WO2023229438A1 - 마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐 - Google Patents
마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐 Download PDFInfo
- Publication number
- WO2023229438A1 WO2023229438A1 PCT/KR2023/007310 KR2023007310W WO2023229438A1 WO 2023229438 A1 WO2023229438 A1 WO 2023229438A1 KR 2023007310 W KR2023007310 W KR 2023007310W WO 2023229438 A1 WO2023229438 A1 WO 2023229438A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- fluid
- microcapsules
- microcapsule
- responsive
- Prior art date
Links
- 239000003094 microcapsule Substances 0.000 title claims abstract description 259
- 238000000034 method Methods 0.000 claims abstract description 57
- 238000004519 manufacturing process Methods 0.000 claims abstract description 50
- 239000004480 active ingredient Substances 0.000 claims abstract description 31
- 239000002738 chelating agent Substances 0.000 claims abstract description 24
- 239000012530 fluid Substances 0.000 claims description 171
- 239000004575 stone Substances 0.000 claims description 107
- 229940005740 hexametaphosphate Drugs 0.000 claims description 66
- 229910021645 metal ion Inorganic materials 0.000 claims description 65
- 239000000463 material Substances 0.000 claims description 47
- 239000002775 capsule Substances 0.000 claims description 45
- 239000003463 adsorbent Substances 0.000 claims description 31
- 201000010099 disease Diseases 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 22
- 239000003937 drug carrier Substances 0.000 claims description 22
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 21
- 210000003734 kidney Anatomy 0.000 claims description 21
- 239000000126 substance Substances 0.000 claims description 21
- 208000008281 urolithiasis Diseases 0.000 claims description 21
- 150000002500 ions Chemical class 0.000 claims description 19
- -1 uranium ions Chemical class 0.000 claims description 18
- 239000002861 polymer material Substances 0.000 claims description 16
- 229920000249 biocompatible polymer Polymers 0.000 claims description 15
- 239000003814 drug Substances 0.000 claims description 15
- 206010007027 Calculus urinary Diseases 0.000 claims description 14
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 13
- 229940079593 drug Drugs 0.000 claims description 13
- 229960001484 edetic acid Drugs 0.000 claims description 13
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 10
- 239000002122 magnetic nanoparticle Substances 0.000 claims description 10
- 239000001993 wax Substances 0.000 claims description 10
- 230000005389 magnetism Effects 0.000 claims description 9
- 238000010146 3D printing Methods 0.000 claims description 8
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 8
- 210000001508 eye Anatomy 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- 239000004310 lactic acid Substances 0.000 claims description 6
- 235000014655 lactic acid Nutrition 0.000 claims description 6
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 6
- 230000008093 supporting effect Effects 0.000 claims description 6
- 210000001635 urinary tract Anatomy 0.000 claims description 6
- OGSPWJRAVKPPFI-UHFFFAOYSA-N Alendronic Acid Chemical compound NCCCC(O)(P(O)(O)=O)P(O)(O)=O OGSPWJRAVKPPFI-UHFFFAOYSA-N 0.000 claims description 5
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 229940062527 alendronate Drugs 0.000 claims description 5
- 239000000560 biocompatible material Substances 0.000 claims description 5
- 229910001424 calcium ion Inorganic materials 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 210000003205 muscle Anatomy 0.000 claims description 5
- 239000004471 Glycine Substances 0.000 claims description 4
- 210000000232 gallbladder Anatomy 0.000 claims description 4
- 229920001690 polydopamine Polymers 0.000 claims description 4
- 210000003079 salivary gland Anatomy 0.000 claims description 4
- GCLGEJMYGQKIIW-UHFFFAOYSA-H sodium hexametaphosphate Chemical compound [Na]OP1(=O)OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])OP(=O)(O[Na])O1 GCLGEJMYGQKIIW-UHFFFAOYSA-H 0.000 claims description 4
- 235000019982 sodium hexametaphosphate Nutrition 0.000 claims description 4
- 210000002784 stomach Anatomy 0.000 claims description 4
- 230000008685 targeting Effects 0.000 claims description 4
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 claims description 4
- 235000013162 Cocos nucifera Nutrition 0.000 claims description 3
- 244000060011 Cocos nucifera Species 0.000 claims description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 claims description 3
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 3
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 3
- 229920002732 Polyanhydride Polymers 0.000 claims description 3
- 229920000331 Polyhydroxybutyrate Polymers 0.000 claims description 3
- 229920001710 Polyorthoester Polymers 0.000 claims description 3
- 229910052770 Uranium Inorganic materials 0.000 claims description 3
- 150000001413 amino acids Chemical class 0.000 claims description 3
- 235000013871 bee wax Nutrition 0.000 claims description 3
- 239000012166 beeswax Substances 0.000 claims description 3
- WLZRMCYVCSSEQC-UHFFFAOYSA-N cadmium(2+) Chemical compound [Cd+2] WLZRMCYVCSSEQC-UHFFFAOYSA-N 0.000 claims description 3
- 239000004203 carnauba wax Substances 0.000 claims description 3
- 229910001429 cobalt ion Inorganic materials 0.000 claims description 3
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 229910001431 copper ion Inorganic materials 0.000 claims description 3
- 229910001416 lithium ion Inorganic materials 0.000 claims description 3
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 3
- 229910052753 mercury Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 239000010955 niobium Substances 0.000 claims description 3
- 239000012188 paraffin wax Substances 0.000 claims description 3
- 239000005015 poly(hydroxybutyrate) Substances 0.000 claims description 3
- 229920002627 poly(phosphazenes) Polymers 0.000 claims description 3
- 229920001610 polycaprolactone Polymers 0.000 claims description 3
- 239000004632 polycaprolactone Substances 0.000 claims description 3
- 239000004626 polylactic acid Substances 0.000 claims description 3
- 229910001414 potassium ion Inorganic materials 0.000 claims description 3
- 239000012180 soy wax Substances 0.000 claims description 3
- 229910001456 vanadium ion Inorganic materials 0.000 claims description 3
- 229920003169 water-soluble polymer Polymers 0.000 claims description 3
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims description 3
- 208000015924 Lithiasis Diseases 0.000 claims description 2
- 235000001014 amino acid Nutrition 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 2
- 235000019809 paraffin wax Nutrition 0.000 claims description 2
- 235000019271 petrolatum Nutrition 0.000 claims description 2
- 239000002745 poly(ortho ester) Substances 0.000 claims description 2
- 241000894007 species Species 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 7
- 239000000243 solution Substances 0.000 description 95
- 238000001179 sorption measurement Methods 0.000 description 50
- 239000012071 phase Substances 0.000 description 48
- 239000011162 core material Substances 0.000 description 43
- QXDMQSPYEZFLGF-UHFFFAOYSA-L calcium oxalate Chemical compound [Ca+2].[O-]C(=O)C([O-])=O QXDMQSPYEZFLGF-UHFFFAOYSA-L 0.000 description 29
- 230000000638 stimulation Effects 0.000 description 28
- 238000002604 ultrasonography Methods 0.000 description 27
- 230000003833 cell viability Effects 0.000 description 23
- 239000004205 dimethyl polysiloxane Substances 0.000 description 17
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 17
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 17
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 17
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 17
- 238000010586 diagram Methods 0.000 description 15
- 239000013522 chelant Substances 0.000 description 14
- 208000000913 Kidney Calculi Diseases 0.000 description 13
- 206010029148 Nephrolithiasis Diseases 0.000 description 13
- 230000000694 effects Effects 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 12
- 230000003278 mimic effect Effects 0.000 description 12
- 238000011160 research Methods 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 210000002700 urine Anatomy 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- 238000002474 experimental method Methods 0.000 description 9
- 230000004044 response Effects 0.000 description 9
- 208000009911 Urinary Calculi Diseases 0.000 description 8
- 238000012790 confirmation Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 6
- 238000012377 drug delivery Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000003287 optical effect Effects 0.000 description 6
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 239000000975 dye Substances 0.000 description 5
- 238000002073 fluorescence micrograph Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000011575 calcium Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 4
- 230000014759 maintenance of location Effects 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 230000004936 stimulating effect Effects 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 210000000626 ureter Anatomy 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000282412 Homo Species 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 229930006000 Sucrose Natural products 0.000 description 3
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 229960005069 calcium Drugs 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000003745 diagnosis Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 210000000244 kidney pelvis Anatomy 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000008385 outer phase Substances 0.000 description 3
- 229920000867 polyelectrolyte Polymers 0.000 description 3
- 239000005720 sucrose Substances 0.000 description 3
- 210000001519 tissue Anatomy 0.000 description 3
- IOOMXAQUNPWDLL-UHFFFAOYSA-N 2-[6-(diethylamino)-3-(diethyliminiumyl)-3h-xanthen-9-yl]-5-sulfobenzene-1-sulfonate Chemical compound C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=C(S(O)(=O)=O)C=C1S([O-])(=O)=O IOOMXAQUNPWDLL-UHFFFAOYSA-N 0.000 description 2
- WEJVZSAYICGDCK-UHFFFAOYSA-N Alexa Fluor 430 Chemical compound CC[NH+](CC)CC.CC1(C)C=C(CS([O-])(=O)=O)C2=CC=3C(C(F)(F)F)=CC(=O)OC=3C=C2N1CCCCCC(=O)ON1C(=O)CCC1=O WEJVZSAYICGDCK-UHFFFAOYSA-N 0.000 description 2
- WHVNXSBKJGAXKU-UHFFFAOYSA-N Alexa Fluor 532 Chemical compound [H+].[H+].CC1(C)C(C)NC(C(=C2OC3=C(C=4C(C(C(C)N=4)(C)C)=CC3=3)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=C2C=3C(C=C1)=CC=C1C(=O)ON1C(=O)CCC1=O WHVNXSBKJGAXKU-UHFFFAOYSA-N 0.000 description 2
- ZAINTDRBUHCDPZ-UHFFFAOYSA-M Alexa Fluor 546 Chemical compound [H+].[Na+].CC1CC(C)(C)NC(C(=C2OC3=C(C4=NC(C)(C)CC(C)C4=CC3=3)S([O-])(=O)=O)S([O-])(=O)=O)=C1C=C2C=3C(C(=C(Cl)C=1Cl)C(O)=O)=C(Cl)C=1SCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O ZAINTDRBUHCDPZ-UHFFFAOYSA-M 0.000 description 2
- IGAZHQIYONOHQN-UHFFFAOYSA-N Alexa Fluor 555 Chemical compound C=12C=CC(=N)C(S(O)(=O)=O)=C2OC2=C(S(O)(=O)=O)C(N)=CC=C2C=1C1=CC=C(C(O)=O)C=C1C(O)=O IGAZHQIYONOHQN-UHFFFAOYSA-N 0.000 description 2
- 239000012099 Alexa Fluor family Substances 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 238000009007 Diagnostic Kit Methods 0.000 description 2
- 206010023435 Kidney small Diseases 0.000 description 2
- 235000019482 Palm oil Nutrition 0.000 description 2
- 241000286209 Phasianidae Species 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000000035 biogenic effect Effects 0.000 description 2
- 238000003570 cell viability assay Methods 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 238000001723 curing Methods 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 230000029142 excretion Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 239000000017 hydrogel Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 239000008384 inner phase Substances 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000002540 palm oil Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000000741 silica gel Substances 0.000 description 2
- 229910002027 silica gel Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- ANRHNWWPFJCPAZ-UHFFFAOYSA-M thionine Chemical compound [Cl-].C1=CC(N)=CC2=[S+]C3=CC(N)=CC=C3N=C21 ANRHNWWPFJCPAZ-UHFFFAOYSA-M 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- HMUNWXXNJPVALC-UHFFFAOYSA-N 1-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperazin-1-yl]-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)N1CCN(CC1)C(CN1CC2=C(CC1)NN=N2)=O HMUNWXXNJPVALC-UHFFFAOYSA-N 0.000 description 1
- SXAMGRAIZSSWIH-UHFFFAOYSA-N 2-[3-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,2,4-oxadiazol-5-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NOC(=N1)CC(=O)N1CC2=C(CC1)NN=N2 SXAMGRAIZSSWIH-UHFFFAOYSA-N 0.000 description 1
- WIMNZMOEBDPZTB-UHFFFAOYSA-N 2-methoxy-6-methylpyridine Chemical compound COC1=CC=CC(C)=N1 WIMNZMOEBDPZTB-UHFFFAOYSA-N 0.000 description 1
- 206010000060 Abdominal distension Diseases 0.000 description 1
- 239000012103 Alexa Fluor 488 Substances 0.000 description 1
- 239000012109 Alexa Fluor 568 Substances 0.000 description 1
- 239000012110 Alexa Fluor 594 Substances 0.000 description 1
- 239000012112 Alexa Fluor 633 Substances 0.000 description 1
- 239000012114 Alexa Fluor 647 Substances 0.000 description 1
- 239000012115 Alexa Fluor 660 Substances 0.000 description 1
- 239000012116 Alexa Fluor 680 Substances 0.000 description 1
- 239000012117 Alexa Fluor 700 Substances 0.000 description 1
- 206010004542 Bezoar Diseases 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-M Carbamate Chemical compound NC([O-])=O KXDHJXZQYSOELW-UHFFFAOYSA-M 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 229920001661 Chitosan Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 206010011848 Dacryolith Diseases 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 201000005569 Gout Diseases 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 208000003251 Pruritus Diseases 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 208000008117 Salivary Gland Calculi Diseases 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- PZBFGYYEXUXCOF-UHFFFAOYSA-N TCEP Chemical compound OC(=O)CCP(CCC(O)=O)CCC(O)=O PZBFGYYEXUXCOF-UHFFFAOYSA-N 0.000 description 1
- 208000000491 Tendinopathy Diseases 0.000 description 1
- 206010043255 Tendonitis Diseases 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000002969 artificial stone Substances 0.000 description 1
- 239000000987 azo dye Substances 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical group C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- 239000006177 biological buffer Substances 0.000 description 1
- 208000024330 bloating Diseases 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- LLSDKQJKOVVTOJ-UHFFFAOYSA-L calcium chloride dihydrate Chemical compound O.O.[Cl-].[Cl-].[Ca+2] LLSDKQJKOVVTOJ-UHFFFAOYSA-L 0.000 description 1
- 229940052299 calcium chloride dihydrate Drugs 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 201000001883 cholelithiasis Diseases 0.000 description 1
- 238000007697 cis-trans-isomerization reaction Methods 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000002085 irritant Substances 0.000 description 1
- 231100000021 irritant Toxicity 0.000 description 1
- 230000007803 itching Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- RVPVRDXYQKGNMQ-UHFFFAOYSA-N lead(2+) Chemical compound [Pb+2] RVPVRDXYQKGNMQ-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical compound [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000002952 polymeric resin Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000001044 red dye Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- ZNCPFRVNHGOPAG-UHFFFAOYSA-L sodium oxalate Chemical compound [Na+].[Na+].[O-]C(=O)C([O-])=O ZNCPFRVNHGOPAG-UHFFFAOYSA-L 0.000 description 1
- 229940039790 sodium oxalate Drugs 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000008223 sterile water Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 201000004415 tendinitis Diseases 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000008542 thermal sensitivity Effects 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/04—Drugs for disorders of the urinary system for urolithiasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P39/00—General protective or antinoxious agents
- A61P39/04—Chelating agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J13/00—Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
- B01J13/02—Making microcapsules or microballoons
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
Definitions
- the present invention relates to a microfluidic reactor for manufacturing microcapsules and external stimulus-responsive microcapsules manufactured using the same. More specifically, it relates to a microcapsule capable of effectively manufacturing multilayer microcapsules of uniform particle size containing active ingredients. It relates to a microfluidic reactor, a method for manufacturing microcapsules using the same, microcapsules produced by the method, and a micro-chelator containing the microcapsules.
- Metal ions are used in various industrial processes and in the manufacture of various chemical products, and enter rivers and the sea during post-treatment, causing adverse effects on humans, animals, and the environment.
- heavy metal ions such as copper, iron, zinc, and mercury accumulate along the ecosystem food chain, and metal contaminant removal technology is required for environmental protection.
- the adsorption method is widely used industrially because it has a low process cost and can handle large amounts of fluid.
- porous inorganic adsorbents such as activated carbon, alumina, silica gel, and zeolite that adsorb metal ions through physical/chemical interactions on the surface
- organic adsorbents that use coordination bonds with metal ions, that is, chelate bonds, have chemical functional groups. Selective adsorption is also possible.
- organic chelate adsorption materials include EDTA (ethylene-diamine-tetraacetic acid), EDA (ethylene diamine), citric acid, glycine, and HMP (sodium hexametaphosphate), which remove metal ions. It is mainly used for water treatment.
- Patent Document 1 discloses microcapsules encapsulating a manganese chelating agent with polylactide-co-glycolide (PLGA), but provides an improved chelating agent that is stable in an aqueous biological buffer solution to be administered to patients. It is an optimized external stimulus-responsive microcapsule that stably supports the chelating agent by precisely controlling the core size and shell thickness of the microcapsule, and can release the chelating agent immediately or in a sustained release upon external stimulation. and its manufacturing technology were not mentioned.
- PLGA polylactide-co-glycolide
- Patent Document 1 US Publication No. US 2013/0089602
- the present invention is intended to solve the above problems, and the purpose of the present invention is to provide a microfluidic reactor capable of effectively producing multilayer microcapsules of uniform particle size carrying active ingredients and a microfluidic reaction device including the same. It is done.
- Another object of the present invention is to provide a method for manufacturing microcapsules performed using the microfluidic reactor or the microfluidic reaction device.
- Another object of the present invention is to provide microcapsules prepared by the above manufacturing method and a drug carrier or micro chelator containing the same.
- Another object of the present invention is to provide a method of removing stones, a method of treating urolithiasis, and/or a method of diagnosing urolithiasis using microcapsules produced by the above manufacturing method or microchelators containing the same.
- a housing having a predetermined volume; and a first flow path formed inside the housing and guiding the fluid flowing in from the outside of the housing to move in one direction, wherein the first fluid forming the core flows in and moves.
- main channel A first channel including an inlet into which the second fluid forming the shell flows, and a branch having a plurality of tributaries branching from the inlet and all connected to one side of the main channel;
- a second channel through which a third fluid for supporting the first fluid in the second fluid flows and moves, and is formed to have the same structure as the first channel and is connected to the other side of the main channel.
- the first channel and the second channel are arranged symmetrically with respect to the main channel, and a microfluidic reactor is provided for manufacturing microcapsules including a core and a shell.
- the first channel and the second channel may each have two tributaries.
- the four tributaries included in the first channel and the second channel may be arranged to form an X shape centered on the main channel.
- the portion of the main channel where the four tributaries are connected may have a diamond-shaped cross section.
- the plurality of tributaries may each include a first part extending with a first slope and a second part extending with a second slope, and one of the first slope and the second slope is positive.
- One can have a slope, and the other can have a negative slope.
- a plurality of tributaries included in the first channel and the second channel may be spaced apart at the same angle along the circumferential direction of the main channel.
- it may further include a pipe member inserted into an end of the outlet side of the main channel, and the pipe member may have an outer diameter of the same size as the inner diameter of the main channel.
- the first flow path may further include a third channel and a fourth channel respectively arranged side by side along the extension direction of the first channel, the second channel, and the main channel and connected to the main channel,
- the microcapsules may be formed in a multi-shell structure.
- the housing may further include N flow paths formed to have the same structure as the first flow path, and N+1 flow paths including the first flow path are arranged side by side along the height direction of the housing. can be placed.
- a first supply passage connected to all ends of the N+1 main channels included in the N+1 passages to supply the first fluid to the N+1 main channels; a second supply passage connected to all ends of the N+1 first channels included in the N+1 passages to supply the second fluid to the N+1 first channels; a third supply passage connected to all ends of the N+1 second channels included in the N+1 passages to supply the third fluid to the N+1 second channels; and a collection flow path connected to all other ends of the N+1 main channels to collect fluid flowing out of the N+1 main channels.
- the first flow path may be formed during the process of forming the housing through a 3D printing process.
- the above-described microfluidic reactor a first supply means connected to one end of the main channel to supply the first fluid; a second supply means connected to the inlet of the first channel to supply the second fluid; and a third supply means connected to the inlet of the second channel to supply the third fluid.
- the second supply means may include a plurality of pipe members connected to the inlet part of the first channel and the inlet part of the second channel to simultaneously perform the function of the third supply means.
- a method for manufacturing microcapsules is provided, which is performed using the above-described microfluidic reactor or microfluidic reaction device.
- the core size and shell thickness of the microcapsule can be adjusted by adjusting the flow rates of the first fluid, the second fluid, and the third fluid.
- the first fluid is a solution in which the active ingredient is dispersed, which forms the core of the capsule;
- the second fluid is a solution containing a biocompatible polymer material that forms the shell of the capsule;
- the third fluid may be a solution containing a water-soluble polymer compound for supporting the active ingredient in a biocompatible polymer material.
- the present invention is prepared by the above-described manufacturing method, comprising a first core containing a solution in which a first active ingredient is dispersed and a first biocompatible polymer material encapsulating the first active ingredient.
- a microcapsule is provided including a first shell containing a solution.
- a first core manufactured by the above-described manufacturing method and comprising a solution containing a first core containing a solution in which a metal ion adsorbent material is dispersed and a first biocompatible polymer material encapsulating the metal ion adsorbent material.
- An external stimulus-responsive microcapsule comprising a shell is provided.
- the metal ion is selected from the group consisting of calcium ions, potassium ions, magnesium ions, lithium ions, uranium ions, cobalt ions, palladium ions, niobium ions, vanadium ions, lead ions, mercury ions, cadmium ions, and copper ions. It may be any one or more types.
- the metal ion adsorbing material may be selected depending on the type of metal ion to be removed.
- the metal ion adsorbent material is ethylene-diamine-tetraacetic acid (EDTA), ethylene diamine (EDA), citric acid, glycine, or hexagonal acid. It may be sodium hexametaphosphate (HMP).
- the biocompatible materials include polylactic acid, polylactide, polylactic-co-glycolic acid, polylactide-co-glycolide (PLGA), polyphosphazine, polyiminocarbonate, polyphosphoester, and polyanhydride.
- the first core may additionally include a fluorescent material.
- the shell of the external stimulus-responsive microcapsule may be broken or decomposed by an external stimulus, and the external stimulus may be a chemical stimulus, biological stimulus, ultrasonic stimulus, thermal stimulus, near-infrared stimulus, electrical stimulus, magnetic stimulus, or optical stimulus. You can.
- magnetic nanoparticles may be additionally included in the core.
- the external stimulus-responsive microcapsule containing particles in the core may be movable by magnetism.
- the microcapsules or external stimulus-responsive microcapsules include a second core containing a solution in which a second active ingredient is dispersed; And it may further include a second shell containing a solution containing a second biocompatible polymer material encapsulating the second active ingredient.
- the second core and the second shell may be included inside the first core or outside the first shell.
- a stealth functional material or a drug targeting material may be bound to or coated on the outer surface of the first shell and/or the second shell.
- a drug delivery system comprising the above-described microcapsules is provided.
- micro-chelator comprising the external stimulus-responsive microcapsules described above is provided.
- the micro chelator can be used for medical purposes.
- the micro chelator can be used for diagnosing lithiasis or removing stones.
- a stone removal method comprising administering the above-described external stimulus-responsive microcapsules or a microchelator containing the same to a subject in need thereof in a therapeutically effective amount.
- the subject may be a patient with stones accumulated in the kidneys, urinary tract, stomach, gallbladder, salivary glands, eyes, or muscles.
- a method of treating urolithiasis includes administering the above-described external stimulus-responsive microcapsules or a microchelator containing the same to a subject in need thereof in a therapeutically effective amount.
- a method for diagnosing stone disease includes administering the above-described external stimulus-responsive microcapsules or a microchelator containing the same to a subject.
- a kit for diagnosing stone disease comprising the above-described external stimulus-responsive microcapsules or microchelators containing the same.
- the microfluidic reactor according to an embodiment of the present invention is composed of an Not only can it be adjusted as desired, but by adding an In addition, by manufacturing an external stimulus-responsive microcapsule containing a metal ion adsorbent material in the core of the capsule through a microfluidic reactor according to an embodiment of the present invention, and releasing the metal ion adsorbent material only under desired external conditions, heavy metals or It can also be used to remove stones or remove/recover metal ions from water resources such as seawater or wastewater.
- Figure 1 is a diagram showing a cross section of a microcapsule manufactured using a microfluidic reactor according to an embodiment of the present invention.
- Figure 2 is a transparent perspective view showing both the exterior and interior of a microfluidic reactor according to an embodiment of the present invention.
- Figure 3 is a diagram illustrating the flow path structure of a microfluidic reactor according to an embodiment of the present invention.
- Figure 4 is a view from the front of the flow path structure of a microfluidic reactor according to an embodiment of the present invention.
- Figure 5 is an enlarged view of a region on the outlet side of the main channel of a microfluidic reactor according to an embodiment of the present invention.
- Figure 6 is a diagram showing a transparent perspective view and flow path structure of a microfluidic reactor according to another embodiment of the present invention.
- Figure 7 is a view from the front of the flow path structure of a microfluidic reactor according to another embodiment of the present invention.
- Figure 8 is a side view of the flow path structure of a microfluidic reactor according to another embodiment of the present invention.
- Figures 9 and 10 are diagrams showing microfluidic reaction devices according to various embodiments of the present invention, respectively.
- FIG 11 shows the scanning microscope (SEM) image and Fourier transform infrared (FT-IR) confirmation results of the stone simulant (CaOx).
- Figures 12a to 12e show the results of analysis of the removal rate of a stone simulant (CaOxl Calcium oxalate, 10 mg) of a chelate solution for metal ion adsorption according to each condition, and Figure 12a shows the change in removal rate according to the type of chelate solution (amount of ion adsorbent solution: 300 ⁇ L, ion adsorption solution concentration: 10 mM, adsorption time: 60 minutes), Figure 12b shows cell viability analysis results for metal ion adsorption solutions HMP and EDTA (ion adsorption solution concentration: 10 mM, adsorption time: 30 minutes).
- Figure 12c shows the change in removal rate according to the amount of ion-adsorbing solution (type of ion-adsorbing solution: HMP, amount of ion-adsorbing solution: 0 to 1000 ⁇ L, concentration of ion-adsorbing solution: 10 mM, adsorption time: 30 minutes)
- Figure 12d shows the change in removal rate according to ion adsorbent solution concentration (ion adsorbent solution type: HMP, ion adsorbent solution amount: 300 ⁇ L, ion adsorbent solution concentration: 1 to 50 mM, adsorption time: 30 minutes)
- Figure 12e shows different removal rate changes depending on the adsorption time (ion adsorbent solution type: HMP, ion adsorbent solution amount: 300 ⁇ L, ion adsorbent solution concentration: 10 mM, adsorption time: 1 to 60 minutes).
- Figures 13a to 13d show the results of cell viability analysis according to the manufacturing conditions of external stimulus-responsive microcapsules.
- Figure 13a shows cell viability according to the metal ion adsorbent solution HMP concentration (concentration: 1 to 50 mM, exposure time: 30 minutes).
- Figure 13b shows cell viability according to HMP exposure time (concentration: 10 mM, exposure time: 0.02 to 24 hours)
- Figure 13c shows cell viability according to concentration of biocompatible polymer material PLGA (concentration: 0.05 to 0.2 mg/ mL, exposure time: 24 hours)
- Figure 13d shows cell viability according to the ultrasound irradiation time as an external stimulus (ultrasonic irradiation time: 10 to 180 seconds, number of cells: 1.0 ⁇ 10 4 ).
- Figure 14 shows a schematic diagram of a microfluidic response device for manufacturing external stimulus-responsive microcapsules.
- Figure 15 shows the overall configuration for manufacturing external stimulus-responsive microcapsules.
- a) is a schematic diagram of the overall configuration
- b) is an actual photo of the entire configuration
- c) is a schematic diagram of a 3D printer-based microfluidic response device.
- d) shows an actual photo of the 3D printer-based microfluidic reaction device.
- Figure 16 shows an analysis of the capsule size according to the flow rate variable of each fluid injected when manufacturing ultrasonic stimulus-responsive microcapsules (HMP/MNP@PLGA) using the microfluidic response device of the present invention (first fluid: HMP , second fluid: PLGA, third fluid: PVA),
- c) shows optimal flow rate conditions (first fluid flow rate: 15 ⁇ L/min, second fluid flow rate: 10 ⁇ L/min, and third fluid flow rate: 1000 ⁇ L/min) (left: white filter, right: RFP filter)
- d ) is a histogram showing the overall capsule diameter distribution of HMP/MNP@PLGA microcapsules.
- Figure 17 shows the results of an experiment on the release of a metal ion adsorbent solution according to external ultrasonic stimulation of ultrasonic stimulus-responsive microcapsules (HMP/MNP@PLGA) manufactured by controlling the flow rate of each fluid in the microfluidic reaction device of the present invention.
- Figure 18 shows an analysis of the capsule size according to the flow rate variables of each fluid injected when manufacturing near-infrared stimulation-responsive microcapsules (HMP/MNP@WAX@Pdop) using the microfluidic response device of the present invention (first fluid : MNP and HMP contained in secondary distilled water, second fluid: liquefied palm oil and third fluid: Pdop contained in secondary distilled water),
- Figure 18 a shows the change in capsule size according to flow rate control of the first fluid.
- first fluid + second fluid flow rates 15.6 mL/hour
- b) confirms the change in capsule size according to flow rate control of the third fluid
- c) is the totality of microcapsules prepared under optimal flow rate conditions (first fluid flow rate: 10 mL/hour, second fluid flow rate: 5.6 mL/hour, and third fluid flow rate: 34 mL/hour). This is a histogram showing the capsule diameter distribution.
- Figure 19 shows the flow rate of each fluid injected when manufacturing ultrasonic stimulus-responsive microcapsules (HMP/MNP@PLGA) and near-infrared stimulus-responsive microcapsules (HMP/MNP@WAX@Pdop) using the microfluidic response device of the present invention.
- the shape of the microcapsules manufactured according to the change in flow rate was observed.
- a) is an optical micrograph of a near-infrared irritating microcapsule (HMP/MNP@WAX@Pdop) manufactured by controlling the flow rate
- b) is a single photomicrograph for 5 minutes.
- c) is an image of a microcapsule (HMP/MNP@WAX@Pdop) manufactured in a microfluidic reaction device (single microfluidic chip), and c) is an image of an ultrasonic stimulating microcapsule (HMP/MNP@PLGA) manufactured by controlling the flow rate. This is an optical microscope photo.
- Figure 20 shows the results of an experiment on the release of a metal ion adsorbent solution according to external near-infrared stimulation of near-infrared stimulation-responsive microcapsules (HMP/MNP@WAX@Pdop) manufactured by controlling the flow rate of each fluid in the microfluidic reaction device of the present invention.
- Figure 21 shows the results of a test for the movement of microcapsules due to magnetism.
- Figure 20 a) shows the movement of near-infrared stimulation-responsive microcapsules due to magnetism
- b) shows the movement of ultrasonic stimulation-responsive microcapsules due to magnetism (magnetic intensity 500 mT).
- Figure 22a shows the fabrication of a ⁇ -type fluid chip designed with AutoCAD, the fabrication of a polymer mold with 3D printing, c) PDMS imprinting of the ⁇ -type fluid chip, and clamping of the fluid chip and a stainless steel frame.
- Figure 22b shows an actual image of the fluid chip of Figure 22a.
- Figure 22c shows microscopic images of areas [a-c] of the fluid chip for testing stone removal.
- Figures 23a to 23f show the experiment and results of removing artificial stones (CaOx) from a ⁇ -type fluid chip through magnetic transfer and ultrasonic response release of microcapsules containing a chelating solution
- Figure 23a is a schematic diagram of the fluid chip
- Figure 23b shows fluorescence microscopy images (inset scale: 500 ⁇ m) to visualize the magnetically induced transport of microcapsules at various positions [a-c] along the channel.
- Figure 23c is a graph comparing the delivery efficiency with (iii-c) and without (ii-b) magnetic field
- Figure 23d shows encapsulated HMP concentration (10-100mM) and number of microcapsules (10-1000). This is a graph showing the removal efficiency as a function of .
- Figure 23e is a graph showing the total removal efficiency of stones in the 1-7.5 mm size range by repeating the delivery and removal cycle of microcapsules (HMP concentration: 100mM, N: 500), and Figure 23f is a graph showing the total removal efficiency of stones in the size range of 1-7.5mm.
- N: 500 shows a microscopic image of changes in stones (initial size: 5 mm) after repeated treatment cycles, showing observation results with and without the use of a fluorescence filter (inset scale: 500 ⁇ m).
- Green and red are CaOx stones labeled with FITC and S-Rh in red, respectively.
- B shows microcapsules labeled with dye.
- the cycle treatment lasted a total of 6.55 minutes (delivery: 0.3 minutes, ultrasound (US) irradiation: 1.35 minutes, and residence: 4.90 minutes).
- the magnet was placed under the chip approximately 8 cm away from the stone.
- Figure 24a shows the potential visualization of urolithiasis with microcapsules containing ALS-FITC, showing FTIR spectroscopy results of FITC, ALS, and FITC-ALS.
- Figure 24b shows a microscopic image of microcapsules containing ALS-FITC and Fe 3 O 4 .
- Figure 25a shows the process of dyeing and visualizing calcium oxalate with microcapsules containing ALS-FITC/Fe 3 O 4 .
- B is a microscopic fluorescence image of a calcium oxalate stone
- C is a microscopic fluorescence image of a mixed phase of microcapsules and stones containing ALS-FITC
- D is a microscopic fluorescence image of the microcapsules with US. This is a microscopic fluorescence image of calcium oxalate stones stained with FITC. Green indicates ALS-FITC, and the scale bar is 500 ⁇ m.
- Figures 26a to 26d show the fabrication of spherical calcium oxalate stones by 3D printed mold and centrifugation.
- Figure 26a is an actual image of a conical tube in which the 3D printed mold with a spherical cavity is placed, and
- Figure 26b is a centrifugation This is a graph showing the density control of calcium oxalate stones according to speed.
- Figure 26c is a graph showing the reproducibility of optimized stone density (2.07 g/cm 3 )
- Figure 26d is an actual image of optimized stones with different spherical CaOx stone sizes (1, 3, 5, and 7.5 mm).
- FIGS. 27A to 27D show human biogenic kidney stones (100% CaOx) in PDMS-based kidney urinary flow-imitated chip via magnetic transfer and US-responsive release of chelating solution encapsulated in microcapsules. Showing the results of the removal test, Figure 27a is a schematic diagram of the kidney urinary tract mimic chip and a conceptual diagram of the stone removal test. Figure 27b is a captured image of magnetically guided delivery of microcapsules into the [a] ureter, [b] renal pelvis, [c] major kidney cup and [d] minor kidney cup (in the presence of human kidney stones) (inset size: 2 mm ).
- Figure 27c is a microscopic image of stone changes (initial size range: 5-7.5mm) (inset scale: 2mm), and Figure 27d is a graph showing removal efficiency according to repeated treatment cycles of microcapsules (HMP concentration: 100mM). , N: 500). Typically, one cycle of treatment required a total of 7.25 minutes (delivery: 1 minute, US irradiation: 1.35 minutes, retention: 4.90 minutes). The magnet was placed under the chip 8 cm away from the stone.
- Figure 28 shows a schematic diagram of the production of a PDMS-based kidney tract mimic chip.
- A is the design of the kidney tract mimic chip in AutoCAD
- B is 3D printing polymer mold production
- C is PDMS imprinting of the kidney tract mimic chip
- D is fabrication. It shows the actual image of the PDMS-based kidney tract mimic chip.
- Figure 29A is an actual image of the experimental setup for testing sequential magnetically guided movement of microcapsules using human kidney stones, US responsive emission, and removal of microcapsules using human kidney stones, and B shows the magnet for magnetically guided movement. Shows the mounted XY stage.
- Figure 30 is a microscope image to confirm the US-responsive emission behavior of the microcapsule.
- the microcapsules were completely released within 1.35 min by US (50 kHz).
- Figure 1 is a diagram showing a cross section of a microcapsule manufactured using a microfluidic reactor according to an embodiment of the present invention.
- Figure 2 is a transparent perspective view showing both the exterior and interior of a microfluidic reactor according to an embodiment of the present invention.
- Figure 3 is a diagram illustrating the flow path structure of a microfluidic reactor according to an embodiment of the present invention.
- Figure 4 is a view from the front of the flow path structure of a microfluidic reactor according to an embodiment of the present invention.
- Figure 5 is an enlarged view of a region on the outlet side of the main channel of a microfluidic reactor according to an embodiment of the present invention.
- the microfluidic reactor 100 includes a spherical microcapsule including a core disposed at the center and one or more shells surrounding the core. It is a device for manufacturing.
- the core 2 may be a drug (solution) that requires injection into the body for treatment, and the shells 3 and 4 are the core 2 from the outside so that the drug can stably move to the desired location in the body. It may be a carrier to protect.
- the microfluidic reactor 100 has a flow path structure including a first channel 40 and a second channel 50 in addition to the main channel 30, so that the shells 3 and 4 ) It is possible to effectively supply the solution for formation while minimizing additional equipment, which will be explained below.
- the microfluidic reactor 100 has a predetermined volume and includes a housing 10 provided with a flow path 20 to allow fluid to flow therein.
- the housing 10 can be formed using various known 3D printing technologies, and through this, a channel structure with a high level of precision can be easily implemented on the inside of the housing 10.
- the housing 10 may be formed including various materials used in the 3D printing process. Additionally, the housing 10 may be made of a chemically resistant or durable material to withstand chemical or physical corrosion caused by fluid. As a specific example, the housing 10 may be formed of a metallic material, thermosetting resin, or photocuring resin.
- the housing 10 can be formed in various other ways.
- the housing 10 may be formed by sequentially stacking a plurality of plates having grooves corresponding to a portion of the flow path 20 on the inside along the height direction.
- the 'passage 20' generally refers to a spatial structure provided on the inside of the housing 10 to guide the fluid flowing in from the outside of the housing 10 to move in one direction, and the 'channels 30 and 40 ,50,60,70)' should be interpreted as partially referring to part of the flow path.
- the housing 10 may include a first flow path 20 .
- the first flow path 20 may include the main channel 30, the first channel 40, and the second channel 50 as its parts, as shown in FIG. 3.
- the main channel 30 may be formed to penetrate the housing by having an inlet 31 and an outlet 32 at both ends, respectively.
- the inlet 31 may be formed on one side of the housing 10, and the outlet 32 may be disposed on the other side opposite to the one side.
- the main channel 30 allows the first fluid A forming the core 2 of the microcapsule 1 to flow from the outside until it is supported by a second fluid to be described later and then flows out to the outside. It can guide the overall flow.
- the first fluid (C) introduced through the inlet 31 of the main channel 30 is the second fluid (B) supplied through the first channel 40 and the second channel 50, which will be described later. It can be encapsulated by (the first fluid (A) becomes the core (2), and the second fluid (B) becomes the shell (3).
- the drug carrier (1) encapsulated in this way is connected to the main channel (30). ) can be moved to the outside through the outlet 32.
- the fluid flowing along the main channel 30 can be divided based on before and after the supply point of the second fluid (B). That is, the first fluid (A) moves along the main channel 30 from the inlet 31 of the main channel 30 to the supply point of the second fluid (B), but after the supply point of the second fluid (B) From the outlet 32, a solution containing a supported drug carrier (microcapsule 1) may flow.
- a solution containing a supported drug carrier microcapsule 1
- the inlet 31 and outlet 32 of the main channel 30 are formed in an exposed form on one side of the housing 10, which is only an example, and unlike this (as shown in FIG. 6) As in the previous embodiment, the inlet 31 and outlet 32 of the main channel 30 may be formed in a form that cannot be observed from the outside by being disposed in the inner area of the housing 10. This will be described later.
- the first channel 40 may be connected to one side of the main channel 30.
- the first channel 40 is a channel for supplying the second fluid (B) to the main channel 30, and this second fluid (B) functions as the shell 3 of the microcapsule 1 to 1 Can hold fluid (A).
- the second fluid (B) in order for the second fluid (B) to support the first fluid (A), a shear force can be applied to the first fluid (A) to cut off the flow of the first fluid (A) in the main channel (30). There must be. To this end, the second fluid B may flow to maintain a flow rate above a certain level within the first channel 40 by the first fluid supply means 320, which will be described later.
- the first channel 40 may have a somewhat more complicated structure compared to the main channel 30 described above.
- the first channel 40 may largely include an inlet 41 through which the second fluid B flows and a branch 42 having a plurality of tributaries 42a and 42b.
- the inlet portion 41 is a passage through which the second fluid B first flows in from the outside, and may be disposed closer to the outside of the housing 10 compared to the branch portion 42.
- branch part 42 is a part that connects the above-described inlet part 41 and the main channel 30.
- one end is connected to the inlet part 41, and the other end is connected to the main channel 30. can be connected
- the branch 42 may include a plurality of tributaries 42a and 42b simultaneously branching from the end of the inlet 41.
- the second fluid B flowing along the inlet 41 is distributed at the same flow rate through the plurality of tributaries 42a and 42b constituting the branch 42 and finally joins the main channel 30. It can be.
- the branch 42 may include two branches 42a and 42b having the same structure.
- the second fluid (B) at the same flow rate can be divided and supplied to a plurality of tributaries.
- these tributaries (42a, 42b) have a first part (43) extending with a first slope and a second part (44) extending with a second slope inclined in a direction opposite to the first slope. ), and an inflection point 45 that protrudes in one direction may be formed between the first part 43 and the second part 44. That is, the two branches of the branch portion 42 shown in FIG. 4 may form an overall diamond shape.
- the cross section of the portion of the main channel 30 connected to the branch portion 42 of the first channel 40 may have a diamond-shaped cross section as shown in FIG. 4, preferably (2 It may have a square cross-section (so that the two tributaries form right angles to each other).
- four tributaries two tributaries included in the first channel 40 and two tributaries included in the second channel 50, which will be described later) arranged in an It can be stably connected to the main channel 30.
- the microfluidic reactor 100 can arrange the tributaries 42a, 42b, 52a, and 52b along the circumferential direction with respect to the entire area of the main channel 30, and as a result, the tributaries 42a, 42b, 52a, and 52b can be
- the second fluid B flowing in from (42a, 42b, 52a, 52b) can maximize the shear force acting on the first fluid A in the main channel 30.
- the microfluidic reactor 100 can apply a uniform shear force across the entire direction of the main channel 30 through the plurality of tributaries 42a, 42b, 52a, and 52b.
- the thickness of the shell 3 constituting the microcapsule 1 may be formed uniformly.
- the branch portion 42 has two branches 42a and 42b, but it should be noted that the present invention is not limited thereto. That is, the branch portion 42 may include various numbers of tributaries, such as 3, 4, 5, or 6, in order to configure more diverse supply passages for the fluid supplied to the main channel 30. In this case, a plurality of tributaries may be arranged spaced apart at the same angle along the circumferential direction of the main channel 30.
- the cross section of the main channel 30 may be formed as a regular polygon with 2N edges.
- the cross-section of the main channel 30 is formed in a regular hexagon so that all six tributaries included in the first channel 40 and the second channel 50 are It can be connected in a balanced manner along the circumferential direction of the main channel 30.
- the microfluidic reactor 100 is provided with a first channel 40 having a branch portion 42 as described above, so that a single number of first fluid supply means 320 can be used to It is possible to supply three-dimensional fluid through tributaries.
- a plurality of tributaries connected to the main channel 30 exist independently, and each of these plurality of tributaries is connected to a first fluid supply means, (in the first channel 40, the inlet 41 In the case of the omitted structure), a plurality of fluid supply means (for example, syringe pumps) are required, which increases the cost of the device and may cause the device to become bulky.
- a plurality of fluid supply means for example, syringe pumps
- the flow of fluid between the plurality of tributaries 42a and 42b can be controlled more uniformly. This is because, in the case of including the branch 42 as in the present invention, if only the structure of each tributary (42a, 42b) is formed the same, a hydrodynamically identical environment is created, so that the flow between the plurality of tributaries is naturally uniform.
- a second channel 50 having the same structure as the first channel 40 may be connected to the other side of the main channel 30.
- the second channel 50 is a passage for supplying the third fluid C to the opposite area of the main channel 30 to which the first channel 40 is not connected, and is connected to the first channel 40 and Likewise, the first fluid (A) can be moved toward the main channel 30 so that it is supported and encapsulated by the second fluid (B).
- the second channel 50 may be arranged to be symmetrical to the first channel 40 with respect to the main channel 30.
- the plurality of tributaries (42a, 42b, 52a, 52b) included in the first channel 40 and the second channel 50 are of uniform size without being biased in any one direction with respect to the main channel 30. Shear force can be applied.
- the second channel 50 is different from the first channel 40 only in terms of arrangement position, and other structures and functions are the same or similar, so the remaining part will be replaced with an explanation of the first channel 40. do.
- a separate pipe member 90 may be inserted into the end of the main channel 30 on the outlet 32 side.
- the pipe member 90 has an outer diameter of the same size as the inner diameter of the main channel 30, so that it can form a fit with the main channel 30.
- the inner diameter of the pipe member 90 may be formed to be the same as the inner diameter of the main channel 30.
- the inner diameter of the main channel 30 may be partially made larger only for the part where the pipe member 90 is inserted. This is to provide a smooth channel surface without creating a step between the inner diameter of the pipe member 90 and the main channel 30 adjacent thereto when the pipe member 90 is inserted. Through this, even if the tube member 90 is intubated into the main channel 30, the cross-sectional area through which fluid moves in the main channel 30 can be maintained the same up to the outlet 32.
- the tube member 90 may be formed of, for example, a glass tube to form the main channel 30 having a hydrophilic surface on the inside. Through this, it is possible to prevent obstruction to the flow of fluid due to surface energy between the second fluid B existing on the outside of the microcapsule 1 and the material constituting the housing 10.
- the above-described first flow path 20 may further include a third channel 60 and a fourth channel 70 in addition to the first channel 40 and the second channel 50. .
- the third channel 60 and the fourth channel 70 are arranged side by side along the direction in which the main channel 30 extends from the first channel 40 and the second channel 50, as shown in the drawing. It can be connected to the side of the main channel 30 and can be formed in the same structure as the first channel 40 and the second channel 50.
- the third channel 60 and the fourth channel 70 are used to form the shell 4 of the microcapsule 1 similarly to the first channel 40 and the second channel 50, as described above.
- a fourth fluid (D) different from the second fluid (B) may be supplied to the main channel (30).
- the first flow path 20 is shown as having first channels 40 to fourth channels 70, but it should be noted that the flow path structure of the present invention is not limited thereto. That is, the designer may further connect additional channels along the extension direction of the main channel 30 in consideration of the desired number of shells 3. If the designer aims for a microcapsule 1 having an N-layer shell, N channels are arranged on both sides of the main channel 30, so that a total of 2N channels can be connected.
- microfluidic reactor 200 according to another embodiment of the present invention will be described.
- Figure 6 is a diagram showing a transparent perspective view and flow path structure of a microfluidic reactor according to another embodiment of the present invention.
- Figure 7 is a view from the front of the flow path structure of a microfluidic reactor according to another embodiment of the present invention.
- Figure 8 is a side view of the flow path structure of a microfluidic reactor according to another embodiment of the present invention.
- the microfluidic reactor 200 may further include a plurality of passages 20a to 20g in addition to the first passage 20 described above.
- the plurality of added flow paths 20a to 20g have the same structure as the first flow path 20, and form the microcapsule 1 having a core-shell structure according to the same principle as the first flow path 20. You can.
- a plurality of flow paths including the first flow path 20 may be arranged side by side along the height direction of the housing 10 as shown in FIG. 7 .
- the plurality of flow paths may be arranged in various ways within the housing 10, such as being arranged side by side in the width direction of the housing 10.
- the plurality of flow paths 20, 20a to 20g including the first flow path 20 may be connected in parallel so that there is no direct inflow or outflow of fluid between them.
- a first supply passage 210 is formed inside the housing 10 to supply the first fluid to the plurality of passages 20 and 20a to 20g. You can.
- the first supply passage 210 may be provided with a plurality of connection parts and connected to one end of each of the plurality of main channels 30 included in the plurality of passages, as shown in the drawing. Through this, the first supply passage 210 can supply the first fluid to the plurality of main channels 30 in an integrated manner. At this time, a single first fluid supply means 310 is connected to the end of the area where the first supply passage 210 begins, thereby minimizing the need for additional equipment by supplying a large amount of first fluid to the housing 10. You can.
- a plurality of first channels 40 and second channels provided in a plurality of passages 20, 20a to 20g.
- a second supply passage 220 and a third supply passage 230 connected to one end of the channel 50 may be formed.
- the second supply flow path 220 and the third supply flow path 230 supply the second fluid B and the third fluid B to form the shell 3 toward the first channel 40 and the second channel 50, respectively.
- Fluid (C) can be supplied separately.
- the supply of the second fluid (B) and the third fluid (C) by the second supply passage 220 and the third supply passage 230 is based on the same or similar mechanism as the first supply passage 210. Redundant explanations will be omitted.
- a collection flow path 240 may be formed in another portion of the inside of the housing 10, which is connected to the other ends of the plurality of main channels and collects the fluid flowing out of the plurality of main channels 30.
- This collection flow path 240 also has a functional difference in that it collects fluid rather than distributing it, and may be formed to have a very similar structure to the first supply flow path 210 described above.
- the first supply passage 210, the second supply passage 220, the third supply passage 230, and the collection passage 240 have a hexahedral shape. It can be arranged along four sides provided in the housing 10. At this time, the first supply flow path 210 and the collection flow path 240 may be arranged on the side of the surface facing each other, and the second supply flow path 220 and the third supply flow path 230 may also be arranged on the side of the side facing each other. It can be. Through this, a plurality of flow paths can be space-efficiently arranged by sufficiently utilizing the space provided in the hexahedral-shaped housing 10.
- Figures 9 and 10 are diagrams showing microfluidic reaction devices according to various embodiments of the present invention, respectively.
- the microfluidic reaction device 300 includes the microfluidic reactors 100 and 200 according to various embodiments of the present invention, a first supply means 310, a second supply means 320, and a first supply means 320. 3 may include a supply means (330).
- the microfluidic reactors 100 and 200 may have a first flow path 20 including a main channel 30, a first channel 40, and a second channel 50 formed in a housing 10 having a predetermined volume. there is.
- first to third supply means 310 to 330 are known fluid pumps that can supply fluid in one direction by controlling the flow rate and pressure of the fluid, and may be made of precise equipment such as a syringe pump, for example.
- the application of the first to third supply means 310 to 330 is not limited to a syringe pump, and various known fluid pumps can be applied.
- the first supply means 310 is connected to one end of the main channel 30 and can supply the first fluid A to the main channel 30. If a plurality of main channels 30 are formed in the housing 10, the first supply means 310 may be connected to the end of the above-described first supply passage 210 to supply the first fluid A. .
- the second supply means 320 and the third supply means 330 are the inlet 41 of the first channel 40 and the inlet 41 of the second channel 50, respectively, as shown in FIG. It is connected to (41) to supply the second fluid (B) and the third fluid (C) to the main channel (30).
- the second supply means 320 and the third supply means 330 are connected to the second supply passage 220 and the third supply means 330. 3
- the second fluid (B) and the third fluid (C) can be supplied through the supply passage 230.
- the first channel 40 and the second channel are supplied only with a single second supply means 320, as shown in FIG. 10.
- the second fluid (B) and the third fluid (C) may be supplied simultaneously to the (50) side.
- the number of supply means required for operation of the device can be minimized, and asymmetry between the first channel 40 and the second channel 50, which may occur when operating a separate supply means, is also prevented. There are advantages to doing this.
- Another aspect of the present invention relates to a method for manufacturing microcapsules performed using the above-described microfluidic reactor or microfluidic reaction device.
- Microcapsules manufactured by the manufacturing method of the present invention can control the size of the core and the thickness of the shell by controlling the flow rates of the first fluid, second fluid, and third fluid in the microfluidic reactor or microfluidic reaction device.
- the first fluid may be a solution in which the active ingredient is dispersed, which forms the core of the capsule;
- the second fluid may be a solution containing a biocompatible polymer material that forms the shell of the capsule;
- the third fluid may be a solution containing a water-soluble polymer compound for supporting the active ingredient in the biocompatible polymer material, but is not limited thereto.
- Another aspect of the present invention is a first core manufactured by the above-described manufacturing method and comprising a solution in which the first active ingredient is dispersed; and a first shell containing a solution of a first biocompatible polymer material encapsulating the first active ingredient.
- the first active ingredient may be a drug for treating a specific disease or a chelator for adsorbing metal ions to adsorb/remove metal ions, but is not limited thereto.
- the first shell can be used without limitation as long as it is a material suitable for encapsulating the first active ingredient.
- the microcapsule according to the present invention can be manufactured as an external stimulus-responsive microcapsule that releases the first active ingredient to the outside only under specific external conditions, depending on the first active ingredient and the material used for the first shell.
- the microcapsule according to an embodiment of the present invention is manufactured by the above-described manufacturing method, and includes a first core containing a solution in which a metal ion adsorbent material is dispersed; and a first shell containing a solution in which a first biocompatible polymer material encapsulating the metal ion-adsorbing material is dissolved.
- the metal ion is calcium ion, potassium ion, magnesium ion, lithium ion, uranium ion, cobalt ion, palladium ion, niobium ion, vanadium ion, lead ion, mercury ion, and cadmium ion. and copper ions, but is not limited thereto.
- the metal ion adsorbent material used to manufacture the external stimulus-responsive microcapsules includes porous inorganic adsorbents such as activated carbon, alumina, silica gel, and zeolite that adsorb metal ions through physical/chemical interactions on the surface;
- porous inorganic adsorbents such as activated carbon, alumina, silica gel, and zeolite that adsorb metal ions through physical/chemical interactions on the surface
- an organic adsorbent using a coordination bond with a metal ion, that is, a chelate bond may be used, but is not limited thereto, and a person skilled in the art may appropriately select and use the adsorbent depending on the type of metal ion to be removed.
- the chelating material for metal ion adsorption includes ethylene-diamine-tetraacetic acid (EDTA), ethylene diamine (EDA), citric acid, glycine, and sodium hexametaphosphate. It may be hexametaphosphate (HMP) or alendronate, but is not limited thereto.
- the first core may additionally contain a fluorescent material so that the microcapsule can be observed with the naked eye.
- the fluorescent substances include fluorescein isothiocyanate (FITC), rhodamine 6G isothiocyanate, Cy3 (Cyanine 3), Cy5 (Cyanine 5), Alexa Fluor (Alexa Fluor) 405, Consisting of AlexaFluor 430, AlexaFluor 488, AlexaFluor 532, AlexaFluor 546, AlexaFluor 555, AlexaFluor 568, AlexaFluor 594, AlexaFluor 633, AlexaFluor 647, AlexaFluor 660, AlexaFluor 680 and AlexaFluor 700. It may be any one or more selected from the group, but is not limited thereto.
- microcapsules for diagnosing stone disease can be manufactured using alendronate as a chelating material for metal ion adsorption and FITC as a fluorescent material.
- the first biocompatible polymer material is polylactic acid, polylactide, polylactic-co-glycolic acid, polylactide-co-glycolide (PLGA), polyphosphazine, polyimino Carbonates, polyphosphoesters, polyanhydrides, polyorthoesters, copolymers of lactic acid and caprolactone, polycaprolactone, polyhydroxyvalate, polyhydroxybutyrate, polyamino acids, copolymers of lactic acid and amino acids, Any biophile known to be suitable for encapsulating the first active ingredient may be selected from the group consisting of paraffin wax, coconut wax, gel wax, palm wax, soy wax, beeswax, polydopamine and mixtures thereof. Chemical polymer materials can be used without restrictions.
- the external stimulus-responsive microcapsule of the present invention may have its shell broken or decomposed by an external stimulus, and in this case, the external stimulus may be chemical stimulus, biological stimulus, ultrasonic stimulus, thermal stimulus, near-infrared stimulus, electrical stimulus, magnetic stimulus, or light. It can be irritating.
- the chemical stimuli may include pH-mediated changes to the shell wall, disruption of the shell wall through chemical cleavage of cross-links, triggered depolymerization of the shell wall, and shell wall switching reactions.
- pH-mediated changes to the shell wall disruption of the shell wall through chemical cleavage of cross-links
- triggered depolymerization of the shell wall and shell wall switching reactions.
- the microcapsules include an acid-decomposable chemical cross-linking agent, such as a ketal.
- a decrease in pH, especially to pH below 5, can lead to the conversion of ketals to ketones and two alcohols and promote the destruction of microcapsules.
- the microcapsules may contain one or more polyelectrolytes that are pH sensitive (e.g., PAA, PAAm, PSS, etc.). A decrease in pH can disrupt ionic or hydrogen bonding interactions in these microcapsules or create nanopores within them.
- microcapsules containing polyelectrolytes include a charged gel-based core that expands and contracts with changes in pH.
- crosslinkers eg, disulfide bonds
- various chemicals may be added to the microcapsule solution that induce oxidation, reduction, or other chemical changes in the polymer components of the shell wall.
- reducing agents such as beta-mercaptoethanol, dithiothreitol (DTT) or 2-tris(2-carboxyethyl)phosphine (TCEP) are added to ensure that the disulfide bonds in the microcapsule shell wall are broken.
- enzymes can be added to cleave the peptide bonds within the microcapsules, thereby causing cleavage of the shell wall cross-links.
- microcapsules can be destroyed using depolymerization.
- Chemical triggers may be added to facilitate removal of the protective head group.
- a trigger may cause removal of the head group of a carbonate ester or carbamate within the polymer, which in turn may cause depolymerization and release of the core material from within the capsule.
- Shell wall switching reactions can be due to any structural changes to the porosity of the shell wall.
- the porosity of the shell can be modified, for example, by addition of azo dyes or viologen derivatives.
- the addition of energy e.g. electricity, light
- the chemical trigger may include an osmotic trigger, whereby a change in the ion or solute concentration of the microcapsule solution induces expansion of the capsule. Swelling can cause a rise in internal pressure, causing the capsule to rupture and release its contents.
- biological stimuli can be used to cause destruction or decomposition of microcapsules.
- biological triggers are similar to chemical triggers, but in many examples biomolecules or molecules commonly found in biological systems, such as enzymes, peptides, sugars, fatty acids, nucleic acids, etc., are used.
- microcapsules may contain polymers with peptide cross-links that are susceptible to cleavage by certain proteases.
- microcapsules include a shell wall containing cellulose. The addition of the hydrolytic enzyme chitosan serves as a biological trigger for cleavage of cellulose bonds, depolymerization of the shell wall and release of internal contents.
- microcapsules can be induced to release their core material upon application of ultrasonic stimulation.
- Ultrasound is used for medical purposes in the diagnosis or treatment of various diseases due to its low side effects on human tissue.
- Several FDA-approved ultrasound devices are available, and ultrasound can be used as a means of remote control for the release of encapsulated drugs in vitro and in vivo .
- the effect of ultrasonic waves in causing emission occurs due to acoustic cavitation of the liquid under ultrasonic oscillations at frequencies above 20 kHz.
- the shape of the capsule wall may be deformed, the capsule membrane may be destroyed, and the contained drug may be released.
- microcapsules can be induced to release their core material upon application of a thermal stimulus. Temperature changes can cause various changes in microcapsules. Thermal changes can cause melting of the microcapsules causing the shell walls to collapse. In other cases, heat can increase the internal pressure of the capsule's internal components such that the capsule ruptures or explodes. As another example, heat can cause the capsule to shrink and dehydrate. Additionally, heat can act on the heat-sensitive polymer within the microcapsule shell, causing destruction of the microcapsule.
- the microcapsules comprise a heat-sensitive hydrogel shell encapsulating one or more emulsified active ingredient particles.
- the hydrogel material of the outer shell wall shrinks. The sudden contraction of the shell ruptures the capsule and causes the reagent inside the capsule to eject into the sample preparation solution in the microwell.
- the shell wall may comprise a diblock polymer or a mixture of two polymers with different thermal sensitivities.
- One polymer specifically shrinks after heat application, while the other polymer has higher thermal stability.
- the heat-sensitive polymer shrinks while the other polymer remains, which can cause the formation of pores.
- the shell wall may include magnetic nanoparticles. Exposure to magnetic fields can cause heat generation, causing rupture of the microcapsules.
- Incorporating magnetic nanoparticles into the shell wall of a microcapsule can not only guide the particles within the array but also cause the capsule to rupture.
- inclusion of Fe 3 O 4 nanoparticles in a polyelectrolyte containing capsule causes rupture in the presence of an oscillating magnetic field stimulus.
- microcapsules may rupture or disintegrate as a result of electrical stimulation. Similar to the magnetic particles described above, electrically sensitive particles can enable other functions such as triggering of capsule rupture and alignment within electric fields, electrical conductivity or redox reactions. In one embodiment, microcapsules containing electrically sensitive material can be aligned in an electric field to control the release of the inner core material. In other embodiments, the electric field can trigger redox reactions within the shell wall itself, which can increase porosity.
- light stimulation can be used to destroy microcapsules.
- Multiple photostimulations are possible and may include systems using various molecules, such as nanoparticles and chromophores, that can absorb photons in specific wavelength ranges.
- a metal oxide coating can be used as a capsule trigger. UV irradiation on a polymer electrolyte capsule coated with SiO 2 /TiO 2 may cause the capsule wall to collapse.
- a light convertible material such as an azobenzene group, may be included in the shell wall. Upon application of UV or visible light, such chemicals undergo reversible cis-trans isomerization when absorbing photons.
- the inclusion of an optical switch may result in the shell wall collapsing or having a higher porosity upon application of the optical trigger.
- the first core may further include magnetic nanoparticles.
- the microcapsule containing magnetic nanoparticles in the first core can be moved by magnetism, and thus the microcapsule can be moved to a desired location.
- a microcapsule according to an embodiment of the present invention includes a second core containing a solution in which the second active ingredient is dispersed inside the first core or outside the first shell of the microcapsule, and an agent encapsulating the second active ingredient. 2 It may be a multi-layered structure that further includes a second shell containing a solution containing a biocompatible material.
- the first and second active ingredients may be the same or different materials depending on the purpose, and may be individually encapsulated by the first and second biocompatible materials.
- the first and second biocompatible substances may be the same or different from each other.
- the microcapsule of the present invention can be manufactured in a form to individually encapsulate three or more active ingredients, and for this purpose, the nth active ingredient and the nth biocompatible polymer material for encapsulating the same are used. Additional information may be included.
- a stealth material or a drug targeting material may be bound to or coated on the outer surface of the first shell and/or the second shell.
- Another aspect of the present invention relates to a drug delivery vehicle comprising the above-described microcapsules.
- the drug carrier according to one embodiment of the present invention may be a micro-chelator including an external stimulus-responsive microcapsule encapsulated in a solution in which a chelating material for metal ion adsorption is dispersed in the core of the capsule.
- the micro chelator of the present invention can be used for medical purposes to adsorb and remove metal ions in the body, and specifically, accumulates in various tissues or organs of the body, such as kidneys, urinary tract, stomach, gallbladder, salivary glands, eyes or muscles. It may be used to remove stones, but is not limited to this.
- micro chelator of the present invention can also be used to diagnose stone disease.
- Another aspect of the present invention provides a method for removing stones and diagnosing stone disease using the above-described microcapsules or a drug carrier containing them.
- the stone removal method and stone disease diagnosis method according to an embodiment of the present invention can be applied in vitro and/or in vivo , and when applied in vivo , treat patients with stones. Or it may be for diagnosing an individual suspected of having stone disease.
- the stone removal method according to a preferred embodiment of the present invention may be a stone removal method comprising administering the above-mentioned microcapsules or a drug carrier containing the same to an individual (patient) in need thereof in a therapeutically effective amount. .
- the subject may be a patient with stones accumulated in the kidneys, urinary tract, stomach, gallbladder, salivary glands, eyes or muscles, but is not limited thereto.
- a method of removing stones according to another preferred embodiment of the present invention may be a method of treating urolithiasis, which includes administering the above-described microcapsules or a drug carrier containing the same in a therapeutically effective amount to an individual in need thereof.
- the method for diagnosing stone disease may be a method for diagnosing stone disease that includes administering the above-described microcapsule or a drug delivery system containing the same to an individual (eg, an individual suspected of having stone disease).
- microcapsules when microcapsules are manufactured using alendronate as a chelating material for metal ion adsorption and FITC as a fluorescent material, the diagnostic results can be observed with the naked eye due to the luminescent properties of the fluorescent material. In addition, because FITC selectively binds to stones, stone disease can be diagnosed more effectively.
- the microcapsule may be an external stimulus-responsive microcapsule encapsulated in a solution in which a chelating material for adsorbing metal ions is dispersed in the core of the capsule, and the drug
- the delivery vehicle may be a micro-chelator containing the external stimulus-responsive microcapsules.
- the stone disease includes, but is not limited to, urinary stones, kidney stones, ureteral stones, etc., and may include various stone-related diseases caused by the accumulation of stones in the body.
- the administered dose of the microcapsule or drug carrier containing the same can be determined by a person skilled in the art based on body absorption, patient's weight, age, gender, health condition, diet, and administration time. , can be adjusted appropriately depending on the administration method, excretion rate, and severity of disease.
- the term "administration” means introducing the microcapsule and/or drug delivery system of the present invention into a subject suspected of having stone disease by any appropriate method, and the administration route is oral or parenteral, as long as it can reach the target tissue. It can be administered via any route, and can be administered once or in several divided doses.
- the term "subject (patient)” includes animals such as, for example, humans, monkeys, cattle, horses, sheep, pigs, chickens, turkeys, quails, cats, dogs, mice, rats, rabbits, or guinea pigs. However, it refers to animals that are not limited to this.
- the subject (patient) is a mammal, and more preferably, the subject (patient) is a human.
- the term “therapeutically effective amount” refers to an amount that produces a more or less desirable effect with a reasonable effect/risk ratio applicable to any medical treatment. In certain embodiments, the term refers to an amount necessary or sufficient to eliminate or alleviate a medical condition for a period of time.
- the effective amount may vary depending on factors such as the disease or condition being treated, the specific targeted construct being administered, the body size of the individual, or the severity of the disease or condition. A person skilled in the art can empirically determine the effective amount of microcapsules or drug carriers containing them without excessive experimentation. In certain embodiments, the microcapsules or drug carriers containing them are formulated in such a way that they can be delivered to a patient in a therapeutically effective amount as part of prophylactic or therapeutic treatment.
- Another aspect of the present invention provides the use of the above-described microcapsules or a drug carrier containing the same as a stone removal drug.
- the stone removal drug may include a urolithiasis treatment agent. Accordingly, the use of the above-mentioned microcapsules or a drug carrier containing the same in the production of a therapeutic agent for urolithiasis is also provided.
- microcapsules or drug carriers containing them as a stone disease diagnostic kit is provided.
- the present invention provides a kit for diagnosing stone disease containing the above-described microcapsules or a drug delivery system containing them.
- the microcapsule may be an external stimulus-responsive microcapsule encapsulated in a solution in which a chelating material for metal ion adsorption is dispersed in the core of the capsule, and the drug carrier may be a micro chelator (micro) containing the external stimulus-responsive microcapsule. -chelator).
- a chelating material for metal ion adsorption is dispersed in the core of the capsule
- the drug carrier may be a micro chelator (micro) containing the external stimulus-responsive microcapsule. -chelator).
- the kit optionally includes one or more components, such as instructions for use, a device and additional reagents (e.g. sterile water or saline solution), and components for carrying out the diagnostic method, such as tubes. , containers, and syringes.
- An exemplary kit includes a microcapsule provided in the present invention or a drug carrier containing the same, and optionally includes instructions for use, a device for administering the microcapsule or a drug carrier including the same to an individual, and a device for administering the microcapsule or the drug carrier including the same to the individual. It may include a device for detecting fluorescence of the drug carrier.
- the kit may optionally include instructions.
- the instructions typically include the above-described microcapsules or drug carriers containing the same; and optionally other components included in the kit, and tangible language describing the method of administration.
- the instructions include instructions for monitoring the subject over the duration of treatment.
- the metal ion adsorption efficiency according to the type of ion adsorption solution was confirmed using EDTA, EDA, HMP, and citric acid, which are representative organic chelate adsorption materials. The remaining conditions were the same except for the type of ion-adsorbing solution (amount: 300 ⁇ L, concentration: 10 mM, adsorption time: 60 minutes).
- the metal ion adsorption efficiency of the chelate is > Citric acid > EDA appeared in the order.
- EDTA showed 40% and HMP showed 39%
- HMP showed 98%
- EDTA showed 84%, which is higher than that of HMP. Cytotoxicity was lower.
- HMP metal ion adsorption efficiency and cytotoxicity
- Example 1-2 the HMP solution was selected as the ion adsorption solution, and the metal ion adsorption efficiency according to its volume, concentration, and adsorption time was measured.
- the solution volume was changed to 10, 100, 300, and 1000 ⁇ L, respectively, and the solution concentration and adsorption time were the same at 10 mM and 30 minutes, respectively.
- the experiment was conducted with this setting.
- the metal ion adsorption efficiency increased proportionally with the volume of the solution, showing a removal efficiency of more than 24% at a maximum of 1000 ⁇ L.
- the metal ion adsorption efficiency according to the droplet concentration was confirmed at HMP solution concentrations of 0, 1, 5, 10, and 50 mM, respectively, and the amount of solution and adsorption time were set to 300 ⁇ L and 30 minutes, respectively. did.
- the metal ion adsorption efficiency increased, up to 23%.
- the metal ion adsorption efficiency according to the adsorption time was confirmed at 1, 10, 30, 60, and 1440 minutes, respectively, and the amount and concentration of the solution were set to 300 ⁇ L and 10 mM, respectively.
- the metal ion adsorption efficiency increased as the adsorption time increased, and a removal efficiency of up to 34% or more was confirmed.
- HMP was selected as a metal ion-adsorbing chelating solution for loading into microcapsules, and cell viability according to its concentration and exposure time was evaluated in HEK-293 cells (human embryonic kidney; Korea Cell Line Bank).
- cell viability was checked after culturing for 30 minutes at different HMP concentrations of 1, 5, 10, and 50 mM. As a result, as confirmed in Figure 13a, cell viability decreased as the concentration of HMP increased. At 50 mM HMP, low cell activity (less than 80%) was observed, and at less than 10 mM HMP, high cell activity (> 98%) was observed.
- Cells were cultured for 24 hours at PLGA concentrations of 0.05, 01, and 0.2 mg/mL, respectively, and cell viability according to PLGA concentration was confirmed. As a result, as shown in Figure 13c, cell viability was greater than 85% in all conditions.
- cell viability was checked according to time (10, 30, 60, and 180 seconds, respectively) when sonicating at 40 kHz and 50 W using an ultrasonic cleaner. .
- time 10, 30, 60, and 180 seconds, respectively.
- cell viability was more than 86% by 60 seconds.
- the conditions of the solution to be loaded in the micro droplets were selected as follows: 1) HMP concentration: 10 mM, 2) HMP delivery amount: 300 ⁇ L , 3) HMP exposure time: 1 minute, 4) PLGA concentration: 0.2 mg/mL, 5) Ultrasound exposure time: 60 seconds.
- ultrasonic stimulating microcapsules HMP/MNP@PLGA were manufactured using the microfluidic reaction device according to the present invention.
- a first fluid forming the core (hereinafter referred to as internal phase), a second fluid forming a shell (hereinafter referred to as intermediate phase), and a third fluid (hereinafter referred to as external phase) for supporting the first fluid in the second fluid.
- the composition of the first phase is as follows: internal phase: chelating solution for metal ion adsorption (HMP, 10 mM), surfactant (PVA 1 wt%) and dye (sulforhodamine B, 0.5 mM); Middle phase: PLGA 10 wt%; External phase: Surfactant (PVA 10 wt%).
- the sum of the flow rates of the internal phase and the middle phase was maintained at 115 ⁇ L/min, and the flow rate of the internal phase was adjusted.
- the internal phase flow rate increased, the core size of the microcapsule increased and the shell thickness of the capsule decreased.
- the internal phase flow rate was 5 ⁇ L/min, the thickness of the capsule shell became thicker than 80 ⁇ m, and it took more than 1 minute for the internal phase to be released upon external ultrasonic stimulation.
- the internal phase flow rate was more than 30 ⁇ L/min, the shell thickness of the capsule became too thin, causing droplets to break during the DCM (dichloromethane) evaporation process.
- Example 3-1 Under the same conditions as Example 3-1, the size of the microcapsules was confirmed by adjusting the flow rate of the external phase. As a result, as seen in b) of Figure 16, when the flow rate of the external phase increased, it was confirmed that both the core (15-78 ⁇ m) size and the capsule shell thickness decreased. It was confirmed that when the external flow rate was less than 800 ⁇ L/min, the ultrasonic stimulation time to break the shell increased as the capsule shell became thicker.
- HMP/MNP@WAX@Pdop Near-infrared irritating microcapsules
- Pdop polydopamine
- wax wax
- the near-infrared stimulation-responsive microcapsules were manufactured by manufacturing wax-based microcapsules in a microfluidic reaction device, and then mixing 1 g of microcapsules, 1 g of dopamine precursor, 2 mL of ammonia, 80 mL of ethanol, and 180% double distilled water in a batch. mL was added and mixed at 360 rpm using a stirrer for 30 hours.
- near-infrared irritating microcapsules prepared under the optimized conditions derived in Example 5 were treated with near-infrared rays.
- Near-infrared rays were processed using a laser gun with an intensity of 2W/cm 2 .
- the shell of the near-infrared irritant microcapsule is made of wax/dopamine, and when exposed to near-infrared rays, it first receives external near-infrared rays to generate heat, and then the wax melts due to the heat and the internal solution is released.
- the time until the capsule was stimulated and released after treatment with near-infrared rays was confirmed to be within 5 seconds.
- ultrasonic irritable microcapsules HMP/MNP@PLGA
- HMP/MNP@PLGA ultrasonic irritable microcapsules
- Near-infrared irritating microcapsules HMP/MNP@WAX@Pdop
- Example 7-1 To confirm whether the microcapsules prepared in Example 7-1 could be moved by external magnetism, 10 microcapsules were placed on a Petri dish (10 cm) and an experiment was conducted using a magnet. As a result, as can be seen in Figure 20, both the ultrasonic stimulating microcapsule and the near-infrared ray stimulating microcapsule were able to move in all directions. After tracking the X and Y axes using the Tracker 5.1.3 program, the movement speed of the microcapsule was calculated using Equation 1 below.
- Equation 1 D is the diffusion coefficient, and ⁇ t represents the time interval.
- Non-invasive/selective drug delivery methods reduce side effects and increase treatment effectiveness when targeting disease sites.
- the potential of these microcapsules to treat urolithiasis is demonstrated by the PDMS-based ⁇ -type fluidic chip (channel width: 5 mm, length) designed taking into account the common number (two or three) of major calyces in the human kidney. : 37mm) by evaluating performance such as delivery efficiency, US-responsive release, and removal of calcium oxalate stones (CaOx).
- the ⁇ -type fluid chip was manufactured using the PDMS imprinting method.
- a ⁇ -shaped PMMA mold (45x30mm) and a stainless steel frame (100x80mm) were designed using 3D-CAD software, and the designed ⁇ -shaped PMMA mold was printed with a 3D printer.
- the upper and lower parts of the frame were manufactured separately using a CNC process using CTX Beta 1250 TC (DMG MORI).
- a stone removal experiment was performed by tightening the PDMS-based fluid chip up and down with a hexagonal screw ( Figures 22b and 22c).
- Microcapsules were fabricated in a double droplet microfluidic reactor. HMP (1-100mM), S-Rh.B (sulforhodamine B, 10mM) and Fe 3 O 4 (0.1-1 wt%) aqueous solution (W1 phase) were prepared and injected into the internal phase. Additionally, PLGA (O phase, 10 wt%) dissolved in DCM solution was injected into the middle phase to obtain a W1/O emulsion. Finally, aqueous PVA (W2 phase, 10 wt%) was injected into the external phase to obtain W1/O/W2 emulsion.
- Rh.B/HMP/Fe 3 O 4 @PLGA microcapsules were collected in a vial filled with 10 wt% sucrose to prevent the microcapsules from bursting due to osmotic pressure.
- the productivity of the double droplet microfluidic reactor was 8 Hz (sec -1 ), so it was operated for 1.25, 2.5, 12.5, 62.5, and 125 seconds, respectively, to obtain 10, 20, 100, 500, and 1000 microcapsules.
- Microcapsules immersed in 10 wt% sucrose were evaporated for 3 hours at room temperature using an orbital shaker (90 rpm). Then, the microcapsules were washed three times with DI water and stored in 10 mL sucrose (10 wt%).
- Microcapsules containing FITC-ALS (10mM) were prepared by replacing HMP and S-Rh.B in the above method.
- the magnetic-guided delivery efficiency of microcapsules was analyzed under dynamic urine flow conditions (0.5 mL min -1 ) on a fluid chip.
- the CaOx stone was placed on the fluid chip ([c] area, magnet placement).
- the prepared microcapsules were supplied to the fluid chip.
- the transfer efficiency was calculated using Equation 2 below.
- the magnetic delivery capsule released a fluorescent solution after US stimulation, which adsorbed on the calcium of the stone, allowing residual stones to be visualized with green fluorescence in a simple manner ( Figures 25A and 25B).
- a PDMS-based renal urinary tract mimic chip was designed using 3D CAD software. Detailed specifications include ureter (length: 85 mm and width: 4.7 mm), renal pelvis (length: 27 mm and width: 5.3-20.2 mm), main kidney cup (length: 11.2-16.5 mm and width: 114-16.3 mm), and minor kidney. cup (length: 10.3-15 mm, width: 7.7-9.9 mm) and full kidney size (length: 66 mm, width: 135 mm and height: 40 mm).
- the designed kidney tract mimic chip mold was printed using a polymer resin (Accura 25 from Korea technology) using an SLA proX 800 printer.
- each spherical cavity (size: 1.36 mm for 1 mm stones, 4.08 mm for 3 mm stones, 6.8 mm for 5 mm stones, 10.2 mm for 7.5 mm stones) was used.
- the 3D printed mold was designed using 3D-CAD software. Stone size was controlled by the spherical cavity of the 3D printed mold.
- the 3D printed PMMA mold was then placed into a conical tube (15 mL for 1-5 mm stones, 50 mL for 7.5 mm stones).
- the aqueous dispersed calcium oxalate solution (20 wt%) was poured into a conical tube equipped with a 3D printing mold and centrifuged at different speeds (2000–9000 rpm) to control the calcium oxalate density.
- the experimental setup was prepared to test magnetically induced motion, US-responsive release, and human kidney stone removal by microcapsules.
- Real human kidney stones were intentionally placed in small kidney cups of a PDMS-based kidney tract mimic chip.
- the prepared artificial urine solution (36.5°C) was flowed outward from the top of the human kidney stone and continuously flowed at a flow rate of 0.5 mL min -1 using a pump (Reglo digital gear pump, Revodix).
- a magnet was mounted on the XY stage to ensure magnetically induced mobility of the microcapsule.
- the renal tract mimetic chip was placed on a microscope to observe the magnetically guided movement of the microcapsules, the US-responsiveness of releasing the solution from the microcapsules, and the removal of urinary stones.
- the distance between the human abdomen and kidney stones the distance of stones from external stimuli (US and magnet) was set to 8 cm.
- the microcapsules according to the present invention present a potential new approach to clinical treatment by significantly reducing the size of stones and promoting natural excretion.
- kidney stones produced in vivo were used and removed from a PDMS-based renal tract mimic chip (66 ⁇ 135 ⁇ 40 mm) designed considering the size and shape of the actual ureter-renal organ in humans. Tests were performed ( Figures 28A, 29 and 30). Human kidney stones (CaOx 100%, size 5–7 mm) were obtained from patients undergoing ureteroscopy at Seoul St. Mary's Hospital, Seoul, South Korea.
- the stone was placed in the small kidney cup of the renal tract mimic chip, which is a surgically difficult location.
- a group of 500 microcapsules as controlled by a magnet (400 mT), formed a narrow ureter (4.7 ⁇ 85 mm), a curved renal pelvis (5.3-20.2 mm wide). ⁇ 27 mm) and passed through both sides of the lesser renal cup into stones in the lesser renal cup.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Epidemiology (AREA)
- Analytical Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Urology & Nephrology (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- Manufacturing Of Micro-Capsules (AREA)
Abstract
본 발명은 마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐에 관한 것으로, 보다 상세하게는 활성 성분이 담지된 균일한 입자 크기의 다층 마이크로 캡슐을 효과적으로 제조할 수 있는 미세유체반응기, 이를 이용한 마이크로 캡슐의 제조방법, 상기 방법으로 제조되는 마이크로 캡슐 및 상기 마이크로 캡슐을 포함하는 마이크로 킬레이터(micro-chelator)에 관한 것이다.
Description
본 발명은 마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐에 관한 것으로, 보다 상세하게는 활성 성분이 담지된 균일한 입자 크기의 다층 마이크로 캡슐을 효과적으로 제조할 수 있는 미세유체반응기, 이를 이용한 마이크로 캡슐의 제조방법, 상기 방법으로 제조되는 마이크로 캡슐 및 상기 마이크로 캡슐을 포함하는 마이크로 킬레이터(micro-chelator)에 관한 것이다.
금속 이온은 여러 산업 공정과 다양한 화학제품 제조에 사용이 되며 후처리 과정 중에서 하천 및 바다로 유입되어 인간, 동물 및 환경 등에 악영향을 준다. 특히, 구리, 철, 아연 및 수은과 같은 중금속 이온은 생태계 먹이사슬에 따라 축척이 되며 금속 오염물 제거 기술은 환경 보호 차원에서 요구되는 사항이다.
현재 금속 이온을 제거 및 회수하는 방법으로서 공정 비용이 저렴하고 대량 유체를 처리 가능한 흡착법이 산업적으로 폭넓게 이용된다. 예를 들어, 표면의 물리/화학적 상호작용에 의해 금속 이온을 흡착시키는 활성탄, 알루미나, 실리카겔, 제올라이트와 같은 다공성 무기질 흡착제가 있고, 금속 이온과 배위결합 즉, 킬레이트 결합을 이용한 유기계 흡착제는 화학 작용기에 따라 선택적인 흡착도 가능하다. 대표적으로 사용되는 유기 킬레이트 흡착성 물질은 EDTA (ethylene-diamine-tetraacetic acid), EDA (ethylene diamine), 시트르산 (citric acid), 글리신 (glycine) 및 HMP (sodium hexametaphosphate) 등이 있으며, 이는 금속 이온을 제거하는 수처리에 주로 활용되고 있다.
한편, 신체 부위마다 생성되는 이유는 다르지만 보통 사람의 몸 속에는 여러 가지 이유로 '결석(돌)'이 생긴다. 자연히 체외 배출되어 특별한 증상이 없이 지나기도 하지만, 소화기의 위석/분석, 담낭의 담석, 침샘의 타석, 눈의 누석 및 결막 결석, 근육 계통 석회화 건염 및 통풍 등은 때로 극심한 통증을 유발하거나 이물감, 가려움, 더부룩함 같은 불편한 증상을 일으켜서 치료가 필요하거나 수술에 의해 제거해야 하는 경우도 있다.
최근에는, 소화 과정 중에 칼슘, 칼륨 등 결정화 되기 쉬운 금속 이온이 소변으로 배출되지 못하고 신장 등에 쌓여 옆구리, 등 쪽에 극심한 통증을 유발하는 '요로 결석'을 금속 이온 흡착성 물질을 이용하여 흡착 제거하여 체외 배출시키기 위한 시도가 이루어지고 있다. HMP, 2-메톡시-6-메틸피리딘(2-methoxy-6-methylpyridine)과 같은 물질이 강한 킬레이팅 능력으로 인하여 기존 EDTA, 시트르산보다 높은 결석 제거 성능을 보여주었다. 하지만, 높은 흡착 성능을 갖는 이온 흡착성 물질일지라도 인체 내에 직접적으로 주입하게 된다면 인체 독성을 일으키게 되어 실제 임상 적용에는 한계가 있다.
따라서, 결석을 제거하기 위하여 이온 흡착성 물질을 인체 내에 효과적으로 주입하기 위한 방법의 연구가 필요한 실정이다.
이와 관련하여, 특허문헌 1에는 망간 킬레이트제를 폴리락타이드-코-글리콜라이드(PLGA)로 캡슐화한 마이크로 캡슐이 개시되어 있으나, 환자에게 투여될 수성 생물학적 완충 용액에서 안정한 개선된 킬레이트제를 제공하고 있을 뿐, 마이크로 캡슐의 코어 크기 및 쉘의 두께를 정교하게 조절하여 킬레이트제를 안정적으로 담지하면서, 외부 자극에 의해 킬레이트제를 즉각적으로 방출하거나 서방형으로 방출할 수 있는 최적화된 외부 자극 반응성 마이크로 캡슐 및 이의 제조기술에 대해서는 언급한 바 없다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 미국 공개공보 US 2013/0089602호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 활성 성분이 담지된 균일한 입자 크기의 다층 마이크로 캡슐을 효과적으로 제조할 수 있는 미세유체반응기 및 이를 포함하는 미세유체반응장치를 제공하는 것이다.
본 발명의 다른 목적은 상기 미세유체반응기 또는 상기 미세유체반응장치를 이용하여 수행되는 마이크로 캡슐의 제조방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 제조방법으로 제조되는 마이크로 캡슐 및 이를 포함하는 약물 전달체 또는 마이크로 킬레이터를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 제조방법으로 제조되는 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 이용한 결석 제거 방법, 요로결석증 치료 방법 및/또는 결석증 진단 방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야의 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 측면에 따르면, 소정 부피를 가지는 하우징; 및 상기 하우징 내부에 형성되며, 상기 하우징의 외부로부터 유입된 유체가 일방향을 따라 이동하도록 가이드하는 제1 유로;를 포함하고, 상기 제1 유로는, 상기 코어를 형성하는 제1 유체가 유입되어 이동되는 메인 채널; 상기 쉘을 형성하는 제2 유체가 유입되는 유입부와, 상기 유입부로부터 분기되어 모두 상기 메인 채널의 일측부에 연결되는 복수의 지류를 가지는 분기부를 포함하는 제1 채널; 및 제1 유체를 상기 제2 유체에 담지시키기 위한 제3 유체가 유입되어 이동하며, 상기 제1 채널과 동일한 구조를 가지도록 형성되되 상기 메인 채널의 타측부에 연결되는 제2 채널;을 포함하고, 상기 제1 채널과 상기 제2 채널은 상기 메인 채널을 기준으로 대칭이 되도록 배치되는, 코어(core)와 쉘(shell)을 포함하는 마이크로 캡슐을 제조하기 위한 미세유체반응기가 제공된다.
이때, 상기 제1 채널과 상기 제2 채널은 각각 2개의 지류를 가질 수 있다.
이때, 상기 제1 채널 및 상기 제2 채널에 포함된 4개의 지류는 상기 메인 채널을 중심으로 X자 형상을 이루도록 배치될 수 있다.
이때, 상기 메인 채널 중에서 상기 4개의 지류가 연결되는 부분은 마름모 형상의 단면을 가질 수 있다.
이때, 상기 복수의 지류는 각각 제1 기울기를 가지며 연장되는 제1 부분 및 제2 기울기를 가지며 연장되는 제2 부분을 포함할 수 있고, 상기 제1 기울기와 상기 제2 기울기 중 어느 하나는 양의 기울기를 가질 수 있고, 다른 하나는 음의 기울기를 가질 수 있다.
이때, 상기 제1 채널 및 상기 제2 채널에 포함된 복수의 지류는 상기 메인 채널의 둘레 방향을 따라 동일한 각도로 이격 배치될 수 있다.
이때, 상기 메인 채널의 유출구 측 단부에 삽입되는 관 부재를 더 포함할 수 있고, 상기 관 부재는 상기 메인 채널의 내경과 동일한 크기의 외경을 가질 수 있다.
이때, 상기 제1 유로는 상기 제1 채널 및 상기 제2 채널과 상기 메인 채널의 연장 방향을 따라 각각 나란하게 배치되어 상기 메인 채널과 연결되는 제3 채널 및 제4 채널을 더 포함할 수 있고, 상기 마이크로 캡슐은 다중 쉘 구조로 형성될 수 있다.
이때, 상기 하우징의 내부에 상기 제1 유로와 동일한 구조를 가지도록 형성되는 N개의 유로를 더 포함할 수 있고, 상기 제1 유로를 포함한 N+1개의 유로는 상기 하우징의 높이 방향을 따라 나란하게 배치될 수 있다.
이때, 상기 N+1개의 유로에 포함된 N+1개의 메인 채널의 일단부와 모두 연결되어 상기 N+1개의 메인 채널 측으로 상기 제1 유체를 공급하는 제1 공급 유로; 상기 N+1개의 유로에 포함된 N+1개의 제1 채널의 일단부와 모두 연결되어 상기 N+1개의 제1 채널 측으로 상기 제2 유체를 공급하는 제2 공급 유로; 상기 N+1개의 유로에 포함된 N+1개의 제2 채널의 일단부와 모두 연결되어 상기 N+1개의 제2 채널 측으로 상기 제3 유체를 공급하는 제3 공급 유로; 및 상기 N+1개의 메인 채널의 타단부와 모두 연결되어 상기 N+1개의 메인 채널로부터 유출되는 유체를 취합하는 취합 유로;를 포함할 수 있다.
이때, 상기 제1 유로는 상기 하우징을 3D 프린팅 공정을 통해 형성하는 과정에서 형성될 수 있다.
본 발명의 다른 측면에 따르면, 전술한 미세유체반응기; 상기 메인 채널의 일단부에 연결되어 상기 제1 유체를 공급하는 제1 공급수단; 상기 제1 채널의 유입부에 연결되어 상기 제2 유체를 공급하는 제2 공급수단; 및 상기 제2 채널의 유입부에 연결되어 상기 제3 유체를 공급하는 제3 공급수단;을 포함하는 미세유체반응장치가 제공된다.
이때, 상기 제2 공급수단은, 상기 제3 공급수단의 기능을 동시에 수행하도록 상기 제1 채널의 유입부 및 상기 제2 채널의 유입부에 연결되는 복수 개의 관부재를 포함할 수 있다.
본 발명의 또 다른 측면에 따르면, 전술한 미세유체반응기 또는 미세유체반응장치를 이용하여 수행되는, 마이크로 캡슐의 제조방법이 제공된다.
이때, 상기 제1 유체, 상기 제2 유체 및 상기 제3 유체의 유속을 조절하여 마이크로 캡슐의 코어 크기 및 쉘 두께를 조절할 수 있다.
이때, 상기 제1 유체는 캡슐의 코어를 형성하는, 활성 성분이 분산된 용액이고; 상기 제2 유체는 캡슐의 쉘을 형성하는, 생체 친화성 고분자 물질을 포함하는 용액이며; 상기 제3 유체는 상기 활성 성분을 생체 친화성 고분자 물질에 담지시키기 위한 수용성 고분자 화합물을 포함하는 용액일 수 있다.
본 발명의 또 다른 측면에 따르면, 전술한 제조방법으로 제조되고, 제1 활성 성분이 분산된 용액을 포함하는 제1 코어 및 상기 제1 활성 성분을 캡슐화하는 제1 생체 친화성 고분자 물질을 포함하는 용액을 포함하는 제1 쉘을 포함하는 마이크로 캡슐이 제공된다.
추가로, 전술한 제조방법으로 제조되고, 금속 이온 흡착성 물질이 분산된 용액을 포함하는 제1 코어 및 상기 금속 이온 흡착성 물질을 캡슐화하는 제1 생체 친화성 고분자 물질을 포함하는 용액을 포함하는 제1 쉘을 포함하는 외부 자극 반응성 마이크로 캡슐이 제공된다.
이때, 상기 상기 금속 이온은 칼슘 이온, 칼륨 이온, 마그네슘 이온, 리튬 이온, 우라늄 이온, 코발트 이온, 팔라듐 이온, 니오븀 이온, 바나듐 이온, 납 이온, 수은 이온, 카드뮴 이온 및 구리 이온으로 이루어진 군으로부터 선택되는 어느 1종 이상일 수 있다.
이때, 상기 금속 이온 흡착성 물질은 제거하고자 하는 금속 이온의 종류에 따라 선택될 수 있다.
이때, 상기 금속 이온이 칼슘 이온인 경우, 상기 금속 이온 흡착성 물질은 에틸렌-다이아민-테트라아세트산 (ethylene-diamine-tetraacetic acid, EDTA), 에틸렌 다이아민 (ethylene diamine, EDA), 시트르산, 글리신 또는 헥사메타인산나트륨 (sodium hexametaphosphate, HMP)일 수 있다.
이때, 상기 생체 친화성 물질은 폴리락트산, 폴리락타이드, 폴리락틱-코-글리콜산, 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 락트산과 카프로락톤의 공중합체, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산, 락트산과 아미노산의 공중합체, 파라핀 왁스, 코코넛 왁스, 겔 왁스, 팜 왁스, 콩 왁스, 밀랍, 폴리도파민 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있다.
이때, 상기 제1 코어는 형광물질을 추가로 포함할 수 있다.
이때, 상기 외부 자극 반응성 마이크로 캡슐은 외부 자극에 의해 쉘이 깨지거나 분해될 수 있고, 상기 외부 자극은 화학적 자극, 생물학적 자극, 초음파 자극, 열 자극, 근적외선 자극, 전기 자극, 자성 자극 또는 광 자극일 수 있다.
이때, 상기 코어에 자성나노 입자가 추가로 포함될 수 있다.
이때, 상기 코어에 입자가 포함된 외부 자극 반응성 마이크로 캡슐은 자성에 의해 이동 가능한 것일 수 있다.
이때, 상기 마이크로 캡슐 또는 외부 자극 반응성 마이크로 캡슐은 제2 활성 성분이 분산된 용액을 포함하는 제2 코어; 및 상기 제2 활성 성분을 캡슐화하는 제2 생체 친화성 고분자 물질을 포함하는 용액을 포함하는 제2 쉘을 추가로 포함할 수 있다.
이때, 상기 제2 코어 및 제2 쉘은 상기 제1 코어 내부 또는 상기 제1 쉘 외부에 포함될 수 있다.
이때, 제1 쉘 및/또는 제2 쉘의 외부 표면에 스텔스 기능성 물질 또는 약물 표적화 물질이 결합되거나 코팅될 수 있다.
본 발명의 또 다른 측면에 따르면, 전술한 마이크로 캡슐을 포함하는 약물 전달체가 제공된다.
추가로, 전술한 외부 자극 반응성 마이크로 캡슐을 포함하는 마이크로 킬레이터 (micro-chelator)가 제공된다.
이때, 마이크로 킬레이터는 의료용으로 사용될 수 있다.
이때, 상기 마이크로 킬레이터는 결석증(lithiasis) 진단 또는 결석 제거용으로 사용될 수 있다.
본 발명의 또 다른 측면에 따르면, 전술한 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 치료학적 유효량으로 이를 필요로 하는 개체에게 투여하는 것을 포함하는 결석 제거 방법이 제공된다.
이때, 상기 개체는 신장, 요로, 위, 담낭, 침샘, 눈 또는 근육에 결석이 축적된 환자일 수 있다.
추가로, 전술한 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 치료학적 유효량으로 이를 필요로 하는 개체에게 투여하는 것을 포함하는 요로결석증 치료 방법이 제공된다.
추가로, 전술한 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 개체에 투여하는 것을 포함하는 결석증 진단 방법이 제공된다.
본 발명의 또 다른 측면에 따르면, 전술한 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 포함하는, 결석증 진단 키트가 제공된다.
상기의 구성에 따라, 본 발명의 실시예에 따른 미세유체반응기는 전단력을 극대화하기 위한 X자 형태의 3차원 유체 경로로 구성되어 있어, 각 유체의 유속을 조절함으로써 캡슐의 코어 크기와 쉘의 두께를 원하는 대로 조절할 수 있을 뿐만 아니라, 상기 미세유체반응기에 X자 형태의 3차원 유체 경로를 추가함으로써 2가지 이상의 활성 성분이 개별적으로 캡슐화된 균일한 입자 크기의 다층 마이크로 캡슐을 제조하는 것이 가능하다. 또한, 본 발명의 실시예에 따른 미세유체반응기를 통해 캡슐의 코어에 금속 이온 흡착성 물질이 포함된 외부 자극 반응성 마이크로 캡슐을 제조하여, 원하는 외부 조건 하에서만 금속 이온 흡착성 물질을 방출시킴으로써, 체내 중금속 또는 결석을 제거하거나, 해수 또는 폐수와 같은 수자원으로부터 금속 이온을 제거/회수하는 데에도 활용 가능하다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 미세유체반응기를 이용하여 제조되는 마이크로 캡슐의 단면을 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 미세유체반응기의 외부와 내부를 함께 도시한 투명사시도이다.
도 3은 본 발명의 일 실시예에 따른 미세유체반응기의 유로 구조를 설명하기 위하여 도시한 도면이다.
도 4는 본 발명의 일 실시예에 따른 미세유체반응기의 유로 구조를 정면에서 바라본 도면이다.
도 5는 본 발명의 일 실시예에 따른 미세유체반응기의 메인 채널의 유출구 측 일 영역을 확대하여 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 미세유체반응기의 투명사시도 및 유로 구조를 함께 도시한 도면이다.
도 7은 본 발명의 다른 실시예에 따른 미세유체반응기의 유로 구조를 정면에서 바라본 도면이다.
도 8은 본 발명의 다른 실시예에 따른 미세유체반응기의 유로 구조를 측면에서 바라본 도면이다.
도 9 및 도 10은 각각 본 발명의 여러 실시예에 따른 미세유체반응장치를 도시한 도면이다.
도 11은 결석 모사체(CaOx)의 주사현미경 (SEM) 이미지 및 푸리에 변환 적외선 (FT-IR) 확인 결과를 나타낸 것이다.
도 12a 내지 12e는 각 조건에 따른 금속 이온 흡착용 킬레이트 용액의 결석 모사체 (CaOxl Calcium oxalate, 10 mg) 제거율 분석 결과를 나타낸 것으로, 도 12a는 킬레이트 용액 종류에 따른 제거율 변화 (이온 흡착성 용액 양: 300 μL, 이온 흡착성 용액 농도: 10 mM, 흡착 시간: 60 분), 도 12b는 금속 이온 흡착용 용액 HMP 및 EDTA에 대한 세포 생존도 분석 결과 (이온 흡착성 용액 농도: 10 mM, 흡착 시간: 30 분, 세포 수: 1.0Х104 개), 도 12c는 이온 흡착성 용액 양에 따른 제거율 변화 (이온 흡착성 용액 종류: HMP, 이온 흡착성 용액 양: 0 내지 1000 μL, 이온 흡착성 용액 농도: 10 mM, 흡착 시간: 30 분), 도 12d는 이온 흡착성 용액 농도에 따른 제거율 변화 (이온 흡착성 용액 종류: HMP, 이온 흡착성 용액 양: 300 μL, 이온 흡착성 용액 농도: 1 내지 50 mM, 흡착 시간: 30 분), 도 12e는 흡착 시간에 다른 제거율 변화 (이온 흡착성 용액 종류: HMP, 이온 흡착성 용액 양: 300 μL, 이온 흡착성 용액 농도: 10 mM, 흡착 시간: 1 내지 60 분)를 보여준다.
도 13a 내지 13d는 외부 자극 반응성 마이크로 캡슐 제조 조건에 따른 세포 생존도 분석 결과를 나타낸 것으로, 도 13a는 금속 이온 흡착성 용액 HMP 농도에 따른 세포 생존도 (농도: 1 내지 50 mM, 노출 시간: 30분), 도 13b는 HMP 노출 시간에 따른 세포 생존도 (농도: 10 mM, 노출 시간: 0.02 내지 24 시간), 도 13c는 생체 친화성 고분자 물질 PLGA 농도에 따른 세포 생존도 (농도 0.05 내지 0.2 mg/mL, 노출 시간: 24시간), 도 13d는 외부 자극인 초음파 조사 시간에 따른 세포 생존도 (초음파 조사 시간: 10 내지 180초, 세포 수: 1.0Х104 개)를 보여준다.
도 14는 외부 자극 반응성 마이크로 캡슐 제조를 위한 미세유체반응장치의 개략도를 나타낸 것이다.
도 15는 외부 자극 반응성 마이크로 캡슐 제조를 위한 전체 구성을 나타낸 것으로, 도 15의 a)는 전체 구성의 모식도, b)는 전체 구성의 실제 사진, c)는 3D 프린터 기반의 미세유체반응장치의 모식도, d)는 3D 프린터 기반의 미세유체반응장치의 실제 사진을 보여준다.
도 16은 본 발명의 미세유체반응장치를 활용한 초음파 자극 반응성 마이크로 캡슐 (HMP/MNP@PLGA)의 제조 시, 주입되는 각 유체의 유속 변수에 따른 캡슐 크기를 분석한 것으로 (제1 유체: HMP, 제2 유체: PLGA, 제3 유체: PVA), 도 16의 a)는 제1 유체의 유속 조절에 따른 캡슐 크기 변화를 확인한 것이고 (제1 유체 + 제2 유체 유속의 합 = 115 μL/분), b)는 제3 유체의 유속 조절에 따른 캡슐 크기 변화를 확인한 것이며 (제1 유체 + 제2 유체 유속의 합 = 115 μL/분), c)는 최적의 유속 조건 (제1 유체 유속: 15 μL/분, 제2 유체 유속: 10 μL/분 및 제3 유체 유속: 1000 μL/분)에서 제조된 마이크로 캡슐의 광학 현미경 사진을 나타낸 것이고 (좌: 백색 필터, 우: RFP 필터), d)는 HMP/MNP@PLGA 마이크로 캡슐의 전체 캡슐 직경 분포를 나타내는 히스토그램이다.
도 17은 본 발명의 미세유체반응장치에서 각 유체의 유속을 조절하여 제조된 초음파 자극 반응성 마이크로 캡슐 (HMP/MNP@PLGA)의 외부 초음파 자극에 따른 금속 이온 흡착성 용액의 방출 실험 결과를 나타낸 것이다.
도 18은 본 발명의 미세유체반응장치를 활용한 근적외선 자극 반응성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)의 제조 시, 주입되는 각 유체의 유속 변수에 따른 캡슐 크기를 분석한 것으로 (제1 유체: 2차 증류수에 포함된 MNP 및 HMP, 제2 유체: 액화 팜 오일 및 제3 유체: 2차 증류수에 포함된 Pdop), 도 18의 a)는 제1 유체의 유속 조절에 따른 캡슐 크기 변화를 확인한 것이고 (제1 유체 + 제2 유체 유속의 합 = 15.6 mL/시간), b)는 제3 유체의 유속 조절에 따른 캡슐 크기 변화를 확인한 것이며 (제1 유체 + 제2 유체 유속의 합 = 15.6 mL/시간), c)는 최적의 유속 조건 (제1 유체 유속: 10 mL/시간, 제2 유체 유속: 5.6 mL/시간 및 제3 유체 유속: 34 mL/시간)에서 제조된 마이크로 캡슐의 전체 캡슐 직경 분포를 나타내는 히스토그램이다.
도 19는 본 발명의 미세유체반응장치를 활용하여, 초음파 자극 반응성 마이크로 캡슐 (HMP/MNP@PLGA) 및 근적외선 자극 반응성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)의 제조 시, 주입되는 각 유체의 유속 변화에 따라 제조된 마이크로 캡슐의 형태를 관찰한 것으로, a)는 유속 조절에 따라 제조된 근적외선 자극성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)의 광학현미경 사진이고, b)는 5분 동안 단일 미세유체반응장치 (단일 미세유체 칩) 내에서 제조된 마이크로 캡슐 (HMP/MNP@WAX@Pdop)의 이미지이고, c)는 유속 조절에 따라 제조된 초음파 자극성 마이크로 캡슐 (HMP/MNP@PLGA)의 광학현미경 사진이다.
도 20은 본 발명의 미세유체반응장치에서 각 유체의 유속을 조절하여 제조된 근적외선 자극 반응성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)의 외부 근적외선 자극에 따른 금속 이온 흡착성 용액의 방출 실험 결과를 나타낸 것이다.
도 21은 자성에 의한 마이크로 캡슐의 움직임 테스트 결과를 나타낸 것으로, 도 20의 a)는 근적외선 자극 반응성 마이크로 캡슐의 자성에 의한 움직임, b)는 초음파 자극 반응성 마이크로 캡슐의 자성에 의한 움직임을 보여준다 (자성 세기 500 mT).
도 22a는 AutoCAD로 Ψ형 유체칩을 설계한 유체칩 제작, 3D 프린팅으로 고분자 몰드 제작, c) Ψ형 유체칩의 PDMS 임프린팅(imprinting), 및 유체칩과 스테인리스 프레임 클램핑(clamping)을 보여준다.
도 22b는 도 22a의 유체칩의 실제 이미지를 보여준다.
도 22c는 결석 제거를 테스트하기 위한 유체칩의 [a-c] 영역의 현미경 이미지를 보여준다.
도 23a 내지 23f는 자기 전달 및 킬레이팅 용액을 포함하는 마이크로 캡슐의 초음파 반응 방출을 통한 Ψ형 유체칩에서 인공 결석(CaOx) 제거 실험 및 이의 결과를 나타낸 것으로, 도 23a는 유체칩의 개략도이고, 도 23b는 채널을 따라 다양한 위치 [a-c]에서 마이크로 캡슐의 자기 유도 전달을 시각화하기 위한 형광 현미경 이미지(삽입 스케일: 500 μm)를 나타낸다. 도 23c는 자기장이 있거나(iii-c) 자기장이 없는(ii-b) 경우의 전달 효율을 비교한 그래프이고, 도 23d는 캡슐화된 HMP 농도(10-100mM), 마이크로 캡슐 수(10-1000)의 함수로서의 제거 효율을 나타낸 그래프이다. 도 23e는 마이크로 캡슐(HMP 농도: 100mM, N: 500)의 전달 및 제거 사이클을 반복하여 1-7.5mm 크기 범위의 결석의 총 제거 효율을 나타낸 그래프이고, 도 23f는 마이크로 캡슐(HMP 농도: 100mM, N: 500)을 사용하여 반복 처리 사이클 후 결석(초기 크기: 5mm)의 변화에 대한 현미경 이미지를 나타낸 것으로, 형광 필터 사용 유무에 따른 관찰 결과를 보여준다(인세트 스케일: 500 μm). 녹색과 빨간색은 각각 FITC로 표시된 CaOx 결석과 빨간색 S-Rh. B 염료로 표지된 마이크로 캡슐을 나타낸다. 일반적으로 사이클 치료는 총 6.55분 동안 지속되었다(전달: 0.3분, 초음파(ultrasound, US) 조사: 1.35분 및 체류: 4.90분). 자석은 결석에서 약 8cm 떨어진 칩 하에 놓였다.
도 24a는 ALS-FITC를 포함하는 마이크로 캡슐로 요로결석증을 잠재적으로 가시화한 것으로, FITC, ALS 및 FITC-ALS의 FTIR 분광학 결과를 보여준다.
도 24b는 ALS-FITC 및 Fe3O4를 포함하는 마이크로 캡슐의 현미경 이미지를 보여준다.
도 25a는 ALS-FITC/Fe3O4를 포함하는 마이크로 캡슐로 칼슘 옥살레이트를 염색 가시화하는 과정을 보여준다.
도 25b의 B는 칼슘 옥살레이트 결석의 현미경 형광 이미지이고, C는 ALS-FITC를 포함하는 마이크로 캡슐과 결석의 혼합상(mixed phase)의 현미경 형광 이미지이며, D는 US와 함께 마이크로 캡슐의 ALS-FITC에 의한 염색된 칼슐 옥살레이트 결석의 현미경 형광 이미지이다. 녹색은 ALS-FITC를 나타내고, 눈금 막대는 500 μm이다.
도 26a 내지 26d는 3D 프린팅된 몰드 및 원심분리에 의한 구형 칼슘 옥살레이트 결석의 제작을 나타낸 것으로, 도 26a는 구형 공동이 있는 3D 프린팅 몰드가 배치된 원추형 튜브의 실제 이미지이고, 도 26b는 원심분리 속도에 따른 칼슘 옥살레이트 결석의 밀도 조절을 나타낸 그래프이다. 도 26c는 최적화된 결석 밀도(2.07 g/cm3)의 재현성을 나타낸 그래프이고, 도 26d는 상이한 구형 CaOx 결석 크기(1, 3, 5, 및 7.5 mm)를 갖는 최적화된 결석의 실제 이미지이다.
도 27a 내지 27d는 자기 전달 및 마이크로 캡슐에 캡슐화된 킬레이트 용액의 US 반응성 방출을 통한 PDMS 기반 신장요로모방칩(PDMS-based kidney urinary flow-imitated chip)에서 인간 생체 내 생성 신장 결석(100% CaOx)의 제거 시험 결과를 나타낸 것으로, 도 27a는 신장요로모방칩의 모식도와 결석 제거 시험의 개념도이다. 도 27b는 [a] 요관, [b] 신우, [c] 주요 콩팥잔 및 [d] 작은 콩팥잔(인간 신장 결석 존재)으로 자기 유도 전달된 마이크로 캡슐의 캡쳐 이미지이다(인세트 크기: 2 mm). 도 27c는 결석 변화에 대한 현미경 이미지(초기 크기 범위: 5~7.5mm)(인세트 눈금: 2mm)이고, 도 27d는 마이크로 캡슐의 반복 처리 사이클에 따른 제거 효율을 나타낸 그래프이다(HMP 농도: 100mM, N: 500). 일반적으로 1 사이클 처리는 총 7.25분(전달: 1분, US 조사: 1.35분, 체류: 4.90분)이 필요하였다. 자석은 결석에서 8cm 떨어진 칩 하에 놓였다.
도 28은 PDMS 기반 신장요로모방칩 제작의 개략도를 나타낸 것으로, A는 AutoCAD로 신장요로모방칩 설계, B는 3D 프린팅 고분자 몰드 제작, C 신장요로모방칩의 PDMS 임프린팅(imprinting), D는 제작된 PDMS 기반 신장요로모방칩의 실제 이미지를 보여준다.
도 29의 A는 인간 신장 결석을 이용한 마이크로 캡슐의 순차 자기 유도 운동, US 반응성 방출 및 인간 신장 결석을 이용한 마이크로 캡슐의 제거 시험에 대한 실험 설정의 실제 이미지이고, B는 자기 안내 이동을 위한 자석이 장착된 XY 스테이지를 보여준다.
도 30은 마이크로 캡슐의 US 반응성 방출 행동을 확인하기 위한 현미경 이미지이다. 마이크로 캡슐은 US(50 kHz)로 1.35분 이내에 완전히 방출되었다.
이하, 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명을 명확하게 설명하기 위해서 도면에서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조부호를 붙였다.
본 명세서 및 청구범위에 사용된 단어와 용어는 통상적이거나 사전적인 의미로 한정 해석되지 않고, 자신의 발명을 최선의 방법으로 설명하기 위해 발명자가 용어와 개념을 정의할 수 있는 원칙에 따라 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.
본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
도 1은 본 발명의 일 실시예에 따른 미세유체반응기를 이용하여 제조되는 마이크로 캡슐의 단면을 도시한 도면이다. 도 2는 본 발명의 일 실시예에 따른 미세유체반응기의 외부와 내부를 함께 도시한 투명사시도이다. 도 3은 본 발명의 일 실시예에 따른 미세유체반응기의 유로 구조를 설명하기 위하여 도시한 도면이다. 도 4는 본 발명의 일 실시예에 따른 미세유체반응기의 유로 구조를 정면에서 바라본 도면이다. 도 5는 본 발명의 일 실시예에 따른 미세유체반응기의 메인 채널의 유출구 측 일 영역을 확대하여 도시한 도면이다.
본 발명의 일 실시예에 따른 미세유체반응기(100)는 도 1에 도시된 바와 같이 중심부에 배치되는 코어(core)와, 상기 코어를 감싸는 하나 이상의 쉘(shell)을 포함하는 구형의 마이크로 캡슐을 제조하기 위한 장치이다. 이때, 코어(2)는 치료를 위하여 체내 투입을 요하는 약물(용액)일 수 있으며, 쉘(3,4)은 상기 약물이 체내의 목적하는 위치까지 안정적으로 이동할 수 있도록 외부로부터 코어(2)를 보호하기 위한 담지체일 수 있다.
이때, 본 발명의 일 실시예에 따른 미세유체반응기(100)는 메인 채널(30) 외 제1 채널(40) 및 제2 채널(50)을 포함하는 유로 구조를 구비함으로써, 쉘(3,4) 형성을 위한 용액을 효과적으로 공급할 수 있으면서도 부가 장비를 최소화할 수 있는데, 이하 이를 중심으로 설명하기로 한다.
본 발명의 일 실시예에 따른 미세유체반응기(100)는 소정 부피를 가지며 내부에 유체가 유동할 수 있도록 유로(20)가 구비되는 하우징(10)을 포함한다.
이때, 하우징(10)은 공지의 다양한 3D 프린팅 기술을 이용하여 형성될 수 있으며, 이를 통해 하우징(10)은 내측에 높은 수준의 정밀도를 갖춘 유로 구조를 용이하게 구현할 수 있다.
이와 관련하여, 하우징(10)은 3D 프린팅 공정에 이용되는 다양한 재질을 포함하여 형성될 수 있다. 또한, 하우징(10)은 유체에 의한 화학적 부식 또는 물리적 침식에 대하여 견딜 수 있도록 내화학성 또는 내구성을 갖춘 재질로 형성될 수 있다. 구체적인 일례로서, 하우징(10)은 금속성 재질, 열경화성수지 또는 광경화수지 등으로 형성될 수 있다.
다만, 3D 프린팅 기술을 통해 하우징(10)을 제작하는 것은 일 실시예에 불과하며, 하우징(10)은 이외에도 다양한 방식으로 형성될 수 있다. 예를 들어, 하우징(10)은 내측에 유로(20)의 일부에 대응되는 홈을 구비한 복수 개의 플레이트를 높이 방향을 따라 순차적으로 적층하여 형성될 수도 있다.
이하, 하우징(10) 내부에 마련된 유로 구조에 대하여 설명하기로 한다. 이하의 설명에서 '유로(20)'란 하우징(10)의 내측에 마련되어 하우징(10)의 외부로부터 유입된 유체가 일방향을 따라 이동하도록 가이드하는 공간 구조를 전체적으로 지칭하며, '채널(30,40,50,60,70)'은 상기 유로의 일부를 부분적으로 지칭하는 것으로 해석되어야 한다.
도 2를 참조하면, 하우징(10)은 제1 유로(20)를 포함할 수 있다.
이때, 제1 유로(20)는 도 3에 도시된 바와 같이 그 부분으로서 메인 채널(30), 제1 채널(40) 및 제2 채널(50)을 포함할 수 있다.
먼저, 메인 채널(30)은 양단부에 각각 유입구(31)와 유출구(32)를 구비하여 하우징을 관통하도록 형성될 수 있다. 일례로, 유입구(31)는 하우징(10)의 일측면에 형성될 수 있으며, 유출구(32)는 상기 일측면과 대향하는 타측면에 배치될 수 있다. 이를 통해 메인 채널(30)은 마이크로 캡슐(1) 중에서 코어(2)를 형성하는 제1 유체(A)가 외부로부터 유입된 후 후술될 제2 유체에 의하여 담지된 후 외부로 유출될 때까지의 전체적인 흐름을 가이드할 수 있다.
보다 구체적으로, 메인 채널(30)의 유입구(31)를 통해 유입된 제1 유체(C)는 후술될 제1 채널(40) 및 제2 채널(50)을 통해 공급된 제2 유체(B)에 의해 캡슐화될 수 있다.(제1 유체(A)가 코어(2)가 되고, 제2 유체(B)가 쉘(3)이 됨) 이처럼 캡슐화된 약물 담지체(1)는 메인 채널(30)의 유출구(32)를 통해 외부로 이동될 수 있다.
달리 말하면, 메인 채널(30)을 따라 유동하는 유체는 제2 유체(B)의 공급시점 전 후를 기준으로 구분될 수 있다. 즉, 메인 채널(30)의 유입구(31)로부터 제2 유체(B)의 공급 지점까지는 제1 유체(A)가 메인 채널(30)을 따라 이동되지만, 제2 유체(B)의 공급 지점 이후부터 유출구(32)까지는 담지된 상태의 약물 담지체(마이크로 캡슐(1))를 포함한 용액이 흐를 수 있다.
다만 상술한 바와 같이 메인 채널(30)의 유입구(31)와 유출구(32)가 하우징(10)의 일측면에 노출된 형태로 형성되는 것은 일 실시예에 불과하며, 이와 달리 (도 6에 도시된 실시예와 같이) 메인 채널(30)의 유입구(31) 및 유출구(32)는 하우징(10)의 내측 영역에 배치됨으로써 외부에서 관찰이 불가한 형태로 형성될 수도 있다. 이에 대해서는 후술하기로 한다.
본 발명의 일 실시예에서, 메인 채널(30)의 일측부에는 제1 채널(40)이 연결될 수 있다. 이때, 제1 채널(40)은 메인 채널(30) 측으로 제2 유체(B)를 공급하기 위한 채널로서, 이러한 제2 유체(B)가 마이크로 캡슐(1)의 쉘(3)로서 기능하여 제1 유체(A)를 담지할 수 있다.
이때, 제2 유체(B)가 제1 유체(A)를 담지하기 위해서는 메인 채널(30) 내의 제1 유체(A)의 흐름을 단절할 수 있도록 제1 유체(A)에 대하여 전단력을 가할 수 있어야 한다. 이를 위해 제2 유체(B)는 후술될 제1 유체 공급수단(320)에 의해 제1 채널(40) 내에서 일정 크기 이상의 유속을 유지하도록 흐를 수 있다.
도 4를 참조하면, 제1 채널(40)은 전술한 메인 채널(30)과 비교하여 다소 복잡한 구조를 가질 수 있다.
보다 구체적으로, 제1 채널(40)은 크게 제2 유체(B)가 유입되는 유입부(41)와 복수의 지류(42a,42b)를 가지는 분기부(42)를 포함하여 형성될 수 있다.
이때, 유입부(41)는 외부로부터 제2 유체(B)가 최초로 유입되는 통로로서 분기부(42)와 비교하여 하우징(10)의 외측에 보다 인접하여 배치될 수 있다.
그리고, 분기부(42)는 상술한 유입부(41)와 메인 채널(30) 사이를 연결하는 부분으로서, 이를 위해 일단부는 유입부(41)와 연결되고, 타단부는 메인 채널(30)과 연결될 수 있다.
한편, 분기부(42)는 유입부(41)의 단부로부터 동시에 분기되는 복수의 지류(42a,42b)를 포함할 수 있다. 그 결과 유입부(41)를 따라 흐르는 제2 유체(B)는 분기부(42)를 구성하는 복수의 지류(42a,42b)를 통해 동일한 유량으로 분배된 후 최종적으로 메인 채널(30)에 합류될 수 있다.
예시적인 일례로서, 도 4를 참조하면, 분기부(42)는 서로 동일한 구조를 갖는 2개의 지류(42a,42b)를 포함할 수 있다. 이를 통해 복수의 지류에 대하여 각각 동일한 유량의 제2 유체(B)가 나뉘어 공급될 수 있다.
이러한 지류(42a,42b)는 도면에 도시된 바와 같이 제1 기울기를 가지며 연장되는 제1 부분(43) 및 제1 기울기와 반대되는 방향으로 기울어진 제2 기울기를 가지며 연장되는 제2 부분(44)을 포함할 수 있으며, 제1 부분(43)과 제2 부분(44) 사이에는 일 방향으로 돌출된 형태의 변곡점(45)이 형성될 수 있다. 즉, 도 4에 도시된 분기부(42)의 2개의 지류는 전체적으로 마름모 형상을 형성할 수 있다.
이에 대응하여, 메인 채널(30) 중에서 제1 채널(40)의 분기부(42)와 연결되는 부분의 단면은 도 4에 도시된 바와 같이 마름모 형상의 단면을 가질 수 있으며, 바람직하게는 (2개의 지류가 서로 직각을 형성하도록)정사각형 형상의 단면을 가질 수 있다. 이를 통해 메인 채널(30)을 중심으로 X자 형태로 배치된 4개의 지류(제1 채널(40)에 포함된 2개의 지류와, 후술될 제2 채널(50)에 포함된 2개의 지류)는 메인 채널(30)과 안정적인 연결될 수 있다.
즉, 본 발명의 일 실시예에 따른 미세유체반응기(100)는 메인 채널(30)의 전체 영역에 대하여 둘레 방향을 따라 지류(42a,42b,52a,52b)를 배치시킬 수 있으며, 그 결과 지류(42a,42b,52a,52b)로부터 유입되는 제2 유체(B)가 메인 채널(30)의 제1 유체(A)에 작용하는 전단력을 극대화시킬 수 있다.
또한 본 발명의 일 실시예에 따른 미세유체반응기(100)는 상기 복수의 지류(42a,42b,52a,52b)를 통해 메인 채널(30)의 전방향에 걸쳐 균일한 크기의 전단력을 가할 수 있으므로 마이크로 캡슐(1)을 구성하는 쉘(3)의 두께를 균일하게 형성할 수도 있다.
다만, 이상의 설명과 도면에서는 분기부(42)가 2개의 지류(42a,42b)를 갖는 것을 상정하여 설명하였으나, 본 발명이 이에 제한되는 것은 아님을 밝혀 둔다. 즉, 분기부(42)는 메인 채널(30) 측으로 공급되는 유체의 공급 통로를 보다 다양하게 구성하기 위하여 3개, 4개, 5개 또는 6개 등 다양한 개수의 지류를 포함할 수도 있다. 이 경우, 복수의 지류는 메인 채널(30)의 둘레 방향을 따라 동일한 각도로 이격되어 배치될 수 있다.
관련하여, 제1 채널(40)의 지류의 개수가 N개일 경우, 메인 채널(30)의 단면은 2N개의 모서리를 가지는 정다각형으로 형성될 수 있다. 일례로, 제1 채널(40)이 3개의 지류를 가질 경우, 메인 채널(30)의 단면은 정육각형으로 형성되어 제1 채널(40) 및 제2 채널(50)에 포함된 6개의 지류가 모두 메인 채널(30)의 둘레 방향으로 따라 균형 있게 연결될 수 있다.
한편, 본 발명의 일 실시예에 따른 미세유체반응기(100)는 위와 같이 분기부(42)를 가지는 제1 채널(40)을 구비함으로써, 단일한 개수의 제1 유체 공급수단(320)만으로도 복수의 지류를 통한 입체적인 유체의 공급이 가능하다.
이와 달리 만약 메인 채널(30)에 연결되는 복수의 지류가 각각 독립적으로 존재하고, 이들 복수의 지류마다 각각 제1 유체 공급수단을 연결할 경우, (제1 채널(40)에서 유입부(41)가 생략된 구조의 경우) 복수개의 유체 공급수단(예를 들어, 시린지 펌프)이 필요하므로 장치의 비용이 증가하고, 장치가 비대화 될 수 있다.
그리고, 본 발명의 일 실시예와 같이 단일한 제1 유체 공급수단(320) 만으로 제1 유체 공급을 제어할 경우, 복수의 지류에 대하여 각각 제1 유체 공급수단(320)을 연결하여 제어하는 경우와 비교하여 복수의 지류(42a,42b) 사이의 유체의 흐름을 보다 균일하게 제어할 수 있다. 왜냐하면, 본 발명과 같이 분기부(42)를 포함하는 경우, 각 지류(42a,42b)의 구조만 동일하게 형성하면 유체 역학적으로 동일한 환경이 조성됨에 따라 복수의 지류 사이의 흐름이 자연적으로 균일하게 형성되는 반면, 복수의 지류에 대하여 복수의 제1 유체 공급수단를 통해 유체의 공급을 제각각 제어할 경우, 상기 복수의 제1 유체 공급수단 사이 불가피한 제어 오차에 따라 지류(42a,42b) 사이의 불균형이 발생될 수 있기 때문이다.
본 발명의 일 실시예에서, 메인 채널(30)의 타측부에는 제1 채널(40)과 동일한 구조를 가지는 제2 채널(50)이 연결될 수 있다. 이때, 제2 채널(50)은 메인 채널(30) 중에서 제1 채널(40)이 연결되지 않은 맞은 편 영역에 대하여 제3 유체(C)를 공급하기 위한 통로로서, 제1 채널(40)과 마찬가지로 제1 유체(A)가 제2 유체(B)에 의해 담지되어 캡슐화되도록 하기 위해 메인 채널(30) 측으로 이동시킬 수 있다.
이때, 도 4를 참조하면, 제2 채널(50)은 메인 채널(30)을 기준으로 제1 채널(40)과 대칭이 되도록 배치될 수 있다. 이를 통해 제1 채널(40)과 제2 채널(50)에 포함된 복수의 지류(42a,42b,52a,52b)는 메인 채널(30)에 대하여 어느 일 방향으로 편중됨이 없이 균일한 크기의 전단력을 인가할 수 있다.
한편, 제2 채널(50)은 제1 채널(40)과 배치 위치면에서만 상이할 뿐, 그 외 구조 및 기능은 동일하거나 유사하므로 나머지 부분은 제1 채널(40)에 대한 설명으로 대체하기로 한다.
도 5를 참조하면, 메인 채널(30)의 유출구(32) 측 단부에는 별도의 관 부재(90)가 삽입될 수 있다. 이때, 상기 관 부재(90)는 메인 채널(30)의 내경과 동일한 크기의 외경을 가짐으로써, 메인 채널(30)과 끼워 맞춤을 형성할 수 있다. 그리고, 관 부재(90)의 내경은 메인 채널(30)의 내경과 동일하게 형성될 수 있다.
관련하여, 메인 채널(30)의 유출구 측 단부의 경우, 관 부재(90)가 끼워지는 부분에 대해서만 부분적으로 메인 채널(30)의 내경을 보다 크게 형성할 수 있다. 이것은 관 부재(90)가 끼워졌을 경우, 관 부재(90)의 내경과 이와 인접한 메인 채널(30)이에 단차가 생기지 않고 매끈한 형태의 채널면을 제공하기 위한 것이다. 이를 통해 메인 채널(30)에 관 부재(90)가 삽관되더라도 메인 채널(30) 중에서 유체가 이동되는 단면 면적은 유출구(32)까지 동일하게 유지될 수 있다.
한편, 상기 관 부재(90)는 내측에 친수성 표면을 갖는 메인 채널(30)을 형성하기 위하여 일례로 유리관으로 형성될 수 있다. 이를 통해 마이크로 캡슐(1)의 외측에 존재하는 제2 유체(B)와 하우징(10)을 구성하는 재질 사이의 표면에너지에 의해 유체의 흐름에 장애가 발생하는 것을 방지할 수 있다.
다시 도 3을 참조하면, 상술한 제1 유로(20)는 제1 채널(40) 및 제2 채널(50) 외에 추가적으로 제3 채널(60)과 제4 채널(70)을 더 포함할 수도 있다.
이때, 제3 채널(60)과 제4 채널(70)은 도면에 도시된 바와 같이 제1 채널(40) 및 제2 채널(50)로부터 메인 채널(30)의 연장 방향을 따라 각각 나란하게 배치되어 메인 채널(30)의 측부에 연결될 수 있으며, 제1 채널(40) 및 제2 채널(50)과 동일한 구조로 형성될 수 있다.
이때, 제3 채널(60)과 제4 채널(70)은 제1 채널(40) 및 제2 채널(50)과 유사하게 마이크로 캡슐(1)의 쉘(4)을 형성하기 위한 것으로, 상술한 제2 유체(B)와 다른 제4 유체(D)를 메인 채널(30) 측으로 공급할 수 있다. 이를 통해 제1 유체(A)에 의해 형성된 쉘(3) 외 추가적인 쉘(4)을 형성하여 마이크로 캡슐(1)에 담지된 약물을 보다 안정적으로 보호할 수 있다.
한편, 도면에는 제1 유로(20)가 제1 채널(40) 내지 제4 채널(70)을 가지는 것으로 도시되어 있으나, 본 발명의 유로 구조가 이에 한정되는 것은 아님을 밝혀 둔다. 즉, 설계자는 목적하는 쉘(3)의 개수를 고려하여 메인 채널(30)을 연장 방향을 따라 추가적인 채널을 더 연결시킬 수도 있다. 만약 설계자가 N층 쉘을 가지는 마이크로 캡슐(1)을 목적하는 경우, 메인 채널(30)에는 양측에 각각 N개의 채널이 배치되어 전체적으로 2N개의 채널이 연결될 수 있다.
이하, 본 발명의 다른 실시예에 따른 미세유체반응기(200)에 대하여 설명하기로 한다.
도 6은 본 발명의 다른 실시예에 따른 미세유체반응기의 투명사시도 및 유로 구조를 함께 도시한 도면이다. 도 7은 본 발명의 다른 실시예에 따른 미세유체반응기의 유로 구조를 정면에서 바라본 도면이다. 도 8은 본 발명의 다른 실시예에 따른 미세유체반응기의 유로 구조를 측면에서 바라본 도면이다.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 미세유체반응기(200)는 전술한 제1 유로(20) 외에 추가적으로 복수 개의 유로(20a 내지 20g)를 더 포함할 수 있다.
이때, 추가되는 복수 개의 유로(20a 내지 20g)는 제1 유로(20)와 동일한 구조를 가지며, 제1 유로(20)와 동일한 원리에 의해 코어-쉘 구조를 가지는 마이크로 캡슐(1)을 형성할 수 있다.
이때, 제1 유로(20)를 포함한 복수 개의 유로는 도 7에 도시된 바와 같이 하우징(10)의 높이 방향을 따라 나란하게 배치될 수 있다. 그러나, 복수 개의 유로는 이 외에도 예를 들면, 하우징(10)의 폭 방향으로 나란하게 배치되는 것과 같이 하우징(10) 내에서 다양한 방식으로 배치될 수 있다. 이 경우, 제1 유로(20)를 포함한 복수 개의 유로(20,20a 내지 20g)는 서로 간의 직접적인 유체의 유출입이 없도록 병렬로 연결될 수 있다.
본 발명의 일 실시예에서, 도 8을 참조하면, 하우징(10)의 내부에는 복수 개의 유로(20,20a 내지 20g)에 대하여 제1 유체를 공급하기 위하여 제1 공급 유로(210)가 형성될 수 있다.
이때, 제1 공급 유로(210)는 복수 개의 연결부를 구비하여 도면에 도시된 바와 같이 복수 개의 유로에 각각 포함된 복수 개의 메인 채널(30)의 일단부와 모두 연결될 수 있다. 이를 통해 제1 공급 유로(210)는 복수 개의 메인 채널(30) 측으로 제1 유체를 통합적으로 공급할 수 있다. 이때 제1 공급 유로(210)가 시작되는 영역 측 단부에는 단일한 제1 유체 공급수단(310)이 연결되어 다량의 제1 유체를 하우징(10) 측으로 통합적으로 공급함으로써 부가 설비의 필요를 최소화할 수 있다.
다시 도 7을 참조하면, 하우징(10)의 내부에는 상술한 제1 공급 유로(210)와 유사하게, 복수 개의 유로(20,20a 내지 20g)에 마련된 복수 개의 제1 채널(40) 및 제2 채널(50)의 일단부와 모두 연결되는 제2 공급 유로(220) 및 제3 공급 유로(230)가 형성될 수 있다.
이때, 제2 공급 유로(220)와 제3 공급 유로(230)는 각각 제1 채널(40) 및 제2 채널(50) 측으로 쉘(3)을 형성하기 위한 제2 유체(B)와 제3 유체(C)를 각각 공급할 수 있다. 제2 공급 유로(220) 및 제3 공급 유로(230)에 의한 제2 유체(B) 및 제3 유체(C)의 공급은 제1 공급 유로(210)와 동일하거나 유사한 매커니즘에 기초하는 바 이에 대한 중복된 설명은 생략하기로 한다.
한편, 하우징(10)의 내측 다른 일부에는 복수 개의 메인 채널의 타단부와 모두 연결되어 복수 개의 메인 채널(30)로부터 유출되는 유체를 취합하는 취합 유로(240)가 형성될 수 있다. 이러한 취합 유로(240) 역시 유체를 분배하는 것이 아니라 취합한다는 점에서 기능상 차이가 있을 뿐, 전술한 제1 공급 유로(210)와 대동소이한 구조를 가지도록 형성될 수 있다.
상술한 본 발명의 다른 실시예에 따른 미세유체반응기(100)에서, 제1 공급 유로(210), 제2 공급 유로(220), 제3 공급 유로(230) 및 취합 유로(240)는 육면체 형상의 하우징(10)에 구비된 4개의 측면을 따라 배치될 수 있다. 이때, 제1 공급 유로(210)와 취합 유로(240)는 서로 대향하는 면 측에 배치될 수 있고, 제2 공급 유로(220)와 제3 공급 유로(230)도 서로 대향하는 면 측에 배치될 수 있다. 이를 통해 육면체 형상의 하우징(10)에 구비된 공간을 충분히 활용하여 다수의 유로를 공간 효율적으로 배치시킬 수 있다.
도 9 및 도 10은 각각 본 발명의 여러 실시예에 따른 미세유체반응장치를 도시한 도면이다.
본 발명의 일 실시예에 따른 미세유체반응장치(300)는 전술한 본 발명의 여러 실시예에 따른 미세유체반응기(100,200)와 제1 공급수단(310), 제2 공급수단(320) 및 제3 공급수단(330)을 포함할 수 있다.
이때, 미세유체반응기(100,200)는 소정 부피를 가지는 하우징(10)에 메인 채널(30), 제1 채널(40) 및 제2 채널(50)을 포함하는 제1 유로(20)가 형성될 수 있다.
그리고, 제1 공급수단(310) 내지 제3 공급수단(330)은 유체의 유속 및 압력을 조절하여 일방향으로 공급할 수 있는 공지의 유체 펌프로서, 일례로 시린지 펌프와 같은 정밀한 장비로 이루어질 수 있다. 다만, 제1 공급수단(310) 내지 제3 공급수단(330)의 적용이 시린지 펌프로 제한되는 것은 아니며, 공지의 다양한 유체 펌프가 적용될 수 있음을 밝혀 둔다.
이때, 제1 공급수단(310)은 메인 채널(30)의 일단부에 연결되어 제1 유체(A)를 메인 채널(30) 측으로 공급할 수 있다. 만약 하우징(10) 내 복수 개의 메인 채널(30)이 형성된 경우, 제1 공급수단(310)은 상술한 제1 공급 유로(210)의 단부 측에 연결되어 제1 유체(A)를 공급할 수 있다.
이와 유사하게, 제2 공급수단(320) 및 제3 공급수단(330)은 도 9에 도시된 바와 같이 각각 제1 채널(40)의 유입부(41) 및 제2 채널(50)의 유입부(41)에 연결되어 제2 유체(B)와 제3 유체(C)를 메인 채널(30) 측으로 공급할 수 있다. 마찬가지로 하우징(10) 내에 복수개의 제1 채널(40) 및 제2 채널(50)이 형성된 경우, 제2 공급수단(320) 및 제3 공급수단(330)은 제2 공급 유로(220) 및 제3 공급 유로(230)를 매개로 하여 제2 유체(B)와 제3 유체(C)를 공급할 수 있다.
한편, 이와 달리 본 발명의 다른 실시예에 따른 미세유체반응장치(300')의 경우, 도 10에 도시된 바와 같이 단일한 제2 공급수단(320)만으로 제1 채널(40) 및 제2 채널(50) 측으로 동시에 제2 유체(B)와 제3 유체(C)를 공급할 수도 있다. 이 경우, 장치의 운용에 필요로 하는 공급수단의 소요 개수를 최소화할 수 있으며, 별도 공급수단을 운용할 경우 발생될 수 있는 제1 채널(40)과 제2 채널(50) 사이의 비대칭성도 방지할 수 있는 장점이 있다.
본 발명의 다른 측면은 전술한 미세유체반응기 또는 미세유체반응장치를 이용하여 수행되는 마이크로 캡슐의 제조방법에 관한 것이다.
본 발명의 제조방법에 의해 제조되는 마이크로 캡슐은 상기 미세유체반응기 또는 미세유체반응장치의 제1 유체, 제2 유체 및 제3 유체의 유속을 조절하여 코어의 크기 및 쉘의 두께를 조절할 수 있다.
이때, 상기 제1 유체는 캡슐의 코어를 형성하는, 활성 성분이 분산된 용액일 수 있고; 상기 제2 유체는 캡슐의 쉘을 형성하는, 생체 친화성 고분자 물질을 포함하는 용액일 수 있으며; 상기 제3 유체는 상기 활성 성분을 상기 생체 친화성 고분자 물질에 담지시키기 위한 수용성 고분자 화합물을 포함하는 용액일 수 있으나, 이로 제한되지 않는다.
본 발명의 또 다른 측면은 전술한 제조방법으로 제조되고, 제1 활성 성분이 분산된 용액을 포함하는 제1 코어; 및 상기 제1 활성 성분을 캡슐화하는 제1 생체 친화성 고분자 물질의 용액을 포함하는 제1 쉘;을 포함하는 마이크로 캡슐에 관한 것이다.
본 발명의 마이크로 캡슐에 있어서, 상기 제1 활성 성분은 목적에 따라 특정 질환을 치료하기 위한 약물, 금속 이온을 흡착/제거하기 위한 금속 이온 흡착용 킬레이터 등을 사용할 수 있으나, 이로 제한되지 않는다.
본 발명의 마이크로 캡슐에 있어서, 상기 제1 쉘은 상기 제1 활성 성분을 캡슐화하기에 적합한 물질이라면 제한 없이 사용될 수 있다.
본 발명에 따른 마이크로 캡슐은 제1 활성 성분과 제1 쉘에 사용하는 물질에 따라, 특정 외부 조건 하에서만 상기 제1 활성 성분을 외부로 방출하는 외부 자극 반응성 마이크로 캡슐로 제조될 수 있다.
이에 따라, 본 발명의 일 실시예에 따른 마이크로 캡슐은 전술한 제조방법으로 제조되고, 금속 이온 흡착성 물질이 분산된 용액을 포함하는 제1 코어; 및 상기 금속 이온 흡착성 물질을 캡슐화하는 제1 생체 친화성 고분자 물질이 용해된 용액을 포함하는 제1 쉘;을 포함하는 외부 자극 반응성 마이크로 캡슐로 제조될 수 있다.
본 발명의 외부 자극 반응성 마이크로 캡슐에 있어서, 상기 금속 이온은 칼슘 이온, 칼륨 이온, 마그네슘 이온, 리튬 이온, 우라늄 이온, 코발트 이온, 팔라듐 이온, 니오븀 이온, 바나듐 이온, 납 이온, 수은 이온, 카드뮴 이온 및 구리 이온으로 이루어진 군으로부터 선택되는 어느 1종 이상일 수 있으나, 이로 제한되지 않는다.
이때, 상기 외부 자극 반응성 마이크로 캡슐 제조에 사용되는 금속 이온 흡착성 물질은 표면의 물리/화학적 상호작용에 의해 금속 이온을 흡착시키는 활성탄, 알루미나, 실리카겔, 제올라이트와 같은 다공성 무기질 흡착제; 또는 금속 이온과 배위 결합, 즉, 킬레이트 결합을 이용한 유기계 흡착제 등을 사용할 수 있으나, 이로 제한되지 않으며, 제거하고자 하는 금속 이온의 종류에 따라 통상의 기술자가 적절하게 선택하여 사용할 수 있다.
예를 들어, 상기 금속 이온 흡착용 킬레이트 물질은 에틸렌-다이아민-테트라아세트산 (ethylene-diamine-tetraacetic acid, EDTA), 에틸렌 다이아민 (ethylene diamine, EDA), 시트르산, 글리신, 헥사메타인산나트륨 (sodium hexametaphosphate, HMP) 또는 알렌드로네이트 (Alendronate)일 수 있으나, 이로 제한되지 않는다.
본 발명의 마이크로 캡슐에 있어서, 상기 제1 코어에는 마이크로 캡슐을 육안으로 관찰할 수 있도록 형광물질이 추가로 포함될 수 있다. 예를 들어, 상기 형광물질은 플루오레세인 이소티오시아네이트(fluorescence isothiocyanate, FITC), 로다민 6G 이소티오시아네이트, Cy3(Cyanine 3), Cy5 (Cyanine 5), 알렉사플루오르(Alexa Fluor) 405, 알렉사플루오르 430, 알렉사플루오르 488, 알렉사플루오르 532, 알렉사플루오르 546, 알렉사플루오르 555, 알렉사플루오르 568, 알렉사플루오르 594, 알렉사플루오르 633, 알렉사플루오르 647, 알렉사플루오르 660, 알렉 사플루오르 680 및 알렉사플루오르 700으로 이루어진 군에서 선택되는 어느 하나 이상일 수 있으나, 이에 한정되지 않는다.
본 발명의 구체적인 일 실시예에 있어서, 상기 형광물질로 FITC를 사용하는 경우, 결석에 선택적으로 결합하는 특성으로 인해 결석증을 진단하는 데 보다 효과적으로 사용될 수 있다. 바람직하게는, 금속 이온 흡착용 킬레이트 물질로 알렌드로네이트, 형광물질로 FITC를 사용하여 결석증 진단용 마이크로 캡슐을 제조할 수 있다.
본 발명의 마이크로 캡슐에 있어서, 상기 제1 생체 친화성 고분자 물질은 폴리락트산, 폴리락타이드, 폴리락틱-코-글리콜산, 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 락트산과 카프로락톤의 공중합체, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산, 락트산과 아미노산의 공중합체, 파라핀 왁스, 코코넛 왁스, 겔 왁스, 팜 왁스, 콩 왁스, 밀랍, 폴리도파민 및 이들의 혼합물로 이루어진 군으로부터 선택될 수 있으나, 상기 제1 활성 성분을 캡슐화하기 위한 용도로 적절하다고 공지된 모든 생체 친화성 고분자 물질을 제한 없이 사용할 수 있다.
본 발명의 외부 자극 반응성 마이크로 캡슐은 외부 자극에 의해 쉘이 깨지거나 분해될 수 있고, 이때, 상기 외부 자극은 화학적 자극, 생물학적 자극, 초음파 자극, 열 자극, 근적외선 자극, 전기 자극, 자성 자극 또는 광 자극일 수 있다.
예를 들어, 상기 화학적 자극은 쉘 벽에 대한 pH 매개 변화, 가교 결합의 화학적 절단을 통한 쉘 벽의 붕괴, 쉘 벽의 촉발된 해중합 (depolymerization) 및 쉘 벽 스위칭 반응 (switching reaction)을 포함할 수 있으나, 이로 제한되지 않는다.
용액의 pH 변화, 특히 pH 감소는 다양한 메커니즘을 통해 쉘 벽의 파괴를 유발할 수 있다. 산 첨가는 다양한 메커니즘을 통해 쉘 벽의 분해를 유발할 수 있다. 양성자의 추가는 쉘 벽에서 폴리머의 가교 결합을 분해하거나, 쉘 벽에서 이온 또는 수소 결합을 파괴하거나, 쉘 벽에 나노기공 (nanopore)을 생성하여 내부 내용물이 외부로 방출되도록 할 수 있다. 일부 실시예에서, 마이크로 캡슐은 케탈과 같은 산분해성 화학적 가교 결합제를 포함한다. pH의 감소, 특히 5 미만의 pH로의 감소는 케탈이 케톤 및 2개의 알코올로 전환되도록 유도하고 마이크로 캡슐의 파괴를 촉진할 수 있다. 다른 실시예에서, 마이크로 캡슐은 pH 민감성인 하나 이상의 고분자 전해질(예를 들어, PAA, PAAm, PSS 등)을 포함할 수 있다. pH의 감소는 이러한 마이크로 캡슐의 이온 결합 또는 수소 결합 상호작용을 방해하거나 그 안에 나노기공을 생성할 수 있다. 일부 경우에, 고분자 전해질을 포함하는 마이크로 캡슐은 pH 변화에 따라 팽창 및 수축하는 하전된 겔 기반 코어를 포함한다.
마이크로 캡슐 내의 가교 결합제(예를 들어, 이황화 결합)의 제거는 또한 다수의 메카니즘을 통해 달성될 수 있다. 일부 실시예에서, 쉘 벽의 중합체 성분의 산화, 환원 또는 기타 화학적 변화를 유도하는 다양한 화학물질을 마이크로 캡슐 용액에 첨가할 수 있다. 어떤 경우에는, 베타-머캅토에탄올, 디티오트레이톨(DTT) 또는 2-트리스(2-카르복시에틸)포스핀(TCEP)과 같은 환원제를 첨가하여 마이크로 캡슐 쉘 벽의 이황화 결합이 파괴되도록 한다. 또한, 효소를 첨가하여 마이크로 캡슐 내의 펩티드 결합을 절단할 수 있으며, 이에 의해 쉘 벽 가교 결합의 절단을 일으킬 수 있다.
또한, 해중합을 이용하여 마이크로 캡슐을 파괴할 수 있다. 화학 트리거가 첨가되어 보호 헤드기(head group)의 제거를 용이하게 할 수 있다. 예를 들어, 트리거는 중합체 내의 카보네이트 에스테르 또는 카바메이트의 헤드기의 제거를 유발하고, 이것은 차례로 해중합 및 캡슐 내로부터 코어 물질의 방출을 유발할 수 있다.
쉘 벽 스위칭 반응은 쉘 벽의 다공성에 대한 임의의 구조적 변화에 기인될 수 있다. 쉘의 다공성은, 예를 들어 아조 염료 또는 비올로겐 유도체의 첨가로 변경될 수 있다. 에너지(예를 들어, 전기, 빛)의 첨가 또한 다공성의 변화를 자극할 수 있다.
또 다른 예로, 화학적 트리거는 삼투성 트리거를 포함할 수 있으며, 이에 의해 마이크로 캡슐 용액의 이온 또는 용질 농도의 변화가 캡슐의 팽창을 유도한다. 팽창은 내부 압력의 상승을 유발할 수 있어 캡슐이 파열하여 그 내용물을 방출한다.
다양한 자극을 통한 마이크로 캡슐에 벌크(bulk) 또는 물리적 변화는 또한 캡슐이 시약을 방출하도록 설계하는 데 많은 장점을 제공한다는 것도 당업계에 공지되어 있다. 벌크 또는 물리적 변화는 캡슐 파열이 자극에 의해 유도되는 기계물리적 힘의 결과라는 거시적 규모로 발생한다. 상기 과정은 압력 유도된 파열, 쉘 벽의 용융 또는 쉘 벽의 다공도의 변화를 포함할 수 있으나, 이에 제한되지는 않는다.
또한, 생물학적 자극이 마이크로 캡슐의 파괴 또는 분해를 유발하는 데 사용될 수 있다. 일반적으로, 생물학적 트리거는 화학적 트리거와 유사하지만, 많은 예시에서 생분자 또는 생물계에서 흔히 발견되는 분자, 예를 들어 효소, 펩티드, 당류, 지방산, 핵산 등이 사용된다. 예를 들어, 마이크로 캡슐은 특정 프로테아제에 의한 절단에 민감한 펩타이드 가교 결합을 갖는 중합체를 포함할 수 있다. 또 다른 예로, 마이크로 캡슐은 셀룰로스를 포함하는 쉘 벽을 포함한다. 가수분해 효소 키토산의 첨가는 셀룰로스 결합의 절단, 쉘 벽의 해중합 및 내부 내용물의 방출을 위한 생물 트리거로서 역할을 한다.
또한, 마이크로 캡슐은 초음파 자극 적용 시 코어 물질을 방출하도록 유도될 수 있다. 초음파는 인간 조직에 낮은 부작용 효과 때문에 의료용으로 여러 질병의 진단이나 치료에 활용된다. FDA 인가된 여러 가지 초음파기기들이 이용되고 있으며, 초음파를 시험관 내 (in vitro) 및 생체 내 (in vivo)에서 캡슐화된 약제들의 방출에 원격 제어 수단으로 사용할 수 있다. 방출을 유발하는 초음파의 효과는 20㎑ 이상의 주파수로 초음파 진동 하에서 액체의 음향 공동화 때문에 일어난다. 캡슐들이 초음파에 노출되면 캡슐 벽의 형태가 변형되며 캡슐막이 파괴되어 담지된 약물이 방출될 수 있다.
또한, 마이크로 캡슐은 열 자극 적용 시 코어 물질을 방출하도록 유도될 수 있다. 온도 변화는 마이크로 캡슐의 다양한 변화를 일으킬 수 있다. 열 변화는 쉘 벽이 붕괴하도록 마이크로 캡슐의 용융을 일으킬 수 있다. 다른 경우에, 열은 캡슐이 파열하거나 폭발하도록 캡슐의 내부 구성성분의 내부 압력을 증가시킬 수 있다. 또 다른 예로, 열은 캡슐을 수축 탈수된 상태로 변형시킬 수 있다. 또한, 열은 마이크로 캡슐 쉘 내에 열 민감성 중합체에 작용하여 마이크로 캡슐의 파괴를 일으킬 수 있다.
일 실시예에서, 마이크로 캡슐은 하나 이상의 유화된 활성 성분 입자를 캡슐화하는 열민감성 하이드로겔 쉘을 포함한다. 예를 들어, 35 ℃보다 높은 열 적용 시, 외부 쉘 벽의 히드로겔 물질은 수축한다. 쉘의 갑작스런 수축은 캡슐을 파열시키고 캡슐 내부의 시약이 마이크로웰 내 시료 제조 용액으로 분출되도록 한다.
일부 경우에, 쉘 벽은 상이한 열 민감성을 갖는 2블록 중합체 또는 2개의 중합체 혼합물을 포함할 수 있다. 하나의 중합체는 열 적용 후 특히 수축하지만, 다른 하나의 중합체는 더 높은 열 안정성을 갖는다. 열이 상기 쉘 벽에 적용될 때, 열 민감성 중합체는 수축하지만 다른 중합체는 그대로 남아 있어 구멍의 형성을 유발할 수 있다. 또 다른 경우에, 쉘 벽은 자성 나노입자를 포함할 수 있다. 자기장에 노출은 열 생성을 유발할 수 있어서 마이크로 캡슐의 파열을 일으킨다.
자성 나노입자를 마이크로 캡슐의 쉘 벽에 혼재시키면 어레이 내 입자를 안내할 수 있을 뿐 아니라, 캡슐의 파열을 유발하도록 할 수 있다. 일 실시예에서, 캡슐을 포함하는 고분자 전해질에 Fe3O4 나노입자를 포함시키면 진동하는 자기장 자극 존재 시 파열을 유발한다.
또한, 마이크로 캡슐은 전기 자극의 결과로 파열되거나 분해될 수 있다. 전술된 자성 입자와 비슷하게, 전기 민감성 입자는 캡슐 파열의 유발 및 전기장, 전기 전도도 또는 산화환원 반응 내 정렬과 같은 다른 기능을 가능하게 할 수 있다. 일 실시예에서, 전기 민감성 물질을 포함하는 마이크로 캡슐은 전기장에서 정렬되어 내부 코어 물질의 방출이 조절될 수 있다. 다른 실시예에서, 전기장은 다공도를 증가시킬 수 있는 쉘 벽 자체 내 산화환원 반응을 유발할 수 있다.
또한, 광 자극은 마이크로 캡슐을 파괴시키는데 이용될 수 있다. 여러 가지 광자극이 가능하며 특정 파장 범위의 광자를 흡수할 수 있는 나노입자 및 발색단과 같은 다양한 분자를 사용하는 시스템을 포함할 수 있다. 예를 들어, 산화금속 코팅이 캡슐 트리거로서 이용될 수 있다. SiO2/TiO2로 코팅된 고분자 전해질 캡슐에 UV 조사하면 캡슐 벽의 붕괴를 일으킬 수 있다. 또 다른 실시예에서, 아조벤젠기와 같은 광 전환성 물질이 쉘 벽에 포함될 수 있다. UV 또는 가시광선 적용 시, 상기와 같은 화학물질은 광자를 흡수할 때 가역적인 시스-트랜스 이성질체화를 겪는다. 상기 측면에서, 광 스위치의 포함은 결과적으로 광 트리거 적용시 쉘 벽이 붕괴 되거나 더 높은 다공성을 갖도록 할 수 있다.
본 발명의 마이크로 캡슐에 있어서, 상기 제1 코어에는 자성 나노 입자가 추가로 포함될 수 있다. 상기 제1 코어에 자성 나노 입자가 포함된 마이크로 캡슐은 자성에 의해 이동이 가능하며, 이에 따라 마이크로 캡슐은 원하는 위치로 이동시킬 수 있다.
본 발명의 일 실시예에 따른 마이크로 캡슐은 상기 마이크로 캡슐의 제1 코어 내부 또는 제1 쉘 외부에, 제2 활성 성분이 분산된 용액을 포함하는 제2 코어 및 상기 제2 활성 성분을 캡슐화하는 제2 생체 친화성 물질을 포함하는 용액을 포함하는 제2 쉘을 추가로 포함하는 다층 구조일 수 있다.
이때, 제1 및 제2 활성 성분은 목적에 따라 동일하거나, 서로 상이한 물질을 사용할 수 있으며, 제1 및 제2 생체 친화성 물질에 의해 각각 개별적으로 캡슐화될 수 있다. 마찬가지로, 상기 제1 및 제2 활성 성분에 따라, 상기 제1 및 제2 생체 친화성 물질은 동일하거나, 서로 상이한 물질을 사용할 수 있다.
또한, 목적에 따라, 본 발명의 마이크로 캡슐은 3종 이상의 활성 성분을 각각 개별적으로 캡슐화하기 위한 형태로 제조될 수 있으며, 이를 위해 제n 활성 성분 및 이를 캡슐화하기 위한 제n 생체 친화성 고분자 물질을 추가로 포함할 수 있다.
본 발명의 마이크로 캡슐에 있어서, 상기 제1 쉘 및/또는 제2 쉘의 외부 표면에 스텔스 물질 또는 약물 표적화 물질이 결합되거나 코팅될 수 있다.
본 발명의 또 다른 측면은 전술한 마이크로 캡슐을 포함하는 약물 전달체에 관한 것이다.
본 발명의 일 실시예에 따른 약물 전달체는 캡슐의 코어에 금속 이온 흡착용 킬레이트 물질이 분산된 용액이 캡슐화된 외부 자극 반응성 마이크로 캡슐을 포함하는 마이크로 킬레이터 (micro-chelator)일 수 있다.
본 발명의 마이크로 킬레이터는 체내 금속 이온을 흡착 및 제거하기 위한 의료용으로 사용될 수 있으며, 구체적으로, 체내 다양한 조직 또는 기관, 예를 들어, 신장, 요로, 위, 담낭, 침샘, 눈 또는 근육 등에 축적된 결석 제거용으로 사용될 수 있으나, 이로 제한되지 않는다.
본 발명의 마이크로 킬레이터는 또한 결석증을 진단하기 위한 용도로 사용될 수 있다.
본 발명의 또 다른 측면은 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 이용한 결석 제거 방법 및 결석증 진단 방법을 제공한다.
본 발명의 일 실시예에 따른 결석 제거 방법 및 결석증 진단 방법은 시험관 내 (in vitro) 및/또는 생체 내 (in vivo)에 적용가능하며, 생체 내 (in vivo)에 적용되는 경우 결석 환자를 치료하거나 결석증이 의심되는 개체를 진단하기 위한 것일 수 있다.
따라서, 본 발명의 바람직한 일 실시예에 따른 결석 제거 방법은 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 치료학적 유효량으로 이를 필요로 하는 개체(환자)에게 투여하는 것을 포함하는 결석 제거 방법일 수 있다.
본 발명의 결석 제거 방법에 있어서, 상기 개체(환자)는 신장, 요로, 위, 담낭, 침샘, 눈 또는 근육에 결석이 축적된 환자일 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 바람직한 다른 일 실시예에 따른 결석 제거 방법은 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 치료학적 유효량으로 이를 필요로 하는 개체에게 투여하는 것을 포함하는 요로결석증 치료 방법일 수 있다.
본 발명의 바람직한 일 실시예에 따른 결석증 진단 방법은 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 개체(예를 들어, 결석증이 의심되는 개체)에게 투여하는 것을 포함하는 결석증 진단 방법일 수 있다.
본 발명의 바람직한 일 실시예에 따르면, 금속 이온 흡착용 킬레이트 물질로 알렌드로네이트, 형광물질로 FITC를 사용하여 마이크로 캡슐을 제조하는 경우, 형광물질의 발광 특성으로 인해 진단 결과를 육안으로 관찰할 수 있을 뿐만 아니라, FITC가 결석에 선택적으로 결합하기 때문에, 결석증을 보다 효과적으로 진단할 수 있다.
본 발명의 결석 제거 방법, 요로결석증 치료 방법 및 결석증 진단 방법에 있어서, 상기 마이크로 캡슐은 캡슐의 코어에 금속 이온 흡착용 킬레이트 물질이 분산된 용액이 캡슐화된 외부 자극 반응성 마이크로 캡슐일 수 있고, 상기 약물 전달체는 상기 외부 자극 반응성 마이크로 캡슐을 포함하는 마이크로 킬레이터 (micro-chelator)일 수 있다.
본 발명에 있어서, 상기 결석증은 요로결석, 신장결석, 요관 결석(Ureteral stone) 등을 포함하나, 이에 한정되지 않으며, 체내에 결석이 축적되어 발생되는 다양한 결석 관련 질환을 포함할 수 있다.
본 발명의 결석 제거 방법 및 요로결석증 치료 방법에 있어서, 상기 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 투여 용량은 통상의 기술자가 체내 흡수도, 환자의 체중, 연령, 성별, 건강 상태, 식이, 투여시간, 투여방법, 배설율 및 질환의 중증도 등에 따라 적절하게 조절할 수 있다.
본 발명에서 용어 "투여"는 어떠한 적절한 방법으로 결석 질환 의심 대상체에게 본 발명의 마이크로 캡슐 및/또는 약물 전달체를 도입하는 것을 의미하며, 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있으며, 1회 또는 수회로 나누어 투여될 수 있다.
본 발명에서 용어 "개체(환자)"는 예를 들면, 인간, 원숭이, 소, 말, 양, 돼지, 닭, 칠면조, 메추라기, 고양이, 개, 마우스, 래트, 토끼, 또는 기니피그와 같은 동물을 포함하나, 이에 한정되지 않는 동물을 의미한다. 바람직하게는 상기 개체(환자)는 포유동물이고, 보다 바람직하게는 개체(환자)는 인간이다.
본 발명에서 용어 "치료학적 유효량"은 어떠한 의학적인 치료에 적용가능한 합리적인 효과/위험 비율로 다소 바람직한 효과를 발생시키는 양을 지칭한다. 특정 구현예에서, 이 용어는 일정 기간 동안 의학적인 증상을 없애거나 또는 완화하는 데 필수적이거나 충분한 양을 의미한다. 유효량은 치료 중인 질환 또는 병태, 투여 중인 구체적인 타겟화된 구축물 (targeted construct), 개체의 신체 크기 또는 질환 또는 병태의 중증도와 같은 인자에 따라 달라질 수 있다. 당해 기술 분야의 통상의 기술자는 과도한 실험 없이도 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 유효량을 경험으로 정할 수 있다. 특정 구현예에서, 마이크로 캡슐 또는 이를 포함하는 약물 전달체는, 환자에게 치료학적인 유효량으로, 예방학적 또는 치료학적 치료의 일환으로서 전달될 수 있는 방식으로 제형화된다.
본 발명의 또 다른 측면은 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 결석 제거 약물로서의 용도를 제공한다.
구체적으로, 결석 제거 약물의 제조 시 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 용도가 제공된다.
본 발명에 있어서, 상기 결석 제거 약물은 요로결석증 치료제를 포함할 수 있다. 따라서, 요로결석증 치료제의 제조 시 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 용도 또한 제공된다.
또한, 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 결석증 진단 키트로서의 용도가 제공된다.
구체적으로, 결석증 진단 키트의 제조 시 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 용도가 제공된다.
이에 따라, 본 발명에서는 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 포함하는 결석증 진단용 키트가 제공된다.
이때, 상기 마이크로 캡슐은 캡슐의 코어에 금속 이온 흡착용 킬레이트 물질이 분산된 용액이 캡슐화된 외부 자극 반응성 마이크로 캡슐일 수 있고, 상기 약물 전달체는 상기 외부 자극 반응성 마이크로 캡슐을 포함하는 마이크로 킬레이터 (micro-chelator)일 수 있다.
본 발명에서 있어서, 상기 키트는 임의적으로 하나 이상의 구성요소, 예컨대, 사용설명서, 장치 및 추가 시약(예를 들면, 멸균된 물 또는 식염수 용액), 및 진단 방법의 실시를 위한 구성요소, 예컨대, 튜브, 용기 및 주사기를 포함할 수 있다. 예시적인 키트는 본 발명에서 제공되는 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 포함하고, 임의적으로 사용설명서, 마이크로 캡슐 또는 이를 포함하는 약물 전달체를 개체에게 투여하기 위한 장치, 개체에서 마이크로 캡슐 또는 이를 포함하는 약물 전달체의 형광을 검출하기 위한 장치 등을 포함할 수 있다.
상기 키트는 임의적으로 설명서를 포함할 수 있다. 설명서는 전형적으로 전술한 마이크로 캡슐 또는 이를 포함하는 약물 전달체; 및 임의적으로 키트에 포함되는 다른 구성요소, 및 투여 방법을 기술하는 유형의 표현을 포함한다. 일부 구현예에서, 설명서는 치료 지속시간에 걸쳐 대상체를 모니터링하기 위한 지침을 포함한다.
이상에서 본 발명의 일 실시예에 대하여 설명하였으나, 본 발명의 사상은 본 명세서에 제시되는 실시예에 의해 제한되지 아니하며, 본 발명의 사상을 이해하는 당업자는 동일한 사상의 범위 내에서, 구성요소의 부가, 변경, 삭제, 추가 등에 의해서 다른 실시예를 용이하게 제안할 수 있을 것이나, 이 또한 본 발명의 사상범위 내에 든다고 할 것이다.
[실시예 1]
금속 이온 흡착성 용액을 이용한 결석 제거율 분석
1-1. 결석 모사체 제작
금속 이온 흡착용 킬레이트 용액을 마이크로 캡슐에 담지하기 전에, 용액의 조건 (종류, 양, 농도, 시간)에 따른 결석 모사체 (CaOx)의 제거 효율을 평가하였다.
사람의 요로결석은 모두 다르기 때문에, 요로결석 제거율 실험에 대한 정확한 판단을 하기 위해 요로결석에 가장 많이 포함이 되어 있는 CaOx (칼슘옥살레이트)를 이용하여 결석 모사체를 제작하였다. 결석은 5 mL (50 mM, 36 mg) 칼슘 클로라이드 (Calcium chlorie dehydrate)와 5 mL (50mM, 33mg) 소듐 옥살레이트 (sodium oxalate)를 교반하여 제작이 되었다. 결석의 크기는 1-10 mm의 크기로 제작이 되었다. 주사전자 현미경 (Scanning Electron Microscope, SEM) 관찰 결과, 도 11에 확인되는 바와 같이 불용성 침전물이 생성되었고, 푸리에 변환 적외선 분광학 (Fourier-transform infrared spectroscopy, FT-IR) 확인 결과, 도 11에 나타난 바와 같이 1618,1320,800 cm-2에서 O-C=O, C-C, C=O가 확인이 되어 불용성 침전물이 CaOx임을 확인하였다.
1-2. 이온 흡착성 용액 종류에 따른 금속 이온 흡착 효율 확인
대표적으로 사용되는 유기 킬레이트 흡착성 물질인 EDTA, EDA, HMP 및 시트르산을 이용하여 이온 흡착성 용액 종류에 따른 금속 이온 흡착 효율을 확인하였다. 이온 흡착성 용액 종류를 제외한 나머지 조건은 동일하게 하였다 (양: 300 μL, 농도: 10 mM, 흡착 시간: 60 분).
그 결과, 도 12a에서 확인되는 바와 같이 킬레이트의 금속 이온 흡착 효율은 > 시트르산 > EDA 순서로 나타났다. 구체적으로, 금속 이온 흡착 효율에 있어서, EDTA는 40%, HMP는 39%를 나타낸 반면, 세포 생존도의 경우, 도 12b에서 확인되는 바와 같이 HMP는 98%, EDTA는 84%를 나타내어, HMP의 세포 독성이 더 낮았다.
따라서, 금속 이온 흡착 효율 및 세포 독성을 종합적으로 고려하였을 때, HMP가 가장 적합한 것으로 판단하였다.
1-3. 이온 흡착성 용액 양, 농도 및 흡착 시간에 따른 금속 이온 흡착 효율 확인
실시예 1-2의 결과에 따라, 이온 흡착성 용액으로 HMP 용액을 선택하여 이의 부피, 농도 및 흡착 시간에 따른 금속 이온 흡착 효율을 측정하였다.
첫 번째로, 용액 부피에 따른 금속 이온 흡착 효율을 확인하기 위해 용액의 부피를 각각 10, 100, 300 및 1000 μL로 달리한 것을 제외하고, 용액 농도와 흡착 시간은 각각 10 mM 및 30분으로 동일하게 설정하여 실험을 진행하였다. 그 결과, 도 12c에서 확인되는 바와 같이 금속 이온 흡착 효율은 용액의 부피에 따라 비례하여 증가하여, 최대 1000 μL에서 24% 이상의 제거 효율을 보였다.
두 번째로, 액적의 농도에 따른 금속 이온 흡착 효율은 각각 HMP 용액 농도 0, 1, 5, 10 및 50 mM에서 확인하였으며, 이때, 용액의 양과 흡착 시간은 각각 300 μL 및 30분으로 동일하게 설정하였다. 그 결과, 도 12d에서 확인되는 바와 같이 용액 농도가 증가함에 따라서 금속 이온 흡착 효율이 증가하였으며, 최대 23%까지 증가하였다.
마지막으로, 흡착 시간에 따른 금속 이온 흡착 효율을 각각 1, 10, 30, 60 및 1440분에서 확인하였으며, 이때 용액의 양과 농도는 각각 300 μL 및 10 mM로 동일하게 설정하였다. 그 결과, 도 12e에서 확인되는 바와 같이 흡착 시간이 증가함에 따라 금속 이온 흡착 효율이 증가하였으며, 최대 34% 이상의 제거 효율을 확인하였다.
[실시예 2]
금속 이온 흡착성 킬레이트 용액 HMP의 담지 조건에 따른 세포 생존도 분석
2-1. HMP 농도 및 노출 시간에 따른 세포 생존도 확인
마이크로 캡슐에 담지하기 위한 금속 이온 흡착성 킬레이트 용액으로 HMP를 선정하고, 이의 농도 및 노출 시간에 따른 세포 생존도를 인간배아신장세포인 HEK-293 세포(human embryonic kidney; 한국세포주은행)에서 평가하였다.
첫 번째로, HMP 농도를 1, 5, 10 및 50 mM로 각각 달리하여 30분 동안 배양을 진행한 후 세포 생존도를 확인하였다. 그 결과, 도 13a에서 확인되는 바와 같이 HMP의 농도가 증가함에 따라 세포 생존도가 감소하였다. 50 mM HMP에서는 80% 이하의 낮은 세포 활성도를 나타내었고, 10 mM HMP 이하에서는 높은 세포 활성도 (> 98 %)를 나타내었다.
두 번째로, 10 mM HMP에서 노출 시간에 따른 세포 생존도를 평가하기 위해, 세포를 각각 0.02, 0.5, 1 및 24시간 동안 HMP와 배양한 후 세포 생존도를 확인하였다. 그 결과, 도 13b에서 확인되는 바와 같이 HMP에 대한 노출 시간이 증가함에 따라 세포 생존도는 감소하였으며, 1시간 이하에서 85% 이상의 세포 생존도를 나타내었다.
2-2. 담지체에 대한 세포 생존도 확인
HMP 용액의 담지체로 PLGA의 사용 가능성을 확인하기 위해, PLGA에 대한 세포 생존도를 평가하였다.
각각 0.05, 01 및 0.2 mg/mL의 PLGA 농도에서 세포를 24 시간 동안 배양하여, PLGA 농도에 따른 세포 생존도를 확인하였다. 그 결과, 도 13c에서 확인되는 바와 같이 모든 조건에서 85% 이상의 세포 생존도를 나타내었다.
2-3. 외부 자극에 따른 세포 생존도 확인
외부 자극으로 초음파 처리에 따른 세포 생존도를 평가하기 위해, 초음파 세척기를 사용하여 40 kHz, 50 W로 초음파 처리 시, 시간(각각 10, 30, 60 및 180초)에 따른 세포 생존도를 확인하였다. 그 결과, 도 13d에서 확인되는 바와 같이 60 초까지 세포 생존도는 86% 이상을 나타내었다.
실시예 1 및 2의 결과를 바탕으로, 세포 생존도와 결석 제거율을 고려하여 마이크로 액적에 담지할 용액의 조건을 다음과 같이 선정하였다: 1) HMP 농도: 10 mM, 2) HMP 전달 양: 300 μL, 3) HMP 노출시간: 1 분, 4) PLGA 농도: 0.2 mg/mL, 5) 초음파 노출시간: 60 초.
[실시예 3]
미세유체반응장치를 이용한 초음파 자극 반응성 마이크로 캡슐의 제조
3-1. 내부상 유속에 따른 마이크로 캡슐 크기의 확인
도 14 및 15에 도시된 바와 같이 본 발명에 따른 미세유체반응장치를 이용하여, 초음파 자극성 마이크로 캡슐 (HMP/MNP@PLGA)을 제조하였다.
이때, 코어를 형성하는 제1 유체(이하, 내부 상), 쉘을 형성하는 제2 유체 (이하, 중간 상) 및 상기 제1 유체를 상기 제2 유체에 담지시키기 위한 제3 유체 (이하, 외부 상)의 구성은 다음과 같다: 내부 상: 금속 이온 흡착용 킬레이트 용액 (HMP, 10 mM), 계면활성제 (PVA 1 wt%) 및 염료 (설포로다민 B, 0.5 mM); 중간 상: PLGA 10 wt%; 외부 상: 계면활성제 (PVA 10 wt%).
미세유체반응장치에서 유속 조절에 따른 마이크로 캡슐의 크기를 확인하기 위해, 내부 상과 중간 상의 유속의 합은 115 μL/분으로 유지하고, 내부 상의 유속을 조절하였다. 그 결과, 도 16의 a)에서 확인되는 바와 같이 내부상 유속을 증가시킴에 따라 마이크로 캡슐의 코어 크기는 증가하였고, 캡슐의 쉘 두께는 감소하였다. 또한, 내부상 유속이 5 μL/분일 때, 캡슐 껍질의 두께는 80 μm 이상으로 두꺼워져 외부 초음파 자극 시 내부 상이 방출되기까지 1분 이상 소요되었다. 또한, 내부상 유속이 30 μL/분 이상인 경우, 캡슐의 쉘 두께가 너무 얇아져 DCM (dichloromethane) 증발 과정에서 액적이 깨지는 현상이 발생하는 것을 확인할 수 있었다.
3-2. 외부상 유속에 따른 마이크로 캡슐 크기의 확인
실시예 3-1과 동일한 조건에서, 외부 상의 유속을 조절하여 마이크로 캡슐의 크기를 확인하였다. 그 결과, 도 16의 b)에서 확인되는 바와 같이 외부 상의 유속이 증가하였을 때, 코어 (15-78 μm) 크기와 캡슐의 쉘 두께가 모두 감소하는 것을 확인할 수 있었다. 외부 유속이 800 μL/분 이하일 때, 캡슐의 쉘이 두꺼워짐에 따라 쉘을 깨기 위한 초음파 자극 시간이 증가하는 것을 확인 할 수 있었다.
상기 결과를 토대로, 마이크로 캡슐이 용액을 안정하게 담지하며, 외부 자극으로 인하여 이온 흡착성 용액이 1분 이내로 방출할 수 있는 최적의 유속 조건이 다음과 같이 결정되었다: 내부 상 = 15 μL/분, 중간 상 = 100 μL/분, 외부 상 = 1000 μL/분.
상기 최적의 조건 (내부 상 유속 = 15 μL/분, 중간 상 유속 = 10 μL/분, 외부 상 유속 = 1000 μL/분)에서 제조된 초음파 자극성 마이크로 캡슐 (HMP/MNP@PLGA)을 광학현미경과 히스토그램으로 확인하였다. 도 16의 c)에 나타난 바와 같이 수성 코어 내 적색 형광을 통해 마이크로 캡슐 내에 수성 용액이 성공적으로 캡슐화되었음을 확인할 수 있었다. 또한, 도 16의 d)에 나타난 히스토그램은 3.6%의 표준편차로 균일한 크기 (341 μm)의 이중 액적이 형성된 것을 보여준다.
[실시예 4]
초음파 자극성 마이크로 캡슐 (HMP/MNP@PLGA)의 외부 초음파 자극에 따른 금속 이온 흡착용 킬레이트 용액 방출의 확인
외부 자극에 따른 금속 이온 흡착용 킬레이트 용액의 방출을 확인하기 위해, 실시예 3에서 도출된 최적화 조건으로 제조된 초음파 자극성 마이크로 캡슐 (HMP/MNP@PLGA)에 초음파를 처리하였다. 초음파는 초음파 세척기를 사용하여 40 kHz, 50 W로 처리하였다. 도 17에서 확인되는 바와 같이, 두꺼운 쉘(두께: > 80 μm, 내부 상 유속(Qi) = 5 μL/분, 중간 상 유속(Qm) = 10 μL/분, 외부 상 유속(Qo) = 1000 μL/분; 내부 상 유속이 5 μL/분 이하에 포함되는 조건)의 경우 1 분 이상에서도 내부에 이온 흡착용 킬레이트 용액 (빨간색 염료인 설포로다민 함유)이 남아 있는 것을 확인할 수 있었다. 하지만, 얇은 껍질(두께: < 50 μm, 내부 상 유속(Qi) = 15 μL/분, 중간 상 유속(Qm) = 100 μL/분, 외부 상 유속(Qo) = 1000 μL/분)에서는 초음파 자극 30 초 안에 용액이 모두 방출되는 것을 확인할 수 있었다. 방출 후 껍질 표면을 형태를 확인한 결과, 초음파 자극에 의하여 생긴 공동현상 (cavitation effect)에 의하여 껍질이 깨져 용액이 방출됨을 확인할 수 있었다.
[실시예 5]
미세유체반응장치를 이용한 근적외선 자극 반응성 마이크로 캡슐의 제조
근적외선 자극성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)은 근적외선을 흡수하여 열을 발생하는 폴리도파민 (Pdop)과 열에 의하여 녹는 왁스 (팜 오일)를 사용하여 제조하였다. 이때, 미세유체반응장치에서 유속 조절에 따른 마이크로 캡슐의 크기를 확인하기 위해, 내부 상과 중간 상의 유속의 합은 15.6 mL/시간으로 유지하고, 내부상의 유속을 조절하였다. 그 결과, 도 18의 a)에서 확인되는 바와 같이 내부 상 유속을 증가시킴에 따라 마이크로 캡슐의 중심부 크기는 증가하였고, 캡슐 껍질의 두께는 감소하였다.
반대로, 내부 상과 중간 상의 유속의 합은 15.6 mL/시간으로 유지하고, 외부 상의 유속을 조절하여 마이크로 캡슐의 크기를 확인하였다. 그 결과, 도 18의 b)에서 확인되는 바와 같이 외부 상의 유속을 증가시킬수록 중심부와 껍질 크기는 모두 감소하였다.
상기 결과를 토대로, 마이크로 캡슐이 용액을 안정하게 담지하며, 외부 자극으로 인하여 이온 흡착성 용액이 1분 이내로 방출할 수 있는 최적의 유속 조건이 다음과 같이 결정되었다: 내부 상 = 10 mL/시간, 중간 상 = 5.6 mL/시간, 외부 상 = 34 mL/시간.
상기 최적의 조건 (내부 상 유속 = 10 mL/시간, 중간 상 유속 = 5.6 mL/시간, 외부 상 유속 = 34 mL/시간)에서 제조된 근적외선 자극 반응성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)을 광학현미경과 히스토그램으로 확인하였다. 히스토그램 확인 결과, 도 18의 c)에 나타난 바와 같이 3.2 %의 표준편차로 균일한 크기 (643 μm)의 이중 액적이 형성되는 것을 확인할 수 있었다. 또한, 도 19에 나타난 바와 같이 수성 중심부 내 적색 형광을 통해 마이크로 캡슐 내에 수성 용액이 성공적으로 캡슐화되었음을 확인할 수 있었다.
이후, 근적외선 자극 반응성 마이크로 캡슐의 제조는 미세유체반응장치에서 왁스 기반의 마이크로 캡슐을 제조한 후, 배치에서 마이크로 캡슐 1 g, 도파민 전구체 1 g, 암모니아 수 2 mL, 에탄올 80 mL 및 2차 증류수 180 mL을 넣고, 30 시간 동안 교반기를 이용하여 360 rpm 에서 혼합하여 제조하였다.
[실시예 6]
근적외선 자극성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)의 외부 근적외선 자극에 따른 금속 이온 흡착용 킬레이트 용액 방출의 확인
외부 자극에 따른 금속 이온 흡착용 킬레이트 용액의 방출을 확인하기 위해, 실시예 5에서 도출된 최적화 조건으로 제조된 근적외선 자극성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)에 근적외선을 처리하였다. 근적외선은 2W/cm2의 세기의 레이저 건을 사용하여 처리하였다. 근적외선 자극성 마이크로 캡슐의 껍질은 왁스/도파민으로 이루어져 있으며, 근적외선에 노출되면 먼저 외부 근적외선을 받아 열을 만들게 되고, 이후 열에 의해 왁스가 녹아 내부 용액이 방출된다. 도 20에서 나타난 바와 같이, 근적외선 처리 후 캡슐이 자극을 받아 방출할 때까지 시간은 5 초 이내로 확인되었다.
[실시예 7]
자성에 의한 마이크로 캡슐의 움직임 확인
7-1. 자성 나노입자가 함유된 마이크로 캡슐의 제조
실시예 4의 초음파 자극성 마이크로 캡슐 제조 조건에서, 내부 상에 1wt% 자성나노 입자를 추가하여 초음파 자극성 마이크로 캡슐 (HMP/MNP@PLGA)을 제조하였고, 마찬가지로 실시예 6의 근적외선 자극성 마이크로 캡슐 제조 조건에서, 내부 상에 1wt% 자성나노 입자를 추가하여 근적외선 자극성 마이크로 캡슐 (HMP/MNP@WAX@Pdop)을 제조하였다.
7-2. 자성에 의한 움직임 확인
실시예 7-1에서 제조된 마이크로 캡슐이 외부 자성에 의해 움직일 수 있는지 확인하기 위해, 페트리디쉬 (10 cm)위에 마이크로 캡슐 10개를 놓고 자석을 이용하여 실험을 진행하였다. 그 결과, 도 20에서 확인되는 바와 같이 초음파 자극성 마이크로 캡슐과 근적외선 자극성 마이크로 캡슐 모두 전 방향으로 움직임이 가능하였다. Tracker 5.1.3 프로그램을 이용하여 X, Y축 추척 후, 하기 수식 1을 이용하여, 마이크로 캡슐의 움직임 속도를 계산하였다.
[수식 1]
계산 결과, 초음파 자극성 마이크로 캡슐은 0.13 cm/초, NIR 자극성 마이크로 캡슐의 움직임 속도는 0.4 cm/초로 확인되었다. 상기 수식 1에서,D는 확산 계수이고, Δt는 시간 간격을 나타낸다.
[실시예 8]
Ψ-형 유체 칩에서의 인공 CaOx 결석 제거 시험
비침습적/선택적 약물 전달 방식은 질병 부위를 표적으로 할 때 부작용을 줄이고 치료 효과를 높인다. 요로결석증을 치료할 수 있는 이러한 마이크로 캡슐의 가능성은 인간 신장에서 주요 콩팥잔들(calyces)의 공통 수(2개 또는 3개)를 고려하여 설계된 PDMS 기반 Ψ-형 유체칩(채널 폭: 5mm, 길이: 37mm)에서 전달 효율, US-반응성 방출 및 칼슘 옥살레이트 결석(CaOx)의 제거와 같은 성능을 평가함으로써 확인하고자 하였다.
8-1. 임프린팅 방식에 의한 Ψ형 유체칩 제작
도 22a에 나타낸 바와 같이, Ψ형 유체칩은 PDMS 임프린팅 방법으로 제작하였다. Ψ형 PMMA 몰드(45x30mm)와 스테인리스 프레임(100x80mm)은 3D-CAD 소프트웨어를 사용하여 설계하였고, 설계된 Ψ형 PMMA 몰드는 3D 프린터로 출력하였다. 그런 다음 PDMS 용액(PDMS: 경화제 = 10:1)을 페트리 접시(150x25mm)의 Ψ자형 PMMA 몰드에 붓고 80 ℃ 오븐에서 3시간 동안 PDMS를 경화시켜 Ψ자형 유체 칩을 제조하였다. 프레임의 상부와 하부는 CTX Beta 1250 TC(DMG MORI)를 사용하여 CNC 공정으로 별도로 제작되었다. 마지막으로, PDMS 기반의 유체칩을 육각나사로 상하로 조여 결석 제거 실험을 진행하였다(도 22b 및 도 22c).
8-2. 이중 액적 미세유체반응장치에서 마이크로 캡슐(HMP/Fe3O4/S-Rh.B@PLGA, Fe3O4/FITC-ALS@PLGA)의 제조
이중 액적 미세유체반응장치에서 마이크로 캡슐을 제조하였다. HMP(1-100mM), S-Rh.B(설포로다민 B, 10mM) 및 Fe3O4(0.1-1 wt%) 수용액(W1 상)을 제조하여 내부 상에 주입하였다. 또한, DCM 용액에 용해된 PLGA(O 상, 10 wt%)를 중간 상에 주입하여 W1/O 에멀젼(emulsion)을 얻었다. 마지막으로 수성 PVA(W2 상, 10 wt%)를 외부 상에 주입하여 W1/O/W2 에멀젼을 얻었다. 얻어진 Rh.B/HMP/Fe3O4@PLGA 마이크로 캡슐은 마이크로 캡슐이 삼투압에 의해 터지는 것을 방지하기 위해 수크로스 10 wt%로 채워진 바이알(vial)에 수집되었다. 이중 액적 미세유체반응장치의 생산성은 8 Hz(sec-1)이므로 각각 1.25, 2.5, 12.5, 62.5 및 125초 동안 작동하여 10, 20, 100, 500 및 1000개의 마이크로 캡슐을 얻었다. 수크로스 10 wt%에 침지된 마이크로 캡슐을 오비탈 쉐이커(90rpm)로 실온에서 3시간 동안 증발시켰다. 그런 다음, 마이크로 캡슐은 D.I. 물로 3회 세척하고 10mL 수크로스(10 wt%)에 저장하였다. 상기 방법에서 HMP와 S-Rh.B를 대체하여 FITC-ALS(10mM)를 포함하는 마이크로 캡슐을 제조하였다.
8-3. 인공 소변 준비
인공 소변은 문헌 [T. E. Robinson, T. E. Robinson, E. A. B. Hughes, O. J. Wiseman, S. A. Stapley, S. C. Cox and L. M. Grover, J. Mater. Chem. B, 2020, 8, 5215-5224.]에 보고된 방법을 사용하여 제조하였다. 염화칼슘 이수화물(1.103g), 염화나트륨(2.925g), 무수황산나트륨(2.25g), 일인산칼륨(1.4g), 염화칼륨(1.6g), 염화암모늄(1g), 요소(25g) 및 크레아티닌(1.1g)을 D.I. 물(1L)에 용해시켰다. 최종 인공 pH는 5.8이었다.
인공 소변은 인간 요관의 소변 흐름에 해당하는 총 유속 0.5 mL min-1(각 채널 유속: 0.166 mL min-1)로 외부 방향으로 지속적으로 흐른다. 신장-요관 모방체의 역동적인 환경에서, 빨간색 S-Rh.B 염료로 표지된 마이크로 캡슐은, 자석이 위치한 하부 채널의 [c] 영역에서, 캡슐이 알렌드로네이트(ALS)-FITC 형광으로 염색된 것과 같이, 녹색 표지 CaOx 결석에 도달하기 위해 인공 소변 흐름에 반대로 채널을 따라 자기적으로 안쪽으로 이동하였다(도 23a 및 도 23b[i-iii])
8-4. 유체칩에서 마이크로 캡슐의 전달 효율
마이크로 캡슐(ALS-FITC/Fe3O4)의 자기-유도 전달 효율(magnetic-guided delivery efficiency)은 유체칩의 동적 소변 흐름 조건(0.5 mL min-1)에서 분석되었다. 먼저, CaOx 결석을 유체칩([c] 영역, 자석 배치)에 배치하였다. 그리고 준비된 마이크로 캡슐(마이크로 캡슐 개수 > 20개)을 유체칩에 공급하였다. 마지막으로 다음의 수식 2로 전달 효율성을 계산했다.
[수식 2]
색상 대비에서 알 수 있듯이, 자석이 있는 [c] 부위와 자석이 없는 [b] 부위에서 마이크로 캡슐의 수를 국소적으로 포획하여 자기 전달 효율을 정량화하였다(도 23c). 문헌 [Y. Li, Y. Li, Y. Li, Y. Fu, Y. Fu, Y. Fu, H. Zhang, H. Zhang, H. Zhang, J. Song, J. Song, J. Song, S. Yang, S. Yang and S. Yang, BioMed Res. Int., 2020, 2020, 4012194.]에 보고된 방법에 의해 합성된 ALS-FITC는 ALS-FITC/Fe3O4 마이크로 캡슐을 생성하기 위한 동일한 미세유체 생성기를 사용하여 Fe3O4 NP로 캡슐화되었다(도 24a 및 도 24b). FTIR 분광법은 FITC의 -N=C=S에 해당하는 2019 cm-1의 피크, 비대칭 -NH 및 -CH에 해당하는 1641 및 2985 cm-1의 흡수 피크, 그리고 ALS와 결합된 FITC가 3452 cm-115에서 넓은 대칭 -NH-의 새로운 피크로 확인되었음을 보여준다.
자기성 전달 캡슐은 US 자극 후 형광 용액을 방출하였으며, 이는 결석의 칼슘에 흡착되어 간단한 방식으로 잔류 결석을 녹색 형광으로 시각화할 수 있다(도 25a 및 도 25b).
8-5. 신장요로모방칩에서 인간 신장 결석을 제거하기 위한 실험 설정
실제 인간의 요로 모양과 길이를 참조하여, 3D CAD 소프트웨어를 사용하여 PDMS 기반 신장요로모방칩을 설계하였다. 세부 사양은 요관(길이: 85mm 및 너비: 4.7mm), 신우(길이: 27mm 및 너비: 5.3-20.2mm), 주요 콩팥잔(길이: 11.2-16.5mm 및 너비: 114-16.3mm), 작은 콩팥잔(길이: 10.3-15mm, 너비: 7.7-9.9mm) 및 전체 신장 크기(길이: 66mm, 너비: 135mm 및 높이: 40mm)이다. 그 다음 설계된 신장요로모방칩 몰드를 SLA proX 800 프린터로 고분자수지(Korea technology의 Accura 25)를 이용하여 프린팅하였다. 그런 다음 PDMS 용액(PDMS: 경화제 = 10:1)을 둥근 포트(반경 90mm, 높이: 100mm)의 3D 프린팅된 몰드에 붓고 PDMS를 오븐에서 80 ℃에서 3시간 동안 경화시켰다. 마지막으로, 인간 신장 결석 제거 시험을 위해 열린 공간이 있는 신장요로모방칩을 사용하였다.
8-6. 요로결석증 모사 물질로서 칼슘 옥살레이트(CaOx) 결석 구형의 제조
요로결석증의 대표적인 주성분인 CaOx의 제거를 평가하기 위해, 상이한 크기(직경 1, 3, 5, 7.5cm)의 인공 CaOx 결석구를 원심분리(8000rpm) 및 상이한 공동(cavity) 크기를 갖는 3D 프린팅된 몰드에 침전시켜 제조하였다.(도 26a 내지 도 26d)
구형(spherical) 칼슘 옥살레이트 결석의 제조를 위해, 각 구형 공동(크기: 1mm 결석의 경우 1.36mm, 3mm 결석의 경우 4.08mm, 5mm 결석의 경우 6.8mm, 7.5mm 결석의 경우 10.2mm)이 있는 3D 프린팅된 몰드를 3D-CAD 소프트웨어를 사용하여 설계하였다. 결석 크기는 3D 프린팅된 몰드의 구형 공동에 의해 제어되었다. 그런 다음, 3D 프린팅된 PMMA 몰드를 원추형 튜브(1-5mm 크기의 결석에 15mL, 7.5mm 크기의 결석에 50mL)에 넣었다. 다음으로, 수성 분산 칼슘 옥살레이트 용액(20wt%)을 3D 프린팅 몰드가 장착된 원추형 튜브에 붓고 상이한 속도(2000-9000rpm)로 원심 분리하여 칼슘 옥살레이트 밀도를 제어하였다.
8-7. CaOx 결석 제거 시험
마이크로 캡슐에 의한 자기 유도 운동, US-반응 방출 및 인간 신장 결석 제거 시험을 위해 실험 장치를 준비하였다. 실제 인간 신장 결석은 PDMS 기반 신장요로모방칩의 작은 콩팥잔에 의도적으로 배치되었다. 그런 다음, 준비된 인공소변액(36.5 ℃)을 인간 신장 결석 위쪽에서 외측으로(outward) 흐르게 하여 펌프(Reglo digital gear pump, Revodix)를 이용하여 0.5 mL min-1의 유속으로 연속적으로 흐르게 하였다. 또한, 마이크로 캡슐의 자기 유도 이동성을 확보하기 위해 XY 스테이지에 자석을 장착하였다. 마지막으로, 마이크로 캡슐의 자기 유도 운동, 마이크로 캡슐로부터 용액을 방출하는 US-반응성 및 요로결석 제거를 관찰하기 위해 신장요로모방칩을 현미경 위에 올려놓았다. 참고로, 인간의 복부와 신장 결석 사이의 거리를 고려하여, 외부 자극(US 및 자석)으로부터 결석의 거리는 8cm로 설정되었다.
결석 제거 시험 전에, US 조사 후 마이크로 캡슐로부터 방출된 빨간색 S-Rh. B 염료의 체류 시간을 관찰함으로써 유체칩에서 방출된 용액의 체류 시간을 간접적으로 결정하였다. 일반적으로 더 많은 수의 공급된 마이크로 캡슐과 더 높은 염료 농도를 사용하여 체류 시간을 연장하였고; 4.9분의 체류 기간은 0.5mL min-1의 소변 역류 속도에서 충분하였다(표 1).
특히, 높은 HMP 농도(100mM)를 갖는 마이크로 캡슐(500개)의 전달된 수는 결석 제거 효율(>12.7%)을 나타냈으며, 이는 US 단독 대조군 실험(<1%)보다 훨씬 더 효과적이었다. (도 27), 그러나, 1000개의 마이크로 캡슐로 증가시키는 것은 제거에 거의 영향을 미치지 않았다(도 23d). 또한, 제거 효율은 예상대로 결석 크기(1-7.5mm)에 반비례하였다. 구체적으로, 1mm 결석의 34%는 6.55분의 1회 전달-US 조사-체류 사이클로 제거되었고, 사이클의 3회 반복 후에 거의 완전히 제거되었다(97%).
2, 5, 7 mm의 더 큰 결석 크기의 경우, 제거 효율은 사이클 수를 각각 5, 7, 10으로 증가시켰을 때 98%, 97% 및 61%였다(도 23e). 또한, 캡슐화된 HMP 용액의 농도가 높을수록 용해성 HMP-Ca2+ 복합체의 유리한 형성으로 인해 세포 생존력을 손상시키지 않고 결석 제거 효율이 더 높아졌다. 따라서, 마이크로 캡슐에 의한 킬레이트 용액의 전달 방법은 비교적 임상적으로 적절한 치료 시간 범위(7 사이클: <45분) 내에서 요로결석증을 효과적으로 제거할 수 있을 것으로 보인다.
상기 결과에서 확인되는 바와 같이, 본 발명에 따른 마이크로 캡슐은 결석의 크기를 현저히 줄이고 자연배설을 촉진하는 임상적 치료에 대한 잠재적인 새로운 접근법을 제시한다.
[실시예 9]
임상치료 가능성 확인
임상치료로서의 가능성을 입증하기 위해, 생체 내(in vivo)에서 생산된 신장결석을 사용하여 인간에서 실제 요관-신장 기관의 크기와 모양을 고려하여 설계된 PDMS 기반 신장요로모방칩(66Х135Х40 mm)에서 제거 시험을 수행하였다(도 28a, 도 29 및 도 30). 대한민국, 서울성모병원에서 요관경 검사를 받는 환자로부터 인간 신장 결석(CaOx 100%, 크기 5-7 mm)을 얻었다.
외과적으로 어려운 위치인, 신장요로모방칩의 작은 콩팥잔에 결석을 위치시켰다. 0.5 mL min-1에서 인공 소변액의 반대 흐름에도 불구하고, 500개의 마이크로 캡슐 그룹은 자석(400 mT)으로 제어하는대로, 좁은 요관(4.7 Х 85 mm), 구부러진 신장 골반(5.3-20.2 mm 너비 Х 27mm) 및 작은 콩팥잔의 양측을 통해 작은 콩팥잔의 결석으로 전달되었다.
이것은 자기 유도가 복잡한 신장 구조를 따라 짧은 시간(<1분)에 많은 마이크로 캡슐 그룹을 정확하게 표적할 수 있음을 나타낸다(도 27b). 그 후, 마이크로 캡슐에 전달된 HMP는 외부 초음파 자극 후 1.35분 이내에 완전히 방출되었다(도 30). 근관(canal)에 단단한 플러그(plug)의 생성은 1시간의 전달 실험 동안 관찰되지 않았다(도 30). 마이크로 캡슐을 한 번 처리하는 경우, 노출된 표면적이 적고 밀도가 높은 생체 내 생성 결석의 ~8%가 제거되었다. 처리 사이클 수가 증가함에 따라 제거 효율이 증가하여 10 사이클 후에는 제거 효율이 거의 60%에 도달하였다(도 27c 및 도 27d).
이러한 결과는 이 마이크로 캡슐 전달 방법이 생체 내 동물 모델의 성공적인 연구를 가정할 때 생체 내 조건 및 임상 적용에서 요로결석을 선택적으로 용해할 수 있는 잠재력을 가지고 있음을 시사한다.
본 발명을 지원한 국가연구개발사업은 다음과 같다.
(1)
[과제고유번호] 1711159412
[과제번호] 2017R1A3B1023598
[부처명] 과학기술정보통신부
[과제관리(전문)기관명] 한국연구재단
[연구사업명] 개인기초연구
[연구과제명] 지능형 미세유체 기반 정밀의약 합성공정 및 응용연구
[기여율] 70/100
[과제수행기관명] 포항공과대학교 산학협력단
[연구기간] 2017.03.01 ~ 2026.02.28
(2)
[과제고유번호] 1711174657
[과제번호] 2022R1A2C1092876
[부처명] 과학기술정보통신부
[과제관리(전문)기관명] 한국연구재단
[연구사업명] 개인기초연구(과기정통부)
[연구과제명] 킬레이터 마이크로 캡슐을 이용한 요로결석의 신개념 치료
법 개발
[기여율] 30/100
[과제수행기관명] 가톨릭대학교 산학협력단
[연구기간] 2022.09.01 ~ 2025.02.28
Claims (37)
- 코어(core)와 쉘(shell)을 포함하는 마이크로 캡슐을 제조하기 위한 미세유체반응기로서,소정 부피를 가지는 하우징; 및상기 하우징 내부에 형성되며, 상기 하우징의 외부로부터 유입된 유체가 일방향을 따라 이동하도록 가이드하는 제1 유로;를 포함하고,상기 제1 유로는,상기 코어를 형성하는 제1 유체가 유입되어 이동되는 메인 채널;상기 쉘을 형성하는 제2 유체가 유입되는 유입부와, 상기 유입부로부터 분기되어 모두 상기 메인 채널의 일측부에 연결되는 복수의 지류를 가지는 분기부를 포함하는 제1 채널; 및상기 제1 유체를 상기 제2 유체에 담지시키기 위한 제3 유체가 유입되어 이동하며, 상기 제1 채널과 동일한 구조를 가지도록 형성되되 상기 메인 채널의 타측부에 연결되는 제2 채널;을 포함하고,상기 제1 채널과 상기 제2 채널은 상기 메인 채널을 기준으로 대칭이 되도록 배치되는, 미세유체반응기.
- 제1 항에 있어서,상기 제1 채널과 상기 제2 채널은 각각 2개의 지류를 가지는, 미세유체반응기.
- 제2 항에 있어서,상기 제1 채널 및 상기 제2 채널에 포함된 4개의 지류는 상기 메인 채널을 중심으로 X자 형상을 이루도록 배치되는, 미세유체반응기.
- 제2 항에 있어서,상기 메인 채널 중에서 상기 4개의 지류가 연결되는 부분은 마름모 형상의 단면을 가지는, 미세유체반응기.
- 제1 항에 있어서,상기 복수의 지류는 각각 제1 기울기를 가지며 연장되는 제1 부분 및 제2 기울기를 가지며 연장되는 제2 부분을 포함하고,상기 제1 기울기와 상기 제2 기울기 중 어느 하나는 양의 기울기를 가지고, 다른 하나는 음의 기울기를 가지는, 미세유체반응기.
- 제1 항에 있어서,상기 제1 채널 및 상기 제2 채널에 포함된 복수의 지류는 상기 메인 채널의 둘레 방향을 따라 동일한 각도로 이격 배치되는, 미세유체반응기.
- 제1 항에 있어서,상기 메인 채널의 유출구 측 단부에 삽입되는 관 부재를 더 포함하고,상기 관 부재는 상기 메인 채널의 내경과 동일한 크기의 외경을 가지는, 미세유체반응기.
- 제1 항에 있어서,상기 제1 유로는 상기 제1 채널 및 상기 제2 채널과 상기 메인 채널의 연장 방향을 따라 각각 나란하게 배치되어 상기 메인 채널과 연결되는 제3 채널 및 제4 채널을 더 포함하고,상기 마이크로 캡슐은 다중 쉘 구조로 형성되는, 미세유체반응기.
- 제1 항에 있어서,상기 하우징의 내부에 상기 제1 유로와 동일한 구조를 가지도록 형성되는 N개의 유로를 더 포함하고,상기 제1 유로를 포함한 N+1개의 유로는 상기 하우징의 높이 방향을 따라 나란하게 배치되는, 미세유체반응기.
- 제9 항에 있어서,상기 N+1개의 유로에 포함된 N+1개의 메인 채널의 일단부와 모두 연결되어 상기 N+1개의 메인 채널 측으로 상기 제1 유체를 공급하는 제1 공급 유로;상기 N+1개의 유로에 포함된 N+1개의 제1 채널의 일단부와 모두 연결되어 상기 N+1개의 제1 채널 측으로 상기 제2 유체를 공급하는 제2 공급 유로;상기 N+1개의 유로에 포함된 N+1개의 제2 채널의 일단부와 모두 연결되어 상기 N+1개의 제2 채널 측으로 상기 제3 유체를 공급하는 제3 공급 유로; 및상기 N+1개의 메인 채널의 타단부와 모두 연결되어 상기 N+1개의 메인 채널로부터 유출되는 유체를 취합하는 취합 유로;를 포함하는, 미세유체반응기.
- 제1 항에 있어서,상기 제1 유로는 상기 하우징을 3D 프린팅 공정을 통해 형성하는 과정에서 형성되는, 미세유체반응기.
- 제1 항에 따른 미세유체반응기;상기 메인 채널의 일단부에 연결되어 상기 제1 유체를 공급하는 제1 공급수단;상기 제1 채널의 유입부에 연결되어 상기 제2 유체를 공급하는 제2 공급수단; 및상기 제2 채널의 유입부에 연결되어 상기 제3 유체를 공급하는 제3 공급수단;을 포함하는, 미세유체반응장치.
- 제12 항에 있어서,상기 제2 공급수단은, 상기 제3 공급수단의 기능을 동시에 수행하도록 상기 제1 채널의 유입부 및 상기 제2 채널의 유입부에 연결되는 복수 개의 관부재를 포함하는, 미세유체반응장치.
- 제1 항 내지 내지 제11 항 중 어느 한 항에 따른 미세유체반응기 또는 제12 항 또는 제13 항의 미세유체반응장치를 이용하여 수행되는 마이크로 캡슐의 제조방법.
- 제14 항에 있어서,제1 유체, 제2 유체 및 제3 유체의 유속을 조절하여 마이크로 캡슐의 코어 크기 및 쉘의 두께를 조절하는, 마이크로 캡슐의 제조방법.
- 제15 항에 있어서,상기 제1 유체는 캡슐의 코어를 형성하는, 활성 성분이 분산된 용액이고;상기 제2 유체는 캡슐의 쉘을 형성하는, 생체 친화성 고분자 물질을 포함하는 용액이며;상기 제3 유체는 상기 활성 성분을 상기 생체 친화성 고분자 물질에 담지시키기 위한 수용성 고분자 화합물을 포함하는 용액인, 마이크로 캡슐의 제조방법.
- 제14 항의 제조방법으로 제조되고,제1 활성 성분이 분산된 용액을 포함하는 제1 코어; 및상기 제1 활성 성분을 캡슐화하는 제1 생체 친화성 고분자 물질을 포함하는 용액을 포함하는 제1 쉘을 포함하는 마이크로 캡슐.
- 제14 항의 제조방법으로 제조되며,금속 이온 흡착성 물질이 분산된 용액을 포함하는 제1 코어; 및상기 금속 이온 흡착성 물질을 캡슐화하는 제1 생체 친화성 고분자 물질을 포함하는 용액을 포함하는 제1 쉘을 포함하는 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 금속 이온은 칼슘 이온, 칼륨 이온, 마그네슘 이온, 리튬 이온, 우라늄 이온, 코발트 이온, 팔라듐 이온, 니오븀 이온, 바나듐 이온, 납 이온, 수은 이온, 카드뮴 이온 및 구리 이온으로 이루어진 군으로부터 선택되는 어느 1종 이상인, 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 금속 이온 흡착성 물질은 제거하고자 하는 금속 이온의 종류에 따라 선택되는, 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 금속 이온이 칼슘 이온인 경우, 상기 금속 이온 흡착성 물질은 에틸렌-다이아민-테트라아세트산 (ethylene-diamine-tetraacetic acid, EDTA), 에틸렌 다이아민 (ethylene diamine, EDA), 시트르산, 글리신, 헥사메타인산나트륨 (sodium hexametaphosphate, HMP) 또는 알렌드로네이트 (Alendronate)인, 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 생체 친화성 물질은 폴리락트산, 폴리락타이드, 폴리락틱-코-글리콜산, 폴리락타이드-코-글리콜라이드(PLGA), 폴리포스파진, 폴리이미노카보네이트, 폴리포스포에스테르, 폴리안하이드라이드, 폴리오르쏘에스테르, 락트산과 카프로락톤의 공중합체, 폴리카프로락톤, 폴리하이드록시발레이트, 폴리하이드록시부티레이트, 폴리아미노산, 락트산과 아미노산의 공중합체, 파라핀 왁스, 코코넛 왁스, 겔 왁스, 팜 왁스, 콩 왁스, 밀랍, 폴리도파민 및 이들의 혼합물로 이루어진 군으로부터 선택되는 것인, 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 제1 코어는 형광물질을 추가로 포함하는, 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 외부 자극 반응성 마이크로 캡슐은 외부 자극에 의해 쉘이 깨지거나 분해되며, 상기 외부 자극은 화학적 자극, 생물학적 자극, 초음파 자극, 열 자극, 근적외선 자극, 전기 자극, 자성 자극 또는 광 자극인, 외부 자극 반응성 마이크로 캡슐.
- 제18 항에 있어서,상기 코어에 자성 나노 입자가 추가로 포함되는, 외부 자극 반응성 마이크로 캡슐.
- 제25 항에 있어서,상기 코어에 자성 나노 입자가 포함된 외부 자극 반응성 마이크로 캡슐은 자성에 의해 이동 가능한 것인, 외부 자극 반응성 마이크로 캡슐.
- 제17 항 또는 제18 항에 있어서,상기 마이크로 캡슐의 제1 코어 내부 또는 제1 쉘 외부에,제2 활성 성분이 분산된 용액을 포함하는 제2 코어; 및상기 제2 활성 성분을 캡슐화하는 제2 생체 친화성 물질을 포함하는 용액을 포함하는 제2 쉘을 포함하는, 외부 자극 반응성 마이크로 캡슐.
- 제27 항에 있어서,상기 제1 쉘 및/또는 제2 쉘의 외부 표면에 스텔스 물질 또는 약물 표적화 물질이 결합되거나 코팅되는, 외부 자극 반응성 마이크로 캡슐.
- 제17 항의 마이크로 캡슐을 포함하는 약물 전달체.
- 제18 항의 외부 자극 반응성 마이크로 캡슐을 포함하는 마이크로 킬레이터 (micro-chelator).
- 제20 항에 있어서,상기 마이크로 킬레이터는 의료용으로 사용되는, 마이크로 킬레이터.
- 제31 항에 있어서,상기 마이크로 킬레이터는 결석증(lithiasis) 진단 또는 결석 제거용으로 사용되는, 마이크로 킬레이터.
- 제18 항의 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 치료학적 유효량으로 이를 필요로 하는 개체에게 투여하는 것을 포함하는 결석 제거 방법.
- 제33 항에 있어서,상기 개체는 신장, 요로, 위, 담낭, 침샘, 눈 또는 근육에 결석이 축적된 환자인, 결석 제거 방법.
- 제18 항의 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 치료학적 유효량으로 이를 필요로 하는 개체에게 투여하는 것을 포함하는 요로결석증 치료 방법.
- 제18 항의 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 개체에게 투여하는 것을 포함하는 결석증 진단 방법.
- 제18 항의 외부 자극 반응성 마이크로 캡슐 또는 이를 포함하는 마이크로 킬레이터를 포함하는 결석증 진단용 키트.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20220064861 | 2022-05-26 | ||
KR10-2022-0064861 | 2022-05-26 | ||
KR10-2023-0019454 | 2023-02-14 | ||
KR1020230019454A KR20230166038A (ko) | 2022-05-26 | 2023-02-14 | 마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023229438A1 true WO2023229438A1 (ko) | 2023-11-30 |
Family
ID=88919815
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/007310 WO2023229438A1 (ko) | 2022-05-26 | 2023-05-26 | 마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023229438A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101061544B1 (ko) * | 2009-01-21 | 2011-09-02 | 한국과학기술연구원 | 3차원 포커싱 유동 유도장치 및 이를 이용한 마이크로 캡슐 제조장치 |
US20130089602A1 (en) * | 2011-10-10 | 2013-04-11 | International Business Machines Corporation | Encapsulated chelator |
KR20180063192A (ko) * | 2015-09-29 | 2018-06-11 | 상하이 클리니컬 엔진 테크놀로지 디벨롭먼트 씨오., 엘티디. | 결석 제거에서 자성재료의 용도 |
JP2021534956A (ja) * | 2018-08-17 | 2021-12-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California | 安定なジェットからの単分散粒子に誘発される液滴の形成 |
KR20220033960A (ko) * | 2020-09-10 | 2022-03-17 | 포항공과대학교 산학협력단 | 약물 입자 담지율 향상을 위한 3차원 미세유체 반응기 및 이를 이용한 균일한 캡슐의 연속 일괄 제조방법 |
-
2023
- 2023-05-26 WO PCT/KR2023/007310 patent/WO2023229438A1/ko unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101061544B1 (ko) * | 2009-01-21 | 2011-09-02 | 한국과학기술연구원 | 3차원 포커싱 유동 유도장치 및 이를 이용한 마이크로 캡슐 제조장치 |
US20130089602A1 (en) * | 2011-10-10 | 2013-04-11 | International Business Machines Corporation | Encapsulated chelator |
KR20180063192A (ko) * | 2015-09-29 | 2018-06-11 | 상하이 클리니컬 엔진 테크놀로지 디벨롭먼트 씨오., 엘티디. | 결석 제거에서 자성재료의 용도 |
JP2021534956A (ja) * | 2018-08-17 | 2021-12-16 | ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニアThe Regents Of The University Of California | 安定なジェットからの単分散粒子に誘発される液滴の形成 |
KR20220033960A (ko) * | 2020-09-10 | 2022-03-17 | 포항공과대학교 산학협력단 | 약물 입자 담지율 향상을 위한 3차원 미세유체 반응기 및 이를 이용한 균일한 캡슐의 연속 일괄 제조방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4569789A (en) | Acid-cleavable compound, use in protein conjugates and drug delivery systems | |
WO2023229438A1 (ko) | 마이크로 캡슐을 제조하기 위한 미세유체반응기 및 이를 이용하여 제조되는 외부 자극 반응성 마이크로 캡슐 | |
Ludwig | New concepts in biliary cirrhosis | |
Baldwin et al. | Inhibition of lymphocyte cytotoxicity for human colon carcinoma by treatment with solubilized tumour membrane fractions | |
US7312038B2 (en) | Photocleavable bioreactive agents | |
WO2011002239A2 (ko) | 포유류의 유핵세포에서 유래된 마이크로베시클 및 이의 용도 | |
JP2017519001A (ja) | ニューロテンシン受容体リガンドを含むコンジュゲートおよびそれらの使用 | |
WO2018186725A1 (ko) | 암 치료용 약학 조성물 | |
KR20090054984A (ko) | 인돌 화합물 | |
KR20080111123A (ko) | Hcv/hiv 억제제 및 이들의 용도 | |
JP6813398B2 (ja) | 感光性組成物、ドライフィルム、及びパターン化された硬化膜を形成する方法 | |
Czechowska et al. | The effect of the angiotensin II receptor, type 1 receptor antagonists, losartan and telmisartan, on thioacetamide-induced liver fibrosis in rats | |
JPH1172918A (ja) | ネガ型感光性樹脂組成物、これを用いたパターン形成方法、および電子部品 | |
Lozynskyi et al. | Screening of antioxidant and anti-inflammatory activities among thiopyrano [2, 3-d] thiazoles | |
Mielants et al. | The role of gut inflammation in the pathogenesis of spondyloarthropathies | |
WO2018131989A1 (ko) | 형광단백질을 발현하는 유전자 및 광감작제를 이용한 광역학 치료용 조성물 및 이를 이용한 광역학 치료방법 | |
Pettit et al. | Antineoplastic agents. 603. Quinstatins: Exceptional cancer cell growth inhibitors | |
Sokolova et al. | Microwave-Assisted Synthesis of Triazole-Linked Phthalocyanine–Peptide Conjugates as Potential Photosensitizers for Photodynamic Therapy | |
WO2021221287A1 (ko) | 세포사멸 유도용 기체 전구체를 담지한 나노입자 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물 | |
Qian et al. | Induction of donor-specific tolerance to rat islet allografts by intrathymic inoculation of solubilized spleen cell membrane antigens | |
Burkart et al. | Potent β-cell protection in vitro by an isoquinolinone-derived PARP inhibitor | |
CN109988120A (zh) | 一种吲哚胺-2,3-双加氧酶抑制剂及其制备方法和用途 | |
Marx | " Anxiety Peptide" Found in Brain: A peptide that occurs naturally in brain appears to act through the benzodiazepine receptor to bring about an increase in anxiety | |
Meena et al. | Discovery of a low affinity thyrotropin-releasing hormone (TRH)-like peptide that exhibits potent inhibition of scopolamine-induced memory impairment in mice | |
Sharma et al. | Synthesis and Medicinal Applications of Fenamic Acid Derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23812212 Country of ref document: EP Kind code of ref document: A1 |