WO2023228887A1 - 3次元表示装置、ヘッドアップディスプレイシステム、及び移動体 - Google Patents

3次元表示装置、ヘッドアップディスプレイシステム、及び移動体 Download PDF

Info

Publication number
WO2023228887A1
WO2023228887A1 PCT/JP2023/018835 JP2023018835W WO2023228887A1 WO 2023228887 A1 WO2023228887 A1 WO 2023228887A1 JP 2023018835 W JP2023018835 W JP 2023018835W WO 2023228887 A1 WO2023228887 A1 WO 2023228887A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
eye
image
pixel
pixels
Prior art date
Application number
PCT/JP2023/018835
Other languages
English (en)
French (fr)
Inventor
秀也 高橋
五郎 濱岸
薫 草深
Original Assignee
京セラ株式会社
公立大学法人大阪
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, 公立大学法人大阪 filed Critical 京セラ株式会社
Publication of WO2023228887A1 publication Critical patent/WO2023228887A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/36Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators characterised by the display of a graphic pattern, e.g. using an all-points-addressable [APA] memory
    • G09G5/37Details of the operation on graphic patterns
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/122Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues
    • H04N13/125Improving the 3D impression of stereoscopic images by modifying image signal contents, e.g. by filtering or adding monoscopic depth cues for crosstalk reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/317Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/346Image reproducers using prisms or semi-transparent mirrors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking

Definitions

  • the present disclosure relates to a three-dimensional display device, a head-up display system, and a moving object.
  • Patent Document 1 A conventional three-dimensional display device is described in Patent Document 1, for example.
  • the three-dimensional display device of the present disclosure includes a display panel, a parallax barrier, a position acquisition unit, and a controller.
  • the display panel has a display surface including a plurality of sub-pixels arranged along a first direction and a second direction intersecting the first direction.
  • the parallax barrier defines the direction of the image light emitted from the display surface.
  • the position acquisition unit acquires the position of at least one of a first eye and a second eye of the user.
  • the controller is configured to display a first image on the display surface based on the position of at least one of the first eye and the second eye acquired by the position acquisition unit, and a first image that has a parallax with respect to the first image.
  • a mixed image including the two images is synthesized.
  • the parallax barrier has a plurality of band-shaped light-transmitting regions and a plurality of band-shaped light-blocking regions, and the light-transmitting regions and the light-blocking regions are arranged alternately along the first direction.
  • the controller successively allocates the first image or the second image to n sub-pixels arranged according to an inclination angle of the parallax barrier with respect to the second direction.
  • the controller includes a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, and a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, among the n sub-pixels;
  • the sub-pixels observed across the other end of the transparent region by the one of the sub-pixels are caused to display a low-luminance image whose luminance is equally reduced.
  • the number of sub-pixels displaying the low-luminance image is the same on one end side and the other end side of the light-transmitting area.
  • the head-up display system of the present disclosure includes a display panel, a parallax barrier, a position acquisition unit, an optical member, and a controller.
  • the display panel has a display surface including a plurality of sub-pixels arranged along a first direction and a second direction intersecting the first direction.
  • the parallax barrier defines the direction of the image light emitted from the display surface.
  • the position acquisition unit acquires the position of at least one of a first eye and a second eye of the user.
  • the optical member allows the user to view image light emitted from the display surface as a virtual image.
  • the controller may display a first image on the display surface based on the position of at least one of the first eye and the second eye acquired by the position acquisition unit, and a first image that has a parallax with respect to the first image.
  • a mixed image including the two images is synthesized.
  • the parallax barrier has a plurality of band-shaped light-transmitting regions and a plurality of band-shaped light-blocking regions, and the light-transmitting regions and the light-blocking regions are arranged alternately along the first direction.
  • the controller successively allocates the first image or the second image to n sub-pixels arranged according to an inclination angle of the parallax barrier with respect to the second direction.
  • the controller includes a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, and a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, among the n sub-pixels;
  • the sub-pixels observed across the other end of the transparent region by the one of the sub-pixels are caused to display a low-luminance image whose luminance is equally reduced.
  • the number of sub-pixels displaying the low-luminance image is the same on one end side and the other end side of the light-transmitting area.
  • the moving object of the present disclosure includes a head-up display system.
  • the head-up display system includes a display panel, a parallax barrier, a position acquisition unit, an optical member, and a controller.
  • the display panel has a display surface including a plurality of sub-pixels arranged along a first direction and a second direction intersecting the first direction.
  • the parallax barrier defines the direction of the image light emitted from the display surface.
  • the position acquisition unit acquires the position of at least one of a first eye and a second eye of the user.
  • the optical member allows the user to view image light emitted from the display surface as a virtual image.
  • the controller may display a first image on the display surface based on the position of at least one of the first eye and the second eye acquired by the position acquisition unit, and a first image that has a parallax with respect to the first image.
  • a mixed image including the two images is synthesized.
  • the parallax barrier has a plurality of band-shaped light-transmitting regions and a plurality of band-shaped light-blocking regions, and the light-transmitting regions and the light-blocking regions are arranged alternately along the first direction.
  • the controller successively allocates the first image or the second image to n sub-pixels arranged according to an inclination angle of the parallax barrier with respect to the second direction.
  • the controller includes a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, and a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, among the n sub-pixels;
  • the sub-pixels observed across the other end of the transparent region by the one of the sub-pixels are caused to display a low-luminance image whose luminance is equally reduced.
  • the number of sub-pixels displaying the low-luminance image is the same on one end side and the other end side of the light-transmitting area.
  • FIG. 1 is a diagram illustrating an example of a three-dimensional display system according to an embodiment viewed from the vertical direction.
  • FIG. 2 is a diagram showing an example of the display panel shown in FIG. 1 viewed from the depth direction.
  • FIG. 3 is a diagram showing an example of the barrier shown in FIG. 1 viewed from the depth direction.
  • FIG. 4 is a diagram for explaining the left visible area on the display panel shown in FIG.
  • FIG. 5 is a diagram for explaining the right visible area on the display panel shown in FIG.
  • FIG. 6 is a schematic diagram showing an example of subpixels observed by the left and right eyes of a user located at suitable viewing positions.
  • FIG. 1 is a diagram illustrating an example of a three-dimensional display system according to an embodiment viewed from the vertical direction.
  • FIG. 2 is a diagram showing an example of the display panel shown in FIG. 1 viewed from the depth direction.
  • FIG. 3 is a diagram showing an example of the barrier shown in FIG. 1 viewed from the depth direction.
  • FIG. 7A is a schematic diagram showing an example of subpixels observed by the user's right eye located at a suitable viewing position.
  • FIG. 7B is a schematic diagram showing an example of sub-pixels observed by the right eye of the user who has moved from the suitable viewing position.
  • FIG. 8A is a schematic diagram showing an example of a left visible region and a right visible region when the user's observation distance is the suitable viewing distance d.
  • FIG. 8B is a schematic diagram showing an example of the left visible region and the right visible region when the user's observation distance is longer than the suitable viewing distance d.
  • FIG. 8C is a schematic diagram showing an example of a left visible region and a right visible region when the user's observation distance is shorter than the suitable viewing distance d.
  • FIG. 8A is a schematic diagram showing an example of subpixels observed by the user's right eye located at a suitable viewing position.
  • FIG. 7B is a schematic diagram showing an example of sub-pixels observed by the right eye of the user
  • FIG. 8D is a schematic diagram showing an example of the left visible region and the right visible region when the user's observation distance is the suitable viewing distance d and the barrier aperture ratio is greater than 50%.
  • FIG. 9B
  • FIG. 11A shows an example of subpixels observed by the user's left and right eyes at
  • FIG. 13B is a diagram illustrating the brightness reduction process when the barrier inclination angle ⁇ satis
  • FIG. 14B shows subpixels observed by the left and right eyes of the user who are not in the appropriate viewing position when the barrier inclination angle ⁇ satisfies
  • FIG. 3 is a schematic diagram showing an example of a region and a right visible region.
  • FIG. 14E shows subpixels observed by the left and right eyes of the user who are not in the appropriate viewing position when the barrier inclination
  • FIG. 16D shows subpixels observed by the left and right eyes of the user who are not in the appropriate viewing position when the barrier inclination angle ⁇
  • FIG. 16E shows subpixels observed by the left and right eyes of the user who are not in the appropriate viewing position when the barrier inclination angle ⁇
  • FIG. 18 is a schematic diagram showing subpixels that are visible to the left and right eyes of the user located at the suitable viewing distance d.
  • FIG. 19 is a schematic diagram showing an example of subpixels that are visually recognized by the user's left and right eyes when the viewing distance Y is longer than the suitable viewing distance d.
  • FIG. 20 is a schematic diagram showing another example of subpixels that are visually recognized by the user's left and right eyes when the viewing distance Y is longer than the suitable viewing distance d.
  • FIG. 21 is a schematic diagram showing an example of sub-pixels that are visually recognized by the user's left and right eyes when the viewing distance Y is shorter than the suitable viewing distance d.
  • FIG. 22 is a schematic diagram showing another example of subpixels that are visually recognized by the user's left and right eyes when the viewing distance Y is shorter than the suitable viewing distance d.
  • FIG. 20 is a schematic diagram showing another example of subpixels that are visually recognized by the user's left and right eyes when the viewing distance Y is longer than the suitable viewing distance d.
  • FIG. 21 is a schematic diagram showing an example of sub-pixels that are visually recognized by the user
  • FIG. 23 is a list of the viewing distance Y and the number of third sub-pixels based on the viewing distance Y.
  • FIG. 24 is a diagram showing an example of a head-up display system equipped with the three-dimensional display system according to this embodiment.
  • FIG. 25 is a diagram showing an example of a moving object equipped with the head-up display system shown in FIG. 24.
  • Patent Document 1 in order to perform three-dimensional display without using glasses, part of the light emitted from the display panel is made to reach the right eye, and the other part of the light emitted from the display panel is A three-dimensional display device is described that includes an optical element that reaches the left eye.
  • the present disclosure provides a three-dimensional display device, a head-up display system, and a moving object that allow a user to appropriately view a three-dimensional image.
  • a three-dimensional display system 100 includes a detection device 1 and a three-dimensional display device 2, as shown in FIG.
  • the three-dimensional display system 100 causes the display panel 5 of the three-dimensional display device 2 to display an image.
  • Part of the image light emitted from the display panel 5 is blocked by the parallax barrier 6, so that different image lights reach the user's left eye and right eye, respectively.
  • the parallax barrier will also be referred to as a barrier.
  • a user can view images stereoscopically because there is a parallax between the image viewed with the left eye and the image viewed with the right eye.
  • the three-dimensional display device 2 adjusts the image displayed on the display panel 5 according to the distance between the user's eyes detected by the detection device 1 and the barrier 6. Thereby, the three-dimensional display system 100 allows the user to appropriately view the three-dimensional image regardless of changes in the user's position.
  • the detection device 1 detects the position of the user's eyes.
  • the detection device 1 may detect the position of at least one of the user's left eye and right eye.
  • one eye of the user will also be referred to as the first eye.
  • the user's other eye is also referred to as the second eye.
  • the left eye is the first eye and the right eye is the second eye, but the left eye may be the second eye and the right eye may be the first eye.
  • the position of the user's eyes is expressed, for example, by coordinates in a three-dimensional space, but is not limited thereto.
  • the detection device 1 may include, for example, a camera.
  • the detection device 1 may photograph the user's face using a camera.
  • the detection device 1 may detect the position of the user's eyes from a photographed image of the user's face.
  • the detection device 1 may detect the position of the user's eyes as coordinates in a three-dimensional space from an image taken by one camera.
  • the detection device 1 may detect the position of the user's eyes as coordinates in a three-dimensional space from images captured by two or more cameras.
  • the detection device 1 outputs the position of at least one of the user's left eye and right eye to the three-dimensional display device 2.
  • the detection device 1 may not include a camera and may be connected to a camera outside the device.
  • the detection device 1 may include an input terminal for inputting an imaging signal from a camera outside the device.
  • a camera external to the device may be directly connected to the input terminal.
  • a camera external to the device may be indirectly connected to the input terminal via a shared network.
  • the detection device 1 may detect the position of the user's eyes from the video signal input to the input terminal.
  • the detection device 1 may include, for example, a sensor.
  • the sensor may be an ultrasonic sensor, an optical sensor, or the like.
  • the detection device 1 may detect the position of the user's head using a sensor, and may detect the position of the user's eyes based on the head position.
  • the detection device 1 may detect the position of the user's eyes as coordinates in a three-dimensional space using one or more sensors.
  • the three-dimensional display system 100 does not need to include the detection device 1.
  • the three-dimensional display device 2 may include an input terminal for inputting a signal from a detection device outside the system.
  • a detection device outside the system may be connected directly to the input terminal.
  • Detection devices outside the system may be indirectly connected to the input terminals via a shared network.
  • the three-dimensional display device 2 may acquire the position of the user's eyes from a detection device outside the system.
  • the three-dimensional display device 2 includes a position acquisition unit (hereinafter also referred to as acquisition unit) 3, a display panel 5, a barrier 6, and a controller 7.
  • the three-dimensional display device 2 may include an irradiator 4 .
  • the acquisition unit 3 acquires the position of at least one of the user's left eye and right eye detected by the detection device 1.
  • the acquisition unit 3 may determine the distance between the user's eyes and the barrier 6 from the acquired position of the user's eyes.
  • the distance between the user's eyes and the barrier 6 may be the distance between the barrier 6 and at least one of the user's left eye and right eye.
  • the distance between the user's eyes and the barrier 6 will also be referred to as the user's observation distance.
  • the irradiator 4 can irradiate the display panel 5 area-wide.
  • the irradiator 4 may be configured to include a light source, a light guide plate, a diffusion plate, a diffusion sheet, and the like.
  • the irradiator 4 emits irradiation light using a light source, and uniformizes the irradiation light in the surface direction of the display panel 5 using a light guide plate, a diffusion plate, a diffusion sheet, and the like.
  • the irradiator 4 can emit uniform light to the display panel 5.
  • the controller 7 is connected to each component of the three-dimensional display system 100 and can control each component.
  • the controller 7 is configured as a processor, for example.
  • Controller 7 may include one or more processors.
  • the processor may include a general-purpose processor that loads a specific program to execute a specific function, and a dedicated processor that is specialized for specific processing.
  • a dedicated processor may include an application specific integrated circuit (ASIC).
  • the processor may include a programmable logic device (PLD).
  • the PLD may include an FPGA (Field-Programmable Gate Array).
  • the controller 7 may be either an SoC (System-on-a-Chip) or an SiP (System In a Package) in which one or more processors work together.
  • the controller 7 includes a storage unit, and may store various information or programs for operating each component of the three-dimensional display system 100 in the storage unit.
  • the storage unit may be composed of, for example, a semiconductor memory.
  • the storage unit may function as a work memory for the controller 7.
  • the display panel 5 is, for example, a display panel such as a transmissive liquid crystal display panel, but is not limited thereto. As shown in FIG. 2, the display panel 5 has a plurality of divided areas on an active area 51 formed in a planar shape. Active area 51 displays a mixed image.
  • the active area 51 is also referred to as a display surface.
  • the mixed image includes a left eye image and a right eye image having parallax with respect to the left eye image.
  • the left eye image is also referred to as a first image.
  • the right eye image is also referred to as a second image.
  • the partitioned area is an area partitioned by the grid-like black matrix 52 in a first direction and a second direction perpendicular to the first direction.
  • a direction perpendicular to the first direction and the second direction is referred to as a third direction.
  • the first direction may be referred to as the horizontal direction or the parallax direction.
  • the second direction may be referred to as the vertical direction.
  • the third direction may be referred to as the depth direction.
  • the first direction, the second direction, and the third direction are not limited to these.
  • the first direction is represented as the x-axis direction
  • the second direction is represented as the y-axis direction
  • the third direction is represented as the z-axis direction.
  • the active area 51 includes a plurality of sub-pixels arranged in a grid pattern along the horizontal and vertical directions.
  • Each subpixel is composed of a set of three subpixels R, G, and B, each corresponding to one of the colors R (Red), G (Green), and B (Blue). It's okay.
  • One pixel is also called one pixel.
  • the horizontal direction is, for example, the direction in which a plurality of subpixels forming one pixel are lined up.
  • the vertical direction is, for example, a direction in which sub-pixels of the same color are lined up.
  • the display panel 5 is not limited to a transmissive liquid crystal panel, and may be another display panel such as an organic EL (Electro Luminescence) panel. When the display panel 5 is a self-luminous display panel, the three-dimensional display device 2 does not need to include the irradiator 4.
  • a plurality of sub-pixels arranged in the active area 51 can constitute a sub-pixel group Pg.
  • the sub-pixel group Pg is the minimum unit that the controller 7 controls to display an image in the active area 51.
  • the controller 7 causes a plurality of subpixels included in one subpixel group Pg to display a left eye image or a right eye image.
  • the number of sub-pixels that display a left-eye image and the number of sub-pixels that display a right-eye image may be the same.
  • the subpixel groups Pg may be repeatedly arranged in the horizontal direction. In the vertical direction, the subpixel groups Pg may be repeatedly arranged adjacent to positions shifted by one subpixel in the horizontal direction.
  • the sub-pixels P(1) to P(2 ⁇ n/b ⁇ b) included in all the sub-pixel groups Pg may be collectively controlled by the controller 7.
  • the controller 7 changes the image to be displayed on the sub-pixel P1 included in all the sub-pixel groups Pg from the left-eye image to the right-eye image. They can be switched simultaneously.
  • the barrier 6 is formed by a plane along the active area 51, and is placed a predetermined distance (gap) g away from the active area 51.
  • the barrier 6 may be located on the opposite side of the illuminator 4 with respect to the display panel 5.
  • the barrier 6 defines the direction of the image light emitted from the display panel 5. As shown in FIG. 3, the barrier 6 has a plurality of light shielding surfaces 61 that shield image light.
  • the plurality of light-shielding surfaces 61 define light-transmitting regions 62 between adjacent light-shielding surfaces 61 .
  • the light-transmitting region 62 has a higher light transmittance than the light-blocking surface 61.
  • the light shielding surface 61 has a lower light transmittance than the light transmitting region 62.
  • the light-transmitting region 62 is also referred to as a first light-transmitting region.
  • the light-shielding surface 61 is also referred to as a second light-transmitting region.
  • the light-transmitting region 62 is a portion through which light incident on the barrier 6 is transmitted.
  • the light-transmitting region 62 may transmit light at a first transmittance.
  • the first transmittance is, for example, approximately 100%, but is not limited to this, and may be a value within a range where the image light emitted from the display panel 5 can be clearly recognized.
  • the first transmittance may be, for example, 80% or more, or 50% or more.
  • the light shielding surface 61 is a part that blocks light entering the barrier 6 and hardly transmits it. That is, the light shielding surface 61 blocks the image displayed in the active area 51 of the display panel 5 from reaching the user's eyes.
  • the light shielding surface 61 may transmit light at a second transmittance.
  • the second transmittance is, for example, approximately 0%, but is not limited to this, and may be a value greater than 0% and close to 0%, such as 0.5%, 1%, or 3%.
  • the first transmittance can be several times or more, for example, ten times or more larger than the second transmittance.
  • the light shielding surface 61 is also referred to as a light shielding area.
  • the light-transmitting region 62 may be a plurality of band-shaped regions extending in a predetermined direction within the plane.
  • the light-transmitting region 62 defines a light ray direction, which is the direction in which the image light emitted from the sub-pixel propagates.
  • the predetermined direction is a direction that makes a predetermined angle that is not 0° or 90° with the vertical direction.
  • the light-transmitting region 62 and the light-blocking region 61 extend in a predetermined direction along the active area 51, and may be repeatedly and alternately arranged in a direction perpendicular to the predetermined direction.
  • An end line 62b indicating an end of the light-transmitting region 62 extends in a direction inclined at a predetermined angle ⁇ with respect to the vertical direction.
  • the end line 62b indicating the end of the light-transmitting region 62 is also referred to as an end line.
  • the predetermined angle ⁇ is also referred to as a barrier inclination angle.
  • the barrier inclination angle ⁇ may be an angle greater than or equal to 0° and less than 90°.
  • the barrier inclination angle ⁇ When the barrier inclination angle ⁇ is larger than 0° ( ⁇ >0°), the horizontal length of the subpixel on the display surface is Hp, the vertical length of the subpixel on the display surface is Vp, and a
  • a and b may be natural numbers that are equal to each other or may be natural numbers that are different from each other.
  • a and b may be mutually prime natural numbers.
  • the barrier 6 defines the light direction of the image light emitted from the display panel 5 by the light-shielding surface 61 and the light-transmitting region 62. As shown in FIG. 1, the barrier 6 defines the image light emitted from the sub-pixels arranged in the active area 51, thereby determining the area on the active area 51 that is visible to the user's eyes.
  • the region within the active area 51 that emits the image light propagating to the position of the user's eyes will be referred to as a visible region 51a.
  • a region within the active area 51 that emits image light propagating to the position of the user's left eye is referred to as a left visible region 51aL.
  • the left visible area 51aL is also referred to as a first visible area.
  • the region within the active area 51 that emits the image light propagating to the position of the user's right eye is referred to as a right visible region 51aR.
  • the right visible region 51aR is also referred to as a second visible region.
  • the barrier pitch Bp which is the horizontal arrangement interval of the light-transmitting regions 62, and the gap g between the active area 51 and the barrier 6 are determined by the horizontal length Hp of the sub-pixels, and the horizontal length Hp of the sub-pixels constituting the monocular image.
  • the following equations (2) and (3) using the number n, suitable viewing distance d, and interocular distance E are defined so as to hold.
  • E:d (n ⁇ Hp/b):g...(2)
  • d:Bp (d+g):(2 ⁇ n ⁇ Hp/b)...(3)
  • the suitable viewing distance d is between at least one of the user's left eye and right eye and the barrier 6, where the horizontal length of the visible region 51a is n subpixels. is the distance.
  • the interocular distance E is the distance between the user's left eye and right eye.
  • the interocular distance E may be a value calculated from the position of the user's eyes, or may be a preset value.
  • the interocular distance E may be, for example, a value of 61.1 mm to 64.4 mm, which is a value calculated by research by the National Institute of Advanced Industrial Science and Technology.
  • the barrier 6 may be made of a member having a second transmittance.
  • the barrier 6 may be composed of, for example, a film or a plate-like member.
  • the light shielding surface 61 is composed of a film or a plate-like member.
  • the light-transmitting area 62 is composed of an opening provided in a film or a plate-like member.
  • the film is made of resin, for example, but is not limited thereto.
  • the plate member is made of, for example, resin or metal, but is not limited thereto.
  • the barrier 6 may be made of a base material that has a light blocking property, or may be made of a base material that contains an additive that has a light blocking property.
  • the barrier 6 may be composed of a liquid crystal shutter.
  • the liquid crystal shutter can control light transmittance depending on the applied voltage.
  • the liquid crystal shutter is composed of a plurality of pixels, and the light transmittance of each pixel may be controlled. In the liquid crystal shutter, a region with high light transmittance or a region with low light transmittance can be formed in any shape.
  • the light-transmitting region 62 may be a region having a first transmittance.
  • the light shielding surface 61 may be a region having the second transmittance.
  • the barrier 6 allows image light emitted from some subpixels of the active area 51 to pass through the light-transmitting region 62 and propagate to the user's right eye.
  • the barrier 6 allows the image light emitted from some of the other subpixels to pass through the light-transmitting region 62 and propagate to the user's left eye.
  • the left visible region 51aL shown in FIG. 4 is an active area 51 that is visually recognized by the user's left eye when the image light transmitted through the light-transmitting region 62 of the barrier 6 reaches the user's left eye. This is the area above.
  • the left invisible area 51bL is an area that cannot be visually recognized by the user's left eye because the image light is blocked by the light blocking surface 61 of the barrier 6.
  • the left visible region 51aL includes half of the sub-pixel P1, all of the sub-pixels P2 to P6, and half of the sub-pixel P7.
  • the right visible region 51aR shown in FIG. This is the area on the active area 51 where the image is displayed.
  • the right invisible area 51bR is an area that cannot be visually recognized by the user's right eye because the image light is blocked by the light blocking surface 61 of the barrier 6.
  • the right visible region 51aR includes half of the sub-pixel P7, all of the sub-pixels P8 to P12, and half of the sub-pixel P1.
  • the left eye and right eye respectively view the image.
  • the left eye image and the right eye image are parallax images that have parallax with each other.
  • the left eye receives half of the left eye image displayed in subpixel P1, the entire left eye image displayed in subpixels P2 to P6, and the right eye image displayed in subpixel P7.
  • the right eye visually recognizes half of the right-eye image displayed on sub-pixel P7, the entire right-eye image displayed on sub-pixels P8 to P12, and half of the left-eye image displayed on sub-pixel P1.
  • the sub-pixels that display the left-eye image are labeled with the symbol "L”
  • the sub-pixels that display the right-eye image are labeled with the symbol "R".
  • the area of the left-eye image visually recognized by the user's left eye becomes the maximum, and the area of the right-eye image becomes the minimum.
  • the area of the right eye image that is visually recognized by the user's right eye is the largest, and the area of the left eye image is the smallest.
  • the phenomenon in which the user's left eye visually recognizes a right-eye image or the user's right eye visually recognizes a left-eye image is also referred to as crosstalk.
  • the user can view the three-dimensional image with reduced crosstalk.
  • the user located at the appropriate viewing distance d can be displayed in the subpixels included in the left visible region 51aL and the right visible region 51aR.
  • the image displayed on the panel 5 can be visually recognized as a three-dimensional image.
  • a left-eye image is displayed in sub-pixels, half or more of which are visible by the left eye
  • a right-eye image is displayed in sub-pixels, half or more of which are visible by the right eye.
  • the sub-pixels that display the left-eye image and the right-eye image are not limited to this, and the left visible area 51aL and the right visible area 51aR are arranged so that crosstalk is reduced depending on the design of the active area 51, barrier 6, etc.
  • the determination may be made as appropriate based on. For example, depending on the aperture ratio of the barrier 6, etc., a left eye image is displayed in subpixels that are visible at a predetermined percentage or more by the left eye, and a right eye image is displayed in subpixels that are visible at a predetermined percentage or more by the right eye. You can let me.
  • FIG. 6 shows an example of sub-pixels observed by the left and right eyes of the user located at suitable viewing positions.
  • the sub-pixel B crossed by the end line 62b of the transparent region 62 is shown shaded.
  • the active area 51 is separated into a left visible region 51aL, which is observed by the left eye, and a right visible region 51aR, which is observed by the right eye, with the end line 62b as a boundary.
  • the controller 7 needs to perform crosstalk reduction processing on the subpixel B to reduce crosstalk.
  • the number of sub-pixels B that need to be subjected to crosstalk reduction processing is at least p.
  • p is a natural number that satisfies the following equation (4). 1 ⁇ p ⁇ a+b ⁇ 1...(4)
  • the crosstalk reduction process may be a brightness reduction process that causes subpixel B to display a low brightness image.
  • the brightness reduction process may be a process of reducing the brightness of the subpixel to be processed to 60%, 50%, or 40% of the normal brightness.
  • the brightness reduction process may be a process of displaying a black image in the subpixel to be processed.
  • displaying a black image may be referred to as performing a black display.
  • the light-transmitting region 62 may have a width based on Hp. That is, the translucent region 62 may have a width equal to a natural number times Hp in the horizontal direction. This can prevent the user from perceiving moiré when the user moves in the horizontal direction.
  • the low-luminance image displayed on sub-pixel B may be a black image.
  • FIG. 7A shows an example of sub-pixels that are observed by the user's right eye located at the appropriate viewing position through the light-transmitting area 62.
  • the suitable viewing position may be, for example, an observation position where the distance between the user and the barrier 6 is the suitable viewing distance d, and the right eye observes the center of the right visible region 51aR in the parallax direction.
  • the barrier inclination angle ⁇ is set to 0° for simplicity.
  • a monocular image is composed of eight subpixels.
  • a black image for reducing crosstalk is displayed in the subpixel B that crosses the edge line 62b of the transparent region 62.
  • FIGS. 7A and 7B shows the right visible region 51aR observed by the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 7A.
  • the configurations of the monocular images are the same.
  • the light-transmitting area 62 has a width that is a natural number times Hp, as shown in FIGS. 7A and 7B, even when the user moves in the parallax direction, the user's left or right eye Since a black image corresponding to one subpixel is always observed within one transparent region 62, the area of the black image observed by the user does not change. This can prevent the user from perceiving moiré when the user moves in the parallax direction.
  • FIG. 8A shows an example of a left visible region and a right visible region when the user's viewing distance is the suitable viewing distance d.
  • the user since there is no binocular visible region 51aLR where the left visible region 51aL and right visible region 51aR overlap, the user cannot visually recognize the three-dimensional image with reduced crosstalk. can.
  • FIG. 8B shows an example of the left visible area and right visible area when the user's observation distance is longer than the suitable viewing distance d.
  • a binocular visible region 51aLR may occur in which a portion of the left visible region 51aL and a portion of the right visible region 51aR overlap.
  • the binocularly visible region 51aLR may occur at the central boundary between the left visible region 51aL and the right visible region 51aR, which are observed through one light-transmitting region 62.
  • FIG. 8C shows an example of a left visible region and a right visible region when the user's viewing distance is shorter than the suitable viewing distance d. In the case shown in FIG. 8C, a binocular visible region 51aLR may occur.
  • the binocular visible region 51aLR includes a left visible region 51aL observed through one light transmitting region 62, and a right visible region 51aR observed through a light transmitting region 62 adjacent to the one light transmitting region 62. It can occur on both ends of the boundary. Since the binocular visible region 51aLR that may occur when the distance between the barrier 6 and the user's left and right eyes differs from the appropriate viewing distance d causes crosstalk, the controller 7 adjusts the binocular visible region 51aLR. It is necessary to perform crosstalk reduction processing on the subpixels included in the image.
  • both eyes do not overlap with either the left visible region 51aL or the right visible region 51aR.
  • An invisible region 51bLR may occur.
  • the binocularly invisible region 51bLR can also be said to be a region where a part of the left invisible region 51bL and a part of the right invisible region 51bR overlap.
  • the left sub-pixel is included in the left visible region 51aL and is determined to display a left-eye image, and is included in the right visible region 51aR and should display a right-eye image.
  • the subpixel determined to be the left subpixel and the right subpixel will also be referred to as a third subpixel.
  • the third sub-pixel is also referred to as a third display area.
  • the number of third subpixels included in the subpixel group Pg can be calculated based on the suitable viewing distance d, the user's observation distance, and the number of subpixels constituting the monocular image. can.
  • the number of third sub-pixels may be simply written as t.
  • FIG. 8D shows an example of the left visible region and the right visible region when the user's viewing distance is the appropriate viewing distance d and the aperture ratio of the barrier 6 is greater than 50%.
  • the aperture ratio of the barrier 6 exceeds 50%, as shown in FIG. 8D, even if the distance between the barrier 6 and the user's left and right eyes is the appropriate viewing distance d, the binocular visible region 51aLR is It can occur. Therefore, the controller 7 needs to perform crosstalk reduction processing on the subpixels included in the binocular visible region 51aLR.
  • the aperture ratio of the barrier 6 is also referred to as a barrier aperture ratio.
  • the sub-pixel group Pg is composed of 16 sub-pixels P1 to P16 arranged continuously, one in the vertical direction (one row) and 16 in the horizontal direction (16 columns).
  • the controller 7 assigns a right-eye image or a left-eye image to each of the sub-pixels P1 to P16 based on the position of the user's eyes.
  • FIG. 9A shows an example of sub-pixels observed by the user's left and right eyes located at suitable viewing positions.
  • the suitable viewing position may be, for example, an observation position where the distance between the user and the barrier 6 is the suitable viewing distance d, and the right eye observes the center of the right visible region 51aR in the parallax direction.
  • right-eye images are consecutively assigned to sub-pixels P1 to P8, and left-eye images are consecutively assigned to sub-pixels P9 to P16. Therefore, the number n of subpixels constituting the monocular image is eight.
  • the right visible region 51aR includes a portion of sub-pixels P16 and P1, all of sub-pixels P2 to P7, and a portion of sub-pixels P8 and P9.
  • the left visible region 51aL includes a portion of sub-pixels P8 and P9, all of sub-pixels P10 to P15, and a portion of sub-pixels P16 and P1.
  • FIG. 9A shows a part of the right visible region 51aR and the left visible region 51aL as an excerpt, and shows the regions observed by the left eye and right eye through the light-transmitting region 62 with shading, and sub-pixels P1 to P16 are indicated by their numbers "1" to "16". These also apply to the following drawings, which illustrate subpixels observed by the user's left and right eyes. Below, the areas of sub-pixels P1 to P16 in active area 51 may be referred to as S1 to S16, respectively.
  • the image displayed at sub-pixel P9 is viewed by both eyes simultaneously.
  • the controller 7 may perform brightness reduction processing on the sub-pixel P9. This may reduce crosstalk.
  • Sub-pixel P9 is a sub-pixel viewed across one end of transparent region 62 by the right eye.
  • Sub-pixel P9 is a sub-pixel that is observed across one end of transparent region 62 by the left eye.
  • the controller 7 may perform the same brightness reduction process as the brightness reduction process applied to the subpixel P9 to the subpixel P1, which is displaced from the subpixel P9 by (n+m) (ie, 8) subpixels.
  • Sub-pixel P1 is the sub-pixel observed across the other end of transparent region 62 by the right eye.
  • Sub-pixel P1 is the sub-pixel observed across the other end of transparent region 62 by the left eye.
  • FIG. 9B shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction with respect to the barrier 6 from the suitable viewing position.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • crosstalk and moiré can be reduced by causing sub-pixels P1 and P9 to display a low-brightness image whose brightness is equally reduced.
  • sub-pixel P1 and sub-pixel P9 have equal areas observed by the right eye and equal areas observed by the left eye. The observation position in FIG.
  • 9B is an observation position corresponding to the head tracking boundary, and if the controller 7 determines that the user has further moved in the parallax direction from the observation position in FIG. 9B, the controller 7 may change the configuration of the parallax image. .
  • the controller 7 may assign the left-eye image to sub-pixel P1 and the right-eye image to sub-pixel P9. This allows the user to appropriately view the three-dimensional image.
  • half of the area of sub-pixel P1 and sub-pixel P9 causes crosstalk.
  • the controller 7 may determine that the influence of crosstalk is large with respect to the number n (8) of dots forming the monocular image. In this case, the luminance reduction process may be performed to display black.
  • FIG. 9C shows an example of sub-pixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the suitable viewing position.
  • FIG. 9C shows a case where the user's left eye and right eye move away from the barrier 6 along the depth direction.
  • a binocular visible area where a part of the left visible area 51aL and a part of the right visible area 51aR overlap 51aLR may occur at the central boundary between the left visible region 51aL and the right visible region 51aR, which are observed through one transparent region 62.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • the controller 7 causes the sub-pixel P8 to display a black image. This may reduce crosstalk.
  • Subpixel P8 is a subpixel viewed across one end of transparent region 62 by the right eye.
  • Sub-pixel P8 is a sub-pixel that is observed across one end of transparent region 62 by the left eye.
  • the controller 7 displays a black image at the sub-pixel P16, which is displaced from the sub-pixel P8 by (n+m) (ie, 8) sub-pixels. This can prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • FIG. 9D shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 9C.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • more than half of the area S8 of the sub-pixel P8 displaying the right eye image is observed by the right eye, and more than half of the area S8 is observed by the left eye. Since the sub-pixel P8 causes crosstalk to occur, the controller 7 causes the sub-pixel P8 to display a black image. This may reduce crosstalk.
  • the controller 7 causes a black image to be displayed at the sub-pixel P16, which is displaced from the sub-pixel P8 by (n+m) (ie, 8) sub-pixels.
  • Sub-pixel P8 is a sub-pixel that is observed across one end of transparent region 62 by the left eye.
  • Sub-pixel P16 is the sub-pixel observed across the other end of transparent region 62 by the left eye.
  • the controller 7 causes the sub-pixel P9 to display a black image. This may reduce crosstalk. Further, the controller 7 causes a black image to be displayed at the sub-pixel P1, which is displaced from the sub-pixel P9 by (n+m) sub-pixels. As a result, it is possible to suppress the difference between the brightness of the image light observed by the left eye and the brightness of the image light observed by the right eye, and moiré can be reduced.
  • Sub-pixel P9 is a sub-pixel viewed across one end of transparent region 62 by the right eye.
  • Sub-pixel P1 is the sub-pixel observed across the other end of transparent region 62 by the right eye.
  • the transition from the state in FIG. 9C to the state in FIG. 9D is due to movement in the parallax direction, and is continuously observed by the user. Therefore, from the state shown in FIG. 9C, black display may be performed on sub-pixels P8, P16, P9, and P1. As a result, the number of black displays does not change as the user moves, and screen flickering can be suppressed.
  • FIG. 9E shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 9D.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • sub-pixels P1 and P9 display low-luminance images whose luminances are equally reduced
  • sub-pixels P8 and P16 display low-luminance images whose luminances are equally reduced. Accordingly, crosstalk and moiré can be reduced.
  • FIG. 9E shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 9D.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • sub-pixels P1 and P9 display low-luminance images
  • sub-pixel P8, sub-pixel P16, and sub-pixel P10 have the same area observed by the left eye. Moreover, the sub-pixel P2, the sub-pixel P10, and the sub-pixel P8 have the same area observed by the right eye.
  • the observation position in FIG. 9E is an observation position corresponding to the head tracking boundary, and when the controller 7 determines that the left and right eyes of the user have further moved in the parallax direction from the observation position in FIG. 9E, the sub-pixel P8 , P16 may not display a black image, and the sub-pixels P2 and P10 may display a black image. This makes it possible to change the composition of the right-eye image and the composition of the left-eye image without changing screen brightness and crosstalk. A three-dimensional image can be appropriately viewed.
  • FIG. 9F shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the observation position in FIG. 9C.
  • FIG. 9F shows a case where the user's left eye and right eye move further away from the barrier 6 along the depth direction.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • the controller 7 causes the sub-pixel P9 to display a black image. This may reduce crosstalk. Further, the controller 7 causes a black image to be displayed at the sub-pixel P1, which is displaced from the sub-pixel P9 by (n+m) (ie, 8) sub-pixels. As a result, it is possible to suppress the difference between the brightness of the image light observed by the left eye and the brightness of the image light observed by the right eye, and moiré can be reduced.
  • Sub-pixel P9 is the sub-pixel observed by the right eye across one end of the transparent region 62
  • sub-pixel P1 is the sub-pixel observed by the right eye across the other end of the transparent region 62.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixel P7 to display a black image. This may reduce crosstalk. Further, the controller 7 causes the sub-pixel P15, which is displaced from the sub-pixel P7 by (n+m) sub-pixels, to display a black image. As a result, it is possible to suppress the difference between the brightness of the image light observed by the left eye and the brightness of the image light observed by the right eye, and moiré can be reduced.
  • Sub-pixel P7 is a sub-pixel observed by the left eye across one end of translucent region 62
  • sub-pixel P15 is a sub-pixel observed by the left eye across the other end of translucent region 62.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixel P8 to display a black image. This may reduce crosstalk. Further, the controller 7 may display a black image at the sub-pixel P16, which is displaced from the sub-pixel P8 by (n+m) sub-pixels.
  • the sub-pixel P8 has an area S8 observed by the right eye and an area S8 observed by the left eye, so even if a black image is displayed in the sub-pixel P8, no moiré occurs. It is unlikely to be the cause. Therefore, the controller 7 does not need to cause the sub-pixel P16 to display a black image.
  • FIGS. 10A, 10B, and 10C are diagrams illustrating the brightness reduction process that the controller 7 performs on the sub-pixels P1 to P16.
  • FIGS. 10A, 10B, and 10C subpixels that display a black image to reduce crosstalk and moiré are shown shaded.
  • FIGS. 10A, 10B, and 10C the left visible region 51aL and the right visible region 51aR are shown separately for ease of illustration.
  • the controller 7 controls the sub-pixel P9 observed across one end of the transparent area 62 by the right eye, and the sub-pixel P9 observed across one end of the transparent area 62 by the right eye.
  • a black image is displayed on the sub-pixel P1 that is observed across.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62. In other words, the number of sub-pixels that display a black image is the same on one end side and the other end side of the right visible region 51aR observed through one light-transmitting region 62 by the right eye.
  • the sub-pixel P1 is a sub-pixel displaced from the sub-pixel P9 by (n+m) (ie, 8) sub-pixels. Crosstalk and moiré can be reduced by applying the same brightness reduction process to sub-pixels P1 and P9.
  • Sub-pixel P9 is a sub-pixel that is observed across one end of transparent region 62 by the left eye.
  • Sub-pixel P1 is the sub-pixel observed across the other end of transparent region 62 by the left eye.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the left visible region 51aL, which is observed by the left eye through one light-transmitting region 62.
  • the images displayed on the sub-pixels P1 and P9 may be low-brightness images whose brightness is equally reduced.
  • the controller 7 adds k (one) black displays to the binocular visible region.
  • a black image is displayed on the sub-pixel P9 observed by the right eye across one end of the light-transmitting region 62, and the sub-pixel P1 observed across the other end of the light-transmitting region 62 by the right eye. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 adds k (one) black displays to the binocular visible region 51aLR for the left eye.
  • a black image is displayed on the sub-pixel P8 observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P16 observed across the other end of the light-transmitting region 62 by the left eye. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 adds k (2) black displays to the binocular visible region 51aLR.
  • a black image is displayed on the sub-pixel P9 observed by the right eye across one end of the light-transmitting region 62, and the sub-pixel P1 observed across the other end of the light-transmitting region 62 by the right eye. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 adds k (two) black displays to the binocular visible region 51aLR for the left eye.
  • a black image is displayed on the sub-pixel P7, which is observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P15, which is observed by the left eye across the other end of the light-transmitting region 62. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • binocular visible regions 51aLR exist at one end and the other end of the light-transmitting region 62.
  • the controller 7 controls at least (m+1) (that is, at least one) sub-pixels P1 included in the binocular visible region 51aLR on one end side of the light-transmitting region 62 and the binocular visible region 51aLR on the other end side of the light-transmitting region 62.
  • a black image is displayed on at least (m+1) sub-pixels P9 included in the visible region 51aLR. This may reduce crosstalk and moiré.
  • the controller 7 may increase the number of subpixels included in the binocularly visible region 51aLR at the center boundary for displaying a black image.
  • the controller 7 causes k subpixels included in the binocular visible region 51aLR at the central boundary to display a black image. It's fine. k may be a natural number greater than (m+1). This makes it possible to reduce crosstalk and moiré even when the user's left and right eyes move from the appropriate viewing position.
  • the barrier aperture ratio x is 56.25%.
  • the barrier inclination angle ⁇ , the arrangement of sub-pixels P1 to P16, and the assignment of right-eye images and left-eye images to sub-pixels P1 to P16 are the same as the arrangement and assignment shown in FIG. 9A.
  • the number of subpixels that need to be subjected to crosstalk reduction processing is at least one.
  • FIG. 11A shows an example of sub-pixels observed by the left and right eyes of the user located at suitable viewing positions.
  • the suitable viewing position may be, for example, an observation position where the distance between the user and the barrier 6 is the suitable viewing distance d, and the right eye observes the center of the right visible region 51aR in the parallax direction.
  • the barrier aperture ratio x exceeds 50%, a binocular visible region 51aLR may occur even if the distance between the barrier 6 and the user's left and right eyes is the suitable viewing distance d.
  • the controller 7 causes the sub-pixel P9 to display a black image. This may reduce crosstalk. Further, the controller 7 causes a black image to be displayed at the sub-pixel P16, which is displaced from the sub-pixel P9 by (n+m) (ie, 9) sub-pixels. As a result, it is possible to suppress the difference between the brightness of the image light observed by the left eye and the brightness of the image light observed by the right eye, and moiré can be reduced.
  • Sub-pixel P9 is the sub-pixel that is viewed by the right eye across one end of the transparent region
  • sub-pixel P16 is the sub-pixel that is viewed by the right eye across the other end of the transparent region.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixel P8 to display a black image. This may reduce crosstalk. Further, the controller 7 causes the sub-pixel P1, which is displaced from the sub-pixel P8 by (n+m) sub-pixels, to display a black image. As a result, it is possible to suppress the difference between the brightness of the image light observed by the left eye and the brightness of the image light observed by the right eye, and moiré can be reduced.
  • Sub-pixel P8 is the sub-pixel viewed across one end of the transparent region by the left eye.
  • Sub-pixel P1 is the sub-pixel observed across the other end of the transparent region by the left eye.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • FIG. 11B shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction from the observation position in FIG. 11A.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • crosstalk and moiré can be reduced by displaying a black image in sub-pixels P1, P8, P9, and P16.
  • sub-pixel P8 and sub-pixel P2 have equal areas observed by the left eye.
  • the controller 7 determines that the user's left and right eyes have moved further in the parallax direction from the observation position in FIG. good. In the case shown in FIG.
  • sub-pixel P16 and sub-pixel P10 have equal areas viewed by the right eye.
  • the observation position in FIG. 11B is an observation position corresponding to the head tracking boundary, and when the controller 7 determines that the user's left and right eyes have further moved in the parallax direction from the observation position in FIG. Instead of displaying a black image in sub-pixel P10, a black image may be displayed in sub-pixel P10.
  • FIG. 11C shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the suitable viewing position.
  • FIG. 11C shows a case where the user's left eye and right eye move away from the barrier 6 along the depth direction.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • the controller 7 causes the sub-pixels P7 and P9 to display a black image. This may reduce crosstalk. Further, the controller 7 causes a black image to be displayed at the sub-pixel P16, which is displaced from the sub-pixel P9 by (n+m) (namely, 9) sub-pixels.
  • Subpixel P16 is also a subpixel displaced by (n+m) subpixels from subpixel P7.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixel P8 to display a black image. This may reduce crosstalk.
  • the controller 7 may display a black image in the sub-pixels P1 and P15, which are displaced by (n+m) sub-pixels from the sub-pixel P8.
  • the same area of the sub-pixel P8 is observed by both eyes, so even if a black image is displayed on the sub-pixel P8, it is unlikely to cause moiré. Therefore, the controller 7 does not have to cause the sub-pixels P1 and P15 to display a black image. Thereby, the brightness of the three-dimensional image observed by the user can be improved.
  • FIG. 11D shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 11C.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • crosstalk and moiré can be reduced by causing sub-pixels P7, P9, and P16 to display a black image.
  • sub-pixel P10, sub-pixel P16, and sub-pixel P7 have the same area observed by the left eye. Furthermore, in the case shown in FIG.
  • the sub-pixel P1, the sub-pixel P10, and the sub-pixel P7 have the same area observed by the right eye.
  • the observation position in FIG. 11D is an observation position corresponding to the head tracking boundary, and when the controller 7 determines that the user's left and right eyes have further moved in the parallax direction from the observation position in FIG. 11D, the subpixel P7 , P16 may not display a black image, and the sub-pixels P1 and P10 may display a black image.
  • FIG. 11E shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the observation position in FIG. 11C.
  • FIG. 11E shows a case where the user's left eye and right eye further move away from the barrier 6 along the depth direction.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • the controller 7 causes the sub-pixel P9 to display a black image. This may reduce crosstalk. Further, the controller 7 causes a black image to be displayed at the sub-pixel P16, which is displaced from the sub-pixel P9 by (n+m) (ie, 9) sub-pixels. This may reduce moiré.
  • Subpixel P9 is a subpixel viewed across one end of transparent region 62 by the right eye.
  • Sub-pixel P16 is the sub-pixel that is observed across the other end of transparent region 62 by the right eye.
  • sub-pixel P6 causes crosstalk to occur, the controller 7 causes the sub-pixel P6 to display a black image. This may reduce crosstalk. Further, the controller 7 causes the sub-pixel P15, which is displaced from the sub-pixel P6 by (n+m) sub-pixels, to display a black image. This can reduce moiré.
  • Sub-pixel P6 is a sub-pixel that is observed across one end of transparent region 62 by the left eye.
  • Sub-pixel P15 is a sub-pixel that is observed across the other end of transparent region 62 by the left eye.
  • the controller 7 causes the sub-pixels P7 and P8 to display a black image. This may reduce crosstalk.
  • the controller 7 causes the sub-pixel P14, which is displaced by (n+m) sub-pixels from the sub-pixel P7, and the sub-pixel P1, which is displaced by (n+m) sub-pixels from the sub-pixel P8, to display a black image. It's okay.
  • the controller 7 does not have to cause the sub-pixels P1 and P14 to display a black image. Thereby, the brightness of the three-dimensional image observed by the user can be improved.
  • FIGS. 12A, 12B, and 12C are diagrams illustrating the brightness reduction process that the controller 7 performs on the sub-pixels P1 to P16.
  • subpixels that display a black image to reduce crosstalk and moiré are shown shaded.
  • FIGS. 12A, 12B, and 12C the left visible region 51aL and the right visible region 51aR are shown separately for ease of illustration.
  • the controller 7 controls the sub-pixel P9 observed across one end of the transparent area 62 by the right eye, and the sub-pixel P9 observed across one end of the transparent area 62 by the right eye.
  • a black image is displayed on the sub-pixel P16 observed across.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62. In other words, the number of sub-pixels that display a black image is the same on one end side and the other end side of the right visible region 51aR observed through one light-transmitting region 62 by the right eye.
  • Sub-pixel P16 is a sub-pixel displaced from sub-pixel P9 by (n+m) (ie, 9) sub-pixels. Crosstalk and moiré can be reduced by applying the same brightness reduction process to sub-pixels P9 and P16.
  • the controller 7 controls the sub-pixel P8 observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P8 observed by the left eye across the other end of the light-transmitting region 62.
  • a black image is displayed on the sub-pixel P1. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62. In other words, the number of sub-pixels displaying a black image is the same on one end side and the other end side of the left visible region 51aL observed through one light-transmitting region 62 by the left eye.
  • Subpixel P1 is a subpixel displaced by (n+m) subpixels from subpixel P8. Crosstalk and moiré can be reduced by applying the same brightness reduction process to sub-pixels P8 and P1.
  • the controller 7 controls the sub-pixel P9 observed across one end of the transparent region 62 by the right eye, and the sub-pixel P9 observed across one end of the transparent region 62 by the right eye.
  • a black image is displayed on the sub-pixel P16 that is observed across. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 controls the sub-pixel P7 observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P7 observed by the left eye across the other end of the light-transmitting region 62.
  • a black image is displayed on the sub-pixel P16. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixel P8 included in the binocular visible region 51aLR at the central boundary to display a low-luminance black image. This may reduce crosstalk.
  • the controller 7 may display a black image in sub-pixels P1 and P15 that are displaced by (n+m) sub-pixels from sub-pixel P8, or may not display a black image in sub-pixels P1 and P15.
  • the controller 7 controls the sub-pixel P9 observed across one end of the transparent region 62 by the right eye, and the sub-pixel P9 observed across one end of the transparent region 62 by the right eye.
  • a black image is displayed on the sub-pixel P16 that is observed across. This may reduce crosstalk and moiré.
  • the number of sub-pixels for displaying a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 controls the sub-pixel P6, which is observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P6, which is observed by the left eye across the other end of the light-transmitting region 62.
  • a black image is displayed on the sub-pixel P15. This may reduce crosstalk and moiré.
  • the number of sub-pixels for displaying a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixels P7 and P8 included in the binocular visible region 51aLR at the central boundary to display a black image. This may reduce crosstalk.
  • the controller 7 may display a black image in the sub-pixels P1 and P14, which are displaced by (n+m) sub-pixels from the sub-pixels P7 and P8, or may not display a black image.
  • binocular visible regions 51aLR exist at one end and the other end of the light-transmitting region 62.
  • the controller 7 controls at least (m+1) sub-pixels P16, P1 included in the binocular visible region 51aLR on one end side of the light-transmitting region 62, and at least two sub-pixels P16, P1 on the other end side of the light-transmitting region 62.
  • a black image is displayed on at least (m+1) sub-pixels P8 and P9 included in the binocular visible region 51aLR. This may reduce crosstalk and moiré.
  • the controller 7 may increase the number of subpixels included in the binocularly visible region 51aLR of the central boundary for displaying a black image.
  • the controller 7 causes k subpixels of the subpixels included in the binocular visible region 51aLR at the central boundary to display a black image. It's fine. k may be a natural number greater than (m+1). This makes it possible to reduce crosstalk and moiré even when the user's left and right eyes move from the appropriate viewing position.
  • the sub-pixel group Pg will be described as being composed of 16 sub-pixels P1 to P16, one in the vertical direction (one row) and 16 in the horizontal direction (16 columns), arranged continuously.
  • the arrangement of sub-pixels P1 to P16 and the assignment of right-eye images and left-eye images to sub-pixels P1 to P16 are the same as the arrangement and assignment shown in FIG. 9A.
  • FIGS. 13A, 13B, and 13C the controller 7
  • the brightness reduction process applied to pixels P1 to P16 will be explained.
  • subpixels that display a black image to reduce crosstalk and moiré are shown shaded.
  • the left visible region 51aL and the right visible region 51aR are shown separately for ease of illustration.
  • the controller 7 controls the sub-pixel P9 observed across one end of the transparent region 62 by the right eye, and the sub-pixel P9 observed across one end of the transparent region 62 by the right eye.
  • a black image is displayed on the sub-pixel P1 observed across.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62. In other words, the number of sub-pixels that display a black image is the same on one end side and the other end side of the right visible region 51aR observed by the right eye through one light-transmitting region 62.
  • the sub-pixel P1 is a sub-pixel displaced by (n+m) (ie, 8) sub-pixels from the sub-pixel P9. Crosstalk and moiré can be reduced by applying the same brightness reduction process to sub-pixels P1 and P9.
  • Sub-pixel P9 is a sub-pixel that is observed across one end of transparent region 62 by the left eye.
  • Sub-pixel P1 is the sub-pixel observed across the other end of transparent region 62 by the left eye.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the left visible region 51aL, which is observed by the left eye through one light-transmitting region 62.
  • the controller 7 adds k (one) black displays to the binocular visible region.
  • a black image is displayed on the sub-pixel P9 observed by the right eye across one end of the light-transmitting region 62, and the sub-pixel P1 observed across the other end of the light-transmitting region 62 by the right eye. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 adds k (one) black displays to the binocular visible region 51aLR for the left eye.
  • a black image is displayed on the sub-pixel P8 observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P16 observed across the other end of the light-transmitting region 62 by the left eye. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 adds k (2) black displays to the binocular visible region.
  • a black image is displayed on the sub-pixel P9 observed by the right eye across one end of the light-transmitting region 62, and the sub-pixel P1 observed across the other end of the light-transmitting region 62 by the right eye. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 adds k (two) black displays to the binocular visible region 51aLR for the left eye.
  • a black image is displayed on the sub-pixel P7, which is observed by the left eye across one end of the light-transmitting region 62, and the sub-pixel P15, which is observed by the left eye across the other end of the light-transmitting region 62. This may reduce crosstalk and moiré.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • binocular visible regions 51aLR exist at one end and the other end of the light-transmitting region 62.
  • the controller 7 controls at least (m+1) (that is, at least one) sub-pixels P1 included in the binocular visible region 51aLR on one end side of the light-transmitting region 62 and the binocular visible region 51aLR on the other end side of the light-transmitting region 62.
  • a black image is displayed on at least (m+1) sub-pixels P9 included in the visible region 51aLR. This may reduce crosstalk and moiré.
  • the controller 7 may increase the number of subpixels included in the binocularly visible region 51aLR of the central boundary for displaying a black image.
  • the controller 7 causes k subpixels of the subpixels included in the binocular visible region 51aLR at the central boundary to display a black image. It's fine. k may be a natural number greater than (m+1). This makes it possible to reduce crosstalk and moiré even when the user's left and right eyes move from the appropriate viewing position.
  • the sub-pixel group Pg will be explained as being composed of 16 sub-pixels P1 to P16 arranged continuously, two in the vertical direction (two rows) and eight in the horizontal direction (eight columns).
  • the sub-pixels P1 to P16 may be arranged such that the numbers decrease in the row direction and increase in the column direction.
  • the row direction refers to the direction from left to right in FIG. 12A.
  • the column direction refers to the direction from the top to the bottom in FIG. 12A.
  • the controller 7 assigns a right-eye image or a left-eye image to each of the sub-pixels P1 to P16 based on the position of the user's eyes.
  • the number n of subpixels constituting the monocular image is eight.
  • FIG. 14A shows an example of sub-pixels observed by the user's left and right eyes located at suitable viewing positions.
  • the suitable viewing position may be, for example, an observation position where the distance between the user and the barrier 6 is the suitable viewing distance d, and the right eye observes the center of the right visible region 51aR in the parallax direction.
  • right-eye images are consecutively assigned to sub-pixels P2 to P9
  • left-eye images are consecutively assigned to sub-pixels P10 to P16 and P1. Therefore, the number n of subpixels constituting the monocular image is eight.
  • the right visible region 51aR includes a portion of sub-pixels P1 and P2, all of sub-pixels P3 to P8, and a portion of sub-pixels P9 and P10.
  • the left visible region 51aL includes a portion of sub-pixels P9 and P10, all of sub-pixels P11 to P16, and a portion of sub-pixels P1 and P2. According to equation (4), the number of subpixels that need to be subjected to brightness reduction processing is at least two.
  • the controller 7 may perform a brightness reduction process on the sub-pixel P2. This may reduce crosstalk. More than half of the area S2 of the sub-pixel P2 is observed by the right eye, and less than half of the area S2 is observed by the left eye. Therefore, when the sub-pixel P2 is subjected to the brightness reduction process, the brightness of the image light reaching the right eye becomes lower than the brightness of the image light reaching the left eye. As a result, the brightness of the image light observed by the user is no longer uniform, and moiré may occur.
  • the controller 7 may cause the sub-pixel P2 and the sub-pixel P10, which is displaced from the sub-pixel P2 by (n+m) (ie, 8) sub-pixels, to display an image with the brightness equally reduced.
  • the controller 7 may cause the sub-pixel P2 and the sub-pixel P10 to display an image with the brightness reduced to 50%. This can prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • the area S2 observed by the right eye and the area S10 observed by the right eye add up to one subpixel.
  • the sum of the area S2 observed by the left eye and the area S10 observed by the left eye is one subpixel. Therefore, as described above, it is possible to prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • the controller 7 may cause the sub-pixel P1, which is observed simultaneously by both eyes, and the sub-pixel P9, which is displaced by (n+m) sub-pixels from the sub-pixel P1, to display an image whose brightness is equally reduced. . This may reduce crosstalk and moiré.
  • Sub-pixels P1 and P2 are sub-pixels that are observed by the right eye across one end of the transparent region 62, and sub-pixels P9 and P10 are observed by the right eye across the other end of the transparent region 62. It is sub-pixel.
  • the number of sub-pixels subjected to the brightness reduction process is the same on one end side and the other end side of the light-transmitting region 62 observed by the right eye.
  • Sub-pixels P1 and P2 are sub-pixels that are observed by the left eye across one end of the transparent region 62, and sub-pixels P9 and P10 are observed by the left eye across the other end of the transparent region 62. It is sub-pixel. Therefore, the number of sub-pixels subjected to the brightness reduction process is the same on one end side and the other end side of the light-transmitting region 62 observed by the left eye.
  • the barrier aperture ratio is 50% and the left-eye image and the right-eye image are each composed of n subpixels
  • the one subpixel Moiré can be reduced by applying the same brightness reduction process to subpixels displaced by (n+m) subpixels from .
  • the brightness reduction process may be a process of displaying a black image.
  • FIGS. 14B and 14C respectively show examples of subpixels observed by the left eye and right eye of the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 14A.
  • the parallax direction is the left-right direction in FIGS. 14B and 14C.
  • the moving direction of the user is different between FIG. 14B and FIG. 14C.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • the observation positions in FIGS. 14B and 14C are observation positions corresponding to the head tracking boundary, and when the controller 7 determines that the positions of the user's left and right eyes have further moved along the parallax direction, the controller 7 You can change the configuration.
  • the subpixel P1 displaying the left eye image is observed by both eyes, but more than half of the area S1 is observed by the left eye, and the area observed by the right eye.
  • S1 is half of the entire area S1.
  • the sub-pixel P10 displaying the left eye image is observed by both eyes, but more than half of the area S10 is observed by the left eye, and the area S10 observed by the right eye is half of the entire area S10.
  • the controller 7 may determine that the sub-pixels P1 and P10 have a small influence on the occurrence of crosstalk with respect to the number of dots (eight) constituting the left-eye image.
  • the controller 7 may not display a black image in the sub-pixels P1 and P10, but may display a left-eye image with the brightness reduced to 60%, 50%, 40%, or the like.
  • the subpixel P2 displaying the right eye image is observed by both eyes, but more than half of the area S2 is observed by the right eye, and the area S2 is observed by the left eye.
  • S2 is half of the entire area S2.
  • the sub-pixel P9 displaying the right eye image is observed by both eyes, and more than half of the area S9 is observed by the right eye, and the area S9 observed by the left eye is half of the entire area S9.
  • the controller 7 may determine that the sub-pixels P2 and P9 have a small influence on the occurrence of crosstalk with respect to the number of dots (eight) forming the right eye image.
  • the controller 7 may not display a black image in the sub-pixels P1 and P10, but may display a left-eye image with the brightness reduced to 60%, 50%, 40%, or the like.
  • the controller 7 reduces the brightness of the sub-pixels P1, P2, P9, P10 to 50%, the right eye observes 25% of the area S1 and 25% of the area S10, so the right eye
  • the crosstalk rate of the eyes that is, the ratio of the brightness of the left eye image observed by the right eye to the brightness of the right eye image observed by the right eye, is (0.5 ⁇ 0.5) / (6 + 2 ⁇ 0.5). This is approximately 3.6%. It can be said that the crosstalk rate of about 3.6% is at a level that does not pose a problem. Even in the case shown in FIG. 14B, the crosstalk rate for the right eye is about 3.6%, which can be said to be at a level that does not pose a problem.
  • the rate at which the brightness is reduced is not limited to 50%. An allowable upper limit value of the crosstalk rate may be determined, and the rate at which the brightness is reduced may be determined based on the determined upper limit value.
  • FIG. 14D shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the suitable viewing position.
  • FIG. 14D shows a case where the user's left eye and right eye further move away from the barrier 6 along the depth direction.
  • a binocular visible area where a part of the left visible area 51aL and a part of the right visible area 51aR overlap 51aLR may occur at the central boundary between the left visible region 51aL and the right visible region 51aR, which are observed through one light-transmitting region 62.
  • FIG. 14E shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction with respect to the barrier 6 from the observation position in FIG. 14D.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • the controller 7 causes the sub-pixel P9 to display a black image.
  • the same area of subpixel P9 is observed by both eyes, but in the case shown in FIG. 14E, the area observed by the right eye and the area observed by the left eye are different. Since the images are different from each other, moiré may occur due to black display.
  • the controller 7 also displays a black image on the sub-pixel P1, which is displaced from the sub-pixel P9 by (n+m) (ie, 8) sub-pixels. Thereby, moiré caused by displaying a black image can be suppressed.
  • the sub-pixel P1 is a sub-pixel observed across one end of the transparent region 62 by the right eye, that is, a sub-pixel to which brightness reduction processing is performed. If the subpixel to be processed is a subpixel to which a luminance reduction process is performed and a subpixel to display a black image, the controller 7 may cause the subpixel to be processed to display a black image. This can reduce crosstalk and moiré.
  • controller 7 may perform brightness reduction processing on sub-pixel P10. Less than half of the area S10 of sub-pixel P10 is observed by the right eye, and more than half of the area S10 is observed by the left eye. Since the sub-pixel P10 is mainly observed by the left eye, when a low-luminance image is displayed on the sub-pixel P10, the luminance of the image light reaching the left eye decreases.
  • the controller 7 provides a low-luminance image with the luminance equally reduced to a sub-pixel P2 observed across one end of the light-transmitting region 62 and a sub-pixel P10 observed across the other end of the light-transmitting region 62. may be displayed. This can prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • the area S10 of sub-pixel P10 observed by the right eye and the area S2 of sub-pixel P2 observed by the right eye add up to one sub-pixel.
  • the sum of the area S10 of the sub-pixel P10 observed by the left eye and the area S2 of the sub-pixel P2 observed by the left eye is one sub-pixel. Therefore, the brightness reduction process for the sub-pixels P2 and P10 is a brightness reduction process for one sub-pixel for both eyes, so that the uniformity of brightness is maintained.
  • controller 7 may perform brightness reduction processing on sub-pixel P8. More than half of the area S8 of the sub-pixel P8 is observed by the right eye, and less than half of the area S8 is observed by the left eye. Since the sub-pixel P8 is mainly observed by the right eye, when a low-luminance image is displayed on the sub-pixel P8, the luminance of the image light reaching the right eye decreases.
  • the controller 7 provides a low-luminance image with the luminance equally reduced to a sub-pixel P8 observed across one end of the light-transmitting region 62 and a sub-pixel P16 observed across the other end of the light-transmitting region 62. may be displayed. This can prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • the brightness reduction process for the sub-pixels P8 and P16 is a brightness reduction process for one sub-pixel for both eyes, so that the uniformity of brightness is maintained.
  • FIG. 14F shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the observation position in FIG. 14D.
  • FIG. 14F shows a case where the user's left eye and right eye move away from the barrier 6 along the depth direction.
  • FIG. 14G shows an example of subpixels observed by the left and right eyes of the user who has moved along the parallax direction from the observation position shown in FIG. 14F.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • the controller 7 causes the sub-pixels P8 and P9 to display a black image. This may reduce crosstalk. For the two sub-pixels, sub-pixel P8 and sub-pixel P9, the area observed by the right eye and the area observed by the left eye are different, so moiré due to black display may occur.
  • the controller 7 causes the sub-pixel P16 to be displaced from the sub-pixel P8 by (n+m) sub-pixels (that is, 8), and the sub-pixel P1 to be displaced by (n+m) sub-pixels from the sub-pixel P9. Display a black image. This can reduce moiré.
  • controller 7 may perform brightness reduction processing on sub-pixel P7. More than half of the area S7 of sub-pixel P7 is observed by the right eye, and less than half of the area S7 is observed by the left eye. Since the sub-pixel P7 is mainly observed by the right eye, when a low-luminance image is displayed on the sub-pixel P7, the luminance of the image light reaching the right eye decreases.
  • the controller 7 provides a low-luminance image with the luminance equally reduced to a sub-pixel P7 observed across one end of the light-transmitting region 62 and a sub-pixel P15 observed across the other end of the light-transmitting region 62. may be displayed. This can prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • the brightness reduction process for the sub-pixels P7 and P15 is a brightness reduction process for one sub-pixel for both eyes, so that the uniformity of brightness is maintained.
  • controller 7 may perform brightness reduction processing on sub-pixel P10. Less than half of the area S10 of the sub-pixel P10 is observed by the right eye, and more than half of the area S10 is observed by the left eye. Since the sub-pixel P10 is mainly observed by the left eye, when a low-luminance image is displayed on the sub-pixel P10, the luminance of the image light reaching the left eye decreases.
  • the controller 7 generates a low-luminance image in which the luminance is equally reduced to a sub-pixel P10 observed across one end of the light-transmitting region 62 and a sub-pixel P2 observed across the other end of the light-transmitting region 62. may be displayed. This can prevent the brightness of the image light observed by the left eye from being different from the brightness of the image light observed by the right eye. Therefore, moiré can be reduced.
  • the area S10 of the sub-pixel P10 observed by the right eye and the area S2 of the sub-pixel P2 observed by the right eye add up to one sub-pixel.
  • the sum of the area S10 of the sub-pixel P10 observed by the left eye and the area S2 of the sub-pixel P2 observed by the left eye is one sub-pixel. Therefore, the brightness reduction process for the sub-pixels P2 and P10 is a brightness reduction process for one sub-pixel for both eyes, so that the uniformity of brightness is maintained.
  • FIGS. 15A, 15B, and 15C are diagrams illustrating the brightness reduction process that the controller 7 performs on the sub-pixels P1 to P16.
  • FIGS. 15A, 15B, and 15C subpixels that display a black image are shown dotted and shaded.
  • subpixels to which luminance reduction processing is performed are indicated by diagonal hatching. Furthermore, in FIGS. 15A, 15B, and 15C, the left visible region 51aL and the right visible region 51aR are shown separately for ease of illustration.
  • the controller 7 controls the sub-pixels P9 and P10 observed across one end of the transparent area 62 by the right eye, and the other sub-pixels P9 and P10 observed by the right eye across one end of the transparent area 62.
  • Sub-pixels P1 and P2 observed across the edge are caused to display a low-brightness image whose brightness is equally reduced.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the number of sub-pixels displaying the low-luminance image is the same on one end side and the other end side of the right visible region 51aR observed by the right eye through one light-transmitting region 62.
  • the sub-pixel P1 is a sub-pixel displaced from the sub-pixel P9 by (n+m) (ie, 8) sub-pixels.
  • Sub-pixel P2 is a sub-pixel displaced by (n+m) (ie, 8) sub-pixels from sub-pixel P10.
  • Crosstalk and moire can be reduced by subjecting sub-pixels P1, P2, P9, and P10 to the same brightness reduction process.
  • Sub-pixels P9 and P10 are sub-pixels that are observed across one end of the transparent region 62 by the left eye.
  • Sub-pixels P1 and P2 are sub-pixels that are observed across the other end of the transparent region 62 by the left eye. It can be said that the number of sub-pixels displaying the low-luminance image is the same on one end side and the other end side of the left visible region 51aL, which is observed by the left eye through one light-transmitting region 62.
  • the controller 7 controls the sub-pixels P9 and P10 observed across one end of the light-transmitting region 62 by the right eye, and the other sub-pixels P9 and P10 observed by the right eye across one end of the light-transmitting region 62.
  • Sub-pixels P1 and P2 observed across the edge are caused to display a low-brightness image whose brightness is equally reduced. This may reduce crosstalk and moiré.
  • Sub-pixel P1 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P9
  • sub-pixel P2 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P10.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 controls sub-pixels P8 and P9 that are observed across one end of the light-transmitting region 62 by the left eye, and sub-pixels P8 and P9 that are observed across the other end of the light-transmitting region 62 by the left eye.
  • the sub-pixels P16 and P1 display a low-luminance image whose luminance is equally reduced. This may reduce crosstalk and moiré.
  • Sub-pixel P16 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P8, and sub-pixel P1 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P9.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixel P9, of which half or more of the area is observed by the right eye and half or more of the area is observed by the left eye, to display a black image. Further, the controller 7 also causes the sub-pixel P1, which is displaced from the sub-pixel P9 by (n+m) sub-pixels, to display a black image.
  • the controller 7 controls the sub-pixels P9 and P10 observed across one end of the transparent region 62 by the right eye, and the other sub-pixels P9 and P10 observed by the right eye across one end of the transparent region 62.
  • Sub-pixels P1 and P2 observed across the edge are caused to display a low-brightness image whose brightness is equally reduced. This may reduce crosstalk and moiré.
  • Sub-pixel P1 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P9
  • sub-pixel P2 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P10.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 controls sub-pixels P7 and P8 that are observed across one end of the light-transmitting region 62 by the left eye, and sub-pixels P7 and P8 that are observed across the other end of the light-transmitting region 62 by the left eye.
  • the sub-pixels P15 and P16 display a low-luminance image whose luminance is equally reduced. This may reduce crosstalk and moiré.
  • Sub-pixel P15 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P7
  • sub-pixel P16 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P8.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes the sub-pixels P8 and P9, of which half or more of the area is observed by the right eye and half or more of the area is observed by the left eye, to display a black image.
  • the controller 7 also causes the sub-pixels P16 and P1, which are displaced by (n+m) sub-pixels from the sub-pixels P8 and P9, to display a black image.
  • the controller 7 may increase the number of subpixels included in the binocularly visible region 51aLR at the center boundary for displaying a black image.
  • the controller 7 causes k subpixels included in the binocular visible region 51aLR at the central boundary to display a black image. It's fine. k may be a natural number greater than (m+1). This makes it possible to reduce crosstalk and moiré even when the user's left and right eyes move from the appropriate viewing position.
  • the barrier aperture ratio x is 56.25%.
  • the arrangement of sub-pixels P1 to P16 is the same as when the barrier aperture ratio x is 50%.
  • the left-eye image or right-eye image is assigned to the sub-pixels P1 to P16 in the same way as when the barrier aperture ratio x is 50%.
  • the number of subpixels that need to be subjected to brightness reduction processing is at least two.
  • FIG. 16A shows an example of subpixels observed by the user's left and right eyes located at suitable viewing positions.
  • more than half of the area S1 of the sub-pixel P1 is observed by the right eye, and more than half of the area S1 is observed by the left eye.
  • More than half of the area S9 of the sub-pixel P9 is observed by the right eye, and more than half of the area S9 is observed by the left eye.
  • Sub-pixels P1 and P9 cause crosstalk to occur.
  • the controller 7 causes the sub-pixels P1 and P9 to display a black image. This may reduce crosstalk.
  • the controller 7 causes the sub-pixels P8 and P10, which are displaced from the sub-pixel P1 by (n+m) (ie, 9) sub-pixels, to display a black image. Further, the controller 7 causes the sub-pixels P2 and P16, which are displaced from the sub-pixel P9 by (n+m) sub-pixels, to display a black image. This may reduce moiré.
  • Sub-pixels P9 and P10 are sub-pixels that are observed by the right eye across one end of the transparent region 62, and sub-pixels P16 and P1 are observed by the right eye across the other end of the transparent region 62. It is subpixel.
  • Sub-pixels P1 and P2 are sub-pixels that are observed by the left eye across one end of the transparent region 62, and sub-pixels P8 and P9 are observed by the left eye across the other end of the transparent region 62. It is subpixel.
  • FIG. 16B shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction from the observation position in FIG. 16A.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • crosstalk and moiré can be reduced by displaying a black image in sub-pixels P16, P1, P2, P8, P9, and P10.
  • sub-pixel P3 and sub-pixel P8 have equal areas observed by the left eye. Depending on the right eye, the entire area of both is observed.
  • 16B is an observation position corresponding to the head tracking boundary, and when the controller 7 determines that the user's left and right eyes have further moved in the parallax direction from the observation position in FIG. 16B, the sub-pixel P8 Instead of displaying a black image in sub-pixel P3, a black image may be displayed in sub-pixel P3.
  • sub-pixel P16 and sub-pixel P11 have equal areas observed by the right eye. Depending on the left eye, the entire area of both is observed.
  • the controller 7 does not display a black image in the sub-pixel P16, but displays a black image in the sub-pixel P11. good. Through the above processing, it is possible to shift the configuration of the right eye image and the configuration of the left eye image by one subpixel without changing the brightness.
  • FIG. 16C shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the observation position in FIG. 16A.
  • FIG. 16C shows a case where the user's left eye and right eye move in a direction approaching the barrier 6 along the depth direction.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • the number of subpixels included in the binocular visible region 51aLR where a part of the left visible region 51aL and a part of the right visible region 51aR overlap is increased.
  • Sub-pixels P16 and P1 cause crosstalk to occur.
  • the controller 7 causes the sub-pixels P16 and P1 to display a black image. This may reduce crosstalk.
  • the controller 7 controls subpixel P9, which is displaced by (n+m) (i.e., 9) subpixels from subpixel P16, and subpixel P9, which is displaced by (n+m) (i.e., 9) subpixels from P9. Display a black image on P2. Further, the controller 7 applies a black image to a sub-pixel P8, which is displaced by (n+m) sub-pixels from the sub-pixel P1, and a sub-pixel P15, which is displaced by (n+m) (i.e., 9) sub-pixels from P8. Display. This may reduce moiré.
  • Sub-pixels P8 and P9 are sub-pixels that are observed by the right eye across one end of the transparent region 62, and sub-pixels P15 and P16 are observed by the right eye across the other end of the transparent region 62. It is subpixel.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • Sub-pixels P1 and P2 are sub-pixels that are observed by the left eye across one end of the transparent region 62, and sub-pixels P8 and P9 are observed by the left eye across the other end of the transparent region 62. It is subpixel.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • FIG. 16D shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction from the observation position in FIG. 16C.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • crosstalk and moiré can be reduced by displaying a black image in sub-pixels P15, P16, P1, P2, P8, and P9.
  • sub-pixel P3 and sub-pixel P8 have equal areas observed by the left eye. Depending on the right eye, the entire area of both is observed.
  • 16D is an observation position corresponding to the head tracking boundary, and when the controller 7 determines that the user's left and right eyes have further moved in the parallax direction from the observation position in FIG. 16D, the sub-pixel P8 Instead of displaying a black image in sub-pixel P3, a black image may be displayed in sub-pixel P3.
  • sub-pixel P15 and sub-pixel P10 have equal areas viewed by the right eye. Depending on the left eye, the entire area of both is observed.
  • the controller 7 determines that the user's left and right eyes have moved further in the parallax direction from the observation position in FIG. good.
  • FIG. 16E shows an example of subpixels observed by the left and right eyes of the user who has moved in the depth direction with respect to the barrier 6 from the observation position in FIG. 16C.
  • FIG. 16E shows a case where the user's left eye and right eye move in a direction approaching the barrier 6 along the depth direction.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at the appropriate viewing position.
  • the number of subpixels included in the binocular visible region 51aLR where a part of the left visible region 51aL and a part of the right visible region 51aR overlap is increased.
  • Sub-pixels P15, P16, and P1 cause crosstalk to occur.
  • the controller 7 causes the sub-pixels P15, P16, and P1 to display a black image. This may reduce crosstalk.
  • the controller 7 displays a black image at the sub-pixel P8, which is displaced from the sub-pixel P15 by (n+m) (ie, 9) sub-pixels. This may reduce moiré.
  • Sub-pixel P8 is a sub-pixel that is displaced by (n+m) (ie, 9) sub-pixels from sub-pixel P1.
  • the controller 7 causes the sub-pixel P14 and the sub-pixel P7, which is displaced by (n+m) sub-pixels from the sub-pixel P14, to display a low-luminance image with the luminance equally reduced.
  • the controller 7 causes the sub-pixel P2 and the sub-pixel P9, which is displaced by (n+m) sub-pixels from the sub-pixel P2, to display a low-luminance image in which the luminance is equally reduced. This may reduce crosstalk and moiré.
  • FIG. 16F shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction from the observation position in FIG. 16E.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • sub-pixels P15, P16, P1, and P8 display a black image
  • sub-pixels P14, P2, P7, and P9 display low-luminance images whose luminance is equally reduced. Accordingly, crosstalk and moiré can be reduced.
  • FIG. 16F shows an example of subpixels observed by the left and right eyes of the user who has moved in the parallax direction from the observation position in FIG. 16E.
  • the configuration of the parallax image displayed in the active area 51 is the same as when the user's left eye and right eye are located at suitable viewing positions.
  • sub-pixels P15, P16, P1, and P8 display a black image
  • sub-pixel P14, sub-pixel P3, and sub-pixel P10 have the same area observed by the left eye.
  • the observation position in FIG. 16F is an observation position corresponding to the head tracking boundary, and when the controller 7 determines that the user's left and right eyes have further moved in the parallax direction from the observation position in FIG.
  • the low-luminance image may not be displayed in the sub-pixel P3 and the sub-pixel P10 displaced from the sub-pixel P3 by (n+m) sub-pixels.
  • the sub-pixel P15, the sub-pixel P2, and the sub-pixel P9 have the same area observed by the left eye.
  • a black image may not be displayed on the sub-pixel P15, but a black image may be displayed on the sub-pixel P2 and the sub-pixel P9.
  • sub-pixel P7, sub-pixel P14, and sub-pixel P3 have the same area observed by the right eye. If the controller 7 determines that the user's left and right eyes have moved further in the parallax direction from the observation position in FIG. may be displayed. Further, the sub-pixel P8, the sub-pixel P15, and the sub-pixel P2 have the same area observed by the right eye. The sub-pixels P8 and P15 may not display a black image, but the sub-pixel P2 may display a black image. If the above-described processing is performed on the low-luminance image and the black image, it becomes possible to shift the configuration of the right-eye image and the configuration of the left-eye image by one subpixel without changing the luminance.
  • FIGS. 17A, 17B, and 17C are diagrams illustrating the brightness reduction process that the controller 7 performs on the sub-pixels P1 to P16.
  • subpixels that display a black image are shown dotted and shaded.
  • subpixels to which luminance reduction processing is performed are indicated by diagonal hatching.
  • the left visible region 51aL and the right visible region 51aR are shown separately for ease of illustration.
  • the controller 7 performs m (one) black displays in the binocular visible region at both ends of the barrier opening.
  • the subpixels for which black display is performed are subpixels P1 and P9.
  • the brightness is set to be equal to the sub-pixels P9 and P10 observed by the right eye across one end of the light-transmitting region 62, and the sub-pixels P16 and P1 observed by the right eye across the other end of the light-transmitting region 62. Displays a black image with a reduced black color.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • Sub-pixel P16 is a sub-pixel displaced from sub-pixel P9 by (n+m) (ie, 9) sub-pixels.
  • the sub-pixel P1 is a sub-pixel displaced by (n+m) (ie, 8) sub-pixels from the sub-pixel P10.
  • Crosstalk and moiré can be reduced by giving the same black display to sub-pixels P16, P1, P9, and P10.
  • the controller 7 controls sub-pixels P8 and P9 observed by the left eye across one end of the light-transmitting region 62, and sub-pixels P1 and P2 observed by the left eye across the other end of the light-transmitting region 62.
  • Display a black image The number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62. In other words, the number of sub-pixels that display a black image is the same on one end side and the other end side of the left visible region 51aL observed by the left eye through one light-transmitting region 62.
  • the sub-pixel P1 is a sub-pixel displaced by (n+m) (ie, 9) sub-pixels from the sub-pixel P8.
  • Subpixel P2 is a subpixel displaced by (n+m) subpixels from subpixel P9.
  • Crosstalk and moiré can be reduced by providing the same black display to sub-pixels P1, P2, P8, and P9.
  • the controller 7 controls sub-pixels P8 and P9 that are observed across one end of the light-transmitting region 62 by the right eye, and sub-pixels P8 and P9 that are observed across the other end of the light-transmitting region 62 by the right eye.
  • a low-luminance image is displayed on sub-pixels P15 and P16. This may reduce crosstalk and moiré.
  • Sub-pixel P15 is a sub-pixel displaced from sub-pixel P8 by (n+m) (that is, 9) sub-pixels
  • sub-pixel P16 is displaced from sub-pixel P9 by (n+m) sub-pixels. This is the sub-pixel.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 controls sub-pixels P1 and P2 that are observed across one end of the light-transmitting region 62 by the left eye and across the other end of the light-transmitting region 62 by the right eye.
  • a low-luminance image is displayed on the sub-pixels P8 and P9. This may reduce crosstalk and moiré.
  • Sub-pixel P8 is a sub-pixel displaced from sub-pixel P1 by (n+m) (that is, 9) sub-pixels
  • sub-pixel P9 is displaced from sub-pixel P2 by (n+m) sub-pixels. This is the sub-pixel.
  • the number of sub-pixels that display a black image is the same on one end side and the other end side of the light-transmitting area 62.
  • sub-pixels P16 and P1 are pixels observed by both eyes, a black display is performed, so the sub-pixels P16 and P1 are displaced by (n+m) sub-pixels from the sub-pixel P16 in the right eye.
  • sub-pixel P2 which is displaced by (n+m) sub-pixels from sub-pixel P9 in the left eye, becomes black
  • sub-pixel P8, which is displaced by (n+m) sub-pixels from P1 in the left eye
  • sub-pixel P15 which is displaced by (n+m) sub-pixels from sub-pixel P8, displays black.
  • the controller 7 performs k (3) black displays in the binocular visible region at both ends of the barrier opening.
  • the subpixels for which black display is performed are subpixels P15, P16, and P1.
  • Equal brightness is applied to sub-pixels P7 and P8 that are observed by the right eye across one end of the light-transmitting region 62, and to sub-pixels P14 and P15 that are observed by the right eye across the other end of the light-transmitting region 62. Display a reduced-brightness image. This may reduce crosstalk and moiré.
  • Sub-pixel P14 is a sub-pixel displaced from sub-pixel P7 by (n+m) (that is, 9) sub-pixels, and sub-pixel P15 is displaced from sub-pixel P8 by (n+m) sub-pixels. This is the sub-pixel.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 controls sub-pixels P1 and P2 that are observed across one end of the light-transmitting region 62 by the left eye, and sub-pixels P1 and P2 that are observed across the other end of the light-transmitting region 62 by the left eye.
  • the sub-pixels P8 and P9 are caused to display a low-luminance image whose luminance is equally reduced. This may reduce crosstalk and moiré.
  • Sub-pixel P8 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P1
  • sub-pixel P9 is a sub-pixel displaced by (n+m) sub-pixels from sub-pixel P2.
  • the number of sub-pixels that display a low-luminance image is the same on one end side and the other end side of the light-transmitting area 62.
  • the controller 7 causes sub-pixels P15, P16, and P1, of which half or more of the area is observed by the right eye and half or more of the area by the left eye, to display a black image.
  • the controller 7 also applies black to the sub-pixel P8, which is displaced by (n+m) sub-pixels from the sub-pixel P15 in the right eye, and by (n+m) sub-pixels from the sub-pixel P1 in the left eye. Display the image. This may reduce crosstalk and moiré.
  • binocular visible regions 51aLR exist at one end and the other end of the light-transmitting region 62.
  • the controller 7 controls at least m (i.e., at least one) sub-pixels P1 included in the binocularly visible region 51aLR on one end side of the translucent region 62 and the binocularly visible region on the other end side of the translucent region 62.
  • a black image is displayed on at least m sub-pixels P9 included in 51aLR. This may reduce crosstalk and moiré.
  • the controller 7 may increase the number of subpixels included in the binocularly visible region 51aLR at the center boundary for displaying a black image.
  • the controller 7 causes k subpixels included in the binocular visible region 51aLR at the central boundary to display a black image. It's fine. k may be a natural number greater than (m+1). This makes it possible to reduce crosstalk and moiré even when the user's left and right eyes move from the appropriate viewing position.
  • the controller 7 may cause the subpixel to display a black image.
  • sub-pixels P15, P8, and P1 that display a black image are also sub-pixels that display a low-luminance image.
  • the controller 7 determines a left visible region 51aL and a right visible region 51aR within the active area 51 of the display panel 5 based on the position of at least one of the user's left eye and right eye. For example, the controller 7 may determine, based on the position of the user's left eye, that the user's right eye is located at a position horizontally moved by a predetermined interocular distance E from the position of the left eye. The controller may determine the left visible area 51aL and the right visible area 51aR so that the image light that has passed through each light-transmitting area 62 reaches the left and right eyes of the user.
  • both the left visible region 51aL and the right visible region 51aR in one transparent region 62 have a horizontal length of n subpixels. Therefore, as shown in FIG. 1, the left visible region 51aL and the right visible region 51aR do not overlap and are arranged alternately in the horizontal direction on the display surface of the display panel 5.
  • the controller 7 determines the subpixel included in the left visible region 51aL to be the left subpixel.
  • the left sub-pixel is, for example, a sub-pixel that is included in the left visible region 51aL at a predetermined ratio or more.
  • the left sub-pixel is also referred to as a first sub-pixel or a first display area.
  • the controller 7 determines that the subpixel included in the right visible region 51aR is the right subpixel.
  • the right sub-pixel is, for example, a sub-pixel that is included in the right visible region 51aR at a predetermined ratio or more.
  • the left sub-pixel is also referred to as a second sub-pixel or a second display area. As shown in FIG. 1, the left sub-pixels and the right sub-pixels do not overlap and are arranged alternately in the horizontal direction on the display surface of the display panel 5.
  • FIG. 18 is a diagram showing sub-pixels that are visible from the user's eyes located at the suitable viewing distance d by image light that has passed through one light-transmitting region 62a.
  • the sub-pixel group Pg includes 12 sub-pixels P1 to P12 consecutively arranged in the horizontal direction.
  • FIG. 18 shows a viewing area 70 in which a user's right eye or left eye located at an appropriate viewing distance d from the barrier 6 can view a predetermined sub-pixel. In one visible area 70, six sub-pixels that are continuous in the horizontal direction are visible.
  • the range that can be viewed by the user's left and right eyes through the light-transmitting area 62a is represented by a broken line.
  • the user's left eye when the user's left eye is at position L1 included in the viewing area 70A, the user's left eye views the sub-pixels P1 to P6 through the light-transmitting area 62a.
  • the subpixel that is viewed by the user's left eye also changes.
  • the user's left eye is at position L2 included in viewing area 70B, the user's left eye views sub-pixels P2 to P7 through transparent area 62a. There is a difference of one subpixel between subpixels that are visually recognized by the user's eyes in adjacent viewing areas 70 .
  • the three-dimensional display system 100 among the 2 ⁇ n sub-pixels lined up in the horizontal direction of the sub-pixel group Pg, different n sub-pixels are located at the appropriate viewing distance d for the user's left eye and The barrier pitch Bp and the gap g are defined so that they can be visually recognized with the right eye. That is, the three-dimensional display system 100 is configured such that the sub-pixel regions visible by the left and right eyes of the user located at the suitable viewing distance d differ by n sub-pixels. Therefore, in FIG.
  • the controller 7 sets the sub-pixels P1 to P6 as left sub-pixels, and displays a left-eye image that is visually recognized by the user's left eye.
  • the controller 7 sets the sub-pixels P7 to P12 as right sub-pixels, and displays a right-eye image that is viewed by the user's right eye.
  • the interocular distance E which is the distance between the user's left eye and right eye, corresponds to the distance between n viewing areas 70. That is, the width of one visible area 70 is E/n.
  • the controller 7 may change the subpixel for displaying the right eye image or the left eye image according to the position of the user's eyes acquired by the acquisition unit 3. For example, assume that the user moves horizontally at an appropriate viewing distance d, and the user's left eye moves from position L1 to position L2. At this time, the controller 7 determines, for example, based on the position of the user's left eye, that the user's left eye is located in the viewing area 70B where the sub-pixels P2 to P7 are viewed. The controller 7 determines that the right eye, which is separated from the left eye by the interocular distance E, is located in the viewing area 70D where the sub-pixels P8 to P12 and P1 are viewed. The controller 7 sets sub-pixels P2 to P7 as left sub-pixels, and sets sub-pixels P8 to P12 and P1 as right sub-pixels. This allows the user to view the three-dimensional image with reduced crosstalk.
  • the third sub-pixel is also referred to as a third display area.
  • the controller 7 performs control to reduce crosstalk that occurs when a user located at the viewing distance d1 views the three-dimensional table image.
  • the controller 7 determines the third sub-pixel, which is the left sub-pixel and the right sub-pixel, based on the user's viewing distance.
  • Position L8-2 and position R8-2 are positions that are distant from the barrier 6 by an appropriate viewing distance d and are moved further away from the barrier 6 along the depth direction than positions L8-1 and R8-1. .
  • the image light emitted from the display panel 5 and passing through the light-transmitting area 62a travels along the optical path 71A and the optical path 71B, and reaches the left eye at position L8-2 and the right eye at position R8-2. reach each.
  • the optical path 71A passes through a position L8-1' included in the viewing area 70B at the suitable viewing distance d.
  • the visible area 70B corresponds to an area where the sub-pixels P2 to P7 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the controller 7 can specify the subpixel that is visible to the left eye by calculating the visibility area 70 where the optical path 71A intersects.
  • the left eye at position L8-2 can visually recognize sub-pixels P2 to P7.
  • the optical path 71B passes through a position R8-1 included in the viewing area 70C at the suitable viewing distance d.
  • the visible area 70C corresponds to an area where the sub-pixels P7 to P12 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the right eye located at position R8-2 can visually recognize sub-pixels P7 to P12.
  • the left eye at position L8-2 and the right eye at position R8-2 both view subpixel P7.
  • sub-pixel P7 is shown shaded.
  • the sub-pixel P7 is a sub-pixel located at the center-side boundary between the left sub-pixel and the right sub-pixel that is visible from one light-transmitting region 62 among the boundaries between the left sub-pixel and the right sub-pixel.
  • the ratio between the observation distance Y1 and the suitable viewing distance d from the barrier 6 corresponds to the ratio between the distances between the positions L8-2 and R8-2 and the distances between the positions L8-1' and R8-1.
  • the image viewed by the left and right eyes of the user who is separated by interocular distance E is the width of one viewing area 70 from interocular distance E, that is, E/n, at suitable viewing distance d. It can be considered that this corresponds to the image that is viewed by the user's shortened left and right eyes.
  • Position L9-2 and position R9-2 are positions that are moved away from barrier 6 along the depth direction from position L9-1 and position R9-1, which are separated by suitable viewing distance d from barrier 6. .
  • the observation distance Y2 is a distance larger than the observation distance Y1 described above.
  • the left eye of the user at position L9-2 visually recognizes the image light emitted from the display panel 5 and traveling along the optical path 71A.
  • the optical path 71A passes through a position L9-1' included in the viewing area 70D at the suitable viewing distance d.
  • the visible area 70D corresponds to an area where the sub-pixels P3 to P8 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the left eye at position L9-2 can visually recognize sub-pixels P3 to P8.
  • the right eye of the user at position R9-2 visually recognizes the image light emitted from the display panel 5 and traveling along the optical path 71B.
  • the optical path 71B passes through a position R9-1 included in the viewing area 70C at the suitable viewing distance d.
  • the visible area 70C corresponds to an area where the sub-pixels P7 to P12 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the right eye located at position R9-2 can visually recognize sub-pixels P7 to P12.
  • the left eye at position L9-2 and the right eye at position R9-2 both view sub-pixels P7 and P8.
  • the image viewed by the left eye at position L9-2 and the right eye at position R9-2 is shorter than interocular distance E by (E/n) ⁇ 2 at suitable viewing distance d. , may be considered to correspond to an image viewed by the left eye at position L9-1' and the right eye at position R9-1.
  • the controller 7 calculates the following equation using the user's viewing distance Y, the number n of subpixels forming a monocular image, and the suitable viewing distance d.
  • the controller 7 controls the third sub-pixel to be located between the left sub-pixel and the right sub-pixel that are visible from one transparent region 62 among the boundaries between the left sub-pixel and the right sub-pixel. It may be determined that this occurs at the boundary on the center side of the sub-pixel.
  • the user's left eye and right eye are located at positions L10-2 and R10-2, which are separated from the barrier 6 by an observation distance Y3.
  • the positions L10-2 and R10-2 are located closer to the barrier 6 in the depth direction than the positions L10-1 and R10-1, which are away from the barrier 6 by an appropriate viewing distance d.
  • the image light emitted from the display panel 5 travels along the optical path 71A and the optical path 71B, passes through one light-transmitting area 62a, and reaches the left eye at position L10-2 and the left eye at position R10-2. Each reaches the right eye.
  • the optical path 71A passes through a position L10-1' included in the viewing area 70E at the suitable viewing distance d.
  • the visible area 70E corresponds to an area where the sub-pixels P12 and P1 to P5 can be visually recognized in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the controller 7 can specify the sub-pixel that is visible to the left eye by calculating the visibility area 70 where the optical path 71A intersects.
  • the left eye at position L10-2 can see sub-pixels P12 and P1 to P5.
  • the optical path 71E passes through a position R10-1 included in the viewing area 70C at the suitable viewing distance d.
  • the visible area 70C corresponds to an area where the sub-pixels P7 to P12 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the right eye located at position R10-2 can visually recognize sub-pixels P7 to P12.
  • the left eye at position L10-2 and the right eye at position R10-2 both view subpixel P12.
  • sub-pixel P7 is shown shaded.
  • the sub-pixel P12 is a sub-pixel located at the outer boundary between the left sub-pixel and the right sub-pixel that is visible from one transparent region 62 among the boundaries between the left sub-pixel and the right sub-pixel.
  • the ratio between the observation distance Y3 and the suitable viewing distance d from the barrier 6 corresponds to the ratio between the distances between the positions L10-2 and R10-2 and the distances between the positions L10-1' and R10-1.
  • the image viewed by the left and right eyes of the user who is separated by interocular distance E is the width of one viewing area 70 from interocular distance E, that is, E/n, at suitable viewing distance d. It can be considered that this corresponds to an image that is viewed by the user's longer left and right eyes.
  • the user's left and right eyes are located at positions L11-2 and R11-2, which are separated from the barrier 6 by an observation distance Y4.
  • the positions L11-2 and R11-2 are located closer to the barrier 6 along the depth direction than the positions L11-1 and R11-1, which are away from the barrier 6 by an appropriate viewing distance d.
  • Observation distance Y4 is a distance shorter than observation distance Y3 mentioned above.
  • the left eye of the user at position L11-2 visually recognizes the image light emitted from the display panel 5 and traveling along the optical path 71A.
  • the optical path 71A passes through a position L11-1' included in the viewing area 70F at the suitable viewing distance d.
  • the visible area 70F corresponds to an area where the sub-pixels P11 to P12 and P1 to P4 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the left eye located at position L11-2 can visually recognize sub-pixels P11 to P12 and P1 to P4.
  • the right eye of the user at position R11-2 visually recognizes the image light emitted from the display panel 5 and traveling along the optical path 71B.
  • the optical path 71B passes through a position R11-1 included in the viewing area 70C at the suitable viewing distance d.
  • the visible area 70C corresponds to an area where the sub-pixels P7 to P12 can be viewed in a plane spaced from the barrier 6 by an appropriate viewing distance d.
  • the right eye located at position R11-2 can visually recognize sub-pixels P7 to P12.
  • the left eye at position L11-2 and the right eye at position R11-2 both view sub-pixels P11 and P12.
  • the left eye at position L11-2 and the right eye at position R11-2 are at position L11-, which is longer than interocular distance E by (E/n) ⁇ 2 at suitable viewing distance d. It can be considered that this corresponds to the distance between the left eye at position R1' and the right eye at position R11-1.
  • the controller 7 calculates the following equation using the user's viewing distance Y, the number n of subpixels forming a monocular image, and the suitable viewing distance d.
  • X calculated in (13) is determined to be the number of third sub-pixels.
  • Y (n ⁇ d)/(n+X)...(13)
  • the controller 7 controls the third sub-pixel to be located between the left sub-pixel and the right sub-pixel that are visible from one transparent region 62 among the boundaries between the left sub-pixel and the right sub-pixel. It may be determined that the occurrence occurs at the outer boundary of the sub-pixel.
  • the controller 7 sets the number of third sub-pixels to an even number so that the number of left sub-pixels visible with the user's left eye is equal to the number of right sub-pixels visible with the user's right eye. You may correct it as follows.
  • FIG. 23 shows a list of the observation distance Y and the number of third sub-pixels after correction. For example, as shown in correction 1 in FIG. 23, the controller 7 sets the smallest even number that is greater than or equal to the number obtained by rounding up X calculated by equation (9) or equation (13) to the third sub-pixel. Good as a number.
  • the controller 7 may set the number of third sub-pixels to the largest even number that does not exceed X calculated by equation (9) or equation (13), or 0, as shown in correction 2 in FIG.
  • the controller 7 sets the smallest even number or 0, which is equal to or greater than the number obtained by rounding down X calculated by equation (9) or equation (13) to an integer, to the third sub. May be expressed as number of pixels.
  • the three-dimensional display system 100 is described as having the three-dimensional display device 2 and the detection device 1 as separate bodies, but the present invention is not limited to this.
  • the three-dimensional display device 2 may include the functions provided by the detection device 1. In such a case, the three-dimensional display device 2 detects the position of at least one of the user's left eye and right eye.
  • the three-dimensional display system 100 can be installed in a head-up display system 400.
  • the head up display system 400 is also referred to as a HUD (Head Up Display) 400.
  • HUD 400 includes a three-dimensional display system 100, an optical member 410, and a projection target member 420 having a projection surface 430.
  • HUD 400 allows image light emitted from three-dimensional display system 100 to reach projection target member 420 via optical member 410 .
  • the HUD 400 allows the image light reflected by the projection target member 420 to reach the user's left and right eyes. That is, HUD 400 allows image light to travel from three-dimensional display system 100 to the user's left and right eyes along optical path 440 indicated by a broken line. The user can visually recognize the image light that has arrived along the optical path 440 as a virtual image 450.
  • a HUD 400 including a three-dimensional display system 100 may be mounted on a moving body 10.
  • a part of the configuration of the HUD 400 may also be used as other devices and parts included in the mobile body 10.
  • the moving body 10 may also use a windshield as the projection target member 420.
  • the other configuration can be called a HUD module or a three-dimensional display component.
  • the HUD 400 and the three-dimensional display system 100 may be mounted on the moving body 10.
  • a "mobile object" in this disclosure includes a vehicle, a ship, and an aircraft.
  • vehicle in the present disclosure includes, but is not limited to, automobiles and industrial vehicles, and may include railroad vehicles, household vehicles, and fixed-wing aircraft that travel on runways.
  • Motor vehicles may include other vehicles that travel on the road, including, but not limited to, cars, trucks, buses, motorcycles, trolleybuses, and the like.
  • Industrial vehicles include industrial vehicles for agriculture and construction.
  • Industrial vehicles include, but are not limited to, forklifts and golf carts.
  • Agricultural industrial vehicles include, but are not limited to, tractors, tillers, transplanters, binders, combines, and lawn mowers.
  • Industrial vehicles for construction include, but are not limited to, bulldozers, scrapers, excavators, crane trucks, dump trucks, and road rollers. Vehicles include those that are driven by human power.
  • classification of vehicles is not limited to the above.
  • automobiles may include industrial vehicles that can be driven on roads, and the same vehicle may be included in multiple classifications.
  • Vessels in this disclosure include watercraft, boats, and tankers.
  • Aircraft in this disclosure include fixed-wing aircraft and rotary-wing aircraft.
  • the present disclosure can be implemented in the following aspects (1) to (10).
  • a display panel having a display surface including a plurality of sub-pixels arranged along a first direction and a second direction intersecting the first direction; a parallax barrier that defines the direction of the image light emitted from the display surface; a position acquisition unit that acquires the position of at least one of the user's first eye and second eye; A first image and a second image having a parallax with respect to the first image to be displayed on the display surface based on the position of at least one of the first eye and the second eye acquired by the position acquisition unit.
  • the parallax barrier has a plurality of band-shaped light-transmitting regions and a plurality of band-shaped light-blocking regions, and the light-transmitting regions and the light-blocking regions are arranged alternately along the first direction,
  • the controller successively assigns the first image or the second image to n sub-pixels arranged according to an inclination angle of the parallax barrier with respect to the second direction,
  • the controller includes a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, and a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, among the n sub-pixels;
  • the sub-pixels observed across the other end of the transparent region are caused to display a low-luminance image whose
  • a and b are mutually different natural numbers.
  • the number of sub-pixels displaying the low-luminance image observed across the one end of the transparent region is at least p, and p is: 1 ⁇ p ⁇ a+b ⁇ 1
  • p is: 1 ⁇ p ⁇ a+b ⁇ 1
  • the display surface has two sides, which can be observed by both the first eye and the second eye, on the one end side and the other end side of the light-transmitting area.
  • the controller controls at least m of the subpixels included in the binocular visible region on the one end side, and at least m subpixels included in the binocular visible region on the other end side.
  • the display surface has a binocular visible area on the one end side and the other end side of the light-transmitting area, which is observed by both the first eye and the second eye.
  • the controller controls at least m of the subpixels included in the binocular visible region on the one end side, and at least m subpixels included in the binocular visible region on the other end side.
  • the controller controls (m+1) subpixels of the subpixels included in the binocular visible region on the one end side and (m+1) of the subpixels included in the binocular visible region on the other end side.
  • the display surface When the user is not in a suitable viewing position, the display surface has a binocularly visible area on the one end side of the light-transmitting area that can be observed by both the first eye and the second eye.
  • the number of subpixels included in the binocular visible region increases as the distance between the user and the suitable viewing position increases, Any one of the above aspects (1) to (8), wherein the controller causes k (k is a natural number larger than m) subpixels of the subpixels included in the binocular visible region to display a black image.
  • the controller causes the sub-pixel to display the black image in the case where the sub-pixel for displaying the black image and the sub-pixel for displaying the low-luminance image are the same sub-pixel. 9)
  • the three-dimensional display device according to any one of item 9).
  • the head-up display system of the present disclosure can be implemented in the following aspect (11).
  • a display panel having a display surface including a plurality of sub-pixels arranged along a first direction and a second direction intersecting the first direction; a parallax barrier that defines the direction of the image light emitted from the display surface; a position acquisition unit that acquires the position of at least one of the user's first eye and second eye; an optical member that allows the user to view image light emitted from the display surface as a virtual image; A first image and a second image having a parallax with respect to the first image to be displayed on the display surface based on the position of at least one of the first eye and the second eye acquired by the position acquisition unit.
  • the parallax barrier has a plurality of band-shaped light-transmitting regions and a plurality of band-shaped light-blocking regions, and the light-transmitting regions and the light-blocking regions are arranged alternately along the first direction
  • the controller successively assigns the first image or the second image to n sub-pixels arranged according to an inclination angle of the parallax barrier with respect to the second direction,
  • the aperture ratio x of the parallax barrier is an integer of 0 or more and less than n
  • x 0.5+m/2n
  • the controller includes a sub-pixel that is observed across one end of the transparent region by one of the first eye and the second eye, and a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, among the n sub-pixels, and the first eye and the second eye.
  • the sub-pixels observed across the other end of the translucent region display a low-luminance image whose luminance is equally reduced, and the number of sub-pixels displaying the low-luminance image is determined by the number of sub-pixels observed across the other end of the translucent region.
  • a head-up display system with the same number of light areas at one end and the other end.
  • the mobile object of the present disclosure can be implemented in the following aspect (12).
  • a display panel having a display surface including a plurality of sub-pixels arranged along a first direction and a second direction intersecting the first direction; a parallax barrier that defines the direction of the image light emitted from the display surface; a position acquisition unit that acquires the position of at least one of the user's first eye and second eye; an optical member that allows the user to view image light emitted from the display surface as a virtual image; A first image and a second image having a parallax with respect to the first image to be displayed on the display surface based on the position of at least one of the first eye and the second eye acquired by the position acquisition unit.
  • the parallax barrier has a plurality of band-shaped light-transmitting regions and a plurality of band-shaped light-blocking regions, and the light-transmitting regions and the light-blocking regions are arranged alternately along the first direction,
  • the controller successively assigns the first image or the second image to n sub-pixels arranged according to an inclination angle of the parallax barrier with respect to the second direction,
  • the aperture ratio x of the parallax barrier is an integer of 0 or more and less than n
  • x 0.5+m/2n
  • the controller includes a sub-pixel that is observed across one end of the transparent region by one of the first eye and the second eye, and a sub-pixel that is observed across one end of the light-transmitting area by one of the first eye and the second eye, among the n sub-pixels, and the first eye and the second eye.
  • the sub-pixels observed across the other end of the translucent region display a low-luminance image whose luminance is equally reduced, and the number of sub-pixels displaying the low-luminance image is determined by the number of sub-pixels observed across the other end of the translucent region.
  • a mobile object comprising an equal number of head-up display systems at one end and the other end of a light area.
  • Detection device 2 Three-dimensional display device 3
  • Position acquisition unit 4 Irradiator 5
  • Display panel 6 Parallax barrier 7
  • Controller 10 Moving object 51 Active area 51a Visible area 51aL Left visible area 51aR Right visible area 51aLR Binocular visible area 51bL Left invisible area 51bR Right invisible area 51bLR Binocular invisible area 52
  • Black matrix 61 Light shielding surface (light shielding area) 62, 62a Translucent area 62b
  • Edge line 70 Visible area 71A
  • Optical path 71B Optical path 100
  • Three-dimensional display system 400 Head-up display system 410
  • Optical path 450 Virtual image

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)

Abstract

3次元表示装置は、サブピクセルを含む表示面を有する表示パネル、透光領域及び遮光領域を有するパララックスバリア、利用者の眼の位置を取得する位置取得部及び、表示面に表示する混合画像を合成するコントローラを含む。コントローラは、パララックスバリアに応じて配されたn個のサブピクセルに第1画像又は第1画像に対して視差を有する第2画像を連続して割当てる。パララックスバリアは、mを0以上n未満の整数とするとき、開口率が0.5+m/2nである。コントローラは、透光領域の一端を横切って観察されるサブピクセル及び透光領域の他端を横切って観察されるサブピクセルに、低輝度画像を表示させる。低輝度画像を表示するサブピクセルの数は、透光領域の一端側及び他端側で同数である。

Description

3次元表示装置、ヘッドアップディスプレイシステム、及び移動体
 本開示は、3次元表示装置、ヘッドアップディスプレイシステム、及び移動体に関する。
 従来技術の3次元表示装置は、例えば特許文献1に記載されている。
特開2001-166259号公報
 本開示の3次元表示装置は、表示パネルと、パララックスバリアと、位置取得部と、コントローラと、を備える。前記表示パネルは、第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する。前記パララックスバリアは、前記表示面から射出される画像光の光線方向を規定する。前記位置取得部は、利用者の第1眼および第2眼の少なくとも一方の位置を取得する。前記コントローラは、前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成する。前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並ぶ。前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当てる。前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、x=0.5+m/2nである。前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方によって前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方によって前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させる。前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である。
 本開示のヘッドアップディスプレイシステムは、表示パネルと、パララックスバリアと、位置取得部と、光学部材と、コントローラと、を備える。前記表示パネルは、第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する。前記パララックスバリアは、前記表示面から射出される画像光の光線方向を規定する。前記位置取得部は、利用者の第1眼および第2眼の少なくとも一方の位置を取得する。前記光学部材は、前記表示面から射出される画像光を、前記利用者に虚像として視認させる。前記コントローラは、前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成する。前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並ぶ。前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当てる。前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、x=0.5+m/2nである。前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方によって前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方によって前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させる。前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である。
 本開示の移動体は、ヘッドアップディスプレイシステムを備える。前記ヘッドアップディスプレイシステムは、表示パネルと、パララックスバリアと、位置取得部と、光学部材と、コントローラと、を備える。前記表示パネルは、第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する。前記パララックスバリアは、前記表示面から射出される画像光の光線方向を規定する。前記位置取得部は、利用者の第1眼および第2眼の少なくとも一方の位置を取得する。前記光学部材は、前記表示面から射出される画像光を、前記利用者に虚像として視認させる。前記コントローラは、前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成する。前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並ぶ。前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当てる。前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、x=0.5+m/2nである。前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方によって前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方によって前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させる。前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である。
 本開示の目的、特色、及び利点は、下記の詳細な説明と図面とからより明確になるであろう。
図1は、一実施形態における3次元表示システムを鉛直方向から見た例を示す図である。 図2は、図1に示す表示パネルを奥行方向から見た例を示す図である。 図3は、図1に示すバリアを奥行方向から見た例を示す図である。 図4は、図1に示す表示パネルにおける左可視領域を説明するための図である。 図5は、図1に示す表示パネルにおける右可視領域を説明するための図である。 図6は、適視位置に位置する利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図7Aは、適視位置に位置する利用者の右眼が観察するサブピクセルの一例を示す模式図である。 図7Bは、適視位置から移動した利用者の右眼が観察するサブピクセルの一例を示す模式図である。 図8Aは、利用者の観察距離が適視距離dである場合の左可視領域及び右可視領域の一例を示す模式図である。 図8Bは、利用者の観察距離が適視距離dより長い場合の左可視領域及び右可視領域の一例を示す模式図である。 図8Cは、利用者の観察距離が適視距離dより短い場合の左可視領域及び右可視領域の一例を示す模式図である。 図8Dは、利用者の観察距離が適視距離dであり、バリア開口率が50%より大きい場合の左可視領域及び右可視領域の一例を示す模式図である。 図9Aは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合に、適視位置にある利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図9Bは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図9Cは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図9Dは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図9Eは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図9Fは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図10Aは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図10Bは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図10Cは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図11Aは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合に、適視位置にある利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図11Bは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者が観察するサブピクセルの一例を示す模式図である。 図11Cは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者が観察するサブピクセルの一例を示す模式図である。 図11Dは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図11Eは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図12Aは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合の輝度低下処理を説明する図である。 図12Bは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合の輝度低下処理を説明する図である。 図12Cは、バリア傾斜角θがtanθ=Hp/Vpを満たし、バリア開口率が50%より大きい場合の輝度低下処理を説明する図である。 図13Aは、バリア傾斜角θがtanθ=0を満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図13Bは、バリア傾斜角θがtanθ=0を満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図13Cは、バリア傾斜角θがtanθ=0を満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図14Aは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にある利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図14Bは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図14Cは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察する左可視領域及び右可視領域の一例を示す模式図である。 図14Dは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図14Eは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図14Fは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図14Gは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図15Aは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図15Bは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図15Cは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%である場合の輝度低下処理を説明する図である。 図16Aは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合に、適視位置にある利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図16Bは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図16Cは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図16Dは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図16Eは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図16Fは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合に、適視位置にない利用者の左眼及び右眼が観察するサブピクセルの一例を示す模式図である。 図17Aは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合の輝度低下処理を説明する図である。 図17Bは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合の輝度低下処理を説明する図である。 図17Cは、バリア傾斜角θがtanθ=Hp/(2×Vp)を満たし、バリア開口率が50%より大きい場合の輝度低下処理を説明する図である。 図18は、適視距離dに位置する利用者の左眼及び右眼が視認するサブピクセルを示す模式図である。 図19は、観察距離Yが適視距離dより長い場合の利用者の左眼及び右眼が視認するサブピクセルの一例を示す模式図である。 図20は、観察距離Yが適視距離dより長い場合の利用者の左眼及び右眼が視認するサブピクセルの他の例を示す模式図である。 図21は、観察距離Yが適視距離dより短い場合の利用者の左眼及び右眼が視認するサブピクセルの一例を示す模式図である。 図22は、観察距離Yが適視距離dより短い場合の利用者の左眼及び右眼が視認するサブピクセルの他の例を示す模式図である。 図23は、観察距離Yと、観察距離Yに基づく第3サブピクセルの数との一覧である。 図24は、本実施形態に係る3次元表示システムを搭載したヘッドアップディスプレイシステムの例を示す図である。 図25は、図24に示すヘッドアップディスプレイシステムを搭載した移動体の例を示す図である。
 上記特許文献1には、眼鏡を用いずに3次元表示を行うために、表示パネルから射出された光の一部を右眼に到達させ、表示パネルから射出された光の他の一部を左眼に到達させる光学素子を備える3次元表示装置が記載されている。
 上述のような3次元表示装置において、利用者に3次元画像を適切に視認させることが求められている。
 本開示は、利用者に3次元画像を適切に視認させることができる3次元表示装置、ヘッドアップディスプレイシステム、及び移動体を提供する。
 以下、本開示の一実施形態について、図面を参照して説明する。
 本開示の一実施形態にかかる3次元表示システム100は、図1に示すように、検出装置1と、3次元表示装置2とを含んで構成される。3次元表示システム100は、3次元表示装置2の表示パネル5に画像を表示させる。表示パネル5から射出された画像光の一部がパララックスバリア6によって遮光されることによって、利用者の左眼と右眼とにそれぞれ異なる画像光が到達する。以下、パララックスバリアは、バリアとも称される。利用者は、左眼で見る画像と右眼と見る画像とに互いに視差があることで、画像を立体視できる。利用者が移動した場合に、3次元表示装置2は、検出装置1によって検出された利用者の眼とバリア6との距離に応じて、表示パネル5に表示させる画像を調整する。これによって、3次元表示システム100は、利用者の位置の変化によらず、利用者に3次元画像を適切に視認させることができる。
 検出装置1は、利用者の眼の位置を検出する。検出装置1は、利用者の左眼及び右眼の少なくとも一方の位置を検出してよい。以下、利用者の一方の眼は、第1眼とも称される。利用者の他方の眼は、第2眼とも称される。本開示では、左眼を第1眼とし、右眼を第2眼とするが、左眼を第2眼とし、右眼を第1眼としてよい。利用者の眼の位置は、例えば、3次元空間の座標で表されるが、これに限られない。検出装置1は、例えば、カメラを備えてよい。検出装置1は、カメラによって利用者の顔を撮影してよい。検出装置1は、利用者の顔の撮影画像から利用者の眼の位置を検出してよい。検出装置1は、1つのカメラによる撮影画像から、利用者の眼の位置を3次元空間の座標として検出してよい。検出装置1は、2個以上のカメラによる撮影画像から、利用者の眼の位置を3次元空間の座標として検出してよい。検出装置1は、利用者の左眼及び右眼の少なくとも一方の位置を3次元表示装置2に出力する。
 検出装置1は、カメラを備えず、装置外のカメラに接続されていてよい。検出装置1は、装置外のカメラからの撮像信号を入力する入力端子を備えてよい。装置外のカメラは、入力端子に直接的に接続されてよい。装置外のカメラは、共有のネットワークを介して入力端子に間接的に接続されてよい。検出装置1は、入力端子に入力された映像信号から利用者の眼の位置を検出してよい。
 検出装置1は、例えば、センサを備えてよい。センサは、超音波センサ又は光センサなどであってよい。検出装置1は、センサによって利用者の頭部の位置を検出し、頭部の位置に基づいて利用者の眼の位置を検出してよい。検出装置1は、1個以上のセンサによって、利用者の眼の位置を3次元空間の座標として検出してよい。
 3次元表示システム100は、検出装置1を備えなくてよい。3次元表示システム100が検出装置1を備えない場合、3次元表示装置2は、システム外の検出装置からの信号を入力する入力端子を備えてよい。システム外の検出装置は、入力端子に直接的に接続されてよい。システム外の検出装置は、共有のネットワークを介して入力端子に間接的に接続されてよい。3次元表示装置2は、システム外の検出装置から利用者の眼の位置を取得してよい。
 3次元表示装置2は、位置取得部(以下、取得部ともいう)3と、表示パネル5と、バリア6と、コントローラ7とを含んで構成される。3次元表示装置2は、照射器4を含んでよい。
 取得部3は、検出装置1によって検出された利用者の左眼及び右眼の少なくとも一方の位置を取得する。取得部3は、取得した利用者の眼の位置から、利用者の眼とバリア6との距離を判定してよい。利用者の眼とバリア6との距離は、利用者の左眼及び右眼の少なくとも一方とバリア6との距離であってよい。以下、利用者の眼とバリア6との距離は、利用者の観察距離とも称される。
 照射器4は、表示パネル5を面的に照射しうる。照射器4は、光源と、導光板、拡散板、及び拡散シート等とを含んで構成されてよい。照射器4は、光源により照射光を射出し、導光板、拡散板、及び拡散シートなどにより照射光を表示パネル5の面方向に均一化する。照射器4は均一化された光を表示パネル5に射出しうる。
 コントローラ7は、3次元表示システム100の各構成要素に接続され、各構成要素を制御しうる。コントローラ7は、例えばプロセッサとして構成される。コントローラ7は、1以上のプロセッサを含んでよい。プロセッサは、特定のプログラムを読み込ませて特定の機能を実行する汎用のプロセッサ、及び特定の処理に特化した専用のプロセッサを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC:Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD:Programmable Logic Device)を含んでよい。PLDは、FPGA(Field-Programmable Gate Array)を含んでよい。コントローラ7は、1つ又は複数のプロセッサが協働するSoC(System-on-a-Chip)、及びSiP(System In a Package)のいずれかであってよい。コントローラ7は、記憶部を備え、記憶部に各種情報、又は3次元表示システム100の各構成要素を動作させるためのプログラムなどを格納してよい。記憶部は、例えば半導体メモリなどで構成されてよい。記憶部は、コントローラ7のワークメモリとして機能してよい。
 表示パネル5は、例えば、透過型の液晶表示パネルなどの表示パネルであるが、これに限られない。図2に示すように、表示パネル5は、面状に形成されたアクティブエリア51上に複数の区画領域を有する。アクティブエリア51は、混合画像を表示する。アクティブエリア51は、表示面とも称される。混合画像は、左眼画像と、左眼画像に対して視差を有する右眼画像とを含む。以下、左眼画像は、第1画像とも称される。右眼画像は、第2画像とも称される。区画領域は、格子状のブラックマトリックス52により第1方向及び第1方向に直交する第2方向に区画された領域である。第1方向及び第2方向に直交する方向は第3方向と称される。第1方向は、水平方向、又は、視差方向と称されてよい。第2方向は、鉛直方向と称されてよい。第3方向は、奥行方向と称されてよい。第1方向、第2方向、及び第3方向はそれぞれこれらに限られない。図面において、第1方向は、x軸方向として表され、第2方向は、y軸方向として表され、第3方向は、z軸方向として表される。
 区画領域の各々には、1つのサブピクセルが対応する。したがって、アクティブエリア51は、水平方向及び鉛直方向に沿って格子状に配列された複数のサブピクセルを備える。
 各サブピクセルは、R(Red)、G(Green)、及びB(Blue)のいずれかの色に対応する、R、G、及びBの3つのサブピクセルを一組として、1ピクセルが構成されてよい。1ピクセルは、1画素とも称される。水平方向は、例えば、1ピクセルを構成する複数のサブピクセルが並ぶ方向である。鉛直方向は、例えば、同じ色のサブピクセルが並ぶ方向である。表示パネル5は、透過型の液晶パネルに限られず、有機EL(Electro Luminescence)など、他の表示パネルであってよい。表示パネル5が自発光型の表示パネルである場合、3次元表示装置2は照射器4を備えなくてよい。
 アクティブエリア51に配列された複数のサブピクセルは、サブピクセル群Pgを構成しうる。サブピクセル群Pgは、コントローラ7がアクティブエリア51に画像を表示するための制御を行う最小単位である。コントローラ7は、1つのサブピクセル群Pgに含まれる複数のサブピクセルに、左眼画像又は右眼画像を表示させる。1つのサブピクセル群Pgにおいて、左眼画像を表示させるサブピクセルと、右眼画像を表示させるサブピクセルとは同数とされてよい。
 アクティブエリア51において、サブピクセル群Pgは、水平方向に繰り返して配列されてよい。サブピクセル群Pgは、鉛直方向においては、水平方向に1サブピクセル分ずれた位置に隣接して繰り返して配列されてよい。サブピクセル群Pgは、所定の行及び列のサブピクセルを含んでよい。具体的には、サブピクセル群Pgは、鉛直方向にb個(b行)、水平方向に2×n/b個(2×n/b列)、連続して配列された2×n/b×b個のサブピクセルP(1)~P(2×n×b)を含んでよい。nは片眼画像を構成するサブピクセルの数であってよい。図2に示す例では、n=6、b=1である。アクティブエリア51には、鉛直方向に1個、水平方向に12個、連続して配列された12個のサブピクセルP1~P12を含むサブピクセル群Pgが配置される。
 全てのサブピクセル群Pgに含まれるサブピクセルP(1)~P(2×n/b×b)は、コントローラ7によって一括して制御されてよい。例えば、コントローラ7は、サブピクセルP1に表示させる画像を左眼画像から右眼画像に切り替える場合、全てのサブピクセル群Pgに含まれるサブピクセルP1に表示させる画像を左眼画像から右眼画像に同時的に切り替えてよい。
 バリア6は、図1に示すように、アクティブエリア51に沿う平面により形成され、アクティブエリア51から所定距離(ギャップ)gだけ離れて配置される。バリア6は、表示パネル5に対して照射器4の反対側に位置してよい。
 バリア6は、表示パネル5から射出される画像光の光線方向を規定する。バリア6は、図3に示すように、複数の、画像光を遮光する遮光面61を有する。複数の遮光面61は、互いに隣り合う遮光面61の間の透光領域62を画定する。透光領域62は、遮光面61に比べて光透過率が高い。遮光面61は、透光領域62に比べて光透過率が低い。以下、透光領域62は、第1透光領域とも称される。遮光面61は、第2透光領域とも称される。
 透光領域62は、バリア6に入射する光を透過させる部分である。透光領域62は、第1透過率で光を透過させてよい。第1透過率は、例えば略100%であるが、これに限られず、表示パネル5から射出される画像光が良好に視認できる範囲の値であってよい。第1透過率は、例えば、80%以上、又は50%以上等とされうる。
 遮光面61は、バリア6に入射する光を遮って殆ど透過させない部分である。即ち、遮光面61は、表示パネル5のアクティブエリア51に表示される画像が利用者の眼に到達することを遮る。遮光面61は、第2透過率で光を透過させてよい。第2透過率は、例えば略0%であるが、これに限られず、0%より大きく、0.5%、1%又は3%など、0%に近い値であってよい。第1透過率は、第2透過率より数倍以上、例えば、10倍以上大きい値とされうる。以下、遮光面61は、遮光領域とも称される。
 バリア6において、透光領域62は、面内の所定方向に伸びる複数の帯状領域であってよい。透光領域62は、サブピクセルから射出される画像光が伝播する方向である、光線方向を規定する。所定方向は、鉛直方向と0°又は90°でない所定角度をなす方向である。透光領域62と遮光領域61とは、アクティブエリア51に沿う所定方向に延び、所定方向と直交する方向に繰り返し交互に配列されてよい。
 透光領域62の端部を示す端線62bは、鉛直方向に対して所定角度θで傾斜する方向に延在する。透光領域62の端部を示す端線62bは、端線とも称される。所定角度θは、バリア傾斜角とも称される。バリア傾斜角θは、0°以上かつ90°未満の角度であってよい。バリア傾斜角θが0°より大きい(θ>0°)場合、表示面上におけるサブピクセルの水平方向の長さをHpとし、表示面上におけるサブピクセルの鉛直方向の長さをVpとし、a及びbを自然数とするとき、バリア傾斜角θは、次の式(1)によって規定されてよい。
 tanθ=(a×Hp)/(b×Vp)           …(1)
ここで、a及びbは、互いに等しい自然数であってよいし、互いに異なる自然数であってよい。a及びbは、互いに素となる自然数であってよい。
 バリア6は、遮光面61及び透光領域62によって、表示パネル5から射出される画像光の光線方向を規定する。図1に示すように、バリア6が、アクティブエリア51に配列されたサブピクセルから射出された画像光を規定することによって、利用者の眼が視認可能なアクティブエリア51上の領域が定まる。以降において、アクティブエリア51内の領域のうち、利用者の眼の位置に伝播する画像光を射出するアクティブエリア51内の領域は、可視領域51aと称される。また、利用者の左眼の位置に伝播する画像光を射出するアクティブエリア51内の領域は、左可視領域51aLと称される。左可視領域51aLは、第1可視領域とも称される。利用者の右眼の位置に伝播する画像光を射出するアクティブエリア51内の領域は、右可視領域51aRと称される。右可視領域51aRは、第2可視領域とも称される。
 図1に示すように、利用者の左眼及び右眼は、バリア6から適視距離dだけ離れて位置すると仮定する。適視距離dは、OVD(Optimum Viewing Distance,最適観察距離)と称される。透光領域62の水平方向における配置間隔であるバリアピッチBp、及びアクティブエリア51とバリア6との間のギャップgは、サブピクセルの水平方向の長さHp、片眼画像を構成するサブピクセルの数n、適視距離d、及び眼間距離Eを用いた次の式(2)及び式(3)が成り立つように規定される。
 E:d=(n×Hp/b):g               …(2)
 d:Bp=(d+g):(2×n×Hp/b)        …(3)
 適視距離dは、バリアの開口率が50%の場合、可視領域51aの水平方向の長さがサブピクセルn個分となる利用者の左眼及び右眼の少なくとも一方とバリア6との間の距離である。眼間距離Eは、利用者の左眼と右眼との間の距離である。眼間距離Eは、利用者の眼の位置から算出された値であってよく、或いは予め設定された値であってよい。予め設定される場合、眼間距離Eは、例えば、産業技術総合研究所の研究によって算出された値である61.1mm~64.4mmの値とされてよい。
 バリア6は、第2透過率を有する部材で構成されてよい。バリア6は、例えば、フィルム又は板状部材で構成されてよい。この場合、遮光面61は、フィルム又は板状部材で構成される。透光領域62は、フィルム又は板状部材に設けられた開口で構成される。フィルムは、例えば、樹脂で構成されるが、これに限られない。板状部材は、例えば、樹脂又は金属などで構成されるが、これに限られない。バリア6は、遮光性を有する基材で構成されてよく、或いは遮光性を有する添加物を含有する基材で構成されてよい。
 バリア6は、液晶シャッターで構成されてよい。液晶シャッターは、印加する電圧に応じて光の透過率を制御しうる。液晶シャッターは、複数の画素で構成され、各画素における光の透過率を制御してよい。液晶シャッターは、光の透過率が高い領域又は光の透過率が低い領域を任意の形状に形成しうる。バリア6が液晶シャッターで構成される場合、透光領域62は、第1透過率を有する領域とされてよい。バリア6が液晶シャッターで構成される場合、遮光面61は、第2透過率を有する領域とされてよい。
 バリア6は、上述した構成を有することで、アクティブエリア51の一部のサブピクセルから射出された画像光を、透光領域62を通過させ利用者の右眼に伝搬させる。バリア6は、他の一部のサブピクセルから射出された画像光を、透光領域62を通過させ利用者の左眼に伝搬させる。画像光が利用者の左眼及び右眼のそれぞれに伝播されることによって、利用者の眼に視認される画像について、図4及び図5を参照して詳細に説明する。
 図4に示す左可視領域51aLは、上述のように、バリア6の透光領域62を透過した画像光が利用者の左眼に到達することによって、利用者の左眼が視認するアクティブエリア51上の領域である。左不可視領域51bLは、バリア6の遮光面61によって画像光が遮られることによって、利用者の左眼が視認することのできない領域である。図4において、左可視領域51aLには、サブピクセルP1の半分と、サブピクセルP2~P6の全体と、サブピクセルP7の半分とが含まれる。
 図5に示す右可視領域51aRは、バリア6の透光領域62を透過した他の一部のサブピクセルからの画像光が利用者の右眼に到達することによって、利用者の右眼が視認するアクティブエリア51上の領域である。右不可視領域51bRは、バリア6の遮光面61によって画像光が遮られることによって、利用者の右眼が視認することのできない領域である。図5において、右可視領域51aRには、サブピクセルP7の半分と、サブピクセルP8~P12の全体と、サブピクセルP1の半分とが含まれる。
 サブピクセルP1~P6に左眼画像が表示され、サブピクセルP7~P12に右眼画像が表示されると、左眼及び右眼はそれぞれ画像を視認する。左眼画像及び右眼画像は互いに視差を有する視差画像である。具体的には、左眼は、サブピクセルP1に表示された左眼画像の半分と、サブピクセルP2~P6に表示された左眼画像の全体と、サブピクセルP7に表示された右眼画像の半分とを視認する。右眼は、サブピクセルP7に表示された右眼画像の半分と、サブピクセルP8~P12に表示された右眼画像の全体と、サブピクセルP1に表示された左眼画像の半分とを視認する。図4及び図5において、左眼画像を表示するサブピクセルには符号「L」が付され、右眼画像を表示するサブピクセルには符号「R」が付されている。
 この状態において、利用者の左眼が視認する左眼画像の領域は最大となり、右眼画像の面積は最小となる。利用者の右眼が視認する右眼画像の領域は最大となり、左眼画像の面積は最小となる。利用者の左眼が右眼画像を視認し、或いは利用者の右眼が左眼画像を視認することを、クロストークとも称される。利用者は、クロストークが低減された状態で3次元画像を視認することができる。
 上述のように、互いに視差を有する左眼画像及び右眼画像が左可視領域51aL及び右可視領域51aRのそれぞれに含まれるサブピクセルに表示されると、適視距離dに位置する利用者は表示パネル5に表示された画像を3次元画像として視認しうる。上述した構成では、左眼によって半分以上が視認されるサブピクセルに左眼画像が表示され、右眼によって半分以上が視認されるサブピクセルに右眼画像が表示された。これに限られず、左眼画像及び右眼画像を表示させるサブピクセルは、アクティブエリア51、及びバリア6などの設計に応じて、クロストークが低減されるように左可視領域51aL及び右可視領域51aRに基づいて適宜判定されてよい。例えば、バリア6の開口率などに応じて、左眼によって所定割合以上が視認されるサブピクセルに左眼画像を表示させ、右眼によって所定割合以上が視認されるサブピクセルに右眼画像を表示させてよい。
 図6は、適視位置に位置する利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図6において、透光領域62の端線62bが横切るサブピクセルBが、網掛けして示されている。利用者が適視位置に位置する場合、アクティブエリア51は、端線62bを境界として、左眼によって観察される左可視領域51aLと、右眼によって観察される右可視領域51aRとに分離される。サブピクセルBに表示された画像は両眼で観察されるため、サブピクセルBはクロストークの原因となりうる。コントローラ7は、サブピクセルBに対して、クロストークを低減するためのクロストーク低減処理を施す必要がある。
 クロストーク低減処理を施す必要があるサブピクセルBの数は、少なくともp個である。図6に示されるように、pは、次の式(4)を満たす自然数である。
 1≦p≦a+b-1                    …(4)
 クロストーク低減処理は、サブピクセルBに低輝度画像を表示させる輝度低下処理であってよい。輝度低下処理は、処理対象であるサブピクセルの輝度を、正規の輝度の60%、50%、又は40%に低下させる処理であってよい。輝度低下処理は、処理対象であるサブピクセルに黒画像を表示させる処理であってよい。以下では、黒画像を表示させることを、黒表示を実施する等と記載することがある。
 透光領域62は、Hpを基準とする幅を有してよい。即ち、透光領域62は、水平方向において、Hpの自然数倍の幅を有してよい。これによって、利用者が水平方向に移動した場合に、利用者がモアレを認識することを抑制できる。サブピクセルBに表示する低輝度画像は、黒画像であってよい。
 図7Aは、適視位置に位置する利用者の右眼が透光領域62を介して観察するサブピクセルの一例を示す。適視位置は、例えば、利用者とバリア6との距離が適視距離dであり、右眼が視差方向における右可視領域51aRの中央部を観察する観察位置であってよい。図7Aでは、簡単のため、バリア傾斜角θを0°としている。片眼画像は、8個のサブピクセルで構成されている。透光領域62の端線62bを横切るサブピクセルBには、クロストークを低減するための黒画像が表示されている。図7Bは、図7Aの観察位置からバリア6に対して視差方向に移動した利用者が観察する右可視領域51aRを示している。図7A,7Bでは、片眼画像の構成を同じ構成としている。透光領域62がHpの自然数倍の幅を有している場合、図7A,7Bに示されるように、利用者が視差方向に移動したときも、利用者の左眼又は右眼は、常に、1つの透光領域62内に黒画像をサブピクセル1個分観察するため、利用者が観察する黒画像の面積が変化しない。これによって、利用者が視差方向に移動したときに、利用者がモアレを認識することを抑制しうる。
 バリア6と利用者の左眼及び右眼との距離が変化すると、左眼が観察する左可視領域51aLの範囲及び右眼が観察する右可視領域51aRの範囲が変化する。図8Aは、利用者の観察距離が適視距離dである場合の左可視領域及び右可視領域の一例を示す。図8Aに示される場合において、左可視領域51aLと右可視領域51aRとが重なる両眼可視領域51aLRが存在しないため、利用者は、クロストークが低減された状態で3次元画像を視認することができる。
 図8Bは、利用者の観察距離が適視距離dより長い場合の左可視領域及び右可視領域の一例を示す。図8Bに示される場合において、左可視領域51aLの一部と右可視領域51aRの一部とが重なった両眼可視領域51aLRが発生しうる。両眼可視領域51aLRは、1つの透光領域62を介して観察される左可視領域51aLと右可視領域51aRとの中央境界に発生しうる。図8Cは、利用者の観察距離が適視距離dより短い場合の左可視領域及び右可視領域の一例を示す。図8Cに示される場合において、両眼可視領域51aLRが発生しうる。両眼可視領域51aLRは、1つの透光領域62を介して観察される左可視領域51aLと、該1つの透光領域62に隣接する透光領域62を介して観察される右可視領域51aRとの両端境界に発生しうる。バリア6と利用者の左眼及び右眼との距離が適視距離dと異なる場合に発生しうる両眼可視領域51aLRは、クロストークの原因となるため、コントローラ7は、両眼可視領域51aLRに含まれるサブピクセルに対して、クロストーク低減処理を施す必要がある。
 図8B,8Cに示されるように、バリア6と利用者の左眼及び右眼との距離が適視距離dと異なる場合、左可視領域51aL及び右可視領域51aRのいずれにも重ならない両眼不可視領域51bLRが発生しうる。両眼不可視領域51bLRは、左不可視領域51bLの一部と右不可視領域51bRの一部とが重なった領域ともいえる。
 両眼可視領域51aLRが存在する場合、左可視領域51aLに含まれ左眼画像を表示させるべきと判定された左サブピクセルであり、且つ、右可視領域51aRに含まれ右眼画像を表示させるべきと判定された右サブピクセルであるサブピクセルが存在しうる。以下、左サブピクセルと判定され、且つ、右サブピクセルと判定されたサブピクセルは、第3サブピクセルとも称される。第3サブピクセルは、第3表示領域とも称される。詳細は後述するが、サブピクセル群Pgに含まれる第3サブピクセルの数は、適視距離d、利用者の観察距離、及び片眼画像を構成するサブピクセルの数に基づいて算出することができる。以下、第3サブピクセルの数を、単に、tと記載することがある。
 図8Dは、利用者の観察距離が適視距離dであり、バリア6の開口率が50%より大きい場合の左可視領域及び右可視領域の一例を示す。バリア6の開口率が50%を超える場合、図8Dに示されるように、バリア6と利用者の左眼及び右眼との距離が適視距離dであっても、両眼可視領域51aLRが発生しうる。このため、コントローラ7は、両眼可視領域51aLRに含まれるサブピクセルに対して、クロストーク低減処理を施す必要がある。以下、バリア6の開口率は、バリア開口率とも称される。
 以下、コントローラ7による、3次元表示システム100の各構成要素の制御について、説明する。
[tanθ=Hp/Vpの場合]
 バリア傾斜角θを規定する自然数a及びbが、a=1且つb=1である場合について説明する。式(4)により、クロストーク低減処理を施す必要があるサブピクセルの数は、少なくとも1個である。
(バリア開口率が50%のとき)
 バリア開口率xが50%であるとする。バリア開口率xは、片眼画像を構成するサブピクセルの数n、及び0以上n未満の整数mを用いた次の式(5)で規定される。
 x=0.5+m/(2×n)                …(5)
即ち、m=0のとき、バリア開口率xが50%となる。
 サブピクセル群Pgが、鉛直方向に1個(1行)、水平方向に16個(16列)、連続して配列された16個のサブピクセルP1~P16で構成されるものとして説明する。コントローラ7は、利用者の眼の位置に基づいて、サブピクセルP1~P16のそれぞれに、右眼画像又は左眼画像を割当てる。
 図9Aは、適視位置に位置する利用者の左眼及び右眼が観察するサブピクセルの一例を示す。適視位置は、例えば、利用者とバリア6との距離が適視距離dであり、右眼が視差方向における右可視領域51aRの中央部を観察する観察位置であってよい。図9Aは、左可視領域51aLと右可視領域51aRとに重なりが発生しないt=0の場合を示している。図9Aでは、サブピクセルP1~P8に対して右眼画像が連続して割当てられ、サブピクセルP9~P16に対して左眼画像が連続して割当てられている。したがって、片眼画像を構成するサブピクセルの数nは8である。右可視領域51aRには、サブピクセルP16,P1の一部と、サブピクセルP2~P7の全体と、サブピクセルP8,P9の一部とが含まれる。左可視領域51aLには、サブピクセルP8,P9の一部と、サブピクセルP10~P15の全体と、サブピクセルP16,P1の一部とが含まれる。図9Aは、右可視領域51aR及び左可視領域51aLの一部を抜粋して示し、透光領域62を介して左眼及び右眼が観察する領域を網掛けして示すとともに、サブピクセルP1~P16をそれらの番号「1」~「16」で示している。これらは、利用者の左眼及び右眼が観察するサブピクセルを例示する、以下の図面においても同様である。以下では、アクティブエリア51におけるサブピクセルP1~P16の面積のそれぞれを、S1~S16と記載することがある。
 図9Aに示される場合において、サブピクセルP9に表示された画像は、両眼によって同時に観察される。コントローラ7は、サブピクセルP9に輝度低下処理を施してよい。これによって、クロストークが低減されうる。以下では、利用者がサブピクセルに表示された画像を観察することを、単に、利用者がサブピクセルを観察する等と記載することがある。サブピクセルP9は、右眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP9は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。
 図9Aに示される場合において、サブピクセルP9は、左眼によって面積S9の半分以上が観察され、右眼によって面積S9の半分未満が観察される。したがって、サブピクセルP9に輝度低下処理を施すと、右眼に到達する画像光の輝度と比べて、左眼に到達する画像光の輝度が低下する。その結果、利用者が観察する画像光の輝度が均一でなくなり、モアレが発生することがある。コントローラ7は、サブピクセルP9から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP1に、サブピクセルP9に施す輝度低下処理と同じ輝度低下処理を施してよい。言い換えれば、サブピクセルP9の輝度を50%に低下させる場合、サブピクセルP9から(n+m)個のサブピクセル分だけ離れて位置したサブピクセルP1の輝度を50%に低下させてよい。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。サブピクセルP1は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。サブピクセルP1は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。
 図9Bは、適視位置からバリア6に対して視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図9Bでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図9Bに示される場合において、サブピクセルP1,P9に、輝度を同等に低下させた低輝度画像を表示させることによって、クロストーク及びモアレが低減されうる。図9Bに示される場合において、サブピクセルP1及びサブピクセルP9は、右眼によって観察される面積が互いに等しく、左眼によって観察される面積が互いに等しい。図9Bの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者が図9Bの観察位置から視差方向に更に移動したと判定すると、視差画像の構成を変更してよい。コントローラ7は、サブピクセルP1に左眼画像を割当て、サブピクセルP9に右眼画像を割当ててよい。これによって、利用者に3次元画像を適切に視認させることができる。
 また、サブピクセルP1及びサブピクセルP9は、図9Bにおいては面積の半分がクロストークの原因となっている。コントローラ7は、片眼画像を構成するドット数n(8個)に対し、クロストークの影響が大きいと判断してもよい。この場合、輝度低下処理を黒表示にしてもよい。
 図9Cは、適視位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図9Cは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6から遠ざかる方向に移動した場合を示す。上述したとおり、バリア6と利用者の左眼及び右眼との距離が適視距離dより大きい場合、左可視領域51aLの一部と右可視領域51aRの一部とが重なった両眼可視領域51aLRが、1つの透光領域62を介して観察される左可視領域51aLと右可視領域51aRとの中央境界に発生しうる。図9Cは、左可視領域51aLと右可視領域51aRとの重なりが丁度サブピクセル1個分の面積であるt=1の場合を示している。図9Cでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。
 図9Cに示される場合において、右眼画像を表示するサブピクセルP8は、右眼によって面積S8の半分以上が観察され、左眼によって面積S8の半分以上が観察される。サブピクセルP8は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP8に黒画像を表示させる。これによって、クロストークが低減されうる。サブピクセルP8は、右眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP8は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。コントローラ7は、サブピクセルP8から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP16に黒画像を表示する。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 図9Dは、図9Cの観察位置からバリア6に対して視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図9Dでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図9Dに示される場合において、右眼画像を表示するサブピクセルP8は、右眼によって面積S8の半分以上が観察され、左眼によって面積S8の半分以上が観察される。サブピクセルP8は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP8に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP8から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP16に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できるため、モアレが低減されうる。サブピクセルP8は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP16は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。
 図9Dに示される場合において、左眼画像を表示するサブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP9は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP9に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルP1に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制でき、モアレが低減されうる。サブピクセルP9は、右眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP1は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。
 図9Cの状態から、図9Dの状態への移行は、視差方向の移動によるものであり、利用者には連続して観察されるものである。したがって、図9Cの状態から、サブピクセルP8,P16,P9,P1に黒表示を実施してよい。これにより、利用者の移動に対し、黒表示の数に変化がなく、画面のちらつきを抑えることができる。
 図9Eは、図9Dの観察位置からバリア6に対して視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図9Eでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図9Eに示される場合において、サブピクセルP1,P9に、輝度を同等に低下させた低輝度画像を表示させ、サブピクセルP8,P16に、輝度を同等に低下させた低輝度画像を表示させることによって、クロストーク及びモアレが低減されうる。図9Eに示される場合において、サブピクセルP8及びサブピクセルP16と、サブピクセルP10とは、左眼によって観察される面積が等しい。また、サブピクセルP2及びサブピクセルP10と、サブピクセルP8とは、右眼によって観察される面積が等しい。図9Eの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼が図9Eの観察位置から視差方向に更に移動したと判定すると、サブピクセルP8,P16に黒画像を表示させず、サブピクセルP2,P10に黒画像を表示させてよい。これによって、画面の輝度とクロストークを変化させることなく、右眼画像の構成と左眼画像の構成を変えることが可能となり、利用者の更なる視差方向の移動に対しても、利用者に3次元画像を適切に視認させうる。
 図9Fは、図9Cの観察位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図9Fは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6から遠ざかる方向に更に移動した場合を示す。図9Fは、左可視領域51aLと右可視領域51aRとの重なりが丁度サブピクセル2個分であるt=2の場合を示している。図9Fでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。
 図9Fに示される場合において、左眼画像を表示するサブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP9は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP9に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP9から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP1に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制でき、モアレが低減されうる。サブピクセルP9は、右眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP1は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図9Fに示される場合において、右眼画像を表示するサブピクセルP7は、右眼によって面積S7の半分以上が観察され、左眼によって面積S7の半分以上が観察される。サブピクセルP7は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP7に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP7から(n+m)個のサブピクセル分だけ変位したサブピクセルP15に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制でき、モアレが低減されうる。サブピクセルP7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP15は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図9Fに示される場合において、サブピクセルP8は、左眼によって面積S8の全部が観察され、右眼によって面積S8の全部が観察される。サブピクセルP8は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP8に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルP16に黒画像を表示させてよい。図9Fに示される場合において、サブピクセルP8は、右眼によって観察される面積S8と、左眼によって観察される面積S8とが等しいため、サブピクセルP8に黒画像を表示しても、モアレの原因となりにくい。したがって、コントローラ7は、サブピクセルP16に黒画像を表示させなくてよい。
 図10A,10B,10Cは、コントローラ7がサブピクセルP1~P16に施す輝度低下処理を説明する図である。図10Aは、図9A,9Bに示されるt=0の場合に対応し、図10Bは、図9C,9D,9Eに示されるt=1の場合に対応し、図10Cは、図9Fに示されるt=2の場合に対応する。図10A,10B,10Cにおいて、クロストーク及びモアレを低減するために黒画像を表示させるサブピクセルは、網掛けして示される。また、図10A,10B,10Cでは、図解を容易にするために、左可視領域51aLと右可視領域51aRとを別個に示している。
 図10Aに示されるように、t=0の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、黒画像を表示するサブピクセルの数は、右眼によって1つの透光領域62を介して観察される右可視領域51aRの一端側と他端側で同数である。サブピクセルP1は、サブピクセルP9から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP1,P9に同じ輝度低下処理を施すことによって、クロストーク及びモアレが低減されうる。サブピクセルP9は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP1は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、左眼によって1つの透光領域62を介して観察される左可視領域51aLの一端側と他端側で同数である。サブピクセルP1,P9に表示させる画像は、輝度を同等に低下させた低輝度画像であってよい。
 図10Bに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。t=1の場合、コントローラ7は、両眼可視領域にk個(1個)の黒表示を追加する。右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、コントローラ7は、左眼において、両眼可視領域51aLRにk個(1個)の黒表示を追加する。左眼によって透光領域62の一端を横切って観察されるサブピクセルP8、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP16に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図10Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。t=2の場合、コントローラ7は、両眼可視領域51aLRにk個(2個)の黒表示を追加する。右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、図10Cに示されるように、コントローラ7は、左眼において、両眼可視領域51aLRにk個(2個)の黒表示を追加する。左眼によって透光領域62の一端を横切って観察されるサブピクセルP7、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP15に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図10Aに示されるように、利用者の左眼及び右眼が適視位置にある場合、透光領域62の一端側及び他端側に両眼可視領域51aLRが存在する。コントローラ7は、透光領域62の一端側の両眼可視領域51aLRに含まれる少なくとも(m+1)個(即ち、少なくとも1個)のサブピクセルP1、及び、透光領域62の他端側の両眼可視領域51aLRに含まれる少なくとも(m+1)個のサブピクセルP9に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。
 図10B,10Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルについて、黒画像を表示させるサブピクセルの数を増加させてよい。言い換えると、コントローラ7は、利用者の左眼及び右眼が適視位置にない場合、中央境界の両眼可視領域51aLRに含まれるサブピクセルのうちのk個のサブピクセルに黒画像を表示させてよい。kは、(m+1)より大きい自然数であってよい。これによって、利用者の左眼及び右眼が適視位置から移動した場合であっても、クロストーク及びモアレを低減できる。
(バリア開口率が56.25%のとき)
 バリア開口率xが56.25%であるときについて説明する。式(5)において、n=8且つm=1のとき、バリア開口率xが56.25%となる。バリア傾斜角θ、サブピクセルP1~P16の配列、及びサブピクセルP1~P16に対する右眼画像及び左眼画像の割当ては、図9Aに示される配列及び割当てと同様とする。式(4)により、クロストーク低減処理を施す必要があるサブピクセルの個数は、少なくとも1個である。
 図11Aは、適視位置に位置する利用者の左眼及び右眼が観察するサブピクセルの一例を示す。適視位置は、例えば、利用者とバリア6との距離が適視距離dであり、右眼が視差方向における右可視領域51aRの中央部を観察する観察位置であってよい。バリア開口率xが50%を超える場合、バリア6と利用者の左眼及び右眼との距離が適視距離dであっても、両眼可視領域51aLRが発生しうる。
 図11Aに示される場合において、左眼画像を表示するサブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP9は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP9に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP9から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP16に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制でき、モアレが低減されうる。サブピクセルP9は、右眼によって透光領域の一端を横切って観察されるサブピクセルであり、サブピクセルP16は、右眼によって透光領域の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図11Aに示される場合において、右眼画像を表示するサブピクセルP8は、右眼によって面積S8の半分以上が観察され、左眼によって面積S8の半分以上が観察される。サブピクセルP8は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP8に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルP1に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制でき、モアレが低減されうる。サブピクセルP8は、左眼によって透光領域の一端を横切って観察されるサブピクセルである。サブピクセルP1は、左眼によって透光領域の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図11Bは、図11Aの観察位置から視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図11Bでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図11Bにおいて、サブピクセルP1,P8,P9,P16に、黒画像を表示させることによって、クロストーク及びモアレが低減されうる。図11Bに示される場合おいて、サブピクセルP8及びサブピクセルP2は、左眼によって観察される面積が互いに等しい。コントローラ7は、利用者の左眼及び右眼が図11Bの観察位置から視差方向に更に移動したと判定すると、サブピクセルP8に黒画像を表示させず、サブピクセルP2に黒画像を表示させてよい。図11Bに示される場合において、サブピクセルP16及びサブピクセルP10は、右眼によって観察される面積が互いに等しい。図11Bの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼が図11Bの観察位置から視差方向に更に移動したと判定すると、サブピクセルP16に黒画像を表示させず、サブピクセルP10に黒画像を表示させてよい。
 図11Cは、適視位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図11Cは、利用者の左眼及び右眼が奥行方向に沿ってバリア6から遠ざかる方向に移動した場合を示す。図11Cは、左可視領域と右可視領域の重なりの増加が丁度サブピクセル1個分の面積となるt=1の場合を示している。図11Cでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。
 図11Cに示される場合において、サブピクセルP7は、右眼によって面積S7の半分以上が観察され、左眼によって面積S7の半分以上が観察される。サブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP7,P9は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP7,P9に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP9から(n+m)個(即ち、9個)のサブピクセル分変位したサブピクセルP16に黒画像を表示させる。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。サブピクセルP16は、サブピクセルP7から(n+m)個のサブピクセル分だけ変位したサブピクセルでもある。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図11Cに示される場合において、サブピクセルP8は、右眼によって面積S8の全部が観察され、左眼によって面積S8の全部が観察される。サブピクセルP8は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP8に黒画像を表示させる。これによって、クロストークが低減されうる。コントローラ7は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルP1,P15に黒画像を表示させてよい。図11Cに示される場合において、サブピクセルP8は、両眼によって同じ面積が観察されるため、サブピクセルP8に黒画像を表示しても、モアレの原因となりにくい。したがって、コントローラ7は、サブピクセルP1,P15に黒画像を表示させなくてよい。これによって、利用者が観察する3次元画像の輝度を向上させることができる。
 図11Dは、図11Cの観察位置からバリア6に対して視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図11Dでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図11Dに示される場合において、サブピクセルP7,P9,P16に、黒画像を表示させることによって、クロストーク及びモアレが低減されうる。図11Dに示される場合において、サブピクセルP10及びサブピクセルP16と、サブピクセルP7とは、左眼によって観察される面積が等しい。また、図11Dに示される場合において、サブピクセルP1及びサブピクセルP10と、サブピクセルP7とは、右眼によって観察される面積が等しい。図11Dの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼が図11Dの観察位置から視差方向に更に移動したと判定すると、サブピクセルP7,P16に黒画像を表示させず、サブピクセルP1,P10に黒画像を表示させてよい。
 図11Eは、図11Cの観察位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図11Eは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6から遠ざかる方向に更に移動した場合を示す。図11Eは、左可視領域と右可視領域の重なりの増加が丁度サブピクセル2個分の面積となるt=2の場合を示している。図11Eでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。
 図11Eに示される場合において、サブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP9は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP9に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP9から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP16に黒画像を表示させる。これによって、モアレが低減されうる。サブピクセルP9は、右眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP16は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。
 図11Eに示される場合において、サブピクセルP6は、右眼によって面積S6の半分以上が観察され、左眼によって面積S6の半分以上が観察される。サブピクセルP6は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP6に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP6から(n+m)個のサブピクセル分だけ変位したサブピクセルP15に黒画像を表示させる。これによって、モアレが低減されうる。サブピクセルP6は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP15は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。
 図11Eに示される場合において、サブピクセルP7は、右眼によって面積S7の全部が観察され、左眼によって面積S7の全部が観察される。サブピクセルP8は、右眼によって面積S8の全部が観察され、左眼によって面積S8の全部が観察される。サブピクセルP7,P8は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP7,P8に黒画像を表示させる。これによって、クロストークが低減されうる。コントローラ7は、サブピクセルP7から(n+m)個のサブピクセル分だけ変位したサブピクセルP14、及び、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルP1に、黒画像を表示させてよい。図11Eに示される場合において、サブピクセルP7,P8は、両眼によって同じ面積が観察されるため、サブピクセルP7,P8に黒画像を表示しても、モアレの原因となりにくい。したがって、コントローラ7は、サブピクセルP1,P14に黒画像を表示させなくてよい。これによって、利用者が観察する3次元画像の輝度を向上させることができる。
 図12A,12B,12Cは、コントローラ7がサブピクセルP1~P16に施す輝度低下処理を説明する図である。図12Aは、図11A,11Bに示されるt=0の場合に対応し、図12Bは、図11C,11Dに示されるt=1の場合に対応し、図12Cは、図11Eに示されるt=2の場合に対応する。図12A,12B,12Cにおいて、クロストーク及びモアレを低減するために黒画像を表示させるサブピクセルは、網掛けして示される。また、図12A,12B,12Cでは、図解を容易にするために、左可視領域51aLと右可視領域51aRとを別個に示している。
 図12Aに示されるように、t=0の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP16に、黒画像を表示させる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、黒画像を表示するサブピクセルの数は、右眼によって1つの透光領域62を介して観察される右可視領域51aRの一端側と他端側で同数である。サブピクセルP16は、サブピクセルP9から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP9,P16に同じ輝度低下処理を施すことによって、クロストーク及びモアレが低減されうる。
 また、図12Aに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP8、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、黒画像を表示するサブピクセルの数は、左眼によって1つの透光領域62を介して観察される左可視領域51aLの一端側と他端側で同数である。サブピクセルP1は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルである。サブピクセルP8,P1に同じ輝度低下処理を施すことによって、クロストーク及びモアレが低減されうる。
 図12Bに示されるように、t=1の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP16に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、図12Bに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP7、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP16に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、図12Bに示されるように、バリア6と利用者の左眼及び右眼との距離が適視距離dより大きくなると、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルP8に低輝度黒画像を表示させる。これによって、クロストークが低減されうる。コントローラ7は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルP1,P15に黒画像を表示させてよいし、サブピクセルP1,P15に黒画像を表示させなくてよい。
 図12Cに示されるように、t=2の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP16に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示させるサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、図12Cに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP6、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP15に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示させるサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、図12Cに示されるように、バリア6と利用者の左眼及び右眼との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルP7,P8に、黒画像を表示させる。これによって、クロストークが低減されうる。コントローラ7は、サブピクセルP7,P8から(n+m)個のサブピクセル分だけ変位したサブピクセルP1,P14に、黒画像を表示させてよいし、黒画像を表示させなくてよい。
 図12Aに示されるように、利用者が適視位置にある場合、透光領域62の一端側及び他端側に両眼可視領域51aLRが存在する。コントローラ7は、透光領域62の一端側の両眼可視領域51aLRに含まれる少なくとも(m+1)個(即ち、少なくとも2個)のサブピクセルP16,P1、及び、透光領域62の他端側の両眼可視領域51aLRに含まれる少なくとも(m+1)個のサブピクセルP8,P9に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。
 図12B,12Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルについて、黒画像を表示させるサブピクセルの数を増加させてよい。言い換えると、コントローラ7は、利用者の左眼及び右眼が適視位置にない場合、中央境界の両眼可視領域51aLRに含まれるサブピクセルのうちのk個のサブピクセルに黒画像を表示させてよい。kは、(m+1)より大きい自然数であってよい。これによって、利用者の左眼及び右眼が適視位置から移動した場合であっても、クロストーク及びモアレを低減できる。
[tanθ=0の場合]
 バリア傾斜角θがtanθ=0である場合について説明する。
 バリア開口率xが50%であるときについて説明する。式(5)において、m=0のとき、バリア開口率xが50%となる。サブピクセル群Pgが、鉛直方向に1個(1行)、水平方向に16個(16列)、連続して配列された16個のサブピクセルP1~P16で構成されるものとして説明する。サブピクセルP1~P16の配列、及びサブピクセルP1~P16に対する右眼画像及び左眼画像の割当ては、図9Aに示される配列及び割当てと同様とする。利用者が観察する右可視領域51aR及び左可視領域51aLのtに対する依存性は、tanθ=0の場合と同様であるため、ここでは、図13A,13B,13Cを参照して、コントローラ7がサブピクセルP1~P16に施す輝度低下処理を説明する。図13Aはt=0の場合に対応し、図13Bはt=1の場合に対応し、図13Cはt=2の場合に対応する。図13A,13B,13Cにおいて、クロストーク及びモアレを低減するために黒画像を表示させるサブピクセルは、網掛けして示される。また、図13A,13B,13Cでは、図解を容易にするために、左可視領域51aLと右可視領域51aRとを別個に示している。
 図13Aに示されるように、t=0の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、黒画像を表示するサブピクセルの数は、右眼によって1つの透光領域62を介して観察される右可視領域51aRの一端側と他端側で同数である。サブピクセルP1は、サブピクセルP9から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP1,P9に同じ輝度低下処理を施すことによって、クロストーク及びモアレが低減されうる。サブピクセルP9は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP1は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、左眼によって1つの透光領域62を介して観察される左可視領域51aLの一端側と他端側で同数である。
 図13Bに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。t=1の場合、コントローラ7は、両眼可視領域にk個(1個)の黒表示を追加する。右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、コントローラ7は、左眼において、両眼可視領域51aLRにk個(1個)の黒表示を追加する。左眼によって透光領域62の一端を横切って観察されるサブピクセルP8、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP16に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図13Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。t=2の場合、コントローラ7は、両眼可視領域にk個(2個)の黒表示を追加する。右眼によって透光領域62の一端を横切って観察されるサブピクセルP9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 また、図13Cに示されるように、コントローラ7は、左眼において、両眼可視領域51aLRにk個(2個)の黒表示を追加する。左眼によって透光領域62の一端を横切って観察されるサブピクセルP7、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP15に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図13Aに示されるように、利用者の左眼及び右眼が適視位置にある場合、透光領域62の一端側及び他端側に両眼可視領域51aLRが存在する。コントローラ7は、透光領域62の一端側の両眼可視領域51aLRに含まれる少なくとも(m+1)個(即ち、少なくとも1個)のサブピクセルP1、及び、透光領域62の他端側の両眼可視領域51aLRに含まれる少なくとも(m+1)個のサブピクセルP9に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。
 図13B,13Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルについて、黒画像を表示させるサブピクセルの数を増加させてよい。言い換えると、コントローラ7は、利用者の左眼及び右眼が適視位置にない場合、中央境界の両眼可視領域51aLRに含まれるサブピクセルのうちのk個のサブピクセルに黒画像を表示させてよい。kは、(m+1)より大きい自然数であってよい。これによって、利用者の左眼及び右眼が適視位置から移動した場合であっても、クロストーク及びモアレを低減できる。
[tanθ=Hp/(2×Vp)の場合]
 バリア傾斜角θを規定する自然数a及びbが、a=1且つb=2である場合について説明する。式(4)により、クロストーク低減処理を施す必要があるサブピクセルの数は、少なくとも2個である。
(バリア開口率が50%のとき)
 バリア開口率xが50%である場合について説明する。式(5)において、n=8かつm=1のとき、バリア開口率xが50%となる。
 サブピクセル群Pgが、鉛直方向に2個(2行)、水平方向に8個(8列)、連続して配列された16個のサブピクセルP1~P16で構成されるものとして説明する。サブピクセルP1~P16は、行方向において番号が小さくなり、列方向において番号が大きくなるように配列されてよい。行方向は、図12Aにおける左方から右方に向かう方向を指す。列方向は、図12Aにおける上方から下方に向かう方向を指す。コントローラ7は、利用者の眼の位置に基づいて、サブピクセルP1~P16のそれぞれに、右眼画像又は左眼画像を割当てる。以下では、サブピクセルP2~P9に右眼画像が連続して割当て、サブピクセルP10~P16,P1に左眼画像が連続して割当てる。したがって、片眼画像を構成するサブピクセルの数nは8である。
 図14Aは、適視位置に位置する利用者の左眼及び右眼が観察するサブピクセルの一例を示す。適視位置は、例えば、利用者とバリア6との距離が適視距離dであり、右眼が視差方向における右可視領域51aRの中央部を観察する観察位置であってよい。図14Aは、左可視領域51aLと右可視領域51aRとに重なりが発生しないt=0の場合を示している。図14Aでは、サブピクセルP2~P9に対して右眼画像が連続して割当てられ、サブピクセルP10~P16,P1に対して左眼画像が連続して割当てられている。したがって、片眼画像を構成するサブピクセルの数nは8である。右可視領域51aRには、サブピクセルP1,P2の一部と、サブピクセルP3~P8の全体と、サブピクセルP9,P10の一部とが含まれる。左可視領域51aLには、サブピクセルP9,P10の一部と、サブピクセルP11~P16の全体と、サブピクセルP1,P2の一部とが含まれる。式(4)により、輝度低下処理を施す必要があるサブピクセルの数は、少なくとも2個である。
 図14Aに示される場合において、サブピクセルP2は、両眼で同時に観察されるため、コントローラ7は、サブピクセルP2に輝度低下処理を施してよい。これによって、クロストークが低減されうる。サブピクセルP2は、右眼によって面積S2の半分以上が観察され、左眼によって面積S2の半分未満が観察される。したがって、サブピクセルP2に輝度低下処理を施すと、左眼に到達する画像光の輝度と比べて、右眼に到達する画像光の輝度が低くなる。その結果、利用者が観察する画像光の輝度が均一でなくなり、モアレが発生することがある。コントローラ7は、サブピクセルP2、及び、サブピクセルP2から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP10に、輝度を同等に低下させた画像を表示させてよい。コントローラ7は、例えば、サブピクセルP2及びサブピクセルP10に、輝度を50%に低下させた画像を表示させてよい。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 図14Aに示される場合において、右眼によって観察される面積S2及び右眼によって観察される面積S10を合計すると、サブピクセル1個分となる。左眼によって観察される面積S2及び左眼によって観察される面積S10を合計すると、サブピクセル1個分となる。したがって、上述のとおり、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 サブピクセルP1,P9についても、サブピクセルP2,P10と同様である。コントローラ7は、両眼によって同時に観察されるサブピクセルP1、及び、サブピクセルP1から(n+m)個のサブピクセル分だけ変位したサブピクセルP9に、輝度を同等に低下させた画像を表示させてよい。これによって、クロストーク及びモアレが低減されうる。サブピクセルP1,P2は、右眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP9,P10は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。輝度低下処理が施されるサブピクセルの数は、右眼によって観察される透光領域62の一端側及び他端側で同数である。サブピクセルP1,P2は、左眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP9,P10は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。したがって、輝度低下処理が施されるサブピクセルの数は、左眼によって観察される透光領域62の一端側及び他端側で同数である。
 上述のとおり、バリア開口率が50%であり、左眼画像及び右眼画像がそれぞれn個のサブピクセルで構成される場合、1つのサブピクセルに輝度低下処理を施すとき、該1つのサブピクセルから(n+m)個のサブピクセル分だけ変位したサブピクセルに同じ輝度低下処理を施すことによって、モアレが低減されうる。輝度低下処理は、黒画像を表示させる処理であってよい。
 図14B,14Cはそれぞれ、図14Aの観察位置からバリア6に対して視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。視差方向は、図14B,14Cにおける左右方向である。図14Bと図14Cとは、利用者の移動方向が異なっている。図14B,14Cでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図14B,14Cの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼の位置が視差方向に沿ってさらに移動したと判定すると、視差画像の構成を変更してよい。
 図14A,14B,14Cに示される場合において、左眼画像を表示するサブピクセルP1は、両眼によって観察されるが、左眼によって面積S1の半分以上が観察され、右眼によって観察される面積S1は面積S1全体の半分である。左眼画像を表示するサブピクセルP10は、両眼によって観察されるが、左眼によって面積S10の半分以上が観察され、右眼によって観察される面積S10は面積S10全体の半分である。コントローラ7は、左眼画像を構成するドット数(8個)に対し、サブピクセルP1,P10がクロストークの発生に及ぼす影響は小さいと判定してよい。コントローラ7は、サブピクセルP1,P10に黒画像を表示させず、輝度を60%、50%、又は40%等に低下させた左眼画像を表示させてよい。
 図14A,14B,14Cに示される場合において、右眼画像を表示するサブピクセルP2は、両眼によって観察されるが、右眼によって面積S2の半分以上が観察され、左眼によって観察される面積S2は面積S2全体の半分である。右眼画像を表示するサブピクセルP9は、両眼によって観察されるが、右眼によって面積S9の半分以上が観察され、左眼によって観察される面積S9は面積S9全体の半分である。コントローラ7は、右眼画像を構成するドット数(8個)に対し、サブピクセルP2,P9がクロストークの発生に及ぼす影響は小さいと判定してよい。コントローラ7は、サブピクセルP1,P10に黒画像を表示させず、輝度を60%、50%、又は40%等に低下させた左眼画像を表示させてよい。
 図14Aに示される場合において、コントローラ7がサブピクセルP1,P2,P9,P10の輝度を50%に低下させる場合、右眼は面積S1の25%及び面積S10の25%を観察するため、右眼のクロストーク率、即ち右眼が観察する右眼画像の輝度に対する右眼が観察する左眼画像の輝度の割合は、(0.5×0.5)/(6+2×0.5)で与えられ、約3.6%となる。約3.6%であるクロストーク率は、問題とならないレベルであるといえる。図14Bに示される場合においても、右眼のクロストーク率は、約3.6%となり、問題とならないレベルであるといえる。輝度を低下させる割合は、50%に限られない。クロストーク率の許容しうる上限値を定め、定めた上限値に基づいて、輝度を低下させる割合を決定してよい。
 図14Dは、適視位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図14Dは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6から遠ざかる方向に更に移動した場合を示す。上述したとおり、バリア6と利用者の左眼及び右眼との距離が適視距離dより大きい場合、左可視領域51aLの一部と右可視領域51aRの一部とが重なった両眼可視領域51aLRが、1つの透光領域62を介して観察される左可視領域51aLと右可視領域51aRとの中央境界に発生しうる。図14Dは、左可視領域51aLと右可視領域51aRとの重なりの増加が丁度サブピクセル1個分の面積となるt=1の場合を示している。図14Eは、図14Dの観察位置からバリア6に対して視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図14D,14Eでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。
 図14D,14Eに示される場合において、サブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP9は、クロストークの原因となるため、コントローラ7は、サブピクセルP9に黒画像を表示させる。サブピクセルP9は、図14Dに示される場合においては、両眼によって同じ面積が観察されているが、図14Eに示される場合においては、右眼によって観察される面積と左眼によって観察される面積とが異なるため、黒表示に伴うモアレが発生することがある。コントローラ7は、サブピクセルP9から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP1にも黒画像を表示する。これによって、黒画像の表示に起因するモアレを抑制することができる。
 図14D,14Eに示される場合において、サブピクセルP1は、右眼によって透光領域62の一端を横切って観察されるサブピクセル、即ち、輝度低下処理を施すサブピクセルである。コントローラ7は、処理対象であるサブピクセルが、輝度低下処理を施すサブピクセルであり、且つ、黒画像を表示させるサブピクセルである場合、処理対象であるサブピクセルに黒画像を表示させてよい。これによって、クロストーク及びモアレを低減しうる。
 図14D,14Eに示される場合において、サブピクセルP10は、両眼によって同時に観察されるため、コントローラ7は、サブピクセルP10に輝度低下処理を施してよい。サブピクセルP10は、右眼によって面積S10の半分未満が観察され、左眼によって面積S10の半分以上が観察される。サブピクセルP10は、主に左眼によって観察されるため、サブピクセルP10に低輝度画像を表示させると、左眼に到達する画像光の輝度が低下する。コントローラ7は、透光領域62の一端を横切って観察されるサブピクセルP2、及び、透光領域62の他端を横切って観察されるサブピクセルP10に、輝度を同等に低下させた低輝度画像を表示させてよい。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 図14D,14Eに示される場合において、右眼によって観察されるサブピクセルP10の面積S10と、右眼によって観察されるサブピクセルP2の面積S2とを合計すると、サブピクセル1個分となる。左眼によって観察されるサブピクセルP10の面積S10と、左眼によって観察されるサブピクセルP2の面積S2とを合計すると、サブピクセル1個分となる。したがって、サブピクセルP2,P10に対する輝度低下処理は、両眼に対してサブピクセル1個分の輝度低下処理となるため、輝度の均一性が維持される。
 図14D,14Eに示される場合において、サブピクセルP8は、両眼によって同時に観察されるため、コントローラ7は、サブピクセルP8に輝度低下処理を施してよい。サブピクセルP8は、右眼によって面積S8の半分以上が観察され、左眼によって面積S8の半分未満が観察される。サブピクセルP8は、主に右眼によって観察されるため、サブピクセルP8に低輝度画像を表示させると、右眼に到達する画像光の輝度が低下する。コントローラ7は、透光領域62の一端を横切って観察されるサブピクセルP8、及び、透光領域62の他端を横切って観察されるサブピクセルP16に、輝度を同等に低下させた低輝度画像を表示させてよい。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 図14D,14Eに示される場合において、右眼によって観察されるサブピクセルP8の面積S8と、右眼によって観察されるサブピクセルP16の面積S16とを合計すると、サブピクセル1個分となる。左眼によって観察されるサブピクセルP8の面積S8と、左眼によって観察されるサブピクセルP16の面積S16とを合計すると、サブピクセル1個分となる。したがって、サブピクセルP8,P16に対する輝度低下処理は、両眼に対してサブピクセル1個分の輝度低下処理となるため、輝度の均一性が維持される。
 図14Fは、図14Dの観察位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図14Fは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6から遠ざかる方向に移動した場合を示す。図14Fは、左可視領域51aLと右可視領域51aRとの重なりの増加が丁度サブピクセル2個分の面積となるt=2の場合を示している。図14Gは、図14Fに示す観察位置から視差方向に沿って移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図14F,14Gでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。
 図14F,14Gに示される場合において、サブピクセルP8は、右眼によって面積S8の半分以上が観察され、左眼によって面積S8の半分以上が観察される。サブピクセルP9は、右眼によって面積S9の半分以上が観察され、左眼によって面積S9の半分以上が観察される。サブピクセルP8,P9は、クロストークが発生する原因となるため、コントローラ7は、サブピクセルP8,P9に黒画像を表示させる。これによって、クロストークが低減されうる。サブピクセルP8とサブピクセルP9とを合わせた2個のサブピクセルは、右眼によって観察される面積と、左眼によって観察される面積とが異なるため、黒表示に起因するモアレが発生しうる。コントローラ7は、サブピクセルP8から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルP16、及びサブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルP1に、黒画像を表示させる。これによって、モアレが低減されうる。
 図14F,14Gに示される場合において、サブピクセルP7は、両眼によって同時に観察されるため、コントローラ7は、サブピクセルP7に輝度低下処理を施してよい。サブピクセルP7は、右眼によって面積S7の半分以上が観察され、左眼によって面積S7の半分未満が観察される。サブピクセルP7は、主に右眼によって観察されるため、サブピクセルP7に低輝度画像を表示させると、右眼に到達する画像光の輝度が低下する。コントローラ7は、透光領域62の一端を横切って観察されるサブピクセルP7、及び、透光領域62の他端を横切って観察されるサブピクセルP15に、輝度を同等に低下させた低輝度画像を表示させてよい。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 図14F,14Gに示される場合において、右眼によって観察されるサブピクセルP7の面積S7と、右眼によって観察されるサブピクセルP15の面積S15とを合計すると、サブピクセル1個分となる。左眼によって観察されるサブピクセルP7の面積S7と、左眼によって観察されるサブピクセルP15の面積S15とを合計すると、サブピクセル1個分となる。したがって、サブピクセルP7,P15に対する輝度低下処理は、両眼に対してサブピクセル1個分の輝度低下処理となるため、輝度の均一性が維持される。
 図14F,14Gに示される場合において、サブピクセルP10は、両眼によって同時に観察されるため、コントローラ7は、サブピクセルP10に輝度低下処理を施してよい。サブピクセルP10は、右眼によって面積S10の半分未満が観察され、左眼によって面積S10の半分以上が観察される。サブピクセルP10は、主に左眼によって観察されるため、サブピクセルP10に低輝度画像を表示させると、左眼に到達する画像光の輝度が低下する。コントローラ7は、透光領域62の一端を横切って観察されるサブピクセルP10と、透光領域62の他端を横切って観察されるサブピクセルP2とに、輝度を同等に低下させた低輝度画像を表示してよい。これによって、左眼が観察する画像光の輝度と、右眼が観察する画像光の輝度とが異なることを抑制できる。したがって、モアレが低減されうる。
 図14F,14Gに示される場合において、右眼によって観察されるサブピクセルP10の面積S10と、右眼によって観察されるサブピクセルP2の面積S2とを合計すると、サブピクセル1個分となる。左眼によって観察されるサブピクセルP10の面積S10と、左眼によって観察されるサブピクセルP2の面積S2とを合計すると、サブピクセル1個分となる。したがって、サブピクセルP2,P10に対する輝度低下処理は、両眼に対してサブピクセル1個分の輝度低下処理となるため、輝度の均一性が維持される。
 図15A,15B,15Cは、コントローラ7がサブピクセルP1~P16に施す輝度低下処理を説明する図である。図15Aは、図14A,14B,14Cに示されるt=0の場合に対応し、図15Bは、図14D,14Eに示されるt=1の場合に対応し、図15Cは、図14F,14Gに示されるt=2の場合に対応する。図15A,15B,15Cにおいて、黒画像を表示させるサブピクセルは、ドット状に網掛けして示される。図15A,15B,15Cにおいて、輝度低下処理が施されるサブピクセルは、斜線状に網掛けして示される。さらに、図15A,15B,15Cでは、図解を容易にするために、左可視領域51aLと右可視領域51aRとを別個に示している。
 図15Aに示されるように、t=0の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9,P10、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1,P2に、輝度を同等に低下させた低輝度画像を表示させる。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、低輝度画像を表示するサブピクセルの数は、右眼によって1つの透光領域62を介して観察される右可視領域51aRの一端側と他端側で同数である。サブピクセルP1は、サブピクセルP9から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP2は、サブピクセルP10から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP1,P2,P9,P10に同じ輝度低下処理を施すことによって、クロストーク及びモアレが低減されうる。サブピクセルP9,P10は、左眼によって透光領域62の一端を横切って観察されるサブピクセルである。サブピクセルP1,P2は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。低輝度画像を表示するサブピクセルの数は、左眼によって1つの透光領域62を介して観察される左可視領域51aLの一端側と他端側で同数であるといえる。
 図15Bに示されるように、t=1の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9,P10、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1,P2に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP1は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP2は、サブピクセルP10から(n+m)個のサブピクセル分だけ変位したサブピクセルである。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図15Bに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP8,P9、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP16,P1に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP16は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP1は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルである。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図15Bに示されるように、コントローラ7は、右眼によって面積の半分以上が観察され、左眼によって面積の半分以上が観察されるサブピクセルP9には、黒画像を表示させる。また、コントローラ7は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルP1にも、黒画像を表示させる。
 図15Cに示されるように、t=2の場合、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP9,P10、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP1,P2に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP1は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP2は、サブピクセルP10から(n+m)個のサブピクセル分だけ変位したサブピクセルである。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図15Cに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP7,P8、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP15,P16に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP15は、サブピクセルP7から(n+m)個のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP16は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルである。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図15Cに示されるように、コントローラ7は、右眼によって面積の半分以上が観察され、左眼によって面積の半分以上が観察されるサブピクセルP8,P9には、黒画像を表示させる。また、コントローラ7は、サブピクセルP8,P9から(n+m)個のサブピクセル分だけ変位したサブピクセルP16,P1にも、黒画像を表示させる。
 図15B,15Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルについて、黒画像を表示させるサブピクセルの数を増加させてよい。言い換えると、コントローラ7は、利用者の左眼及び右眼が適視位置にない場合、中央境界の両眼可視領域51aLRに含まれるサブピクセルのうちのk個のサブピクセルに黒画像を表示させてよい。kは、(m+1)より大きい自然数であってよい。これによって、利用者の左眼及び右眼が適視位置から移動した場合であっても、クロストーク及びモアレを低減できる。
(バリア開口率が56.25%のとき)
 バリア開口率xが56.25%である場合について説明する。式(5)において、n=8かつm=1の場合、バリア開口率xが56.25%となる。サブピクセルP1~P16の配列は、バリア開口率xが50%のときと同じ配列とする。サブピクセルP1~P16に対する左眼画像又は右眼画像の割当ては、バリア開口率xが50%のときと同じ割当てとする。式(4)により、輝度低下処理を施す必要があるサブピクセルの数は、少なくとも2個である。
 図16Aは、適視位置に位置する利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図16Aに示される場合において、サブピクセルP1は、右眼によって面積S1の半分以上が観察され、左眼によって面積S1の半分以上が観察される。サブピクセルP9は、右眼によって面積S9の半分以上が観察され、左面によって面積S9の半分以上が観察される。サブピクセルP1,P9はクロストークが発生する原因となる。コントローラ7は、サブピクセルP1,P9に黒画像を表示させる。これによって、クロストークが低減されうる。また、コントローラ7は、サブピクセルP1から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP8,P10に黒画像を表示させる。また、コントローラ7は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルP2,P16に黒画像を表示させる。これによって、モアレが低減されうる。サブピクセルP9,P10は、右眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP16,P1は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。サブピクセルP1,P2は、左眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP8,P9は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。
 図16Bは、図16Aの観察位置から視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図16Bでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図16Bにおいて、サブピクセルP16,P1,P2,P8,P9,P10に、黒画像を表示させることによって、クロストーク及びモアレが低減されうる。図16Bに示される場合において、サブピクセルP3及びサブピクセルP8は、左眼によって観察される面積が互いに等しい。右眼によっては、どちらも全面積が観察されている。図16Bの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼が図16Bの観察位置から視差方向に更に移動したと判定すると、サブピクセルP8に黒画像を表示させず、サブピクセルP3に黒画像を表示させてよい。図16Bに示される場合において、サブピクセルP16及びサブピクセルP11は、右眼によって観察される面積が互いに等しい。左眼によっては、どちらも全面積が観察されている。コントローラ7は、利用者の左眼及び右眼が図16Bの観察位置から視差方向に更に移動したと判定すると、サブピクセルP16に黒画像を表示させず、サブピクセルP11に黒画像を表示させてよい。以上の処理により、輝度を変化させることなく、右眼画像の構成と左眼画像の構成をサブピクセル1個分移動させることが可能となる。
 図16Cは、図16Aの観察位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図16Cは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6に近づく方向に移動した場合を示す。図16Cは、左可視領域51aLと右可視領域51aRとの重なりの増加が丁度サブピクセル1個分の面積となるt=1の場合を示している。図16Cでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図16Cに示される場合において、左可視領域51aLの一部と右可視領域51aRの一部とが重なった両眼可視領域51aLRに含まれるサブピクセルの数が増加する。
 図16Cに示される場合において、サブピクセルP16は、右眼によって面積S16の半分以上が観察され、左眼によって面積S16の半分以上が観察される。サブピクセルP1は、右眼によって面積S1の半分以上が観察され、左眼によって面積S1の半分以上が観察される。サブピクセルP16,P1はクロストークが発生する原因となる。コントローラ7は、サブピクセルP16,P1に黒画像を表示させる。これによって、クロストークが低減されうる。コントローラ7は、サブピクセルP16から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP9,P9から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP2に黒画像を表示させる。また、コントローラ7は、サブピクセルP1から(n+m)個のサブピクセル分だけ変位したサブピクセルP8,P8から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP15に黒画像を表示させる。これによって、モアレが低減されうる。サブピクセルP8,P9は、右眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP15,P16は、右眼によって透光領域62の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。サブピクセルP1,P2は、左眼によって透光領域62の一端を横切って観察されるサブピクセルであり、サブピクセルP8,P9は、左眼によって透光領域62の他端を横切って観察されるサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図16Dは、図16Cの観察位置から視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図16Dでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図16Dにおいて、サブピクセルP15,P16,P1,P2,P8,P9に、黒画像を表示させることによって、クロストーク及びモアレが低減されうる。図16Dに示される場合において、サブピクセルP3及びサブピクセルP8は、左眼によって観察される面積が互いに等しい。右眼によっては、どちらも全面積が観察されている。図16Dの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼が図16Dの観察位置から視差方向に更に移動したと判定すると、サブピクセルP8に黒画像を表示させず、サブピクセルP3に黒画像を表示させてよい。図16Dに示される場合において、サブピクセルP15及びサブピクセルP10は、右眼によって観察される面積が互いに等しい。左眼によっては、どちらも全面積が観察されている。コントローラ7は、利用者の左眼及び右眼が図16Dの観察位置から視差方向に更に移動したと判定すると、サブピクセルP15に黒画像を表示させず、サブピクセルP10に黒画像を表示させてよい。以上の処理により、輝度を変化させることなく、右眼画像の構成と左眼画像の構成をサブピクセル1個分移動させることが可能となる。
 図16Eは、図16Cの観察位置からバリア6に対して奥行方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図16Eは、利用者の左眼及び右眼が、奥行方向に沿って、バリア6に近づく方向に移動した場合を示す。図16Eは、左可視領域51aLと右可視領域51aRとの重なりの増加が丁度サブピクセル2個分の面積となるt=2の場合を示している。図16Eでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図16Eに示される場合において、左可視領域51aLの一部と右可視領域51aRの一部とが重なった両眼可視領域51aLRに含まれるサブピクセルの数が増加する。
 図16Eに示される場合において、サブピクセルP15は、右眼によって面積S15の半分以上が観察され、左眼によって面積S15の半分以上が観察される。サブピクセルP16は、右眼によって面積S16の半分以上が観察され、左眼によって面積S16の半分以上が観察される。サブピクセルP1は、右眼によって面積S1の半分以上が観察され、左眼によって面積S1の半分以上が観察される。サブピクセルP15,P16,P1はクロストークが発生する原因となる。コントローラ7は、サブピクセルP15,P16,P1に黒画像を表示させる。これによって、クロストークが低減されうる。コントローラ7は、サブピクセルP15から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルP8に黒画像を表示させる。これによって、モアレが低減されうる。サブピクセルP8は、サブピクセルP1から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルである。
 図16Eに示される場合において、サブピクセルP14は、右眼によって面積S14の半分未満が観察され、左眼によって面積S14の半分以上が観察される。サブピクセルP2は、右眼によって面積S2の半分以上が観察され、左眼によって面積S2の半分未満が観察される。コントローラ7は、サブピクセルP14、及び、サブピクセルP14から(n+m)個のサブピクセル分だけ変位したサブピクセルP7に、輝度を同等に低下させた低輝度画像を表示させる。コントローラ7は、サブピクセルP2、及び、サブピクセルP2から(n+m)個のサブピクセル分だけ変位したサブピクセルP9に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。
 図16Fは、図16Eの観察位置から視差方向に移動した利用者の左眼及び右眼が観察するサブピクセルの一例を示す。図16Fでは、アクティブエリア51に表示される視差画像の構成を、利用者の左眼及び右眼が適視位置に位置するときと同じ構成としている。図16Fに示される場合において、サブピクセルP15,P16,P1,P8に、黒画像を表示させ、サブピクセルP14,P2,P7,P9に、輝度を同等に低下させた低輝度画像を表示させることによって、クロストーク及びモアレが低減されうる。図16Fに示される場合において、サブピクセルP14と、サブピクセルP3及びサブピクセルP10とは、左眼によって観察される面積が等しい。図16Fの観察位置は、ヘッドトラッキング境界に対応する観察位置であり、コントローラ7は、利用者の左眼及び右眼が図16Fの観察位置から視差方向に更に移動したと判定すると、サブピクセルP14に低輝度画像を表示させず、サブピクセルP3、及び、サブピクセルP3から(n+m)個のサブピクセル分だけ変位したサブピクセルP10に、低輝度画像を表示させてよい。また、サブピクセルP15と、サブピクセルP2及びサブピクセルP9とは、左眼によって観察される面積が互いに等しい。サブピクセルP15に黒画像を表示させず、サブピクセルP2及びサブピクセルP9に黒画像を表示させてよい。図16Fに示される場合において、サブピクセルP7及びサブピクセルP14と、サブピクセルP3とは、右眼によって観察される面積が互いに等しい。コントローラ7は、利用者の左眼及び右眼が図16Fの観察位置から視差方向に更に移動したと判定すると、サブピクセルP7,P14に低輝度画像を表示させず、サブピクセルP3に低輝度画像を表示させてよい。また、サブピクセルP8及びサブピクセルP15と、サブピクセルP2とは、右眼によって観察される面積が互いに等しい。サブピクセルP8,P15に黒画像を表示させず、サブピクセルP2に黒画像を表示させてよい。以上のような処理を低輝度画像と黒画像に実施すれば、輝度を変化させることなく、右眼画像の構成と左眼画像の構成をサブピクセル1個分移動させることが可能となる。
 図17A,17B,17Cは、コントローラ7がサブピクセルP1~P16に施す輝度低下処理を説明する図である。図17Aは、図16A,16Bに示されるt=0の場合に対応し、図17Bは、図16C,16Dに示されるt=1の場合に対応し、図17Cは、図16E,16Fに示されるt=2の場合に対応する。図17A,17B,17Cにおいて、黒画像を表示させるサブピクセルは、ドット状に網掛けして示される。図17A,17B,17Cにおいて、輝度低下処理が施されるサブピクセルは、斜線状に網掛けして示される。さらに、図17A,17B,17Cでは、図解を容易にするために、左可視領域51aLと右可視領域51aRとを別個に示している。
 図17Aに示されるように、t=0の場合、コントローラ7は、両眼可視領域にm個(1個)の黒表示をバリア開口の両端において実施する。図17Aに示される場合において、黒表示が実施されるサブピクセルは、サブピクセルP1,P9である。さらに右眼によって透光領域62の一端を横切って観察されるサブピクセルP9,P10、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP16,P1に、輝度を同等に低下させた黒画像を表示させる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、黒画像を表示するサブピクセルの数は、右眼によって1つの透光領域62を介して観察される右可視領域51aRの一端側と他端側で同数である。サブピクセルP16は、サブピクセルP9から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP1は、サブピクセルP10から(n+m)個(即ち、8個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP16,P1,P9,P10に同じ黒表示を施すことによって、クロストーク及びモアレが低減されうる。
 コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP8,P9、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP1,P2に、黒画像を表示させる。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。言い換えると、黒画像を表示するサブピクセルの数は、左眼によって1つの透光領域62を介して観察される左可視領域51aLの一端側と他端側で同数である。サブピクセルP1は、サブピクセルP8から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルである。サブピクセルP2は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルである。サブピクセルP1,P2,P8,P9に同じ黒表示を施すことによって、クロストーク及びモアレが低減されうる。
 図17Bに示されるように、コントローラ7は、右眼によって透光領域62の一端を横切って観察されるサブピクセルP8,P9、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP15,P16に、低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP15は、サブピクセルP8から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP16は、サブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図17Bに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP1,P2、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP8,P9に、低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP8は、サブピクセルP1から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP9は、サブピクセルP2から(n+m)個のサブピクセル分だけ変位したサブピクセルである。黒画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 ここで、サブピクセルP16,P1は、両眼に観察される画素であるために、黒表示が実施されるので、右眼においてサブピクセルP16から(n+m)個のサブピクセル分だけ変位したサブピクセルP9、さらに左眼においてサブピクセルP9から(n+m)個のサブピクセル分だけ変位したサブピクセルP2が黒表示となり、左眼においてP1から(n+m)個のサブピクセル分だけ変位したサブピクセルP8、さらに右眼においてサブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルP15が黒表示となる。
 図17Cに示されるように、t=2の場合、コントローラ7は、両眼可視領域にk個(3個)の黒表示をバリア開口の両端において実施する。図17Cに示される場合において、黒表示が実施されるサブピクセルは、サブピクセルP15,P16,P1である。右眼によって透光領域62の一端を横切って観察されるサブピクセルP7,P8、及び、右眼によって透光領域62の他端を横切って観察されるサブピクセルP14,P15に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP14は、サブピクセルP7から(n+m)個(即ち、9個)のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP15は、サブピクセルP8から(n+m)個のサブピクセル分だけ変位したサブピクセルである。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図17Cに示されるように、コントローラ7は、左眼によって透光領域62の一端を横切って観察されるサブピクセルP1,P2、及び、左眼によって透光領域62の他端を横切って観察されるサブピクセルP8,P9に、輝度を同等に低下させた低輝度画像を表示させる。これによって、クロストーク及びモアレが低減されうる。サブピクセルP8は、サブピクセルP1から(n+m)個のサブピクセル分だけ変位したサブピクセルであり、サブピクセルP9は、サブピクセルP2から(n+m)個のサブピクセル分だけ変位したサブピクセルである。低輝度画像を表示するサブピクセルの数は、透光領域62の一端側及び他端側で同数である。
 図17Cに示されるように、コントローラ7は、右眼によって面積の半分以上が観察され、左眼によって面積の半分以上が観察されるサブピクセルP15,P16,P1には、黒画像を表示させる。コントローラ7は、右眼において、サブピクセルP15から(n+m)個のサブピクセル分だけ変位し、左眼において、サブピクセルP1から(n+m)個のサブピクセル分だけ変位したサブピクセルP8にも、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。
 図17Aに示されるように、利用者の左眼及び右眼が適視位置にある場合、透光領域62の一端側及び他端側に両眼可視領域51aLRが存在する。コントローラ7は、透光領域62の一端側の両眼可視領域51aLRに含まれる少なくともm個(即ち、少なくとも1個)のサブピクセルP1、及び、透光領域62の他端側の両眼可視領域51aLRに含まれる少なくともm個のサブピクセルP9に、黒画像を表示させる。これによって、クロストーク及びモアレが低減されうる。
 図17B,17Cに示されるように、利用者の左眼及び右眼と適視位置との距離が大きくなるにつれて、左可視領域51aLと右可視領域51aRとの中央境界の両眼可視領域51aLRに含まれるサブピクセルの数が増加する。コントローラ7は、中央境界の両眼可視領域51aLRに含まれるサブピクセルについて、黒画像を表示させるサブピクセルの数を増加させてよい。言い換えると、コントローラ7は、利用者の左眼及び右眼が適視位置にない場合、中央境界の両眼可視領域51aLRに含まれるサブピクセルのうちのk個のサブピクセルに黒画像を表示させてよい。kは、(m+1)より大きい自然数であってよい。これによって、利用者の左眼及び右眼が適視位置から移動した場合であっても、クロストーク及びモアレを低減できる。
 コントローラ7は、黒画像を表示させるサブピクセルと、低輝度画像を表示させるサブピクセルとが同じサブピクセルである場合、該サブピクセルに黒画像を表示させてよい。図17Cに示される場合において、黒画像を表示させるサブピクセルP15,P8,P1は、低輝度画像を表示させるサブピクセルでもある。サブピクセルP15,P8,P1に、低輝度画像ではなく、黒画像を表示させることによって、クロストーク及びモアレが低減されうる。
 次に、第3サブピクセルの数を判定する方法について説明する。
(観察距離が適視距離である場合)
 図1を参照して、利用者が適視距離dに位置する場合における、コントローラ7による、3次元表示システム100の各構成要素の制御について、説明する。コントローラ7は、利用者の左眼及び右眼の少なくとも一方の位置に基づいて、表示パネル5のアクティブエリア51内の左可視領域51aL及び右可視領域51aRを判定する。コントローラ7は、例えば、利用者の左眼の位置に基づいて、左眼の位置から水平方向に所定の眼間距離Eだけ移動した位置に利用者の右眼があると判定してよい。コントローラは、それぞれの透光領域62を通過した画像光が利用者の左眼及び右眼に到達するように、左可視領域51aLと右可視領域51aRを判定してよい。
 利用者の観察距離が適視距離dである場合、1つの透光領域62における左可視領域51aLと右可視領域51aRとは共に水平方向の長さがサブピクセルn個分となる。そのため、図1に示すように、左可視領域51aLと右可視領域51aRとは重ならず、表示パネル5の表示面において水平方向に交互に並ぶ。コントローラ7は、左可視領域51aLに含まれるサブピクセルを左サブピクセルと判定する。左サブピクセルは、例えば、左可視領域51aLに所定割合以上が含まれるサブピクセルである。左サブピクセルは、第1サブピクセル、又は第1表示領域とも称される。また、コントローラ7は、右可視領域51aRに含まれるサブピクセルを右サブピクセルと判定する。右サブピクセルは、例えば、右可視領域51aRに所定割合以上が含まれるサブピクセルである。左サブピクセルは、第2サブピクセル、又は第2表示領域とも称される。図1に示すように、左サブピクセルと右サブピクセルとは重ならず、表示パネル5の表示面において水平方向に交互に並ぶ。
 図18は、1つの透光領域62aを通過した画像光によって、適視距離dに位置する利用者の眼から視認されるサブピクセルを示す図である。以下、サブピクセル群Pgには水平方向に連続して配置された12個のサブピクセルP1~P12が含まれるものとして説明する。図18には、バリア6から適視距離dだけ離れて位置する利用者の右眼又は左眼が所定のサブピクセルを視認することができる視認領域70が示される。1つの視認領域70では水平方向に連続する6個のサブピクセルが視認される。図18では、利用者の左眼及び右眼が透光領域62aを介して視認できる範囲は、破線によって表されている。例えば、利用者の左眼が視認領域70Aに含まれる位置L1にあるとき、利用者の左眼は、透光領域62aを介して、サブピクセルP1~P6を視認する。利用者の左眼が位置L1の位置から水平方向に移動して、視認領域70Aから視認領域70Bに移ると、利用者の左眼によって視認されるサブピクセルも変化する。利用者の左眼が視認領域70Bに含まれる位置L2にあるとき、利用者の左眼は、透光領域62aを介して、サブピクセルP2~P7を視認する。隣り合う視認領域70において利用者の眼から視認されるサブピクセルには、互いに1サブピクセル分の差異が生じる。
 上述のとおり、3次元表示システム100では、サブピクセル群Pgの水平方向に並ぶ2×n個のサブピクセルのうち、異なるn個ずつのサブピクセルが適視距離dにある利用者の左眼及び右眼で視認されるように、バリアピッチBp、及びギャップgが規定される。即ち、3次元表示システム100は、適視距離dに位置する利用者の左眼及び右眼で視認されるサブピクセルの領域に、nサブピクセル分だけ差異が生じるように構成される。したがって、図18において、左眼が、透光領域62aを介してサブピクセルP1~P6を視認する視認領域70Aに含まれる位置L1にある場合、右眼は、サブピクセルP7~P12を視認する視認領域70Cに含まれる位置R1にある。このとき、コントローラ7は、サブピクセルP1~P6を左サブピクセルとし、利用者の左眼で視認される左眼画像を表示させる。コントローラ7は、サブピクセルP7~P12を右サブピクセルとし、利用者の右眼で視認される右眼画像を表示させる。これによって、透光領域62aを通過した画像光が利用者の左眼及び右眼に到達すると、利用者は、クロストークが低減された状態で3次元画像を視認することができる。利用者の左眼と右眼との間の距離である眼間距離Eは、n個の視認領域70の距離に相当する。即ち、1つの視認領域70の幅はE/nである。
 コントローラ7は、取得部3によって取得した利用者の眼の位置に応じて、右眼画像又は左眼画像を表示させるサブピクセルを変更してよい。例えば、利用者が適視距離dにおいて水平方向に移動し、利用者の左眼が位置L1から位置L2に移動したとする。このとき、コントローラ7は、例えば、利用者の左眼の位置から、利用者の左眼がサブピクセルP2~P7を視認する視認領域70Bに位置すると判定する。コントローラ7は、利用者の左眼の位置から、左眼から眼間距離Eだけ離れた右眼がサブピクセルP8~P12及びP1を視認する視認領域70Dに位置すると判定する。コントローラ7は、サブピクセルP2~P7を左サブピクセルとして、サブピクセルP8~P12及びP1を右サブピクセルとする。これによって、利用者は、クロストークが低減された状態で3次元画像を視認することができる。
(観察距離が適視距離でない場合)
 利用者の観察距離が適視距離dでない場合における、コントローラ7による、3次元表示システム100の各構成要素の制御について、説明する。利用者が適視距離dとは異なる観察距離d1に位置する場合、図8Bに示されるように、1つの透光領域62aにおける左可視領域51aLの一部が右可視領域51aRの一部と重なった両眼可視領域51aLRが存在することがある。両眼可視領域51aLRが存在する場合、左可視領域51aLに含まれ左眼画像を表示させるべきと判定された左サブピクセルであり、かつ、右可視領域51aRに含まれ右眼画像を表示させるべきと判定された右サブピクセルであるサブピクセルが存在しうる。以下、左サブピクセルと判定され、且つ、右サブピクセルと判定されたサブピクセルは、第3サブピクセルとも称される。第3サブピクセルは、第3表示領域とも称される。
 図8Bに示される場合において、両眼可視領域51aLRに含まれる第3サブピクセルに右眼画像が表示されると、左眼が視認する右眼画像が増加する。両眼可視領域51aLRに含まれる第3サブピクセルに左眼画像が表示されると、右眼が視認する左眼画像が増加する。そのため、第3サブピクセルに左画像及び右眼画像のいずれを表示させても、クロストークが増加することがある。コントローラ7は、観察距離d1に位置する利用者が、3次元表画像を視認したときに発生するクロストークを低減させる制御を行う。
 コントローラ7は、利用者の観察距離に基づいて、左サブピクセルであって、かつ右サブピクセルである第3サブピクセルを判定する。
(観察距離が適視距離より長い場合)
 図19に示されるように、利用者の左眼及び右眼がバリア6から観察距離Y1だけ離れた、位置L8-2及び位置R8-2にあると仮定する。位置L8-2及び位置R8-2は、バリア6から適視距離dだけ離れた、位置L8-1及び位置R8-1よりも、奥行き方向に沿ってバリア6から遠ざかる方向に移動した位置である。この場合、表示パネル5から射出され、透光領域62aを通過した画像光は、光路71A及び光路71Bに沿って進行し、位置L8-2にある左眼及び位置R8-2にある右眼にそれぞれ到達する。光路71Aは、適視距離dにおいて視認領域70Bに含まれる位置L8-1’を通過している。視認領域70Bは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP2~P7を視認できる領域に対応している。左眼が位置L8-2にある場合に光路71Aが位置L8-1’にて視認領域70Bと交差することは、左眼がサブピクセルP2~P7を視認できることを表す。つまり、コントローラ7は、左眼が位置L8-2にある場合であっても、光路71Aが交差する視認領域70を算出することによって、左眼が視認できるサブピクセルを特定できる。位置L8-2にある左眼は、サブピクセルP2~P7を視認できる。光路71Bは、適視距離dにおいて視認領域70Cに含まれる位置R8-1を通過している。視認領域70Cは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP7~P12を視認できる領域に対応している。位置R8-2にある右眼は、サブピクセルP7~P12を視認できる。位置L8-2にある左眼及び位置R8-2にある右眼は、サブピクセルP7を共に視認する。図19において、サブピクセルP7は、網掛けして示される。サブピクセルP7は、左サブピクセルと右サブピクセルとの境界のうち、1つの透光領域62から視認される左サブピクセルと右サブピクセルの中心側の境界に位置するサブピクセルである。
 図19において、バリア6からの観察距離Y1と適視距離dとの比は、位置L8-2及び位置R8-2の距離と位置L8-1’及び位置R8-1の距離の比に相当する。観察距離Y1における、眼間距離Eだけ離れた利用者の左眼及び右眼が視認する画像は、適視距離dにおいて、眼間距離Eから1つの視認領域70の幅、即ちE/nだけ短くなった利用者の左眼及び右眼が視認する画像に相当すると考えてよい。利用者の左眼及び右眼が共に視認しうる画像が1サブピクセルとなる観察距離Y1は、片眼画像を構成するサブピクセルの数n、適視距離d、及び眼間距離Eを用いた次の式(6)にて、規定される。
 d:(E-E/n)=Y1:E               …(6)
即ち、利用者の左眼及び右眼が共に視認しうる画像が1サブピクセルとなる観察距離Y1は次の式(7)で表される。
 Y1=(n×d)/(n-1)               …(7)
 図20に示されるように、利用者の左眼及び右眼がバリア6から観察距離Y2だけ離れた、位置L9-2及び位置R9-2にあると仮定する。位置L9-2及び位置R9-2は、バリア6から適視距離dだけ離れた、位置L9-1及び位置R9-1よりも、奥行き方向に沿ってバリア6から遠ざかる方向に移動した位置である。観察距離Y2は、上述した観察距離Y1より大きい距離である。図20において、位置L9-2にある利用者の左眼は、表示パネル5から射出され、光路71Aに沿って進行した画像光を視認する。光路71Aは、適視距離dにおいて視認領域70Dに含まれる位置L9-1’を通過している。視認領域70Dは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP3~P8を視認できる領域に対応している。位置L9-2にある左眼は、サブピクセルP3~P8を視認できる。位置R9-2利用者の右眼は、表示パネル5から射出され、光路71Bに沿って進行した画像光を視認する。光路71Bは、適視距離dにおいて視認領域70Cに含まれる位置R9-1を通過している。視認領域70Cは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP7~P12を視認できる領域に対応している。位置R9-2にある右眼は、サブピクセルP7~P12を視認できる。位置L9-2にある左眼及び位置R9-2にある右眼は、サブピクセルP7及びP8を共に視認する。
 観察距離Y2における、位置L9-2にある左眼及び位置R9-2にある右眼が視認する画像は、適視距離dにおいて、眼間距離Eから(E/n)×2だけ短くなった、位置L9-1’にある左眼及び位置R9-1にある右眼が視認する画像に相当すると考えてよい。利用者の左眼及び右眼が共に視認しうる画像が2サブピクセルとなる観察距離Y2は、次の式(8)にて、規定される。
 Y2=(n×d)/(n-2)               …(8)
 上述のとおり、コントローラ7は、観察距離Yが適視距離dより長い場合、利用者の観察距離Y、片眼画像を構成するサブピクセルの数n、及び適視距離dを用いた次の式(9)にて算出されるXを、第3サブピクセルの数と判定する。
 Y=(n×d)/(n-X)                …(9)
 コントローラ7は、観察距離Yが適視距離dより長い場合、第3サブピクセルが、左サブピクセルと右サブピクセルとの境界のうち、1つの透光領域62から視認される左サブピクセルと右サブピクセルの中心側の境界で発生すると判定してよい。
(観察距離が適視距離より短い場合)
 図21に示されるように、利用者の左眼及び右眼がバリア6から観察距離Y3だけ離れた、位置L10-2及び位置R10-2にあると仮定する。位置L10-2及び位置R10-2は、バリア6から適視距離dだけ離れた、位置L10-1及び位置R10-1よりも、奥行き方向に沿ってバリア6に近づいた位置である。この場合、表示パネル5から射出された画像光は、光路71A及び光路71Bに沿って進行し、1つの透光領域62aを通過して位置L10-2にある左眼及び位置R10-2にある右眼にそれぞれ到達する。光路71Aは、適視距離dにおいて視認領域70Eに含まれる位置L10-1’を通過している。視認領域70Eは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP12及びP1~P5を視認できる領域に対応している。左眼が位置L10-2にある場合に光路71Aが位置L10-1’にて視認領域70Eと交差することは、左眼がサブピクセルP12及びP1~P5を視認できることを表す。つまり、コントローラ7は、左眼が位置L10-2にある場合であっても、光路71Aが交差する視認領域70を算出することによって、左眼が視認できるサブピクセルを特定できる。位置L10-2にある左眼は、サブピクセルP12及びP1~P5を視認できる。光路71Eは、適視距離dにおいて視認領域70Cに含まれる位置R10-1を通過している。視認領域70Cは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP7~P12を視認できる領域に対応している。位置R10-2にある右眼は、サブピクセルP7~P12を視認できる。位置L10-2にある左眼及び位置R10-2にある右眼は、サブピクセルP12を共に視認する。図21において、サブピクセルP7は、網掛けして示される。サブピクセルP12は、左サブピクセルと右サブピクセルとの境界のうち、1つの透光領域62から視認される左サブピクセルと右サブピクセルの外側の境界に位置するサブピクセルである。
 図21において、バリア6からの観察距離Y3と適視距離dとの比は、位置L10-2及び位置R10-2の距離と位置L10-1’及び位置R10-1の距離の比に相当する。観察距離Y3における、眼間距離Eだけ離れた利用者の左眼及び右眼が視認する画像は、適視距離dにおいて、眼間距離Eから1つの視認領域70の幅、即ちE/nだけ長くなった利用者の左眼及び右眼が視認する画像に相当すると考えてよい。利用者の左眼及び右眼が共に視認しうる画像が1サブピクセルとなる観察距離Y3は、片眼画像を構成するサブピクセルの数n、適視距離d、及び眼間距離Eを用いた次の式(10)にて、規定される。
 d:(E+E/n)=Y3:E              …(10)
即ち、利用者の左眼及び右眼が共に視認しうる画像が1サブピクセルとなる観察距離Y3は次の式(11)で表される。
 Y3=(n×d)/(n+1)              …(11)
 図22に示されるように、利用者の左眼及び右眼がバリア6から観察距離Y4だけ離れた、位置L11-2及び位置R11-2にあると仮定する。位置L11-2及び位置R11-2は、バリア6から適視距離dだけ離れた、位置L11-1及び位置R11-1よりも、奥行き方向に沿ってバリア6に近づいた位置である。観察距離Y4は、上述した観察距離Y3より短い距離である。図22において、位置L11-2にある利用者の左眼は、表示パネル5から射出され、光路71Aに沿って進行した画像光を視認する。光路71Aは、適視距離dにおいて視認領域70Fに含まれる位置L11-1’を通過している。視認領域70Fは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP11~P12及びP1~P4を視認できる領域に対応している。位置L11-2にある左眼は、サブピクセルP11~P12及びP1~P4を視認できる。位置R11-2にある利用者の右眼は、表示パネル5から射出され、光路71Bに沿って進行した画像光を視認する。光路71Bは、適視距離dにおいて視認領域70Cに含まれる位置R11-1を通過している。視認領域70Cは、バリア6から適視距離dだけ離れた平面内において、サブピクセルP7~P12を視認できる領域に対応している。位置R11-2にある右眼は、サブピクセルP7~P12を視認できる。位置L11-2にある左眼及び位置R11-2にある右眼は、サブピクセルP11及びP12を共に視認する。
 観察距離Y4における、位置L11-2にある左眼及び位置R11-2にある右眼は、適視距離dにおいて、眼間距離Eから(E/n)×2だけ長くなった、位置L11-1’にある左眼と位置R11-1にある右眼との距離に相当すると考えてよい。利用者の左眼及び右眼が共に視認しうる画像が2サブピクセルとなる観察距離Y4は、次の式(12)にて、規定される。
 Y4=(n×d)/(n+2)              …(12)
 上述のとおり、コントローラ7は、観察距離Yが適視距離dより短い場合、利用者の観察距離Y、片眼画像を構成するサブピクセルの数n、及び適視距離dを用いた次の式(13)にて算出されるXを、第3サブピクセルの数と判定する。
 Y=(n×d)/(n+X)               …(13)
 コントローラ7は、観察距離Yが適視距離dより短い場合、第3サブピクセルが、左サブピクセルと右サブピクセルとの境界のうち、1つの透光領域62から視認される左サブピクセルと右サブピクセルの外側の境界で発生すると判定してよい。
 コントローラ7は、利用者の左眼で視認される左サブピクセルの数と利用者の右眼で視認される右サブピクセルの数とが等しくなるように、第3サブピクセルの数を偶数となるように補正してよい。図23には、観察距離Yと、補正後の第3サブピクセルの数との一覧を示す。コントローラ7は、例えば、図23の補正1で示すように、式(9)又は式(13)により算出されたXを切り上げして整数にした数以上の、最も小さい偶数を第3サブピクセルの数としてよい。コントローラ7は、例えば、図23の補正2で示すように、式(9)又は式(13)により算出されたXを超えない最大の偶数又は0を第3サブピクセルの数としてよい。コントローラ7は、例えば、図23の補正3で示すように、式(9)又は式(13)により算出されたXを切り捨てして整数にした数以上の、最も小さい偶数又は0を第3サブピクセルの数としてよい。
 上述の実施形態は代表的な例として説明したが、本開示の趣旨及び範囲内で、多くの変更及び置換ができることは当業者に明らかである。したがって、本開示は、上述の実施形態によって制限するものと解するべきではなく、特許請求の範囲から逸脱することなく、種々の変形及び変更が可能である。例えば、実施形態及び実施例に記載の複数の構成ブロックを1つに組合せたり、あるいは1つの構成ブロックを分割したりすることが可能である。
 上述の実施形態では、3次元表示システム100において、3次元表示装置2と検出装置1とが別体であるものとして説明したが、これに限られない。例えば、3次元表示装置2は、検出装置1が提供する機能を備えてよい。かかる場合、3次元表示装置2は、利用者の左眼及び右眼の少なくとも一方の位置を検出する。
 図24に示すように、3次元表示システム100は、ヘッドアップディスプレイシステム400に搭載されうる。ヘッドアップディスプレイシステム400は、HUD(Head Up Display)400とも称される。HUD400は、3次元表示システム100と、光学部材410と、被投影面430を有する被投影部材420とを備える。HUD400は、3次元表示システム100から射出される画像光を、光学部材410を介して被投影部材420に到達させる。HUD400は、被投影部材420で反射させた画像光を、利用者の左眼及び右眼に到達させる。つまり、HUD400は、破線で示される光路440に沿って、3次元表示システム100から利用者の左眼及び右眼まで画像光を進行させる。利用者は、光路440に沿って到達した画像光を、虚像450として視認しうる。
 図25に示すように、3次元表示システム100を含むHUD400は、移動体10に搭載されてよい。HUD400は、構成の一部を、当該移動体10が備える他の装置、部品と兼用してよい。例えば、移動体10は、ウインドシールドを被投影部材420として兼用してよい。構成の一部を当該移動体10が備える他の装置、部品と兼用する場合、他の構成をHUDモジュール又は3次元表示コンポーネントと呼ばれうる。HUD400、3次元表示システム100は、移動体10に搭載されてよい。本開示における「移動体」には、車両、船舶、航空機を含む。本開示における「車両」には、自動車及び産業車両を含むが、これに限られず、鉄道車両及び生活車両、滑走路を走行する固定翼機を含めてよい。自動車は、乗用車、トラック、バス、二輪車、及びトロリーバスなどを含むがこれに限られず、道路上を走行する他の車両を含んでよい。産業車両は、農業及び建設向けの産業車両を含む。産業車両には、フォークリフト、及びゴルフカートを含むがこれに限られない。農業向けの産業車両には、トラクター、耕耘機、移植機、バインダー、コンバイン、及び芝刈り機を含むが、これに限られない。建設向けの産業車両には、ブルドーザー、スクレーパー、ショベルカー、クレーン車、ダンプカー、及びロードローラを含むが、これに限られない。車両は、人力で走行するものを含む。なお、車両の分類は、上述に限られない。例えば、自動車には、道路を走行可能な産業車両を含んでよく、複数の分類に同じ車両が含まれてよい。本開示における船舶には、マリンジェット、ボート、タンカーを含む。本開示における航空機には、固定翼機、回転翼機を含む。
 本開示の一実施形態によれば、利用者に3次元画像を適切に視認させることが可能となる。
 本開示は、以下の態様(1)~(10)で実施可能である。
(1)第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する表示パネルと、
 前記表示面から射出される画像光の光線方向を規定するパララックスバリアと、
 利用者の第1眼および第2眼の少なくとも一方の位置を取得する位置取得部と、
 前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成するコントローラと、を備え、
 前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並び、
 前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当て、
 前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、
 x=0.5+m/2n
であり、
 前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方によって前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方によって前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させ、前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である、3次元表示装置。
(2)前記表示面上における前記透光領域と前記遮光領域との境界の、前記第2方向に対する傾斜角θが、前記表示面上における前記サブピクセルの前記第1方向に沿った大きさをHpとし、前記表示面上における前記サブピクセルの前記第2方向に沿った大きさをVpとし、aおよびbを自然数とするとき、
 tanθ=(a×Hp)/(b×Vp)、または
 tanθ=0
を満たす、上記態様(1)に記載の3次元表示装置。
(3)前記傾斜角θは、
 tanθ=(a×Hp)/(b×Vp)
を満たし、aおよびbは互いに異なる自然数である、上記態様(2)に記載の3次元表示装置。
(4)前記透光領域の前記一端を横切って観察される、前記低輝度画像を表示するサブピクセルの数は少なくともp個であり、pは、
 1≦p≦a+b-1
を満たす、上記態様(2)または(3)に記載の3次元表示装置。
(5)前記コントローラは、前記低輝度画像を(n+m)個のサブピクセル分だけ変位したサブピクセルに表示させる、上記態様(1)~(4)のいずれかに記載の3次元表示装置。
(6)前記利用者が適視位置にある場合、前記表示面は、前記透光領域の前記一端側および前記他端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、
 前記コントローラは、前記一端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセル、および、前記他端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセルに、黒画像を表示させる、上記態様(1)~(5)のいずれかに記載の3次元表示装置。
(7)前記傾斜角θは、
 tanθ=(a×Hp)/(b×Vp)
を満たし、aおよびbは互いに異なる自然数であり、
 前記利用者が適視位置にある場合、前記表示面は、前記透光領域の前記一端側および前記他端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、
 前記コントローラは、前記一端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセル、および、前記他端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセルに、黒画像を表示させる、上記態様(2)に記載の3次元表示装置。
(8)前記傾斜角θは、
 tanθ=Hp/Vp
を満たし、
 前記利用者が適視位置にある場合、前記表示面は、前記透光領域の前記一端側および前記他端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、
 前記コントローラは、前記一端側の両眼可視領域に含まれるサブピクセルのうちの(m+1)個のサブピクセル、および、前記他端側の両眼可視領域に含まれるサブピクセルのうちの(m+1)個のサブピクセルに、黒画像を表示させる、上記態様(2)に記載の3次元表示装置。
(9)前記利用者が適視位置にない場合、前記表示面は、前記透光領域の前記一端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、前記利用者と前記適視位置との距離が大きくなるにつれて前記両眼可視領域に含まれるサブピクセルの数が増加し、
 前記コントローラは、前記両眼可視領域に含まれるサブピクセルのうちのk(kはmよりも大きい自然数)個のサブピクセルに黒画像を表示させる、上記態様(1)~(8)のいずれかに記載の3次元表示装置。
(10)前記コントローラは、前記黒画像を表示させるサブピクセルと前記低輝度画像を表示させるサブピクセルとが同じサブピクセルの場合、該サブピクセルに黒画像を表示させる、上記態様(6)~(9)のいずれかに記載の3次元表示装置。
 本開示のヘッドアップディスプレイシステムは、以下の態様(11)で実施可能である。
(11)第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する表示パネルと、
 前記表示面から射出される画像光の光線方向を規定するパララックスバリアと、
 利用者の第1眼および第2眼の少なくとも一方の位置を取得する位置取得部と、
 前記表示面から射出される画像光を、前記利用者に虚像として視認させる光学部材と、
 前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成するコントローラと、を備え、
 前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並び、
 前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当て、
 前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、
 x=0.5+m/2n
であり、
 前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方により前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方により前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させ、前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である、ヘッドアップディスプレイシステム。
 本開示の移動体は、以下の態様(12)で実施可能である。
(12)第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する表示パネルと、
 前記表示面から射出される画像光の光線方向を規定するパララックスバリアと、
 利用者の第1眼および第2眼の少なくとも一方の位置を取得する位置取得部と、
 前記表示面から射出される画像光を、前記利用者に虚像として視認させる光学部材と、
 前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成するコントローラと、を含み、
 前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並び、
 前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当て、
 前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、
 x=0.5+m/2n
であり、
 前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方により前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方により前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させ、前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である、ヘッドアップディスプレイシステムを備える、移動体。
 以上、本開示の実施形態について詳細に説明したが、また、本開示は上述の実施の形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において、種々の変更、改良等が可能である。上記各実施形態をそれぞれ構成する全部または一部を、適宜、矛盾しない範囲で組み合わせ可能であることは、言うまでもない。
 1   検出装置
 2   3次元表示装置
 3   位置取得部
 4   照射器
 5   表示パネル
 6   パララックスバリア
 7   コントローラ
 10  移動体
 51  アクティブエリア
 51a 可視領域
 51aL 左可視領域
 51aR 右可視領域
 51aLR 両眼可視領域
 51bL 左不可視領域
 51bR 右不可視領域
 51bLR 両眼不可視領域
 52  ブラックマトリックス
 61  遮光面(遮光領域)
 62,62a 透光領域
 62b 端線
 70  視認領域
 71A 光路
 71B 光路
 100 3次元表示システム
 400 ヘッドアップディスプレイシステム
 410 光学部材
 420 被投影部材
 430 被投影面
 440 光路
 450 虚像

Claims (12)

  1.  第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する表示パネルと、
     前記表示面から射出される画像光の光線方向を規定するパララックスバリアと、
     利用者の第1眼および第2眼の少なくとも一方の位置を取得する位置取得部と、
     前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成するコントローラと、を備え、
     前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並び、
     前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当て、
     前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、
     x=0.5+m/2n
    であり、
     前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方によって前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方によって前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させ、前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である、3次元表示装置。
  2.  前記表示面上における前記透光領域と前記遮光領域との境界の、前記第2方向に対する傾斜角θが、前記表示面上における前記サブピクセルの前記第1方向に沿った大きさをHpとし、前記表示面上における前記サブピクセルの前記第2方向に沿った大きさをVpとし、aおよびbを自然数とするとき、
     tanθ=(a×Hp)/(b×Vp)、または
     tanθ=0
    を満たす、請求項1に記載の3次元表示装置。
  3.  前記傾斜角θは、
     tanθ=(a×Hp)/(b×Vp)
    を満たし、aおよびbは互いに異なる自然数である、請求項2に記載の3次元表示装置。
  4.  前記透光領域の前記一端を横切って観察される、前記低輝度画像を表示するサブピクセルの数は少なくともp個であり、pは、
     1≦p≦a+b-1
    を満たす、請求項2または3に記載の3次元表示装置。
  5.  前記コントローラは、前記低輝度画像を(n+m)個のサブピクセル分だけ変位したサブピクセルに表示させる、請求項1~3のいずれか1項に記載の3次元表示装置。
  6.  前記利用者が適視位置にある場合、前記表示面は、前記透光領域の前記一端側および前記他端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、
     前記コントローラは、前記一端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセル、および、前記他端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセルに、黒画像を表示させる、請求項1~3のいずれか1項に記載の3次元表示装置。
  7.  前記傾斜角θは、
     tanθ=(a×Hp)/(b×Vp)
    を満たし、aおよびbは互いに異なる自然数であり、
     前記利用者が適視位置にある場合、前記表示面は、前記透光領域の前記一端側および前記他端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、
     前記コントローラは、前記一端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセル、および、前記他端側の両眼可視領域に含まれるサブピクセルのうちの少なくともm個のサブピクセルに、黒画像を表示させる、請求項2に記載の3次元表示装置。
  8.  前記傾斜角θは、
     tanθ=Hp/Vp
    を満たし、
     前記利用者が適視位置にある場合、前記表示面は、前記透光領域の前記一端側および前記他端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、
     前記コントローラは、前記一端側の両眼可視領域に含まれるサブピクセルのうちの(m+1)個のサブピクセル、および、前記他端側の両眼可視領域に含まれるサブピクセルのうちの(m+1)個のサブピクセルに、黒画像を表示させる、請求項2に記載の3次元表示装置。
  9.  前記利用者が適視位置にない場合、前記表示面は、前記透光領域の前記一端側に、前記第1眼および前記第2眼の両方によって観察される両眼可視領域を有し、前記利用者と前記適視位置との距離が大きくなるにつれて前記両眼可視領域に含まれるサブピクセルの数が増加し、
     前記コントローラは、前記両眼可視領域に含まれるサブピクセルのうちのk(kはmよりも大きい自然数)個のサブピクセルに黒画像を表示させる、請求項1~3のいずれか1項に記載の3次元表示装置。
  10.  前記コントローラは、前記黒画像を表示させるサブピクセルと前記低輝度画像を表示させるサブピクセルとが同じサブピクセルの場合、該サブピクセルに黒画像を表示させる、請求項6に記載の3次元表示装置。
  11.  第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する表示パネルと、
     前記表示面から射出される画像光の光線方向を規定するパララックスバリアと、
     利用者の第1眼および第2眼の少なくとも一方の位置を取得する位置取得部と、
     前記表示面から射出される画像光を、前記利用者に虚像として視認させる光学部材と、
     前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成するコントローラと、を備え、
     前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並び、
     前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当て、
     前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、
     x=0.5+m/2n
    であり、
     前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方により前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方により前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させ、前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である、ヘッドアップディスプレイシステム。
  12.  第1方向および前記第1方向に交差する第2方向に沿って配列された複数のサブピクセルを含む表示面を有する表示パネルと、
     前記表示面から射出される画像光の光線方向を規定するパララックスバリアと、
     利用者の第1眼および第2眼の少なくとも一方の位置を取得する位置取得部と、
     前記表示面から射出される画像光を、前記利用者に虚像として視認させる光学部材と、
     前記位置取得部によって取得された第1眼および第2眼の少なくとも一方の位置に基づいて、前記表示面に表示する、第1画像と前記第1画像に対して視差を有する第2画像とを含む混合画像を合成するコントローラと、を含み、
     前記パララックスバリアは、帯状の複数の透光領域および帯状の複数の遮光領域を有し、前記透光領域および前記遮光領域は、前記第1方向に沿って交互に並び、
     前記コントローラは、前記第2方向に対する前記パララックスバリアの傾斜角に応じて配されたn個のサブピクセルに、前記第1画像または前記第2画像を連続して割当て、
     前記パララックスバリアの開口率xが、mを0以上かつn未満の整数とするとき、
     x=0.5+m/2n
    であり、
     前記コントローラは、前記n個のサブピクセルにおいて、前記第1眼および前記第2眼の一方により前記透光領域の一端を横切って観察されるサブピクセル、ならびに、前記第1眼および前記第2眼の前記一方により前記透光領域の他端を横切って観察されるサブピクセルに、輝度を同等に低下させた低輝度画像を表示させ、前記低輝度画像を表示するサブピクセルの数は、前記透光領域の一端側および他端側で同数である、ヘッドアップディスプレイシステムを備える、移動体。
PCT/JP2023/018835 2022-05-26 2023-05-19 3次元表示装置、ヘッドアップディスプレイシステム、及び移動体 WO2023228887A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086423 2022-05-26
JP2022-086423 2022-05-26

Publications (1)

Publication Number Publication Date
WO2023228887A1 true WO2023228887A1 (ja) 2023-11-30

Family

ID=88919228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018835 WO2023228887A1 (ja) 2022-05-26 2023-05-19 3次元表示装置、ヘッドアップディスプレイシステム、及び移動体

Country Status (1)

Country Link
WO (1) WO2023228887A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128352A (ja) * 2010-12-17 2012-07-05 Jvc Kenwood Corp 裸眼立体ディスプレイ装置
US20160373716A1 (en) * 2015-02-10 2016-12-22 Boe Technology Group Co., Ltd. Naked-eye three-dimensional display processing method, naked-eye three-dimensional display processing device and display device
JP2020071404A (ja) * 2018-10-31 2020-05-07 京セラ株式会社 画像表示装置、画像表示システム、及び移動体
WO2021066110A1 (ja) * 2019-10-01 2021-04-08 京セラ株式会社 3次元表示装置、コントローラ、3次元表示方法、3次元表示システム、及び、移動体
WO2022145207A1 (ja) * 2020-12-29 2022-07-07 京セラ株式会社 3次元表示装置および画像表示システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012128352A (ja) * 2010-12-17 2012-07-05 Jvc Kenwood Corp 裸眼立体ディスプレイ装置
US20160373716A1 (en) * 2015-02-10 2016-12-22 Boe Technology Group Co., Ltd. Naked-eye three-dimensional display processing method, naked-eye three-dimensional display processing device and display device
JP2020071404A (ja) * 2018-10-31 2020-05-07 京セラ株式会社 画像表示装置、画像表示システム、及び移動体
WO2021066110A1 (ja) * 2019-10-01 2021-04-08 京セラ株式会社 3次元表示装置、コントローラ、3次元表示方法、3次元表示システム、及び、移動体
WO2022145207A1 (ja) * 2020-12-29 2022-07-07 京セラ株式会社 3次元表示装置および画像表示システム

Similar Documents

Publication Publication Date Title
JP6924637B2 (ja) 3次元表示装置、3次元表示システム、移動体、および3次元表示方法
WO2018139611A1 (ja) 3次元表示装置、3次元表示システム、ヘッドアップディスプレイ、ヘッドアップディスプレイシステム、3次元表示装置設計方法、及び移動体
JP7129789B2 (ja) ヘッドアップディスプレイ、ヘッドアップディスプレイシステム、および移動体
JP7483604B2 (ja) 3次元表示システム、光学素子、設置方法、制御方法、および移動体
US20200053352A1 (en) Three-dimensional display apparatus, three-dimensional display system, head-up display system, and mobile body
US11616940B2 (en) Three-dimensional display device, three-dimensional display system, head-up display, and mobile object
JP7145214B2 (ja) 3次元表示装置、制御コントローラ、3次元表示方法、3次元表示システム、および移動体
WO2020130049A1 (ja) 3次元表示装置、ヘッドアップディスプレイシステム、及び移動体
JP7227116B2 (ja) 3次元表示装置、コントローラ、3次元表示方法、3次元表示システム、及び、移動体
JP7188888B2 (ja) 画像表示装置、ヘッドアップディスプレイシステム、および移動体
WO2022163728A1 (ja) 3次元表示装置
WO2020130048A1 (ja) 3次元表示装置、ヘッドアップディスプレイシステム、及び移動体
WO2023228887A1 (ja) 3次元表示装置、ヘッドアップディスプレイシステム、及び移動体
JP7336782B2 (ja) 3次元表示装置、3次元表示システム、ヘッドアップディスプレイ、及び移動体
WO2022149599A1 (ja) 3次元表示装置
JP7475231B2 (ja) 3次元表示装置
WO2023074703A1 (ja) 3次元表示装置、3次元表示システム、及び移動体
WO2022065355A1 (ja) 3次元表示装置、3次元表示方法、3次元表示システム、および移動体
WO2022019215A1 (ja) 3次元表示装置、ヘッドアップディスプレイおよび移動体
JP2022022078A (ja) 3次元表示装置、ヘッドアップディスプレイおよび移動体
JP2021056255A (ja) パララックスバリア、3次元表示装置、3次元表示システム、ヘッドアップディスプレイ、および移動体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811759

Country of ref document: EP

Kind code of ref document: A1