WO2023228721A1 - リチウムイオン二次電池用の電極、及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用の電極、及びリチウムイオン二次電池 Download PDF

Info

Publication number
WO2023228721A1
WO2023228721A1 PCT/JP2023/017412 JP2023017412W WO2023228721A1 WO 2023228721 A1 WO2023228721 A1 WO 2023228721A1 JP 2023017412 W JP2023017412 W JP 2023017412W WO 2023228721 A1 WO2023228721 A1 WO 2023228721A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
material layer
electrode active
positive electrode
negative electrode
Prior art date
Application number
PCT/JP2023/017412
Other languages
English (en)
French (fr)
Inventor
悠史 近藤
寿光 田中
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2023228721A1 publication Critical patent/WO2023228721A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for a lithium ion secondary battery and a lithium ion secondary battery.
  • Patent Document 1 discloses a power storage device with a bipolar structure configured by stacking a plurality of individually manufactured power storage cells in series.
  • the above-mentioned electricity storage cell has a positive electrode formed by forming a positive electrode active material layer on one side of a foil-shaped positive electrode current collector, and a negative electrode active material layer formed on one side of a foil-shaped negative electrode current collector.
  • the battery includes a negative electrode arranged to face a positive electrode active material layer of the positive electrode, and a separator arranged between the positive electrode and the negative electrode.
  • the plurality of power storage cells are electrically connected in series by stacking the positive electrode current collector and the negative electrode current collector in contact with each other. In this case, current flows in the stacking direction of the storage cells. Therefore, compared to a power storage device that has a structure in which each power storage cell is electrically connected in series through a tab pulled out from each power storage device, the above power storage device can secure a wider area for the current carrying path, and as a result, can achieve higher output. Obtainable.
  • One possible method for increasing the capacity of a storage cell is to increase the amount of active material held in the electrode active material layer by forming the electrode active material layer to be large.
  • a power storage device having a structure in which current flows in the stacked direction of the power storage cells such as the above-mentioned power storage device
  • the electrode active material layer is formed thickly and the electrode active material layer is formed to be large, the electrical resistance increases. occurs.
  • an increase in the height of the power storage device by increasing the thickness of the electrode active material layer may be avoided.
  • the power storage device in the case of a power storage device applied as a battery disposed under the floor of a vehicle interior of a vehicle such as an electric vehicle or a hybrid vehicle, the power storage device is preferably as thin and flat as possible.
  • the height of the battery placed under the floor of the vehicle compartment is approximately 20 cm at maximum.
  • the present inventors have proposed increasing the area of the electrode active material layer, that is, increasing the planar size of the electrode active material layer, regarding a lithium ion secondary battery having a structure in which current flows in the stacked direction of the storage cell.
  • the area of the electrode active material layer must be 1 m 2 or more.
  • the electrical resistance of the electrode increased. This increase in electrical resistance does not occur in conventional flat-sized lithium ion secondary batteries, and is therefore considered to be a unique phenomenon when the area of the electrode active material layer is increased beyond a certain level.
  • the electrode for a lithium ion secondary battery is an electrode for a lithium ion secondary battery having a bipolar structure, and includes a current collector and a positive electrode active material layer formed on the surface of the current collector, and includes a current collector and a positive electrode active material layer formed on the surface of the current collector.
  • the area of the active material layer is 1 m 2 or more
  • the positive electrode active material layer includes a main surface located on the opposite side to the surface facing the current collector, and a groove opening in the main surface, In a plan view of the main surface, the shorter of the distance from the outer periphery of the positive electrode active material layer and the distance from the groove at any point within the island portion of the main surface where the groove is not provided. When this distance is defined as a specific distance, the maximum value of the specific distance is 60 mm or less.
  • the positive electrode active material layer may have a shape having a longitudinal direction and a lateral direction, and the groove may have a linear shape extending in the longitudinal direction of the positive electrode active material layer. preferable.
  • the positive electrode active material layer has a rectangular shape having a longitudinal direction and a lateral direction, and the groove has a linear shape extending in the longitudinal direction of the positive electrode active material layer,
  • the aspect ratio of the island portion is 12 or more.
  • the thickness of the positive electrode active material layer is 250 ⁇ m or more.
  • the lithium ion secondary battery is a lithium ion secondary battery with a bipolar structure, and includes the electrode for the lithium ion secondary battery.
  • the capacity of the lithium ion secondary battery is 50 kWh or more.
  • an electrode for a lithium ion secondary battery having a bipolar structure it is possible to suppress an increase in electrical resistance due to an increase in the area of the active material layer.
  • FIG. 3 is a cross-sectional view of an electrode for a power storage device.
  • FIG. 3 is a plan view of an electrode for a power storage device. 3 is a sectional view taken along line 3-3 in FIG. 2.
  • FIG. 3 is an enlarged view of part A in FIG. 2.
  • FIG. 2 is a cross-sectional view of a power storage device.
  • FIG. 7 is a cross-sectional view of a modified bipolar electrode.
  • the electrode of this embodiment is used as a positive electrode or a negative electrode of a bipolar power storage device in which a plurality of power storage cells are stacked in series.
  • the power storage device is a lithium ion secondary battery.
  • the electrode 100 is an electrode for a lithium ion secondary battery that includes a current collector 101 and an active material layer 102 provided on a first surface 101a of the current collector 101.
  • the current collector 101 is a chemically inert electrical conductor that allows current to continue flowing through the active material layer 102 during discharging or charging of the lithium ion secondary battery.
  • the current collector 101 is, for example, foil-shaped.
  • the thickness of the foil-like current collector 101 is, for example, 1 ⁇ m or more and 100 ⁇ m or less, preferably 10 ⁇ m or more and 60 ⁇ m or less.
  • a metal material, a conductive resin material, a conductive inorganic material, etc. can be used as the material constituting the current collector 101.
  • Examples of the above metal materials include copper, aluminum, nickel, titanium, and stainless steel.
  • Examples of the conductive resin material include resins in which a conductive filler is added to a conductive polymer material or a non-conductive polymer material as necessary.
  • the current collector 101 is preferably an aluminum current collector made of aluminum.
  • the aluminum current collector may be made of aluminum alone or may be made of an aluminum alloy. Examples of the aluminum alloy include Al-Mn alloy, Al-Mg alloy, and Al-Mg-Si alloy.
  • the aluminum content in the aluminum layer is, for example, 50% by mass or more, preferably 70% by mass or more.
  • the current collector 101 may include multiple layers including one or more layers containing the metal material or conductive resin material described above.
  • the surface of the current collector 101 may be coated with a known protective layer such as a carbon coat layer.
  • the surface of the current collector 101 may be treated by a known method such as plating.
  • Active material layer 102 is formed on first surface 101a of current collector 101.
  • the active material layer 102 contains an active material that can insert and release lithium ions.
  • the active material contained in the active material layer 102 is a positive electrode active material.
  • the positive electrode active material materials that can be used as positive electrode active materials for lithium ion secondary batteries may be used, such as a lithium composite metal oxide having a layered rock salt structure, a metal oxide having a spinel structure, and a polyanionic compound.
  • a specific example of the positive electrode active material is olivine-type lithium iron phosphate (LiFePO 4 ), which is a polyanionic compound.
  • the active material contained in the active material layer 102 is a negative electrode active material.
  • materials that can be used as negative electrode active materials of lithium ion secondary batteries may be used, such as Li, carbon, metal compounds, or elements or compounds thereof that can be alloyed with lithium.
  • carbon include natural graphite, artificial graphite, hard carbon (non-graphitizable carbon), and soft carbon (easily graphitizable carbon).
  • the artificial graphite include highly oriented graphite, mesocarbon microbeads, and the like.
  • elements that can be alloyed with lithium include silicon and tin.
  • the content of the active material in the active material layer 102 is not particularly limited.
  • the content of the active material in the active material layer 102 is, for example, 96% by mass or more and less than 100% by mass.
  • the active material layer 102 includes a conductive aid, a binder, an electrolyte (a polymer matrix, an ion-conducting polymer, a liquid electrolyte, etc.) to increase electrical conductivity, and an electrolyte supporting salt to increase ionic conductivity, as necessary. (lithium salt) and the like.
  • the components contained in the active material layer or the blending ratio of the components and the thickness of the active material layer are not particularly limited, and conventionally known knowledge regarding lithium ion secondary batteries may be appropriately referred to.
  • the conductive additive is added to increase the conductivity of the electrode 100.
  • the conductive aid include acetylene black, carbon black, graphite, and carbon nanotubes (CNT).
  • binder examples include fluororesins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, Examples include acrylic resins such as polyacrylic acid and polymethacrylic acid, styrene-butadiene rubber, carboxymethylcellulose, alginates such as sodium alginate and ammonium alginate, water-soluble cellulose ester crosslinked products, and starch-acrylic acid graft polymers. be able to. These binders may be used alone or in combination.
  • solvent or dispersion medium for example, water, N-methyl-2-pyrrolidone, etc. are used.
  • the active material layer 102 is located on the first surface 101a of the current collector 101. It is formed in the center.
  • a peripheral portion of the first surface 101a of the current collector 101 in a plan view is an uncoated portion where the active material layer 102 is not provided. The uncoated portion is arranged so as to surround the active material layer 102 in a plan view.
  • the thickness, density, basis weight, and porosity of the active material layer 102 are not particularly limited, and conventionally known knowledge regarding lithium ion secondary batteries may be appropriately referred to. Specific examples of the thickness, density, basis weight, and porosity of the active material layer 102 will be described below for each of the cases where the active material layer 102 is a positive electrode active material layer and when it is a negative electrode active material layer.
  • the thickness of the active material layer 102 is, for example, 250 ⁇ m or more, preferably 300 ⁇ m or more. Further, the thickness of the active material layer 102 is, for example, 600 ⁇ m or less, preferably 500 ⁇ m or less. By increasing the thickness of the active material layer 102, the capacity of the power storage cell can be increased.
  • the density of the active material layer 102 is, for example, 1.6 g/cm 3 or more, preferably 1.8 g/cm 3 or more.
  • the density of the active material layer 102 is, for example, 2.5 g/cm 3 or less, preferably 2.3 g/cm 3 or less.
  • the basis weight of the active material layer 102 is, for example, 50 mg/cm 2 or more, preferably 60 mg/cm 2 or more, and more preferably 70 mg/cm 2 or more.
  • the basis weight of the active material layer 102 is, for example, 90 mg/cm 2 or less, preferably 80 mg/cm 2 or less.
  • the porosity of the active material layer 102 is, for example, 30% or more, preferably 35% or more.
  • the porosity of the active material layer 102 is, for example, 55% or less, preferably 45% or less.
  • the thickness of the active material layer 102 is, for example, 200 ⁇ m or more, preferably 250 ⁇ m or more. Further, the thickness of the active material layer 102 is, for example, 600 ⁇ m or less, preferably 500 ⁇ m or less. By increasing the thickness of the active material layer 102, the capacity of the power storage cell can be increased.
  • the density of the active material layer 102 is, for example, 1.1 g/cm 3 or more, preferably 1.2 g/cm 3 or more.
  • the density of the active material layer 102 is, for example, 1.7 g/cm 3 or less, preferably 1.5 g/cm 3 or less.
  • the basis weight of the active material layer 102 is, for example, 30 mg/cm 2 or more, preferably 33 mg/cm 2 or more, and more preferably 35 mg/cm 2 or more.
  • the basis weight of the active material layer 102 is, for example, 50 mg/cm 2 or less, preferably 45 mg/cm 2 or less.
  • the porosity of the active material layer 102 is, for example, 30% or more, preferably 35% or more.
  • the porosity of the active material layer 102 is, for example, 55% or less, preferably 45% or less.
  • the area of the active material layer 102 ie, the area of the range where the active material layer 102 is formed on the first surface 101a of the current collector 101, is 1 m 2 or more.
  • the area of the active material layer 102 is preferably 1.2 m 2 or more, more preferably 1.4 m 2 or more. Further, the area of the active material layer 102 is, for example, 3 m 2 or less. Note that in this specification, the area of the active material layer 102 is an area including the groove portion 103 described later.
  • the planar shape of the active material layer 102 is not particularly limited.
  • the shape of the active material layer 102 in plan view is, for example, a polygon, a circle, or an ellipse.
  • the aspect ratio of the active material layer 102 in plan view is, for example, 1 or more and 2.5 or less, preferably 1 or more and 2 or less.
  • the vertical length L1 of the active material layer 102 is, for example, 500 mm or more and 1500 mm or less, and the lateral length L2 is, for example, 800 mm or more and 3000 mm or less.
  • the above-described plan view shape of the active material layer 102, the aspect ratio, the vertical length L1, and the lateral length L2 of the active material layer 102 are such that the active material layer 102 has a positive electrode active material layer and a negative electrode active It can be applied to any material layer.
  • a groove 103 is provided in the active material layer 102 .
  • the groove portion 103 will be described using an example in which the active material layer 102 has a horizontally elongated rectangular shape in plan view.
  • the active material layer 102 will be referred to as a positive electrode active material layer 102.
  • the positive electrode active material layer 102 is provided with a groove 103 having a rectangular cross section and opening to the main surface 102a.
  • Main surface 102a is a surface located on the opposite side of the surface of positive electrode active material layer 102 that faces current collector 101.
  • the groove portion 103 extends along the lateral direction, which is the longitudinal direction of the positive electrode active material layer 102.
  • the groove portion 103 has a constant width from one end to the other end in the lateral direction, and is formed in a straight line.
  • a plurality of grooves 103 are formed in parallel in the vertical direction at a constant pitch.
  • the bottom surface of the groove portion 103 is formed by the current collector 101.
  • Groove portion 103 has a slit shape.
  • the cross-sectional shape of the groove portion 103 is rectangular.
  • a portion of the main surface 102a of the positive electrode active material layer 102 where the groove portion 103 is not formed is defined as an island portion 104 of the positive electrode active material layer 102.
  • the groove portions 103 have a linear shape extending in the horizontal direction of the positive electrode active material layer 102, and a plurality of groove portions 103 are arranged in parallel in the vertical direction. Therefore, each island portion 104 of the positive electrode active material layer 102 is formed in a horizontally long rectangular shape.
  • the island portion 104 includes an outer edge 104a that is an edge that constitutes the outer peripheral edge of the positive electrode active material layer 102, and a groove edge 104b that is an edge that constitutes the groove portion 103.
  • the outer periphery of the active material layer 102 means the outer periphery of the range including the groove portions 103 and the island portions 104.
  • the island portion 104 is formed in a shape in which the distance from the outer edge 104a and the groove edge 104b satisfies the conditions described below.
  • the groove portion 103 is formed in the positive electrode active material layer 102 so that the island portion 104 having a shape that satisfies the conditions described below is formed.
  • the maximum value of the specific distance is 60 mm. It is as follows. This condition means that at all points within the island portion 104, the distance to the nearest point on the periphery of the island portion 104 is 60 mm or less.
  • the maximum value of the specific distance will be referred to as maximum distance D.
  • the point within the island portion 104 that takes the maximum distance D is on the straight line S1 that extends in the horizontal direction and bisects the island portion 104, and is the distance to the outer edge 104a. This is the point where L3 is longer than the distance L4 to the groove edge 104b.
  • the maximum distance D in this case becomes a value of 1/2 of the width H of the island portion 104.
  • the maximum distance D is 60 mm or less, preferably 40 mm or less, and more preferably 20 mm or less. By shortening the maximum distance D, the effect of suppressing an increase in electrical resistance is improved.
  • the width H which is the length of the island portion 104 in the lateral direction, is, for example, 120 mm or less, preferably 80 mm or less, and more preferably 40 mm or less.
  • the aspect ratio of the island portion 104 is, for example, 12 or more, preferably 15 or more, and more preferably 17 or more.
  • the aspect ratio of the island portion 104 is, for example, 40 or less.
  • the ratio of the total area of the island portions 104 to the area of the positive electrode active material layer 102 is, for example, 90% or more and 99% or less. By increasing the above ratio, the capacity of the electricity storage cell can be increased.
  • the width of the groove portion 103 is, for example, 0.5 mm or more.
  • the width of the groove portion 103 is, for example, 0.5 mm or more.
  • the width of the groove portion 103 is, for example, 3 mm or more.
  • the electrolyte retention function that is, the ability to retain the electrolyte within the groove 103 can be enhanced.
  • the width of the groove portion 103 is, for example, 8 mm or less or 3 mm or less.
  • the width of the groove portion 103 is, for example, 8 mm or less or 3 mm or less.
  • the groove portion 103 is formed to reach the current collector 101. That is, the bottom of the groove 103 is the first surface 101a of the current collector 101, and the groove depth of the groove 103 is the same as the thickness of the positive electrode active material layer 102. Note that if a protective layer such as a carbon coat layer is provided on the first surface 101a of the current collector 101, the protective layer becomes the bottom of the groove 103.
  • the method for forming the groove portion 103 is not particularly limited.
  • a method for forming the groove portions 103 for example, when forming the positive electrode active material layer 102 by coating the current collector 101 with a composite material that becomes the positive electrode active material layer 102 by solidification, the composite material is coated by slit coating.
  • An example is a method of coating. Specifically, a die coater is prepared in which an obstacle such as a shim that partially blocks the discharge of the composite material is provided at the discharge port of the slit die. Then, by applying the composite material using the die coater, the composite material can be applied to a shape having a groove.
  • the grooves 103 may be formed by partially cutting the main surface 102a of the positive electrode active material layer 102, which is formed in a shape without the grooves 103.
  • the power storage device to which the electrode 100 is applied is, for example, a lithium ion secondary battery used in batteries for various vehicles such as forklifts, hybrid vehicles, and electric vehicles.
  • a plurality of power storage cells 20 are configured to include cell stacks 30 (laminated bodies) stacked in the stacking direction.
  • the direction in which the plurality of storage cells 20 are stacked is simply referred to as the stacking direction.
  • Each storage cell 20 includes a positive electrode 21, a negative electrode 22, a separator 23, and a spacer 24.
  • both the positive electrode 21 and the negative electrode 22 are the electrodes 100 described above. That is, the positive electrode 21 is the electrode 100 that includes the groove 103 , and the negative electrode 22 is the electrode 100 that does not include the groove 103 . Note that in FIG. 5, illustration of the groove portion 103 is omitted.
  • the positive electrode 21 includes a positive electrode current collector 21a and a positive electrode active material layer 21b provided on a first surface 21a1 of the positive electrode current collector 21a.
  • the positive electrode current collector 21a is the current collector 101
  • the positive electrode active material layer 21b is the active material layer 102.
  • the positive electrode active material layer 21b is formed at the center of the first surface 21a1 of the positive electrode current collector 21a.
  • the peripheral portion of the first surface 21a1 of the positive electrode current collector 21a in a plan view is a positive electrode uncoated portion 21c in which the positive electrode active material layer 21b is not provided.
  • the positive electrode uncoated portion 21c is arranged so as to surround the positive electrode active material layer 21b in plan view.
  • the negative electrode 22 includes a negative electrode current collector 22a and a negative electrode active material layer 22b provided on a first surface 22a1 of the negative electrode current collector 22a.
  • the negative electrode current collector 22a is the current collector 101
  • the negative electrode active material layer 22b is the active material layer 102.
  • the negative electrode active material layer 22b is formed at the center of the first surface 22a1 of the negative electrode current collector 22a.
  • the peripheral edge of the first surface 22a1 of the negative electrode current collector 22a in plan view is a negative electrode uncoated portion 22c in which the negative electrode active material layer 22b is not provided.
  • the negative electrode uncoated portion 22c is arranged so as to surround the positive electrode active material layer 21b in plan view.
  • the positive electrode 21 and the negative electrode 22 are arranged such that the positive electrode active material layer 21b and the negative electrode active material layer 22b face each other in the stacking direction. In other words, the direction in which the positive electrode 21 and the negative electrode 22 face coincides with the stacking direction.
  • the negative electrode active material layer 22b is formed to have the same size as the positive electrode active material layer 21b, or is formed to be one size larger than the positive electrode active material layer 21b.
  • the entire formation area of the positive electrode active material layer 21b is located within the formation area of the negative electrode active material layer 22b in plan view. There is.
  • the positive electrode current collector 21a has a second surface 21a2 that is a surface opposite to the first surface 21a1.
  • the positive electrode 21 is an electrode with a monopolar structure in which neither the positive electrode active material layer 21b nor the negative electrode active material layer 22b is formed on the second surface 21a2 of the positive electrode current collector 21a.
  • Negative electrode current collector 22a has a second surface 22a2 that is a surface opposite to first surface 22a1.
  • the negative electrode 22 is an electrode with a monopolar structure in which neither the positive electrode active material layer 21b nor the negative electrode active material layer 22b is formed on the second surface 22a2 of the negative electrode current collector 22a.
  • the separator 23 is a member that is disposed between the positive electrode 21 and the negative electrode 22 and allows lithium ions to pass through while separating the positive electrode 21 and the negative electrode 22 to prevent short circuits due to contact between the two electrodes.
  • the separator 23 is, for example, a porous sheet or nonwoven fabric containing a polymer that absorbs and retains electrolyte.
  • Examples of the material constituting the separator 23 include polyolefins such as polypropylene and polyethylene, and polyester.
  • Separator 23 may have a single layer structure or a multilayer structure.
  • the multilayer structure may include, for example, an adhesive layer, a ceramic layer as a heat-resistant layer, and the like.
  • the spacer 24 is located between the first surface 21a1 of the positive electrode current collector 21a of the positive electrode 21 and the first surface 22a1 of the negative electrode current collector 22a of the negative electrode 22, and at a periphery further than the positive electrode active material layer 21b and the negative electrode active material layer 22b. It is arranged on the side and is adhered to both the positive electrode current collector 21a and the negative electrode current collector 22a.
  • the spacer 24 maintains the distance between the positive electrode current collector 21a and the negative electrode current collector 22a, prevents short circuit between the current collectors, and liquid-tightly seals the current collectors.
  • the spacer 24 is formed into a frame shape that extends along the peripheral edges of the positive electrode current collector 21a and the negative electrode current collector 22a and surrounds the positive electrode current collector 21a and the negative electrode current collector 22a in plan view. ing. The spacer 24 is arranged between the positive electrode uncoated portion 21c of the first surface 21a1 of the positive electrode current collector 21a and the negative electrode uncoated portion 22c of the first surface 22a1 of the negative electrode current collector 22a.
  • Examples of materials constituting the spacer 24 include various resins such as polyethylene (PE), modified polyethylene (modified PE), polystyrene (PS), polypropylene (PP), modified polypropylene (modified PP), ABS resin, and AS resin. Examples include materials.
  • the closed space S accommodates a separator 23 and an electrolyte. Note that the peripheral edge portion of the separator 23 is buried in the spacer 24.
  • the electrolyte is a liquid electrolyte.
  • the liquid electrolyte include a liquid electrolyte containing a non-aqueous solvent and an electrolyte salt dissolved in the non-aqueous solvent.
  • the electrolyte salt known lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(FSO 2 ) 2 , LiN(CF 3 SO 2 ) 2 and the like can be used.
  • the nonaqueous solvent known solvents such as cyclic carbonates, cyclic esters, chain carbonates, chain esters, and ethers can be used. Note that two or more of these known solvent materials may be used in combination.
  • a preferred example of a combination of solvent materials is a solvent that is a combination of a cyclic ester and a chain ester. Since a solvent containing a combination of a cyclic ester and a chain ester has a low viscosity, it improves the fluidity of the liquid electrolyte. By improving the fluidity of the liquid electrolyte, it becomes easier to obtain the effect of suppressing an increase in electrical resistance.
  • the spacer 24 can suppress leakage of the electrolyte contained in the sealed space S to the outside. Furthermore, spacer 24 can suppress moisture from entering sealed space S from outside power storage device 10 . Furthermore, the spacer 24 can suppress, for example, gas generated from the positive electrode 21 or the negative electrode 22 due to a charging/discharging reaction or the like from leaking to the outside of the power storage device 10 .
  • the cell stack 30 has a structure in which a plurality of power storage cells 20 are stacked so that the second surface 21a2 of the positive electrode current collector 21a and the second surface 22a2 of the negative electrode current collector 22a are in contact with each other. Thereby, the plurality of power storage cells 20 configuring the cell stack 30 are connected in series.
  • a pseudo bipolar electrode 25 is formed by the two electricity storage cells 20 adjacent in the stacking direction, with the positive electrode current collector 21a and the negative electrode current collector 22a that are in contact with each other regarded as one current collector. It is formed.
  • the pseudo bipolar electrode 25 includes a current collector having a structure in which a positive electrode current collector 21a and a negative electrode current collector 22a are stacked, a positive electrode active material layer 21b formed on one surface of the current collector, and a negative electrode active material layer 22b formed on the other surface.
  • the power storage device 10 includes a pair of current-carrying bodies consisting of a positive electrode current-carrying plate 40 and a negative electrode current-carrying plate 50, which are arranged to sandwich the cell stack 30 in the stacking direction of the cell stack 30.
  • the positive electrode current-carrying plate 40 and the negative electrode current-carrying plate 50 are each made of a material with excellent conductivity.
  • the positive electrode current-carrying plate 40 is electrically connected to the second surface 21a2 of the positive electrode current collector 21a of the positive electrode 21 disposed on the outermost side at one end in the stacking direction.
  • the negative electrode current-carrying plate 50 is electrically connected to the second surface 22a2 of the negative electrode current collector 22a of the negative electrode 22 disposed on the outermost side at the other end in the stacking direction.
  • Charging and discharging of the power storage device 10 is performed through terminals provided on each of the positive electrode current-carrying plate 40 and the negative electrode current-carrying plate 50.
  • the material constituting the positive electrode current-carrying plate 40 for example, the same material as the material constituting the positive electrode current collector 21a can be used.
  • the positive electrode current-carrying plate 40 may be made of a metal plate that is thicker than the positive electrode current collector 21a used in the cell stack 30.
  • the material constituting the negative electrode current-carrying plate 50 for example, the same material as the material constituting the negative electrode current collector 22a can be used.
  • the negative electrode current-carrying plate 50 may be made of a metal plate that is thicker than the negative electrode current collector 22a used in the cell stack 30.
  • the positive electrode 21 constituting each power storage cell 20 of the power storage device 10 is the electrode 100 having the groove 103
  • the negative electrode 22 is the electrode 100 not having the groove 103. Since the area of each of the positive electrode active material layer 21b of the positive electrode 21 and the negative electrode active material layer 22b of the negative electrode 22 is 1 m 2 or more, the planar size of the power storage device 10 is 1 m 2 or more.
  • the height dimension of power storage device 10 is, for example, 20 cm or less.
  • the lower limit of the height dimension of power storage device 10 may be set to a value that allows the required capacity of power storage device 10 to be obtained, depending on the area of positive electrode active material layer 21b and negative electrode active material layer 22b of negative electrode 22.
  • the capacity per area of the power storage device 10 as a whole including each power storage cell 20 is, for example, 20 kWh/m 2 or more.
  • the lower limit of the height dimension of power storage device 10 is set so that The capacity per area is preferably a higher value.
  • the capacity per area is preferably 25 kWh/m 2 or more, 30 kWh/m 2 or more, 33 kWh/m 2 or more, or 35 kWh/m 2 or more. Further, the capacity of power storage device 10 is preferably 50 kWh or more. The capacity of power storage device 10 is, for example, 100 kWh or less.
  • the negative electrode active material contained in the negative electrode active material layer 22b expands and contracts by inserting and releasing lithium ions during charging and discharging. At this time, the expansion of the negative electrode active material causes the liquid electrolyte impregnated in the negative electrode active material layer 22b to be pushed out of the negative electrode active material layer 22b and is discharged, and the contraction of the negative electrode active material causes the liquid electrolyte to be impregnated into the negative electrode active material layer 22b. Liquid electrolytes are absorbed. In this manner, in the negative electrode 22, liquid electrolyte is repeatedly discharged and absorbed into the negative electrode active material layer 22b as the negative electrode 22 is charged and discharged.
  • the liquid electrolyte discharged due to the expansion of the negative electrode active material has a low lithium ion concentration. That is, the liquid electrolyte with a low lithium ion concentration is discharged from the negative electrode active material layer 22b.
  • a liquid electrolyte with a high lithium ion concentration is sufficiently present near the main surface of the negative electrode active material layer 22b. Therefore, even if the liquid electrolyte with a low lithium ion concentration discharged from the negative electrode active material layer 22b is mixed, the lithium ion concentration of the liquid electrolyte hardly changes.
  • the lithium ion concentration is biased depending on the region, such that the lithium ion concentration is low in the outer peripheral portion and the lithium ion concentration is high in the central portion.
  • This bias in the lithium ion concentration causes the negative electrode active material layer 22b to have portions that have high electrical resistance and are difficult to react, and portions that have low electrical resistance and are easy to react. Then, the electrical resistance of the electrode increases due to the difference in resistance between parts of the negative electrode active material layer 22b.
  • the density of the negative electrode active material layer 22b is high or when the porosity of the negative electrode active material layer 22b is low, the amount of active material per unit area in the negative electrode active material layer 22b increases, so that during one charge In this reaction, more lithium is incorporated into the negative electrode active material layer 22b.
  • the bias in the lithium ion concentration in the negative electrode active material layer 22b reaches a level that increases the electrical resistance of the electrode with fewer charge/discharge cycles. Therefore, when the density of the negative electrode active material layer 22b is high or when the porosity of the negative electrode active material layer 22b is low, the above-mentioned problem of increased electrical resistance of the electrode occurs with a small number of charge/discharge cycles.
  • the groove portion 103 is provided in the positive electrode active material layer 21b of the positive electrode 21 so that the maximum distance D in the island portion 104 is 60 mm or less.
  • the island portion 104 is a portion of the main surface of the positive electrode active material layer 21b where the groove portion 103 is not formed.
  • the maximum distance D is the maximum value of the shorter of the distance L3 from the outer edge 104a and the distance L4 from the groove edge 104b at each point of the island portion 104.
  • a flow of the liquid electrolyte occurs through the groove portion 103 of the positive electrode active material layer 21b to make the lithium ion concentration uniform.
  • the liquid electrolyte present near the main surface of the negative electrode active material layer 22b flows into the groove 103 of the positive electrode active material layer 21b facing the negative electrode active material layer 22b with the separator 23 in between.
  • the liquid electrolyte flows into the groove 103 from the entire periphery of the groove 103 toward the nearest groove 103 .
  • the liquid electrolyte that has flowed into the groove 103 flows within the groove 103 and is discharged from the end of the groove 103 near the outer periphery of the positive electrode active material layer 21b.
  • the liquid electrolyte present near the outer periphery of negative electrode active material layer 22b flows toward the center of the main surface of negative electrode active material layer 22b to supplement the liquid electrolyte that has flowed into groove 103 during charging. Further, a portion of the liquid electrolyte present near the outer periphery of the negative electrode active material layer 22b also flows into the groove portion 103 located near the outer periphery.
  • the liquid electrolyte with high lithium ion concentration present near the main surface of the negative electrode active material layer 22b is transferred to the negative electrode active material layer through the groove portion 103 and the vicinity of the outer periphery of the positive electrode active material layer 21b. It is supplied near the outer peripheral edge of 22b.
  • a liquid electrolyte with a low lithium ion concentration that exists near the outer periphery of the negative electrode active material layer 22b is supplied to the center of the main surface of the negative electrode active material layer 22b.
  • the liquid electrolyte with a high lithium ion concentration existing near the main surface of the negative electrode active material layer 22b and the liquid electrolyte with a low lithium ion concentration existing near the outer periphery of the negative electrode active material layer 22b are separated. A replacement occurs.
  • Mixing of the liquid electrolyte with a high lithium ion concentration and the liquid electrolyte with a low lithium ion concentration occurs in the groove portion 103 and at many locations around the negative electrode active material layer 22b.
  • a local decrease in the lithium ion concentration of the liquid electrolyte near the outer periphery of the negative electrode active material layer 22b is suppressed.
  • a local decrease in the lithium ion concentration in the outer peripheral portion of the negative electrode active material layer 22b is suppressed, and an increase in the electrical resistance of the electrode due to uneven lithium ion concentration is suppressed.
  • the groove portion 103 when the groove portion 103 is provided in the positive electrode active material layer 21b, a normal electrode reaction occurs in the portion of the negative electrode active material layer 22b of the negative electrode 22 that overlaps with the island portion 104 of the positive electrode active material layer 21b.
  • the electrode reaction is weaker in the portion of the negative electrode active material layer 22b of the negative electrode 22 that overlaps with the groove portion 103 of the positive electrode active material layer 21b than in the portion that overlaps with the island portion 104. Therefore, in the negative electrode active material layer 22b, portions where the electrode reaction is weak are formed in a regular arrangement that corresponds to the groove portions 103 in the surface direction.
  • a portion where the electrode reaction is weak is indirectly formed in the negative electrode active material layer 22b.
  • the portions where the electrode reaction is weak are finely distributed in a shape that matches the groove portion 103 over the entire surface direction of the negative electrode active material layer 22b.
  • portions of the negative electrode active material layer 22b where the electrode reaction is weak the discharge of liquid electrolyte with a low lithium ion concentration is reduced. Therefore, portions where the liquid electrolyte with a low lithium ion concentration is less discharged are finely distributed over the entire surface direction of the negative electrode active material layer 22b. As a result, a small flow that attempts to equalize fine lithium ion concentration differences throughout the liquid electrolyte existing around the negative electrode active material layer 22b, including the vicinity of the central portion of the negative electrode active material layer 22b, is also caused. arise.
  • This small flow also causes the liquid electrolyte present at the outer periphery of the negative electrode active material layer 22b to be replaced with the liquid electrolyte present near the central portion of the negative electrode active material layer 22b.
  • a local decrease in the lithium ion concentration in the outer peripheral portion of the negative electrode active material layer 22b is suppressed, and an increase in the electrical resistance of the electrode due to uneven lithium ion concentration is suppressed.
  • the electrode 100 for a power storage device is a positive electrode for a power storage device 10 having a bipolar structure in which a plurality of power storage cells 20 are stacked in series.
  • the electrode 100 includes a current collector 101 and a positive electrode active material layer 102 formed on the surface of the current collector 101.
  • the area of the positive electrode active material layer 102 is 1 m 2 or more.
  • the positive electrode active material layer 102 includes a main surface 102a located on the opposite side to the surface facing the current collector 101, and a groove 103 opening in the main surface 102a. In a plan view of the main surface 102a, the maximum distance D, which is the maximum value of the specific distances, is 60 mm or less.
  • the specific distance is the shorter of the distance from the outer periphery of the positive electrode active material layer 102 and the distance from the groove 103 at any point within the island portion 104, which is the portion of the main surface 102a where the groove 103 is not provided. is the distance.
  • the positive electrode active material layer 102 has a shape having a longitudinal direction and a lateral direction, and the groove portion 103 has a linear shape extending in the longitudinal direction of the positive electrode active material layer 102.
  • the electrode 100 which includes the positive electrode active material layer 102 having a shape having a longitudinal direction and a transverse direction, is easily deformed by its own weight so that the longitudinal ends thereof hang down. Further, when the groove portion 103 is formed in the positive electrode active material layer 102, the positive electrode active material layer 102 tends to bend in the portion where the groove portion 103 is formed.
  • the positive electrode active material layer 102 having the linear grooves 103 extending in the longitudinal direction can be easily formed by slit coating using a die coater in which a slit die is provided with an obstacle such as a shim.
  • the groove portion 103 has a linear shape extending in the longitudinal direction of the positive electrode active material layer 102.
  • the aspect ratio of the island portion 104 is 12 or more.
  • the ratio of the area of the island portion 104 to the area of the entire positive electrode active material layer 102 can be increased while reducing the maximum distance D.
  • the capacity of the electricity storage cell 20 can be increased.
  • the thickness of the positive electrode active material layer 102 is 250 ⁇ m or more.
  • the groove 103 can be formed deeper. By forming the groove portion 103 deeply, the difference in electrode reaction between the portion of the negative electrode active material layer 22b that overlaps with the island portion 104 of the positive electrode active material layer 21b and the portion that overlaps with the groove portion 103 increases. As a result, the liquid electrolyte existing around the negative electrode active material layer 22b tends to flow.
  • the thickness of negative electrode active material layer 22b is 200 ⁇ m or more.
  • the amount of active material per unit area in the negative electrode active material layer 22b increases.
  • the amount of intercalated and released lithium ions per unit area of the negative electrode active material layer 22b also increases, so that the lithium ion concentration in the negative electrode active material layer 22b is likely to be uneven.
  • the electrical resistance of the electrode also tends to increase. Therefore, when the negative electrode active material layer 22b is thick, it is particularly effective to employ the configuration (1) above, and the effect (1) above can be obtained more markedly.
  • the porosity of one or both of the positive electrode active material layer 21b and the negative electrode active material layer 22b is 30% or more. According to the above configuration, the rate at which the bias in the lithium ion concentration in the negative electrode active material layer 22b increases with respect to charge/discharge cycles is reduced. Therefore, by combining with the configuration (1) above, it is possible to more effectively suppress an increase in electrical resistance due to an increase in the area of the negative electrode active material layer 22b.
  • the positive electrode 21 and negative electrode 22 that constitute the bipolar electrode 25 only the positive electrode 21 is the electrode 100 having the groove portion 103. According to the above configuration, as compared to the case where both the positive electrode 21 and the negative electrode 22 are the electrodes 100 having the grooves 103, a decrease in capacity due to the provision of the grooves 103 can be suppressed.
  • the planar view shape of the groove portion 103 is not limited to the above embodiment.
  • a linear groove 103 extending in the longitudinal direction of the positive electrode active material layer 102 a linear groove 103 extending in the lateral direction or a linear groove 103 extending in a direction intersecting the longitudinal direction and the lateral direction may be used. You can also use it as Further, grooves 103 extending in different directions may be combined in a grid pattern. Further, instead of the linear groove portion 103, a wave-shaped, concentric circular, or irregularly shaped groove portion may be used.
  • the widths of the groove portions 103 may all be the same or may be different. Further, instead of the groove portion 103 having a constant width, the groove portion 103 may have a variable width.
  • the cross-sectional shape of the groove portion 103 is not limited to a rectangular shape. Other cross-sectional shapes of the groove portion 103 include, for example, a V-shape in cross-section, a U-shape in cross-section, and a trapezoid-shape in cross-section.
  • the groove portion 103 may have a shape that does not reach the current collector 101, that is, the bottom portion may be formed by the positive electrode active material layer 102.
  • the groove depth of the groove portion 103 is, for example, 50% or more of the thickness of the positive electrode active material layer 102.
  • the positive electrode 21 and negative electrode 22 that constitute the pseudo bipolar electrode 25 only the positive electrode 21 is the electrode 100 having the groove 103, but both the positive electrode 21 and the negative electrode 22 have the groove 103. It is good also as electrode 100 which has.
  • the groove portion 103 in the negative electrode active material layer 22b if the following conditions are satisfied, lithium may be deposited in the groove portion 103 of the negative electrode active material layer 22b.
  • the conditions are that the groove 103 provided in the negative electrode active material layer 22b has a shape that reaches the current collector 101, and the portion of the positive electrode active material layer 21b that overlaps the groove 103 of the negative electrode active material layer 22b in the stacking direction is an island. 104.
  • the groove portion 103 in the negative electrode active material layer 22b it is preferable to provide the groove portion 103 in a portion that overlaps in the stacking direction with a portion of the positive electrode active material layer 21b where the groove portion 103 is provided.
  • the electrode 100 may have a bipolar structure in which the positive electrode 21 and the negative electrode 22 are integrated.
  • An example of the electrode 100 that is embodied as a bipolar structure electrode in which the positive electrode 21 and the negative electrode 22 are integrated will be described based on FIG. 6 .
  • the bipolar structure electrode 100 shown in FIG. 6 includes a bipolar current collector 105.
  • the bipolar current collector 105 is a laminate in which a foil-shaped positive electrode current collector 106 and a foil-shaped negative electrode current collector 107 are integrally joined in the thickness direction.
  • Examples of the bipolar current collector 105 include a current collector formed by bonding aluminum foils together, and a current collector formed by bonding aluminum foil and copper foil.
  • An active material layer 108 configured as a positive electrode active material layer is provided on the first surface 105a of the bipolar current collector 105, which is formed by the positive electrode current collector 106. Further, on the second surface 106a of the bipolar current collector 105 formed by the negative electrode current collector 107, an active material layer 109 configured as a negative electrode active material layer is provided.
  • the active material layer 108 and the active material layer 109 at least the active material layer 108 configured as a positive electrode active material layer is an active material layer that satisfies the requirements of the active material layer 102 described in the above embodiment.
  • the electrode 100 having a bipolar structure has a structure in which only the positive electrode active material layer is an active material layer having grooves 103, or a structure in which both the positive electrode active material layer and the negative electrode active material layer are active material layers having grooves 103. be.
  • the specific configuration of the power storage device 10 to which the electrode 100 is applied is not particularly limited as long as at least one positive electrode corresponds to the electrode 100.
  • the number of power storage cells 20 that constitute power storage device 10 may be one.
  • the power storage device 10 may include a restraining member that applies a restraining load to the cell stack 30 in the stacking direction.
  • the power storage device 10 may include the electrode 100 configured as a bipolar electrode.
  • a positive electrode composite material was prepared by mixing LiFePO 4 as a positive electrode active material, styrene-butadiene rubber and carboxymethyl cellulose as a binder, and adding water to this mixture.
  • a positive electrode composite material was applied to the surface of an aluminum foil serving as a positive electrode current collector in the form of a film having slits using a slit die. By heat-treating the applied positive electrode mixture to dry and solidify it, positive electrodes of Test Examples 1 to 3 in which a positive electrode active material layer having a slit-like groove was formed on the positive electrode current collector were produced.
  • the positive electrode active material layers of the positive electrodes of Test Examples 1 to 3 have a rectangular shape in plan view.
  • the dimensions of the entire positive electrode active material layer are the same: 1155 mm long x 1476.5 mm wide x 250 ⁇ m thick, and the shapes of the grooves in plan view are different.
  • the grooves of the positive electrode of Test Example 1 were straight lines with a width of 3 mm extending in the horizontal direction in plan view, and were provided in plural in the vertical direction at a pitch of 122 mm.
  • the grooves of the positive electrode of Test Example 2 were straight lines with a width of 2 mm extending in the horizontal direction in plan view, and were provided in plural in the vertical direction at a pitch of 82 mm.
  • the groove portions of the positive electrode of Test Example 3 were linear in a horizontal direction with a width of 1 mm when viewed from above, and a plurality of grooves were provided in the vertical direction at a pitch of 42 mm.
  • the width H of the island portion, the maximum distance D in the island portion, and the aspect ratio of the island portion in the positive electrode active material layers of Test Examples 1 to 3 are as shown in Table 1.
  • the positive electrode composite material was applied to the surface of the aluminum foil serving as the positive electrode current collector in the form of a film without slits using a doctor blade method.
  • the applied positive electrode composite material was heat-treated to dry and solidify, thereby producing a positive electrode of Test Example 4 in which a positive electrode active material layer having no grooves was formed on the positive electrode current collector.
  • the overall dimensions of the positive electrode active material layer in Test Example 4 are the same as those of the positive electrodes in Test Examples 1 to 3.
  • ⁇ Creation of power storage device> By combining the positive electrodes, negative electrodes, and separators of Test Examples 1 to 4, a bipolar electrode body battery having a structure in which 30 storage cells were stacked was fabricated. A lithium ion secondary battery was obtained by accommodating the electrode body battery in the battery case, injecting an electrolytic solution, and sealing the battery case.
  • a negative electrode having a negative electrode current collector made of copper, and a negative electrode active material layer made of graphite as a negative electrode active material, styrene-butadiene rubber as a binder, and carboxymethyl cellulose as a dispersant is used. there was. No groove is formed in the negative electrode active material layer.
  • the negative electrode active material layer of the negative electrode has a rectangular shape in plan view. The dimensions of the entire negative electrode active material layer are 1155 mm long x 1476.5 mm wide x 250 ⁇ m thick.
  • a separator made of polyethylene was used as the separator.
  • As the electrolytic solution an electrolytic solution in which lithium hexafluorophosphate was dissolved to a concentration of 1.2M in a mixed solvent of ethylene carbonate and methyl propionate at a volume ratio of 15:85 was used.
  • the discharge resistance was measured as follows. After adjusting the SOC of the lithium ion secondary battery to 50%, constant current discharge is performed at 1C for 10 seconds. The value obtained by dividing the voltage change from the voltage before discharge (V ocv ) to the voltage reached after discharging for 10 seconds (V ccv ) by the current value is defined as the discharge resistance.
  • the above-mentioned three specific points are on the main surface of the negative electrode active material layer, and are an outer peripheral end point P1, a groove end point P2, and a center point P3 on the main surface of the positive electrode active material layer.
  • This is a point located on the back side of each of the three points, that is, a point that overlaps in the stacking direction.
  • the outer peripheral side end point P1 is a point located on the vertical outer peripheral edge of the positive electrode active material layer in plan view.
  • the groove side end point P2 is a point where the distance L3 from the vertical outer peripheral edge of the positive electrode active material layer is 738.25 mm in plan view, and is a point located at the edge of the island portion of the positive electrode active material layer. .
  • the center point P3 is a point at which the distance L3 from the vertical outer peripheral edge of the positive electrode active material layer is 738.25 mm in plan view, and is located on the straight line S1 (specific line) in the island portion of the positive electrode active material layer. It is a point.
  • the straight line S1 is a straight line that extends in the horizontal direction and divides the island portion 104 into two equal parts.
  • Test Examples 1 to 3 in which grooves were provided in the positive electrode active material layer the rate of change in resistance after each cycle was smaller than in Test Example 4 in which grooves were not provided in the positive electrode active material layer, and the charging Increase in resistance due to repeated discharges is suppressed.
  • Test Example 3 in which the maximum distance D of the positive electrode active material layer was 30 mm or less the rate of change in resistance after each cycle was maintained at almost 100%, and the increase in resistance due to repeated charging and discharging was significantly suppressed. ing. From these results, it can be seen that by providing the groove portion in the positive electrode active material layer so as to shorten the maximum distance D, it is possible to suppress an increase in resistance due to repeated charging and discharging.
  • the negative electrode active material layer after 15 cycles shows a bias in salt concentration depending on the location, with the salt concentration being high on the center side and low on the outer periphery side in plan view.
  • the greater the bias in the salt concentration that is, the greater the maximum salt concentration difference, the greater the resistance change rate.
  • the unevenness of the salt concentration in the negative electrode active material layer causes parts of the negative electrode active material layer to have high and low electrical resistance, and the larger the difference in resistance between parts of the negative electrode active material layer, the more the secondary battery's electrical resistance increases. It is known that resistance increases.
  • Electrode 101 Current collector 102
  • Active material layer 102a Main surface 103
  • Groove part 104 Island part 10
  • Positive electrode 22 ...Negative electrode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極は、集電体と、集電体の表面に形成された正極活物質層(102)とを備える。正極活物質層(102)の面積は、1m以上である。正極活物質層(102)は、集電体に対向する面と反対側に位置する主表面と、主表面に開口する溝部(103)とを備える。主表面の平面視において、特定距離の最大値である最大距離Dが60mm以下である。特定距離は、主表面の溝部(103)が設けられていない部分である島部(104)内の任意の点における、正極活物質層(102)の外周縁からの距離及び溝部(103)からの距離のうちの短い方の距離である。

Description

リチウムイオン二次電池用の電極、及びリチウムイオン二次電池
 本発明は、リチウムイオン二次電池用の電極、及びリチウムイオン二次電池に関する。
 特許文献1には、個々に作製された複数の蓄電セルを直列に積層することにより構成されるバイポーラ構造の蓄電装置が開示されている。上記蓄電セルは、箔状の正極集電体の片面に正極活物質層が形成されてなる正極と、箔状の負極集電体の片面に負極活物質層が形成されてなり、負極活物質層が正極の正極活物質層と対向するように配置された負極と、正極と負極との間に配置されたセパレータとを備えている。
 上記蓄電装置では、複数の上記蓄電セルが、正極集電体と負極集電体とを接触させるようにして積層されることによって電気的に直列接続されている。この場合、蓄電セルの積層方向に電流が流れる。そのため、上記蓄電装置は、各蓄電セルから引き出されたタブを通じて各蓄電セルが電気的に直列接続される構造の蓄電装置と比較して、通電路の面積を広く確保できる結果、より高い出力を得ることができる。
特開2017-16825号公報
 蓄電セルの容量を大きくする方法として、電極活物質層を大きく形成することにより、電極活物質層に保持される活物質の量を増加させる方法が考えられる。
 ここで、上記蓄電装置のように蓄電セルの積層方向に電流が流れる構造の蓄電装置の場合、電極活物質層を厚く形成して電極活物質層を大きく形成すると、電気抵抗が大きくなるという問題が生じる。また、上記蓄電装置の適用用途によっては、電極活物質層を厚くすることによる上記蓄電装置の高さ寸法の増加が忌避される場合もある。例えば、電気自動車やハイブリッド自動車等の車両における車室の床下に配置されるバッテリとして適用される蓄電装置の場合、蓄電装置は可能な限り薄い扁平型であることが好ましい。車室の床下に配置されるバッテリの高さは、最大でも20cm程度である。
 そこで、本発明者らは、蓄電セルの積層方向に電流が流れる構造のリチウムイオン二次電池に関して、電極活物質層の面積を大きくすること、即ち、電極活物質層の平面サイズを大きくすることによる容量増加を検討した。具体的には、電気自動車用のリチウムイオン二次電池に求められる容量は、50kWh~100kWh程度である。
 電極活物質層の構成成分及び密度を考慮したとしても、リチウムイオン二次電池の高さを20cm以下にしつつ、50kWh以上の容量を得るためには、電極活物質層の面積を1m以上にする必要がある。電極活物質層の面積が1m以上であるリチウムイオン二次電池を作製して、その性質を評価したところ、電極の電気抵抗が大きくなる、という問題が新たに発生した。この電気抵抗の増加は、従来の平面サイズのリチウムイオン二次電池では発生しないため、電極活物質層の面積を一定以上に大きくした場合に特有の現象であると考えられる。
 リチウムイオン二次電池用の電極は、バイポーラ構造のリチウムイオン二次電池用の電極であって、集電体と、前記集電体の表面に形成された正極活物質層とを備え、前記正極活物質層の面積は、1m以上であり、前記正極活物質層は、前記集電体に対向する面と反対側に位置する主表面と、前記主表面に開口する溝部とを備え、前記主表面の平面視において、前記主表面の前記溝部が設けられていない部分である島部内の任意の点における、前記正極活物質層の外周縁からの距離及び前記溝部からの距離のうちの短い方の距離を特定距離としたとき、前記特定距離の最大値が60mm以下である。
 上記リチウムイオン二次電池用の電極において、前記正極活物質層は、長手方向及び短手方向を有する形状であり、前記溝部は、前記正極活物質層の長手方向に延びる直線状であることが好ましい。
 上記リチウムイオン二次電池用の電極において、前記正極活物質層は、長手方向及び短手方向を有する矩形状であり、前記溝部は、前記正極活物質層の長手方向に延びる直線状であり、前記島部のアスペクト比は、12以上である。
 上記リチウムイオン二次電池用の電極において、前記正極活物質層の厚さは、250μm以上である。
 リチウムイオン二次電池は、バイポーラ構造のリチウムイオン二次電池であって、上記リチウムイオン二次電池用の電極を備える。
 上記リチウムイオン二次電池において、容量が50kWh以上である。
 本発明によれば、バイポーラ構造のリチウムイオン二次電池用の電極に関して、活物質層の広面積化に起因する電気抵抗の増加を抑制できる。
蓄電装置用の電極の断面図である。 蓄電装置用の電極の平面図である。 図2の3-3線断面図である。 図2のA部分の拡大図である。 蓄電装置の断面図である。 変更例のバイポーラ電極の断面図である。
 以下、本発明を具体化した一実施形態を図面にしたがって説明する。
 (電極)
 本実施形態の電極は、複数の蓄電セルが直列に積層されてなるバイポーラ構造の蓄電装置の正極又は負極として用いられる。蓄電装置は、リチウムイオン二次電池である。
 図1に示すように、電極100は、集電体101と、集電体101の第1表面101aに設けられた活物質層102とを備えるリチウムイオン二次電池用の電極である。
 [集電体]
 集電体101は、リチウムイオン二次電池の放電又は充電の間、活物質層102に電流を流し続けるための化学的に不活性な電気伝導体である。集電体101は、例えば、箔状である。箔状の集電体101の厚さは、例えば、1μm以上100μm以下であり、好ましくは10μm以上60μm以下である。集電体101を構成する材料としては、例えば、金属材料、導電性樹脂材料、導電性無機材料等を用いることができる。
 上記金属材料としては、例えば、銅、アルミニウム、ニッケル、チタン、ステンレス鋼が挙げられる。上記導電性樹脂材料としては、例えば、導電性高分子材料又は非導電性高分子材料に必要に応じて導電性フィラーが添加された樹脂等が挙げられる。
 蓄電装置の正極として適用される電極100である場合、集電体101は、アルミニウムにより構成されるアルミニウム集電体であることが好ましい。アルミニウム集電体は、アルミニウム単体からなるものであってもよいし、アルミニウム合金からなるものであってもよい。アルミニウム合金としては、例えば、Al-Mn合金、Al-Mg合金、Al-Mg-Si合金が挙げられる。アルミニウム層におけるアルミニウムの含有割合は、例えば、50質量%以上であり、好ましくは70質量%以上である。
 集電体101は、前述した金属材料又は導電性樹脂材料を含む1以上の層を含む複数層を備えてもよい。集電体101の表面は、カーボンコート層などの公知の保護層により被覆されてもよい。集電体101の表面は、メッキ処理等の公知の方法により処理されてもよい。
 [活物質層]
 活物質層102は、集電体101の第1表面101aの上に形成されている。
 活物質層102は、リチウムイオンを吸蔵及び放出し得る活物質を含有する。
 蓄電装置の正極として適用される電極100である場合、活物質層102に含有される活物質は、正極活物質である。正極活物質としては、層状岩塩構造を有するリチウム複合金属酸化物、スピネル構造の金属酸化物、ポリアニオン系化合物など、リチウムイオン二次電池の正極活物質として使用可能なものを採用すればよい。また、2種以上の正極活物質を併用してもよい。正極活物質の具体例としては、ポリアニオン系化合物であるオリビン型リン酸鉄リチウム(LiFePO)が挙げられる。
 蓄電装置の負極として適用される電極100である場合、活物質層102に含有される活物質は、負極活物質である。負極活物質としては、Li、炭素、金属化合物、又は、リチウムと合金化可能な元素もしくはその化合物など、リチウムイオン二次電池の負極活物質として使用可能なものを採用すればよい。炭素としては、例えば、天然黒鉛、人造黒鉛、あるいはハードカーボン(難黒鉛化性炭素)又はソフトカーボン(易黒鉛化性炭素)が挙げられる。人造黒鉛としては、例えば、高配向性グラファイト、メソカーボンマイクロビーズ等が挙げられる。リチウムと合金化可能な元素としては、例えば、シリコン(ケイ素)及びスズが挙げられる。
 活物質層102における活物質の含有量は、特に限定されるものではない。活物質層102における活物質の含有量は、例えば、96質量%以上100質量%未満である。
 活物質層102は、必要に応じて電気伝導性を高めるための導電助剤、結着剤、電解質(ポリマーマトリクス、イオン伝導性ポリマー、液体電解質等)、イオン伝導性を高めるための電解質支持塩(リチウム塩)等をさらに含み得る。活物質層に含まれる成分又は当該成分の配合比及び活物質層の厚さは特に限定されず、リチウムイオン二次電池についての従来公知の知見が適宜参照され得る。
 導電助剤は、電極100の導電性を高めるために添加される。導電助剤は、例えばアセチレンブラック、カーボンブラック、グラファイト、カーボンナノチューブ(CNT)等が挙げられる。
 結着剤としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド及びポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、ポリアクリル酸やポリメタクリル酸等のアクリル系樹脂、スチレン-ブタジエンゴム、カルボキシメチルセルロース、アルギン酸ナトリウム、アルギン酸アンモニウム等のアルギン酸塩、水溶性セルロースエステル架橋体、及びデンプン-アクリル酸グラフト重合体等を例示することができる。これらの結着剤は、単独で又は複数で用いられ得る。溶媒又は分散媒には、例えば、水、N-メチル-2-ピロリドン等が用いられる。
 [活物質層の寸法及び形状]
 図2に示すように、集電体101及び活物質層102の積層方向からみた平面視(以下、単に平面視という。)において、活物質層102は、集電体101の第1表面101aの中央部に形成されている。平面視における集電体101の第1表面101aの周縁部は、活物質層102が設けられていない未塗工部となっている。未塗工部は、平面視において活物質層102の周囲を囲むように配置されている。
 活物質層102の厚さ、密度、目付量、及び空隙率は特に限定されるものではなく、リチウムイオン二次電池についての従来公知の知見が適宜参照され得る。活物質層102が正極活物質層である場合、及び負極活物質層である場合のそれぞれについて、活物質層102の厚さ、密度、目付量、及び空隙率の具体例を以下に記載する。
 <正極活物質層である場合の厚さ、密度、目付量、及び空隙率>
 活物質層102の厚さは、例えば、250μm以上であり、好ましくは300μm以上である。また、活物質層102の厚さは、例えば、600μm以下であり、好ましくは500μm以下である。活物質層102を厚くすることにより、蓄電セルの容量を大きくできる。
 活物質層102の密度は、例えば、1.6g/cm以上であり、好ましくは1.8g/cm以上である。活物質層102の密度は、例えば、2.5g/cm以下であり、好ましくは2.3g/cm以下である。活物質層102の密度を大きくすることにより、蓄電セルの容量を大きくできる。
 活物質層102の目付量は、例えば、50mg/cm以上であり、好ましくは60mg/cm以上であり、より好ましくは70mg/cm以上である。活物質層102の目付量は、例えば、90mg/cm以下であり、好ましくは80mg/cm以下である。活物質層102の目付量を大きくすることにより、蓄電セルの容量を大きくできる。
 活物質層102の空隙率は、例えば、30%以上であり、好ましくは35%以上である。活物質層102の空隙率は、例えば、55%以下であり、好ましくは45%以下である。
 <負極活物質層である場合の厚さ、密度、目付量、及び空隙率>
 活物質層102の厚さは、例えば、200μm以上であり、好ましくは250μm以上である。また、活物質層102の厚さは、例えば、600μm以下であり、好ましくは500μm以下である。活物質層102を厚くすることにより、蓄電セルの容量を大きくできる。
 活物質層102の密度は、例えば、1.1g/cm以上であり、好ましくは1.2g/cm以上である。活物質層102の密度は、例えば、1.7g/cm以下であり、好ましくは1.5g/cm以下である。活物質層102の密度を大きくすることにより、蓄電セルの容量を大きくできる。
 活物質層102の目付量は、例えば、30mg/cm以上であり、好ましくは33mg/cm以上、より好ましくは35mg/cm以上である。活物質層102の目付量は、例えば、50mg/cm以下であり、好ましくは45mg/cm以下である。活物質層102の目付量を大きくすることにより、蓄電セルの容量を大きくできる。
 活物質層102の空隙率は、例えば、30%以上であり、好ましくは35%以上である。活物質層102の空隙率は、例えば、55%以下であり、好ましくは45%以下である。
 活物質層102の面積、即ち、集電体101の第1表面101aにおける活物質層102が形成されている範囲の面積は、1m以上である。活物質層102の面積は、好ましくは1.2m以上であり、より好ましくは1.4m以上である。また、活物質層102の面積は、例えば、3m以下である。なお、本明細書において、活物質層102の面積は、後述する溝部103を含む面積である。
 活物質層102の平面視形状は、特に限定されるものではない。活物質層102の平面視形状は、例えば、多角形状、円形状、楕円形状である。活物質層102が矩形状である場合、平面視において、活物質層102のアスペクト比は、例えば、1以上2.5以下であり、好ましくは1以上2以下である。活物質層102の縦方向長さL1は、例えば、500mm以上1500mm以下であり、横方向長さL2は、例えば、800mm以上3000mm以下である。なお、上述した活物質層102の平面視形状、並びに活物質層102のアスペクト比、縦方向長さL1、及び横方向長さL2の数値は、活物質層102が正極活物質層及び負極活物質層のいずれである場合にも適用できる。
 [活物質層の溝部]
 蓄電装置の正極として適用される電極100である場合、活物質層102には、溝部103が設けられる。以下では、活物質層102の平面視形状が横長の矩形状である場合を例に挙げて、溝部103について説明する。以下では、活物質層102を、正極活物質層102と記載する。
 図2及び図3に示すように、正極活物質層102には、主表面102aに開口する断面矩形状の溝部103が設けられている。主表面102aは、正極活物質層102における集電体101に対向する面の反対側に位置する表面である。
 平面視において、溝部103は、正極活物質層102の長手方向である横方向に沿って延びている。溝部103は、横方向の一端から他端まで一定幅を有し、直線状に形成されている。正極活物質層102には、溝部103が、一定のピッチで縦方向に複数、並行に形成されている。溝部103の底面は集電体101により形成されている。溝部103はスリット状である。溝部103の断面形状は矩形状である。
 ここで、平面視において、正極活物質層102の主表面102aにおける溝部103が形成されていない部分を正極活物質層102の島部104とする。上記のとおり、溝部103は、正極活物質層102の横方向に延びる直線状であり、縦方向に並行に複数、配置されている。そのため、正極活物質層102の各島部104は、横長の矩形状に形成されている。
 図4に示すように、島部104は、正極活物質層102の外周縁を構成する縁部である外縁104aと、溝部103を構成する縁部である溝縁104bとを備える。なお、本明細書において、活物質層102の外周縁は、溝部103と島部104とを合わせた範囲の外周縁を意味する。
 島部104は、外縁104a及び溝縁104bからの距離が以下に記載する条件を満たす形状に形成されている。換言すると、以下に記載する条件を満たす形状の島部104が形成されるように、正極活物質層102に対して溝部103が形成されている。
 上記条件は、島部104内の任意の点Pにおける、外縁104aからの距離L3及び溝縁104bからの距離L4のうちの短い方の距離を特定距離としたとき、特定距離の最大値が60mm以下である。この条件は、島部104内の全ての点において、島部104の周縁における最も近い点までの距離が60mm以下であることを意味する。以下では、特定距離の最大値を最大距離Dと記載する。島部104が横長の矩形状である場合、島部104内における最大距離Dを取る点は、横方向に延びるとともに島部104を2等分する直線S1上であって、外縁104aまでの距離L3が溝縁104bまでの距離L4よりも長い点である。そして、この場合の最大距離Dは、島部104の幅Hの1/2の値になる。
 最大距離Dは、60mm以下であり、好ましくは40mm以下であり、より好ましくは20mm以下である。最大距離Dが短くなることによって、電気抵抗の増加を抑制する効果が向上する。
 島部104の短手方向長さである幅Hは、例えば、120mm以下であり、好ましくは80mm以下であり、より好ましくは40mm以下である。
 島部104のアスペクト比は、例えば、12以上であり、好ましくは15以上であり、より好ましくは17以上である。島部104のアスペクト比は、例えば、40以下である。
 正極活物質層102の面積に占める島部104の合計面積の割合は、例えば、90%以上99%以下である。上記割合を大きくすることにより、蓄電セルの容量を大きくできる。
 溝部103の幅は、例えば、0.5mm以上である。溝部103の幅を0.5mm以上とすることにより、電気抵抗の増加を抑制する効果が顕著に得られる。また、溝部103の幅を大きくすることにより、溝部103を有する正極活物質層102を形成する作業が容易になるとともに、溝部103を通して電解質を注液する作業時間を短くできる。また、溝部103の幅は、例えば、3mm以上である。この場合、上記の効果に加えて、電解質の保液機能、即ち、溝部103内に電解質を保持する能力を高めることができる。また、溝部103の幅は、例えば、8mm以下又は3mm以下である。溝部103の幅を小さくすることにより、正極活物質層102の面積に占める島部104の合計面積の割合を大きくできる。なお、溝部103の形成ピッチは、溝部103の幅と島部104の幅Hとの和である。
 溝部103は、集電体101に達するように形成されている。つまり、溝部103の底部は、集電体101の第1表面101aであり、溝部103の溝深さは、正極活物質層102の厚さと同じである。なお、集電体101の第1表面101aにカーボンコート層などの保護層が施されている場合、保護層が溝部103の底部になる。集電体101に達するように溝部103を形成することにより、電解質の流路としての溝部103の流路断面積を最大化できる。
 溝部103の形成方法は特に限定されるものではない。溝部103の形成方法としては、例えば、固化することにより正極活物質層102となる合材を集電体101に塗布して正極活物質層102を形成する際に、スリット塗工により合材を塗布する方法が挙げられる。具体的には、スリットダイの吐出口に合材の吐出を部分的に妨げるシム等の障害物を設けたダイコーターを用意する。そして、そのダイコーターを用いて合材を塗布することにより、溝部を有する形状に合材を塗布できる。また、別の方法として、溝部103のない形状に形成された正極活物質層102の主表面102aを部分的に削ることによって溝部103を形成してもよい。
 (蓄電装置)
 次に、電極100が適用される蓄電装置の一例を説明する。
 電極100が適用される蓄電装置は、例えば、フォークリフト、ハイブリッド自動車、電気自動車等の各種車両のバッテリに用いられるリチウムイオン二次電池である。
 図5に示すように、蓄電装置10では、複数の蓄電セル20が、積層方向にスタック(積層)されたセルスタック30(積層体)を含んで構成されている。以下では、複数の蓄電セル20の積層方向を単に積層方向という。各蓄電セル20は、正極21と、負極22と、セパレータ23と、スペーサ24とを備える。各蓄電セル20は、正極21及び負極22の両方が上述した電極100である。つまり、正極21は、溝部103を備える電極100であり、負極22は、溝部103を備えていない電極100である。なお、図5においては、溝部103の図示を省略している。
 正極21は、正極集電体21aと、正極集電体21aの第1表面21a1に設けられた正極活物質層21bとを備える。正極21が電極100である場合、正極集電体21aが集電体101であり、正極活物質層21bが活物質層102である。
 平面視において、正極活物質層21bは、正極集電体21aの第1表面21a1の中央部に形成されている。平面視における正極集電体21aの第1表面21a1の周縁部は、正極活物質層21bが設けられていない正極未塗工部21cとなっている。正極未塗工部21cは、平面視において正極活物質層21bの周囲を囲むように配置されている。
 負極22は、負極集電体22aと、負極集電体22aの第1表面22a1に設けられた負極活物質層22bとを備える。負極22が電極100である場合、負極集電体22aが集電体101であり、負極活物質層22bが活物質層102である。
 平面視において、負極活物質層22bは、負極集電体22aの第1表面22a1の中央部に形成されている。平面視における負極集電体22aの第1表面22a1の周縁部は、負極活物質層22bが設けられていない負極未塗工部22cとなっている。負極未塗工部22cは、平面視において正極活物質層21bの周囲を囲むように配置されている。正極21及び負極22は、正極活物質層21b及び負極活物質層22bが積層方向において互いに対向するように配置されている。つまり、正極21及び負極22の対向する方向は積層方向と一致している。負極活物質層22bは、正極活物質層21bと同等の大きさに形成されるか、もしくは、正極活物質層21bよりも一回り大きく形成されている。負極活物質層22bが正極活物質層21bよりも一回り大きく形成されている場合、平面視において、正極活物質層21bの形成領域の全体が負極活物質層22bの形成領域内に位置している。
 正極集電体21aは、第1表面21a1とは反対側の面である第2表面21a2を有する。正極21は、正極集電体21aの第2表面21a2に正極活物質層21b及び負極活物質層22bのいずれも形成されていないモノポーラ構造の電極である。負極集電体22aは、第1表面22a1とは反対側の面である第2表面22a2を有する。負極22は、負極集電体22aの第2表面22a2に正極活物質層21b及び負極活物質層22bのいずれも形成されていないモノポーラ構造の電極である。
 セパレータ23は、正極21と負極22との間に配置されて、正極21と負極22とを隔離することで両極の接触による短絡を防止しつつ、リチウムイオンを通過させる部材である。
 セパレータ23は、例えば、電解質を吸収保持するポリマーを含む多孔性シート又は不織布である。セパレータ23を構成する材料としては、例えば、ポリプロピレン及びポリエチレンといったポリオレフィン、ポリエステルなどが挙げられる。セパレータ23は、単層構造又は多層構造を有してもよい。多層構造は、例えば、接着層、耐熱層としてのセラミック層等を有してもよい。
 スペーサ24は、正極21の正極集電体21aの第1表面21a1と負極22の負極集電体22aの第1表面22a1との間、かつ正極活物質層21b及び負極活物質層22bよりも外周側に配置され、正極集電体21a及び負極集電体22aの両方に接着されている。スペーサ24は、正極集電体21aと負極集電体22aとの間隔を保持して集電体間の短絡を防止するとともに集電体間を液密に封止している。
 スペーサ24は、平面視において、正極集電体21a及び負極集電体22aの周縁部に沿って延在するとともに、正極集電体21a及び負極集電体22aの周囲を取り囲む枠状に形成されている。スペーサ24は、正極集電体21aの第1表面21a1の正極未塗工部21cと、負極集電体22aの第1表面22a1の負極未塗工部22cとの間に配置されている。
 スペーサ24を構成する材料としては、例えば、ポリエチレン(PE)、変性ポリエチレン(変性PE)、ポリスチレン(PS)、ポリプロピレン(PP)、変性ポリプロピレン(変性PP)、ABS樹脂、AS樹脂などの種々の樹脂材料が挙げられる。
 蓄電セル20の内部には、枠状のスペーサ24、正極21及び負極22によって囲まれた密閉空間Sが形成されている。密閉空間Sには、セパレータ23及び電解質が収容されている。なお、セパレータ23の周縁部分は、スペーサ24に埋まった状態とされている。
 電解質は、液体電解質である。液体電解質としては、例えば、非水溶媒と、非水溶媒に溶解した電解質塩とを含む液体電解質が挙げられる。電解質塩として、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(FSO、LiN(CFSO等の公知のリチウム塩を使用できる。また、非水溶媒として、環状カーボネート類、環状エステル類、鎖状カーボネート類、鎖状エステル類、エーテル類等の公知の溶媒を使用できる。なお、これら公知の溶媒材料を二種以上組合せて用いてもよい。溶媒材料の組み合わせの好ましい一例は、環状エステルと鎖状エステル類とを組み合わせた溶媒である。環状エステルと鎖状エステル類とを組み合わせた溶媒は、低粘度であることから、液体電解質の流動性を向上させる。液体電解質の流動性が向上することにより、電気抵抗の増加を抑制する効果が得られやすくなる。
 スペーサ24は、正極21及び負極22との間の密閉空間Sを封止することにより、密閉空間Sに収容された電解質の外部への漏出を抑制し得る。また、スペーサ24は、蓄電装置10の外部から密閉空間S内への水分の侵入を抑制し得る。さらに、スペーサ24は、例えば、充放電反応等により正極21又は負極22から発生したガスが蓄電装置10の外部に漏れることを抑制し得る。
 セルスタック30は、正極集電体21aの第2表面21a2と負極集電体22aの第2表面22a2とが接触するように複数の蓄電セル20を重ね合わせた構造を有する。これにより、セルスタック30を構成する複数の蓄電セル20が直列に接続されている。
 ここで、セルスタック30においては、積層方向に隣り合う二つの蓄電セル20により、互いに接する正極集電体21a及び負極集電体22aを一つの集電体とみなした疑似的なバイポーラ電極25が形成される。疑似的なバイポーラ電極25は、正極集電体21a及び負極集電体22aが重ね合わされた構造の集電体と、その集電体の一方側の面に形成された正極活物質層21bと、他方側の面に形成された負極活物質層22bとを含む。
 蓄電装置10は、セルスタック30の積層方向においてセルスタック30を挟むように配置された、正極通電板40及び負極通電板50からなる一対の通電体を備える。正極通電板40及び負極通電板50は、それぞれ、導電性に優れた材料で構成される。
 正極通電板40は、積層方向の一端において最も外側に配置された正極21の正極集電体21aの第2表面21a2に電気的に接続される。負極通電板50は、積層方向の他端において最も外側に配置された負極22の負極集電体22aの第2表面22a2に電気的に接続される。
 正極通電板40及び負極通電板50のそれぞれに設けられた端子を通じて蓄電装置10の充放電が行われる。正極通電板40を構成する材料としては、例えば、正極集電体21aを構成する材料と同じ材料を用いることができる。正極通電板40は、セルスタック30に用いられた正極集電体21aよりも厚い金属板で構成してもよい。負極通電板50を構成する材料としては、例えば、負極集電体22aを構成する材料と同じ材料を用いることができる。負極通電板50は、セルスタック30に用いられた負極集電体22aよりも厚い金属板で構成してもよい。
 上記のとおり、蓄電装置10の各蓄電セル20を構成する正極21は、溝部103を備える電極100であり、負極22は、溝部103を備えていない電極100である。正極21の正極活物質層21b及び負極22の負極活物質層22bの各面積は、1m以上であるから、蓄電装置10の平面サイズは、1m以上になる。
 蓄電装置10の高さ寸法は、例えば、20cm以下である。蓄電装置10の高さ寸法の下限は、正極活物質層21b及び負極22の負極活物質層22bの面積に応じて、蓄電装置10に求められる容量が得られる値に設定すればよい。例えば、電気自動車等の各種車両のバッテリに用いられるリチウムイオン二次電池を想定した場合、各蓄電セル20を合わせた蓄電装置10全体として、面積あたりの容量が、例えば、20kWh/m以上となるように、蓄電装置10の高さ寸法の下限を設定する。上記面積あたりの容量は、より高い値であることが好ましい。上記面積あたりの容量は、好ましくは、25kWh/m以上、30kWh/m以上、33kWh/m以上、又は35kWh/m以上である。また、蓄電装置10の容量は、50kWh以上であることが好ましい。蓄電装置10の容量は、例えば、100kWh以下である。
 次に、本実施形態の作用について説明する。
 本実施形態によれば、バイポーラ構造の蓄電装置に関して、電極の活物質層の広面積化に起因する電気抵抗の増加を抑制できる。活物質層の広面積化に起因する電気抵抗の増加のメカニズムは以下のとおりである。
 負極活物質層22bに含有される負極活物質は、充放電時において、リチウムイオンを吸蔵及び放出することにより膨張及び収縮する。このとき、負極活物質の膨張によって負極活物質層22bに含浸されていた液体電解質が負極活物質層22bの外に押し出されて排出されるとともに、負極活物質の収縮によって負極活物質層22bに液体電解質が吸収される。このように、負極22では、充放電にともなって、負極活物質層22bに対する液体電解質の排出及び吸収が繰り返される。
 負極活物質が膨張する充電時は、負極活物質にリチウムが取り込まれる反応であるため、負極活物質の膨張によって排出される液体電解質は、リチウムイオン濃度が低い状態である。つまり、リチウムイオン濃度の低い液体電解質が負極活物質層22bから排出される。
 ここで、負極活物質層22bの主表面の近傍においては、リチウムイオン濃度が高い液体電解質が十分に存在する。そのため、負極活物質層22bから排出されたリチウムイオン濃度の低い液体電解質が混合されても、液体電解質のリチウムイオン濃度は殆ど変化しない。
 一方、負極活物質層22bの外周縁の近傍では、負極活物質層22bから排出されたリチウムイオン濃度の低い液体電解質が混合されることにより、液体電解質のリチウムイオン濃度が低下する現象が起きる。そして、負極活物質が収縮する放電時には、リチウムイオン濃度が低下した状態の液体電解質が負極活物質層22bに取り込まれることになる。そのため、充放電を繰り返すことにより、負極活物質層22bの外周縁の近傍の液体電解質のリチウムイオン濃度が徐々に低下し、それに伴って負極活物質層22bの外周部分のリチウムイオン濃度も徐々に低下する。
 負極活物質層22bが広面積であるほど、負極活物質層22bの外周縁に存在する液体電解質と、負極活物質層22bの中央部分の近傍、即ち、面方向中心に近い主表面の近傍に存在する液体電解質との入れ替えが起こり難くなる。そのため、負極活物質層22bが広面積である場合には、負極活物質層22bの外周縁の近傍の液体電解質のリチウムイオン濃度の低下、及び負極活物質層22bの外周部分のリチウムイオン濃度の低下がより顕著になる。
 その結果、負極活物質層22bには、外周部分のリチウムイオン濃度が低く、中央部分のリチウムイオン濃度が高い、という部位に応じたリチウムイオン濃度の偏りが生じる。このリチウムイオン濃度の偏りによって、負極活物質層22bに、電気抵抗が大きく反応し難い部分と、電気抵抗が小さく反応しやすい部分とが生じる。そして、負極活物質層22bに生じる部位ごとの抵抗差によって電極の電気抵抗が増加する。
 特に、負極活物質層22bの密度が高い場合、又は負極活物質層22bの空隙率が低い場合、負極活物質層22bにおける単位面積あたりの活物質の量が多くなるため、1回の充電時の反応において、より多くのリチウムが負極活物質層22bに取り込まれる。これにより、負極活物質層22bにおけるリチウムイオン濃度の偏りが、より回数の少ない充放電サイクルで、電極の電気抵抗を増加させるほどの大きさに達してしまう。したがって、負極活物質層22bの密度が高い場合、又は負極活物質層22bの空隙率が低い場合には、電極の電気抵抗が増加する上記問題が、回数の少ない充放電サイクルで生じる。
 同様に、正極活物質層21bの密度が高い場合、又は正極活物質層21bの空隙率が低い場合にも、負極活物質層22b側での反応が進みやすくなるため、1回の充電時の反応において、より多くのリチウムが負極活物質層22bに取り込まれる。そのため、正極活物質層21bの密度が高い場合、又は正極活物質層21bの空隙率が低い場合も同様に、電極の電気抵抗が増加する上記問題が、回数の少ない充放電サイクルで生じる。
 本実施形態では、正極21の正極活物質層21bに対して、島部104における最大距離Dが60mm以下となるように溝部103を設けている。島部104は、正極活物質層21bの主表面における溝部103が形成されていない部分である。最大距離Dは、島部104の各点における、外縁104aからの距離L3及び溝縁104bからの距離L4のうちの短い方の距離の最大値である。
 この場合、正極活物質層21bの溝部103を通じて、リチウムイオン濃度を均一化させようとする液体電解質の流動が生じる。例えば、充電時には、負極活物質層22bの主表面の近傍に存在する液体電解質は、セパレータ23を挟んで負極活物質層22bに対向する正極活物質層21bの溝部103に流れ込む。このとき、液体電解質は、最も近い溝部103に向かって、溝部103の周囲全体から溝部103に流れ込む。そして、溝部103に流れ込んだ液体電解質は、溝部103内を流れて、溝部103の端部から正極活物質層21bの外周縁の近傍に排出される。放電時には、充電時に溝部103に流れ込んだ液体電解質を補うために、負極活物質層22bの外周縁の近傍に存在する液体電解質が、負極活物質層22bの主表面の中央側に向かって流れ込む。また、負極活物質層22bの外周縁の近傍に存在する液体電解質の一部は、外周縁の近傍に位置する溝部103にも流れ込む。
 こうした液体電解質の大きな流動により、負極活物質層22bの主表面の近傍に存在する、リチウムイオン濃度の高い液体電解質が、溝部103及び正極活物質層21bの外周縁の近傍を通じて、負極活物質層22bの外周縁の近傍に供給される。その一方で、負極活物質層22bの外周縁の近傍に存在する、リチウムイオン濃度の低い液体電解質が、負極活物質層22bの主表面の中央側へ供給される。
 これにより、負極活物質層22bの主表面の近傍に存在していたリチウムイオン濃度の高い液体電解質と、負極活物質層22bの外周縁の近傍に存在していたリチウムイオン濃度の低い液体電解質との入れ替えが起こる。そして、溝部103内及び負極活物質層22bの周囲の多くの箇所で、リチウムイオン濃度の高い液体電解質とリチウムイオン濃度の低い液体電解質との混合が起こる。その結果、負極活物質層22bの外周縁の近傍の液体電解質の局所的なリチウムイオン濃度の低下が抑制される。そして、負極活物質層22bの外周部分における局所的なリチウムイオン濃度の低下が抑制されるとともに、リチウムイオン濃度の偏りに起因する電極の電気抵抗の増加が抑制される。
 また、正極活物質層21bに対して溝部103を設けた場合、負極22の負極活物質層22bにおける、正極活物質層21bの島部104と重なる部分では、通常の電極反応が行われる。一方、負極22の負極活物質層22bにおける、正極活物質層21bの溝部103と重なる部分では、島部104と重なる部分と比較して電極反応が弱くなる。したがって、負極活物質層22bには、その面方向において、電極反応が弱くなる部分が、溝部103に一致する規則的な配置で形成される。つまり、正極活物質層21bに溝部103を設けることにより、負極活物質層22bに電極反応が弱くなる部分が間接的に形成される。そして、その電極反応が弱い部分は、負極活物質層22bの面方向の全体に対して、溝部103に一致する形状にて細かく分布している。
 負極活物質層22bにおける電極反応が弱い部分では、リチウムイオン濃度の低い液体電解質の排出が少なくなる。そのため、負極活物質層22bの面方向の全体に対して、リチウムイオン濃度の低い液体電解質の排出が少なくなる部分が細かく分布することになる。これにより、負極活物質層22bの中央部分の近傍を含めた、負極活物質層22bの周囲に存在する液体電解質の全体に、細かなリチウムイオンの濃度差を均一化させようとする小さな流動も生じる。
 この小さな流動によっても、負極活物質層22bの外周縁に存在する液体電解質と、負極活物質層22bの中央部分の近傍に存在する液体電解質との入れ替えが起こる。その結果、負極活物質層22bの外周部分における局所的なリチウムイオン濃度の低下が抑制されるとともに、リチウムイオン濃度の偏りに起因する電極の電気抵抗の増加が抑制される。
 次に、本実施形態の効果について説明する。
 (1)蓄電装置用の電極100は、複数の蓄電セル20が直列に積層されてなるバイポーラ構造の蓄電装置10用の正極である。電極100は、集電体101と、集電体101の表面に形成された正極活物質層102とを備える。正極活物質層102の面積は、1m以上である。正極活物質層102は、集電体101に対向する面と反対側に位置する主表面102aと、主表面102aに開口する溝部103とを備える。主表面102aの平面視において、特定距離の最大値である最大距離Dが60mm以下である。特定距離は、主表面102aの溝部103が設けられていない部分である島部104内の任意の点における、正極活物質層102の外周縁からの距離及び溝部103からの距離のうちの短い方の距離である。
 上記構成によれば、負極活物質層22bの広面積化に起因する電気抵抗の増加を抑制できる。
 (2)正極活物質層102は、長手方向及び短手方向を有する形状であり、溝部103は、正極活物質層102の長手方向に延びる直線状である。
 長手方向及び短手方向を有する形状の正極活物質層102を備える電極100は、自重によって、長手方向の端部が垂れ下がるように変形しやすい。また、正極活物質層102に溝部103を形成した場合、溝部103が形成されている部分において正極活物質層102が曲がりやすくなる。
 そのため、正極活物質層102の短手方向に延びる溝部103を形成した場合には、長手方向の端部が垂れ下がるように変形するときの曲がりの方向と、溝部103が形成されていることにより曲がりやすくなる方向とが重なる。これにより、長手方向の端部が垂れ下がる方向への正極の変形が更に生じやすくなる。具体的には、電極を製造する際の搬送工程、例えば、吸着によって正極を運ぶ場合には、自重により電極が垂れ下がりやすいため、正極に変形が生じてしまう。この問題は、程度の差はあるものの、長手方向に交差する方向に延びる溝部103を形成した場合にも同様に生じる。
 一方、正極活物質層102の長手方向に延びる溝部103を形成した場合には、長手方向の端部が垂れ下がるように変形するときの曲がりの方向と、溝部103が形成されていることにより曲がりやすくなる方向とが互いに直交する関係になる。これにより、長手方向の端部が垂れ下がる方向への電極の変形が更に生じやすくなることを避けることができる。また、長手方向に延びる直線状の溝部103を有する正極活物質層102は、スリットダイにシム等の障害物を設けたダイコーターを用いたスリット塗工によって容易に形成できる。
 (3)溝部103は、正極活物質層102の長手方向に延びる直線状である。島部104のアスペクト比は、12以上である。
 アスペクト比が大きい形状、即ち、細長い形状の島部104とすることにより、最大距離Dを短くしながらも、正極活物質層102全体の面積に占める島部104の面積の割合を大きくできる。正極活物質層102全体の面積に占める島部104の面積の割合を大きくすることにより、蓄電セル20の容量を大きくできる。
 (4)正極活物質層102の厚さは、250μm以上である。
 正極活物質層102の厚さが厚い場合、溝部103をより深く形成することができる。溝部103を深く形成することにより、負極活物質層22bにおける、正極活物質層21bの島部104と重なる部分と、溝部103と重なる部分との間の電極反応の差が大きくなる。その結果、負極活物質層22bの周囲に存在する液体電解質に流動が生じやすくなる。
 (5)蓄電装置10において、負極活物質層22bの厚さは、200μm以上である。
 負極活物質層22bの厚さが厚い場合、負極活物質層22bにおける単位面積あたりの活物質の量が多くなる。この場合、負極活物質層22bの単位面積あたりにおける、吸蔵及び放出されるリチウムイオンの量も多くなるため、負極活物質層22bにおけるリチウムイオン濃度の偏りも生じやすくなる。その結果、電極の電気抵抗も大きくなりやすい。そのため、負極活物質層22bの厚さが厚い場合には、上記(1)の構成を採用することが特に有効であり、上記(1)の効果がより顕著に得られる。
 (6)蓄電装置10において、正極活物質層21b及び負極活物質層22bの一方又は両方の空隙率は、30%以上である。
 上記構成によれば、充放電のサイクルに対して、負極活物質層22bにおけるリチウムイオン濃度の偏りが増大する速さが低下する。したがって、上記(1)の構成と組み合わせることにより、負極活物質層22bの広面積化に起因する電気抵抗の増加を更に効果的に抑制できる。
 (7)バイポーラ電極25を構成する正極21及び負極22のうち、正極21のみを、溝部103を有する電極100としている。
 上記構成によれば、正極21及び負極22の両方を、溝部103を有する電極100とした場合と比較して、溝部103を設けることによる容量の低下を抑制できる。
 なお、本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ○溝部103の平面視形状は、上記実施形態に限定されない。例えば、正極活物質層102の長手方向に延びる直線状の溝部103に代えて、短手方向に延びる直線状の溝部103、又は長手方向及び短手方向に交差する方向に延びる直線状の溝部103としてもよい。また、格子状のように、異なる方向に延びる溝部103が組み合わされていてもよい。また、直線状の溝部103に代えて、波形状、同心円状、不定形状の溝部としてもよい。
 ○溝部103の幅は全て同じであってもよいし、それぞれ異なっていてもよい。また、一定幅の溝部103に代えて、幅が変化する溝部103としてもよい。
 ○溝部103の断面形状は、矩形状に限定されるものではない。溝部103の他の断面形状としては、例えば、断面V字状、断面U字状、断面台形状が挙げられる。
 ○溝部103は、集電体101に達しない形状、即ち、底部が正極活物質層102により形成される形状であってもよい。この場合、溝部103の溝深さは、例えば、正極活物質層102の厚さの50%以上である。
 ○上記実施形態では、疑似的なバイポーラ電極25を構成する正極21及び負極22のうち、正極21のみを、溝部103を有する電極100としていたが、正極21及び負極22の両方を、溝部103を有する電極100としてもよい。なお、負極活物質層22bに溝部103を設ける場合、下記の条件を満たすと、負極活物質層22bの溝部103にリチウムが析出するおそれがある。その条件は、負極活物質層22bに設けられる溝部103が集電体101に達する形状であり、かつ、正極活物質層21bにおける負極活物質層22bの溝部103と積層方向に重なる部分が島部104であることである。したがって、負極活物質層22bに溝部103を設ける場合には、正極活物質層21bの溝部103が設けられている部位と積層方向に重なる部分に溝部103を設けることが好ましい。
 ○電極100は、正極21と負極22が一体化されたバイポーラ構造の電極であってもよい。図6に基づいて、正極21と負極22が一体化されたバイポーラ構造の電極に具体化した電極100の一例を説明する。
 図6に示すバイポーラ構造の電極100は、バイポーラ集電体105を備える。バイポーラ集電体105は、箔状の正極集電体106と箔状の負極集電体107とが厚さ方向に一体に接合されてなる積層体である。バイポーラ集電体105としては、例えば、アルミニウム箔同士を貼り合せた集電体、アルミニウム箔と銅箔とを貼り合せた集電体が挙げられる。
 バイポーラ集電体105における、正極集電体106により形成される第1表面105aには、正極活物質層として構成される活物質層108が設けられている。また、バイポーラ集電体105における、負極集電体107により形成される第2表面106aには、負極活物質層として構成される活物質層109が設けられている。
 活物質層108及び活物質層109のうち、少なくとも正極活物質層として構成される活物質層108は、上記実施形態に記載した活物質層102の要件を満たす活物質層である。つまり、バイポーラ構造の電極100は、正極活物質層のみが溝部103を有する活物質層である構造、又は正極活物質層及び負極活物質層の両方が溝部103を有する活物質層である構造である。
 ○電極100が適用される蓄電装置10は、少なくとも一つの正極が電極100に該当する構成であれば、その具体的な構成は特に限定されない。例えば、蓄電装置10を構成する蓄電セル20の数は、1であってもよい。また、セルスタック30に対して積層方向に拘束加重を付与する拘束部材を備える蓄電装置10としてもよい。また、バイポーラ電極として構成される電極100を備える蓄電装置10としてもよい。
 以下に、上記実施形態をさらに具体化した実施例について説明する。
 <正極の作製>
 正極活物質としてのLiFePOと、結着剤としてのスチレン-ブタジエンゴム及びカルボキシメチルセルロースとを混合するとともに、この混合物に水を加えて正極合材を調製した。正極集電体としてのアルミニウム箔の表面に対して、スリットダイを用いて正極合材を、スリットを有する膜状に塗布した。塗布された正極合材を加熱処理して乾燥及び固化させることにより、正極集電体の上にスリット状の溝部を有する正極活物質層が形成された試験例1~3の正極を作製した。
 試験例1~3の正極の正極活物質層の平面視形状は、矩形状である。試験例1~3の正極では、正極活物質層全体の寸法が、縦1155mm×横1476.5mm×厚さ250μmで共通であり、溝部の平面視形状がそれぞれ異なっている。試験例1の正極の溝部は、平面視において、横方向に延びる幅3mmの直線状であり、122mmピッチで縦方向に複数、設けられている。試験例2の正極の溝部は、平面視において、横方向に延びる幅2mmの直線状であり、82mmピッチで縦方向に複数、設けられている。試験例3の正極の溝部は、平面視において、横方向に延びる幅1mmの直線状であり、42mmピッチで縦方向に複数、設けられている。試験例1~3の正極活物質層における島部の幅H、島部における最大距離D、及び島部のアスペクト比の各値は、表1に示すとおりである。
 また、正極集電体としてのアルミニウム箔の表面に対して、ドクターブレード法を用いて正極合材を、スリットを有さない膜状に塗布した。塗布された正極合材を加熱処理して乾燥及び固化させることにより、正極集電体の上に溝部を有さない正極活物質層が形成された試験例4の正極を作製した。試験例4の正極活物質層全体の寸法は、試験例1~3の正極と同じである。
 <蓄電装置の作成>
 試験例1~4の正極と、負極と、セパレータとを組合せることにより、30個の蓄電セルが積層された構造のバイポーラ型の電極体電池を作製した。電池ケース内に、電極体電池を収容するとともに電解液を注入して、電池ケースを密閉することにより、リチウムイオン二次電池を得た。
 負極としては、銅からなる負極集電体、及び負極活物質としての黒鉛と、結着剤としてのスチレン-ブタジエンゴムと、分散剤としてのカルボキシメチルセルロースとからなる負極活物質層を有する負極を用いた。負極活物質層には溝部を形成していない。負極の負極活物質層の平面視形状は、矩形状である。負極活物質層全体の寸法は、縦1155mm×横1476.5mm×厚さ250μmである。セパレータとしては、ポリエチレンからなるセパレータを用いた。電解液としては、エチレンカーボネート及びプロピオン酸メチルを体積比15:85で混合した混合溶媒に、ヘキサフルオロリン酸リチウムを1.2Mの濃度となるように溶解させた電解液を用いた。
 <蓄電装置の抵抗の評価>
 得られた各リチウムイオン二次電池について、1.3C、30分間の定電流充電を行った後、0.2C、195分間の定電流放電を行う操作を1サイクルとして、15サイクルの操作を繰り返した。上記サイクルの繰り返しに際して、初回の1サイクルを行う前の状態である0サイクル後、5サイクル後、10サイクル後、15サイクル後において、SOC(State of Charge)50%における放電抵抗を測定した。そして、0サイクル後の放電抵抗に対する5サイクル後、10サイクル後、15サイクル後の放電抵抗の変化率(以下、抵抗変化率と記載する。)を算出した。その結果を表1に示す。
 放電抵抗の測定は以下のように行った。リチウムイオン二次電池のSOCを50%に調整した後、1C、10秒間の定電流放電を行う。放電前の電圧(Vocv)から10秒放電時の到達電圧(Vccv)までの変化電圧を電流値で割った値を放電抵抗とする。
 <活物質層における塩濃度の偏りの評価>
 また、試験例1~3の正極を用いたリチウムイオン二次電池について、負極活物質層の部位ごとの塩濃度を測定した。詳述すると、15サイクル後のリチウムイオン二次電池から負極を取り出して、負極活物質層の主表面上における特定の3点における塩濃度(ヘキサフルオロリン酸リチウム濃度)を測定した。そして、特定の3点における塩濃度差の最大値である最大塩濃度差を算出した。その結果を表1に示す。
 図4に示すように、上記特定の3点は、負極活物質層の主表面上であって、正極活物質層の主表面上における外周側端点P1、溝側端点P2、及び中心点P3の3点の各裏側に位置する点、即ち、積層方向に重なる点である。外周側端点P1は、平面視において、正極活物質層の縦方向の外周縁上に位置する点である。溝側端点P2は、平面視において、正極活物質層の縦方向の外周縁からの距離L3が738.25mmである点であって、正極活物質層の島部の縁に位置する点である。中心点P3は、平面視において、正極活物質層の縦方向の外周縁からの距離L3が738.25mmである点であって、正極活物質層の島部における直線S1(特定線)上の点である。上記直線S1は、横方向に延びるとともに島部104を2等分する直線である。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、試験例4は、サイクル数の増加にともなって抵抗変化率が大きく増加している。この結果は、リチウムイオン二次電池の充放電を繰り返すことにより、電気抵抗が大きくなっていることを示す。また、詳細なデータは省略するが、負極活物質層を小面積化した点を除いて試験例4と同じ構成である電極を用いて同様の試験を行ったところ、充放電の繰り返しに伴う抵抗増加は確認できなかった。当該試験では、負極活物質層の全体の寸法が縦250mm×横350mm×厚さ250mmである負極を用いた。これらの結果から、充放電の繰り返しに伴う抵抗増加は、負極活物質層の面積が大きい場合、例えば、1m以上である場合に特有の現象であることが分かる。
 一方、正極活物質層に溝部を設けた試験例1~3は、正極活物質層に溝部を設けていない試験例4と比較して、各サイクル後における抵抗変化率が小さくなっており、充放電の繰り返しに伴う抵抗増加が抑制されている。特に、正極活物質層の最大距離Dが30mm以下である試験例3は、各サイクル後における抵抗変化率がほぼ100%に維持されており、充放電の繰り返しに伴う抵抗増加が顕著に抑制されている。これらの結果から、正極活物質層に対して、最大距離Dを短くするように溝部を設けることにより、充放電の繰り返しによる抵抗増加を抑制できること分かる。
 次に、塩濃度の測定結果から、15サイクル後の負極活物質層には、平面視における中心側の塩濃度が高く、外周側の塩濃度が低いという、部位に応じた塩濃度の偏りがあることが分かる。そして、この塩濃度の偏りが大きい、即ち、最大塩濃度差が大きいほど抵抗変化率が大きくなっている。また、負極活物質層における塩濃度の偏りは、負極活物質層に電気抵抗の大きい部分と小さい部分とを生じさせること、負極活物質層における部位ごとの抵抗差が大きいほど二次電池の電気抵抗が大きくなることが知られている。
 これらの点から、負極活物質層の面積が大きい場合における、充放電の繰り返しに伴う抵抗増加について以下の知見が得られる。
 充放電を繰り返すと、平面視における負極活物質層の中心側の部分と外周側の部分との間に塩濃度差が生じる。負極活物質層の面積が大きい場合には、平面視における負極活物質層の中心側の部分と外周側の部分との距離が離れるため、充放電を繰り返しによる塩濃度の偏りがより顕著になる。塩濃度の偏りに起因する負極活物質層における部位ごとの抵抗差が、二次電池の電気抵抗に影響を与えるほどに大きくなると、充放電の繰り返しによる抵抗増加が生じる。そして、試験例1~3のように、最大距離Dを短くする溝部を正極活物質層に設けることによって、負極活物質層における塩濃度の偏りを小さくできるとともに、充放電の繰り返しによる抵抗増加を抑制できる。
 100…電極
 101…集電体
 102…活物質層
 102a…主表面
 103…溝部
 104…島部
 10…蓄電装置(リチウムイオン二次電池)
 21…正極
 22…負極

Claims (6)

  1.  バイポーラ構造のリチウムイオン二次電池用の電極であって、
     集電体と、前記集電体の表面に形成された正極活物質層とを備え、
     前記正極活物質層の面積は、1m以上であり、
     前記正極活物質層は、前記集電体に対向する面と反対側に位置する主表面と、前記主表面に開口する溝部とを備え、
     前記主表面の平面視において、前記主表面の前記溝部が設けられていない部分である島部内の任意の点における、前記正極活物質層の外周縁からの距離及び前記溝部からの距離のうちの短い方の距離を特定距離としたとき、前記特定距離の最大値が60mm以下であることを特徴とするリチウムイオン二次電池用の電極。
  2.  前記正極活物質層は、長手方向及び短手方向を有する形状であり、
     前記溝部は、前記正極活物質層の長手方向に延びる直線状である請求項1に記載のリチウムイオン二次電池用の電極。
  3.  前記正極活物質層は、長手方向及び短手方向を有する矩形状であり、
     前記溝部は、前記正極活物質層の長手方向に延びる直線状であり、
     前記島部のアスペクト比は、12以上である請求項1に記載のリチウムイオン二次電池用の電極。
  4.  前記正極活物質層の厚さは、250μm以上である請求項1に記載のリチウムイオン二次電池用の電極。
  5.  バイポーラ構造のリチウムイオン二次電池であって、
     請求項1~4のいずれか一項に記載の電極を備えることを特徴とするリチウムイオン二次電池。
  6.  容量が50kWh以上である請求項5に記載のリチウムイオン二次電池。
PCT/JP2023/017412 2022-05-23 2023-05-09 リチウムイオン二次電池用の電極、及びリチウムイオン二次電池 WO2023228721A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022084116 2022-05-23
JP2022-084116 2022-05-23

Publications (1)

Publication Number Publication Date
WO2023228721A1 true WO2023228721A1 (ja) 2023-11-30

Family

ID=88918988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/017412 WO2023228721A1 (ja) 2022-05-23 2023-05-09 リチウムイオン二次電池用の電極、及びリチウムイオン二次電池

Country Status (1)

Country Link
WO (1) WO2023228721A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JP2005268045A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 電池およびこの電池を搭載する車両
JP2011233357A (ja) * 2010-04-27 2011-11-17 Nissan Motor Co Ltd 二次電池用双極型電極の製造方法及び双極型二次電池
JP2020136045A (ja) * 2019-02-19 2020-08-31 プライムアースEvエナジー株式会社 非水電解質二次電池用極板群及び非水電解質二次電池
JP2023044903A (ja) * 2021-09-21 2023-04-03 トヨタ自動車株式会社 二次電池用電極および二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998048466A1 (en) * 1997-04-23 1998-10-29 Japan Storage Battery Co., Ltd. Electrode and battery
JP2005268045A (ja) * 2004-03-18 2005-09-29 Nissan Motor Co Ltd 電池およびこの電池を搭載する車両
JP2011233357A (ja) * 2010-04-27 2011-11-17 Nissan Motor Co Ltd 二次電池用双極型電極の製造方法及び双極型二次電池
JP2020136045A (ja) * 2019-02-19 2020-08-31 プライムアースEvエナジー株式会社 非水電解質二次電池用極板群及び非水電解質二次電池
JP2023044903A (ja) * 2021-09-21 2023-04-03 トヨタ自動車株式会社 二次電池用電極および二次電池

Similar Documents

Publication Publication Date Title
US11239469B2 (en) Pre-lithiation of anodes for high performance capacitor assisted battery
US9666858B2 (en) Negative electrode for secondary battery, and process for production thereof
JP5167703B2 (ja) 電池用電極
EP3193392A1 (en) Positive electrode for lithium-ion secondary cell, and lithium-ion secondary cell
US10770756B2 (en) Method of manufacturing a lithium battery
JP5601361B2 (ja) 電池用電極
JP7253147B2 (ja) 非水電解質二次電池
JP7197536B2 (ja) リチウムイオン二次電池
JP5515257B2 (ja) 双極型二次電池
EP3876310A1 (en) Lithium secondary battery electrode and lithium secondary battery
JP7093733B2 (ja) 非水電解質二次電池用極板群及び非水電解質二次電池
WO2023228721A1 (ja) リチウムイオン二次電池用の電極、及びリチウムイオン二次電池
JP2014120214A (ja) 非水電解液二次電池
WO2014156053A1 (ja) 非水電解質二次電池用負極及び非水電解質二次電池
US20220190321A1 (en) Energy storage device
US9728786B2 (en) Electrode having active material encased in conductive net
JP2022081306A (ja) 蓄電装置用正極の製造方法
WO2023182112A1 (ja) 蓄電装置用の電極
JP2023503696A (ja) 電池パック及びセル
JP5181426B2 (ja) 電気化学デバイスおよびその製造方法
US20240178364A1 (en) Battery
CN104981924B (zh) 非水电解质二次电池用负极和非水电解质二次电池
JP7197537B2 (ja) リチウムイオン二次電池
JP2022066834A (ja) 蓄電装置用の正極の製造方法、及び蓄電装置用の正極
WO2024062881A1 (ja) 蓄電装置用の電極、及び活物質層用の合材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811596

Country of ref document: EP

Kind code of ref document: A1