WO2023229005A1 - 成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法 - Google Patents

成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法 Download PDF

Info

Publication number
WO2023229005A1
WO2023229005A1 PCT/JP2023/019489 JP2023019489W WO2023229005A1 WO 2023229005 A1 WO2023229005 A1 WO 2023229005A1 JP 2023019489 W JP2023019489 W JP 2023019489W WO 2023229005 A1 WO2023229005 A1 WO 2023229005A1
Authority
WO
WIPO (PCT)
Prior art keywords
stress
delayed fracture
strain
molded part
margin
Prior art date
Application number
PCT/JP2023/019489
Other languages
English (en)
French (fr)
Inventor
優一 松木
豊久 新宮
欣哉 中川
雄司 山▲崎▼
彩希 川内
Original Assignee
Jfeスチール株式会社
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社, トヨタ自動車株式会社 filed Critical Jfeスチール株式会社
Publication of WO2023229005A1 publication Critical patent/WO2023229005A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces

Definitions

  • the present invention is a technology for evaluating the delayed fracture characteristics of a sheared end face of a molded part manufactured by molding such as press molding.
  • the present invention also relates to a method for evaluating delayed fracture characteristics of molded parts, and a method for manufacturing molded parts using the method.
  • an end surface obtained by shearing a metal plate is referred to as a sheared end surface.
  • the present invention is a technique particularly suitable for molded parts made of high-strength steel plates (high-tensile steel plates) having a tensile strength of 980 MPa or more.
  • high-strength steel plates a steel plate with a tensile strength of 1470 MPa or more is referred to as an ultra-high-strength steel plate.
  • High-strength steel plates are used in vehicle bodies in order to both reduce vehicle body weight and protect passengers in the event of a collision.
  • high-strength steel plates with a tensile strength of 980 MPa or more have begun to be applied to vehicle bodies.
  • One of the issues when applying high-strength steel plates to car bodies is delayed fracture.
  • high-strength steel plates with a tensile strength of 980 MPa or more delayed fracture occurring from sheared end faces is an important issue.
  • the sheared end face is the end face after shearing.
  • Patent Document 1 In order to predict delayed fracture at the sheared end face in advance, it is necessary to prepare a test piece for evaluation and install the test piece in a hydrogen intrusion environment. Furthermore, the properties of the sheared end face change due to plastic deformation during shearing. In general, the risk of delayed fracture at the sheared end face increases. Therefore, for example, in Patent Document 1, the occurrence of delayed fracture is evaluated as follows. That is, in Patent Document 1, compression processing in the plate thickness direction by rolling is added to the sheared end surface of the test piece. Thereafter, the test pieces were placed in a hydrogen-invading environment to evaluate the occurrence of delayed fracture.
  • Patent Document 3 the focus is not on the sheared end face, but on the evaluation of delayed fracture characteristics on the surface of the test piece. Therefore, in Patent Document 3, the sheared end surface of the evaluation sample is sealed with a resin coating, and the sheared end surface is excluded from the evaluation target.
  • Patent Document 1 introducing strain by rolling as disclosed in Patent Document 1 has the following problems. That is, there is a problem that the deformation state is different from the deformation state due to molding strain introduced by press molding used for automobile parts. In press forming, bending deformation by uniaxial tension, compression, and a combination thereof is introduced to the sheared end surface. Therefore, the evaluation method described in Patent Document 1 is not sufficient for evaluation. Further, Patent Documents 2 and 3 do not take into account changes in delayed fracture characteristics due to plastic deformation of the sheared end surface after shearing.
  • the point of view is how much leeway there is in the hydrogen intrusion environment and stress conditions for the occurrence of delayed fracture compared to the hydrogen intrusion environment and stress in actual automobile parts.
  • the inventors obtained the following knowledge. That is, in actual automobile parts, different forming strains are introduced into the metal plate to be processed depending on the location where the sheared end surface is formed. We also found that the delayed fracture characteristics due to plastic deformation change depending on the forming strain. Furthermore, it has been found that delayed fracture is likely to occur on the sheared end face due to the added stress applied after press forming in addition to the residual stress due to shearing.
  • the inventors obtained the following findings. That is, consider a case where molding residual stress is applied to a sheared end face to which molding strain has been introduced in a certain hydrogen intrusion environment. In this case, it was found that it is extremely important to evaluate how much margin the sheared end face of the molded part has against delayed fracture occurrence. In other words, it was found that such evaluation is extremely important in avoiding delayed fracture at sheared end faces of automobile parts. As described above, the properties of the sheared end surface change due to plastic deformation during press forming of automobile parts. On the other hand, until now, there has been no index that can predict the occurrence of delayed fracture by comparing it with the stress that occurs in actual automobile parts.Therefore, there is no method that can evaluate delayed fracture from the perspective of stress margin. Ta.
  • the present invention focuses on the above-mentioned points, and aims to more accurately evaluate delayed fracture characteristics at sheared end faces of molded parts during use.
  • An object of the present invention is to make it possible to manufacture molded parts in which delayed fracture is suppressed.
  • one aspect of the present invention is to manufacture a molded part by molding a metal plate made of a high-strength steel plate, and to produce a molded part at a sheared end surface of the molded part used by assembling the molded part into another part.
  • a method for evaluating delayed fracture characteristics of a molded part which comprises: restraining the sheared surface of the metal plate in a state where a preset load stress is applied; Based on the results of a test in which the metal plate is placed in a preset hydrogen intrusion environment for a preset time, the stress margin is the allowable value of the external load stress that does not cause delayed fracture on the sheared surface of the metal plate.
  • a first step is to obtain the amount of strain as a variable, and a forming analysis is performed to form the metal plate into the molded part to calculate the shear of the molded part that occurs when forming the metal plate into the molded part.
  • a second step of determining the residual stress and strain amount at the end surface a third step of determining the load stress applied to the sheared end surface by assembling the molded part to another part; and the second step.
  • the above A fourth step of evaluating the degree of margin for delayed fracture of the molded part.
  • the above molding is, for example, press molding.
  • the delayed fracture characteristics of a sheared end face of a molded part placed in a usage environment are evaluated with higher accuracy.
  • the stress margin which is an index for delayed fracture evaluation, uses stress as a unit, and can be evaluated from the perspective of the stress margin. For this reason, for example, when applying high-strength steel sheets to various parts such as automobile panel parts and structural/skeletal parts, the following becomes possible. That is, according to the aspect of the present invention, it is possible to predict the occurrence of delayed fracture in a molded part, including a margin having a stress dimension.
  • the aspect of the present invention for example, by expanding the range of application of ultra-high strength steel plates, it is possible to reduce the weight of automobile bodies.
  • FIG. 3 is a conceptual diagram showing the relationship between delayed fracture of a sheared end face and stress margin.
  • 1 is a diagram showing a configuration example according to an embodiment based on the present invention. It is a figure showing the example of composition of the 1st process.
  • FIG. 2 is a conceptual diagram showing the relationship between delayed fracture of a sheared end face and stress margin when residual stress remains during bending.
  • FIG. 3 is a diagram illustrating an example of a processing flow that can be used in evaluation of the present method. It is a figure showing the example of the function with respect to the strain amount of stress margin. It is a figure which shows the shape of the molded part (actual part) in a present Example.
  • FIG. 3 is a diagram illustrating an example of delayed fracture determination using stress margin.
  • FIG. 6 is a diagram showing an example of delayed fracture determination based on the total stress of residual stress and external load stress due to assembly and use. It is a diagram when the molding conditions are reviewed and an intermediate process is added to prevent delayed fracture. This figure is a diagram showing an example of delayed fracture determination based on the total stress of residual stress and external load stress due to assembly and use.
  • the critical load stress at which the delayed fracture occurs changes at the sheared end face depending on the amount of tensile and compressive forming strain applied after shearing. This is because the residual stress at the sheared end surface changes depending on the forming strain. (3) Therefore, the critical load stress of each sheared end face changes depending on the amount of forming strain applied to the sheared end face and the applied stress (externally applied stress).
  • the limit load stress at which delayed fracture occurs on the sheared end face when installed for a predetermined installation time in a predetermined hydrogen penetration environment can be summarized as follows. That is, the limit load stress can be organized as an index called "stress margin" which takes into consideration the amount of molding strain and the load stress (external load stress).
  • stress margin the allowable amount of external load stress that the sheared end face has, according to the amount of strain, without causing delayed fracture.
  • FIG. 1 shows a conceptual diagram explaining the above (1) to (3).
  • FIG. 1(a) illustrates the state of the limit load stress when no forming strain is applied to a metal plate whose end portions are sheared to form sheared end faces.
  • FIG. 1(b) illustrates the state of the limit load stress when forming strain is applied after forming the sheared end surface.
  • This FIG. 1 illustrates a case where residual stress is reduced by applying forming strain to a metal plate before press forming the metal plate.
  • delayed fracture occurs when the sum of the residual stress due to shearing and the applied stress from the outside reaches a threshold value for occurrence of delayed fracture. Therefore, when the residual stress at the shear end face changes due to forming strain, the critical load stress at which delayed fracture occurs also changes.
  • the critical load stress is the difference between the residual stress at the sheared end face and the threshold for delayed fracture occurrence, and is the limit external load stress at which the sheared end face does not cause delayed fracture.
  • an index called stress margin was defined as follows. That is, in the present disclosure, the allowable amount of external load stress that does not cause delayed fracture is defined as "stress margin" in consideration of the applied forming strain on the sheared end face. That is, in this embodiment, the allowable amount of external load stress is defined by an index called stress margin with molding strain as a variable.
  • the residual stress on the sheared end surface due to shearing exists only in a very small region of the surface layer, about 100 ⁇ m from the surface of the sheared end surface. Therefore, it is difficult to calculate the residual stress change by CAE using a normal shell element. Stress in a minute area can be measured by X-ray stress measurement or the like. However, there are problems in that the measured values may change depending on the measurement range and that the measurement depth is limited to the outermost layer of the material. Therefore, the magnitude of the measured value may not necessarily correspond to the degree of risk of delayed fracture.
  • this can be achieved by using a method of experimentally determining the "stress margin" using molding strain as a variable through a delayed fracture test under stress.
  • this stress margin under the conditions of a hydrogen intrusion environment in which automobile parts are actually exposed. In this case, it can be regarded as the degree of margin until delayed fracture occurs at the sheared end face of the automobile component.
  • this stress margin is expressed in units of stress. Therefore, it is possible to estimate the residual stress caused by molding the parts even when external load stress applied to the parts during assembly or use is added. In other words, it can be assumed that delayed fracture will not occur unless this stress margin is exceeded. Therefore, the concept of stress margin, which is an allowable amount of external load stress that does not cause delayed fracture and is an index corresponding to the amount of strain, is simple. Furthermore, this index is an excellent evaluation index for delayed fracture that can also be evaluated as a margin having a stress dimension.
  • the amount of forming strain applied after shearing is applied to the sheared end face by varying the amount of forming strain, and stress is applied to the sheared end face and set in a hydrogen environment to determine the limit applied stress at which delayed fracture occurs. This allows the stress margin to be made a function of the amount of molding strain.
  • Uniaxial tensile deformation or compressive deformation is desirable as a method for introducing tensile and compressive molding strains on the sheared end surface into the evaluation test piece. This is for the following reason. In uniaxial molding, springback occurs after molding, so that the residual stress after molding in areas other than the sheared end surface becomes almost zero.
  • the limit external load stress at which delayed fracture occurs on the sheared end face after additional machining can be directly evaluated as the "stress margin", which is the simplest method.
  • test piece for evaluating the stress margin may be sheared in a laboratory.
  • a part of the sheared end surface of the molded part after press molding may be cut out as a test piece.
  • stress margin obtained in this way, the following method is used to evaluate and predict the occurrence of delayed fracture at sheared end faces in molded parts intended for automobile parts. The inventors devised this. Examples of this are shown in the first to third examples below.
  • a test piece is tested by the methods (4) and (5) above to measure the stress margin according to the amount of strain due to tension and compression. Then, the stress margin is determined using the amount of strain as a variable.
  • the hydrogen penetration environment and the installation time in that environment are preferably set to conditions such that the amount of hydrogen penetrating into the test piece becomes the target amount of penetrating hydrogen.
  • the target amount of hydrogen penetrating is the amount of hydrogen penetrating that is preset as an allowable upper limit in actual automobile parts.
  • the amount of forming strain applied to the sheared end face is preferably 0.1% or more, considering the amount that has a sufficient effect on delayed fracture characteristics.
  • the amount of strain that has a greater degree of influence is 0.5% or more. Delayed fracture evaluation according to the present invention is particularly effective when plastic strain is introduced. Therefore, instead of forming strain, it is also possible to use the amount of plastic strain on the sheared end face as an evaluation index.
  • any parameter related to stress such as the first principal stress or Mises stress, can be used in the present disclosure.
  • the stress margin can be set smaller than the actually measured value. Furthermore, it is also possible to design a metal part shape and a manufacturing process (forming conditions) such that delayed fracture is not expected to occur, with reference to the above-mentioned stress margin.
  • An example of the molding conditions is adding a pressing step to relieve residual stress.
  • press molding will be assumed as the molding to produce a molded part.
  • the method for evaluating delayed fracture of molded parts according to the present disclosure is suitable for pressed parts (molded parts) that constitute automobile parts.
  • the application is not limited to pressed parts. It can be applied to various metal parts that have sheared end faces and are at risk of delayed fracture.
  • Applications to the production of metal parts using various forming methods are envisioned, including, for example, roll forming, incremental forming, bulge forming, hot stamping, hammer forging, and forming on tailored blanks.
  • a molded part is manufactured by press-molding a metal plate made of a high-strength steel plate. This is a method of evaluating delayed fracture characteristics at a sheared end surface of a molded part that is assembled into another part and used.
  • the present invention is particularly effective when the metal plate is a high-strength steel plate.
  • the delayed fracture characteristic evaluation method of this embodiment includes a first step 1, a second step 2, a third step 3, and a fourth step 4, as shown in FIG.
  • the first step 1 includes a test step 1A and a stress margin setting step 1B.
  • the test step 1A is a step of carrying out an actual experiment, and includes a step of restraining the sheared surface of the metal plate while applying a predetermined load stress. Furthermore, the test step 1A includes a step of placing the metal plate in a preset hydrogen intrusion environment for a preset time in the restrained state. In step 1B of setting stress margin, the limit load stress at which delayed fracture of the sheared surface of the metal plate does not occur is determined for each amount of strain, based on the test results in test step 1A.
  • a stress margin which is an allowable value of external load stress that does not cause delayed fracture, is determined according to the amount of strain based on the obtained information. That is, in this embodiment, as an evaluation index for the delayed fracture characteristic evaluation method, a "stress margin" which is an index newly set in the present disclosure is determined.
  • the "stress margin" in the present disclosure is an allowable amount of external load stress that a sheared end surface has, which corresponds to the amount of strain and does not cause delayed fracture.
  • the above-mentioned external load stress is stress generated during press molding into the desired product shape or during restraint when the product is assembled.
  • the stress margin is a value (function) with molding strain, which is one parameter of the test conditions, as a variable.
  • the stress margin consisting of the critical stress load may be a value obtained by multiplying the critical stress load obtained from the test by a predetermined safety factor. Further, the stress margin consisting of the critical stress load may be a value smaller than the critical stress load determined from the test by a safety margin.
  • the first step 1 includes, for example, five steps as shown in FIG.
  • numerals 10 to 13 correspond to the test process 1A
  • a process 14 corresponds to the stress margin setting process 1B.
  • Testing step 1A may employ a known method. Each step will be explained.
  • the shearing process 10 is a process of producing a test piece from a metal plate under the same conditions as the metal plate to be processed into a molded part. In the shearing step 10, a test piece having a sheared end surface is created. This step 10 is performed to obtain a stress margin by shearing a metal plate made of the same material and thickness as the metal plate to be evaluated.
  • the strain introduction step 11 is a step of applying forming strain to at least a portion of the sheared end surface of the test piece.
  • the applied forming strain is the strain along the extending direction of the sheared end surface.
  • the applied molding strain is, for example, 0.1% or more.
  • the forming strain is applied, for example, by applying uniaxial tension or uniaxial compression to the test piece. Furthermore, the forming strain is applied, for example, to the test piece by bending it in the thickness direction.
  • the loading step 12 is a step in which a predetermined external load stress is applied to the sheared end surface of the test piece, and the test piece is restrained in that loaded state.
  • the method of stress loading is, for example, tensile stress loading or bending stress loading. In this case, a method of applying bending stress using a jig is particularly desirable from the viewpoint of simplicity.
  • the hydrogen penetration step 13 the test piece to which an external load stress was applied and restrained in the loading step 12 is placed in a preset hydrogen penetration environment for a preset time. Then, the hydrogen penetration step 13 is a step of evaluating the occurrence of cracks using the test piece in that state. At this time, it is preferable that the hydrogen intrusion environment and the installation time be set to conditions that allow the target amount of hydrogen intrusion to be obtained.
  • the target amount of hydrogen penetration is, for example, an amount of hydrogen equivalent to the amount of hydrogen that is estimated to enter under the environment in which the material to be evaluated is actually used.
  • the test piece is placed in a hydrogen permeation environment by, for example, immersing the test piece in a bath containing an acid solution such as hydrochloric acid or an aqueous NH 4 SCN solution.
  • the concentration of the acid solution and the immersion time are set so that a predetermined amount of hydrogen enters the test piece as an allowable upper limit.
  • the above-described strain introduction step 11 to hydrogen introduction step 13 are performed while changing the conditions of the forming strain to be applied and the load stress to be applied.
  • Step 14 of determining stress margin the critical load stress, which is the limit load stress at which delayed fracture of the sheared surface of the metal plate does not occur, is evaluated based on the results of the test. Then, based on the critical load stress, the degree of stress margin against the occurrence of delayed fracture of the sheared end face of the metal plate is determined.
  • the critical load stress is defined as the stress margin under the test conditions. For example, based on the test conditions for each test piece and the evaluation results of the presence or absence of cracking at the sheared end face, the external load stress at which cracking occurs and the value of the critical stress load are determined.
  • the test conditions here are, for example, molding strain and external load stress conditions.
  • the external load stress that causes cracking is the external load stress that causes cracking to occur for the same molding strain.
  • the value of the critical stress load is, for example, a value of the critical stress load that is a boundary value with respect to an external load stress at which cracking does not occur.
  • the boundary value is, for example, the maximum value of external load stress at which no cracking occurs.
  • This stress margin is an allowable value of external load stress that does not cause delayed fracture according to strain. That is, the stress margin is described as a function in which, for example, molding strain due to tension and compression is a variable.
  • FIG. 4 illustrates a case in which the larger the absolute value of forming strain, the greater the stress margin for delayed fracture.
  • the stress margin for delayed fracture may be reduced due to forming strain.
  • the following evaluation can be made by comparing with the stress margin obtained as described above. That is, it is possible to evaluate the possibility of delayed fracture even for a test piece having a sheared end surface that was not used for evaluating the stress margin without conducting a test.
  • the possibility of delayed fracture is the possibility of delayed fracture with respect to the external load (load stress) scheduled to be applied to the metal plate.
  • a forming analysis (CAE analysis) is performed on the process of press forming a metal plate into a desired molded part. Then, a process is executed to determine the amount of residual stress and strain at various locations on the sheared end surface of the molded part, which are generated by molding the metal plate into the molded part.
  • the molded part is assembled to another part, and the stress applied to each part of the sheared end face of the molded part is determined. For example, load stress is generated by assembling the product after deforming it by the amount of springback during mold release. Note that, regarding the end face, deformation of the molded part that occurs during assembly is smaller than deformation during press molding. For this reason, the distortion generated during assembly was ignored. If the molded part is a structural part for an automobile, it is assembled into the frame of the automobile either alone or after being assembled with other parts. In this way, molded parts are assembled with other parts or assembled into the body of an automobile. At that time, the assembly may be performed with a predetermined load stress applied as an external load. This external load is determined as load stress.
  • the applied stress is measured, for example, by attaching a gauge or other sensor to an actually manufactured molded part and then assembling the molded part. Further, the applied stress may be obtained by performing a well-known CAE analysis on the stress input when the target molded part is assembled to another part.
  • delayed fracture which is the subject of the present disclosure, occurs due to use of molded parts over time.
  • the delayed fracture targeted by the present disclosure is not a phenomenon that occurs immediately after a molded part is assembled to another part. Therefore, it is also possible to actually assemble and find the external load.
  • the degree of margin of delayed fracture of the molded part is evaluated based on the stress margin of the metal plate and the total stress.
  • the stress margin of the metal plate is the stress margin of the metal plate with the amount of strain determined in the second step 2 as a variable.
  • the total stress is the total stress of the residual stress determined in the second step 2 and the applied stress determined in the third step 3.
  • the residual stress and applied stress for calculating the total stress are calculated by adding up the residual stress and applied stress that occur in the same area (same location) on the sheared end face. That is, the total stress is calculated for each location on the sheared end face. Note that the total stress may be calculated only for portions where the amount of strain is greater than or equal to a preset threshold.
  • the fourth step 4 is performed, for example, at each location on the sheared end surface.
  • the stress margin corresponding to the amount of strain determined in the second step 2 is compared with the total stress of the CAE residual stress of the molded part and the external load stress during assembly. Then, by comparing the results, it is evaluated whether or not delayed fracture has occurred.
  • the stress margin which is the difference between the stress margin and the total stress, may be calculated to evaluate how much stress margin there is against delayed fracture.
  • a molding analysis using CAE is performed on an automobile part for which it is desired to evaluate the occurrence of delayed fracture. Then, the amount of strain due to tension and compression at various locations on the sheared end face and the residual stress after forming are calculated. Furthermore, by adding the external load stress assumed during assembly and use of the parts to the residual stress after molding, the total is determined. It is determined whether the sum of the residual stress after forming and the external load stress during assembly and use exceeds the stress margin at each location on the sheared end face. If it exceeds the limit, it is determined that the risk of delayed destruction is high. However, considering the safety factor, the stress margin can be set smaller than the actually measured value. Furthermore, it is also possible to design the shape and manufacturing process of a metal part such that delayed fracture is not expected to occur, with reference to the stress margin.
  • strain in a direction parallel to the sheared end surface is preferably used.
  • parameters related to other strains such as plastic strain may be used.
  • FIG. 5 An example of a processing flow used in the evaluation method of the present disclosure described above is shown.
  • the stress margin determined in the first step 1 and corresponding to the molding strain is stored in the storage section.
  • the computer is caused to refer to the stored stress margin and determines the value of the stress margin corresponding to the inputted amount of molding strain.
  • processing is executed to evaluate the possibility of delayed fracture with respect to the input molding strain amount and external load stress.
  • This processing flow will be explained with reference to FIG. If evaluation is performed using the process shown in FIG. 5, it becomes possible to more efficiently evaluate delayed fracture of molded parts.
  • the example shown in FIG. 5 includes a stress margin calculation section 20, an evaluation main body section 30, a storage section 40, and a review section 50.
  • the processing flow of the stress margin calculating section 20 and the evaluation main body section 30 is stored in a storage section 40 such as RAM or ROM of the computer.
  • Each process is executed by a computer.
  • the storage unit 40 consists of a recording medium such as a database.
  • the storage unit 40 stores data on the stress margin d determined for each metal plate material condition, hydrogen environment condition, and shear condition, using test conditions as a variable and forming strain as a variable. The data is obtained by repeating the tests from shearing step 10 to stress margin determination step 14 while varying the amount of molding strain.
  • the stress margin calculation unit 20 corresponds to the first step 1.
  • step S10 the stress margin calculation unit 20 prompts the operator to input the basic conditions for evaluation, and obtains the input by the operator's input operation.
  • Basic conditions for evaluation include, for example, material type conditions (steel type and thickness) and hydrogen environment conditions (acidity and installation time), which are conditions for delayed fracture.
  • step S20 the operator is prompted to input the shearing conditions, and the operator obtains the input through the input operation.
  • step S30 a data group that matches the conditions input in step S10 and step 20 is acquired from the storage unit 40.
  • the data group is a data group of stress margins for each amount of strain. Further, the data group is a collection of data (values of strain amount and stress margin). Alternatively, the operator is prompted to input a data group of the stress margin for each amount of strain determined by the test, and the input information is obtained through the operator's input operation.
  • the acquired data is stored in the storage unit 40.
  • step S40 the data group of the stress margin with respect to the amount of strain obtained in step S30 is referred to.
  • step S40 a calculation process is performed to obtain the stress margin d as a function f(x) with the amount of strain x as a variable using a known processing method.
  • step S50 the function of the stress margin d obtained in step S40 is changed to a formula that takes into account the safety factor s (:0 ⁇ s ⁇ 1), such as the following formula.
  • d s ⁇ f(x)
  • Information on the function of the stress margin d thus obtained is stored in the storage unit 40 using the test conditions as a key.
  • step S100 the user is prompted to input the conditions of the actual component to be evaluated.
  • the conditions of the actual part include, for example, part conditions such as the material type and molded shape of the actual part, metal plate conditions such as shear conditions, molding conditions, and hydrogen environment conditions that are delayed fracture conditions. Then, the above input is obtained by the operator's input operation.
  • the type of material is, for example, the type of steel or the thickness.
  • the conditions of the hydrogen environment include, for example, acidity and installation time.
  • step S110 a molding analysis by CAE is performed based on the metal plate and shearing conditions acquired in step S100, shape information of the actual part to be molded, and the like.
  • step S120 the amount of strain x and residual stress g are determined for all sheared end faces of the actual part from the processing results of the forming analysis in step S110.
  • step S130 the operator is prompted to input the load stress h during assembly and use, and the load stress h is acquired by input from the operator.
  • step S140 information on the function "s ⁇ f(x)" of stress margin d that matches the conditions input in step S100 is acquired from the storage unit 40. Then, the stress margin d and the total stress (g+h) are compared for each sheared end face location.
  • the stress margin d is the stress margin d according to the strain amount x input in step S110.
  • the total stress (g+h) is the total stress of the residual stress g output in step S120 and the applied stress h input in step S130. Based on the comparison, it is determined whether there is a risk of delayed destruction.
  • step S140 in FIG. 5 it is determined whether there is a risk of delayed destruction.
  • the stress margin calculation unit 20 may perform a separate calculation process to obtain a function of the stress margin d conditioned on the input values in steps S10 to S20. Then, the obtained function may be input into the storage unit 40 as data using the input values in steps S10 to S20 as keys.
  • the review unit 50 executes a process of reviewing the molding conditions and the part shape, and outputs the molding conditions and the change conditions of the part shape changed by the review to step S120.
  • the molding conditions and part shape are changed so that the residual stress is reduced by the amount of stress that exceeds the absolute value of the margin.
  • the number of press steps may be increased to alleviate residual stress. If the part is large and it is difficult to manually evaluate all of the sheared end faces, evaluation can be performed automatically and efficiently by performing the evaluation using the processing flow shown in FIG. 5. If it is determined that there is a risk of delayed fracture, it is possible to repeatedly review the molding conditions until it is determined that there is no risk of delayed fracture.
  • Example 1 a test material X consisting of a metal plate having a tensile strength of 1470 MPa class steel plate and a thickness of 1.0 mm will be described as a metal plate to be evaluated.
  • the present invention is not limited to the plate conditions of this sample material X.
  • the present invention can be applied to various metal materials including high-strength steel plates with a tensile strength of 980 MPa or more that cause delayed fracture at sheared end faces.
  • the sample material X was sheared by a shearing process to produce a test piece having a linear sheared end surface with a length of 100 mm.
  • the width of the test piece during shearing was 30 mm, and the test piece was shaped into a strip of 100 mm x 30 mm.
  • the clearance during shearing was set at 12% of the plate thickness.
  • a forming strain by tension or compression was applied to the sheared end surface of the test piece along the extending direction of the sheared end surface.
  • the forming strain was applied by a uniaxial load tester with both ends of the test piece clamped.
  • the molding strain was tensile or compressive was explained. It has been confirmed that similar results can be obtained even when the molding strain is due to bending.
  • test specimens that had been sheared without any forming strain were also prepared. Next, each test piece was externally restrained by four-point bending using a jig, and stress was applied to the center of the sheared end surface of the test piece.
  • the burr side during shearing was made to be the outside of the bending, so that tensile stress was applied.
  • the magnitude of the applied stress was determined as follows. The first principal stress-first principal strain relationship at the width center and apex of the test piece was determined by CAE. Then, the amount of strain was measured when the test piece was actually bent, and the results were correlated.
  • the case of four-point bending was explained as the stress loading method. Similar results can be obtained with other bending loading methods and loading methods such as uniaxial tension. Furthermore, in this example, when stress was applied, the burr side during shearing was set to the outside of the bending, and tensile stress was applied. Similarly, it is possible to evaluate the surface opposite to the burr side. In this example, the load stress applied to each test piece was changed in 100 MPa increments as shown in the table. A plurality of test pieces were prepared for each molding strain condition.
  • test piece to which the applied stress was applied was immersed in a bath of a thiocyanic acid solution at pH 6 for 96 hours, and the delayed fracture characteristics were evaluated based on the presence or absence of cracks due to delayed fracture after 96 hours.
  • Each table shows the occurrence of delayed fracture for each applied stress, which varies depending on the amount of strain, when tension is positive and compression is negative. As can be seen from Tables 1 to 11, it can be seen that the greater the absolute value of the amount of molding strain, the greater the critical load stress. In this example, the limit load stress with this molding strain as a variable becomes the stress margin.
  • FIG. 6 shows the stress margin determined from the limit load stress at which delayed fracture does not occur, and the stress margin is described as a function of strain.
  • the stress margin can be described in accordance with the forming strain after shearing. Note that this example shows a case where the stress margin increases due to molding strain after shearing. Conversely, even if the stress margin decreases due to molding strain after shearing, the same evaluation is possible.
  • Example 2 Next, an example of delayed fracture determination using the stress margin according to the forming strain after shearing determined in Example 1 will be explained.
  • Example 2 an actual part in an automobile part was assumed to have a sheared end surface having a shape shown in FIG. 7 . Then, using the sample material X, it was press-molded into the shape of the actual part. In the part shape shown in FIG. 7, strain is input to the end face. At this time, calculations were made by CAE at 10 representative locations A to J (not shown) of representative sheared end surfaces in the molded part. That is, the molding strain and residual stress on the burr side surface during shearing were calculated by CAE. A 1.0 mm square shell element was used for CAE, and the forming and springback processes were calculated using a dynamic explicit method.
  • the actual part shown in FIG. 7 was exemplified, but the same evaluation is possible not only for this part but also for any part having a sheared end surface of a material that is at risk of delayed fracture.
  • a delayed fracture test was conducted on the actual molded parts.
  • the sample was immersed in a thiocyanic acid solution of pH 6, and the delayed fracture was evaluated based on the presence or absence of cracks due to delayed fracture after 96 hours.
  • the CAE results of the forming strain and residual stress after shearing are shown in Table 12, along with the presence or absence of the delayed fracture test.
  • FIG. 8 shows a comparison of the results plotted together with the stress margin in FIG. 6 and the presence or absence of delayed fracture in the molded state.
  • Table 13 is an example aimed at preventing delayed fracture even when stress during assembly and use is taken into account with reference to the stress margin. Therefore, this is an example in which an intermediate molding process is newly provided for the same molded part before the final molding process. By providing an intermediate forming process, the forming strain and residual stress of representative parts A to J of the part are shown when the stress and strain amount are changed. Further, FIG. 10 shows a comparison with the stress margin shown in FIG. 6 by applying an assumed maximum assembly stress of 300 MPa to the parts shown in Table 13. In FIG. 10, even if the stress during assembly and use is taken into account, the stress margin is not exceeded. From this, it is predicted that the risk of delayed fracture is small. It has been found that by referring to the stress margin, it is possible to design automobile parts and their manufacturing processes that do not cause delayed fracture in this way.
  • a molded part is manufactured by molding a metal plate made of high-strength steel plate, and the delayed fracture characteristics of the molded part at the shear end surface of the molded part used by being assembled with other parts are evaluated.
  • a method for evaluating delayed fracture characteristics A test comprising the steps of restraining the sheared surface of the metal plate while applying a preset load stress, and placing the metal plate in the restrained state in a preset hydrogen penetration environment for a preset time.
  • the metal plate is a steel plate with a tensile strength of 980 MPa or more.
  • the above-mentioned molding conditions under which the molded parts are evaluated as not causing delayed fracture are determined, and the molded parts are manufactured by molding according to the determined molding conditions.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

成形部品におけるせん断端面での遅れ破壊特性をより精度良く評価可能とする。金属板を成形した成形部品を他の部品に組み付けて使用される当該成形部品のせん断端面での遅れ破壊特性を評価する。金属板のせん断面に負荷応力を負荷し拘束した状態で金属板を水素侵入環境に設置する工程とを備える試験の結果に基づき、応力的余裕度をひずみ量を変数として求める第1の工程(1)と、金属板を成形部品に成形する成形解析を行って、成形部品のせん断端面での残留応力とひずみ量を求める第2の工程(2)と、成形部品を他の部品に組み付けることで、せん断端面に負荷される負荷応力を求める第3の工程(3)と、求めたひずみ量に応じた応力的余裕度と、求めた残留応力と求めた負荷応力との合計応力と、に基づき、成形部品の遅れ破壊の余裕度を評価する第4の工程(4)と、を備える。

Description

成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法
 本発明は、プレス成形などの成形で製造される成形部品のせん断端面での遅れ破壊特性を評価する技術である。また、本発明は、成形部品の遅れ破壊特性評価方法、及びその方法を用いた成形部品の製造方法に関する技術である。
 ここで、本明細書では、金属板にせん断加工を施した端面をせん断端面と呼ぶ。本発明は、特に引張強度980MPa以上の高強度鋼板(高張力鋼板)からなる成形部品に好適な技術である。また、本明細書では、高強度鋼板のうち、引張強度1470MPa以上の鋼板を超高強度鋼板と呼ぶ。
 現在、自動車には軽量化による燃費向上と衝突安全性の向上が求められている。そして、車体の軽量化と衝突時の搭乗者保護の両立を目的として、車体に高強度鋼板が使用されている。特に近年では、引張強度980MPa以上の高強度鋼板が、車体に適用され始めている。高強度鋼板の車体適用時における課題の一つに遅れ破壊がある。特に引張強度980MPa以上の高強度鋼板では、せん断端面から発生する遅れ破壊が重要な課題となっている。せん断端面は、せん断加工後の端面である。この課題は、高強度鋼板のうち、引張強度1470MPa以上の超高強度鋼板で特に問題となる。
 ここで、せん断端面は大きな引張応力が残留することが知られている。その残留により、金属板から製造された成形部品の経時的な遅れ破壊の発生が懸念される。
 せん断端面での遅れ破壊を予め予測するためには、評価用の試験片を作製し、その試験片を水素侵入環境下に設置する必要がある。更に、せん断端面は、せん断加工時の塑性変形により性質が変化する。そして、一般的には、せん断端面での遅れ破壊の危険が高まる。そのため、例えば特許文献1では、次のようにして、遅れ破壊の発生を評価している。すなわち、特許文献1では、圧延による板厚方向への圧縮加工を、試験片のせん断端面に付加する。その後、試験片を水素侵入環境下に設置して、遅れ破壊の発生を評価している。
 ここで、せん断したままの状態のせん断端面を、無負荷で水素侵入環境下に設置する試験を考える。この試験で遅れ破壊が生じない場合でも、外部から応力を負荷して試験を行えば、遅れ破壊が発生する場合がある。この理由は、せん断端面に残留した大きな引張応力に対し、更に外部からの負荷応力が上乗せされるためである。このため、例えば特許文献2では、せん断端面を含む評価試料に引張による定荷重を負荷し拘束状態で水素侵入環境下に設置し、遅れ破壊特性を評価している。また、特許文献3では、より簡便な方法として、曲げによる荷重を負荷した状態で水素環境下に設置し、遅れ破壊特性を評価している。ただし、特許文献3においては、せん断端面が対象ではなく、試験片表面における遅れ破壊特性の評価を主眼としている。このため、特許文献3では、評価試料のせん断端面表面は樹脂塗膜によりシールし、せん断端面を評価の対象から外している。
 しかし、発明者らが種々検討したところ、次の知見を得た。すなわち、実際の自動車部品に対して、これらの遅れ破壊評価手法を基に、遅れ破壊の発生を予測、あるいは予防することについて、更なる課題があるとの知見を得た。
 例えば特許文献1のような圧延によるひずみ導入は、次の課題がある。すなわち、自動車部品に用いられるプレス成形によって導入される成形ひずみでの変形状態と乖離しているという課題がある。プレス成形においては、せん断端面に対しては単軸的な引張と圧縮、そしてそれらの組合せによる曲げ変形が導入される。このため、特許文献1のような評価手法では評価が十分ではない。また、特許文献2、3では、せん断端面のせん断加工後の塑性変形による遅れ破壊特性の変化を考慮していない。このため、せん断端面に様々な成形ひずみが発生する成形部品における遅れ破壊評価としては不十分である。
 そして、特許文献1~3のいずれの評価方法においても、実験室的な個別の水素侵入条件・応力条件における遅れ破壊発生の有無や時間を評価するのみであった。
特開2020-41837号公報 特許第5196926号公報 特許第5971058号公報
 従来、次の観点での評価が行われていなかった。その観点とは、実際の自動車部品における水素侵入環境や応力と比較し、遅れ破壊の発生について、水素侵入環境や応力の条件にどれだけ余裕度があるか、という観点である。
 そして、発明者らは、次の知見を得た。すなわち、実際の自動車部品においては、加工される金属板には、せん断端面の形成箇所によって異なる成形ひずみが導入される。そして、その成形ひずみによって、塑性変形による遅れ破壊特性に変化が生じるとの知見を得た。更に、せん断端面においては、せん断による残留応力に加えて、プレス成形後の負荷応力が上乗せされることで、遅れ破壊が生じやすくなることがあるとの知見を得た。
 また、発明者らは、次の知見を得た。すなわち、ある水素侵入環境下において、成形ひずみが導入されたせん断端面に対して、成形残留応力が負荷された場合を考える。この場合、成形部品のせん断端面が遅れ破壊発生に対して、どれほどの余裕度を持っているか評価することが、非常に重要であるとの知見を得た。つまり、このような評価が、自動車部品におけるせん断端面での遅れ破壊を回避する上で、非常に重要であるとの知見を得た。
 以上のように、自動車部品におけるプレス成形によって、せん断端面性質は塑性変形により変化する。一方で、従来、実際の自動車部品において発生する応力と比較して遅れ破壊の発生を予測できる指標が存在しなかった、そのため、応力的な余裕度という観点から遅れ破壊評価できる手法が存在しなかった。
 本発明は、上記のような点に着目したもので、使用時の成形部品のおける、せん断端面での遅れ破壊特性をより精度良く評価することを目的とする。そして本発明は、遅れ破壊を抑制した成形部品を製造可能とすることを目的としている。
 課題解決のために、本発明の一態様は、高強度鋼板からなる金属板を成形して成形部品を製造し、その成形部品を他の部品に組み付けて使用される当該成形部品のせん断端面での遅れ破壊特性を評価する成形部品の遅れ破壊特性評価方法であって、上記金属板のせん断面に予め設定した負荷応力を負荷した状態で拘束する工程と、上記拘束した状態で、当該金属板を予め設定した水素侵入環境に予め設定した時間設置する工程とを備える試験の結果に基づき、上記金属板のせん断面での遅れ破壊が発生しない外的負荷応力の許容値である応力的余裕度を、ひずみ量を変数として求める第1の工程と、上記金属板を上記成形部品に成形する成形解析を行って、上記金属板を上記成形部品に成形する際に発生する、上記成形部品のせん断端面での残留応力とひずみ量を求める第2の工程と、上記成形部品を他の部品に組み付けることで、上記せん断端面に負荷される負荷応力を求める第3の工程と、上記第2の工程で求めたひずみ量を変数とした上記金属板の応力的余裕度と、上記第2の工程で求めた残留応力と上記第3の工程で求めた負荷応力との合計応力と、に基づき、上記成形部品の遅れ破壊の余裕度を評価する第4の工程と、を備えることを要旨とする。
 上記成形は、例えばプレス成形である。
 本発明の態様によれば、使用環境におかれた状態での成形部品のおける、せん断端面での遅れ破壊特性をより精度良く評価する。この結果、遅れ破壊を抑制した成形部品を製造可能となる。
 このとき、遅れ破壊評価の指標である応力的余裕度は、応力を単位としており、応力による余裕度という観点から評価することが可能である。このため、例えば、自動車のパネル部品、構造・骨格部品等の各種部品に高強度鋼板を適用する際に、次のことが可能となる。すなわち、本発明の態様によれば、成形部品についての遅れ破壊の発生を、応力の次元を有する余裕度を含めて予測することが可能となる。
 そして、本発明の態様によれば、例えば、超高強度鋼板の適用範囲を拡大することで、自動車車体の軽量化も可能とするができる。
せん断端面の遅れ破壊と応力的余裕度との関係を示す概念図である。 本発明に基づく実施形態に係る構成例を示す図である。 第1の工程の構成例を示す図である。 曲げ成形で残留応力が残る場合のせん断端面の遅れ破壊と応力的余裕度との関係を示す概念図である。 本手法の評価で用いることの可能な処理フローの一例を表す図である。 応力的余裕度のひずみ量に対する関数の例を表す図である。 本実施例における成形部品(実部品)の形状を示す図である。 応力的余裕度を用いた遅れ破壊判定の一例を表す図である。 残留応力と組付け・使用による外部負荷応力との合計応力による遅れ破壊判定の一例を示す図である。 成形条件を見直して、遅れ破壊が生じないように、中間工程を追加した場合の図である。そして、この図は、残留応力と組付け・使用による外部負荷応力との合計応力による遅れ破壊判定の一例を示す図である。
 (開示の詳細について)
 最初に、本開示の知見について説明する。
 発明者らは、せん断端面の遅れ破壊を評価する中で、次の(1)~(3)の知見を見出した。
 (1)せん断端面に定荷重による負荷応力(外部的な負荷応力)を負荷し拘束した状態で、水素侵入環境下に所定時間設置する場合を考える。この場合、負荷応力について、せん断端面に遅れ破壊が発生する限界の負荷応力(限界負荷応力とも呼ぶ)が存在する。これは、せん断端面での、せん断加工による残留応力と外部からの負荷応力との合計が、せん断端面の遅れ破壊発生の閾値に達した場合に、遅れ破壊が発生するためである。
 (2)上記遅れ破壊が発生する限界負荷応力は、せん断端面では、せん断後に付加される成形ひずみの引張と圧縮のひずみ量によって変化する。これは、せん断端面の残留応力が、成形ひずみによって変化するためである。
 (3)したがって、各せん断端面の限界負荷応力は、そのせん断端面に対し付与された成形ひずみ量と、負荷応力(外部的な負荷応力)とによって変化する。そして、所定の水素侵入環境下に予め設定した所定の設置時間、設置した際に、せん断端面に遅れ破壊が発生する限界の負荷応力は、次のように整理できる。すなわち、その限界の負荷応力は、成形ひずみ量と、負荷応力(外部的な負荷応力)とを考慮した「応力的余裕度」という指標として整理することができる。
 ここで、本開示では、せん断端面が有する、ひずみ量に応じた、遅れ破壊の発生しない外的負荷応力の許容量を、「応力的余裕度」と定義した。
 図1に、上記(1)~(3)を説明する概念図を示す。図1(a)は、端部をせん断してせん断端面を形成した金属板について、成形ひずみを付与しない場合における限界の負荷応力の状態を例示したものである。一方、図1(b)は、せん断端面を形成した後に、成形ひずみを付与した場合における、限界の負荷応力の状態を例示したものである。
 この図1は、金属板をプレス成形する前に、金属板に対し、成形ひずみを付与することで、残留応力が低下する場合を例示している。
 ここで、せん断による残留応力と外部からの負荷応力の合計が、遅れ破壊発生の閾値に達すると遅れ破壊が発生する。したがって、成形ひずみによってせん断端面の残留応力が変化すると、遅れ破壊が発生する限界負荷応力も変化する。その限界負荷応力は、せん断端面の残留応力と遅れ破壊発生の閾値との差であり、そのせん断端面が遅れ破壊を起こさない限界の外的負荷応力である。
 このようなことに鑑み、次のように、応力的余裕度という指標を規定した。すなわち、本開示では、せん断端面において、付与される成形ひずみを考慮した、遅れ破壊の発生しない外的負荷応力の許容量を、「応力的余裕度」と定義した。すなわち、本実施形態では、外的負荷応力の許容量を、成形ひずみを変数とした応力的余裕度という指標で規定した。
 ここで、せん断によるせん断端面での残留応力は、せん断端面表面から100μm程度のごく表層の微小な領域にのみ存在する。このため、その残留応力変化は、通常のシェル要素を用いたCAEなどでは計算が困難である。微細な領域の応力は、X線応力測定などで測定できる。しかし、測定範囲によって測定値が変化する場合のあるという問題や、測定深さが材料最表層に限られるという問題がある。したがって、必ずしも測定値の大小が、遅れ破壊の危険度と対応しない場合がある。
 一方で、本開示のように、成形ひずみを変数とした上記「応力的余裕度」を、応力負荷状態での遅れ破壊試験により実験的に求める手法を用いれば、対応可能である。すなわち、このような計算や測定に関する問題を生じずに、成形部品について、直接的に遅れ破壊の危険度を評価する指標を得ることが可能となる。
 この応力的余裕度を、自動車部品が実際に晒される水素侵入環境下の条件で評価することを考える。この場合、それ自体を、自動車部品のせん断端面における遅れ破壊発生までの余裕度とみなすことができる。
 しかも、この応力的余裕度は、応力を単位としており、応力により表現される。このため、部品の成形による残留応力に加えて、組立てや使用の際などに部品に付与される外的負荷応力が上乗せされた場合でも、推測可能である。すなわち、この応力的余裕度を超えない限りは、遅れ破壊が発生しないことが推測可能である。
 したがって、この遅れ破壊の発生しない外的負荷応力の許容量であって、ひずみ量に応じた指標である、応力的余裕度という概念は、簡便である。なおかつ、この指標は、応力の次元を有する余裕度としての評価も可能な、優れた遅れ破壊の評価指標である。
 逆に、応力負荷の値を一定値として、水素侵入環境の方を変化させる手法も考えうる。しかし、これは、前述した部品の成形による残留応力と、組み立てや使用の際に部品が変形されること等による外的負荷応力の上乗せに対し、課題がある。すなわち、これは、応力を尺度とした場合と比較し、余裕度の評価ができないという点において有用性が低い。
 なお、上記の成形ひずみはせん断面に延在方向のひずみである。
 更に、実際的な評価の方法については、発明者らは、次の(4)(5)の知見を見出した。
 (4)せん断端面に対して、せん断加工後に与える成形ひずみ量を変化させて、応力を負荷して水素環境下に設定して遅れ破壊が発生する限界の負荷応力を求める。このことにより、応力的余裕度を成形ひずみ量の関数とすることができる。
 (5)せん断端面に対する引張及び圧縮の成形ひずみを評価試験片に導入する方法としては、単軸による引張変形や圧縮変形が望ましい。これは、次の理由からである。単軸による成形では、成形後にスプリングバックすることでせん断端面以外の部分の成形後の残留応力がほぼ0となる。そのため、その影響が無視できるためである。したがって、成形ひずみの付与が単軸による引張や圧縮の場合、次のような利点がある。すなわち、追加工後のせん断端面における遅れ破壊が発生する限界の外的負荷応力が、そのまま「応力的余裕度」として評価が可能であり、最も簡便である。
 ここで、応力的余裕度を評価する試験片については、実験室的にせん断したものを用いても良い。また、試験片として、プレス成形後の成形部品のせん断端面の一部を切り出してきても良い。
 更に、このようにして得た「応力的余裕度」を用いて、自動車用部品を念頭においた成形部品において、せん断端面の遅れ破壊の発生を評価、予測する方法として、次のような手法を発明者らは考案した。その例を、以下の第一~第三に示す。
 (第一)
 第一に、試験片に対し、上記(4)(5)の方法で試験を行い、引張-圧縮によるひずみ量に応じた応力的余裕度を測定する。そして、ひずみ量を変数とした応力的余裕度を求める。
 ここで、水素侵入環境とその環境への設置時間は、試験片に侵入する水素量が目標とする侵入水素量となるような条件に設定することが好ましい。目標とする侵入水素量は、実際の自動車部品において許容上限として予め設定した侵入する水素量である。
 せん断端面に与える成形ひずみのひずみ量としては、遅れ破壊特性に十分な影響を与える量を考慮すると、ひずみ量を0.1%以上とすることが好ましい。より影響の度合いが大きいひずみ量としては、ひずみ量が0.5%以上である。塑性ひずみが導入されるような場合、特に本発明による遅れ破壊評価が有効である。このため、成形ひずみの代わりに、せん断端面への塑性ひずみ量を評価指標とすることも可能である。試験片への負荷応力については、第一主応力やミーゼス応力など、応力に関するパラメータであれば、本開示に用いることが可能である。
 (第二)
 第二に、公知の方法により、成形部品のCAEによる成形解析(コンピュータによるシミュレーション解析)を行う。そして、成形部品における、せん断端面各所での引張-圧縮による成形ひずみ量と成形後の残留応力とを計算する。
 (第三)
 第三に、他の部品への想定される成形部品の組付け・組み付けた後の使用時に想定される当該成形部品への外部負荷応力を、成形後の残留応力に足し合わせる。これにより、成形後の残留応力と外部負荷応力の合計応力を求める。
 (第四)
 第四に、金属板に対するせん断端面各所について、引張-圧縮によるひずみ量に応じた応力的余裕度と、成形部品における上記の成形後の残留応力と外部負荷応力の合計応力を比較する。
 せん断端面の各所における応力的余裕度を超過する箇所については、遅れ破壊の危険があると判定する。ただし、応力的余裕度は、安全率を考えて、実際に測定された値よりも小さくとることも可能である。
 更には、上記の応力的余裕度を参考にして、遅れ破壊が発生しないと予測されるような金属部品形状並びに製造工程(成形の条件)を設計することも可能である。成形の条件としては、残留応力を緩和するためのプレス工程を追加することが例示できる。
 次に、以上の本開示に基づく、本発明の実施形態について図面を参照して説明する。
 ここで、以下の説明では、成形部品とする成形として、プレス成形を想定して説明する。
 本開示による成形部品の遅れ破壊の評価方法は、自動車部品を構成するプレス部品(成形部品)に好適である。ただし適用対象はプレス部品に限らない。せん断端面を有する遅れ破壊の危険性のある様々な金属部品に対して適用が可能である。例えばロールフォーミング成形、インクリメンタルフォーミング成形、バルジ成形、ホットスタンプ成形、ハンマー鍛造成形、テイラードブランク品に対する成形などを含めた、様々な成形方法による金属部品の製造への適用が想定される。
 (構成)
 本実施形態の成形部品の遅れ破壊特性評価方法は、高強度鋼板からなる金属板をプレス成形して成形部品を製造する。そして、その成形部品を他の部品に組み付けて使用される当該成形部品のせん断端面での遅れ破壊特性を評価する方法である。本発明は、特に、金属板が高強度鋼板の場合により効果を奏する。
 本実施形態の遅れ破壊特性評価方法は、図2に示すように、第1の工程1、第2の工程2、第3の工程3、及び第4の工程4を備える。
 (第1の工程1)
 第1の工程1は、試験の工程1Aと、応力的余裕度設定の工程1Bとを備える。
 試験の工程1Aは、実際の実験を実行する工程であって、金属板のせん断面に予め設定した負荷応力を負荷した状態で拘束する工程を備える。更に、試験の工程1Aは、上記拘束した状態で、金属板を予め設定した水素侵入環境に予め設定した時間設置する工程とを備える。
 応力的余裕度設定の工程1Bは、試験の工程1Aによる試験の結果に基づき、金属板のせん断面の遅れ破壊が発生しない限界の負荷応力をひずみ量毎に求める。そして、応力的余裕度設定の工程1Bは、その求めた情報によって、ひずみ量に応じた、遅れ破壊が発生しない外的負荷応力の許容値である応力的余裕度を求める。
 すなわち、本実施形態では、遅れ破壊特性評価方法のための評価指標として、本開示で新たに設定した指標である「応力的余裕度」を求める。
 本開示における「応力的余裕度」とは、せん断端面が有する、ひずみ量に応じた、遅れ破壊の発生しない外的負荷応力の許容量である。
 ここで、上記の外的な負荷応力は、目的とする製品形状にプレス成形する際や、その製品を組み付けた時の拘束に発生する応力である。
 以下に示す実施形態では、応力的余裕度を、試験条件の一つのパラメータである、成形ひずみを変数とした値(関数)とした。
 なお、限界応力負荷からなる応力的余裕度は、試験から求めた限界応力負荷に所定の安全係数を乗算した値でも良い。また、限界応力負荷からなる応力的余裕度は、試験から求めた限界応力負荷に安全代分だけ小さな値としても良い。
 第1の工程1は、例えば、図3に示すような5つの工程からなる。
 図1中、符号10~13が試験の工程1Aに対応し、符号14の工程が、応力的余裕度設定の工程1Bに対応する。試験の工程1Aは、公知の方法を採用しても良い。
 その各工程について説明する。
 <せん断加工工程10>
 せん断加工工程10は、成形部品の加工する金属板と同じ条件の金属板から、試験片を作製する工程である。せん断加工工程10は、せん断端面を有する試験片を作成する。この工程10は、評価対象の金属板と同じ材料や厚さからなる金属板に対し、せん断加工を施して、応力的余裕度を求めるために行う。
 <ひずみ導入工程11>
 ひずみ導入工程11は、試験片のせん断端面の少なくとも一部に、成形ひずみを付与する工程である。付与する成形ひずみは、せん断端面の延在方向に沿ったひずみとする。
 付与する成形ひずみは、例えば、0.1%以上の大きさとする。
 成形ひずみの付与は、例えば、試験片に対し、単軸引張又は単軸圧縮を行うことより実行する。また、成形ひずみの付与は、例えば、試験片に対し、板厚方向への曲げにより実行する。
 <負荷工程12>
 負荷工程12は、試験片のせん断端面に対し、予め設定した外的な負荷応力を負荷し、その負荷状態で拘束する工程である。応力負荷の方法は、例えば、引張応力負荷又は曲げ応力負荷により行う。この場合、治具を用いた曲げ応力負荷による方法が、簡便性の観点から特に望ましい。
 <水素侵入工程13>
 水素侵入工程13は、負荷工程12で外的な負荷応力を負荷し拘束した試験片を、予め設定した水素侵入環境に対し予め設定した時間設置する。そして、水素侵入工程13は、その状態での当該試験片で、亀裂の発生状況を評価する工程である。
 このとき、水素侵入環境と設置時間は、目標とする水素侵入量が得られる条件にすることが好ましい。目標とする水素侵入量は、例えば、評価の対象となる材料が実際に使用される環境下で侵入すると推定される水素量と同等の水素量である。
 試験片の水素侵入環境下への設置は、例えば、塩酸やNHSCN水溶液などの酸液を収容した浴槽内に試験片を浸漬することで行う。酸液の濃度や浸漬時間は、許容上限として予め設定した水素量が試験片に侵入する条件となるように設定する。
 せん断加工工程10で作成した各試験片について、上記のひずみ導入工程11~水素侵入工程13を、付与する成形ひずみや負荷する負荷応力の条件を変えて実行する。
 <応力的余裕度決定の工程14>
 応力的余裕度決定の工程14は、上記試験の結果に基づき、上記金属板のせん断面の遅れ破壊が発生しない限界の負荷応力である限界負荷応力を評価する。そして、その限界負荷応力に基づき、上記金属板のせん断端面の遅れ破壊の発生に対する応力的余裕度を求める。具体的には、限界負荷応力を、その試験条件での応力的余裕度とする。
 例えば、各試験片の試験条件と、せん断端面での割れ発生の有無の評価結果に基づき、割れ発生が発生する外的な負荷応力と、限界応力負荷の値を求める。ここでの試験条件とは、例えば、成形ひずみと外的な負荷応力の条件である。また、割れ発生が発生する外的な負荷応力とは、同一の成形ひずみに対する割れ発生が発生する外的な負荷応力である。また、限界応力負荷の値とは、例えば割れが発生しない外的な負荷応力との境界値である限界応力負荷の値である。境界値とは、例えば、割れが発生しない外的な負荷応力の最大値などである。
 これを、複数の成形ひずみについて整理して、(成形ひずみ、限界応力負荷)のデータを複数取得する。そして、図4のグラフで表されるような、成形ひずみを変数とした限界応力負荷の値(関数)を、応力的余裕度を表現するデータとして求める。この応力的余裕度は、ひずみに応じた遅れ破壊の発生しない外的負荷応力の許容値である。すなわち、応力的余裕度を、例えば、引張-圧縮による成形ひずみを変数とした関数として記述する。
 なお、図4では、成形ひずみに応じてせん断端面の残留応力が増減する。そして、図4では、成形ひずみの絶対値が大きいほど、遅れ破壊の応力的余裕度が増加する場合を例示している。ただし、材料やせん断端面の状態によっては、成形ひずみにより逆に遅れ破壊の応力的余裕度が減少する場合も想定される。このようなことは、例えば、付与する成形ひずみによりせん断端面に亀裂や損傷が生じることで発生する。
 そして、本実施形態では、上記のようにして求めた応力的余裕度と比較することで、次の評価が可能となる。すなわち、応力的余裕度の評価に用いなかったせん断端面を有する試験片についても、遅れ破壊の可能性を、試験を行うことなく、評価することが可能となる。その遅れ破壊の可能性は、金属板に負荷予定の外的負荷(負荷応力)に対する遅れ破壊の可能性である。
 (第2の工程2)
 第2の工程2は、金属板を目的とする成形部品にプレス成形する処理について成形解析(CAE解析)を行う。そして、金属板を成形部品に成形することで発生する、成形部品のせん断端面の各所における、残留応力とひずみ量を求める処理を実行する。
 (第3の工程3)
 第3の工程3は、成形部品を他の部品に組み付けることで、成形部品のせん断端面の各所に負荷される負荷応力を求める。例えば、離型時のスプリングバック分だけ変形させて組み付けることで負荷応力が発生する。
 なお、端面について、組付け時に発生する成形部品の変形は、プレス成形時の変形に比べ小さい。このため、組付け時に発生するひずみは無視した。
 成形部品が、自動車用構造部品の場合、単体で又は他の部品と組み付けられた後で、自動車の躯体に組み付けられる。このように、成形部品が、他の部品と組み付けられたり、自動車の躯体に組み付けられたりする。その際に、所定の負荷応力が外部負荷として加えられた状態で組み付けられることがある。この外部負荷を負荷応力として求める。
 負荷応力は、例えば、実際に製造した成形部品に対しゲージその他のセンサを貼り付けた状態で、組み付けてみて測定する。また、負荷応力は、目的の成形部品を他の部品に組み付けた際に入力される応力を、公知のCAE解析によって実行して求めても良い。
 なお、本開示が対象とする遅れ破壊は、成形部品の経時的な使用により発生するものである。しかし、本開示が対象とする遅れ破壊は、成形部品を他の部品に組み付けて直ぐに発生する現象ではない。このため、実際に組み付けて外部負荷を求めることも可能である。
 (第4の工程4)
 第4の工程4は、上記金属板の応力的余裕度と合計応力とに基づき、成形部品の遅れ破壊の余裕度を評価する。上記金属板の応力的余裕度は、第2の工程2で求めたひずみ量を変数とした金属板の応力的余裕度である。上記合計応力は、第2の工程2で求めた残留応力と上記第3の工程3で求めた負荷応力との合計応力である。
 ここで、合計応力を算出する残留応力と負荷応力は、せん断端面における同一領域(同一箇所)に発生する、残留応力と負荷応力同士を合算させる。すなわち、せん断端面の各所毎に合計応力を算出する。
 なお、ひずみ量が予め設定した閾値以上の部分についてだけ、合計応力を算出するようにしてもよい。
 第4の工程4では、例えば、せん断端面の各所毎に実行される。第4の工程4では、第2の工程2で求めたひずみ量に対応する応力的余裕度と、成形部品のCAEによる残留応力と組付け時の外部負荷応力との合計応力とを比較する。そして、その比較によって、遅れ破壊の発生の有無を評価する。また、応力的余裕度と合計応力の差分からなる応力の余裕度を算出して、遅れ破壊に対しどの程度の応力的な余裕があるか評価しても良い。
 例えば、遅れ破壊の発生を評価したい自動車部品に対して、CAEによる成形解析を行う。そして、せん断端面各所での引張-圧縮によるひずみ量と成形後の残留応力を計算する。更に部品の組付け・使用時に想定される外部負荷応力を成形後の残留応力に足し合わせることで、その合計を求める。成形後の残留応力とくみつけ・使用時の外部負荷応力の合計が、せん断端面の各所における応力的余裕度を超過するか否かを判定する。そして超過する場合は、遅れ破壊の危険度が高いと判断する。ただし、応力的余裕度は安全率を考えて、実際に測定された値よりも小さくとることも可能である。更には、前記の応力的余裕度を参考にして、遅れ破壊が発生しないと予測されるような金属部品形状並びに製造工程を設計することも可能である。
 ここで、第2の工程2でCAEから出力するひずみの一例として、本開示では好ましくはせん断端面と平行方向へのひずみを用いる。用いるひずみは、塑性ひずみなどのその他のひずみに関するパラメータを用いても良い。
 同様に、残留応力や負荷応力に対しても、好ましくは第一主応力を用いることが望ましい。また、ミーゼス応力などのその他の応力に関するパラメータを用いても良い。
 (処理フロー)
 以上の本開示の評価方法に使用される、処理フローの例を示す。
 この処理フローは、第1の工程1で求めた、成形ひずみに応じた応力的余裕度を記憶部に記憶しておく。そして、コンピュータに、上記記憶している応力的余裕度を参照させ、入力された成形ひずみのひずみ量に対応する応力的余裕度の値を決定する。そして、入力された成形ひずみのひずみ量及び外的負荷応力に対する、遅れ破壊の可能性を評価する処理を実行させる。
 この処理フローを、図5を参照して説明する。図5のような処理で評価を行えば、成形部品について、より効率的な遅れ破壊の評価が可能となる。
 図5に示す例は、応力的余裕度算出部20、評価本体部30、記憶部40、及び見直し部50を備えている。そして、応力的余裕度算出部20、及び評価本体部30の処理を行う処理フローは、コンピュータのRAMやROMなどの記憶部40に記憶されている。そして、各処理は、コンピュータで実行される。
 <記憶部40>
 記憶部40は、データベースなどの記録媒体からなる。
 記憶部40には、金属板の材料条件、水素環境の条件、せん断条件毎に、試験条件を変数として、成形ひずみを変数として求めた応力的余裕度dのデータを記憶しておく。データは、成形ひずみ量を種々変更しつつ、せん断加工工程10~応力的余裕度決定の工程14の試験を繰り返すことで取得しておく。
 <応力的余裕度算出部20>
 応力的余裕度算出部20は、第1の工程1に対応する。
 応力的余裕度算出部20では、まず、ステップS10にて、評価の基礎条件の入力を促し、作業者の入力操作で、上記入力を取得する。評価の基礎条件は、例えば、材料の種類(鋼種や厚さ)の条件と、遅れ破壊の条件である水素環境の条件(酸度や設置時間)などである。
 次に、ステップS20にて、せん断条件の入力を促し、作業者の入力操作で、上記入力を取得する。
 次に、ステップS30では、ステップS10及びステップ20で入力された条件に合致したデータ群を、記憶部40から取得する。データ群は、各ひずみ量に対する応力的余裕度のデータ群である。また、データ群は、(ひずみ量、応力的余裕度の値)のデータの集まりである。
 又は、試験によって求めた各ひずみ量に対する応力的余裕度のデータ群の入力を促し、作業者の入力操作で、上記入力情報を取得する。取得したデータは、記憶部40に記憶する。
 次に、ステップS40では、ステップS30が取得した、ひずみ量に対する応力的余裕度のデータ群を参照する。そして、ステップS40では、公知の処理方式によって、応力的余裕度dを、ひずみ量xを変数とした関数f(x)として求める演算処理を実行する。
 次に、ステップS50では、ステップS40で求めた応力的余裕度dの関数を、下記式のような、安全率s(:0<s≦1)を考慮した式に変更する。
 d =s・f(x)
 そして、求めた、応力的余裕度dの関数の情報は、試験条件をキーとして記憶部40に記憶する。
 <評価本体部30>
 評価本体部30では、まず、ステップS100にて、評価の対象とする実部品の条件の入力を促す。実部品の条件は、例えば、実部品の材料の種類や成形形状等の部品条件、せん断条件等の金属板の条件、及び成形条件と、遅れ破壊の条件である水素環境の条件である。そして、作業者の入力操作で、上記入力を取得する。材料の種類とは、例えば鋼種や厚さである。水素環境の条件とは、例えば、酸度や設置時間である。
 次に、ステップS110では、ステップS100にて取得した金属板及びせん断加工の条件と成形する実部品の形状情報などに基づき、CAEによる成形解析を実行する。
 次に、ステップS120では、ステップS110での成形解析の処理結果から、実部品の全せん断端面部について、ひずみ量xと残留応力gを求める。
 ステップS130では、組み付け・使用時の負荷応力hの入力を促して、操作者の入力によって負荷応力hを取得する。
 ステップS140では、ステップS100で入力した条件に合致した応力的余裕度dの関数「s・f(x)」の情報を記憶部40から取得する。そして、各せん断端面箇所について、応力的余裕度dと合計応力(g+h)とを比較する。応力的余裕度dは、ステップS110で入力したひずみ量xに応じた応力的余裕度dである。合計応力(g+h)は、ステップS120で出力した残留応力gとステップS130で入力した負荷応力hとの合計応力である。そして、その比較により、遅れ破壊のリスクがあるか否かの判定を行う。
 ここで、図5のステップS140では、遅れ破壊のリスクがあるか否かの判定を行っている。遅れ破壊の余裕度(=d-(g+h))を、併せて出力するようにしてもよい。
 また、応力的余裕度算出部20について、別途計算処理を実行して、ステップS10~S20での入力値を条件とした応力的余裕度dの関数を求めもよい。そして、その求めた関数をステップS10~S20での入力値をキーとしたデータとして記憶部40に入力しても良い。
 <見直し部50>
 見直し部50は、成形条件や部品形状に対し見直しの処理を実行し、その見直しで変更した成形条件や部品形状の変更条件をステップS120に出力する。
 見直しの処理は、例えば、遅れ破壊の余裕度(=d-(g+h))が負値となっているせん断端面の箇所について行う。例えば、余裕度の絶対値を越える応力分だけ残留応力が小さくなるように、成形条件や部品形状の変更を行う。成形条件の見直しについては、例えば、プレス工程の工程数を増やして残留応力の緩和を図る。
 部品が大型でせん断端面のすべてに手作業で評価を与えるのが困難な場合では、図5のような処理フローによる評価を行えば、自動で効率的に評価が可能となる。それによって、遅れ破壊のリスクがあると判断された場合、遅れ破壊のリスクが無いと判断されるまで、繰り返し成形条件を見直すことも可能である。
 本実施形態の実施例について説明する。
 (実施例1)
 本実施例では、引張強度1470MPa級鋼板で厚さが1.0mmの金属板からなる供試材Xを、評価対象の金属板として説明する。
 なお、本発明は、この供試材Xの板条件に限定されるものではない。本発明は、せん断端面に遅れ破壊が発生するような引張強度が980MPa以上の高強度鋼板をはじめとした各種金属材料に対して適用が可能である。
 初めに、供試材Xをせん断加工によりせん断して、長さ100mmの直線状のせん断端面を有する試験片を作製した。せん断する際の試験片の幅は30mmとして、試験片を100mm×30mmの短冊形状とした。せん断加工時のクリアランスは、板厚に対して12%に設定した。なお、上記実施形態での説明では、せん断条件が単一の場合を例に説明した。ただし、せん断加工時のクリアランスなどのせん断条件が変化した場合にも、それに対応した評価が可能である。すなわち、そのせん断条件での応力的余裕度を求めれば良い。
 次に、試験片のせん断端面に対し、せん断端面の延在方向に沿って引張又は圧縮による成形ひずみを与えた。本例では、成形ひずみは、試験片の両端をクランプした状態で単軸荷重試験機によって与えた。なお、本例では、成形ひずみを引張又は圧縮の場合について説明した。成形ひずみが曲げによる変形の場合でも、同様の結果が得られることを確認している。また、成形ひずみを与えずにせん断加工のままの試験片も用意した。
 次に、各試験片について、治具を用いた四点曲げにより外部的な拘束を与え、試験片のせん断端面の中央部に応力を負荷した。ただし、せん断時のバリ側を曲げの外側とし、引張応力が負荷されるようにした。
 ここで負荷応力の大きさは、次のように決定した。試験片の幅中央部かつ頂点部の第一主応力-第一主ひずみ関係をCAEによって求めた。そして、実際に試験片を曲げた際のひずみ量を測定し、対応づけることによって測定した。
 本例では、応力負荷の方法として、四点曲げの場合について説明した。その他の曲げ荷重方法や、単軸引張などの荷重方法でも同様の傾向の結果が得られる。また、本例では、応力負荷の際には、せん断時のバリ側を曲げの外側とし、引張応力を負荷した。同様にバリ側と反対側の面についても評価を行うことが可能である。
 本例では、各試験片に負荷する負荷応力を、表に記載のように100MPa刻みで変更した。そして、各成形ひずみの条件毎に、複数の試験片を用意した。
 そして、負荷応力を負荷した試験片を、pH6のチオシアン酸溶液の浴槽に96時間、浸漬し、96時間後の遅れ破壊による亀裂発生の有無により遅れ破壊特性の評価を行った。
 上記条件及び評価結果を、表1~表11に示す。
 各表は、成形ひずみのひずみ量毎に纏めたものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 各表は、引張を正、圧縮を負としたときの、ひずみ量によって異なる負荷応力毎の遅れ破壊の発生の有無を表している。
 表1~表11から分かるように、成形ひずみのひずみ量の絶対値が大きいほど、限界負荷応力が大きくなることが分かる。本例では、この成形ひずみを変数とした限界負荷応力が応力的余裕度となる。
 図6は、遅れ破壊が発生しなかった限界の負荷応力から応力的余裕度を求め、応力的余裕度をひずみの関数として記述したものである。
 このように、せん断後の成形ひずみに応じた応力的余裕度を記述することが出来ることが分かる。なお、本例では、せん断後の成形ひずみによって応力的余裕度が増加する場合を示した。逆にせん断後の成形ひずみによって応力的余裕度が減少する場合でも、同様の評価が可能である。
 (実施例2)
 次に、実施例1で求めた、せん断後の成形ひずみに応じた応力的余裕度を用いた遅れ破壊判定の一例を説明する。
 実施例2では、自動車部品における実部品想定して、図7に示す形状のせん断端面を有する実部品を想定した。そして、供試材Xを用いて、その実部品の形状にプレス成形した。図7に示す部品形状では、端面にひずみが入力される。
 このとき、成形後の部品における、代表的なせん断端面部の代表的な箇所A~J(不図示)の10箇所において、CAEによって計算した。すなわち、せん断時のバリ側の表面における、成形ひずみと残留応力を、CAEによって計算した。
 CAEには1.0mm角のシェル要素を用いて、動的陽解法により成形とスプリングバックの工程を計算した。
 なお、本実施例では図7に示す実部品を例示したが、この部品に限らず、遅れ破壊の危険がある材料のせん断端面を有する部品であれば、同様の評価が可能である。
 その後、成形後の実部品に対して、遅れ破壊試験を行った。ただし遅れ破壊試験では、pH6のチオシアン酸溶液に浸漬し、96時間後の遅れ破壊による亀裂発生の有無により遅れ破壊の評価を行った。
 せん断後の成形ひずみと残留応力のCAE結果を、遅れ破壊試験発生の有無と共に表12に示した。
Figure JPOXMLDOC01-appb-T000012
 (実施例3)
 次に図8においては、表12に示したせん断後の成形ひずみと残留応力、及び遅れ破壊の発生の有無を、図6の応力的余裕度と共にプロットして比較した。図8によると、応力的余裕度の線を超過するか否かで、実際の部品におけるせん断端面の遅れ破壊の発生の有無を予測することができることが分かった。
 更に、実部品の組付け・使用時の外部応力負荷を全ての箇所で最大300MPaと想定した。組付けや使用時の外部負荷応力の最大量については、ひずみゲージを用いて組付けや想定される使用時の実部品の弾性的な変形量を測定することにより推定した。
 その分の応力を上乗せした場合の、A~Jの代表的な箇所における、せん断後の成形ひずみと残留応力を求めた。それを成形したままでの遅れ破壊の発生の有無と共に、図6の応力的余裕度と共にプロットして比較したのが、図9である。
 図9においては、部品成形後の遅れ破壊試験では遅れ破壊が発生しない場合でも、組付け・使用時の外部応力負荷を考慮すると、応力的余裕度を超過する箇所が存在した。これらの箇所は、成形したままでの遅れ破壊試験では遅れ破壊が発生しない。しかし、組付け・使用時の負荷応力を考慮すると、遅れ破壊が発生する可能性のある、潜在的な遅れ破壊危険箇所であるといえることが分かった。
 表13は、応力的余裕度を参考に、組付け・使用時の応力を考慮した場合でも、遅れ破壊が生じないようにすることを目的とした例である。そのため、同一の成形部品に対し、最終的な成形工程の前に中間の成形工程を新たに設ける例である。中間の成形工程を設けることで、応力とひずみ量を変化させた場合の部品の代表的箇所A~Jの成形ひずみと残留応力を表している。
 また、表13の部品箇所に対し、最大300MPaと想定した組付け応力を負荷して図6の応力的余裕度と比較をしたのが、図10である。図10においては組付け・使用時の応力を考慮しても応力的余裕度を超過しない。このことから、遅れ破壊の危険性が小さいと予測される。応力的余裕度を参考にすることで、このように遅れ破壊を生じない自動車部品、並びにその製造工程を設計することができことが分かった。
Figure JPOXMLDOC01-appb-T000013
 (その他)
 本開示は、次の構成も取り得る。
 (1)高強度鋼板からなる金属板を成形して成形部品を製造し、その成形部品を他の部品に組み付けて使用される当該成形部品のせん断端面での遅れ破壊特性を評価する成形部品の遅れ破壊特性評価方法であって、
 上記金属板のせん断面に予め設定した負荷応力を負荷した状態で拘束する工程と、上記
拘束した状態で、当該金属板を予め設定した水素侵入環境に予め設定した時間設置する工程とを備える試験の結果に基づき、上記金属板のせん断面での遅れ破壊が発生しない外的負荷応力の許容値である応力的余裕度を、ひずみ量を変数として求める第1の工程と、
 上記金属板を上記成形部品に成形する成形解析を行って、上記金属板を上記成形部品に成形する際に発生する、上記成形部品のせん断端面での残留応力とひずみ量を求める第2の工程と、
 上記成形部品を他の部品に組み付けることで、上記せん断端面に負荷される負荷応力を求める第3の工程と、
 上記第2の工程で求めたひずみ量を変数とした上記金属板の応力的余裕度と、上記第2の工程で求めた残留応力と上記第3の工程で求めた負荷応力との合計応力と、に基づき、上記成形部品の遅れ破壊の余裕度を評価する第4の工程と、
 を備える。
 (2)上記第4の工程において、第2の工程で求めた残留応力とひずみ量では、遅れ破壊が発生すると評価した場合に、上記成形部品の形状、及び上記成形の条件のうちのいずれか一方を変更する第5の工程を有し、
 上記第5の工程は、遅れ破壊が発生すると評価された箇所について、上記第2の工程で求める残留応力が小さくなる方向に変更を行う。
 (3)上記金属板は、引張強度が980MPa以上の鋼板である。
 (4)本開示の成形部品の遅れ破壊特性評価方法によって、成形部品が遅れ破壊を発生しないと評価される上記成形の条件を決定し、その決定した成形の条件によって成形して成形部品を製造する、成形部品の製造方法。
 ここで、本願が優先権を主張する、日本国特許出願2022-085553(2022年 5月25日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。
1 第1の工程
2 第2の工程
3 第3の工程
4 第4の工程
10 せん断工程
11 ひずみ導入工程
12 負荷工程
13 水素侵入工程
14 応力的余裕度決定の工程
20 応力的余裕度算出部
30 評価本体部
40 記憶部
50 見直し部
d 応力的余裕度
g 残留応力
h 負荷応力
x ひずみ量

Claims (4)

  1.  高強度鋼板からなる金属板を成形して成形部品を製造し、その成形部品を他の部品に組み付けて使用される当該成形部品のせん断端面での遅れ破壊特性を評価する成形部品の遅れ破壊特性評価方法であって、
     上記金属板のせん断面に予め設定した負荷応力を負荷した状態で拘束する工程と、上記拘束した状態で、当該金属板を予め設定した水素侵入環境に予め設定した時間設置する工程とを備える試験の結果に基づき、上記金属板のせん断面での遅れ破壊が発生しない外的負荷応力の許容値である応力的余裕度を、ひずみ量を変数として求める第1の工程と、
     上記金属板を上記成形部品に成形する成形解析を行って、上記金属板を上記成形部品に成形する際に発生する、上記成形部品のせん断端面での残留応力とひずみ量を求める第2の工程と、
     上記成形部品を他の部品に組み付けることで、上記せん断端面に負荷される負荷応力を求める第3の工程と、
     上記第2の工程で求めたひずみ量を変数とした上記金属板の応力的余裕度と、上記第2の工程で求めた残留応力と上記第3の工程で求めた負荷応力との合計応力と、に基づき、上記成形部品の遅れ破壊の余裕度を評価する第4の工程と、
     を備えることを特徴とする成形部品の遅れ破壊特性評価方法。
  2.  上記第4の工程において、第2の工程で求めた残留応力とひずみ量では、遅れ破壊が発生すると評価した場合に、上記成形部品の形状、及び上記成形の条件のうちのいずれか一方を変更する第5の工程を有し、
     上記第5の工程は、遅れ破壊が発生すると評価された箇所について、上記第2の工程で求める残留応力が小さくなる方向に変更を行う、
     ことを特徴とする請求項1に記載した成形部品の遅れ破壊特性評価方法。
  3.  上記金属板は、引張強度が980MPa以上の鋼板である、請求項1又は請求項2に記載した成形部品の遅れ破壊特性評価方法。
  4.  請求項1~請求項3のいずれか1項に記載の成形部品の遅れ破壊特性評価方法によって、成形部品が遅れ破壊を発生しないと評価される上記成形の条件を決定し、その決定した成形の条件によって成形して成形部品を製造する、
     ことを特徴とする成形部品の製造方法。
PCT/JP2023/019489 2022-05-25 2023-05-25 成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法 WO2023229005A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022085553A JP2023173359A (ja) 2022-05-25 2022-05-25 成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法
JP2022-085553 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023229005A1 true WO2023229005A1 (ja) 2023-11-30

Family

ID=88919442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/019489 WO2023229005A1 (ja) 2022-05-25 2023-05-25 成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法

Country Status (2)

Country Link
JP (1) JP2023173359A (ja)
WO (1) WO2023229005A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146225A (ja) * 1993-11-24 1995-06-06 Nippon Steel Corp 高張力鋼板の遅れ破壊特性評価方法
JP2010107297A (ja) * 2008-10-29 2010-05-13 Jfe Steel Corp 薄鋼板の遅れ破壊特性の評価方法および応力付加治具
JP7004126B1 (ja) * 2020-12-03 2022-01-21 Jfeスチール株式会社 遅れ破壊特性評価方法、及びプログラム
JP2022024814A (ja) * 2020-07-28 2022-02-09 Jfeスチール株式会社 金属板の遅れ破壊特性評価方法、及びプレス部品の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146225A (ja) * 1993-11-24 1995-06-06 Nippon Steel Corp 高張力鋼板の遅れ破壊特性評価方法
JP2010107297A (ja) * 2008-10-29 2010-05-13 Jfe Steel Corp 薄鋼板の遅れ破壊特性の評価方法および応力付加治具
JP2022024814A (ja) * 2020-07-28 2022-02-09 Jfeスチール株式会社 金属板の遅れ破壊特性評価方法、及びプレス部品の製造方法
JP7004126B1 (ja) * 2020-12-03 2022-01-21 Jfeスチール株式会社 遅れ破壊特性評価方法、及びプログラム

Also Published As

Publication number Publication date
JP2023173359A (ja) 2023-12-07

Similar Documents

Publication Publication Date Title
Chongthairungruang et al. Experimental and numerical investigation of springback effect for advanced high strength dual phase steel
Wang et al. Springback control of sheet metal air bending process
EP3689491A1 (en) Method for evaluating deformation limit, crack prediction method, and method for designing press die
JP6669290B1 (ja) 応力−ひずみ関係推定方法
Song et al. Evaluation of effect of flow stress characteristics of tubular material on forming limit in tube hydroforming process
Hu et al. Edge fracture prediction of traditional and advanced trimming processes for AA6111-T4 sheets
WO2023229004A1 (ja) せん断端面の遅れ破壊特性評価方法、プログラム、及び自動車部品の製造方法
JP7327313B2 (ja) 金属板の遅れ破壊特性評価方法、及びプレス部品の製造方法
KR20200015711A (ko) 금속판의 전단 가공면에서의 변형 한계의 평가 방법, 깨짐 예측 방법 및 프레스 금형의 설계 방법
JP7004126B1 (ja) 遅れ破壊特性評価方法、及びプログラム
CN110431397B (zh) 冷加工部件的硬度推断方法及钢材的硬度-等效塑性应变曲线获取方法
WO2023229005A1 (ja) 成形部品の遅れ破壊特性評価方法、及び成形部品の製造方法
JP7384262B2 (ja) プレス成形品の遅れ破壊予測方法、装置及びプログラム、並びにプレス成形品の製造方法
WO2022118497A1 (ja) 遅れ破壊特性評価方法、及びプログラム
Gutierrez et al. Formability Characterization of 3rd Generation Advanced High-Strength Steel and Application to Forming a B-Pillar
JP7563657B1 (ja) プレス成形用の金属板の遅れ破壊特性評価方法、プレス成形品の製造方法、及びプログラム
JP6773255B1 (ja) 曲げ割れ評価方法、曲げ割れ評価システム、及びプレス成形部品の製造方法
Mulidrán et al. RESEARCH PAPER THE EFFECT OF MATERIAL MODELS IN THE FEM SIMULATION ON THE SPRINGBACK PREDICTION OF THE TRIP STEEL
Noma et al. Specimen geometry optimization for in-plane reverse loading test of sheet metal and experimental validation
WO2023181539A1 (ja) プレス成形品の遅れ破壊予測方法、装置及びプログラム、並びにプレス成形品の製造方法
Golovashchenko et al. Hardening of A6111-T4 aluminum alloy at large strains and its effect on sheet forming operations
Kacar et al. Prediction of strain limits via the Marciniak-Kuczynski model and a novel semi-empirical forming limit diagram model for dual-phase DP600 advanced high strength steel
JP7541657B1 (ja) 遅れ破壊の評価方法、遅れ破壊の予測方法、プレス成形品の製造方法、及びプログラム
KR20240154022A (ko) 프레스 성형품의 지연 파괴 예측 방법, 장치 및 프로그램, 그리고 프레스 성형품의 제조 방법
Kim et al. Development of an index model for oil canning of steel sheet metal forming products

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811877

Country of ref document: EP

Kind code of ref document: A1