WO2023230778A1 - 发光器件、显示装置 - Google Patents

发光器件、显示装置 Download PDF

Info

Publication number
WO2023230778A1
WO2023230778A1 PCT/CN2022/096048 CN2022096048W WO2023230778A1 WO 2023230778 A1 WO2023230778 A1 WO 2023230778A1 CN 2022096048 W CN2022096048 W CN 2022096048W WO 2023230778 A1 WO2023230778 A1 WO 2023230778A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
light
blocking layer
Prior art date
Application number
PCT/CN2022/096048
Other languages
English (en)
French (fr)
Inventor
王斯琦
孙海雁
邱丽霞
张晓晋
王丹
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202280001544.2A priority Critical patent/CN117501829A/zh
Priority to PCT/CN2022/096048 priority patent/WO2023230778A1/zh
Priority to US18/025,982 priority patent/US20240306495A1/en
Publication of WO2023230778A1 publication Critical patent/WO2023230778A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/321Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
    • H10K85/322Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising boron
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers

Definitions

  • the present application relates to the field of display technology, and in particular, to a light-emitting device and a display device.
  • Organic thermally activated delayed fluorescence (TADF) materials have the advantages of high electroluminescence efficiency and simple molecular design. They have been widely used as emitters of organic light emitting diodes (OLEDs) and have attracted widespread attention in the display field. . However, the luminous efficiency and service life of organic light-emitting diodes with thermally activated delayed fluorescent materials in related technologies need to be further improved.
  • a light-emitting device including:
  • a light-emitting layer located between the first pole and the second pole, including a host material and a thermally activated delayed fluorescent material;
  • An electron blocking layer located between the light-emitting layer and the first electrode
  • HOMO EBL is the energy value of the highest occupied molecular orbital HOMO of the electron blocking layer material
  • HOMO Host is the energy value of the highest occupied molecular orbital HOMO of the host material.
  • the light-emitting device further includes a hole blocking layer, the hole blocking layer is located between the light-emitting layer and the second electrode;
  • LUMO HBL is the energy value of the lowest unoccupied molecular orbital LUMO of the hole blocking layer material
  • LUMO Host is the energy value of the lowest unoccupied molecular orbital LUMO of the host material.
  • T1 EBL - T1 TADF 0.1eV
  • S1 EBL - S1 TADF 0;
  • T1 EBL is the energy value of the first triplet energy level of the electron blocking layer material
  • T1 TADF is the energy value of the first triplet energy level of the thermally activated delayed fluorescent material
  • S1 EBL is the electron blocking layer material.
  • the energy value of the first singlet state energy level of the layer material, S1 TADF is the energy value of the first singlet state energy level of the thermally activated delayed fluorescent material.
  • T1 HBL - T1 TADF 0, S1 HBL - S1 TADF >0;
  • T1 HBL is the energy value of the first triplet state energy level of the hole blocking layer material
  • S1 HBL is the energy value of the first singlet state energy level of the hole blocking layer material
  • the material of the electron blocking layer, the host material, and the hole blocking layer respectively include:
  • n includes one of 0, 1 or 2.
  • R1 to R10 respectively include hydrogen, a C to C12 alkyl group, a substituted or unsubstituted C6 to C30 arylene group, and a substituted or unsubstituted C3 to C30 heteroarylene group. one of them.
  • Ar includes one of hydrogen, a C1-C12 alkyl group, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C3-C30 heteroarylene group. kind.
  • the material of the hole blocking layer includes:
  • Y and Z respectively include hydrogen, deuterium, halogen group, nitrile group, nitro group, hydroxyl group, carbonyl group, ester group, imide group, amino group, substituted or unsubstituted C3 ⁇ C30 silyl group, substituted or unsubstituted boron group, substituted or unsubstituted C1 ⁇ C30 alkyl group, substituted or unsubstituted C3 ⁇ C30 cycloalkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted Alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted C6 ⁇ C30 arylsulfonyl group, substituted or unsubstituted alkenyl group, substituted or Unsubstituted a
  • m is greater than or equal to 3;
  • the light-emitting device further includes a hole transport layer, the hole transport layer is located between the electron blocking layer and the first electrode;
  • HOMO HTL is the energy value of the highest occupied molecular orbital HOMO of the hole transport layer material.
  • the light-emitting device further includes an electron transport layer located between the hole blocking layer and the second electrode;
  • LUMO ETL is the energy value of the lowest unoccupied molecular orbital LUMO of the electron transport layer material.
  • T1 Host ⁇ 2.45eV
  • T1 EBL ⁇ 2.55eV
  • S1 EBL ⁇ 2.90eV
  • the material of the hole blocking layer has a glass transition temperature greater than or equal to 85°C.
  • a light-emitting device which includes:
  • a light-emitting layer located between the first pole and the second pole, including a host material and a thermally activated delayed fluorescent material;
  • An electron blocking layer located between the light-emitting layer and the first electrode
  • a hole blocking layer located between the light-emitting layer and the second electrode
  • the material of the electron blocking layer and the structure of the main material respectively include
  • the material structure of the hole blocking layer includes
  • X includes one of a boron atom, a carbon atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom or a sulfur atom;
  • L includes one of substituted or unsubstituted C6-C20 arylene groups and substituted or unsubstituted C3-C30 heteroarylene groups, n includes one of 0, 1 or 2;
  • m is greater than or equal to 3.
  • Y and Z respectively include hydrogen, deuterium, halogen group, nitrile group, nitro group, hydroxyl group, carbonyl group, ester group, imide group, amino group, substituted or unsubstituted C3 ⁇ C30 silyl group, substituted or unsubstituted boron group, substituted or unsubstituted C1 ⁇ C30 alkyl group, substituted or unsubstituted C3 ⁇ C30 cycloalkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted Aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted C6 ⁇ C30 arylsulfonyl group, substituted or unsubstituted alkenyl, substituted or unsubsti
  • X or Y includes a substituted or unsubstituted C3-C30 monocyclic or polycyclic alicyclic ring or aromatic ring
  • the alicyclic ring or the aromatic ring includes at least one Heteroatoms include oxygen atoms, sulfur atoms or nitrogen atoms.
  • R1 to R10 respectively include hydrogen, C to C12 alkyl groups, substituted or unsubstituted C6 to C30 arylene groups, and substituted or unsubstituted C3 to C30 heteroarylene groups.
  • One of them there is at least a set of two adjacent groups in R1 to R10 connected to form a ring;
  • Ar includes one of hydrogen, a C1-C12 alkyl group, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C3-C30 heteroarylene group.
  • HOMO EBL is the energy value of the highest occupied molecular orbital HOMO of the electron blocking layer material
  • HOMO Host is the energy value of the highest occupied molecular orbital HOMO of the host material
  • LUMO HBL is the energy value of the lowest unoccupied molecular orbital LUMO of the hole blocking layer material
  • LUMO Host is the energy value of the lowest unoccupied molecular orbital LUMO of the host material.
  • T1 EBL - T1 TADF 0.1eV
  • S1 EBL - S1 TADF 0;
  • T1 EBL is the energy value of the first triplet energy level of the electron blocking layer material
  • T1 TADF is the energy value of the first triplet energy level of the thermally activated delayed fluorescent material
  • S1 EBL is the electron blocking layer material.
  • the energy value of the first singlet state energy level of the layer material, S1 TADF is the energy value of the first singlet state energy level of the thermally activated delayed fluorescent material
  • T1 HBL is the first triplet state energy of the hole blocking layer material
  • the energy value of the level, S1 HBL is the energy value of the first singlet energy level of the hole blocking layer material.
  • the light-emitting device further includes a hole transport layer located between the electron blocking layer and the first electrode;
  • HOMO HTL is the energy value of the highest occupied molecular orbital HOMO of the hole transport layer material
  • the light-emitting device further includes an electron transport layer located between the hole blocking layer and the second electrode;
  • LUMO ETL is the energy value of the lowest unoccupied molecular orbital LUMO of the electron transport layer material.
  • the thickness of the light-emitting layer in a direction perpendicular to the plane where the first pole is located ranges from 15 nm to 45 nm;
  • the thickness of the electron blocking layer in a direction perpendicular to the plane of the first pole ranges from 1 nm to 15 nm;
  • the thickness of the hole blocking layer in a direction perpendicular to the plane of the first pole ranges from 1 nm to 15 nm.
  • embodiments of the present application provide a display device, including the light-emitting device as described above.
  • FIG. 1 is a schematic structural diagram of a light-emitting device provided by an embodiment of the present application.
  • TADF Organic thermally activated delayed fluorescence
  • OLEDs organic light emitting diodes
  • thermally activated delayed fluorescent molecules are considered to be one of the most promising materials for organic light-emitting diodes.
  • luminescent materials there is generally a large energy level difference between the lowest singlet state and the lowest triplet state. Once the exciton reaches the triplet state through the intersystem crossing (ISC) process, it cannot return to the singlet state.
  • ISC intersystem crossing
  • excitons can reach the first singlet state S1 (also called excited singlet state) from the first triplet state T1 (also called excited triplet state) through the reverse intersystem crossover (RISC) process, so that as many excitons as possible
  • RISC reverse intersystem crossover
  • An embodiment of the present application provides a light-emitting device, as shown in Figure 1, including;
  • the luminescent layer 5 is located between the first pole 1 and the second pole 9, and includes a host material Host and a thermally activated delayed fluorescent material (Thermally Activated Delayed Fluorescence, TADF);
  • the electron blocking layer 4 is located between the light-emitting layer 5 and the first electrode 1;
  • HOMO EBL is the energy value of the highest occupied molecular orbital HOMO of the material of the electron blocking layer 4
  • HOMO Host is the energy value of the highest occupied molecular orbital HOMO of the host material Host.
  • the first pole 1 may be an anode
  • the second pole 9 may be a cathode
  • the number of light-emitting layers included in the light-emitting device is not limited here.
  • the light-emitting device may include multiple light-emitting layers, and the multiple light-emitting layers are located between the first pole 1 and the second pole 9.
  • the multiple light-emitting layers are stacked to improve the luminous efficiency.
  • Embodiments of the present application are defined with respect to materials included in at least one light-emitting layer among a plurality of light-emitting layers. It can be understood that in the case where the light-emitting device includes multiple light-emitting layers, at least one light-emitting layer includes a host material Host and a thermally activated delayed fluorescent material TADF.
  • the light-emitting device includes a light-emitting layer, and the light-emitting layer includes a host material Host and a thermally activated delayed fluorescent material TADF.
  • the embodiments of the present application take a light-emitting device including one light-emitting layer 5 as an example for description.
  • the luminescent color of the luminescent layer 5 is not limited here.
  • the luminescent color of the luminescent layer 5 may be red; or the luminescent color of the luminescent layer 5 may be green; or the luminescent color of the luminescent layer 5 may be blue.
  • the light emitting layer 5 may include at least one host material.
  • the luminescent layer 5 includes a host material.
  • the light-emitting layer 5 includes two host materials.
  • one of them is an N-type host material and the other is a P-type host material.
  • the specific structure of the above-mentioned main material is not limited here, and the specific structure can be determined according to the actual situation.
  • Thermal-activated delayed fluorescence is a thermally activated reluminescence process of triplet excitons, that is, the triplet state is converted to a higher vibrational energy level after thermal activation, and then reaches a singlet close to its energy level through reverse intersystem crossing.
  • the vibration energy level of the singlet state is re-radiated to produce fluorescence.
  • This fluorescence is delayed compared with the direct emission of the singlet state, which is called delayed fluorescence.
  • thermally activated delayed fluorescent materials generally have smaller triplet and singlet energy gaps.
  • the energy level of the highest occupied molecular orbital (Highest Occupied Molecular Orbital, HOMO) reflects the ability of the molecule to lose electrons. The higher the energy value of the HOMO energy level, the easier it is for the material to lose electrons, allowing hole transport; the lowest is not
  • the energy level of the Lowest Unoccupied Molecular Orbital (LUMO) reflects the ability of the molecule to obtain electrons. The lower the energy value of the LUMO energy level, the easier it is for the substance to obtain electrons, allowing electrons to be transported.
  • the electron blocking layer 4 has the function of promoting hole injection and limiting electron leakage.
  • the specific structure of the electron blocking layer is not limited here.
  • the absolute value of the difference between the energy value of the highest occupied molecular orbital HOMO of the material of which the electron blocking layer 4 is provided and the energy value of the highest occupied molecular orbital HOMO of the host material Host is greater than 0.1 eV and less than Or equal to 0.3eV, which improves the matching degree of the host material in the light-emitting layer and the material of the electron blocking layer, promotes the transport of holes from the electron blocking layer and injects them into the light-emitting layer, so that as many holes as possible can be injected into the light-emitting layer in the host material and recombine with electrons in the light-emitting layer to form excitons, which radiate and emit light, thus improving the luminous efficiency of the light-emitting device.
  • the electron blocking layer can also prevent electrons from leaking from the light-emitting layer to the side of the electron blocking layer close to the first electrode 1 to a great extent, thus greatly improving the service life of the
  • the light-emitting device further includes a hole blocking layer 6, the hole blocking layer 6 is located between the light-emitting layer 5 and the second electrode 9;
  • LUMO HBL is the energy value of the lowest unoccupied molecular orbital LUMO of the material of the hole blocking layer 6
  • LUMO Host is the energy value of the lowest unoccupied molecular orbital LUMO of the host material.
  • the absolute value of the difference between the energy value of the highest occupied molecular orbital HOMO of the material of which the electron blocking layer 4 is provided and the energy value of the highest occupied molecular orbital HOMO of the host material Host is greater than 0.1 eV and less than or is equal to 0.3 eV
  • the absolute value of the difference between the energy value of the lowest unoccupied molecular orbital LUMO of the material in which the hole blocking layer 6 is provided and the energy value of the lowest unoccupied molecular orbital LUMO of the host material is greater than 0.1 eV and less than or equal to 0.3 eV
  • the service life of the light-emitting device can be improved, and on the other hand, Holes and electrons recombine to form excitons in the light-emitting layer, and the excitons radiate and emit light, which improves the utilization rate of holes and electrons recombining to form excitons, thereby improving the luminous efficiency of the light-emitting device.
  • T1 EBL - T1 TADF 0.1eV
  • S1 EBL - S1 TADF 0;
  • T1 EBL is the energy value of the first triplet energy level of the electron blocking layer material
  • T1 TADF is the energy value of the first triplet energy level of the thermally activated delayed fluorescent material
  • S1 EBL is the first single line of the electron blocking layer material.
  • the energy value of the state energy level, S1 TADF is the energy value of the first singlet state energy level of the thermally activated delayed fluorescent material.
  • the electron blocking layer is set to have a higher energy value T1 EBL of the first triplet energy level and a higher energy value S1 of the first singlet energy level.
  • EBL helps prevent electron leakage.
  • it can also prevent excitons in the thermally activated delayed fluorescent material from leaking into the electron blocking layer, thereby helping to improve the luminous efficiency of the luminescent layer.
  • T1 HBL is the energy value of the first triplet state energy level of the hole blocking layer material
  • S1 HBL is the energy value of the first singlet state energy level of the hole blocking layer material
  • the hole blocking layer is set to have a higher energy value T1 HBL of the first triplet energy level and a higher energy value of the first singlet energy level.
  • S1 HBL is helpful in preventing hole leakage.
  • it can also prevent excitons in the thermally activated delayed fluorescent material from leaking into the hole blocking layer, thereby helping to improve the luminous efficiency of the light-emitting layer.
  • the energy value T1 Host of the first triplet energy level of the host material in the luminescent layer and the energy value of the first triplet energy level of the thermally activated delayed fluorescent material in the luminescent layer The size relationship between T1 TADF is not limited, and can be determined based on the type of host material and the type of thermally activated delayed fluorescent material in actual applications. The details can be determined based on the material design in the light-emitting layer.
  • T1 Host - T1 TADF >0; in other embodiments, T1 Host - T1 TADF ⁇ 0.
  • the material of the electron blocking layer, the host material, and the material of the hole blocking layer respectively include:
  • n includes one of 0, 1 or 2.
  • R1 to R10 respectively include hydrogen, a C to C12 alkyl group, a substituted or unsubstituted C6 to C30 arylene group, and a substituted or unsubstituted C3 to C30 heteroarylene group. one of them.
  • R1 and R2 can be connected to form a ring; or R2 and R3 can be connected to form a ring; or R3 and R4 can be connected to form a ring; or R4 and R5 can be connected to form a ring; or R1 and R2 can be connected to form a ring, and R3 and R4 can be connected to form a ring; or, R6 and R7 can be connected to form a ring; or, R7 and R8 can be connected to form a ring; or, R8 and R9 can be connected to form a ring; or, R9 and R10 can be connected to form a ring; or, R6 and R7 can be connected to form a ring, and R8 and R9 can be connected to form a ring.
  • Ar includes one of hydrogen, a C1-C12 alkyl group, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C3-C30 heteroarylene group. kind.
  • the materials of the electron blocking layer, the host material, and the hole blocking layer are different, although the materials of the three materials can all include the above general structural formula, in practical applications, The structures of the three materials are not exactly the same.
  • the material of the hole blocking layer includes:
  • the material of the hole blocking layer has a glass transition temperature greater than or equal to 85°C.
  • Y and Z respectively include hydrogen, deuterium, halogen group, nitrile group, nitro group, hydroxyl group, carbonyl group, ester group, imide group, amino group, substituted or unsubstituted C3 ⁇ C30 silyl group, substituted or unsubstituted boron group, substituted or unsubstituted C1 ⁇ C30 alkyl group, substituted or unsubstituted C3 ⁇ C30 cycloalkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted Aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted C6 ⁇ C30 arylsulfonyl group, substituted or unsubstituted alkenyl, substituted or unsubsti
  • substituted or unsubstituted C1-C30 alkyl C6-C30 diarylsilyl groups include: substituted or unsubstituted alkyldiarylsilyl groups, wherein the number of carbon atoms in the alkyl group is 1 to 30. The number of carbon atoms of the diaryl group is 6 to 30.
  • substituted or unsubstituted C3-C30 monocyclic or polycyclic alicyclic rings or aromatic rings include: substituted or unsubstituted C3-C30 monocyclic alicyclic rings, substituted or unsubstituted C3-C30 monocyclic aromatic ring, substituted or unsubstituted C3-C30 polycyclic alicyclic ring, substituted or unsubstituted C3-C30 polycyclic aromatic ring.
  • the alicyclic ring or aromatic ring includes at least one heteroatom, including an oxygen atom, a sulfur atom or a nitrogen atom.
  • n is greater than or equal to 3.
  • the molecule when m is greater than or equal to 3, the molecule has higher conjugation performance, so that the above structure has strong physical and chemical stability and high hole blocking performance, and can effectively block holes. Hole leakage can greatly improve the service life of the light-emitting device.
  • the light-emitting device further includes a hole transport layer 3, the hole transport layer 3 is located between the electron blocking layer 4 and the first electrode 1;
  • HOMO HTL is the energy value of the highest occupied molecular orbital HOMO of the material of the hole transport layer 4 .
  • the absolute value is greater than 0.1eV and less than or equal to 0.3eV, which improves the matching degree of the HOMO energy level between the material of the hole transport layer 3 and the material of the electron blocking layer 4, allowing holes to be efficiently transported from the hole Layer 3 is injected into the light-emitting layer 5 through the electron blocking layer 4, thereby improving the life of each film layer in the light-emitting device and improving the luminous efficiency of the light-emitting device.
  • the light-emitting device further includes an electron transport layer 7, the electron transport layer 7 is located between the hole blocking layer 6 and the second electrode 9;
  • LUMO ETL is the energy value of the lowest unoccupied molecular orbital LUMO of the material of the electron transport layer 7 .
  • the absolute value of the value is greater than 0.1eV and less than or equal to 0.3eV, which improves the matching degree of the LUMO energy level between the material of the hole blocking layer 6 and the material of the electron transport layer 7, so that electrons can efficiently escape from the electron transport layer 7 is injected into the light-emitting layer 5 through the hole blocking layer 6, thereby improving the life of each film layer in the light-emitting device and improving the luminous efficiency of the light-emitting device.
  • T1 Host ⁇ 2.45eV
  • T1 EBL ⁇ 2.55eV
  • S1 EBL ⁇ 2.90eV
  • the host material has a higher energy value of the first triplet energy level, which is beneficial to confine the excitons in the thermally activated delayed fluorescent material and improve the delayed fluorescence. luminous efficiency, thereby improving the luminous efficiency of the light-emitting device.
  • the electron blocking layer has a higher energy value T1 EBL of the first triplet energy level and a higher first singlet energy.
  • the energy value of the level S1 EBL is beneficial to preventing electron leakage. In addition, it can also prevent excitons in the thermally activated delayed fluorescent material from leaking into the electron blocking layer, thereby helping to improve the luminous efficiency of the luminescent layer.
  • the hole blocking layer has a higher energy value T1 HBL of the first triplet energy level and a higher energy value S1 HBL of the first singlet energy level, It is beneficial to prevent holes from leaking. In addition, it can also prevent excitons in the thermally activated delayed fluorescent material from leaking into the hole blocking layer, thereby helping to improve the luminous efficiency of the light-emitting layer.
  • the energy level of the Highest Occupied Molecular Orbital (HOMO) reflects the ability of the molecule to lose electrons. The higher the energy value of the HOMO energy level, the easier it is for the material to lose electrons, allowing holes to be transported.
  • HOMO EBL ⁇ 5.6eV
  • ⁇ HOMO Host ⁇ 5.8eV
  • the matching degree of the host material in the luminescent layer and the material of the electron blocking layer is improved, and holes are promoted to be transported from the electron blocking layer and injected into the center of the luminescent layer. , so that as many holes as possible are injected into the host material of the light-emitting layer and recombine with electrons in the light-emitting layer to form excitons.
  • the excitons radiate and emit light, thus improving the luminous efficiency of the light-emitting device.
  • the electron blocking layer can also prevent electrons from leaking from the light-emitting layer to the side of the electron blocking layer close to the first electrode 1 to a great extent, thus greatly improving the service life of the light-emitting device.
  • the above-mentioned light-emitting device may further include a hole injection layer 2 and an electron injection layer 8 .
  • the light-emitting device may also include other film layers and structures.
  • the thickness of the anode can be 100nm, and the material of the anode is indium tin oxide (ITO).
  • the thickness of the hole injection layer may be 10 nm.
  • the thickness of the hole transport layer may be 60 nm.
  • the materials of the electron blocking layer include The thickness of the electron blocking layer may be 10 nm.
  • the material of the light-emitting layer includes a host material and a guest material (Dopant), where the content of the host material is 90% and the content of the guest material is 10%.
  • Dopant a guest material
  • the thickness of the light-emitting layer may be 25 nm.
  • the guest material may include a thermally activated delayed fluorescent material.
  • the host material includes
  • the thickness of the hole blocking layer may be 10 nm, and the material of the hole blocking layer may include
  • the thickness of the electron transport layer may be 30 nm.
  • the material of the cathode may be aluminum (Al).
  • the film layer structure of the first light-emitting device provided by the embodiment of the present application is in order: ITO/HIL/HTL/A1-11/A1-17: dopant/A0-3/ETL/LiF/Al.
  • the thickness of the anode can be 100nm, and the material of the anode is indium tin oxide (ITO).
  • the thickness of the hole injection layer may be 10 nm.
  • the thickness of the hole transport layer may be 60 nm.
  • the materials of the electron blocking layer include The thickness of the electron blocking layer may be 10 nm.
  • the material of the light-emitting layer includes a host material, a sensitizer and a guest material (Dopant), where the content of the host material is 79%, the content of the guest material is 1%, and the content of the sensitizer TH is 20%.
  • Dopant a guest material
  • the thickness of the light-emitting layer may be 25 nm.
  • the guest material may include a thermally activated delayed fluorescent material.
  • the host material includes
  • the thickness of the hole blocking layer may be 10 nm, and the material of the hole blocking layer may include
  • the thickness of the electron transport layer may be 30 nm.
  • the material of the cathode may be aluminum (Al).
  • the film layer structure of the second light-emitting device provided by the embodiment of the present application is: ITO/HIL/HTL/A1-11/A1-17:TH:dopant/B4-2/ETL/LiF/Al.
  • the thickness of the anode can be 100nm, and the material of the anode is indium tin oxide (ITO).
  • the thickness of the hole injection layer may be 10 nm.
  • the thickness of the hole transport layer may be 60 nm.
  • the materials of the electron blocking layer include The thickness of the electron blocking layer may be 10 nm.
  • the material of the light-emitting layer includes a host material and a guest material (Dopant), where the content of the host material is 90% and the content of the guest material is 10%.
  • Dopant a guest material
  • the thickness of the light-emitting layer may be 25 nm.
  • the guest material may include a thermally activated delayed fluorescent material.
  • the host material includes
  • the thickness of the hole blocking layer may be 10 nm, and the material of the hole blocking layer may include
  • the thickness of the electron transport layer may be 30 nm.
  • the material of the cathode may be aluminum (Al).
  • the film layer structure of the third light-emitting device provided by the embodiment of the present application is: ITO/HIL/HTL/A1-12/A1-19: dopant/B3-3/ETL/LiF/Al.
  • the thickness of the anode can be 100nm, and the material of the anode is indium tin oxide (ITO).
  • the thickness of the hole injection layer may be 10 nm.
  • the thickness of the hole transport layer may be 60 nm.
  • the material of the electron blocking layer includes TCTA, and the thickness of the electron blocking layer may be 10 nm.
  • TCTA The structure of TCTA is as follows:
  • the material of the light-emitting layer includes a host material and a guest material (Dopant), where the content of the host material is 97% and the content of the guest material is 3%.
  • Dopant guest material
  • the thickness of the light-emitting layer may be 25 nm.
  • the host material may include mCPB.
  • mCPB structure of mCPB is as follows:
  • the thickness of the hole blocking layer may be 10 nm, and the material of the hole blocking layer may include B3PYMPM.
  • B3PYMPM is as follows:
  • the thickness of the electron transport layer may be 30 nm.
  • the material of the cathode may be aluminum (Al).
  • the thickness of the anode can be 100nm, and the material of the anode is indium tin oxide (ITO).
  • the thickness of the hole injection layer may be 10 nm.
  • the thickness of the hole transport layer may be 60 nm.
  • the material of the electron blocking layer includes TCTA, and the thickness of the electron blocking layer may be 10 nm.
  • TCTA The structure of TCTA is as follows:
  • the material of the light-emitting layer includes a host material and a guest material (Dopant), where the content of the host material is 97% and the content of the guest material is 3%.
  • Dopant guest material
  • the thickness of the light-emitting layer may be 25 nm.
  • the host material may include mCPB.
  • mCPB structure of mCPB is as follows:
  • the thickness of the hole blocking layer may be 10 nm, and the material of the hole blocking layer may include B2.
  • the thickness of the electron transport layer may be 30 nm.
  • the material of the cathode may be aluminum (Al).
  • Table 2 Device performance data of three light-emitting devices in this application and two light-emitting devices in related technologies
  • Embodiment 1 represents the first light-emitting device provided by the embodiments of the present application
  • Embodiment 2 represents the second light-emitting device provided by the embodiments of the present application
  • Embodiment 1 represents the third type of light-emitting device provided by the embodiments of the present application.
  • Light-emitting device, Comparative Example 1 represents the first light-emitting device in the related art
  • Comparative Example 2 represents the second light-emitting device in the related art.
  • LT 90 (h) is the time used when the real-time brightness of the light-emitting device is 90% of the initial brightness, and can reflect the service life of the light-emitting device.
  • the light-emitting device includes:
  • the luminescent layer 5 is located between the first pole 1 and the second pole 9 and includes a host material and a thermally activated delayed fluorescent material;
  • the electron blocking layer 4 is located between the light-emitting layer 5 and the first electrode 1;
  • the hole blocking layer 6 is located between the light-emitting layer 5 and the second electrode 9;
  • the material of the electron blocking layer 4 and the structure of the main material include respectively
  • the material structure of the hole blocking layer 6 includes
  • X includes one of a boron atom, a carbon atom, a nitrogen atom, an oxygen atom, a silicon atom, a phosphorus atom or a sulfur atom;
  • L includes one of substituted or unsubstituted C6-C20 arylene groups and substituted or unsubstituted C3-C30 heteroarylene groups, n includes one of 0, 1 or 2;
  • m is greater than or equal to 3.
  • Y and Z respectively include hydrogen, deuterium, halogen group, nitrile group, nitro group, hydroxyl group, carbonyl group, ester group, imide group, amino group, substituted or unsubstituted C3 ⁇ C30 silyl group, substituted or unsubstituted boron group, substituted or unsubstituted C1 ⁇ C30 alkyl group, substituted or unsubstituted C3 ⁇ C30 cycloalkyl group, substituted or unsubstituted alkoxy group, substituted or unsubstituted Aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted alkylsulfonyl group, substituted or unsubstituted C6 ⁇ C30 arylsulfonyl group, substituted or unsubstituted alkenyl, substituted or unsubsti
  • X or Y includes a substituted or unsubstituted C3-C30 monocyclic or polycyclic alicyclic ring or aromatic ring
  • the alicyclic ring or aromatic ring includes at least one heteroatom
  • the heteroatom Atoms include oxygen, sulfur or nitrogen atoms.
  • R1 to R10 respectively include hydrogen, a C to C12 alkyl group, a substituted or unsubstituted C6 to C30 arylene group, and a substituted or unsubstituted C3 to C30 heteroarylene group.
  • R1 to R10 there is at least a set of two adjacent groups in R1 to R10 connected to form a ring;
  • Ar includes one of hydrogen, a C1-C12 alkyl group, a substituted or unsubstituted C6-C30 arylene group, and a substituted or unsubstituted C3-C30 heteroarylene group.
  • HOMO EBL is the energy value of the highest occupied molecular orbital HOMO of the electron blocking layer material
  • HOMO Host is the energy value of the highest occupied molecular orbital HOMO of the host material
  • LUMO HBL is the energy value of the lowest unoccupied molecular orbital LUMO of the hole blocking layer material
  • LUMO Host is the energy value of the lowest unoccupied molecular orbital LUMO of the host material.
  • the absolute value of the difference between the energy value of the highest occupied molecular orbital HOMO of the material of which the electron blocking layer 4 is provided and the energy value of the highest occupied molecular orbital HOMO of the host material Host is greater than 0.1 eV and less than Or equal to 0.3eV, which improves the matching degree of the host material in the light-emitting layer and the material of the electron blocking layer, promotes the transport of holes from the electron blocking layer and injects them into the light-emitting layer, so that as many holes as possible can be injected into the light-emitting layer in the host material and recombine with electrons in the light-emitting layer to form excitons, which radiate and emit light, thus improving the luminous efficiency of the light-emitting device.
  • the electron blocking layer can also prevent electrons from leaking from the light-emitting layer to the side of the electron blocking layer close to the first electrode 1 to a great extent, thus greatly improving the service life of the
  • the absolute value of the difference between the energy value of the highest occupied molecular orbital HOMO of the material of the electron blocking layer 4 and the energy value of the highest occupied molecular orbital HOMO of the host material Host is also set.
  • the absolute value of the difference between the energy value of the lowest unoccupied molecular orbital LUMO of the material of the hole blocking layer 6 and the energy value of the lowest unoccupied molecular orbital LUMO of the host material is greater than 0.1eV and less than or equal to 0.3eV; in this way, the The matching degree of the host material in the light-emitting layer 5 and the material of the electron blocking layer 4 also improves the matching degree of the host material in the light-emitting layer 5 and the material of the hole blocking layer 6, thereby injecting as many holes and electrons as possible into the host material of the light-emitting layer and achieve a balance in the light-emitting layer, preventing electrons
  • T1 EBL - T1 TADF 0.1eV
  • S1 EBL - S1 TADF 0;
  • T1 EBL is the energy value of the first triplet energy level of the electron blocking layer material
  • T1 TADF is the energy value of the first triplet energy level of the thermally activated delayed fluorescent material
  • S1 EBL is the first single line of the electron blocking layer material.
  • the energy value of the state energy level, S1 TADF is the energy value of the first singlet state energy level of the thermally activated delayed fluorescent material
  • T1 HBL is the energy value of the first triplet state energy level of the hole blocking layer material
  • S1 HBL is the hole The energy value of the first singlet energy level of the barrier material.
  • the electron blocking layer is set to have a higher energy value T1 EBL of the first triplet energy level and a higher energy value S1 of the first singlet energy level.
  • EBL helps prevent electron leakage.
  • it can also prevent excitons in the thermally activated delayed fluorescent material from leaking into the electron blocking layer, thereby helping to improve the luminous efficiency of the luminescent layer.
  • the hole blocking layer is set to have a higher energy value T1 HBL of the first triplet energy level and a higher energy value of the first singlet energy level.
  • S1 HBL is helpful in preventing hole leakage.
  • it can also prevent excitons in the thermally activated delayed fluorescent material from leaking into the hole blocking layer, thereby helping to improve the luminous efficiency of the light-emitting layer.
  • the energy value T1 Host of the first triplet energy level of the host material in the luminescent layer and the energy value of the first triplet energy level of the thermally activated delayed fluorescent material in the luminescent layer The size relationship between T1 TADF is not limited, and can be determined based on the type of host material and the type of thermally activated delayed fluorescent material in actual applications. The details can be determined based on the material design in the light-emitting layer.
  • T1 Host - T1 TADF >0; in other embodiments, T1 Host - T1 TADF ⁇ 0.
  • the materials of the electron blocking layer, the host material, and the hole blocking layer are different, although the materials of the three materials can all include the above general structural formula, in practical applications, The structures of the three materials are not exactly the same.
  • the light-emitting device further includes a hole transport layer 3, the hole transport layer 3 is located between the electron blocking layer 4 and the first electrode 1;
  • HOMO HTL is the energy value of the highest occupied molecular orbital HOMO of the hole transport layer material
  • the light-emitting device also includes an electron transport layer 7, which is located between the hole blocking layer 6 and the second pole 9;
  • LUMO ETL is the energy value of the lowest unoccupied molecular orbital LUMO of the electron transport layer material.
  • the absolute value is greater than 0.1eV and less than or equal to 0.3eV, which improves the matching degree of the HOMO energy level between the material of the hole transport layer 3 and the material of the electron blocking layer 4, allowing holes to be efficiently transported from the hole Layer 3 is injected into the light-emitting layer 5 through the electron blocking layer 4, thereby improving the life of each film layer in the light-emitting device and improving the luminous efficiency of the light-emitting device.
  • the absolute value of the difference between the energy value LUMO HBL of the lowest unoccupied molecular orbital LUMO of the material of the hole blocking layer 6 and the energy value LUMO ETL of the lowest unoccupied molecular orbital LUMO of the material of the electron transport layer 7 is greater than 0.1 eV and Less than or equal to 0.3eV, the matching degree of the LUMO energy level between the material of the hole blocking layer 6 and the material of the electron transport layer 7 is improved, so that electrons can be injected from the electron transport layer 7 through the hole blocking layer 6 with high efficiency into the light-emitting layer 5, thereby improving the life of each film layer in the light-emitting device and improving the luminous efficiency of the light-emitting device.
  • the thickness of the light-emitting layer in the direction perpendicular to the plane of the first electrode ranges from 15 nm to 45 nm; the thickness of the electron blocking layer in the direction perpendicular to the plane of the first electrode ranges from 1 nm to 15 nm. ; The thickness of the hole blocking layer along the direction perpendicular to the plane where the first pole is located ranges from 1 nm to 15 nm.
  • the thickness of the light-emitting layer may be 25 nm
  • the thickness of the electron blocking layer may be 10 nm
  • the thickness of the hole blocking layer may be 10 nm.
  • the thickness of the light-emitting layer ranges from 15 nm to 35 nm.
  • the ratio of the thickness of the electron blocking layer to the thickness of the light-emitting layer ranges from 1:2 to 1:10.
  • the ratio of the thickness of the electron blocking layer to the thickness of the luminescent layer is 1:7.
  • the ratio of the thickness of the electron blocking layer to the thickness of the luminescent layer is 1:9.
  • An embodiment of the present application provides a display device including the light-emitting device as described above.
  • the display device may be a flexible display device (also called a flexible screen) or a rigid display device (that is, a display device that cannot be bent), which is not limited here.
  • the display device may be an OLED (Organic Light-Emitting Diode, organic light-emitting diode) display device, or may be any product or component with a display function such as a TV, digital camera, mobile phone, tablet computer, etc. including OLED.
  • OLED Organic Light-Emitting Diode, organic light-emitting diode
  • the display device has the advantages of good display effect, long life, and high stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种发光器件、显示装置,涉及显示技术领域,该发光器件包括第一极和第二极;发光层,位于第一极和第二极之间,包括主体材料和热激活延迟荧光材料;电子阻挡层,位于发光层和第一极之间;0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,其中,HOMO EBL为电子阻挡层材料的最高占据分子轨道HOMO的能量值,HOMO Host为主体材料的最高占据分子轨道HOMO的能量值。该发光器件的发光效率高、使用寿命长。

Description

发光器件、显示装置 技术领域
本申请涉及显示技术领域,尤其涉及一种发光器件、显示装置。
背景技术
有机热激活延迟荧光(TADF)材料具有电致发光效率高、分子设计简单等优点,已被广泛用作有机发光二极管(Organic Light Emitting Diode,OLED)的发射体,并在显示领域引起了广泛关注。然而,相关技术中具有热激活延迟荧光材料的有机发光二极管的发光效率和使用寿命还有待进一步提高。
发明内容
本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供了一种发光器件,包括:
第一极和第二极;
发光层,位于所述第一极和所述第二极之间,包括主体材料和热激活延迟荧光材料;
电子阻挡层,位于所述发光层和所述第一极之间;
0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,
其中,HOMO EBL为所述电子阻挡层材料的最高占据分子轨道HOMO的能量值,HOMO Host为所述主体材料的最高占据分子轨道HOMO的能量值。
在本申请的一些实施例中,所述发光器件还包括空穴阻挡层,所述空穴阻挡层位于所述发光层和所述第二极之间;
0.1eV<∣LUMO HBL-LUMO Host∣≤0.3eV,
其中,LUMO HBL为所述空穴阻挡层材料的最低未占分子轨道LUMO的能量值,LUMO Host为所述主体材料的最低未占分子轨道LUMO的能量值。
在本申请的一些实施例中,T1 EBL-T1 TADF≥0.1eV,S1 EBL-S1 TADF>0;
其中,T1 EBL为所述电子阻挡层材料的第一三线态能级的能量值,T1 TADF为所述热激活延迟荧光材料的第一三线态能级的能量值,S1 EBL 为所述电子阻挡层材料的第一单线态能级的能量值,S1 TADF为所述热激活延迟荧光材料的第一单线态能级的能量值。
在本申请的一些实施例中,T1 HBL-T1 TADF>0,S1 HBL-S1 TADF>0;
其中,T1 HBL为所述空穴阻挡层材料的第一三线态能级的能量值,S1 HBL为所述空穴阻挡层材料的第一单线态能级的能量值。
在本申请的一些实施例中,所述电子阻挡层的材料、所述主体材料、以及所述空穴阻挡层的材料分别包括:
Figure PCTCN2022096048-appb-000001
其中,X包括硼原子、碳原子、氮原子、氧原子、硅原子、磷原子或硫原子中的一个,L包括取代或未取代的C6~C20的亚芳基、取代或未取代的C3~C30的亚杂芳基中的一种,n包括0、1或2中的一个。
在本申请的一些实施例中,R1~R10分别包括氢、C~C12的烷基、取代或未取代的C6~C30亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的其中一种。
在本申请的一些实施例中,R1~R10中至少存在一组相邻的两个基团连接成环。
在本申请的一些实施例中,Ar包括氢、C1~C12的烷基、取代或未取代的C6~C30的亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的一种。
在本申请的一些实施例中,所述空穴阻挡层的材料包括:
Figure PCTCN2022096048-appb-000002
Y、Z分别包括氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯 基、酰亚胺基、氨基、取代或未取代的C3~C30的甲硅烷基、取代或未取代的硼基、取代或未取代的C1~C30烷基、取代或未取代的C3~C30的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的C6~C30的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的C1~C30的芳烷基胺基、取代或未取代的C6~C30的杂芳基胺基、取代或未取代的C6~C30的芳基胺基、取代或未取代的C6~C30的芳基杂芳基胺基、取代或未取代的C6~C30的芳基膦基、取代或未取代的氧化膦基团、取代或未取代C6~C30的芳基、取代或未取代的杂环基、取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅烷基、以及取代或未取代的C3~C30的单环或多环脂环族环或芳香族环,在X或Y中至少一个包括取代或未取代的C3~C30的单环或多环脂环族环或芳香族环的情况下,所述脂环族环或所述芳香族环中包括至少一个杂原子,所述杂原子包括氧原子、硫原子或氮原子。
在本申请的一些实施例中,m大于或等于3;
其中,在m=3的情况下,
Figure PCTCN2022096048-appb-000003
包括:
Figure PCTCN2022096048-appb-000004
Figure PCTCN2022096048-appb-000005
在m=4的情况下,
Figure PCTCN2022096048-appb-000006
包括:
Figure PCTCN2022096048-appb-000007
在本申请的一些实施例中,所述发光器件还包括空穴传输层,所述空穴传输层位于所述电子阻挡层和所述第一极之间;
0.1eV<∣HOMO HTL-HOMO EBL∣≤0.3eV,
其中,HOMO HTL为所述空穴传输层材料的最高占据分子轨道HOMO的能量值。
在本申请的一些实施例中,所述发光器件还包括电子传输层,所述电子传输层位于所述空穴阻挡层和所述第二极之间;
0.1eV<∣LUMO HBL-LUMO ETL∣≤0.3eV,
其中,LUMO ETL为所述电子传输层材料的最低未占分子轨道LUMO的能量值。
在本申请的一些实施例中,T1 Host≥2.45eV,T1 EBL≥2.55eV,S1 EBL≥2.90eV。
在本申请的一些实施例中,∣HOMO EBL∣≥5.6eV,∣HOMO Host∣≥5.8eV。
在本申请的一些实施例中,S1 HBL≥3.00eV,T1 HBL≥2.60eV。
在本申请的一些实施例中,所述空穴阻挡层的材料的玻璃化转变温度大于或等于85℃。
第二方面,本申请的实施例提供了一种发光器件,所述发光器件包括:
第一极和第二极;
发光层,位于所述第一极和所述第二极之间,包括主体材料和热激活延迟荧光材料;
电子阻挡层,位于所述发光层和所述第一极之间;
空穴阻挡层,位于所述发光层和所述第二极之间;
其中,所述电子阻挡层的材料和所述主体材料的结构分别包括
Figure PCTCN2022096048-appb-000008
且所述空穴阻挡层的材料的结构包括
Figure PCTCN2022096048-appb-000009
在本申请的一些实施例中,X包括硼原子、碳原子、氮原子、氧原子、硅原子、磷原子或硫原子中的一个;
L包括取代或未取代的C6~C20的亚芳基、取代或未取代的C3~C30的亚杂芳基中的一种,n包括0、1或2中的一个;
m大于或等于3。
在本申请的一些实施例中,Y、Z分别包括氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的C3~C30的甲硅烷基、取代或未取代的硼基、取代或未取代的C1~C30烷基、取代或未取代的C3~C30的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的C6~C30的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的C1~C30的芳烷基胺基、取代或未取代的C6~C30的杂芳基胺基、取代或未取代的C6~C30的芳基胺基、取代或未取代的C6~C30的芳基杂芳基胺基、取代或未取代的C6~C30的芳基膦基、取代或未取代的氧化膦基团、取代或未取代C6~C30的芳基、取代或未取代的杂环基、取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅烷基、以及取代或未取代的C3~C30的单环或多环脂环族环或芳香族环;
在X或Y中至少一个包括取代或未取代的C3~C30的单环或多环脂环族环或芳香族环的情况下,所述脂环族环或所述芳香族环中包括至少一个杂原子,所述杂原子包括氧原子、硫原子或氮原子。
在本申请的一些实施例中,R1~R10分别包括氢、C~C12的烷基、 取代或未取代的C6~C30亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的其中一种,R1~R10中至少存在一组相邻的两个基团连接成环;
Ar包括氢、C1~C12的烷基、取代或未取代的C6~C30的亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的一种。
在本申请的一些实施例中,0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,
其中,HOMO EBL为所述电子阻挡层材料的最高占据分子轨道HOMO的能量值,HOMO Host为所述主体材料的最高占据分子轨道HOMO的能量值;
0.1eV<∣LUMO HBL-LUMO Host∣≤0.3eV,
其中,LUMO HBL为所述空穴阻挡层材料的最低未占分子轨道LUMO的能量值,LUMO Host为所述主体材料的最低未占分子轨道LUMO的能量值。
在本申请的一些实施例中,T1 EBL-T1 TADF≥0.1eV,S1 EBL-S1 TADF>0;
T1 HBL-T1 TADF>0,S1 HBL-S1 TADF>0;
其中,T1 EBL为所述电子阻挡层材料的第一三线态能级的能量值,T1 TADF为所述热激活延迟荧光材料的第一三线态能级的能量值,S1 EBL为所述电子阻挡层材料的第一单线态能级的能量值,S1 TADF为所述热激活延迟荧光材料的第一单线态能级的能量值;T1 HBL为所述空穴阻挡层材料的第一三线态能级的能量值,S1 HBL为所述空穴阻挡层材料的第一单线态能级的能量值。
所述发光器件还包括空穴传输层,所述空穴传输层位于所述电子阻挡层和所述第一极之间;
0.1eV<∣HOMO HTL-HOMO EBL∣≤0.3eV,
其中,HOMO HTL为所述空穴传输层材料的最高占据分子轨道HOMO的能量值;
在本申请的一些实施例中,所述发光器件还包括电子传输层,所述电子传输层位于所述空穴阻挡层和所述第二极之间;
0.1eV<∣LUMO HBL-LUMO ETL∣≤0.3eV,
其中,LUMO ETL为所述电子传输层材料的最低未占分子轨道LUMO的能量值。
在示例性的实施例中,所述发光层沿垂直于所述第一极所在的平面方向上的厚度范围为15nm~45nm;
所述电子阻挡层沿垂直于所述第一极所在的平面方向上的厚度范围为1nm~15nm;
所述空穴阻挡层沿垂直于所述第一极所在的平面方向上的厚度范围为1nm~15nm。
第三方面,本申请的实施例提供了一种显示装置,包括如上所述的发光器件。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请实施例提供的一种发光器件的结构示意图。
具体实施例
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本 申请的示意性图解,并非一定是按比例绘制。
在本申请的实施例中,除非另有说明,“多个”的含义是两个或两个以上;术语“上”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的结构或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例”、“一些实施例”、“示例性实施例”、“示例”、“特定示例”或“一些示例”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本申请的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
有机热激活延迟荧光(TADF)材料具有电致发光效率高、分子设计简单等优点,已被广泛用作有机发光二极管(Organic Light Emitting Diode,OLED)的发射体,并在显示领域引起了广泛关注。由于能够收集三线态激子来发射光线并实现理论的内量子效率,热激活延迟荧光分子被认为是最有前途的有机发光二极管的材料之一。对于传统的发光材料,一般最低单线态和最低三线态之间的能级差较大,激子一旦通过系间窜越(ISC)过程到达三线态后就不能回到单线态,然而,对于热激活延迟荧光材料,激子能够从第一三线态T1(又称激发三线态)通过反系间窜越(RISC)过程到达第一单线态S1(又称激发单线态),使得尽可能多的激子能够从第一单线态S1向基态S0跃迁并发光,从而提高发光效率。
然而,对于具有热激活延迟荧光材料的有机发光二极管,其发光效率还受到发光层材料、电子阻挡层材料和空穴阻挡层材料之间匹配度的影响,使其发光效率和使用寿命无法进一步提高。
本申请的实施例提供了一种发光器件,参考图1所示,包括;
第一极1和第二极9;
发光层5,位于第一极1和第二极9之间,包括主体材料Host和热激活延迟荧光材料(Thermally Activated Delayed Fluorescence,TADF);
电子阻挡层4,位于发光层5和第一极1之间;
0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,
其中,HOMO EBL为电子阻挡层4的材料的最高占据分子轨道HOMO的能量值,HOMO Host为主体材料Host的最高占据分子轨道HOMO的能量值。
在示例性的实施例中,第一极1可以为阳极,第二极9可以为阴极。
这里对于发光器件中包括的发光层的数量不进行限定。
示例性的,发光器件中可以包括多个发光层,且多个发光层均位于第一极1和第二极9之间,多个发光层叠层设置,以提高发光效率。本申请的实施例针对多个发光层中的至少一个发光层包括的材料进行限定。可以理解,在发光器件包括多个发光层的情况下,至少一个发光层包括主体材料Host和热激活延迟荧光材料TADF。
示例性的,发光器件包括一个发光层,且该发光层包括主体材料Host和热激活延迟荧光材料TADF。
需要说明的是,本申请的实施例以发光器件包括一个发光层5为例进行说明。
这里对于发光层5的发光颜色不进行限定。示例性的,发光层5的发光颜色可以为红色;或者,发光层5的发光颜色可以为绿色;或者,发光层5的发光颜色可以为蓝色。
在示例性的实施例中,发光层5可以包括至少一种主体材料。
例如,发光层5包括一种主体材料。
再例如,发光层5包括两种主体材料。示例性的,其中一种为N型主体材料,另一种为P型主体材料。
这里对于上述主体材料的具体结构不进行限定,具体可以根据实际情况确定。
热激活延迟荧光是三线态激子的一种热激活再发光的过程,即三线态热激活后转化到其更高的振动能级,接着通过反向系间窜越到达与其 能级接近的单线态的振动能级,再辐射产生荧光,该荧光相比单线态的直接发光有所延迟,称为延迟荧光。为了确保高效的反系间窜越(RISC),通常,热激活延迟荧光材料具有较小的三线态和单线态能隙。
其中,最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)的能级反映了分子失去电子能力的强弱,HOMO能级的能量值越高,该物质越容易失去电子,使得空穴传输;最低未占分子轨道(Lowest Unoccupied Molecular Orbital,LUMO)的能级反映了分子得到电子能力的强弱,LUMO能级的能量值越低,该物质越容易得到电子,使得电子传输。
电子阻挡层4具有促进空穴注入并限制电子泄漏的作用,这里对于电子阻挡层的具体结构不进行限定。
在本申请的实施例中,通过设置电子阻挡层4的材料的最高占据分子轨道HOMO的能量值与主体材料Host的最高占据分子轨道HOMO的能量值的差值的绝对值大于0.1eV,且小于或等于0.3eV,提高了发光层中主体材料与电子阻挡层的材料的匹配程度,促进空穴从电子阻挡层中传输并注入发光层的中,从而使得尽可能多的空穴注入到发光层的主体材料中并在发光层中与电子复合形成激子,激子辐射发光,进而提高了发光器件的发光效率。另外,该电子阻挡层还能够很大程度上避免电子从发光层中泄露到电子阻挡层靠近第一极1的一侧,进而很大程度上提高了发光器件的使用寿命。
在本申请的一些实施例中,参考图1所示,发光器件还包括空穴阻挡层6,空穴阻挡层6位于发光层5和第二极9之间;
0.1eV<∣LUMO HBL-LUMO Host∣≤0.3eV,
其中,LUMO HBL为空穴阻挡层6的材料的最低未占分子轨道LUMO的能量值,LUMO Host为主体材料的最低未占分子轨道LUMO的能量值。
在本申请的实施例中,通过设置电子阻挡层4的材料的最高占据分子轨道HOMO的能量值与主体材料Host的最高占据分子轨道HOMO的能量值的差值的绝对值大于0.1eV且小于或等于0.3eV,又设置空穴阻挡层6的材料的最低未占分子轨道LUMO的能量值与主体材料的最 低未占分子轨道LUMO的能量值的差值的绝对值大于0.1eV且小于或等于0.3eV;这样,提高了发光层5中主体材料与电子阻挡层4的材料的匹配程度,也提高了发光层5中的主体材料与空穴阻挡层6的材料的匹配程度,从而使得尽可能多的空穴和电子注入到发光层的主体材料中并在发光层中达到平衡,避免了电子或者空穴从发光层中泄露,这样,一方面,能够提高发光器件的使用寿命,另一方面,空穴和电子在发光层中复合形成激子,激子辐射发光,提高了空穴和电子复合形成激子的利用率,进而提高了发光器件的发光效率。
在本申请的一些实施例中,T1 EBL-T1 TADF≥0.1eV,S1 EBL-S1 TADF>0;
其中,T1 EBL为电子阻挡层材料的第一三线态能级的能量值,T1 TADF为热激活延迟荧光材料的第一三线态能级的能量值,S1 EBL为电子阻挡层材料的第一单线态能级的能量值,S1 TADF为热激活延迟荧光材料的第一单线态能级的能量值。
在本申请的实施例中,相较于热激活延迟荧光材料,设置电子阻挡层具有较高的第一三线态能级的能量值T1 EBL和较高的第一单线态能级的能量值S1 EBL,有利于阻止电子泄露,另外,还能够防止热激活延迟荧光材料中的激子泄露到电子阻挡层中,从而有利于提高发光层的发光效率。
在本申请的一些实施例中,T1 HBL-T1 TADF>0,S1 HBL-S1 TADF>0,
其中,T1 HBL为空穴阻挡层材料的第一三线态能级的能量值,S1 HBL为空穴阻挡层材料的第一单线态能级的能量值。
在本申请的实施例中,相较于热激活延迟荧光材料,设置空穴阻挡层具有较高的第一三线态能级的能量值T1 HBL和较高的第一单线态能级的能量值S1 HBL,有利于阻止空穴泄露,另外,还能够防止热激活延迟荧光材料中的激子泄露到空穴阻挡层中,从而有利于提高发光层的发光效率。
需要说明的是,本申请的实施例中对于发光层中的主体材料的第一三线态能级的能量值T1 Host与发光层中的热激活延迟荧光材料的第一三线态能级的能量值T1 TADF之间的大小关系不进行限定,具体可以根据 实际应用中主体材料的类型和热激活延迟荧光材料的类型确定。具体可以根据发光层中的材料设计确定。
在一些实施例中,T1 Host-T1 TADF>0;在另一些实施例中,T1 Host-T1 TADF<0。
在本申请的一些实施例中,电子阻挡层的材料、主体材料、以及空穴阻挡层的材料分别包括:
Figure PCTCN2022096048-appb-000010
其中,X包括硼原子、碳原子、氮原子、氧原子、硅原子、磷原子或硫原子中的一个,L包括取代或未取代的C6~C20的亚芳基、取代或未取代的C3~C30的亚杂芳基中的一种,n包括0、1或2中的一个。
在本申请的一些实施例中,R1~R10分别包括氢、C~C12的烷基、取代或未取代的C6~C30亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的其中一种。
在本申请的一些实施例中,R1~R10中至少存在一组相邻的两个基团连接成环。
示例性的,R1~R10中至少存在一组相邻的两个基团连接成环包括但不限于以下情况:
R1和R2可以连接成环;或者,R2和R3可以连接成环;或者,R3和R4可以连接成环;或者,R4和R5可以连接成环;或者,R1和R2可以连接成环,且R3和R4可以连接成环;或者,R6和R7可以连接成环;或者,R7和R8可以连接成环;或者,R8和R9可以连接成环;或者,R9和R10可以连接成环;或者,R6和R7可以连接成环,且R8和R9可以连接成环。
在本申请的一些实施例中,Ar包括氢、C1~C12的烷基、取代或未取代的C6~C30的亚芳基、以及取代或未取代的C3~C30的亚杂芳 基中的一种。
在本申请的实施例中,由于电子阻挡层的材料、主体材料、以及空穴阻挡层的材料的能级不同,故尽管三者的材料均可以包括上述结构通式,但在实际应用中,三者的材料的结构不完全相同。
在示例性的实施例中,当n=0时,
Figure PCTCN2022096048-appb-000011
包括但不限于以下结构:
Figure PCTCN2022096048-appb-000012
在示例性的实施例中,当n=1时,
Figure PCTCN2022096048-appb-000013
包括但不限于以下结构:
Figure PCTCN2022096048-appb-000014
Figure PCTCN2022096048-appb-000015
Figure PCTCN2022096048-appb-000016
Figure PCTCN2022096048-appb-000017
Figure PCTCN2022096048-appb-000018
在示例性的实施例中,当n=2时,
Figure PCTCN2022096048-appb-000019
包括但不限于以下结构:
Figure PCTCN2022096048-appb-000020
Figure PCTCN2022096048-appb-000021
Figure PCTCN2022096048-appb-000022
Figure PCTCN2022096048-appb-000023
在本申请的一些实施例中,空穴阻挡层的材料包括:
Figure PCTCN2022096048-appb-000024
在本申请的一些实施例中,空穴阻挡层的材料的玻璃化转变温度大 于或等于85℃。
在本申请的一些实施例中,Y、Z分别包括氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的C3~C30的甲硅烷基、取代或未取代的硼基、取代或未取代的C1~C30烷基、取代或未取代的C3~C30的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的C6~C30的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的C1~C30的芳烷基胺基、取代或未取代的C6~C30的杂芳基胺基、取代或未取代的C6~C30的芳基胺基、取代或未取代的C6~C30的芳基杂芳基胺基、取代或未取代的C6~C30的芳基膦基、取代或未取代的氧化膦基团、取代或未取代C6~C30的芳基、取代或未取代的杂环基、取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅烷基、以及取代或未取代的C3~C30的单环或多环脂环族环或芳香族环。
其中,取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅烷基包括:取代或未取代的烷基二芳基甲硅烷基,其中,烷基的碳原子数量为1~30,二芳基的碳原子数量为6~30。
其中,取代或未取代的C3~C30的单环或多环脂环族环或芳香族环包括:取代或未取代的C3~C30的单环脂环族环、取代或未取代的C3~C30的单环芳香族环、取代或未取代的C3~C30的多环脂环族环、取代或未取代的C3~C30的多环芳香族环。
在本申请的一些实施例中,在X或Y中至少一个包括取代或未取代的C3~C30的单环或多环脂环族环或芳香族环的情况下,脂环族环或芳香族环中包括至少一个杂原子,杂原子包括氧原子、硫原子或氮原子。
其中,m大于或等于3。
在本申请的实施例中,当m大于或等于3时,分子具有较高的共 轭性能,使得上述结构具有较强的物理化学稳定性和较高的空穴阻挡性能,能够有效的阻挡空穴泄露,能够很大程度上提高发光器件的使用寿命。
在示例性的实施例中,当m=3时,
Figure PCTCN2022096048-appb-000025
包括但不限于以下结构:
Figure PCTCN2022096048-appb-000026
Figure PCTCN2022096048-appb-000027
Figure PCTCN2022096048-appb-000028
在示例性的实施例中,当m=4时,
Figure PCTCN2022096048-appb-000029
包括但不限于以下结构:
Figure PCTCN2022096048-appb-000030
在本申请的一些实施例中,参考图1所示,发光器件还包括空穴传输层3,空穴传输层3位于电子阻挡层4和第一极1之间;
0.1eV<∣HOMO HTL-HOMO EBL∣≤0.3eV,
其中,HOMO HTL为空穴传输层4的材料的最高占据分子轨道HOMO的能量值。
在本申请的实施例中,通过设置空穴传输层3的材料的最高占据分子轨道HOMO的能量值HOMO HTL与电子阻挡层4的材料的最高占据分子轨道HOMO的能量值HOMO EBL的差值的绝对值大于0.1eV,且小于或等于0.3eV,提高了空穴传输层3的材料和电子阻挡层4的材料之间的HOMO能级的匹配程度,使得空穴能够高效率的从空穴传输层3经过电子阻挡层4注入到发光层5中,从而能够提高发光器件中各膜层寿命的同时,提高发光器件的发光效率。
在本申请的一些实施例中,参考图1所示,发光器件还包括电子传输层7,电子传输层7位于空穴阻挡层6和第二极9之间;
0.1eV<∣LUMO HBL-LUMO ETL∣≤0.3eV,其中,LUMO ETL为电子传输层7的材料的最低未占分子轨道LUMO的能量值。
在本申请的实施例中,通过设置空穴阻挡层6的材料的最低未占分子轨道LUMO的能量值LUMO HBL与电子传输层7的材料的最低未占分子轨道LUMO的能量值LUMO ETL的差值的绝对值大于0.1eV且小于或等于0.3eV,提高了空穴阻挡层6的材料与电子传输层7的材料之间的LUMO能级的匹配程度,使得电子能够高效率的从电子传输层7经过空穴阻挡层6注入到发光层5中,从而能够提高发光器件中各膜层寿命的同时,提高发光器件的发光效率。
在本申请的一些实施例中,T1 Host≥2.45eV,T1 EBL≥2.55eV,S1 EBL≥2.90eV。
在本申请的实施例中,通过设置T1 Host≥2.45eV,使得主体材料具有较高的第一三线态能级的能量值,有利于将激子限制在热激活延迟荧光材料中,提高延迟荧光的发光效率,从而提高发光器件的发光效率。
在本申请的实施例中,通过设置T1 EBL≥2.55eV,S1 EBL≥2.90eV,使 得电子阻挡层具有较高的第一三线态能级的能量值T1 EBL和较高的第一单线态能级的能量值S1 EBL,有利于阻止电子泄露,另外,还能够防止热激活延迟荧光材料中的激子泄露到电子阻挡层中,从而有利于提高发光层的发光效率。
在本申请的一些实施例中,S1 HBL≥3.00eV,T1 HBL≥2.60eV。
通过设置S1 HBL≥3.00eV,T1 HBL≥2.60eV,使得空穴阻挡层具有较高的第一三线态能级的能量值T1 HBL和较高的第一单线态能级的能量值S1 HBL,有利于阻止空穴泄露,另外,还能够防止热激活延迟荧光材料中的激子泄露到空穴阻挡层中,从而有利于提高发光层的发光效率。
在本申请的一些实施例中,∣HOMO EBL∣≥5.6eV,∣HOMO Host∣≥5.8eV。
最高占据分子轨道(Highest Occupied Molecular Orbital,HOMO)的能级反映了分子失去电子能力的强弱,HOMO能级的能量值越高,该物质越容易失去电子,使得空穴传输。通过设置∣HOMO EBL∣≥5.6eV,∣HOMO Host∣≥5.8eV,提高了发光层中主体材料与电子阻挡层的材料的匹配程度,促进空穴从电子阻挡层中传输并注入发光层的中,从而使得尽可能多的空穴注入到发光层的主体材料中并在发光层中与电子复合形成激子,激子辐射发光,进而提高了发光器件的发光效率。另外,该电子阻挡层还能够很大程度上避免电子从发光层中泄露到电子阻挡层靠近第一极1的一侧,进而很大程度上提高了发光器件的使用寿命。
在示例性的实施例中,参考图1所示,上述发光器件还可以包括空穴注入层2和电子注入层8。当然,发光器件还可以包括其它膜层和结构,具体可以参考相关技术,这里不做限定。
下面提供本申请的三种发光器件的制备方法和相关技术中的两种发光器件的制备方法,以及相关测试数据,来说明本申请的实施例提供的发光器件的发光效率和使用寿命得到有效的提升。
本申请的实施例提供的第一种发光器件的制备方法如下:
S01、在玻璃衬底上采用真空蒸镀法形成阳极Anode。其中,阳极 的厚度可以为100nm,阳极的材料为氧化铟锡(ITO)。
S02、在阳极上采用真空蒸镀法沉积空穴注入材料,形成空穴注入层HIL。
示例性的,空穴注入层的厚度可以为10nm。
S03、在空穴注入层上形成空穴传输层HTL。
示例性的,空穴传输层的厚度可以为60nm。
S04、在空穴传输层上形成电子阻挡层EBL。
其中,电子阻挡层的材料包括
Figure PCTCN2022096048-appb-000031
电子阻挡层的厚度可以为10nm。
S05、在电子阻挡层上形成发光层EML。
示例性的,发光层的材料包括主体材料和客体材料(Dopant),其中,主体材料的含量为90%,客体材料的含量为10%。
示例性的,发光层的厚度可以为25nm。
示例性的,客体材料可以包括热激活延迟荧光材料。
示例性的,主体材料包括
Figure PCTCN2022096048-appb-000032
S06、在发光层上形成空穴阻挡层HBL。
示例性的,空穴阻挡层的厚度可以为10nm,空穴阻挡层的材料可以包括
Figure PCTCN2022096048-appb-000033
S07、在发光层上形成电子传输层ETL。
示例性的,电子传输层的厚度可以为30nm。
S08、在电子传输层上依次形成LiF层和阴极,其中,LiF层的厚度为1nm,阴极的厚度为80nm。
示例性的,阴极的材料可以为铝(Al)。
本申请的实施例提供的第一种发光器件的膜层结构依次为:ITO/HIL/HTL/A1-11/A1-17:dopant/A0-3/ETL/LiF/Al。
本申请的实施例提供的第二种发光器件的制备方法如下:
S11、在玻璃衬底上采用真空蒸镀法形成阳极Anode。其中,阳极的厚度可以为100nm,阳极的材料为氧化铟锡(ITO)。
S12、在阳极上采用真空蒸镀法沉积空穴注入材料,形成空穴注入层HIL。
示例性的,空穴注入层的厚度可以为10nm。
S13、在空穴注入层上形成空穴传输层HTL。
示例性的,空穴传输层的厚度可以为60nm。
S14、在空穴传输层上形成电子阻挡层EBL。
其中,电子阻挡层的材料包括
Figure PCTCN2022096048-appb-000034
电子阻挡层的厚度可以为10nm。
S15、在电子阻挡层上形成发光层EML。
示例性的,发光层的材料包括主体材料、敏化剂和客体材料(Dopant),其中,主体材料的含量为79%,客体材料的含量为1%,敏化剂TH的含量为20%。
示例性的,发光层的厚度可以为25nm。
示例性的,客体材料可以包括热激活延迟荧光材料。
示例性的,主体材料包括
Figure PCTCN2022096048-appb-000035
S16、在发光层上形成空穴阻挡层HBL。
示例性的,空穴阻挡层的厚度可以为10nm,空穴阻挡层的材料可以包括
Figure PCTCN2022096048-appb-000036
S17、在发光层上形成电子传输层ETL。
示例性的,电子传输层的厚度可以为30nm。
S18、在电子传输层上依次形成LiF层和阴极,其中,LiF层的厚度为1nm,阴极的厚度为80nm。
示例性的,阴极的材料可以为铝(Al)。
本申请的实施例提供的第二种发光器件的膜层结构依次为:ITO/HIL/HTL/A1-11/A1-17:TH:dopant/B4-2/ETL/LiF/Al。
本申请的实施例提供的第三种发光器件的制备方法如下:
S21、在玻璃衬底上采用真空蒸镀法沉积阳极Anode。其中,阳极的厚度可以为100nm,阳极的材料为氧化铟锡(ITO)。
S22、在阳极上采用真空蒸镀法沉积空穴注入材料,形成空穴注入层HIL。
示例性的,空穴注入层的厚度可以为10nm。
S23、在空穴注入层上形成空穴传输层HTL。
示例性的,空穴传输层的厚度可以为60nm。
S24、在空穴传输层上形成电子阻挡层EBL。
其中,电子阻挡层的材料包括
Figure PCTCN2022096048-appb-000037
电子阻挡层的厚度可以为10nm。
S25、在电子阻挡层上形成发光层EML。
示例性的,发光层的材料包括主体材料和客体材料(Dopant),其中,主体材料的含量为90%,客体材料的含量为10%。
示例性的,发光层的厚度可以为25nm。
示例性的,客体材料可以包括热激活延迟荧光材料。
示例性的,主体材料包括
Figure PCTCN2022096048-appb-000038
S26、在发光层上形成空穴阻挡层HBL。
示例性的,空穴阻挡层的厚度可以为10nm,空穴阻挡层的材料可以包括
Figure PCTCN2022096048-appb-000039
S27、在发光层上形成电子传输层ETL。
示例性的,电子传输层的厚度可以为30nm。
S28、在电子传输层上依次形成LiF层和阴极,其中,LiF层的厚度为1nm,阴极的厚度为80nm。
示例性的,阴极的材料可以为铝(Al)。
本申请的实施例提供的第三种发光器件的膜层结构依次为:ITO/HIL/HTL/A1-12/A1-19:dopant/B3-3/ETL/LiF/Al。
相关技术中的第一种发光器件的制备方法如下:
S31、在玻璃衬底上采用真空蒸镀法沉积阳极Anode。其中,阳极的厚度可以为100nm,阳极的材料为氧化铟锡(ITO)。
S32、在阳极上采用真空蒸镀法沉积空穴注入材料,形成空穴注入层HIL。
示例性的,空穴注入层的厚度可以为10nm。
S33、在空穴注入层上形成空穴传输层HTL。
示例性的,空穴传输层的厚度可以为60nm。
S34、在空穴传输层上形成电子阻挡层EBL。
其中,电子阻挡层的材料包括TCTA,电子阻挡层的厚度可以为10nm。
TCTA的结构如下:
Figure PCTCN2022096048-appb-000040
S35、在电子阻挡层上形成发光层EML。
示例性的,发光层的材料包括主体材料和客体材料(Dopant),其中,主体材料的含量为97%,客体材料的含量为3%。
示例性的,发光层的厚度可以为25nm。
示例性的,主体材料可以包括mCPB。
其中,mCPB的结构如下:
Figure PCTCN2022096048-appb-000041
S36、在发光层上形成空穴阻挡层HBL。
示例性的,空穴阻挡层的厚度可以为10nm,空穴阻挡层的材料可以包括B3PYMPM。
其中,B3PYMPM的结构如下:
Figure PCTCN2022096048-appb-000042
S37、在发光层上形成电子传输层ETL。
示例性的,电子传输层的厚度可以为30nm。
S38、在电子传输层上依次形成LiF层和阴极,其中,LiF层的厚度为1nm,阴极的厚度为80nm。
示例性的,阴极的材料可以为铝(Al)。
相关技术中的第一种发光器件的膜层结构依次为:
ITO/HIL/HTL/TCTA/mCBP:dopant/B3PYMPM/ETL/LiF/Al。
相关技术中的第二种发光器件的制备方法如下:
S41、在玻璃衬底上采用真空蒸镀法沉积阳极Anode。其中,阳极的厚度可以为100nm,阳极的材料为氧化铟锡(ITO)。
S42、在阳极上采用真空蒸镀法沉积空穴注入材料,形成空穴注入层HIL。
示例性的,空穴注入层的厚度可以为10nm。
S43、在空穴注入层上形成空穴传输层HTL。
示例性的,空穴传输层的厚度可以为60nm。
S44、在空穴传输层上形成电子阻挡层EBL。
其中,电子阻挡层的材料包括TCTA,电子阻挡层的厚度可以为10nm。
TCTA的结构如下:
Figure PCTCN2022096048-appb-000043
S45、在电子阻挡层上形成发光层EML。
示例性的,发光层的材料包括主体材料和客体材料(Dopant),其中,主体材料的含量为97%,客体材料的含量为3%。
示例性的,发光层的厚度可以为25nm。
示例性的,主体材料可以包括mCPB。
其中,mCPB的结构如下:
Figure PCTCN2022096048-appb-000044
S46、在发光层上形成空穴阻挡层HBL。
示例性的,空穴阻挡层的厚度可以为10nm,空穴阻挡层的材料可以包括B2。
其中,B2的结构如下:
Figure PCTCN2022096048-appb-000045
S47、在发光层上形成电子传输层ETL。
示例性的,电子传输层的厚度可以为30nm。
S48、在电子传输层上依次形成LiF层和阴极,其中,LiF层的厚度为1nm,阴极的厚度为80nm。示例性的,阴极的材料可以为铝(Al)。
相关技术中的第二种发光器件的膜层结构依次为:
ITO/HIL/HTL/TCTA/mCBP:dopant/B2/ETL/LiF/Al。
下面提供本申请的实施例提供的三种发光器件和相关技术中的两种发光器件的相关测试数据说明。
表1:本申请的三种发光器件和相关技术中的两种发光器件的部分材料的性能参数
  S1(eV) T1(eV) HOMO LUMO
A1-11 3.53 2.81 -5.88 -2.53
A1-12 3.55 2.83 -5.88 -2.51
A1-17 3.51 2.77 -6.07 -2.56
A1-19 3.53 2.81 -6.15 -2.77
A0-3 3.45 2.87 -6.25 -2.78
B4-2 3.50 2.90 -6.23 -2.77
B3-3 3.63 2.92 -6.28 -2.75
TCTA 3.65 3.0 -5.7 -2.4
mCBP 3.42 3.08 -6.1 -2.6
B3PYMPM 3.47 2.85 -6.7 -3.3
B2 3.37 2.60 -6.25 -2.77
Dopant 2.1 2.0 -5.14 -2.96
表2:本申请的三种发光器件和相关技术中的两种发光器件的器件性能数据
Device 电流密度(mA/cm 2) 电压(V) 效率(cd/A) LT 90(h)
实施例1 10 95% 129% 277%
实施例2 10 97% 233% 410%
实施例3 10 95% 187% 130%
比较例1 10 100% 100% 100%
比较例2 10 100% 113% 71%
其中,实施例1代表本申请的实施例提供的第一种发光器件,实施例2代表本申请的实施例提供的第二种发光器件,实施例1代表本申请的实施例提供的第三种发光器件,比较例1代表相关技术中的第一种发光器件,比较例2代表相关技术中的第二种发光器件。
根据表2中的数据可知,在电流密度相同的情况下,相较于相关技术中提供的两种发光器件而言,本申请的实施例提供的三种发光器件的发光效率和使用寿命均有明显提升,且使用电压降低。需要说明的是,LT 90(h)为发光器件的实时亮度为初始亮度的90%的情况下所使用的时间,能够反映出发光器件的使用寿命。
本申请的实施例还提供了一种发光器件,参考图1所示,该发光器件包括:
第一极1和第二极9;
发光层5,位于第一极1和第二极9之间,包括主体材料和热激活延迟荧光材料;
电子阻挡层4,位于发光层5和第一极1之间;
空穴阻挡层6,位于发光层5和第二极9之间;
其中,电子阻挡层4的材料和主体材料的结构分别包括
Figure PCTCN2022096048-appb-000046
且空穴阻挡层6的材料的结构包括
Figure PCTCN2022096048-appb-000047
在本申请的一些实施例中,X包括硼原子、碳原子、氮原子、氧原子、硅原子、磷原子或硫原子中的一个;
L包括取代或未取代的C6~C20的亚芳基、取代或未取代的C3~C30的亚杂芳基中的一种,n包括0、1或2中的一个;
m大于或等于3。
在本申请的一些实施例中,Y、Z分别包括氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的C3~C30的甲硅烷基、取代或未取代的硼基、取代或未取代的C1~C30烷基、取代或未取代的C3~C30的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的C6~C30的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的C1~C30的芳烷基胺基、取代或未取代的C6~C30的杂芳基胺基、取代或未取代的C6~C30的芳基胺基、取代或未取代的C6~C30的芳基杂芳基胺基、取代或未取代的C6~C30的芳基膦基、取代或未取代的氧化膦基团、取代或未取代C6~C30的芳基、取代或未取代的杂环基、取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅 烷基、以及取代或未取代的C3~C30的单环或多环脂环族环或芳香族环;
在X或Y中至少一个包括取代或未取代的C3~C30的单环或多环脂环族环或芳香族环的情况下,脂环族环或芳香族环中包括至少一个杂原子,杂原子包括氧原子、硫原子或氮原子。
在本申请的一些实施例中,R1~R10分别包括氢、C~C12的烷基、取代或未取代的C6~C30亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的其中一种,R1~R10中至少存在一组相邻的两个基团连接成环;
Ar包括氢、C1~C12的烷基、取代或未取代的C6~C30的亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的一种。
在示例性的实施例中,
Figure PCTCN2022096048-appb-000048
包括的具体结构示例可以参考前文的说明,这里不再赘述。
在本申请的一些实施例中,0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,
其中,HOMO EBL为电子阻挡层材料的最高占据分子轨道HOMO的能量值,HOMO Host为主体材料的最高占据分子轨道HOMO的能量值;
0.1eV<∣LUMO HBL-LUMO Host∣≤0.3eV,
其中,LUMO HBL为空穴阻挡层材料的最低未占分子轨道LUMO的能量值,LUMO Host为主体材料的最低未占分子轨道LUMO的能量值。
在本申请的实施例中,通过设置电子阻挡层4的材料的最高占据分子轨道HOMO的能量值与主体材料Host的最高占据分子轨道HOMO的能量值的差值的绝对值大于0.1eV,且小于或等于0.3eV,提高了发光层中主体材料与电子阻挡层的材料的匹配程度,促进空穴从电子阻挡 层中传输并注入发光层的中,从而使得尽可能多的空穴注入到发光层的主体材料中并在发光层中与电子复合形成激子,激子辐射发光,进而提高了发光器件的发光效率。另外,该电子阻挡层还能够很大程度上避免电子从发光层中泄露到电子阻挡层靠近第一极1的一侧,进而很大程度上提高了发光器件的使用寿命。
另外,通过设置电子阻挡层4的材料的最高占据分子轨道HOMO的能量值与主体材料Host的最高占据分子轨道HOMO的能量值的差值的绝对值大于0.1eV且小于或等于0.3eV,又设置空穴阻挡层6的材料的最低未占分子轨道LUMO的能量值与主体材料的最低未占分子轨道LUMO的能量值的差值的绝对值大于0.1eV且小于或等于0.3eV;这样,提高了发光层5中主体材料与电子阻挡层4的材料的匹配程度,也提高了发光层5中的主体材料与空穴阻挡层6的材料的匹配程度,从而使得尽可能多的空穴和电子注入到发光层的主体材料中并在发光层中达到平衡,避免了电子或者空穴从发光层中泄露,这样,一方面,能够提高发光器件的使用寿命,另一方面,空穴和电子在发光层中复合形成激子,激子辐射发光,提高了空穴和电子复合形成激子的利用率,进而提高了发光器件的发光效率。
在本申请的一些实施例中,T1 EBL-T1 TADF≥0.1eV,S1 EBL-S1 TADF>0;
T1 HBL-T1 TADF>0,S1 HBL-S1 TADF>0;
其中,T1 EBL为电子阻挡层材料的第一三线态能级的能量值,T1 TADF为热激活延迟荧光材料的第一三线态能级的能量值,S1 EBL为电子阻挡层材料的第一单线态能级的能量值,S1 TADF为热激活延迟荧光材料的第一单线态能级的能量值;T1 HBL为空穴阻挡层材料的第一三线态能级的能量值,S1 HBL为空穴阻挡层材料的第一单线态能级的能量值。
在本申请的实施例中,相较于热激活延迟荧光材料,设置电子阻挡层具有较高的第一三线态能级的能量值T1 EBL和较高的第一单线态能级的能量值S1 EBL,有利于阻止电子泄露,另外,还能够防止热激活延迟荧光材料中的激子泄露到电子阻挡层中,从而有利于提高发光层的发光效率。
在本申请的实施例中,相较于热激活延迟荧光材料,设置空穴阻挡层具有较高的第一三线态能级的能量值T1 HBL和较高的第一单线态能级的能量值S1 HBL,有利于阻止空穴泄露,另外,还能够防止热激活延迟荧光材料中的激子泄露到空穴阻挡层中,从而有利于提高发光层的发光效率。
需要说明的是,本申请的实施例中对于发光层中的主体材料的第一三线态能级的能量值T1 Host与发光层中的热激活延迟荧光材料的第一三线态能级的能量值T1 TADF之间的大小关系不进行限定,具体可以根据实际应用中主体材料的类型和热激活延迟荧光材料的类型确定。具体可以根据发光层中的材料设计确定。
在一些实施例中,T1 Host-T1 TADF>0;在另一些实施例中,T1 Host-T1 TADF<0。
在本申请的实施例中,由于电子阻挡层的材料、主体材料、以及空穴阻挡层的材料的能级不同,故尽管三者的材料均可以包括上述结构通式,但在实际应用中,三者的材料的结构不完全相同。
在本申请的一些实施例中,发光器件还包括空穴传输层3,空穴传输层3位于电子阻挡层4和第一极1之间;
0.1eV<∣HOMO HTL-HOMO EBL∣≤0.3eV,
其中,HOMO HTL为空穴传输层材料的最高占据分子轨道HOMO的能量值;
发光器件还包括电子传输层7,电子传输层7位于空穴阻挡层6和第二极9之间;
0.1eV<∣LUMO HBL-LUMO ETL∣≤0.3eV,
其中,LUMO ETL为电子传输层材料的最低未占分子轨道LUMO的能量值。
在本申请的实施例中,通过设置空穴传输层3的材料的最高占据分子轨道HOMO的能量值HOMO HTL与电子阻挡层4的材料的最高占据分子轨道HOMO的能量值HOMO EBL的差值的绝对值大于0.1eV,且小于或等于0.3eV,提高了空穴传输层3的材料和电子阻挡层4的材料之 间的HOMO能级的匹配程度,使得空穴能够高效率的从空穴传输层3经过电子阻挡层4注入到发光层5中,从而能够提高发光器件中各膜层寿命的同时,提高发光器件的发光效率。通过设置空穴阻挡层6的材料的最低未占分子轨道LUMO的能量值LUMO HBL与电子传输层7的材料的最低未占分子轨道LUMO的能量值LUMO ETL的差值的绝对值大于0.1eV且小于或等于0.3eV,提高了空穴阻挡层6的材料与电子传输层7的材料之间的LUMO能级的匹配程度,使得电子能够高效率的从电子传输层7经过空穴阻挡层6注入到发光层5中,从而能够提高发光器件中各膜层寿命的同时,提高发光器件的发光效率。
在示例性的实施例中,发光层沿垂直于第一极所在的平面方向上的厚度范围为15nm~45nm;电子阻挡层沿垂直于第一极所在的平面方向上的厚度范围为1nm~15nm;空穴阻挡层沿垂直于第一极所在的平面方向上的厚度范围为1nm~15nm。
示例性的,发光层的厚度可以为25nm,电子阻挡层沿的厚度可以为10nm,空穴阻挡层的厚度可以为10nm。
示例性的,当发光层发出的光线的波长大于或等于600nm时,发光层的厚度范围为15nm~35nm。
示例性的,在同一个发光器件中,电子阻挡层的厚度与发光层的厚度比值的范围为1:2~1:10。例如,电子阻挡层的厚度与发光层的厚度比值为1:7,再例如,电子阻挡层的厚度与发光层的厚度比值为1:9。
本申请的实施例提供了一种显示装置,包括如上所述的发光器件。
该显示装置可以是柔性显示装置(又称柔性屏),也可以是刚性显示装置(即不能折弯的显示装置),这里不做限定。该显示装置可以是OLED(Organic Light-Emitting Diode,有机发光二极管)显示装置,还可以是包括OLED的电视、数码相机、手机、平板电脑等任何具有显示功能的产品或者部件。该显示装置具有显示效果好、寿命长、稳定性高等优点。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内, 可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种发光器件,其中,包括:
    第一极和第二极;
    发光层,位于所述第一极和所述第二极之间,包括主体材料和热激活延迟荧光材料;
    电子阻挡层,位于所述发光层和所述第一极之间;
    0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,
    其中,HOMO EBL为所述电子阻挡层材料的最高占据分子轨道HOMO的能量值,HOMO Host为所述主体材料的最高占据分子轨道HOMO的能量值。
  2. 根据权利要求1所述的发光器件,其中,所述发光器件还包括空穴阻挡层,所述空穴阻挡层位于所述发光层和所述第二极之间;
    0.1eV<∣LUMO HBL-LUMO Host∣≤0.3eV,
    其中,LUMO HBL为所述空穴阻挡层材料的最低未占分子轨道LUMO的能量值,LUMO Host为所述主体材料的最低未占分子轨道LUMO的能量值。
  3. 根据权利要求2所述的发光器件,其中,
    T1 EBL-T1 TADF≥0.1eV,S1 EBL-S1 TADF>0;
    T1 HBL-T1 TADF>0,S1 HBL-S1 TADF>0;
    其中,T1 EBL为所述电子阻挡层材料的第一三线态能级的能量值,T1 TADF为所述热激活延迟荧光材料的第一三线态能级的能量值,S1 EBL为所述电子阻挡层材料的第一单线态能级的能量值,S1 TADF为所述热激活延迟荧光材料的第一单线态能级的能量值;T1 HBL为所述空穴阻挡层材料的第一三线态能级的能量值,S1 HBL为所述空穴阻挡层材料的第一单线态能级的能量值。
  4. 根据权利要求2所述的发光器件,其中,所述电子阻挡层的材料、所述主体材料、以及所述空穴阻挡层的材料分别包括:
    Figure PCTCN2022096048-appb-100001
    其中,X包括硼原子、碳原子、氮原子、氧原子、硅原子、磷原子或硫原子中的一个,L包括取代或未取代的C6~C20的亚芳基、取代或未取代的C3~C30的亚杂芳基中的一种,n包括0、1或2中的一个。
  5. 根据权利要求4所述的发光器件,其中,R1~R10分别包括氢、C~C12的烷基、取代或未取代的C6~C30亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的其中一种,R1~R10中至少存在一组相邻的两个基团连接成环。
  6. 根据权利要求4所述的发光器件,其中,Ar包括氢、C1~C12的烷基、取代或未取代的C6~C30的亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的一种。
  7. 根据权利要求2所述的发光器件,其中,所述空穴阻挡层的材料包括:
    Figure PCTCN2022096048-appb-100002
    Y、Z分别包括氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的C3~C30的甲硅烷基、取代或未取代的硼基、取代或未取代的C1~C30烷基、取代或未取代的C3~C30的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的C6~C30的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的C1~C30的芳烷基胺基、取代或未取代的C6~C30的杂芳基胺基、取代或未取代的 C6~C30的芳基胺基、取代或未取代的C6~C30的芳基杂芳基胺基、取代或未取代的C6~C30的芳基膦基、取代或未取代的氧化膦基团、取代或未取代C6~C30的芳基、取代或未取代的杂环基、取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅烷基、以及取代或未取代的C3~C30的单环或多环脂环族环或芳香族环;在X或Y中至少一个包括取代或未取代的C3~C30的单环或多环脂环族环或芳香族环的情况下,所述脂环族环或所述芳香族环中包括至少一个杂原子,所述杂原子包括氧原子、硫原子或氮原子。
  8. 根据权利要求7所述的发光器件,其中,m大于或等于3;
    其中,在m=3的情况下,
    Figure PCTCN2022096048-appb-100003
    包括:
    Figure PCTCN2022096048-appb-100004
    Figure PCTCN2022096048-appb-100005
    Figure PCTCN2022096048-appb-100006
    在m=4的情况下,
    Figure PCTCN2022096048-appb-100007
    包括:
    Figure PCTCN2022096048-appb-100008
    Figure PCTCN2022096048-appb-100009
  9. 根据权利要求2所述的发光器件,其中,所述发光器件还包括空穴传输层,所述空穴传输层位于所述电子阻挡层和所述第一极之间;
    0.1eV<∣HOMO HTL-HOMO EBL∣≤0.3eV,
    其中,HOMO HTL为所述空穴传输层材料的最高占据分子轨道HOMO的能量值;
    所述发光器件还包括电子传输层,所述电子传输层位于所述空穴阻挡层和所述第二极之间;
    0.1eV<∣LUMO HBL-LUMO ETL∣≤0.3eV,
    其中,LUMO ETL为所述电子传输层材料的最低未占分子轨道LUMO的能量值。
  10. 根据权利要求4-6中任一项所述的发光器件,其中,
    T1 Host≥2.45eV,T1 EBL≥2.55eV,S1 EBL≥2.90eV;∣HOMO EBL∣≥5.6eV,∣HOMO Host∣≥5.8eV。
  11. 根据权利要求4-8中任一项所述的发光器件,其中,
    S1 HBL≥3.00eV,T1 HBL≥2.60eV。
  12. 一种发光器件,其中,所述发光器件包括:
    第一极和第二极;
    发光层,位于所述第一极和所述第二极之间,包括主体材料和热激 活延迟荧光材料;
    电子阻挡层,位于所述发光层和所述第一极之间;
    空穴阻挡层,位于所述发光层和所述第二极之间;
    其中,所述电子阻挡层的材料和所述主体材料的结构分别包括
    Figure PCTCN2022096048-appb-100010
    且所述空穴阻挡层的材料的结构包括
    Figure PCTCN2022096048-appb-100011
  13. 根据权利要求12所述的发光器件,其中,X包括硼原子、碳原子、氮原子、氧原子、硅原子、磷原子或硫原子中的一个;
    L包括取代或未取代的C6~C20的亚芳基、取代或未取代的C3~C30的亚杂芳基中的一种,n包括0、1或2中的一个;
    m大于或等于3。
  14. 根据权利要求13所述的发光器件,其中,Y、Z分别包括氢、氘、卤素基团、腈基、硝基、羟基、羰基、酯基、酰亚胺基、氨基、取代或未取代的C3~C30的甲硅烷基、取代或未取代的硼基、取代或未取代的C1~C30烷基、取代或未取代的C3~C30的环烷基、取代或未取代的烷氧基、取代或未取代的芳氧基、取代或未取代的烷基硫基、取代或未取代的芳基硫基、取代或未取代的烷基磺酰基、取代或未取代的C6~C30的芳基磺酰基、取代或未取代的烯基、取代或未取代的芳烷基、取代或未取代的芳烯基、取代或未取代的烷基芳基、取代或未取代的烷基胺基、取代或未取代的C1~C30的芳烷基胺基、取代或未取代的C6~ C30的杂芳基胺基、取代或未取代的C6~C30的芳基胺基、取代或未取代的C6~C30的芳基杂芳基胺基、取代或未取代的C6~C30的芳基膦基、取代或未取代的氧化膦基团、取代或未取代C6~C30的芳基、取代或未取代的杂环基、取代或未取代的C1~C30的烷基C6~C30的二芳基甲硅烷基、以及取代或未取代的C3~C30的单环或多环脂环族环或芳香族环;
    在X或Y中至少一个包括取代或未取代的C3~C30的单环或多环脂环族环或芳香族环的情况下,所述脂环族环或所述芳香族环中包括至少一个杂原子,所述杂原子包括氧原子、硫原子或氮原子。
  15. 根据权利要求14所述的发光器件,其中,R1~R10分别包括氢、C~C12的烷基、取代或未取代的C6~C30亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的其中一种,R1~R10中至少存在一组相邻的两个基团连接成环;
    Ar包括氢、C1~C12的烷基、取代或未取代的C6~C30的亚芳基、以及取代或未取代的C3~C30的亚杂芳基中的一种。
  16. 根据权利要求12-15中任一项所述的发光器件,其中,
    0.1eV<∣HOMO EBL-HOMO Host∣≤0.3eV,
    其中,HOMO EBL为所述电子阻挡层材料的最高占据分子轨道HOMO的能量值,HOMO Host为所述主体材料的最高占据分子轨道HOMO的能量值;
    0.1eV<∣LUMO HBL-LUMO Host∣≤0.3eV,
    其中,LUMO HBL为所述空穴阻挡层材料的最低未占分子轨道LUMO的能量值,LUMO Host为所述主体材料的最低未占分子轨道LUMO的能量值。
  17. 根据权利要求16所述的发光器件,其中,
    T1 EBL-T1 TADF≥0.1eV,S1 EBL-S1 TADF>0;
    T1 HBL-T1 TADF>0,S1 HBL-S1 TADF>0;
    其中,T1 EBL为所述电子阻挡层材料的第一三线态能级的能量值,T1 TADF为所述热激活延迟荧光材料的第一三线态能级的能量值,S1 EBL 为所述电子阻挡层材料的第一单线态能级的能量值,S1 TADF为所述热激活延迟荧光材料的第一单线态能级的能量值;T1 HBL为所述空穴阻挡层材料的第一三线态能级的能量值,S1 HBL为所述空穴阻挡层材料的第一单线态能级的能量值。
  18. 根据权利要求17所述的发光器件,其中,所述发光器件还包括空穴传输层,所述空穴传输层位于所述电子阻挡层和所述第一极之间;
    0.1eV<∣HOMO HTL-HOMO EBL∣≤0.3eV,
    其中,HOMO HTL为所述空穴传输层材料的最高占据分子轨道HOMO的能量值;
    所述发光器件还包括电子传输层,所述电子传输层位于所述空穴阻挡层和所述第二极之间;
    0.1eV<∣LUMO HBL-LUMO ETL∣≤0.3eV,
    其中,LUMO ETL为所述电子传输层材料的最低未占分子轨道LUMO的能量值。
  19. 根据权利要求12所述的发光器件,其中,
    所述发光层沿垂直于所述第一极所在的平面方向上的厚度范围为15nm~45nm;
    所述电子阻挡层沿垂直于所述第一极所在的平面方向上的厚度范围为1nm~15nm;
    所述空穴阻挡层沿垂直于所述第一极所在的平面方向上的厚度范围为1nm~15nm。
  20. 一种显示装置,其中,包括如权利要求1-19中任一项所述的发光器件。
PCT/CN2022/096048 2022-05-30 2022-05-30 发光器件、显示装置 WO2023230778A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280001544.2A CN117501829A (zh) 2022-05-30 2022-05-30 发光器件、显示装置
PCT/CN2022/096048 WO2023230778A1 (zh) 2022-05-30 2022-05-30 发光器件、显示装置
US18/025,982 US20240306495A1 (en) 2022-05-30 2022-05-30 Light emitting device and displaying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/096048 WO2023230778A1 (zh) 2022-05-30 2022-05-30 发光器件、显示装置

Publications (1)

Publication Number Publication Date
WO2023230778A1 true WO2023230778A1 (zh) 2023-12-07

Family

ID=89026518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096048 WO2023230778A1 (zh) 2022-05-30 2022-05-30 发光器件、显示装置

Country Status (3)

Country Link
US (1) US20240306495A1 (zh)
CN (1) CN117501829A (zh)
WO (1) WO2023230778A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640878A (zh) * 2020-06-11 2020-09-08 京东方科技集团股份有限公司 有机发光材料、有机电致发光元件及显示装置
CN112952012A (zh) * 2021-02-04 2021-06-11 京东方科技集团股份有限公司 一种显示面板和显示装置
CN113328045A (zh) * 2021-05-28 2021-08-31 京东方科技集团股份有限公司 发光器件及发光装置
CN113321677A (zh) * 2021-06-30 2021-08-31 京东方科技集团股份有限公司 一种热活化延迟荧光材料、有机发光器件及显示装置
CN113823749A (zh) * 2021-07-21 2021-12-21 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111640878A (zh) * 2020-06-11 2020-09-08 京东方科技集团股份有限公司 有机发光材料、有机电致发光元件及显示装置
CN112952012A (zh) * 2021-02-04 2021-06-11 京东方科技集团股份有限公司 一种显示面板和显示装置
CN113328045A (zh) * 2021-05-28 2021-08-31 京东方科技集团股份有限公司 发光器件及发光装置
CN113321677A (zh) * 2021-06-30 2021-08-31 京东方科技集团股份有限公司 一种热活化延迟荧光材料、有机发光器件及显示装置
CN113823749A (zh) * 2021-07-21 2021-12-21 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Also Published As

Publication number Publication date
CN117501829A (zh) 2024-02-02
US20240306495A1 (en) 2024-09-12

Similar Documents

Publication Publication Date Title
Wu et al. High‐Performance Hybrid White Organic Light‐Emitting Diodes with Superior Efficiency/Color Rendering Index/Color Stability and Low Efficiency Roll‐Off Based on a Blue Thermally Activated Delayed Fluorescent Emitter
KR102015772B1 (ko) 유기전계발광소자 및 그 제조 방법
KR101118808B1 (ko) 긴 수명의 인광 유기 발광 소자(oled) 구조체
JP5662402B2 (ja) 三重項状態への直接注入を利用するoled
US11930651B2 (en) Organic luminescent material, organic electroluminescent element and display device
Li et al. An Effective Strategy toward High‐Efficiency Fluorescent OLEDs by Radiative Coupling of Spatially Separated Electron–Hole Pairs
JP2018507538A (ja) Rgb画素領域を有する有機エレクトロルミネッセンス装置
JP2013191879A (ja) 多重ドーパント発光層有機発光デバイス
JP6153703B2 (ja) 有機発光デバイス用の複合有機/無機層
Liu et al. Regulating charges and excitons in simplified hybrid white organic light-emitting diodes: The key role of concentration in single dopant host–guest systems
US20240099039A1 (en) Use of singlet-triplet gap hosts for increasing stability of blue phosphorescent emission
CN109638170B (zh) 一种有机电致光电元件
CN102349172A (zh) 有机电致发光元件的制造方法、有机电致发光元件、有机el显示器和有机el照明
Liu et al. Improved color quality in double-EML WOLEDs by using a tetradentate Pt (II) complex as a green/red emitter
WO2024103976A1 (zh) 一种发光层、发光器件和显示装置
Gao et al. Highly Efficient White Organic Light‐Emitting Diodes with Controllable Excitons Behavior by a Mixed Interlayer between Fluorescence Blue and Phosphorescence Yellow‐Emitting Layers
WO2023230778A1 (zh) 发光器件、显示装置
US20230292537A1 (en) Light emitting device that emits green light, and light emitting substrate and light emitting apparatus
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
US20220085314A1 (en) Light emitting device and displaying device
Srivastava et al. Organic Light Emitting Diodes-Recent Advancements
CN113328045A (zh) 发光器件及发光装置
US10600981B2 (en) Exciplex-sensitized fluorescence light emitting system
CN113506855A (zh) 有机电致发光器件及其制备方法、显示装置
US10665804B2 (en) Organic light emitting diode and display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001544.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18025982

Country of ref document: US