WO2023230926A1 - 信道发现的控制方法、装置、设备、存储介质及芯片 - Google Patents

信道发现的控制方法、装置、设备、存储介质及芯片 Download PDF

Info

Publication number
WO2023230926A1
WO2023230926A1 PCT/CN2022/096482 CN2022096482W WO2023230926A1 WO 2023230926 A1 WO2023230926 A1 WO 2023230926A1 CN 2022096482 W CN2022096482 W CN 2022096482W WO 2023230926 A1 WO2023230926 A1 WO 2023230926A1
Authority
WO
WIPO (PCT)
Prior art keywords
user equipment
determination condition
channel
threshold
condition
Prior art date
Application number
PCT/CN2022/096482
Other languages
English (en)
French (fr)
Inventor
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001766.4A priority Critical patent/CN115176505A/zh
Priority to PCT/CN2022/096482 priority patent/WO2023230926A1/zh
Publication of WO2023230926A1 publication Critical patent/WO2023230926A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a control method, device, equipment, storage medium and chip for channel discovery.
  • the sidelink (sidelink) communication method is introduced.
  • UE and UE can communicate through the PC-5 interface (direct communication interface).
  • PC-5 interface direct communication interface
  • UE When a UE needs to communicate with a base station but is outside the coverage of the base station, it can communicate with the base station through the relay of another UE within the coverage of the base station.
  • the UE outside the coverage of the base station is called the remote end.
  • UE remote UE
  • relay UE a UE that provides relay function
  • Unicast communication can be carried out between the remote UE and the relay UE through sidelink.
  • the remote UE can initiate a channel discovery process, discover other relay UEs, and then perform relay reselection.
  • the UE's channel discovery process needs to wait for the failure of the sidelink wireless link to be triggered, which can easily lead to a delay in the UE's relay selection and a long data interaction interruption time.
  • the present disclosure provides a control method, device, equipment, storage medium and chip for channel discovery.
  • a channel discovery control method is provided, applied to user equipment, including:
  • the first determination condition is a starting condition for a channel discovery process corresponding to the user equipment
  • the channel discovery process of the user equipment is started.
  • a channel discovery control method is provided, applied to network equipment, including:
  • the configuration information is used to instruct the user equipment to generate a first determination condition
  • the first determination condition is a starting condition of the channel discovery process corresponding to the user equipment, and after determining that the user equipment If the device satisfies the first determination condition, the channel discovery process of the user equipment is started.
  • a channel discovery control device applied to user equipment, including:
  • a generating module configured to generate a first determination condition in response to the received configuration information, where the first determination condition is a starting condition for a channel discovery process corresponding to the user equipment;
  • the execution module is configured to start the channel discovery process of the user equipment when it is determined that the user equipment satisfies the first determination condition.
  • a channel discovery control device applied to network equipment, including:
  • a sending module configured to send configuration information to the user equipment, where the configuration information is used to instruct the user equipment to generate a first determination condition, where the first determination condition is a starting condition for a channel discovery process corresponding to the user equipment, And if it is determined that the user equipment satisfies the first determination condition, start the channel discovery process of the user equipment.
  • a user equipment including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to, when executing the executable instructions, implement the steps of any of the channel discovery control methods provided in the first aspect of the present disclosure.
  • a network device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to implement the steps of the channel discovery control method provided in the second aspect of the present disclosure when executing the executable instructions.
  • a computer-readable storage medium on which computer program instructions are stored.
  • the control method for channel discovery provided by the first aspect of the present disclosure is implemented. A step of.
  • a first determination condition is generated.
  • the first determination condition is the starting condition of the channel discovery process corresponding to the user equipment.
  • start Channel discovery process of user equipment When it is determined that the user equipment satisfies the first determination condition, start Channel discovery process of user equipment. Therefore, the startup conditions of the channel discovery process corresponding to the user equipment are adjusted through the configuration information, and whether to start is controlled based on the startup conditions, so that the UE can start the channel discovery process in advance before the sidelink wireless link fails, reducing the time for relay selection. Avoid the delay problem of data interaction.
  • Figure 1 is a flowchart of a control method for channel discovery according to an exemplary embodiment.
  • Figure 2 is a flowchart of a control method for channel discovery according to an exemplary embodiment.
  • Figure 3 is a flowchart of a control method for channel discovery according to an exemplary embodiment.
  • Figure 4 is a flowchart of a control method for channel discovery according to an exemplary embodiment.
  • FIG. 5 is a block diagram of a control device for channel discovery according to an exemplary embodiment.
  • FIG. 6 is a block diagram of a control device for channel discovery according to an exemplary embodiment.
  • Figure 7 is a block diagram of a user equipment according to an exemplary embodiment.
  • Figure 8 is a block diagram of a network device according to an exemplary embodiment.
  • first, second, etc. are used to describe various information, but such information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other and do not imply a specific order or importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first XX may also be called the second XX
  • second XX may also be called the first XX.
  • the scenarios involved in the present disclosure are first introduced.
  • data communication can be carried out directly between UEs through the PC-5 communication interface. Therefore, the remote UE outside the coverage of the base station can establish data communication with the network equipment (such as the base station) through the relay UE. , or the remote UE can connect to the relay UE through the relay of another UE, thereby realizing the connection between the remote UE and the relay UE, and then can communicate with the network device through the relay service provided by the relay UE.
  • the network equipment such as the base station
  • the remote UE can connect to the relay UE through the relay of another UE, thereby realizing the connection between the remote UE and the relay UE, and then can communicate with the network device through the relay service provided by the relay UE.
  • the remote UE and the above-mentioned relay UE are used to provide relay services between the UE and the network device.
  • Relay UEs that provide relay services may be called opposite end UEs, and UEs that provide relay services between remote UEs and relay UEs may be called relay UEs.
  • the UE can start the channel discovery process to discover other relay UEs, and then perform relay reselection.
  • UE-A is a remote UE
  • UE-B is the opposite UE of UE-A.
  • UE-A may not directly connect to UE-B, but communicate with UE-B through the relay of UE-C. Connection, where UE-B is a UE that provides relay function between UE and network equipment, and all UEs can perform unicast communication through sidelink.
  • UE-A can initiate the channel discovery process, including discovering the signal. Send and/or receive to discover relay UEs whose channel quality meets the communication conditions.
  • the relay UEs that meet the communication conditions can be relay UEs that provide relay services between UEs, or they can provide remote UEs with the network. UEs serving relay services between devices perform relay selection.
  • the startup process of UE-A channel discovery is mainly triggered based on the deterioration of the channel quality between UE-A and UE-B, or the deterioration of the channel quality between UE-A and UE-C.
  • UE-C does not perform sidelink transmission
  • UE-A cannot obtain the channel quality between UE-A and UE-C
  • the channel can only be triggered when the sidelink wireless link between UE-A and UE-B fails.
  • the discovery process results in a delay in relay selection and a long interruption time in data sending.
  • FIG. 1 is a flow chart of a control method for channel discovery according to an exemplary embodiment.
  • the control method uses In a UE, the UE may serve as the above-mentioned remote UE (refer to the above-mentioned UE-A), or may also be the opposite-end UE of the remote UE (refer to the above-mentioned UE-B).
  • the method includes the following steps:
  • step S101 in response to the received configuration information, a first determination condition is generated, and the first determination condition is a starting condition of the channel discovery process corresponding to the UE.
  • data communication can be established between various devices through 5G (fifth generation mobile communication system) communication technology.
  • 5G fourth generation mobile communication system
  • direct communication between UEs can be carried out through the PC-5 interface.
  • Data communication can be established between the UE and the relay UE, and between the UE and the opposite end UE through the PC-5 communication interface.
  • a direct communication link from the UE to the opposite UE can be established through the PC-5 communication interface to realize direct communication between the UE and the opposite UE; when the UE is within the communication range of the opposite UE When outside the communication range, an indirect communication link from the UE to the relay UE to the opposite end UE can be established through the PC-5 communication interface to realize indirect communication between the UE and the opposite end UE.
  • the opposite UE is a UE that provides relay services between the UE and the network equipment.
  • the opposite UE is Remote UE.
  • the UE is set with a set startup condition for initiating channel discovery.
  • the set startup condition can be modified through the configuration information to generate a first judgment condition, so that the UE determines whether to use the first judgment condition.
  • the configuration information can be sent to the UE through a network device that is connected to the UE.
  • the configuration information can also be sent to other UEs through the network device, and then delivered to the UE through other UEs.
  • step S102 if it is determined that the UE meets the first determination condition, the channel discovery process of the UE is started.
  • the channel quality parameters corresponding to the UE can be determined, and the channel quality parameters can reflect the channel quality of the current serving channel of the UE.
  • the channel quality parameter By comparing the channel quality parameter with the setting parameter corresponding to the first determination condition, it is determined whether the channel quality of the UE's current serving channel meets the first determination condition, and if the UE meets the first determination condition, the channel of the UE is started. discovery process.
  • the current serving channel of the UE may be a communication channel between the UE and the opposite UE, or may be a communication channel between the UE and the relay UE.
  • the UE's channel discovery process is triggered, allowing the UE to determine other relay UEs that meet the conditions, and form a pair through other relay UEs: UE-other relay UE-pair
  • the communication link of the end UE realizes normal communication between the UE and the opposite end UE.
  • the UE generates the first judgment condition for judging the channel discovery process according to the configuration information, and determines whether the channel quality corresponding to the current service channel of the remote UE meets the startup condition according to the first judgment condition, and then determines whether to start the UE.
  • Relay reselection By adjusting the starting conditions of the UE's corresponding channel discovery process through configuration information, the UE can start the channel discovery process in advance before the sidelink wireless link fails, reducing the time for relay selection and avoiding the delay problem of data interaction.
  • FIG. 2 is a flow chart of a control method for channel discovery according to an exemplary embodiment. As shown in Figure 2, the control method is used in network equipment. The method includes the following steps:
  • step S201 configuration information is sent to the UE.
  • the configuration information is used to instruct the UE to generate a first determination condition.
  • the first determination condition is the starting condition of the channel discovery process corresponding to the UE, and when it is determined that the UE meets the first determination condition , start the channel discovery process of the UE.
  • the network equipment may be a base station used for public mobile communications, for example, it may be a base station used for data transmission and reception.
  • the base station may be a gNodeB, or the
  • the network device may also be a terminal device with the function of sending and receiving communication data, such as a server, a signal repeater, or other possible network elements.
  • the configuration information is sent to the UE through the service channel between the network device and the UE (the channel between the UE and the network device, the channel through which the UE connects to the network device through relay services).
  • the UE generates a first determination condition based on the configuration information.
  • the first determination condition is used to determine whether the UE meets the first determination condition based on the channel quality parameter between the UE and the opposite end UE or the channel quality parameter between the UE and the relay UE. This condition, and when the service channel corresponding to the UE meets the first determination condition, the channel discovery process of the UE is started, and relay reselection is performed to form a communication link of: UE - other relay UE - opposite end UE, realizing the UE Normal communication with the peer UE.
  • the UE generates the first judgment condition for judging the channel discovery process according to the configuration information, and determines whether the channel quality corresponding to the current service channel of the UE meets the startup condition according to the first judgment condition, and then determines to start the relay of the UE. Reselect.
  • the UE can start the channel discovery process in advance before the sidelink wireless link fails, reducing the time for relay selection and avoiding the delay problem of data interaction.
  • Figure 3 is a flow chart of a channel discovery control method according to an exemplary embodiment. As shown in Figure 3, the method includes the following steps:
  • step S301 the network device sends configuration information to the UE.
  • the method for the network device to send the configuration information to the UE is the same as the method in step S201. Reference may be made to step S201, which will not be described again.
  • the configuration information is used by the UE to generate the first determination condition for determining whether to start the channel discovery process through the configuration information.
  • the configuration information can be RRC (Connection Reconfiguration, connection reconfiguration) reconfiguration.
  • Information, the RRC reconfiguration information can be an RRC (Connection Reconfiguration, connection reconfiguration) reconfiguration message or a sidelink RRC reconfiguration message.
  • the UE In response to the received configuration information, the UE generates a first determination condition, and the first determination condition is a starting condition for the channel discovery process corresponding to the UE.
  • the first determination condition is a starting condition for the channel discovery process corresponding to the UE.
  • an implementation may include the following steps.
  • step S302 the UE modifies the set threshold corresponding to the startup condition according to the RRC reconfiguration information and generates the first determination condition.
  • the UE is configured with a set startup condition for determining whether to start the channel discovery process.
  • the startup condition corresponds to a set threshold for measuring the current channel quality of the UE. You can obtain the channel quality parameter between the UE and the opposite end UE, or the channel quality parameter between the UE and the relay UE, and compare the channel quality parameter with the set threshold, and then determine that the channel quality parameter is greater than (or When it is less than) the set threshold, it is determined that the UE starts the channel discovery process.
  • the UE After receiving the RRC reconfiguration information sent by the network device, the UE modifies the setting threshold corresponding to the startup condition in the UE according to the configuration item in the RRC reconfiguration information, and generates the first determination condition.
  • the channel quality parameters that need to be obtained in the first determination condition and the startup condition can be the same, but the corresponding thresholds can be different.
  • the first determination condition corresponds to the threshold.
  • the threshold corresponding to the specified start condition is high. For example, using the RSRP (Reference Signal Receiving Power) parameter as the basis for judgment, the RSRP threshold corresponding to the set startup condition can be set to -90dBm.
  • the RSRP threshold can be adjusted to -70dBm, then when the RSRP value of the UE's corresponding service channel is -75dBm, it can be determined that the UE meets the first determination condition, and the channel discovery process of the UE is triggered.
  • the first determination condition in the above steps may include one or more of the following:
  • the first channel measurement result between the UE and the relay device is less than the first threshold.
  • the second channel measurement result between the UE and the peer device is less than the second threshold.
  • the number of received data retransmissions reaches the first value.
  • the number of feedback losses between the UE and the peer device reaches the second value.
  • the relay device may be the above-mentioned relay UE, and the opposite end device may be the above-mentioned opposite end UE.
  • the first determination condition can be determined in various ways. For example, when the UE performs data communication with the opposite UE through the communication link of UE-relay UE-opposite UE, the first channel measurement result can be generated by measuring the channel quality between the UE and the relay UE, and the corresponding The first determination condition is to determine whether the first channel measurement result is less than the first threshold. When it is determined that the first channel measurement result is less than the first threshold, the channel discovery process of the UE is started.
  • the second channel measurement result can be generated by measuring the channel quality of the communication channel between the UE and the opposite UE, and the corresponding The first determination condition is to determine whether the second channel measurement result is less than a second threshold.
  • a channel discovery process of the UE is started.
  • the second channel measurement results can be measured through RSRP (Reference Signal Receiving Power, reference signal receiving power), RSRQ (Reference Signal Receiving Quality, LTE reference signal receiving quality) or SINR (Signal to Interference plus Noise Ratio, signal and interference plus noise). ratio) to represent.
  • a first timer is provided in the UE, which is used to start timing or reset the time when the channel quality corresponding to the UE service channel deteriorates, and determine whether the first judgment condition is the time corresponding to the first timer.
  • the timing threshold is reached, and when it is determined that the time corresponding to the first timer reaches the timing threshold, the channel discovery process of the UE is started.
  • the UE receives the data between the UE and the opposite end UE or between the UE and the Following the number of data retransmissions between UEs, the corresponding first determination condition is determined to determine whether the number of data retransmissions reaches the first value.
  • the channel discovery process of the UE is started.
  • the number of data retransmissions received by the UE may include physical layer retransmissions, and may also include the number of data retransmissions sent by the Sidelink RLC (Radio Link Control Protocol) entity to the UE.
  • the Sidelink RLC Radio Link Control Protocol
  • the channel discovery process of the UE is started.
  • the data loss between the UE and the opposite end UE may be the number of consecutive feedback losses, or the sum of the number of discontinuous feedback losses.
  • the first determination condition may be one or more of the above-mentioned first determination conditions.
  • the first determination condition is any one of the above first determination conditions
  • the UE's sensitivity to channel quality can be improved, allowing the UE to start the channel discovery process in advance, reducing the time for relay selection, and avoiding data interaction Delay problem.
  • the first determination condition is any one of the above first determination conditions
  • the accuracy of the first determination condition can be guaranteed and the UE can accurately start the channel discovery process.
  • the channel quality parameter may include one or more of a first threshold, a second threshold, a timing threshold, a first value, and a second value.
  • the above step S302 may include:
  • the UE parses the RRC reconfiguration information and determines the target threshold corresponding to the channel quality parameter in the RRC reconfiguration information.
  • the channel quality parameters may include: the target threshold of the first threshold is -70dBm, the target threshold of the second threshold is -65dBm, the target threshold of the timing threshold is 0.7s, and the target threshold at the first value is 5 times, and the target threshold for this second value is 4 times.
  • the current threshold of the channel quality parameter is replaced with the target threshold to generate the first determination condition. For example, if the threshold of the first threshold is currently -80dBm, then the threshold of the first threshold is modified to -70dBm based on the above target threshold of -70dBm.
  • step S303 if the UE determines that the first determination condition is met, the UE starts the channel discovery process of the UE.
  • step S102 the method of initiating the channel discovery process is the same as in step S102. Refer to step S102, which will not be described again.
  • the UE generates the first judgment condition for judging the channel discovery process according to the configuration information, and determines whether the channel quality corresponding to the current service channel of the UE meets the startup condition according to the first judgment condition, and then determines to start the relay of the UE. Reselect.
  • the UE can start the channel discovery process in advance before the sidelink wireless link fails, reducing the time for relay selection and avoiding the delay problem of data interaction.
  • Figure 4 is a flow chart of a channel discovery control method according to an exemplary embodiment. As shown in Figure 4, the method includes the following steps:
  • step S401 the network device sends configuration information to the UE.
  • the method for the network device to send the configuration information to the UE is the same as the method in step S201. Reference may be made to step S201, which will not be described again.
  • step S402 the UE responds to the received configuration information and generates a first determination condition, where the first determination condition is the starting condition of the channel discovery process corresponding to the UE.
  • the first determination condition is determined to be whether the time of the first timer corresponding to the UE reaches the timing threshold.
  • the channel discovery process of the UE is started. .
  • the first timer set in the UE starts counting or resetting the time when the channel quality corresponding to the UE service channel becomes worse. Whether the channel quality corresponding to the UE service channel becomes worse can be determined by the second determination condition.
  • the first timer starts timing or restarts timing when the UE meets the second determination condition.
  • the second determination condition includes one or more of the following:
  • the first channel measurement result between the user equipment and the relay equipment is less than the third threshold.
  • the second channel measurement result between the user equipment and the peer equipment is less than the fourth threshold.
  • the number of received data retransmission instructions reaches the third value.
  • the number of feedback losses between the user device and the peer device reaches the fourth value.
  • the relay device may be the above-mentioned relay UE, and the opposite end device may be the above-mentioned opposite end UE.
  • the second determination condition can be determined in various ways. For example, when the UE performs data communication with the opposite UE through the communication link of UE-relay UE-opposite UE, the first channel measurement result can be generated by measuring the channel quality between the UE and the relay UE, and the corresponding The second determination condition is to determine whether the first channel measurement result is less than the third threshold. When it is determined that the first channel measurement result is less than the third threshold, start or reset the first timer corresponding to the UE.
  • the second channel measurement result can be generated by measuring the channel quality between the UE and the opposite UE, and the corresponding second channel measurement result can be determined.
  • the determination condition is to determine whether the second channel measurement result is less than a fourth threshold. When it is determined that the second channel measurement result is less than the fourth threshold, the first timer corresponding to the UE is started or reset.
  • the UE receives the data between the UE and the opposite end UE or between the UE and the Following the number of data retransmissions between UEs, determine the corresponding second determination condition to determine whether the number of data retransmissions reaches the third value.
  • the number of data retransmissions received by the UE may include physical layer retransmissions, and may also include the number of data retransmissions sent by the Sidelink RLC (Radio Link Control Protocol) entity to the UE.
  • the Sidelink RLC Radio Link Control Protocol
  • the first timer corresponding to the UE is started or reset.
  • the data loss between the UE and the opposite end UE may be the number of consecutive feedback losses, or the sum of the number of discontinuous feedback losses.
  • the UE also includes an access class timer, which can be a T400 timer.
  • the UE's RRC connection establishment request message is initiated by the UE's RRC layer and sends a random access indication to the MAC layer. Later, start the access class timer.
  • the access class timer reaches the set threshold, the UE resets the MAC layer, releases the MAC layer configuration, resets the RLC entity, and issues a sidelink link failure notification.
  • the on state of the access timer T400 is detected, and the corresponding second determination condition is determined to determine whether T400 reaches the start condition.
  • the first timer corresponding to the UE is started or reset. timer.
  • the second determination condition may be one or more of the above-mentioned second determination conditions.
  • the first timer can be quickly started, and when the first timer reaches the timing threshold, it is determined that the first determination condition is met, thereby starting the UE.
  • the channel discovery process can improve the UE's sensitivity to channel quality, enable the UE to start the channel discovery process in advance, reduce the time for relay selection, and avoid the delay problem of data interaction.
  • the second determination condition is any of the above second determination conditions, the accuracy of starting the first timer can be ensured, and the UE can accurately start the channel discovery process.
  • control method may also include:
  • the first timer is stopped.
  • the first timer is started to start counting. It is necessary to continue to measure the channel parameters corresponding to the second determination condition. After the first timer starts timing and before reaching the timing threshold, if it is determined through the channel parameters that the UE does not meet the second determination condition, the first timer is stopped until The first timer will be reset and started until the UE meets the second determination condition next time.
  • step S403 if the UE determines that the first determination condition is met, the UE starts the channel discovery process of the UE.
  • step S102 the method of initiating the channel discovery process is the same as in step S102. Refer to step S102, which will not be described again.
  • the channel sending process of the UE may include the process of the UE sending a discovery signal to the opposite UE or the relay UE; it may also include the UE receiving the discovery sent by the opposite UE or the relay UE. signal process.
  • the discovery signal may be a relay discovery signal from the UE to the network, or a relay discovery signal or a non-relay discovery signal from the UE to the opposite end UE.
  • the RRC reconfiguration information includes the destination UE address, and may also include:
  • Step S404 Forward the RRC reconfiguration information to the destination device according to the address of the destination device.
  • the destination device may be the address of the destination UE.
  • the destination UE may not have a direct link with the network device, and the RRC reconfiguration information needs to be forwarded to the destination UE through the current UE, so that the destination UE receives the After the RRC reconfiguration information, the above method is executed according to the RRC reconfiguration information.
  • the UE generates the first judgment condition for judging the channel discovery process according to the configuration information, and determines whether the channel quality corresponding to the current service channel of the UE meets the startup condition according to the first judgment condition, and then determines to start the relay of the UE. Reselect.
  • the UE can start the channel discovery process in advance before the sidelink wireless link fails, reducing the time for relay selection and avoiding the delay problem of data interaction.
  • FIG. 5 is a block diagram of a channel discovery control device according to an exemplary embodiment.
  • the device 100 is applied to a UE.
  • the device 100 includes: a generation module 110 and an execution module 120 .
  • the generation module 110 is configured to generate a first determination condition in response to the received configuration information, where the first determination condition is the starting condition of the channel discovery process corresponding to the user equipment;
  • the execution module 120 is configured to start a channel discovery process of the user equipment when it is determined that the user equipment satisfies the first determination condition.
  • the first determination condition includes one or more of the following:
  • the first channel measurement result between the UE and the relay device is less than the first threshold.
  • the second channel measurement result between the UE and the peer device is less than the second threshold.
  • the first timer corresponding to the UE reaches the timing threshold.
  • the number of received data retransmissions reaches the first value.
  • the number of feedback losses between the UE and the peer device reaches the second value.
  • the first timer starts timing or restarts timing when the UE meets the second determination condition
  • the second determination condition includes one or more of the following:
  • the first channel measurement result between the UE and the relay device is less than the third threshold.
  • the second channel measurement result between the UE and the peer device is less than the fourth threshold.
  • the number of received data retransmission instructions reaches the third value.
  • the number of feedback losses between the UE and the peer device reaches the fourth value.
  • the device 100 further includes a determination module configured to:
  • the first timer is stopped.
  • the generation module 110 also includes a generation sub-module:
  • the generation sub-module is configured to modify the threshold of the channel quality parameter corresponding to the start condition according to the RRC reconfiguration message, and generate the first determination condition.
  • the channel quality parameter includes one or more of a first threshold, a second threshold, a timing threshold, a first value, and a second value.
  • the generation sub-module may also be configured as:
  • the RRC reconfiguration information includes the address of the destination device, and the sending module is configured as:
  • the RRC reconfiguration information is forwarded to the destination device.
  • the channel discovery process includes: a process of sending a discovery signal, or a process of receiving a discovery signal.
  • the discovery signal includes: a relay discovery signal from the user equipment to the network, or a relay discovery signal or a non-relay discovery signal from the user equipment to the user equipment.
  • FIG. 6 is a block diagram of a channel discovery control device according to an exemplary embodiment.
  • the device 200 is applied to network equipment.
  • the device 200 includes: a sending module 210 .
  • the sending module 210 is configured to send configuration information to the user equipment.
  • the configuration information is used to instruct the UE to generate a first determination condition.
  • the first determination condition is the starting condition of the channel discovery process corresponding to the UE, and after determining that the UE meets the first determination condition If the conditions are met, start the UE's channel discovery process.
  • the UE generates the first judgment condition for judging the channel discovery process according to the configuration information, and determines whether the channel quality corresponding to the current service channel of the UE meets the startup condition according to the first judgment condition, and then determines to start the relay of the UE. Reselect.
  • the UE can start the channel discovery process in advance before the sidelink wireless link fails, reducing the time for relay selection and avoiding the delay problem of data interaction.
  • Figure 7 is a block diagram of a user equipment 700 according to an exemplary embodiment.
  • the user device 700 may be the above-mentioned test device or synchronization device.
  • the user device 700 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant. wait.
  • user device 700 may include one or more of the following components: processing component 702 , memory 704 , power supply component 706 , multimedia component 708 , audio component 710 , input/output interface 712 , sensor component 714 , and communication component 716 .
  • Processing component 702 generally controls the overall operations of user device 700, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 702 may include one or more processors 720 to execute instructions to complete all or part of the steps of the delay measurement method.
  • processing component 702 may include one or more modules that facilitate interaction between processing component 702 and other components.
  • processing component 702 may include a multimedia module to facilitate interaction between multimedia component 708 and processing component 702.
  • Memory 704 is configured to store various types of data to support operations at user device 700 . Examples of such data include instructions for any application or method operating on user device 700, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 704 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power supply component 706 provides power to various components of user equipment 700.
  • Power supply components 706 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to user device 700 .
  • Multimedia component 708 includes a screen that provides an output interface between the user device 700 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 708 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have focal length and optical zoom capabilities.
  • Audio component 710 is configured to output and/or input audio signals.
  • audio component 710 includes a microphone (MIC) configured to receive external audio signals when user device 700 is in operating modes, such as call mode, recording mode, and speech recognition mode. The received audio signal may be further stored in memory 704 or sent via communication component 716 .
  • audio component 710 also includes a speaker for outputting audio signals.
  • the input/output interface 712 provides an interface between the processing component 702 and a peripheral interface module, which may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 714 includes one or more sensors that provide various aspects of status assessment for user device 700 .
  • the sensor component 714 can detect the open/closed state of the user device 700, the relative positioning of components, such as the display and keypad of the device 700, the sensor component 714 can also detect the user device 700 or a component of the user device 700. position changes, the presence or absence of user contact with user device 700 , user device 700 orientation or acceleration/deceleration and temperature changes of user device 700 .
  • Sensor assembly 714 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 714 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 714 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 716 is configured to facilitate wired or wireless communications between user device 700 and other devices.
  • User equipment 700 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 716 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 716 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • user equipment 700 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A programmable gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implements a control method for channel discovery.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A programmable gate array
  • controller microcontroller, microprocessor or other electronic component implements a control method for channel discovery.
  • a non-transitory computer-readable storage medium including instructions such as a memory 704 including instructions, which can be executed by the processor 720 of the user device 700 to complete the delay measurement method is also provided.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the above device can also be part of an independent user equipment.
  • the device can be an integrated circuit (Integrated Circuit, IC) or a chip, where the integrated circuit can be an IC. , or it can be a collection of multiple ICs; the chip can include but is not limited to the following types: GPU (Graphics Processing Unit, graphics processor), CPU (Central Processing Unit, central processing unit), FPGA (Field Programmable Gate Array, can Programming logic array), DSP (Digital Signal Processor, digital signal processor), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), SOC (System on Chip, SoC, system on a chip or system-level chip), etc.
  • GPU Graphics Processing Unit, graphics processor
  • CPU Central Processing Unit, central processing unit
  • FPGA Field Programmable Gate Array, can Programming logic array
  • DSP Digital Signal Processor, digital signal processor
  • ASIC Application Specific Integrated Circuit
  • SOC System on Chip, SoC, system on a chip or system-level chip
  • the above integrated circuit or chip can be used to execute executable instructions (or codes) to implement the above control method for channel discovery.
  • the executable instructions can be stored in the integrated circuit or chip, or can be obtained from other devices or devices.
  • the integrated circuit or chip includes a processor, a memory, and an interface for communicating with other devices.
  • the executable instruction can be stored in the processor, and when the executable instruction is executed by the processor, the above-mentioned control method of channel discovery is implemented; or, the integrated circuit or chip can receive the executable instruction through the interface and transmit it to the The processor executes to implement the above control method for channel discovery.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.
  • the code part of the channel discovery control method.
  • FIG. 8 is a block diagram of a network device 800 according to an exemplary embodiment.
  • the network device 800 may be provided as a server and may serve as the above-mentioned synchronization device or measurement device.
  • network device 800 includes a processing component 822, which further includes one or more processors, and memory resources represented by memory 832 for storing instructions, such as application programs, executable by processing component 822.
  • the application program stored in memory 832 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 822 is configured to execute instructions to perform the above control method of channel discovery.
  • Network device 800 may also include a power supply component 826 configured to perform power management of network device 800, a wired or wireless network interface 850 configured to connect network device 800 to a network, and an input/output interface 858.
  • Network device 800 may operate based on an operating system stored in memory 832, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , FreeBSD TM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种信道发现的控制方法、装置、设备、存储介质及芯片。响应于接收到的配置信息,生成第一判定条件,第一判定条件为用户设备对应的信道发现过程的启动条件(S101),在确定用户设备满足第一判定条件的情况下,启动用户设备的信道发现过程(S102)。从而通过配置信息调整用户设备对应信道发现过程的启动条件,在sidelink无线链路失败之前,使UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。

Description

信道发现的控制方法、装置、设备、存储介质及芯片 技术领域
本公开涉及通信技术领域,尤其涉及一种信道发现的控制方法、装置、设备、存储介质及芯片。
背景技术
为支持UE(user equipment,用户设备)与UE之间的直接通信,引入了sidelink(侧行链路)通信方式,UE与UE之间可以通过PC-5接口(直连通信接口)进行通信。当一个UE需要与基站进行通信,但处于基站的覆盖范围之外时,可以通过另外一个处于基站覆盖范围内UE的中继实现与基站的通信,其中处于基站覆盖范围外的UE称为远端UE(remote UE),提供中继功能的UE称为中继UE(relay UE),远端UE与中继UE之间可以通过sidelink进行单播通信。远端UE与中继UE之间的信道质量低于一定门限时,远端UE可以启动信道发现过程,发现其他中继UE,进而进行中继重选。相关技术中,UE的信道发现过程需要等待sidelink无线链路失败来触发,易导致UE的中继选择延迟,数据交互中断时间较长。
发明内容
为克服相关技术中存在的问题,本公开提供一种信道发现的控制方法、装置、设备、存储介质及芯片。
根据本公开实施例的第一方面,提供一种信道发现的控制方法,应用于用户设备,包括:
响应于接收到的配置信息,生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件;
在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
根据本公开实施例的第二方面,提供一种信道发现的控制方法,应用于网络设备,包括:
向用户设备发送配置信息,所述配置信息用于指示所述用户设备生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件,并在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
根据本公开实施例的第三方面,提供一种信道发现的控制装置,应用于用户设备,包括:
生成模块,被配置为响应于接收到的配置信息,生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件;
执行模块,被配置为在确定所述用户设备满足所述第一判定条件的情况 下,启动所述用户设备的所述信道发现过程。
根据本公开实施例的第四方面,提供一种信道发现的控制装置,应用于网络设备,包括:
发送模块,被配置为向用户设备发送配置信息,所述配置信息用于指示所述用户设备生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件,并在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
根据本公开实施例的第五方面,提供一种用户设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为在执行所述可执行指令时,实现本公开第一方面提供的任一所述信道发现的控制方法的步骤。
根据本公开实施例的第六方面,提供一种网络设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为在执行所述可执行指令时,实现本公开第二方面中所提供的信道发现的控制方法的步骤。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,所述程序指令被处理器执行时实现本公开第一方面所提供的信道发现的控制方法的步骤。
在上述技术方案中,响应于接收到的配置信息,生成第一判定条件,第一判定条件为用户设备对应的信道发现过程的启动条件,在确定用户设备满足第一判定条件的情况下,启动用户设备的信道发现过程。从而通过配置信息调整用户设备对应信道发现过程的启动条件,并基于该启动条件来控制是否启动,从而在sidelink无线链路失败之前,使UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种信道发现的控制方法的流程图。
图2是根据一示例性实施例示出的一种信道发现的控制方法的流程图。
图3是根据一示例性实施例示出的一种信道发现的控制方法的流程图。
图4是根据一示例性实施例示出的一种信道发现的控制方法的流程图。
图5是根据一示例性实施例示出的一种信道发现的控制装置的框图。
图6是根据一示例性实施例示出的一种信道发现的控制装置的框图。
图7是根据一示例性实施例示出的一种用户设备的框图。
图8是根据一示例性实施例示出的一种网络设备的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一XX也可以被称为第二XX,类似地,第二XX也可以被称为第一XX。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
需要说明的是,本申请中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
在对本公开提供的信道发现的控制方法进行说明之前,首先对本公开涉及的场景进行介绍。在本公开提供的场景中,UE与UE之间可以直接通过PC-5通信接口进行数据通信,因此处于基站覆盖之外的远端UE可以通过中继UE与网络设备(如基站)建立数据通信,或者远端UE可以通过另一个UE的中继与该中继UE连接,从而实现远端UE与中继UE的连接,进而可以通过中继UE提供的中继服务与网络设备通信。由于上述的另一个UE提供了远端UE与中继UE之间的中继服务,因此为了区分,在本公开的各个实施例中,远端UE与上述用于提供UE与网络设备间的中继服务的中继UE可以互相称为对端UE,提供了远端UE与中继UE之间的中继服务的UE可以称为中继UE。
当UE与对端UE之间的信道质量,或UE与中继UE之间的信道质量 低于一定门限时,UE可以启动信道发现过程,以发现其他中继UE,进而进行中继重选。示例的,UE-A为远端UE,UE-B为UE-A的对端UE,UE-A可以不直接与UE-B连接,转而通过UE-C的中继与UE-B进行通信连接,其中UE-B为提供UE与网络设备之间中继功能的UE,所有UE之间可以通过sidelink进行单播通信。当UE-A与UE-B之间的信道质量低于一定门限,或UE-A与UE-C之间的信道质量低于一定门限时,UE-A可以启动信道发现过程,包括发现信号的发送和/或接收,以发现信道质量符合通信条件的中继UE,该符合通信条件的中继UE既可以是提供UE之间中继服务的中继UE,也可以是提供远端UE与网络设备之间中继服务的UE,进行中继选择。
相关技术中,UE-A信道发现的启动过程,主要根据UE-A与UE-B之间的信道质量变差,或UE-A与UE-C之间的信道质量变差,来触发。但当UE-C没有进行sidelink发送时,UE-A无法获得UE-A与UE-C之间的信道质量情况,并且当UE-A与UE-B之间sidelink无线链路失败时才能触发信道发现过程,导致中继选择延迟,数据发送中断时间较长。
有鉴于此,本公开的实施例提供一种信道发现的控制方法,图1是根据一示例性实施例示出的一种信道发现的控制方法的流程图,如图1所示,该控制方法用于UE中,该UE可以作为上述的远端UE(参照上述的UE-A),或者也可以是远端UE的对端UE(参照上述的UE-B),该方法包括以下步骤:
在步骤S101中,响应于接收到的配置信息,生成第一判定条件,第一判定条件为UE对应的信道发现过程的启动条件。
示例的,本公开的实施例中各个设备之间可以通过5G(第五代移动通信系统)通信技术建立数据通信,基于sidelink通信方式,UE与UE之间可以通过PC-5接口进行直接通信,其中UE与中继UE之间,UE与对端UE之间均可以通过PC-5通信接口建立数据通信。当UE处于对端UE的通信范围内时,可以通过PC-5通信接口建立UE到对端UE的直接通信链路,实现UE与对端UE之间的直接通信;当UE处于对端UE的通信范围之外时,可以通过PC-5通信接口建立UE-中继UE-对端UE的间接通信链路,实现UE与对端UE之间的间接通信。其中UE为远端UE的情况下,对端UE为提供UE与网络设备间的中继服务的UE,在UE为提供UE与网络设备间的中继服务的UE的情况下,对端UE为远端UE。
UE中设定有启动信道发现的设定启动条件,当接收到配置信息后,可以通过配置信息对该设定启动条件进行修改,生成第一判定条件,以使UE通过第一判定条件确定是否启动信道发现过程,进行中继重选。其中,配置信息可以通过与UE通信连接的网络设备发送至该UE中,还可以通过网络设备发送配置信息至其他UE,再通过其他UE传递至该UE中。
在步骤S102中,在确定UE满足第一判定条件的情况下,启动UE的信 道发现过程。
示例的,根据上述步骤中生成的第一判定条件,可以确定UE对应的信道质量参数,该信道质量参数可以反映UE当前服务信道的信道质量情况。通过将该信道质量参数与第一判定条件对应的设定参数进行比较,确定UE当前服务信道的信道质量是否满足第一判定条件,并在UE满足第一判定条件的情况下,启动UE的信道发现过程。其中UE的当前服务信道可以是UE与对端UE之间的通信信道,还可以是UE与中继UE之间的通信信道。当UE的当前服务信道的信道质量满足第一判定条件时,触发UE的信道发现过程,使UE确定符合条件的其他中继UE,并通过其他中继UE形成:UE-其他中继UE-对端UE的通信链路,实现UE与对端UE的正常通信。
通过上述技术方案,UE根据配置信息生成用于判定信道发现过程的第一判定条件,并根据第一判定条件确定远端UE的当前服务信道对应的信道质量是否符合启动条件,进而确定启动UE的中继重选。通过配置信息调整UE对应信道发现过程的启动条件,在sidelink无线链路失败之前,UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。
图2是根据一示例性实施例示出的一种信道发现的控制方法的流程图,如图2所示,该控制方法用于网络设备中,该方法包括以下步骤:
在步骤S201中,向UE发送配置信息,配置信息用于指示UE生成第一判定条件,第一判定条件为UE对应的信道发现过程的启动条件,并在确定UE满足第一判定条件的情况下,启动UE的信道发现过程。
示例的,本公开的实施例应用于网络设备中,该网络设备可以是用于进行公用移动通信的基站,例如可以是用于进行数据收发的基站,在5G中该基站可以是gNodeB,或者该网络设备还可以是具有收发通信数据功能的终端设备,例如,服务器、信号中转台或者其他可能的网元等设备。通过网络设备与UE的服务信道(UE与网络设备之间的信道,UE通过中继服务连接网络设备的信道),将配置信息发送给UE。UE根据该配置信息生成第一判定条件,该第一判定条件用于根据UE与对端UE之间的信道质量参数或UE与中继UE之间的信道质量参数,确定UE是否满足第一判定该条件,并在该UE对应的服务信道满足第一判定条件时,启动UE的信道发现过程,进行中继重选以形成:UE-其他中继UE-对端UE的通信链路,实现UE与对端UE的正常通信。
通过上述技术方案,UE根据配置信息生成用于判定信道发现过程的第一判定条件,并根据第一判定条件确定UE的当前服务信道对应的信道质量是否符合启动条件,进而确定启动UE的中继重选。通过配置信息调整UE对应信道发现过程的启动条件,在sidelink无线链路失败之前,UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。
图3是根据一示例性实施例示出的一种信道发现的控制方法的流程图,如图3所示,该方法包括以下步骤:
在步骤S301中,网络设备向UE发送配置信息。
示例的,网络设备向UE发送配置信息与步骤S201中的方法相同,可参照步骤S201,不再赘述。
值得一提的是,在本公开的实施例中配置信息用于UE通过配置信息生成确定是否启动信道发现过程的第一判定条件,该配置信息可以为RRC(Connection Reconfiguration,连接重新配置)重配信息,该RRC重配信息可以是RRC(Connection Reconfiguration,连接重新配置)重配消息或sidelink RRC重配消息。
UE响应于接收到的配置信息,生成第一判定条件,第一判定条件为UE对应的信道发现过程的启动条件。示例的,在一种实现方式中可以包括以下步骤。
在步骤S302中,UE根据RRC重配信息修改启动条件对应的设定阈值,生成第一判定条件。
示例的,本公开的实施例中UE中配置有判定是否启动信道发现过程的设定启动条件,该启动条件中对应有设定阈值,用于衡量UE的当前信道质量。可以通过获取UE与对端UE之间的信道质量参数,或UE与中继UE之间的信道质量参数,并将该信道质量参数与该设定阈值进行比较,在确定信道质量参数大于(或小于)该设定阈值时,确定UE启动信道发现过程。
UE接收到网络设备发送的RRC重配信息后,根据RRC重配信息中的配置项,修改UE中启动条件对应的设定阈值,生成第一判定条件。需要说明的是,第一判定条件与启动条件中需要获取的信道质量参数可以相同,但对应的阈值可以不同,并且,为了使UE可以提前启动信道发现过程,第一判定条件对应阈值,比设定启动条件对应的阈值高。例如,将RSRP(Reference Signal Receiving Power,参考信号接收功率)参数作为判定依据,设定启动条件对应的RSRP阈值可以设定为-90dBm,在生成该第一判定条件时可以将RSRP阈值可以调整为-70dBm,则当UE对应服务信道的RSRP值为-75dBm时,可以确定UE满足第一判定条件,触发UE的信道发现过程。
示例地,上述步骤中的第一判定条件,可以包括以下一种或多种:
UE与中继设备之间的第一信道测量结果小于第一门限。
UE与对端设备之间的第二信道测量结果小于第二门限。
接收到数据重传的次数达到第一数值。
UE与对端设备之间的反馈丢失次数达到第二数值。
中继设备可以是上述的中继UE,对端设备可以是上述对端UE。
值得一提的是,本公开的实施例中,可以通过多种方式来确定第一判定 条件。示例的,当UE通过UE-中继UE-对端UE的通信链路与对端UE进行数据通信时,可以通过测量UE与中继UE之间的信道质量生成第一信道测量结果,确定对应的第一判定条件为判定第一信道测量结果是否小于第一门限,在确定该第一信道测量结果小于第一门限时,启动UE的信道发现过程。
可选地,当UE通过UE至对端UE的通信链路与对端UE进行数据通信时,可以通过测量UE与对端UE之间通信信道的信道质量生成第二信道测量结果,确定对应的第一判定条件为判定第二信道测量结果是否小于第二门限,在确定该第二信道测量结果小于第一门限时,启动UE的信道发现过程。其中,第二信道测量结果可以通过RSRP(Reference Signal Receiving Power,参考信号接收功率)、RSRQ(Reference Signal Receiving Quality,LTE参考信号接收质量)或SINR(Signal to Interference plus Noise Ratio,信号与干扰加噪声比)来表征。
可选地,在UE中设置有第一定时器,用于在UE服务信道对应的信道质量变差时,开始计时或重置时间,确定第一判定条件为该第一定时器对应的时间是否达到计时阈值,在确定该第一定时器对应的时间达到计时阈值时,启动UE的信道发现过程。
可选地,UE在进行数据通信时,因信道质量较差导致数据传输受阻,进而会发起数据重传,因此,本公开实施例中通过获取UE接收到UE与对端UE之间或UE与中继UE之间的数据重传次数,确定对应的第一判定条件为判定该数据重传次数是否达到第一数值,在确定该数据重传次数达到第一数值时,启动UE的信道发现过程。示例的,UE接收到的数据重传次数可以包括物理层重传,还可以包括Sidelink RLC(无线链路控制协议)实体向UE发送的数据重传次数。
可选地,通过Sidelink MAC(Medium Access Control,媒体介质访问控制)实体确定UE与对端UE之间的数据丢失次数,确定对应的第一判定条件为判定该数据丢失次数是否达到第二数值,在确定该数据丢失次数达到第二数值时,启动UE的信道发现过程。示例的,UE与对端UE之间的数据丢失此时可以是连续反馈丢失次数,还可以是不连续的反馈丢失次数的总和。
值得一提的是,本公开的实施例中第一判定条件可以是上述第一判定条件中的一种或多种。示例的,当第一判定条件为上述第一判定条件中的任意一种时,可以提高UE对信道质量的敏感度,使UE提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。当第一判定条件为上述第一判定条件中的任意多种时,可以保证第一判定条件的准确性,确保UE准确启动信道发现过程。
可选地,在一种实施方式中,信道质量参数可以包括第一门限、第二门限、计时阈值、第一数值和第二数值中的一个或多个,上述步骤S302,可 以包括:
(1)获取RRC重配信息中携带的信道质量参数的目标阈值。
示例的,UE对RRC重配信息进行解析,确定RRC重配信息中信道质量参数对应的目标阈值。示例地,该信道质量参数中可以包括:第一门限的目标阈值为-70dBm,第二门限的目标阈值为-65dBm,该计时阈值的目标阈值0.7s,该第一数值时的目标阈值是5次,该第二数值的目标阈值为4次。
(2)根据目标阈值对该信道质量参数的阈值进行修改,生成第一判定条件。
示例地,通过上述步骤确定信道质量参数的目标阈值后,将信道质量参数的当前阈值为替换为该目标阈值,以生成第一判定条件。例如,第一门限的阈值当前为-80dBm,则根据上述的目标阈值-70dBm,将第一门限的阈值修改为-70dBm。
在步骤S303中,UE在确定满足第一判定条件的情况下,启动UE的信道发现过程。
示例的,UE确定满足第一判定条件,启动信道发现过程与步骤S102中的方法相同,可参照步骤S102,不再赘述。
通过上述技术方案,UE根据配置信息生成用于判定信道发现过程的第一判定条件,并根据第一判定条件确定UE的当前服务信道对应的信道质量是否符合启动条件,进而确定启动UE的中继重选。通过配置信息调整UE对应信道发现过程的启动条件,在sidelink无线链路失败之前,UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。
图4是根据一示例性实施例示出的一种信道发现的控制方法的流程图,如图4所示,该方法包括以下步骤:
在步骤S401中,网络设备向UE发送配置信息。
示例的,网络设备向UE发送配置信息与步骤S201中的方法相同,可参照步骤S201,不再赘述。
在步骤S402中,UE响应于接收到的配置信息,生成第一判定条件,第一判定条件为UE对应的信道发现过程的启动条件。
示例的,本公开的实施例中确定第一判定条件为UE对应的第一定时器的时间是否达到计时阈值,在确定该第一定时器对应的时间达到计时阈值时,启动UE的信道发现过程。
UE中设置的第一定时器,在UE服务信道对应的信道质量变差时,开始计时或重置时间,其中判断UE服务信道对应的信道质量是否变差可以通过第二判定条件来确定,该第一定时器在UE满足第二判定条件的情况下,启动计时或重启计时,该第二判定条件包括以下一种或多种:
用户设备与中继设备之间的第一信道测量结果小于第三门限。
用户设备与对端设备之间的第二信道测量结果小于第四门限。
接收到数据重传指令的次数达到第三数值。
用户设备与对端设备之间的反馈丢失次数达到第四数值。
检测到用户设备对应的接入类定时器启动。
其中,中继设备可以是上述的中继UE,对端设备可以是上述的对端UE。
值得一提的是,本公开的实施例中,可以通过多种方式来确定第二判定条件。示例的,当UE通过UE-中继UE-对端UE的通信链路与对端UE进行数据通信时,可以通过测量UE与中继UE之间的信道质量生成第一信道测量结果,确定对应的第二判定条件为判定第一信道测量结果是否小于第三门限,在确定该第一信道测量结果小于第三门限时,启动或重置UE对应的第一定时器。
可选地,当UE通过UE-对端UE的通信链路与对端UE进行数据通信时,可以通过测量UE与对端UE之间的信道质量生成第二信道测量结果,确定对应的第二判定条件为判定第二信道测量结果是否小于第四门限,在确定该第二信道测量结果小于第四门限时,启动或重置UE对应的第一定时器。
可选地,UE在进行数据通信时,因信道质量较差导致数据传输受阻,进而会发起数据重传,因此,本公开实施例中通过获取UE接收到UE与对端UE之间或UE与中继UE之间的数据重传次数,确定对应的第二判定条件为判定该数据重传次数是否达到第三数值,在确定该数据重传次数达到第三数值时,启动或重置UE对应的第一定时器。示例的,UE接收到的数据重传次数可以包括物理层重传,还可以包括Sidelink RLC(无线链路控制协议)实体向UE发送的数据重传次数。
可选地,通过Sidelink MAC(Medium Access Control,媒体介质访问控制)实体确定UE与对端UE之间的数据丢失次数,确定对应的第二判定条件为判定该数据丢失次数是否达到第四数值,在确定该数据丢失次数达到第四数值时,启动或重置UE对应的第一定时器。示例的,UE与对端UE之间的数据丢失此时可以是连续反馈丢失次数,还可以是不连续的反馈丢失次数的总和。
可选地,UE中还包括接入类定时器,该接入类定时器可以是T400定时器,UE的RRC连接建立请求消息是由UE的RRC层发起,并向MAC层发出随机接入指示以后,启动接入类定时器。当接入类定时器达到设定阈值,则UE重置MAC层、释放MAC层配置,并重置RLC实体,并发出sidelink链路失败的通知。本公交的实施例中,对接入类定时器T400的开启状态进行检测,确定对应的第二判定条件为判定T400是否达到启动条件,在确定T400启动时,启动或重置UE对应的第一定时器。
值得一提的是,本公开的实施例中第二判定条件可以是上述第二判定条件中的一种或多种。示例的,当第二判定条件为上述第二判定条件中的任意 一种时,能够迅速启动第一定时器,并在第一定时器达到计时阈值时确定满足第一判定条件,从而启动UE的信道发现过程,可以提高UE对信道质量的敏感度,使UE提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。当第二判定条件为上述第二判定条件中的任意多种时,可以保证第一定时器启动的准确性,确保UE准确启动信道发现过程。
可选地,在一种实施方式中,该控制方法还可以包括:
在UE不满足第二判定条件的情况下,停止第一定时器。
示例的,通过上述方案中的第二判定条件,确定第一定时器满足启动或重置条件,并启动第一定时器开始计时之后。需要对第二判定条件对应的信道参数继续进行测量,在第一定时器开始计时之后且达到计时阈值之前,通过该信道参数确定UE不满足第二判定条件时,停止该第一定时器,直至UE下一次满足第二判定条件为止,再重置并启动该第一定时器。
在步骤S403中,UE在确定满足第一判定条件的情况下,启动UE的信道发现过程。
示例的,UE确定满足第一判定条件,启动信道发现过程与步骤S102中的方法相同,可参照步骤S102,不再赘述。
值得一提的是,本公开的实施例中UE的信道发送过程可以包括UE向对端UE或中继UE发送发现信号的过程;还可以包括UE接收由对端UE或中继UE发送的发现信号的过程。其中,发现信号可以是UE到网络的中继发现信号,或UE到对端UE的中继发现信号或非中继发现信号。
可选地,在一种实施方式中RRC重配信息中包括目的UE地址,则还可以包括:
步骤S404,根据目的设备的地址,将RRC重配信息转发至目的设备。
示例地,该目的设备可以是目的UE的地址,该目的UE可能与网络设备之间没有建立直接的链接,需要通过当前的UE将RRC重配信息转发至该目的UE,以便目的UE在接收到该RRC重配信息后,根据RRC重配信息执行上述方法。
通过上述技术方案,UE根据配置信息生成用于判定信道发现过程的第一判定条件,并根据第一判定条件确定UE的当前服务信道对应的信道质量是否符合启动条件,进而确定启动UE的中继重选。通过配置信息调整UE对应信道发现过程的启动条件,在sidelink无线链路失败之前,UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。
图5是根据一示例性实施例示出的一种信道发现的控制装置的框图,该装置100应用于UE,参照图5,该装置100包括:生成模块110和执行模块120。
该生成模块110,被配置为响应于接收到的配置信息,生成第一判定条 件,第一判定条件为用户设备对应的信道发现过程的启动条件;
该执行模块120,被配置为在确定用户设备满足第一判定条件的情况下,启动用户设备的信道发现过程。
可选地,该第一判定条件包括以下一种或多种:
UE与中继设备之间的第一信道测量结果小于第一门限。
UE与对端设备之间的第二信道测量结果小于第二门限。
UE对应的第一定时器达到计时阈值。
接收到数据重传的次数达到第一数值。
UE与对端设备之间的反馈丢失次数达到第二数值。
可选地,第一定时器在UE满足第二判定条件的情况下启动计时或重启计时,第二判定条件包括以下一种或多种:
UE与中继设备之间的第一信道测量结果小于第三门限。
UE与对端设备之间的第二信道测量结果小于第四门限。
接收到数据重传指令的次数达到第三数值。
UE与对端设备之间的反馈丢失次数达到第四数值。
检测到用户设备对应的接入类定时器启动。
可选地,该装置100还包括判定模块,该判定模块被配置为:
在UE不满足第二判定条件的情况下,停止第一定时器。
可选地,该配置信息通过RRC重配消息或sidelink RRC重配消息携带,该生成模块110,还包括为生成子模块:
该生成子模块,被配置为根据RRC重配消息修改启动条件对应的信道质量参数的阈值,生成第一判定条件。
可选地,信道质量参数包括第一门限、第二门限、计时阈值、第一数值和第二数值中的一个或多个,该生成子模块还可以被配置为:
获取RRC重配信息中携带的信道质量参数的目标阈值;
根据目标阈值对该信道质量参数的阈值进行修改,生成第一判定条件。
可选地,RRC重配信息中包括目的设备的地址,该发送模块被配置为:
根据目的设备的地址,将RRC重配信息中转发至目的设备。
可选地,该信道发现过程包括:发送发现信号的过程,或接收发现信号的过程。
可选地,该发现信号包括:用户设备到网络的中继发现信号,或用户设备到用户设备的中继发现信号或非中继发现信号。
图6是根据一示例性实施例示出的一种信道发现的控制装置的框图,该装置200应用于网络设备,参照图6,该装置200包括:发送模块210。
该发送模块210,被配置为向用户设备发送配置信息,配置信息用于指示UE生成第一判定条件,第一判定条件为UE对应的信道发现过程的启动条件,并在确定UE满足第一判定条件的情况下,启动UE的信道发现过程。
通过上述技术方案,UE根据配置信息生成用于判定信道发现过程的第一判定条件,并根据第一判定条件确定UE的当前服务信道对应的信道质量是否符合启动条件,进而确定启动UE的中继重选。通过配置信息调整UE对应信道发现过程的启动条件,在sidelink无线链路失败之前,UE可以提前启动信道发现过程,减少中继选择的时间,避免数据交互的延时问题。
图7是根据一示例性实施例示出的一种用户设备700的框图。例如,用户设备700可以是上述的测试设备或同步设备,该用户设备700可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图7,用户设备700可以包括以下一个或多个组件:处理组件702,存储器704,电源组件706,多媒体组件708,音频组件710,输入/输出接口712,传感器组件714,以及通信组件716。
处理组件702通常控制用户设备700的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件702可以包括一个或多个处理器720来执行指令,以完成时延测量方法的全部或部分步骤。此外,处理组件702可以包括一个或多个模块,便于处理组件702和其他组件之间的交互。例如,处理组件702可以包括多媒体模块,以方便多媒体组件708和处理组件702之间的交互。
存储器704被配置为存储各种类型的数据以支持在用户设备700的操作。这些数据的示例包括用于在用户设备700上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器704可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件706为用户设备700的各种组件提供电力。电源组件706可以包括电源管理系统,一个或多个电源,及其他与为用户设备700生成、管理和分配电力相关联的组件。
多媒体组件708包括在所述用户设备700和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件708包括一个前置摄像头和/或后置摄像头。当用户设备700处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透 镜系统或具有焦距和光学变焦能力。
音频组件710被配置为输出和/或输入音频信号。例如,音频组件710包括一个麦克风(MIC),当用户设备700处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器704或经由通信组件716发送。在一些实施例中,音频组件710还包括一个扬声器,用于输出音频信号。
输入/输出接口712为处理组件702和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件714包括一个或多个传感器,用于为用户设备700提供各个方面的状态评估。例如,传感器组件714可以检测到用户设备700的打开/关闭状态,组件的相对定位,例如所述组件为装置700的显示器和小键盘,传感器组件714还可以检测用户设备700或用户设备700一个组件的位置改变,用户与用户设备700接触的存在或不存在,用户设备700方位或加速/减速和用户设备700的温度变化。传感器组件714可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件714还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件714还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件716被配置为便于用户设备700和其他设备之间有线或无线方式的通信。用户设备700可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件716经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件716还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,用户设备700可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于信道发现的控制方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器704,上述指令可由用户设备700的处理器720执行以完成时延测量方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
上述装置除了可以是独立的用户设备外,也可是独立用户设备的一部分,例如在一种实施例中,该装置可以是集成电路(Integrated Circuit,IC)或芯 片,其中该集成电路可以是一个IC,也可以是多个IC的集合;该芯片可以包括但不限于以下种类:GPU(Graphics Processing Unit,图形处理器)、CPU(Central Processing Unit,中央处理器)、FPGA(Field Programmable Gate Array,可编程逻辑阵列)、DSP(Digital Signal Processor,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、SOC(System on Chip,SoC,片上系统或系统级芯片)等。上述的集成电路或芯片中可以用于执行可执行指令(或代码),以实现上述的信道发现的控制方法。其中该可执行指令可以存储在该集成电路或芯片中,也可以从其他的装置或设备获取,例如该集成电路或芯片中包括处理器、存储器,以及用于与其他的装置通信的接口。该可执行指令可以存储于该处理器中,当该可执行指令被处理器执行时实现上述的信道发现的控制方法;或者,该集成电路或芯片可以通过该接口接收可执行指令并传输给该处理器执行,以实现上述的信道发现的控制方法。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述的信道发现的控制方法的代码部分。
图8是根据一示例性实施例示出的一种网络设备800的框图。例如,网络设备800可以被提供为一服务器,可以作为上述的同步设备或测量设备。参照图8,网络设备800包括处理组件822,其进一步包括一个或多个处理器,以及由存储器832所代表的存储器资源,用于存储可由处理组件822的执行的指令,例如应用程序。存储器832中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件822被配置为执行指令,以执行上述信道发现的控制方法。
网络设备800还可以包括一个电源组件826被配置为执行网络设备800的电源管理,一个有线或无线网络接口850被配置为将网络设备800连接到网络,和一个输入/输出接口858。网络设备800可以操作基于存储在存储器832的操作系统,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM,FreeBSD TM或类似。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (16)

  1. 一种信道发现的控制方法,其特征在于,被用户设备执行,所述方法包括:
    响应于接收到的配置信息,生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件;
    在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
  2. 根据权利要求1所述的方法,其特征在于,所述第一判定条件包括以下一种或多种:
    所述用户设备与中继设备之间的第一信道测量结果小于第一门限;
    所述用户设备与对端设备之间的第二信道测量结果小于第二门限;
    所述用户设备对应的第一定时器达到计时阈值;
    接收到数据重传的次数达到第一数值;
    所述用户设备与所述对端设备之间的反馈丢失次数达到第二数值。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一定时器在所述用户设备满足第二判定条件的情况下启动计时或重启计时,所述第二判定条件包括以下一种或多种:
    所述用户设备与所述中继设备之间的所述第一信道测量结果小于第三门限;
    所述用户设备与所述对端设备之间的所述第二信道测量结果小于第四门限;
    接收到所述数据重传指令的次数达到第三数值;
    所述用户设备与所述对端设备之间的所述反馈丢失次数达到第四数值;
    检测到所述用户设备对应的接入类定时器启动。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    在所述用户设备不满足所述第二判定条件的情况下,停止所述第一定时器;
  5. 根据权利要求2所述的方法,其特征在于,所述配置信息通过RRC重配消息携带,所述响应于接收到的配置信息,生成第一判定条件,包括:
    根据所述RRC重配消息修改所述启动条件对应的信道质量参数的阈值,生成所述第一判定条件。
  6. 根据权利要求5所述的方法,其特征在于,所述信道质量参数包括所述第一门限、所述第二门限、所述计时阈值、所述第一数值和所述第二数 值中的一个或多个,所述根据所述RRC重配信息修改所述启动条件对应的信道质量参数的阈值,生成所述第一判定条件,包括:
    获取所述RRC重配信息中携带的所述信道质量参数的目标阈值;
    根据所述目标阈值对所述信道质量参数的阈值进行修改,生成所述第一判定条件。
  7. 根据权利要求5所述的方法,其特征在于,所述RRC重配信息中包括目的设备的地址,所述方法还包括:
    根据所述目的设备的地址,将所述RRC重配信息转发至所述目的设备。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述信道发现过程包括:发送发现信号的过程,或接收发现信号的过程。
  9. 根据权利要求8任一项所述的方法,其特征在于,所述发现信号包括:用户设备到网络的中继发现信号,或用户设备到用户设备的中继发现信号或非中继发现信号。
  10. 一种信道发现的控制方法,其特征在于,被网络设备执行,所述方法包括:
    向用户设备发送配置信息,所述配置信息用于指示所述用户设备生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件,并在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
  11. 一种信道发现的启动装置,其特征在于,应用于用户设备,所述装置包括:
    生成模块,被配置为响应于接收到的配置信息,生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件;
    执行模块,被配置为在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
  12. 一种信道发现的启动装置,其特征在于,应用于网络设备,所述装置包括:
    发送模块,被配置为向用户设备发送配置信息,所述配置信息用于指示所述用户设备生成第一判定条件,所述第一判定条件为所述用户设备对应的信道发现过程的启动条件,并在确定所述用户设备满足所述第一判定条件的情况下,启动所述用户设备的所述信道发现过程。
  13. 一种用户设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为在执行所述可执行指令时,实现权利要求1~9中任一项所述方法的步骤。
  14. 一种网络设备,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为在执行所述可执行指令时,实现权利要求10中所述方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求1~9中任一项所述方法的步骤,或所述程序指令被处理器执行时实现权利要求10中任一项所述方法的步骤。
  16. 一种芯片,其特征在于,包括处理器和接口;所述处理器用于读取指令以执行权利要求1~9中任一项所述的方法,或所述处理器用于读取指令以执行权利要求10中任一项所述的方法。
PCT/CN2022/096482 2022-05-31 2022-05-31 信道发现的控制方法、装置、设备、存储介质及芯片 WO2023230926A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001766.4A CN115176505A (zh) 2022-05-31 2022-05-31 信道发现的控制方法、装置、设备、存储介质及芯片
PCT/CN2022/096482 WO2023230926A1 (zh) 2022-05-31 2022-05-31 信道发现的控制方法、装置、设备、存储介质及芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096482 WO2023230926A1 (zh) 2022-05-31 2022-05-31 信道发现的控制方法、装置、设备、存储介质及芯片

Publications (1)

Publication Number Publication Date
WO2023230926A1 true WO2023230926A1 (zh) 2023-12-07

Family

ID=83482373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096482 WO2023230926A1 (zh) 2022-05-31 2022-05-31 信道发现的控制方法、装置、设备、存储介质及芯片

Country Status (2)

Country Link
CN (1) CN115176505A (zh)
WO (1) WO2023230926A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347737A (zh) * 2017-01-25 2018-07-31 上海诺基亚贝尔股份有限公司 通信方法和设备
CN110461020A (zh) * 2019-08-16 2019-11-15 展讯通信(上海)有限公司 用于辅链路的中继选择方法及装置、存储介质、终端
US20200389900A1 (en) * 2017-05-11 2020-12-10 Lg Electronics Inc. Method and apparatus for allocating sidelink resource using relay ue in wireless communication system
CN113796122A (zh) * 2021-08-05 2021-12-14 北京小米移动软件有限公司 一种切换中继用户设备的方法、装置、设备及可读存储介质
CN114080062A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种中继ue重选方法、介质及设备
CN114390621A (zh) * 2020-10-22 2022-04-22 大唐移动通信设备有限公司 一种中继选择和重选的方法、装置及终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108347737A (zh) * 2017-01-25 2018-07-31 上海诺基亚贝尔股份有限公司 通信方法和设备
US20200389900A1 (en) * 2017-05-11 2020-12-10 Lg Electronics Inc. Method and apparatus for allocating sidelink resource using relay ue in wireless communication system
CN110461020A (zh) * 2019-08-16 2019-11-15 展讯通信(上海)有限公司 用于辅链路的中继选择方法及装置、存储介质、终端
CN114080062A (zh) * 2020-08-19 2022-02-22 华为技术有限公司 一种中继ue重选方法、介质及设备
CN114390621A (zh) * 2020-10-22 2022-04-22 大唐移动通信设备有限公司 一种中继选择和重选的方法、装置及终端
CN113796122A (zh) * 2021-08-05 2021-12-14 北京小米移动软件有限公司 一种切换中继用户设备的方法、装置、设备及可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, ALCATEL-LUCENT SHANGHAI BELL: "Initial relay discovery and relay reselection", 3GPP TSG-RAN WG2 MEETING #97 R2-1703361, 3 April 2017 (2017-04-03), XP051245229 *
OPPO: "Discussion on NR sidelink relay UE (re-)selection", 3GPP TSG-RAN WG2 MEETING #113 BIS ELECTRONIC, R2-2103007, 1 April 2021 (2021-04-01), XP051991992 *

Also Published As

Publication number Publication date
CN115176505A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
WO2020019216A1 (zh) 传输配置方法及装置
US20230098973A1 (en) Direct link data transmission method and apparatus, and storage medium
WO2020019218A1 (zh) 传输配置方法及装置
WO2017071074A1 (zh) 建立连接的方法及装置
WO2021026824A1 (zh) 非活动定时器的控制方法和装置
WO2022141646A1 (zh) 波束失败检测bfd资源的确定方法、装置及通信设备
WO2022178734A1 (zh) 一种网络接入方法、网络接入装置及存储介质
WO2021012279A1 (zh) 随机接入方法、装置及存储介质
WO2023044624A1 (zh) 一种bwp切换方法、装置及存储介质
CN105578391B (zh) 信息处理方法、装置、系统及终端设备
WO2018176230A1 (zh) 通知区域的更新方法及装置
WO2022077268A1 (zh) 一种无线感知方法、无线感知装置及存储介质
WO2018141163A1 (zh) 数据传输方法及装置
WO2022067766A1 (zh) 定位参考信号配置方法、配置装置及存储介质
WO2020243886A1 (zh) 控制信道发送、接收方法、装置及存储介质
WO2019140685A1 (zh) 进行最小化路测测量的方法、装置和系统
WO2023015535A1 (zh) 一种执行小数据包传输和确定随机接入消息传输方式的方法、装置、设备及存储介质
WO2022205348A1 (zh) 一种发送和接收下行信息的方法、装置、设备及存储介质
WO2022205246A1 (zh) 一种小区重选方法、小区重选装置及存储介质
WO2022077274A1 (zh) 一种无线感知资源协调方法、装置及存储介质
WO2023230926A1 (zh) 信道发现的控制方法、装置、设备、存储介质及芯片
WO2022120611A1 (zh) 一种参数配置方法、参数配置装置及存储介质
WO2022151342A1 (zh) 一种上报方法、发送方法、装置、设备及存储介质
WO2019000431A1 (zh) 无线通信方法、装置及计算机可读存储介质
CN113115298A (zh) 触发无线客户端漫游的方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22944262

Country of ref document: EP

Kind code of ref document: A1