純にモース硬度等にのみ依存する訳ではなく、砥粒33の粒度、結合材32の種類、砥粒率などの物理的、化学的条件を含めて複合的に決まるものである。特に、研削量や研削等の面の仕上がり状態は、砥粒33の粒径に影響されてくるところが大である。細かい粒度の場合、比較的低速(軽研削)で使用しても、滑らかな仕上げ面を得ることができる。上述の炭化珪素やアルミナという一般的な砥粒33を用いている円形砥石33では、被研削材30bの硬度が高いほど結合度の低いものを用い、硬度の低いものほど結合度の高い円形砥石30aを用いるのが好ましい。実用上は、円形砥石30aの色々な種類が市販されていて、種々な組み合わせが可能のため、上述の相対的な周速度、被研削材30bの材質、砥粒33の大きさやその他の性質などを適宜選択して用いるのが好ましい。研削等によって平滑で精度の高い仕上げ寸法を得るには、砥粒33の硬度は、被研削材30bの硬度と同程度かそれより高い硬度の砥粒33を選ぶのが好ましい。
さらに、研削等における円形砥石30aの周速度については、例えば円周1cmの被研削材30bを、旋盤で周速80m/分で切削しようと仮定すると、旋盤の回転数は約8000RPMが必要となる。このような高速の回転では、切削工具の耐用時間が短くなる。また、低速回転にすると、切り込み量によっては切削抵抗が大きくなって、発熱等により被研削材30bの変形が起こりやすくなる。通常、旋盤を用いる研削等の加工では、2000RPM位、回転数の大きいものとしてもせいぜい3000RPM位の機械装置が用いられる。
しかし、被研削材30bの回転速度が小さくても、砥石車30の円形砥石30aの周速は、砥石径大きくすることにより大きくなり、しかも周速は見かけ上、被研削材30bと砥石車30の回転速度の足し算として表すことができる。したがって、上述したように被研削材30bの回転数が、1000〜2000RPMしか得られないとしても、砥石車30を用いると、円形砥石30aの径を大きくすることにより、円形砥石30aの回転数が小さくても実質的に円形砥石30aの周速が上昇して、相対的な周速を容易に大きくさせることが可能となる。
研削等を行う場合、砥石車30の円形砥石30aの相対的な周速は、上述の一般的な砥粒33例えばエメリなどのモース硬度の低い砥粒33を使用した円形砥石30aでは300〜500m/分、好ましくは350〜450m/分になるように設定されることが好ましい。なお、相対的な周速は、300m/分未満では、円形砥石30aの損耗が大きくまた研削等に時間がかかりすぎ、また500m/分を超えると、円形砥石30aの切れ味が低下したりまた円形砥石30aの芯ぶれ等があった場合、円形砥石30aが破損したりする危険性がある。
また、高剛性で回転精度の高い研削盤やNC旋盤等の機械装置の開発、進歩にともない、従来からの砥石材料として用いられている上述の一般的な砥粒33に代わって、超砥粒と呼ばれるダイヤモンドやCBN(立方晶窒化硼素)を砥粒33として経済的に用いることができる加工技術の開発が進行している。これらの超砥粒と呼ばれている砥粒33の中で、ダイヤモンドは研削中に鉄と反応するので鉄鋼系には使用不適であって、セラミックス、石材、非鉄金属あるいは特殊鋼などに適している。これに対し、CBNは、ダイヤモンドより硬度はやや低いが、ダイヤモンドとは異なり、鉄と反応することがないので鉄鋼に使用することができる。
このCBNを用いた円形砥石30aとしては、磁器質を結合剤として用いていて気孔33aのあるビトリファイド研削砥石と、外周部の1〜3mm程度のみが砥粒層で構成されている超砥粒ホイールと呼ばれるもので、気孔33aのあるブリッジタイプと、気孔33aのないマトリックスタイプのものなどがある。これらのいずれを選択使用するかは、研削等に用いる機械装置の性能や被研削材30bの材質、形状などから適宜選択使用することが生産性の面からは好ましい。硬度が高く、耐摩耗性にすぐれ、また化学的にも安定しているダイヤモンドやCBNを用いた円形砥石30aを用いると、1000〜2500m/分の相対的な速度での加工をすることが可能となる。したがって、例えば加工時の発熱を抑えるためや、表面の平滑さを得ようとするために、砥粒33を微小にして研削能力を小さくしたとしても、砥石径を大きくすることにより相対的な周速度を上昇させることができるので、実質的な研削量を低下させることなく効率的な研削等の加工も可能となる。なお、相対速度1000m/分未満では、砥粒33の摩耗が大きくなりやすく、2500m/分を超えると円形砥石30aの破損の危険性が大きくなる。
なお、被研削材30bの周速と円形砥石30a周速との関係は、[被研削材30bの周速<円形砥石30aの周速]となるように設定するのが好ましい。つまり、被研削材30bの周速と円形砥石30aの周速比は、被研削材30bの周速を極めて遅くした方が、好ましい研削等ができやすい。ただし、この周速比は、仕上げ面の程度、研削量などから被研削材30bの材質や砥粒33の粒度や結合材32や砥粒率など種々組み合わせて最適条件を決定すれば良い。したがって、被研削材30bだけを単独で回転させて加工するよりは、被研削材30bと円形砥石30aの両方を回転させることにより、特殊な機械装置を用いなくても容易に相対的な速度を大きくすることができ、研削等の効率を向上させることができる。
このようなことから、出願人が現在行っている図8、9に示す方法における「芯出し荒切削加工(旋盤加工)+表面仕上げ切削加工(旋盤加工)+荒研削または荒研磨加工(砥石車加工)+仕上げ研削または仕上げ研磨加工(砥石車加工)+ボス取り加工」という加工に代わって、本実施の形態では、「荒研削加工(砥石車加工)+仕上げ研削または仕上げ研磨加工(砥石車加工)+ボス取り加工」という短縮された加工工程とすることが可能となる。なお、仕上げ研削を採用するか、仕上げ研磨とするかは、荒研削加工の状況から選択すればよい。このような加工工程とすることにより、従来約90秒要した加工時間が、1/3の約30秒程度の時間に短縮、実現することができる。
さらに、図8、9に示した加工方法では、夾雑物がたまりやすい回転軸受け穴20をなくし、ベーンシャフト部51aの端面を平滑にするために切断砥石で切断することが行われているのに対し、円形砥石30aを用いる製造方法では、ベーンシャフト部1aを回動させるためのベーンシャフト部1aの端面に、回転保持具受け穴20を設ける必要がなくなる。また、面取り部1bも、円形砥石30aで加工でき、旋盤加工に比較して、滑らかな面取り加工ができる。このように、砥石車30を用いた加工を行うと、種々な砥石30aを選択したり、相対的な周速を広い範囲で種々変えたりすることができるので、仕上がりの製品の精度が向上し、従来の加工方法では±1/100mmを越えた同軸精度しか得られなかったのに対し、±1/100mm以下の同軸精度が容易に得られるようになる。
図5を用いて、ノズルベーン部材1の製造方法について、さらに詳しく説明する。
図5(A)は、ノズルベーン部材1のボス部2b以外のベーンシャフト部1a(以下、ベーンシャフト部1aというときは、ボス部2bを含まないものを指す)が、耐摩耗性のある高硬度の焼き入れ鋼製のシャフト受け台3のシャフト受け凹部3aに載置されている様子を、砥石回転軸31の軸方向から見ている側面図である。なお、なお回転保持部材となるチャック部材32の図示は便宜的に省略してある。ノズルベーン部2は、ベーンシャフト部1aが回転するとき同時に回転する。この場合、ノズルベーン部2は、シャフト受け台3には接触せず、ベーンシャフト部1aの回転とともに自由に回転可能となるように配置されている。円形研削部材となる砥石車30は、円形回転部となる円形砥石30aと、円形砥石30aを回転させる砥石回転軸31とで構成されており、円形砥石30aは砥石回転軸31で回転するとともに、図5(B)中の矢印で示したように上下左右に移動可能となっている。このベーンシャフト部1aと円形砥石30aは、同じ方向に回転するようになっている。このように同方向に回転させることにより、上述したように、ベーンシャフト部1aの周速は砥石30aの回転速度との相乗効果によって、相対的に速いスピードを得ることができる。
図5(B)は、図5(A)を、右方向から模式的に表した側面図である。ノズルベーン部材1は、回転機構(図示せず)から回転が伝達される回転保持部材となるチャック部材32に固定されたボス部2bより回転動作が伝達されて回転させられる。ノズルベーン部材1のベーンシャフト部1aが載置されるシャフト受け台3に設けられたシャフト受け凹部3aは、断面形状が半円形の樋形状の凹部となっており、内面はベーンシャフト部1aが密着するように、同一径の円弧面となっている。シャフト受け凹部3aは、また、ベーンシャフト部1aが滑らかに回転可能になるような磨き上げられた面を有している。さらに、開口部分の上方よりベーンシャフト部1aが出し入れ可能となるようになっている。
このため、ベーンシャフト部1aは、シャフト受け凹部3aでスムーズに回転できるようになっており、またシャフト受け凹部3aから転がり出すことがないように収納される。この場合、シャフト受け凹部3aにベーンシャフト部1aが載置、収納されて接触する長さdは、ベーンシャフト部1aの全長に相当する長さで受けるようにしても良いが、さらにはベーンシャフト部1aの全長より短めの1/2以下、1/5以上で接するような長さに設定すると、研削等による径寸法の変化による影響を小さくすることができ、同軸精度を維持するのにより好ましい。なお、シャフト受け凹部3aとベーンシャフト部1aの載置、収納される長さdを1/2以下としたのは、被研削材30bの被測定部位を確保して光学測定装置40(後述図示)で行いやすくするためで、1/5以上としたのは、シャフト受け凹部3aから脱落しないようにするためである。したがって、光学測定装置40として簡単かつ正確に測定できる機構を有した装置を用いることができれば、1/2を越えた長さとすることもできる。なお、ボス部2bの研削等を行う場合も同様である。さらに、円形砥石30aの幅(被研削材30bと当接する幅)は、研削等の加工時の接触抵抗に関係してくるので、機械装置の能力や、加工時の発熱状況や、秒当たりの研削量等を考慮して決めれば良い。
ベーンシャフト部1aは、砥石回転軸31に固定された円形砥石30aが砥石回転軸31の回転とともに回転しながら当接し、研削等すなわち研削あるいは研磨が行われるようになっている。この円形砥石30aは、砥石回転軸31とともに矢印で示してあるように、左右に移動可能となっている。また、図5(B)中の矢印で示してある上下にも移動することができるようになっている。なお、ボス部2bを切断除去せず、ノズルベーン部材1の他方の軸として研削等を行い使用するような場合は、ノズルベーン部2を挟んだベーンシャフト部1aとボス部2bとを回転保持部材すなわちチャック部材32に入れ替えて研削等を行えばよい。また、チャック部材32で保持される先端部分は、回動を伝えるための機能だけとするなら、円柱形以外の例えば角柱形状をしていても良い。例えば、チャック部材32で保持されるボス部2bは、回動させるためだけの機能で、後に除去されるとするなら、チャック部材32で保持しやすいように円柱形以外の任意の形状例えば角柱状であっても差し支えない。
図5(C)は、ノズルベーン部材1の他の加工方法を示す側面図である。ベーンシャフト部1aとボス部2bはともに、シャフト受け台3のシャフト受け凹部3aとボス部受け凹部3a1とに、回転軸のずれのない同軸上にそれぞれ収納、載置されている。この場合、ボス部受け凹部3a1は、シャフト受け凹部3aとは形状が若干異なり、その断面は半円形より大きな円弧をもった形状をしていて、ボス部2bが上方に飛び出すことがなく、側面側より挿入や取り出しするようになっていて、回転が可能な形状とするのが好ましい。
研削等には、例えばベーンシャフト部1aの研削等は砥石車30の円形砥石30aで行い、ボス部2bはゴムを結合剤とする調整砥石車30Aで行う。調整砥石車30Aの調整円形砥石30a1は、ノズルベーン部材1を回転させる働きが主であることから、摩擦抵抗が大きいことが重要なため、耐摩耗性があれば研削能力は小さくても差し支えない。砥石車30の円形砥石30aと調整砥石車30Aの調整円形砥石30a1とは、それぞれの砥石回転軸31で独立に回転するようになっている。また、円形砥石30aおよび調整円形砥石30a1は、左右の移動と、上下の移動も可能となっている。
円形砥石30aと調整円形砥石30a1は、異なった回転数で回転することができるように設定されている。また、円形砥石30aと調整円形砥石30a1がベーンシャフト部1aとボス部2bとにそれぞれ当接する際の圧力も、任意に変更することができるようになっている。ベーンシャフト部1aは、調整円形砥石30a1の大きな接触抵抗で回転する。これを利用して、ベーンシャフト部1aとボス部2bの両方の研削等を行うには、円形砥石30aと調整円形砥石30a1とを交互に交換して当接させるようにして行えばよい。
さらに、図示しないが、調整円形砥石30a1に代わって、ベーンシャフト部1aとボス部2bとのそれぞれに、円形砥石30aと円形砥石30aを当接する。このとき、円形砥石30aと円形砥石30aとは、回転速度と当接する圧力を変え両者の接触抵抗の差を大きくし、左右に移動させながら回転させる。すなわち、円形砥石30aと円形砥石30aとを逆方向に異なる回転速度で回転させると、接触抵抗の違いで、ベーンシャフト部1aは、接触抵抗の高い円形砥石30aの回転方向に回転し、研削等が施される。なお、円形砥石30aと円形砥石30aとの回転方向を同方向にして用いるようにしても良い。
図6(A)は、研削等すなわち研削および研磨作業における仕上がり寸法を制御するための、光学測定装置40を設けた様子を例示する斜視図である。砥石車30の円形砥石30aで研削等が行われるノズルベーン部材1のベーンシャフト部1aは、光学測定装置40からベーンシャフト部1aに向けて光学部41から発射されたレーザ光線の反射光の位相差を測定し、その結果をコンピュータで解析し、円形研削部すなわち円形砥石30aを制御しながら研削および研磨を行う。この光学系では、精密な測定が可能となるので、研削等が施される被研削材の研削精度は、1/1000mm単位で得ることが可能となる。
図6(B)は、ノズルベーン部材1のベーンシャフト部1aに面取り部1bを設けないようにしたものである。すなわち、シャフト受け台3に設けられているシャフト受け凹部3aは、シャフト受け台3を素通しするように設けられていて、ベーンシャフト部1aの端面を規制する部分がない構成となっている。このように構成すると、面取り部1bを設けないようにすることができる。しかし、面取り部1bで規制されることがないため、研削等においてベーンシャフト部1aの径寸法が変化すると、ベーンシャフト部1aがシャフト受け凹部3a内で隙間ができ、がたつきが発生する。このため、ボス部2bとの同軸性が若干低下する。しかし、ボス部2bを後に切断除去するようなノズルベーン部材1の構造には、同軸性は片側だけを考えればよいので、合理的であり、使用する治工具等が簡単になる利点がある。
次に、上述したノズルベーン部材1以外の回転軸部材の実施の形態について、図7を用いて説明する。なお、回転軸部材のノズルベーン以外の用途については、エアコンの風量、風向の調整用ダンパー、冷蔵庫の冷気を制御するダンパー弁などが存在する。
図7(A)は、第2の実施の形態に係る回転軸部材10Aの加工方法を示す断面図である。回転軸部材10Aは、径の大きなシャフト部1a1と、シャフト部1a1と同軸上に連結している径の小さなシャフト部1a2と、回転保持部材となるチャック部材32で固定されるボス部2bとから構成されている。径大のシャフト部1a1と径小のシャフト部1a2は、研削等が行われたとき、変形しないように支えるシャフト受け台3に設けられたシャフト受け凹部3aと径小のシャフト受け凹部3a2で支持されるようになっている。
この回転軸部材10Aは、径小のシャフト部1a2と同軸上に連結しているボス部2bが、チャック部材32で保持されて回動される。径大のシャフト部1a1の回動にともない、径小のシャフト部1a2も回転する。また、径大のシャフト部1a1には、円形研削部材となる砥石車30の円形砥石30aが回転しながら左右に移動したりして当接して研削等が行われる。さらに、径小のシャフト部1a2には、他の円形研削部材となる砥石車30Bの円形砥石30a2が回転しながら左右に移動したりして当接し、研削等を行う。
このようにすると、シャフト受け台3、3で回転軸部材10Aをしっかりと支えているので、円形砥石30aや円形砥石30a2で圧接されても変形することがなく、しかも相対的な研削等の速度を高くすることができる。したがって、回転軸部材10Aの1回転当たりの研削量を小さくしたとしても、相対的な周速を上げることができ、研削量は大きくなる。秒当たりの研削等が行われる量は変わらないにもかかわらず、発熱量を少なくでき、材料の変化を極めて小さくすることができる。この結果、精度の良い加工ができる。なお、径大のシャフト部1a1と径小のシャフト部1a2とを同時に研削等をするように図示してあるが、それぞれのシャフト部1a1、1a2を別々に研削等を行うようにしても良い。
図7(B)は、さらに第3の実施の形態に係る回転軸部材10Bを示す斜視図である。回転軸部材10Bは、径大のシャフト部1a1と、径小のシャフト部1a2と、両側から径小のシャフト部1a2が回転中心位置に接続している円板部1a3と、回転軸部材10Bを回動させるチャック部材32(図示せず)で固定されるボス部2bとで構成されている。これらの研削等は、径小のシャフト受け凹部3a2が2つになるのが異なるのみで、回転軸部材10Aと同様にして行うことができる。
図7(C)は、第4の実施の形態に係る回転軸部材10Cを示す斜視図である。図7(B)とは、円板部1a3に代わって、角形の部材1a4が設けられている点が異なっている。さらに、図7(D)は、第5の実施の形態に係る回転軸部材10Dを示す斜視図である。この回転軸部材10Dが、上述の各回転軸部材と異なる点は、径小のシャフト部1a2に代わって、径大のシャフト部1a1とボス部2bとに挟まれている部分には、角柱状をしている角柱部材105が設けられている点である。このような形状であっても、径大のシャフト部1a1とボス部2bとを、上述のシャフト受け台(図示せず)で支持することができるので、角柱部1a5にかかる応力を小さくすることができ、同軸性を損なうことなく精度の良い研削等を行うことができる。なお、角柱状の角柱部材105に代わりに、板状の部材であっても適用可能である。
なお、各実施の形態に係る研削等にあたっては、乾式であっても良いし、また必要に応じて研削液等を利用しても良い。さらに、上述した熱間等圧成形法またはMIM法から得られる部材に限らず、他の方法で加工されたものであっても差し支えない。またさらに、砥石の種類を選択することにより、ほとんどの金属または合金に適用できる。なお、上述の各実施の形態は、代表例の例示であって、種々の要素を組み合わせて実施することができる。また、円形砥石を例に説明をしてきたが、円形砥石に代わってベルト研磨機を用いることも可能である。
本発明の第1の実施の形態に係るノズルベーン部材を説明する図で、(A)は側面図、(B)は平面図である。 本発明の第1の実施の形態に係るノズルベーン部材を得る加工方法を説明する図で、(A)は、熱間等方加圧成形のための装置の概念図で、(B)は、熱間等方加圧成形の加工工程順を示す図である。 本発明の第1の実施の形態に係るノズルベーン部材に用いる素材の他の加工方法であるMIM法の加工工程を示す図である。 本発明の各実施の形態に係る回転軸部材の研削または研磨を説明する図で、(A)は、円形研削部材の回転軸に対して平行方向の断面図で、(B)は、被研削材と円形研削部との関係を示す部分概念図である。 本発明の第1の実施の形態に係るノズルベーン部材の加工方法を説明するための図で、(A)は、砥石回転軸の軸方向から見た側面図で、(B)は、(A)の側面図で、(C)は、他の加工方法を示す側面図である。 (A)は、本発明の第1の実施の形態に係るノズルベーン部材のシャフト径の測定方法を説明するための図であり、(B)は、ノズルベーン部材を支持するシャフト受け台の他の例を説明する図である。 本発明の第2〜第5までの実施の形態に係る回転軸部材の加工方法を説明する図で、(A)は、回転軸部材10Aの加工方法を説明するための側面図で、(B)は、回転軸部材10Bを説明するための斜視図で、(C)は、回転軸部材10Cを説明するための斜視図で、(D)は、回転軸部材10Dを説明するための斜視図である。 本出願人が過去行ってきたノズルベーン部材の切削による加工方法を示す図である。 本出願人が過去行ってきたノズルベーン部材の研磨による加工方法を示す図である。 従来のノズルベーン部材や本発明の実施の形態に係るノズルベーン部材が用いられるターボチャージャを示す図で、(A)は、ターボチャージャの断面図で、(B)は、タービンハウジングを示す部分断面図である。
符号の説明
1 ノズルベーン部材
1a ベーンシャフト部
2 ノズルベーン部
2b ボス部
3 シャフト受け台
3a シャフト受け凹部
10A、10B、10C、10D、 回転軸部材
30 円形研削部材(砥石車)
30a、30a2 円形研削部(円形砥石)

Claims (6)

  1. 排気ガスの流量を調節するノズルベーン部と、上記ノズルベーン部を回転可能に軸支するベースシャフト部とを有するノズルベーン部材の製造方法において、上記ノズルベーン部をはさんで両方向に伸びる上記ベーンシャフト部の一方となるボス部が把持され、上記ボス部とは反対側となる円柱形状の上記ベーンシャフト部が、シャフト受け台に設けられた半円形状で樋形状のシャフト受け凹部に載置され、上記ボス部を把持している回転保持部材を回動させることで上記ノズルベーン部材が回動されるとともに、上記ベーンシャフト部に円形研削部材の円形研削部を回転させながら当接させかつ上記円形研削部が上記ベーンシャフト部上をその軸方向に移動して研削または研磨することを特徴とするノズルベーン部材の製造方法。
  2. 前記円形研削部は、前記ノズルベーン部材と硬度が同等またはそれ以上であることを特徴とする請求項1記載のノズルベーン部材の製造方法。
  3. 前記ノズルベーン部材は、金属粉末焼結成形されていることを特徴とする請求項1または2記載のノズルベーン部材の製造方法。
  4. 前記ベーンシャフト部の研削精度は、光学測定装置で測定、制御されることを特徴とする請求項1記載のノズルベーン部材の製造方法。
  5. 前記ベーンシャフト部の前記シャフト受け凹部で支持される先端角部が曲面とされていることを特徴とする請求項1から4のいずれか1項記載のノズルベーン部材の製造方法。
  6. 排気ガスの流量を調節するノズルベーン部と、上記ノズルベーン部を回転可能に軸支するベーンシャフト部とを有するノズルベーン部材において、上記ベーンシャフト部は上記ノズルベーン部の中央付近の回転中心位置から少なくとも一方側に連接されているとともに、上記ベーンシャフト部が上記ノズルベーン部に連接されている反対側の端面は、成型面のままの平面形状をしかつ上記端面と上記ベーンシャフト部の周面との境が曲面とされていることを特徴とするノズルベーン部材。


JP2006268731A 2006-09-29 2006-09-29 ノズルベーン部材の製造方法およびノズルベーン部材 Pending JP2008088849A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268731A JP2008088849A (ja) 2006-09-29 2006-09-29 ノズルベーン部材の製造方法およびノズルベーン部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268731A JP2008088849A (ja) 2006-09-29 2006-09-29 ノズルベーン部材の製造方法およびノズルベーン部材

Publications (1)

Publication Number Publication Date
JP2008088849A true JP2008088849A (ja) 2008-04-17

Family

ID=39373265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268731A Pending JP2008088849A (ja) 2006-09-29 2006-09-29 ノズルベーン部材の製造方法およびノズルベーン部材

Country Status (1)

Country Link
JP (1) JP2008088849A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293417A (ja) * 2008-06-03 2009-12-17 Seiko Epson Corp ノズルベーンの製造方法、ノズルベーン、可変ノズル機構およびターボチャージャ
WO2010041735A1 (ja) 2008-10-09 2010-04-15 株式会社Ihi 可変ベーンの製造方法
KR101107596B1 (ko) * 2010-09-27 2012-01-25 한국피아이엠(주) 금속분말사출로 제작된 디젤 가변과급기의 가이드 베인 가공방법
JP2013217305A (ja) * 2012-04-10 2013-10-24 Ihi Corp 結合構造、可変ノズルユニット、及び可変容量型過給機
US9759086B2 (en) 2012-09-28 2017-09-12 Ihi Corporation Variable nozzle unit, variable geometry system turbocharger, and power transmission member manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094246A (ja) * 1998-09-21 2000-04-04 Dainichi Kinzoku Kogyo Kk 加工物の振れ止め
JP2006144715A (ja) * 2004-11-22 2006-06-08 Mitsubishi Fuso Truck & Bus Corp エンジンの排気装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000094246A (ja) * 1998-09-21 2000-04-04 Dainichi Kinzoku Kogyo Kk 加工物の振れ止め
JP2006144715A (ja) * 2004-11-22 2006-06-08 Mitsubishi Fuso Truck & Bus Corp エンジンの排気装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009293417A (ja) * 2008-06-03 2009-12-17 Seiko Epson Corp ノズルベーンの製造方法、ノズルベーン、可変ノズル機構およびターボチャージャ
WO2010041735A1 (ja) 2008-10-09 2010-04-15 株式会社Ihi 可変ベーンの製造方法
CN102177324A (zh) * 2008-10-09 2011-09-07 株式会社Ihi 可变翼的制造方法
KR101107596B1 (ko) * 2010-09-27 2012-01-25 한국피아이엠(주) 금속분말사출로 제작된 디젤 가변과급기의 가이드 베인 가공방법
JP2013217305A (ja) * 2012-04-10 2013-10-24 Ihi Corp 結合構造、可変ノズルユニット、及び可変容量型過給機
US9759086B2 (en) 2012-09-28 2017-09-12 Ihi Corporation Variable nozzle unit, variable geometry system turbocharger, and power transmission member manufacturing method

Similar Documents

Publication Publication Date Title
CN101896316B (zh) 具有混杂粘合剂的多功能研磨工具
AU2008275176B2 (en) Single-use edging wheel for finishing glass
Zhang et al. Study on tool wear characteristics in diamond turning of reaction-bonded silicon carbide
JP4556383B2 (ja) 転写光学面の加工方法
JP2008023596A (ja) 微細凹部加工方法
JP2008088849A (ja) ノズルベーン部材の製造方法およびノズルベーン部材
JP2010115741A (ja) 高硬度材料の切削加工方法および切削加工機械
JP2009545458A (ja) スローアウェイチップを研削する方法及び研削方法を実施する研削車
JP2007181882A (ja) 転写光学面の加工方法、光学素子用成形金型及び光学素子
Zhong Grinding of aluminium-based metal matrix composites reinforced with Al2O3 or SiC particles
Żyłka et al. Dressing process in the grinding of aerospace blade root
JP3575540B2 (ja) 数値制御研磨加工方法
JP2004216483A (ja) 超精密加工用工具
Katahira et al. Influence of Abrasive Grain Protrusion on High-Quality Machining of Cemented Carbide Using PCD Ball End Mills
CN100439036C (zh) 一种高精度厚钨板的制备方法
KR101811831B1 (ko) 가변터보차저용 열차폐 디스크 부품 제조방법
JP5007134B2 (ja) 部品研磨方法、部品および研磨用プラスチック
JP2005262350A (ja) ラップ定盤
CN112643561B (zh) 一种超硬磨盘端面高精度修整工具及修整方法
KR100959022B1 (ko) 2단 입도 커터휠 및 그 제조방법
KR100459810B1 (ko) 연삭휠 및 이를 가공하기 위한 연삭휠의 가공장치와연삭휠의 가공금형과 연삭휠의 가공방법
JP4930984B2 (ja) 軸対称レンズのマスター型の製造方法
JP2003260646A (ja) 非軸対称非球面の研削加工方法及び加工装置
Yamamoto et al. Development of cross and parallel mode grinding machine for high NA aspherical mold and die
JP5262440B2 (ja) 研削盤および研削加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090902

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004