WO2023228663A1 - 識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体 - Google Patents

識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体 Download PDF

Info

Publication number
WO2023228663A1
WO2023228663A1 PCT/JP2023/016234 JP2023016234W WO2023228663A1 WO 2023228663 A1 WO2023228663 A1 WO 2023228663A1 JP 2023016234 W JP2023016234 W JP 2023016234W WO 2023228663 A1 WO2023228663 A1 WO 2023228663A1
Authority
WO
WIPO (PCT)
Prior art keywords
identification information
information receiving
input signal
voltage
circuit
Prior art date
Application number
PCT/JP2023/016234
Other languages
English (en)
French (fr)
Inventor
正明 倉貫
克昭 濱本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023228663A1 publication Critical patent/WO2023228663A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • H02J7/06Regulation of charging current or voltage using discharge tubes or semiconductor devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present disclosure relates to an identification information receiving device, a power storage pack, an identification information receiving method, and an identification information receiving program that receive identification information superimposed on the current or voltage of a power line.
  • Short-term fluctuation factors include unexpected load current fluctuations such as intermittent operation of a microcomputer. Short-term fluctuation factors are caused by fluctuations in AC components, and correspond to current fluctuations or voltage fluctuations within one packet.
  • Patent Document 1 discloses a method of switching a load resistance using a switch and switching a current threshold according to the magnitude of a communication current.
  • the number of switchable current thresholds depends on the load resistance and the number of switches, so increasing the number of switchable current thresholds requires increasing the circuit scale. Further, switching of the current threshold value is switching between fixed values. Furthermore, it is difficult to respond to short-term fluctuation factors.
  • the present disclosure has been made in view of these circumstances, and its purpose is to provide a technology that reduces misjudgments when detecting identification information superimposed on the current or voltage of a power line.
  • an identification information receiving device receives identification information defined by multiple bits, which is superimposed on the current or voltage of the power line by an identification information transmitting device connected to the power line.
  • An identification information receiving device for receiving comprising: an integrating circuit that integrates an input signal obtained by acquiring the current or voltage of the power line as a voltage value; a subtraction circuit that subtracts an output signal of the integrating circuit from the input signal; and a binary conversion unit that determines that the output signal of the subtraction circuit is 1 when it is equal to or greater than a threshold value, and determines that it is 0 when it is less than the threshold value.
  • FIG. 1 is a diagram showing an electrically assisted bicycle equipped with a battery pack according to an embodiment.
  • FIG. 2 is a diagram for explaining an overview of an authentication processing example 1 for a battery pack installed in a vehicle.
  • 1 is a diagram showing a first configuration example of a battery pack and a vehicle according to an embodiment;
  • FIG. 7 is a diagram for explaining an overview of an authentication processing example 2 for a battery pack installed in a vehicle.
  • FIG. 2 is a diagram showing a second configuration example of a battery pack and a vehicle according to an embodiment.
  • FIG. 6A is a diagram illustrating an example of transmission current and reception current superimposed on a power line.
  • FIG. 6B is a diagram illustrating an example of transmission current and reception current superimposed on a power line.
  • FIG. 8A is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 8B is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 8C is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 8D is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 8A is a diagram in which the waveform of the input signal (V1) to the first ID detection circuit shown in FIG. 8A and the waveform of the output signal (V4) of the comparison circuit shown in FIG. 8D are displayed in an overlapping manner.
  • FIG. FIG. 11A is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 11B is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 11C is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 11D is a diagram showing a simulation waveform showing the execution result of simulation 1.
  • FIG. 11A is a diagram in which the waveform of the input signal (V1) to the first ID detection circuit shown in FIG. 11A and the waveform of the output signal (V4) of the comparison circuit shown in FIG. 11D are displayed in an overlapping manner.
  • FIG. 1 is a diagram showing an electrically assisted bicycle equipped with a battery pack according to an embodiment.
  • the battery pack 10 is a removable, portable and replaceable battery pack 10, and can be installed in a mounting slot of a vehicle 20 or a charger (not shown).
  • a charger not shown
  • an electrically assisted bicycle is assumed as the vehicle 20.
  • the battery pack 10 Since the replaceable battery pack 10 is frequently connected to and removed from the vehicle 20 or the mounting slot of the charger, the connector portion of the battery pack 10 tends to deteriorate. Therefore, in this embodiment, the battery pack 10 is equipped with a wireless communication function, and control signals are transmitted by wireless communication. Thereby, the terminal for the communication line can be eliminated from the connector of the battery pack 10, and only the terminal for the power line can be used.
  • Short-range wireless communication is used for wireless communication between the vehicle 20 and the battery pack 10.
  • Bluetooth registered trademark
  • Wi-Fi registered trademark
  • infrared communication etc.
  • BLE Bluetooth Low Energy
  • BLE is one of the extended standards of Bluetooth, and is a short-distance wireless communication standard with low power consumption using the 2.4 GHz band. BLE has low power consumption and can be operated for several years with a single button battery, so it is suitable for battery operation, and the influence on the remaining capacity of the battery pack 10 can be minimized. Furthermore, since many modules for BLE communication are shipped to the market, they can be obtained at low cost.
  • the radio wave range of BLE is approximately 10 meters when using a general class 2 device. Therefore, a situation may occur in which multiple vehicles 20 and multiple battery packs 10 exist within one BLE communication range. In this case, radio wave interference may occur between vehicle systems, resulting in unstable operation. Further, the vehicle 20 may erroneously connect to a battery pack 10 other than the battery pack 10 attached to the vehicle 20, and in that case, there is a possibility that the battery pack 10 that is not attached may be erroneously controlled.
  • identification information is used to confirm the identity of the battery pack 10 that is physically connected to the vehicle 20 by wire and the battery pack 10 that is connected to the vehicle 20 by wireless communication.
  • This identification information (ID) may be identification information unique to each vehicle 20 or each battery pack 10, or may be temporal identification information. For example, a BD (Bluetooth Device) address or a MAC (Medium Access Control) address may be used as the unique identification information.
  • FIG. 2 is a diagram for explaining an overview of the first authentication process example for the battery pack 10 installed in the vehicle 20.
  • the vehicle 20 transmits ID1 to the battery pack 10 via wire.
  • the battery pack 10 receives ID1 via wire, it sends out an advertisement packet (beacon packet) including the received ID1 and its own battery pack ID by short-range wireless communication.
  • the advertisement packet is a signal for announcing one's own existence to the surrounding area by short-range wireless communication.
  • the vehicle 20 When the vehicle 20 receives the advertisement packet, it compares the ID1 included in the advertisement packet with the ID1 transmitted to the battery pack 10 via wire. If the two match, the vehicle 20 authenticates that the attached battery pack 10 and the communication partner of the short-range wireless communication are the same. If the two do not match, the vehicle 20 determines that the attached battery pack 10 and the communication partner of the short-range wireless communication are not the same, and does not authenticate the battery pack 10 of the communication partner. For example, when an advertising packet including ID2 is received, the battery pack 10 to which the advertising packet including ID2 is sent is not authenticated because it does not match ID1 transmitted to the battery pack 10 via wire.
  • FIG. 3 is a diagram showing a first configuration example of the battery pack 10 and the vehicle 20 according to the embodiment.
  • Configuration example 1 shown in FIG. 3 corresponds to authentication processing example 1, and FIG. 3 depicts the components necessary for authentication processing example 1, and components not related to authentication processing example 1 are omitted as appropriate.
  • FIG. 3 assumes that the battery pack 10 is mounted on the vehicle 20.
  • the battery pack 10 includes a storage battery 11, a first relay 12, a first current sensor 13, a first power supply circuit 14, a first control section 15, a first wireless communication section 16, a first antenna 17, a first ID detection circuit 19, and a power supply. terminal T1.
  • the vehicle 20 includes a motor 21, an inverter 22, a second relay 23, a second power supply circuit 24, a second control section 25, a second wireless communication section 26, a second antenna 27, a second ID superimposition circuit 28, and a power receiving terminal T2. include.
  • the power feeding terminal T1 and the power receiving terminal T2 are in physical contact, and the power line Lp1 in the battery pack 10 and the power line Lp2 in the vehicle 20 are electrically connected.
  • the storage battery 11 includes a plurality of cells connected in series or in series and parallel.
  • a lithium ion battery cell a nickel metal hydride battery cell, a lead battery cell, etc.
  • this specification assumes an example in which a lithium ion battery cell (nominal voltage: 3.6-3.7V) is used.
  • the number of cells connected in series is determined according to the drive voltage of the motor 21 of the vehicle 20.
  • the first relay 12 is inserted into the power line Lp1 that connects the storage battery 11 and the power supply terminal T1.
  • a switch such as a semiconductor switch, may be used instead of the relay.
  • the first current sensor 13 measures the current flowing through the power line Lp1 in the battery pack 10 and outputs it to the first ID detection circuit 19.
  • the first current sensor 13 is composed of, for example, a combination of a shunt resistor and an amplifier.
  • the voltage across the shunt resistor inserted into the power line Lp1 is amplified by the amplifier, so that the first current sensor 13 outputs a voltage value corresponding to the current flowing through the power line Lp1.
  • a Hall element or a CT sensor instead of the shunt resistor.
  • the first power supply circuit 14 steps down the voltage of the storage battery 11 and uses the power supply voltage of the first control unit 15 (for example, about 3.3 to 5V) and the power supply voltage of the first ID detection circuit 19 (5V in the specific example below). ) is a DC/DC converter that generates The first power supply circuit 14 may be configured with a switching regulator or a linear regulator.
  • the first control unit 15 is a microcontroller that controls the entire battery pack 10.
  • the first control unit 15 monitors the state of the storage battery 11 (specifically, the voltage, current, and temperature of each cell included in the storage battery 11).
  • the first control unit 15 estimates the SOC (State of Charge), FCC (Full Charge Capacity), and SOH (State of Health) of each cell included in the storage battery 11 based on these monitoring data. Further, when an overvoltage, undervoltage, overcurrent, high temperature abnormality, or low temperature abnormality occurs in a cell included in the storage battery 11, the first control unit 15 turns off the first relay 12 to protect the cell.
  • the first wireless communication unit 16 executes short-range wireless communication processing.
  • the first wireless communication unit 16 is configured with a BLE module
  • the first antenna 17 is configured with a chip antenna or a pattern antenna built into the BLE module.
  • the first wireless communication unit 16 outputs data received through short-range wireless communication to the first control unit 15, and transmits data input from the first control unit 15 through short-range wireless communication.
  • the vehicle 20 includes a three-phase AC motor as the drive motor 21.
  • the inverter 22 converts the DC power supplied from the battery pack 10 into AC power and supplies the AC power to the motor 21 .
  • AC power supplied from the motor 21 is converted into DC power and supplied to the battery pack 10.
  • the motor 21 rotates in response to AC power supplied from the inverter 22 during power running. During regeneration, rotational energy due to deceleration is converted into AC power and supplied to the inverter 22.
  • the second relay 23 is inserted into the power line Lp2 that connects the inverter 22 and the power receiving terminal T2. Note that another type of switch, such as a semiconductor switch, may be used instead of the relay.
  • the second power supply circuit 24 steps down the voltage supplied from the storage battery 11 in the battery pack 10 installed in the vehicle 20 to generate a power supply voltage (for example, about 3.3 to 5 V) for the second control unit 25.
  • This is a DC/DC converter.
  • the second power supply circuit 24 may be configured with a switching regulator or a linear regulator.
  • vehicle 20 is not equipped with its own battery (for example, a lead battery) for generating control power. Therefore, it is necessary to generate control power from the drive power supplied from the storage battery 11 in the attached battery pack 10.
  • the second control unit 25 is a microcontroller that controls the entire vehicle 20.
  • the second wireless communication unit 26 executes short-range wireless communication processing.
  • the second wireless communication unit 26 is configured with a BLE module, and the second antenna 27 can be configured with a chip antenna or a pattern antenna built into the BLE module.
  • the second wireless communication unit 26 outputs data received through short-range wireless communication to the second control unit 25, and transmits data input from the second control unit 25 through short-range wireless communication.
  • the second ID superimposition circuit 28 superimposes an ID on the current flowing through the power line Lp2.
  • the ID is defined by multiple bits, and each bit is represented by a binary current.
  • the second control unit 25 receives power supply from the storage battery 11 of the battery pack 10 rather than from its own battery built into the vehicle 20, energization and interruption of the current flowing from the storage battery 11 to the vehicle 20 are controlled. It cannot be assigned to a binary current representing each bit of the ID. Therefore, the binary current representing each bit needs to be set to two current values other than zero.
  • the second ID superimposition circuit 28 includes two loads each having a different resistance value, and one or more switches for selecting one of the two loads or making the two loads non-conductive. Further, the second ID superimposition circuit 28 may be configured to include a variable load that can be switched to two resistance values, and one or more switches for switching the resistance value of the variable load or making the variable load non-conductive.
  • the current flowing through the power line Lp2 substantially depends on the current consumption of the second control unit 25.
  • the second control unit 25 sets the ID in the second ID superimposition circuit 28, and the second ID superimposition circuit 28 conducts the load with the smaller resistance value of the two loads. This causes the ID bit "1" to be superimposed on the current, and by making the load with the larger resistance conductive, the ID bit "0" is superimposed on the current. As a result, the value of the current drawn into the vehicle 20 changes depending on each bit of the ID.
  • the first control unit 15 or the second control unit 25 is composed of, for example, a microcomputer whose main components include a CPU (Central Processing Unit) and a memory.
  • the first control unit 15 or the second control unit 25 is realized by a computer having a CPU and a memory, and when the CPU executes a program stored in the memory, the computer controls the first control unit. 15 or a second control section 25.
  • the program is pre-recorded in the memory of the first control unit 15 or the second control unit 25, but it may also be recorded on a (non-temporary) recording medium such as a memory card or the like through a telecommunications line such as the Internet. may also be provided.
  • the first current sensor 13 of the battery pack 10 measures the current flowing through the power line Lp1 and outputs it to the first ID detection circuit 19.
  • the first ID detection circuit 19 detects the ID superimposed on the current flowing through the power line Lp1 based on the voltage value corresponding to the current measured by the first current sensor 13, and transfers the detected ID to the first control unit 15. Output to.
  • a specific example of the configuration of the first ID detection circuit 19 will be described later.
  • FIG. 4 is a diagram for explaining an overview of an authentication processing example 2 for the battery pack 10 installed in the vehicle 20.
  • the battery pack 10 transmits ID1 to the vehicle 20 via wire.
  • the battery pack 10 sends out an advertisement packet containing ID1 using short-range wireless communication.
  • the vehicle 20 When the vehicle 20 receives the advertisement packet, it compares the ID1 included in the advertisement packet with the ID1 received via wire. If the two match, the vehicle 20 authenticates that the attached battery pack 10 and the communication partner of the short-range wireless communication are the same. If the two do not match, the vehicle 20 determines that the attached battery pack 10 and the communication partner of the short-range wireless communication are not the same, and does not authenticate the battery pack 10 of the communication partner. For example, when an advertising packet including ID2 is received, the battery pack 10 to which the advertising packet including ID2 is sent is not authenticated because it does not match ID1 received via wire.
  • FIG. 5 is a diagram showing a second configuration example of the battery pack 10 and the vehicle 20 according to the embodiment.
  • Configuration example 2 shown in FIG. 5 corresponds to authentication processing example 2, and FIG. 5 depicts the components necessary for authentication processing example 2, and components not related to authentication processing example 2 are omitted as appropriate.
  • the ID is superimposed on the current flowing through the power line.
  • the ID is superimposed on the voltage of the power line.
  • the first ID superimposition circuit 18 is composed of, for example, an adder circuit using an operational amplifier.
  • the operational amplifier uses the voltage of the storage battery 11 as a power supply voltage, adds the ID voltage supplied from the first control unit 15 to a base voltage lower than the power supply voltage, and outputs the added voltage to the power line Lp1. Thereby, the value of the voltage supplied to the vehicle 20 side changes according to each bit of the ID.
  • the voltage detection circuit 210 on the vehicle 20 side measures the voltage of the power line Lp2 and outputs it to the second ID detection circuit 29.
  • the voltage detection circuit 210 is composed of, for example, a resistive voltage dividing circuit, and the divided voltage is input to the second ID detection circuit 29.
  • the second ID detection circuit 29 detects the ID superimposed on the voltage flowing through the power line Lp2 based on the voltage value measured by the voltage detection circuit 210, and outputs the detected ID to the second control unit 25.
  • the ID is transmitted from the vehicle 20 to the battery pack 10, so the vehicle 20 serves as the identification information transmitting device and the battery pack 10 serves as the identification information receiving device.
  • the ID is transmitted from the battery pack 10 to the vehicle 20, so the battery pack 10 serves as an identification information transmitting device and the vehicle 20 serves as an identification information receiving device.
  • the identification information receiving device will be described below based on the configuration example 1 that employs the current superimposition method.
  • FIGS. 6A and 6B are diagrams showing examples of transmission current and reception current superimposed on a power line.
  • FIG. 6A shows an example of a transmission current superimposed by the identification information transmitting device
  • FIG. 6B shows an example of the receiving current detected by the identification information receiving device.
  • the identification information receiving device determines that the current value I is bit "1" when it is greater than or equal to the threshold value Ith, and determines that the bit is "0" when it is less than the threshold value Ith.
  • the threshold value Ith may be set to 50 mA, the expected value on the low level side of the current value I to 30 mA, and the expected value on the high level side to 70 mA.
  • an offset may be added to the current value I due to variations in component characteristics or changes in current consumption. Variations in component characteristics occur due to at least one of individual differences, temperature fluctuations, and changes over time.
  • an unexpected change in current consumption of the identification information transmitting device (vehicle 20) may occur due to some background processing or event processing in the second control section 25 during authentication processing using the second control section 25 (microcomputer). This occurs when a software update process (for example, a software update process) starts.
  • a change in the current consumption of the identification information transmitting device (vehicle 20) also occurs due to a change in the configuration of the identification information transmitting device (vehicle 20), such as turning on a light.
  • the current flowing through the power line increases. That is, an offset is added to the current flowing through the power line. This offset may cause an error in ID bit determination superimposed on the current flowing through the power line.
  • the ID superimposed on the current by the identification information transmitting device is "00101011110000011101”
  • the ID detected from the current by the identification information receiving device is "00101011110000011111.”
  • a bit error occurs in the second bit from the bottom.
  • FIG. 7 is a diagram showing a configuration example of the first ID detection circuit 19.
  • the first ID detection circuit 19 includes an integration circuit 191, a subtraction circuit 192, and a comparison circuit 193.
  • the integrating circuit 191 integrates an input signal (V1) obtained by obtaining a voltage value of a current flowing through a power line. Integrating circuit 191 constitutes a low-pass filter.
  • the subtracting circuit 192 subtracts the output signal (V2) of the integrating circuit 191 from the input signal (V1).
  • the comparison circuit 193 compares the output signal (V3) of the subtraction circuit 192 with a threshold value, and outputs a high level signal to the first control unit 15 when the output signal (V3) of the subtraction circuit 192 is equal to or higher than the threshold value, and When the output signal (V3) of is less than the threshold value, a low level signal is output to the first control section 15.
  • the first control unit 15 determines that it is "1" when a high level signal is input from the first ID detection circuit 19, and determines that it is "0" when a low level signal is input, thereby controlling the current flowing through the power line. Identify the superimposed ID.
  • the integrating circuit 191 includes an RC circuit and a voltage follower.
  • a filter resistor Rf and a filter capacitor Cf are connected in series between an input terminal and a ground terminal, and a connection point between the filter resistor Rf and the filter capacitor Cf serves as an output terminal.
  • the RC circuit outputs a signal in which components above the cutoff frequency are attenuated.
  • the voltage follower is composed of a first operational amplifier OP1.
  • the output terminal of the RC circuit is connected to the non-inverting input terminal of the first operational amplifier OP1, and the output terminal and the inverting input terminal of the first operational amplifier OP1 are connected.
  • a voltage follower is a buffer that can be considered to have an amplification factor of 1, an input impedance of ⁇ , and an output impedance of 0.
  • FIG. 7 shows an example in which the integrating circuit 191 is configured by a combination of a passive filter (RC low-pass filter) and a voltage follower, it may also be configured by an active filter (integrating circuit using an operational amplifier).
  • a capacitor is connected to the feedback path of the operational amplifier.
  • the subtraction circuit 192 includes a second operational amplifier OP2, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
  • a first resistor R1 is connected between the inverting input terminal of the second operational amplifier OP2 and the output terminal of the first operational amplifier OP1 included in the integrating circuit 191.
  • a second resistor R2 is connected between the non-inverting input terminal of the second operational amplifier OP2 and the input terminal of the first ID detection circuit 19 (the input terminal of the integrating circuit 191).
  • a third resistor R3 is connected to a feedback path between the output terminal and the inverting input terminal of the second operational amplifier OP2.
  • a fourth resistor R4 is connected between the connection point between the second resistor R2 and the non-inverting input terminal and the ground.
  • the resistance values of the first resistor R1, second resistor R2, third resistor R3, and fourth resistor R4 are set to the same value (10 k ⁇ in the example shown in FIG. 7).
  • the output signal (V3) of the second operational amplifier OP2 is the signal (V1) input to the non-inverting input terminal.
  • the signal obtained by subtracting the signal (V2) input to the inverting input terminal is obtained from .
  • the comparison circuit 193 includes a third operational amplifier OP3 that functions as a comparator.
  • the non-inverting input terminal of the third operational amplifier OP3 and the output terminal of the second operational amplifier OP2 of the subtraction circuit 192 are connected.
  • a threshold voltage (0.5V in the example shown in FIG. 7) is input as a reference voltage to the inverting input terminal of the third operational amplifier OP3.
  • the third operational amplifier OP3 outputs a high level signal (5V in the example shown in FIG. 7) when the output signal (V3) of the subtraction circuit 192 is equal to or higher than the threshold voltage, and outputs a low level signal (5V in the example shown in FIG. 7) when it is less than the threshold voltage. In the example shown in 7, 0V) is output.
  • single power supply (also referred to as single power supply) operational amplifiers are used for the first operational amplifier OP1, the second operational amplifier OP2, and the third operational amplifier OP3.
  • a 5V single power supply operational amplifier is used.
  • the first operational amplifier OP1 clamps the lower limit of the input signal (V1) corresponding to the current measured by the first current sensor 13 to around 0V. Negative amplitude is difficult to handle in the first control unit 15 (microcomputer) that handles digital data.
  • a first switch S1 is connected between the 5V power supply and the positive power terminals of the first operational amplifier OP1, the second operational amplifier OP2, and the third operational amplifier OP3.
  • a second switch S2 is connected between the ground and the negative power terminals of the first operational amplifier OP1, the second operational amplifier OP2, and the third operational amplifier OP3.
  • a third switch S3 is connected between the 0.5V power supply and the inverting input terminal of the third operational amplifier OP3.
  • the 5V power supply and the 0.5V power supply are generated based on the voltage supplied from the first power supply circuit 14.
  • the voltage supplied from the first power supply circuit 14 is used as is or after being stepped down.
  • the first control unit 15 is included in the integration circuit 191, the subtraction circuit 192, and the comparison circuit 193 when the authentication period (for example, 10 seconds after the battery pack 10 is installed) including receiving the ID when the battery pack 10 is installed ends.
  • the first switch S1, the second switch S2, and the third switch S3 are turned off to supply power to the active elements (in the example shown in FIG. 7, the first operational amplifier OP1, the second operational amplifier OP2, and the third operational amplifier OP3). So, shut it off. Thereby, power consumption during the period when the first ID detection circuit 19 is not used can be eliminated, and the capacity of the storage battery 11 can be saved.
  • the results of a simulation of the first ID detection circuit 19 shown in FIG. 7 will be shown below.
  • a filter resistor Rf of 1 k ⁇ and a filter capacitor Cf of 0.1 ⁇ F are used.
  • the time constant ⁇ of the RC circuit is 0.1 ms
  • the cutoff frequency fc of the RC circuit is approximately 1592 Hz.
  • a filter resistor Rf of 10 k ⁇ and a filter capacitor Cf of 0.1 ⁇ F are used.
  • the time constant ⁇ of the RC circuit is 1 ms
  • the cutoff frequency fc of the RC circuit is approximately 159.2 Hz.
  • 8A to 8D are diagrams showing simulation waveforms showing the execution results of simulation 1.
  • 8A shows the waveform of the input signal (V1) to the first ID detection circuit 19
  • FIG. 8B shows the waveform of the output signal (V2) of the integrating circuit 191
  • FIG. 8C shows the waveform of the output signal (V3) of the subtracting circuit 192
  • FIG. 8D shows the waveform of the output signal (V4) of the comparison circuit 193.
  • FIG. 9 shows the waveform of the input signal (V1) to the first ID detection circuit 19 shown in FIG. 8A, the waveform of the output signal (V2) of the integrating circuit 191 shown in FIG. 8B, and the subtraction circuit shown in FIG. 8C.
  • FIG. 192 is a diagram in which the waveforms of the output signal (V3) of No. 192 are displayed in an overlapping manner.
  • FIG. 10 is a diagram in which the waveform of the input signal (V1) to the first ID detection circuit 19 shown in FIG. 8A and the waveform of the output signal (V4) of the comparison circuit 193 shown in FIG. 8D are superimposed.
  • FIGS. 11A to 11D are diagrams showing simulation waveforms showing the execution results of simulation 2.
  • 11A shows the waveform of the input signal (V1) to the first ID detection circuit 19
  • FIG. 11B shows the waveform of the output signal (V2) of the integrating circuit 191
  • FIG. 11C shows the waveform of the output signal (V3) of the subtraction circuit 192.
  • FIG. 11D shows the waveform of the output signal (V4) of the comparison circuit 193.
  • FIG. 12 shows the waveform of the input signal (V1) to the first ID detection circuit 19 shown in FIG. 11A, the waveform of the output signal (V2) of the integrating circuit 191 shown in FIG. 11B, and the subtraction circuit shown in FIG. 11C.
  • FIG. 192 is a diagram in which the waveforms of the output signal (V3) of No. 192 are displayed in an overlapping manner.
  • FIG. 13 is a diagram in which the waveform of the input signal (V1) to the first ID detection circuit 19 shown in FIG. 11A and the waveform of the output signal (V4) of the comparison circuit 193 shown in FIG. 11D are superimposed.
  • the ID communication speed is assumed to be 9600 bps.
  • the input signal (V1) is a rectangular wave with a clock frequency of 5 kHz (period of 0.2 ms), which approximates the clock frequency when transferring 9600 bits per second.
  • the output signal (V2) of the integrating circuit 191 follows the input signal (V1) and converges around the center of the amplitude of the input signal (V1). Since the time constant of simulation 2 is larger than that of simulation 1, the output signal (V2) of the integration circuit 191 of simulation 2 exhibits smoother fluctuations.
  • Simulations 1 and 2 show an example in which an offset is added to the current flowing through the power line from the 1.0 ms time point, and the input signal (V1) increases by this offset. Following this, the output signal (V2) of the integrating circuit 191 also rises. By subtracting the output signal (V2) of the integrating circuit 191 from the input signal (V1) in the subtraction circuit 192, the effect of offset (that is, the effect of current fluctuation during communication) can be canceled.
  • the waveform of the output signal (V3) of the subtraction circuit 192 is a trapezoidal wave.
  • the pulse width of the output signal (V4) whose waveform has been shaped by the comparison circuit 193 is affected by the decrease in the slope of the upper side of the trapezoidal wave that is the output signal (V3) of the subtraction circuit 192. Essentially, the comparator circuit 193 should output a high-level signal while the pulse of the input signal (V1) is at a high level.
  • the output signal of the comparator circuit 193 is inverted to the low level.
  • the pulse width of the output signal (V4) of the comparison circuit 193 is not stable, and the pulse width of the output signal (V4) of the comparison circuit 193 is larger than the pulse width of the input signal (V1). There are many sections where the size becomes smaller.
  • the pulse width of the output signal (V4) of the comparison circuit 193 is stable, and the pulse width of the output signal (V4) of the comparison circuit 193 and the input signal (V1) are stable.
  • the pulse widths roughly match.
  • the slope of the upper side of the trapezoidal wave, which is the output signal (V3) of the subtraction circuit 192 decreases slowly, which is caused by the fact that the trapezoidal wave does not fall below the threshold voltage (0.5V).
  • the time constant of the RC low-pass filter is set so that the cutoff frequency fc of the RC low-pass filter is 1/10 or less of the clock frequency corresponding to the communication speed of the ID. Note that if the cutoff frequency fc of the RC low-pass filter is too low with respect to the clock frequency, the followability of the output signal (V2) of the integrating circuit 191 to the input signal (V1) will deteriorate. Therefore, the time constant of the RC low-pass filter may be set so that the cutoff frequency fc of the RC low-pass filter is approximately 1/10 of the clock frequency corresponding to the communication speed of the ID.
  • the first ID detection circuit 19 includes the comparison circuit 193, but the comparison circuit 193 is omitted and the output signal (V3) of the subtraction circuit 192 is sent to the first control unit 15 (microcomputer). It may also be input directly to the analog input port.
  • the A/D converter in the first control unit 15 (microcomputer) converts the output signal (V3) of the subtraction circuit 192 into a digital value at a predetermined sampling rate. In this way, the output signal (V3) of the subtraction circuit 192 may be converted into a binary signal by the comparison circuit 193 or may be converted into a binary signal by the first control section 15.
  • the ID superimposed on the current flowing through the power line is detected by hardware processing by the first ID detection circuit 19.
  • the first ID detection circuit 19 is omitted, and the input signal (V1) corresponding to the current measured by the first current sensor 13 is directly input to the analog input port of the first control unit 15 (microcomputer).
  • the A/D converter in the first control unit 15 receives the input signal ( V1) into a digital value. High-speed sampling is required to closely observe the waveform transition within a unit period of the input signal.
  • the CPU in the first control unit 15 integrates the high-speed sampled digital input signal (V1) to calculate an integral signal (corresponding to the output signal (V2) of the integrating circuit 191).
  • the CPU subtracts the calculated integral signal from the input signal sampled at the timing of the clock frequency to calculate a corrected input signal.
  • the CPU compares the corrected input signal with a threshold value to detect each bit of the ID.
  • ID detection processing using software processing is effective when the ID communication speed is slow.
  • the ID superimposition circuit of the identification information transmitting device inserts a test bit string defined by multiple bits (for example, 4 bits, 8 bits, or 16 bits) in which "1" and "0" are alternately repeated before the ID bit string. May be inserted.
  • the ID detection circuit or control unit of the identification information receiving device detects a representative value (e.g., average value, median value) of the amplitude of a plurality of bits included in the test bit string, and detects the detected representative value.
  • the value is set to the initial value of the output signal (V2) of the integrating circuit 191 or the integral signal (hereinafter, both are collectively referred to as the integral signal).
  • the initial value of the integral signal can be set near the center of the input signal (V1), and when the ID bit string is a continuous bit string of "1" or “0", the integral signal becomes “1". Alternatively, it is possible to prevent the value from being biased towards “0". Furthermore, even if there is an idle bit string or a start bit string in which "1" or "0" are consecutive before the ID bit string, it is possible to prevent the initial value of the integral signal from being biased toward "1" or "0". I can do it.
  • the detected value of the current signal can be corrected flexibly, and the correction compatible range is It's also spacious.
  • the current threshold value cannot be changed finely, it is difficult to optimize the correction amount for removing the influence of current fluctuation.
  • the influence of short-term current fluctuations cannot be removed.
  • the ID detection method according to the present embodiment can be realized with a simple circuit or simple software, and has great advantages in actual use. There is no need to install a load resistor and switch as in the above method. Furthermore, the ID detection method according to this embodiment is highly versatile and has a wide range of application.
  • the ID detection method according to the above-described embodiment is also used when authenticating that the battery pack 10 installed in the installation slot of the charger and the battery pack 10 of the communication partner of the charger are the same.
  • the charger may serve as an identification information transmitting device and the battery pack 10 may serve as an identification information receiving device, or the battery pack 10 may serve as an identification information transmitting device and the charger may serve as an identification information receiving device.
  • the battery pack 10 containing the storage battery 11 was used.
  • a capacitor pack containing a built-in capacitor including an electric double layer capacitor cell, a lithium ion capacitor cell, etc. may be used.
  • the battery pack and the capacitor pack are collectively referred to as a power storage pack.
  • the present disclosure is suitable for application to a vehicle 20 that is not equipped with its own power source, it does not exclude application to a vehicle 20 that is equipped with its own power source. Therefore, the vehicle 20 is not limited to electric assist bicycles, but also includes electric motorcycles (electric scooters), electric kick scooters, electric vehicles (including low-speed electric vehicles such as golf carts and land cars), railway vehicles, etc. It will be done. Furthermore, the object to which the power storage pack is attached is not limited to the vehicle 20, but also includes electric vehicles such as electric ships and multicopters (drones).
  • An identification information receiving device (10) that receives identification information defined by a plurality of bits superimposed on the current or voltage of the power line by an identification information transmitting device (20) connected by a power line, an integrating circuit (191) that integrates an input signal obtained by obtaining the current or voltage of the power line as a voltage value; a subtraction circuit (192) that subtracts the output signal of the integration circuit (191) from the input signal; a binary conversion unit (193) that determines that the output signal of the subtraction circuit (192) is 1 when it is greater than or equal to a threshold value, and determines that it is 0 when it is less than the threshold value;
  • An identification information receiving device (10) comprising:
  • the binary conversion unit (193) The identification information receiving device (10) according to item 1, further comprising a comparison circuit (193) that compares the output signal of the subtraction circuit (192) with the threshold value and outputs a high level signal or a low level signal. ).
  • the amplitude and pulse width of the binary waveform can be stabilized.
  • the subtraction circuit (192) is configured using a single power supply operational amplifier (OP2), Item 1, wherein the input signal is input to a non-inverting input terminal of the operational amplifier (OP2), and the output signal of the integrating circuit (191) is input to an inverting input terminal of the operational amplifier (OP2). identification information receiving device (10).
  • the negative amplitude of the input signal can be converted to 0, and compatibility with digital signal processing by a microcontroller can be improved.
  • the integration circuit (191) constitutes a low-pass filter (191),
  • the time constant of the low-pass filter (191) is set so that the cutoff frequency of the low-pass filter (191) is 1/10 or less of the clock frequency corresponding to the communication speed of the identification information.
  • the identification information receiving device (10) according to item 1.
  • the identification information receiving device (10) according to item 1, wherein the integrating circuit (191) includes an RC circuit (Rf, Cf) and a voltage follower (OP1).
  • the integrating circuit (191) includes an RC circuit (Rf, Cf) and a voltage follower (OP1).
  • a removable and portable power storage pack (10) as the identification information receiving device (10) according to any one of items 1 to 6.
  • An identification information receiving method comprising:

Abstract

電力線で接続された識別情報送信装置により電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置において、積分回路は、電力線の電流又は電圧を電圧値で取得した入力信号を積分する。減算回路は、入力信号から、積分回路の出力信号を減算する。2値変換部は、減算回路の出力信号が閾値以上のとき1と判定し、閾値未満のとき0と判定する。

Description

識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体
 本開示は、電力線の電流又は電圧に重畳された識別情報を受信する識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラムに関する。
 近年、電動アシスト自転車が普及してきている。電動アシスト自転車では、着脱自在な可搬型の電池パックが使用される。電池パックのコネクタから通信線用の端子を無くすために、電池パックと電動アシスト自転車に無線通信機能を搭載し、無線で制御信号を伝送するシステムが開発されている。
 電池パックと無線通信可能な範囲に複数の電動アシスト自転車が存在する場合、装着される電池パックが自車に隣接する他の車両から誤って制御される恐れがあり、システム全体の安全・安心を担保できない。特に、レンタルサービスやシェアリングサービスでは、一つの駐輪場に、複数の電動アシスト自転車が駐車しているケースが多い。システム全体を安全・安心に運用するには、個々の電動アシスト自転車が、装着された電池パックを正しく識別する必要がある。
 電池パックから車両に電力線で電力供給しながら電力線に、2値電流(ゼロ以外)又は2値電圧(ゼロ以外)で識別情報を重畳することが考えられる。受信側では、電流又は電圧の計測値と閾値を比較して、閾値以上の計測値を1、閾値未満の計測値を0として、識別情報を受信する。
 しかしながら、部品特性のばらつきや消費電流の変化で、電流又は電圧の計測値にオフセットが加わる可能性があり、識別情報を正しく受信できないケースが発生し得る。電力線に重畳された電流又は電圧が変動する要因には、長期と短期の変動要因がある。長期の変動要因には、電子部品の個体差、経年変化が含まれる。長期の変動要因はほぼ直流成分の変動に起因する。短期の変動要因は、マイコンの間欠動作等の予期しない負荷電流の変動が含まれる。短期の変動要因は交流成分の変動に起因し、1パケット中の電流変動又は電圧変動が該当する。
 特許文献1は、通信電流の大きさに応じて負荷抵抗をスイッチで切り替え、電流閾値を切り替える方法を開示する。
国際公開第18/173173号
 特許文献1に開示された方法では、切り替え可能な電流閾値の数が、負荷抵抗とスイッチの数に依存するため、切り替え可能な電流閾値の数を増やすには回路規模の増加が必要になる。又、電流閾値の切り替えは固定値間の切り替えとなる。又、短期の変動要因に対応することが困難である。
 本開示はこうした状況に鑑みなされたものであり、その目的は、電力線の電流又は電圧に重畳された識別情報を検出する際の誤判定を低減する技術を提供することにある。
 上記課題を解決するために、本開示のある態様の識別情報受信装置は、電力線で接続された識別情報送信装置により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置であって、前記電力線の電流又は電圧を電圧値で取得した入力信号を積分する積分回路と、前記入力信号から、前記積分回路の出力信号を減算する減算回路と、前記減算回路の出力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定する2値変換部と、を備える。
 なお、以上の構成要素の任意の組み合わせ、本開示の表現を装置、システム、方法、コンピュータプログラム、記録媒体等の間で変換したものもまた、本開示の態様として有効である。
 本開示によれば、電力線の電流又は電圧に重畳された識別情報を検出する際の誤判定を低減することが出来る。
実施の形態に係る電池パックが装着された電動アシスト自転車を示す図である。 車両に装着される電池パックの認証処理例1の概要を説明するための図である。 実施の形態に係る電池パックと車両の構成例1を示す図である。 車両に装着される電池パックの認証処理例2の概要を説明するための図である。 実施の形態に係る電池パックと車両の構成例2を示す図である。 図6Aは、電力線に重畳される送信電流と受信電流の一例を示す図である。 図6Bは、電力線に重畳される送信電流と受信電流の一例を示す図である。 第1ID検出回路の構成例を示す図である。 図8Aは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図8Bは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図8Cは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図8Dは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図8Aに示した第1ID検出回路への入力信号(V1)の波形と、図8Bに示した積分回路の出力信号(V2)の波形と、図8Cに示した減算回路の出力信号(V3)の波形を重ねて表示した図である。 図8Aに示した第1ID検出回路への入力信号(V1)の波形と、図8Dに示した比較回路の出力信号(V4)の波形を重ねて表示した図である。 図11Aは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図11Bは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図11Cは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図11Dは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。 図11Aに示した第1ID検出回路への入力信号(V1)の波形と、図11Bに示した積分回路の出力信号(V2)の波形と、図11Cに示した減算回路の出力信号(V3)の波形を重ねて表示した図である。 図11Aに示した第1ID検出回路への入力信号(V1)の波形と、図11Dに示した比較回路の出力信号(V4)の波形を重ねて表示した図である。
 図1は、実施の形態に係る電池パックが装着された電動アシスト自転車を示す図である。電池パック10は、着脱自在な可搬式・交換式の電池パック10であり、車両20又は充電器(不図示)の装着スロットに装着可能である。以下、実施の形態では車両20として電動アシスト自転車を想定する。
 交換式の電池パック10は、車両20又は充電器の装着スロットとの着脱が頻繁に発生するため、電池パック10のコネクタ部分の劣化が進行しやすい。そこで本実施の形態では、電池パック10に無線通信機能を搭載し、制御信号を無線通信で伝送することとしている。これにより、電池パック10のコネクタから通信線用の端子をなくすことができ、電力線用の端子だけに出来る。
 車両20と電池パック10間の無線通信には、近距離無線通信を使用する。近距離無線通信としてBluetooth(登録商標)、Wi-Fi(登録商標)、赤外線通信等を使用出来る。以下、本実施の形態では近距離無線通信として、BLE(Bluetooth Low Energy)を使用することを想定する。
 BLEは、Bluetoothの拡張規格の一つであり、2.4GHz帯を使用した低消費電力な近距離無線通信規格である。BLEは、ボタン電池一つで数年間駆動可能な程度に低消費電力であるため、電池駆動に適しており、電池パック10の残容量に与える影響を極小化出来る。又、BLE通信用のモジュールは市場に数多く出荷されているため、低コストで入手出来る。
 BLEの電波到達範囲は、一般的なクラス2のデバイスを使用した場合、約10m程度である。従って、BLEの一つの通信圏内に、複数の車両20、複数の電池パック10が存在する状態が発生し得る。その場合、車両システム間で電波の干渉が発生し、動作が不安定になることがある。又、車両20は、自身に装着されている電池パック10以外の電池パック10と誤接続することもあり、その場合、装着されていない電池パック10を誤制御する可能性がある。
 そこで車両20に装着された電池パック10と、車両20の通信相手の電池パック10が同一であることを担保する仕組みが必要となる。本実施の形態では、識別情報(ID)を用いて、車両20と物理的に有線で接続された電池パック10と、無線通信で接続された電池パック10との同一性を確認する。この識別情報(ID)は、各車両20又は各電池パック10に固有の識別情報であってもよいし、テンポラルな識別情報であってもよい。固有の識別情報として例えば、BD(Bluetooth Device)アドレスやMAC(Medium Access Control)アドレスを使用してもよい。
 図2は、車両20に装着される電池パック10の認証処理例1の概要を説明するための図である。電池パック10のコネクタと車両20の装着スロットのコネクタが接続されると、車両20は有線経由で電池パック10にID1を送信する。電池パック10は、有線経由でID1を受信すると、近距離無線通信で、受信したID1と自己の電池パックIDを含むアドバタイズパケット(ビーコンパケット)を送出する。アドバタイズパケットは、自己の存在を近距離無線通信で周囲に報知するための信号である。
 車両20は、アドバタイズパケットを受信すると、アドバタイズパケットに含まれるID1と、有線経由で電池パック10に送信したID1を照合する。両者が一致した場合、車両20は、装着された電池パック10と、近距離無線通信の通信相手が同一であると認証する。両者が一致しない場合、車両20は、装着された電池パック10と、近距離無線通信の通信相手が同一でないと判定し、通信相手の電池パック10を認証しない。例えば、ID2を含むアドバタイズパケットを受信した場合、有線経由で電池パック10に送信したID1と一致しないため、ID2を含むアドバタイズパケットの送信先の電池パック10を認証しない。
 図3は、実施の形態に係る電池パック10と車両20の構成例1を示す図である。図3に示す構成例1は認証処理例1に対応し、図3には認証処理例1に必要な構成要素を描いており、認証処理例1に関係しない構成要素は適宜、省略している。図3は、電池パック10が車両20に装着されている状態を前提としている。
 電池パック10は、蓄電池11、第1リレー12、第1電流センサ13、第1電源回路14、第1制御部15、第1無線通信部16、第1アンテナ17、第1ID検出回路19及び給電用端子T1を含む。車両20は、モータ21、インバータ22、第2リレー23、第2電源回路24、第2制御部25、第2無線通信部26、第2アンテナ27、第2ID重畳回路28及び受電用端子T2を含む。電池パック10が車両20に装着された状態では、給電用端子T1と受電用端子T2が物理的に接触し、電池パック10内の電力線Lp1と車両20内の電力線Lp2が導通する。
 蓄電池11は、直列又は直並列に接続された複数のセルを含む。セルには、リチウムイオン電池セル、ニッケル水素電池セル、鉛電池セル等を使用出来る。以下、本明細書ではリチウムイオン電池セル(公称電圧:3.6-3.7V)を使用する例を想定する。セルの直列数は、車両20のモータ21の駆動電圧に応じて決定される。
 蓄電池11と給電用端子T1との間を接続する電力線Lp1に、第1リレー12が挿入される。なお、リレーの代わりに、半導体スイッチ等の別の種類のスイッチを使用してもよい。
 第1電流センサ13は、電池パック10内の電力線Lp1を流れる電流を計測して第1ID検出回路19に出力する。第1電流センサ13は例えば、シャント抵抗とアンプの組み合わせで構成される。電力線Lp1に挿入されたシャント抵抗の両端電圧がアンプで増幅されることで、第1電流センサ13から、電力線Lp1を流れる電流に対応する電圧値が出力される。なお、シャント抵抗の代わりに、ホール素子やCTセンサを使用することも可能である。
 第1電源回路14は、蓄電池11の電圧を降圧して、第1制御部15の電源電圧(例えば、3.3~5V程度)と、第1ID検出回路19の電源電圧(下記具体例では5V)を生成するDC/DCコンバータである。第1電源回路14は、スイッチングレギュレータで構成されてもよいし、リニアレギュレータで構成されてもよい。
 第1制御部15は、電池パック10全体を制御するマイクロコントローラである。第1制御部15は、蓄電池11の状態(具体的には、蓄電池11に含まれる各セルの電圧、電流、温度)を監視する。第1制御部15は、これらの監視データをもとに、蓄電池11に含まれる各セルのSOC(State Of Charge)、FCC(Full Charge Capacity)及びSOH(State Of Health)を推定する。又、第1制御部15は、蓄電池11に含まれるセルに過電圧、過小電圧、過電流、高温異常又は低温異常が発生した場合、第1リレー12をオフして、セルを保護する。
 第1無線通信部16は近距離無線通信処理を実行する。本実施の形態では、第1無線通信部16はBLEモジュールで構成され、第1アンテナ17はBLEモジュールに内蔵されるチップアンテナ、又はパターンアンテナで構成される。第1無線通信部16は、近距離無線通信で受信したデータを第1制御部15に出力するとともに、第1制御部15から入力されるデータを近距離無線通信で送信する。
 本実施の形態では、車両20は駆動用のモータ21として三相交流モータを備える。インバータ22は、力行時、電池パック10から供給される直流電力を交流電力に変換してモータ21に供給する。回生時、モータ21から供給される交流電力を直流電力に変換して電池パック10に供給する。モータ21は、力行時、インバータ22から供給される交流電力に応じて回転する。回生時、減速による回転エネルギーを交流電力に変換してインバータ22に供給する。
 インバータ22と受電用端子T2との間を接続する電力線Lp2に、第2リレー23が挿入される。なお、リレーの代わりに、半導体スイッチ等の別の種類のスイッチを使用してもよい。
 第2電源回路24は、車両20に装着された電池パック10内の蓄電池11から供給される電圧を降圧して、第2制御部25の電源電圧(例えば、3.3~5V程度)を生成するDC/DCコンバータである。第2電源回路24は、スイッチングレギュレータで構成されてもよいし、リニアレギュレータで構成されてもよい。本実施の形態では、車両20は、制御電源を生成するための自前の電池(例えば、鉛電池)を搭載していない。従って、装着された電池パック10内の蓄電池11から供給される駆動用電源から制御電源を生成する必要がある。
 第2制御部25は、車両20全体を制御するマイクロコントローラである。第2無線通信部26は近距離無線通信処理を実行する。本実施の形態では、第2無線通信部26はBLEモジュールで構成され、第2アンテナ27はBLEモジュールに内蔵されるチップアンテナ、又はパターンアンテナで構成出来る。第2無線通信部26は、近距離無線通信で受信したデータを第2制御部25に出力するとともに、第2制御部25から入力されるデータを近距離無線通信で送信する。
 第2ID重畳回路28は、電力線Lp2に流れる電流にIDを重畳する。IDは、複数ビットで規定され、各ビットは2値電流で表される。第2制御部25の電源供給を、車両20に内蔵されている自前の電池からではなく、電池パック10の蓄電池11から受けている場合、蓄電池11から車両20に流れる電流の通電と遮断を、IDの各ビットを表す2値電流に割り当てることはできない。従って、各ビットを表す2値電流は、ゼロ以外の2通りの電流値に設定する必要がある。
 第2ID重畳回路28は、それぞれ抵抗値が異なる2つの負荷と、2つの負荷のいずれかを選択又は2つの負荷を非導通にするための一以上のスイッチを備える。又、第2ID重畳回路28は、2通りの抵抗値に切替え可能な可変負荷と、可変負荷の抵抗値を切り替える、又は可変負荷を非導通にするための一以上のスイッチを備える構成でもよい。
 第2リレー23がオフの状態では、電力線Lp2に流れる電流は、第2制御部25の消費電流にほぼ依存する。第2リレー23がオフの状態において、第2制御部25は第2ID重畳回路28にIDを設定し、第2ID重畳回路28は、2つの負荷のうちの抵抗値が小さい方の負荷を導通させることでIDのビット「1」を電流に重畳し、抵抗値が大きい方の負荷を導通させることでIDのビット「0」を電流に重畳する。これにより、車両20側に引き込まれる電流の値が、IDの各ビットに応じて変化する。
 第1制御部15あるいは第2制御部25は、例えば、CPU(Central Processing Unit)及びメモリを主構成とするマイクロコンピュータにて構成されている。言い換えれば、第1制御部15あるいは第2制御部25は、CPU及びメモリを有するコンピュータにて実現されており、CPUがメモリに格納されているプログラムを実行することにより、コンピュータが第1制御部15あるいは第2制御部25として機能する。プログラムは、ここでは第1制御部15あるいは第2制御部25のメモリに予め記録されているが、インターネット等の電気通信回線を通じて、又はメモリカード等の(非一時的な)記録媒体に記録されて提供されてもよい。
 電池パック10の第1電流センサ13は、電力線Lp1に流れる電流を計測して第1ID検出回路19に出力する。第1ID検出回路19は、第1電流センサ13で計測された電流に対応する電圧値をもとに、電力線Lp1に流れる電流に重畳されたIDを検出し、検出したIDを第1制御部15に出力する。第1ID検出回路19の具体的な構成例は後述する。
 図4は、車両20に装着される電池パック10の認証処理例2の概要を説明するための図である。電池パック10のコネクタと車両20の装着スロットのコネクタが接続されると、電池パック10は有線経由で車両20にID1を送信する。同時に電池パック10は近距離無線通信で、ID1を含むアドバタイズパケットを送出する。
 車両20は、アドバタイズパケットを受信すると、アドバタイズパケットに含まれるID1と、有線経由で受信したID1を照合する。両者が一致した場合、車両20は、装着された電池パック10と、近距離無線通信の通信相手が同一であると認証する。両者が一致しない場合、車両20は、装着された電池パック10と、近距離無線通信の通信相手が同一でないと判定し、通信相手の電池パック10を認証しない。例えば、ID2を含むアドバタイズパケットを受信した場合、有線経由で受信したID1と一致しないため、ID2を含むアドバタイズパケットの送信先の電池パック10を認証しない。
 図5は、実施の形態に係る電池パック10と車両20の構成例2を示す図である。図5に示す構成例2は認証処理例2に対応し、図5には認証処理例2に必要な構成要素を描いており、認証処理例2に関係しない構成要素は適宜、省略している。構成例1では、電力線に流れる電流にIDを重畳した。構成例2では、電力線の電圧にIDを重畳する。
 図5に示す構成例2では、図3に示した構成例1と比較し、電池パック10側に第1ID重畳回路18が設けられ、車両20側に第2ID検出回路29と電圧検出回路210が設けられる。第1ID重畳回路18は例えば、オペアンプを用いた加算回路で構成される。オペアンプは蓄電池11の電圧を電源電圧とし、当該電源電圧より低いベース電圧に、第1制御部15から供給されるID電圧を加算し、加算した電圧を電力線Lp1に出力する。これにより、車両20側に供給される電圧の値が、IDの各ビットに応じて変化する。
 車両20側の電圧検出回路210は、電力線Lp2の電圧を計測して第2ID検出回路29に出力する。電圧検出回路210は例えば、抵抗分圧回路で構成され、分圧された電圧が第2ID検出回路29に入力される。第2ID検出回路29は、電圧検出回路210で計測された電圧値をもとに、電力線Lp2に流れる電圧に重畳されたIDを検出し、検出したIDを第2制御部25に出力する。
 図3に示した構成例1ではIDを車両20から電池パック10に送信しているため、車両20が識別情報送信装置となり、電池パック10が識別情報受信装置となる。これに対して図5に示した構成例2ではIDを電池パック10から車両20に送信しているため、電池パック10が識別情報送信装置となり、車両20が識別情報受信装置となる。以下、電流重畳方式を採用した構成例1を前提に、識別情報受信装置について説明する。
 図6A-図6Bは、電力線に重畳される送信電流と受信電流の一例を示す図である。図6Aは識別情報送信装置で重畳された送信電流の一例を示し、図6Bは識別情報受信装置で検出された受信電流の一例を示している。識別情報受信装置は、電流値Iが閾値Ith以上のときビット「1」と判定し、閾値Ith未満のときビット「0」と判定する。一例として、閾値Ithが50mA、電流値Iのローレベル側の想定値が30mA、ハイレベル側の想定値が70mAに設定されてもよい。
 その際、部品特性のばらつきや消費電流の変化により、電流値Iにオフセットが追加される可能性がある。部品特性のばらつきは、個体差、温度変動、経年変化の少なくとも一つに起因して発生する。識別情報送信装置(車両20)の予期しない消費電流の変化は、例えば、第2制御部25(マイコン)を使用した認証処理の最中に、第2制御部25で何らかのバックグラウンド処理又はイベント処理(例えば、ソフトウェア更新処理)が開始することで発生する。又、識別情報送信装置(車両20)の消費電流の変化は、識別情報送信装置(車両20)のライト点灯、等の構成変化に起因しても発生する。
 このようなシステム状態やシステム構成の変化により、識別情報送信装置の消費電流が増加すると、電力線に流れる電流が増加する。即ち、電力線に流れる電流にオフセットが追加される。このオフセットにより、電力線に流れる電流に重畳されたIDのビット判定に誤りが発生する可能性がある。図6A-図6Bに示した例では、識別情報送信装置で電流に重畳されるIDは「00101011110000011101」であるのに対して、識別情報受信装置で電流から検出されるIDは「00101011110000011111」と、下位から2ビット目にビット誤りが発生している。以下、電流に重畳されるオフセットの影響をキャンセルすることで、IDのビット判定誤りを防止し、安定した通信を実現する方法を説明する。
 図7は、第1ID検出回路19の構成例を示す図である。第1ID検出回路19は、積分回路191、減算回路192及び比較回路193を含む。積分回路191は、電力線に流れる電流を電圧値で取得した入力信号(V1)を積分する。積分回路191は、ローパスフィルタを構成する。減算回路192は、入力信号(V1)から、積分回路191の出力信号(V2)を減算する。
 比較回路193は、減算回路192の出力信号(V3)と閾値を比較し、減算回路192の出力信号(V3)が閾値以上のときハイレベル信号を第1制御部15に出力し、減算回路192の出力信号(V3)が閾値未満のときローレベル信号を第1制御部15に出力する。第1制御部15は、第1ID検出回路19からハイレベル信号が入力されると「1」と判定し、ローレベル信号が入力されると「0」と判定することで、電力線に流れる電流に重畳されたIDを識別する。
 図7に示す例では、積分回路191は、RC回路とボルテージフォロアを含む。RC回路は、入力端子とグランド端子間に、フィルタ抵抗RfとフィルタコンデンサCfが直列に接続され、フィルタ抵抗RfとフィルタコンデンサCfとの接続点が出力端子となる。
 RC回路は、カットオフ周波数以上の成分が減衰された信号を出力する。
 ボルテージフォロアは、第1オペアンプOP1で構成される。第1オペアンプOP1の非反転入力端子にRC回路の出力端子が接続され、第1オペアンプOP1の出力端子と反転入力端子が接続される。ボルテージフォロアは、増幅率=1、入力インピーダンス=∞、出力インピーダンス=0とみなすことが出来るバッファである。RC回路と減算回路192の間に、ボルテージフォロアを挿入することで、減算回路192に含まれる第1抵抗R1及び第3抵抗R3の影響により、RC回路の時定数が変動することを抑制することが出来る。
 なお、図7では積分回路191を、パッシブフィルタ(RCローパスフィルタ)とボルテージフォロアの組み合わせで構成する例を示したが、アクティブフィルタ(オペアンプを用いた積分回路)で構成されてもよい。オペアンプを用いた積分回路では、オペアンプの帰還経路にコンデンサが接続される。
 減算回路192は、第2オペアンプOP2、第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4を含む。第2オペアンプOP2の反転入力端子と、積分回路191に含まれる第1オペアンプOP1の出力端子との間に第1抵抗R1が接続される。第2オペアンプOP2の非反転入力端子と、第1ID検出回路19の入力端子(積分回路191の入力端子)との間に第2抵抗R2が接続される。第2オペアンプOP2の出力端子と反転入力端子との間の帰還経路に第3抵抗R3が接続される。第2抵抗R2と非反転入力端子との接続点と、グランドの間に第4抵抗R4が接続される。
 第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4の抵抗値は同じ値(図7に示す例では、10kΩ)に設定される。第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4の抵抗値が同じ場合、第2オペアンプOP2の出力信号(V3)は、非反転入力端子に入力された信号(V1)から、反転入力端子に入力された信号(V2)を減算した信号となる。
 比較回路193は、コンパレータとして機能する第3オペアンプOP3を含む。第3オペアンプOP3の非反転入力端子と、減算回路192の第2オペアンプOP2の出力端子が接続される。第3オペアンプOP3の反転入力端子には、閾値電圧(図7に示す例では、0.5V)が参照電圧として入力される。第3オペアンプOP3は、減算回路192の出力信号(V3)が閾値電圧以上の場合はハイレベル信号(図7に示す例では、5V)を出力し、閾値電圧未満の場合はローレベル信号(図7に示す例では、0V)を出力する。
 図7に示す例では、第1オペアンプOP1、第2オペアンプOP2及び第3オペアンプOP3に、単電源(片電源ともいう)のオペアンプを使用している。具体的には、5Vの単電源のオペアンプを使用している。単電源のオペアンプでは、両電源のオペアンプ(例えば、+15Vと-15Vの2電源のオペアンプ)と異なり、負の振幅が発生しない。第1オペアンプOP1により、第1電流センサ13で計測された電流に対応する入力信号(V1)の下限が、0V付近にクランプされる。デジタルデータを扱う第1制御部15(マイコン)では負の振幅は扱いにくい。入力信号(V1)の下限を0Vにすることで、第1制御部15(マイコン)で扱いやすいデータを生成することが出来る。又、第1オペアンプOP1、第2オペアンプOP2及び第3オペアンプOP3の動作範囲を、0-5Vとすることで、-15~+15Vとする場合より、消費電力を低減することが出来る。
 5V電源と、第1オペアンプOP1、第2オペアンプOP2及び第3オペアンプOP3のプラス電源端子との間に第1スイッチS1が接続される。グランドと、第1オペアンプOP1、第2オペアンプOP2及び第3オペアンプOP3のマイナス電源端子との間に第2スイッチS2が接続される。0.5V電源と、第3オペアンプOP3の反転入力端子との間に第3スイッチS3が接続される。5V電源と0.5V電源は、第1電源回路14から供給される電圧をもとに生成される。第1電源回路14から供給される電圧をそのまま使用するか、降圧して使用する。
 第1制御部15は、電池パック10の装着時におけるIDの受信を含む認証期間(例えば、電池パック10の装着から10秒間)が終了すると、積分回路191、減算回路192及び比較回路193に含まれる能動素子(図7に示す例では、第1オペアンプOP1、第2オペアンプOP2及び第3オペアンプOP3)への電源供給を、第1スイッチS1、第2スイッチS2及び第3スイッチS3をオフすることで、遮断する。これにより、第1ID検出回路19を使用しない期間の消費電力を無くすことが出来、蓄電池11の容量を節約することが出来る。
 以下、図7に示した第1ID検出回路19のシミュレーションの実行結果を示す。シミュレーション1では、1kΩのフィルタ抵抗Rf、0.1μFのフィルタコンデンサCfを使用する。この場合、RC回路の時定数τ=0.1ms、RC回路のカットオフ周波数fc≒1592Hzである。シミュレーション2では、10kΩのフィルタ抵抗Rf、0.1μFのフィルタコンデンサCfを使用する。この場合、RC回路の時定数τ=1ms、RC回路のカットオフ周波数fc≒159.2Hzである。
 図8A-図8Dは、シミュレーション1の実行結果を示すシミュレーション波形を示す図である。図8Aは第1ID検出回路19への入力信号(V1)の波形を示し、図8Bは積分回路191の出力信号(V2)の波形を示し、図8Cは減算回路192の出力信号(V3)の波形を示し、図8Dは比較回路193の出力信号(V4)の波形を示す。図9は、図8Aに示した第1ID検出回路19への入力信号(V1)の波形と、図8Bに示した積分回路191の出力信号(V2)の波形と、図8Cに示した減算回路192の出力信号(V3)の波形を重ねて表示した図である。図10は、図8Aに示した第1ID検出回路19への入力信号(V1)の波形と、図8Dに示した比較回路193の出力信号(V4)の波形を重ねて表示した図である。
 図11A-図11D(d)は、シミュレーション2の実行結果を示すシミュレーション波形を示す図である。図11Aは第1ID検出回路19への入力信号(V1)の波形を示し、図11Bは積分回路191の出力信号(V2)の波形を示し、図11Cは減算回路192の出力信号(V3)の波形を示し、図11Dは比較回路193の出力信号(V4)の波形を示す。図12は、図11Aに示した第1ID検出回路19への入力信号(V1)の波形と、図11Bに示した積分回路191の出力信号(V2)の波形と、図11Cに示した減算回路192の出力信号(V3)の波形を重ねて表示した図である。図13は、図11Aに示した第1ID検出回路19への入力信号(V1)の波形と、図11Dに示した比較回路193の出力信号(V4)の波形を重ねて表示した図である。
 本実施の形態では、IDの通信速度として9600bpsを想定している。シミュレーション1では、1秒間に9600ビットを転送する場合のクロック周波数に近似させて、5kHzのクロック周波数(0.2msの周期)の矩形波を入力信号(V1)としている。
 積分回路191の出力信号(V2)は、入力信号(V1)に追従して、入力信号(V1)の振幅の中心付近に収束していく。シミュレーション2の方がシミュレーション1より時定数が大きいため、シミュレーション2の積分回路191の出力信号(V2)の方が滑らかな変動となる。
 シミュレーション1、2では、1.0ms時点から電力線に流れる電流にオフセットが追加され、入力信号(V1)がこのオフセット分、上昇する例を示している。これに追従して、積分回路191の出力信号(V2)も上昇していく。減算回路192で入力信号(V1)から積分回路191の出力信号(V2)を減算することで、オフセットの影響(即ち、通信中の電流変動の影響)をキャンセルすることが出来る。
 減算回路192の出力信号(V3)の波形は台形波となる。積分回路191の出力信号(V2)が滑らかなほど、台形波の上辺の傾き低下が緩やかになる(シミュレーション2)。反対に、積分回路191の出力信号(V2)の変化が激しいほど、台形波の上辺の傾き低下が急峻になる(シミュレーション1)。
 比較回路193で波形整形された出力信号(V4)のパルス幅は、減算回路192の出力信号(V3)である台形波の上辺の傾き低下の影響を受ける。本来、比較回路193は、入力信号(V1)のパルスがハイレベルの期間、ハイレベル信号を出力すべきである。
 入力信号(V1)のパルスがハイレベルの期間に対応する台形波の出力期間において、台形波が閾値電圧(0.5V)未満になると、比較回路193の出力信号がローレベルに反転してしまう。
 図10に示したようにシミュレーション1では、比較回路193の出力信号(V4)のパルス幅が安定せず、比較回路193の出力信号(V4)のパルス幅が入力信号(V1)のパルス幅より小さくなる区間が多く発生している。
 一方、図13に示したようにシミュレーション2では、比較回路193の出力信号(V4)のパルス幅が安定しており、比較回路193の出力信号(V4)のパルス幅と入力信号(V1)のパルス幅が概ね一致している。シミュレーション2では、減算回路192の出力信号(V3)である台形波の上辺の傾き低下が緩やかであり、台形波が閾値電圧(0.5V)を下回らないことに起因する。
 比較回路193の出力信号(V4)のパルス幅が不安定になると第1制御部15(マイコン)内でビット判定を誤る可能性が増加する。そこで、比較回路193の出力信号(V4)のパルス幅が安定するようにRC回路の時定数を設定することが望まれる。具体的には、RCローパスフィルタのカットオフ周波数fcが、IDの通信速度に対応するクロック周波数の1/10以下になるように、RCローパスフィルタの時定数を設定する。なお、RCローパスフィルタのカットオフ周波数fcがクロック周波数に対して低すぎると、積分回路191の出力信号(V2)の入力信号(V1)に対する追従性が低下する。そこで、RCローパスフィルタのカットオフ周波数fcが、IDの通信速度に対応するクロック周波数の概ね1/10程度になるように、RCローパスフィルタの時定数を設定してもよい。
 以上の説明では、第1ID検出回路19が比較回路193を含む例を示したが、比較回路193を省略して、減算回路192の出力信号(V3)を、第1制御部15(マイコン)のアナログ入力ポートに直接入力してもよい。第1制御部15(マイコン)内のA/D変換器は、所定のサンプリングレートで減算回路192の出力信号(V3)をデジタル値に変換する。このように減算回路192の出力信号(V3)を、比較回路193で2値信号に変換してもよいし、第1制御部15で2値信号に変換してもよい。いずれの場合も、減算回路192の出力信号(V3)の波形が、入力信号(V1)のパルス波形の1/2振幅のパルス波形にできるだけ近い波形で出力されると、高精度なビット判定が可能となる。
 以上の説明では、電力線に流れる電流に重畳されたIDを、第1ID検出回路19によるハードウェア処理で検出する例を示した。この点、第1制御部15(マイコン)によるソフトウェア処理で検出することも可能である。この場合、第1ID検出回路19は省略され、第1電流センサ13で計測された電流に対応する入力信号(V1)が第1制御部15(マイコン)のアナログ入力ポートに直接入力される。
 第1制御部15(マイコン)内のA/D変換器は、IDの通信速度に対応するクロック周波数より高速なサンプリングレート(例えば、クロック周波数の10-100倍のサンプリングレート)で、入力信号(V1)をデジタル値に変換する。入力信号の単位周期内の波形推移を細かく観測するには高速サンプリングが必要となる。第1制御部15(マイコン)内のCPUは、高速サンプリングされたデジタルの入力信号(V1)を積分して積分信号(積分回路191の出力信号(V2)に相当)を算出する。CPUは、クロック周波数のタイミングでサンプリングされた入力信号から、算出した積分信号を減算して補正入力信号を算出する。CPUは、補正入力信号と閾値を比較して、IDの各ビットを検出する。
 ソフトウェア処理によるID検出処理は、IDの通信速度が低速な場合に有効である。
 一方、IDの通信速度が高速な場合、第1制御部15(マイコン)に高性能なものを使用する必要が発生する。又、発熱対策も必要となる。ソフトウェア処理によるID検出処理では、ハードウェア処理によるID検出処理と比較して時定数の変更が容易である。
 識別情報送信装置のID重畳回路は、IDビット列の前に、「1」と「0」が交互に繰り返される複数ビット(例えば、4ビット、8ビット又は16ビット)で規定されるテスト用ビット列を挿入してもよい。識別情報受信装置のID検出回路又は制御部は、IDビット列の検出の前に、テスト用ビット列に含まれる複数ビットの振幅の代表値(例えば、平均値、中央値)を検出し、検出した代表値を積分回路191の出力信号(V2)又は積分信号(以下、両者を総称して積分信号という)の初期値に設定する。
 これにより、積分信号の初期値を、入力信号(V1)の中心付近に設定することが出来、IDビット列が「1」又は「0」が連続するビット列であった場合において積分信号が「1」又は「0」に偏ることを防止することが出来る。又、IDビット列の前に、「1」又は「0」が連続するアイドルビット列やスタートビット列があった場合でも、積分信号の初期値が「1」又は「0」に偏ることを防止することが出来る。
 以上説明したように本実施の形態では、IDが重畳された電流信号から、当該電流信号の積分信号を減算することで、自動的に電流変動分をキャンセルすることが出来る。その際、実際の電流変動に対して動的に追従した電流変動分をキャンセルすることが出来る。
 より具体的には、電流信号からローパスフィルタで直流成分を抽出し、電流信号から直流成分を減算することで、電子部品の個体差や経年変化に基づく長期の電流変動の影響を除去することが出来る。又、ローパスフィルタのカットオフ周波数fcを、IDの通信速度に対応するクロック周波数の概ね1/10に設定することで、1パケット中の短期の電流変動の影響も十分に除去することが出来る。従って、電流通信時に不測の電流変動が発生しても、安定した通信が可能となる。以上により、電流信号からIDを検出する際の誤判定を低減することが出来る。
 又、通信電流の大きさに応じて負荷抵抗をスイッチで切り替え、電流閾値を切り替える方法(特許文献1参照)と比較して、電流信号の検出値を柔軟に補正することが出来、補正対応範囲も広い。これに対して上記方法では、電流閾値を細かく切り替えることが出来ないため、電流変動の影響を除去するための補正量を最適化することが困難である。又、短期の電流変動の影響を除去することが出来ない。又、本実施の形態に係るID検出方法は、簡単な回路又は簡単なソフトウェアで実現可能であり、実使用時のメリットが大きい。上記方法のように負荷抵抗とスイッチを搭載する必要はない。又、本実施の形態に係るID検出方法は汎用性が高く、適用範囲が広い。
 以上、本開示を実施の形態をもとに説明した。実施の形態は例示であり、それらの各構成要素や各処理プロセスの組み合わせにいろいろな変形例が可能なこと、又そうした変形例も本開示の範囲にあることは当業者に容易に理解されるところである。
 上述の実施の形態では、車両20の装着スロットに装着された電池パック10と、車両20の通信相手の電池パック10が同一であることを認証する例を説明した。この点、充電器の装着スロットに装着された電池パック10と、充電器の通信相手の電池パック10が同一であることを認証する場合にも、上述の実施の形態に係るID検出方法を使用可能である。この場合、充電器が識別情報送信装置、電池パック10が識別情報受信装置となってもよいし、電池パック10が識別情報送信装置、充電器が識別情報受信装置となってもよい。
 上述の実施の形態では、蓄電池11を内蔵する電池パック10を使用する例を説明した。この点、電気二重層キャパシタセル、リチウムイオンキャパシタセル等を含むキャパシタを内蔵するキャパシタパックを使用してもよい。本明細書では、電池パックとキャパシタパックを総称して蓄電パックと呼ぶ。
 本開示は、自前の電源を搭載していない車両20への適用に適しているが、自前の電源を搭載している車両20への適用を排除するものではない。従って、車両20は電動アシスト自転車に限定されるものではなく、電動バイク(電動スクータ)、電動キックスクータ、電気自動車(ゴルフカート、ランドカー等の低速の電気自動車を含む)、鉄道車両等も含まれる。又、蓄電パックが装着される対象は車両20に限定されるものではなく、例えば、電動船舶、マルチコプタ(ドローン)等の電動移動体も含まれる。
 なお、実施の形態は、以下の項目によって特定されてもよい。
 [項目1]
 電力線で接続された識別情報送信装置(20)により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置(10)であって、
 前記電力線の電流又は電圧を電圧値で取得した入力信号を積分する積分回路(191)と、
 前記入力信号から、前記積分回路(191)の出力信号を減算する減算回路(192)と、
 前記減算回路(192)の出力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定する2値変換部(193)と、
 を備えることを特徴とする識別情報受信装置(10)。
 これによれば、電力線の電流又は電圧に重畳された識別情報を検出する際の誤判定を低減することが出来る。
 [項目2]
 前記2値変換部(193)は、
 前記減算回路(192)の出力信号と前記閾値を比較して、ハイレベル信号又はローレベル信号を出力する比較回路(193)を含むことを特徴とする項目1に記載の識別情報受信装置(10)。
 これによれば、2値波形の振幅とパルス幅を安定化させることが出来る。
 [項目3]
 前記減算回路(192)は、単電源のオペアンプ(OP2)を用いて構成され、
 前記入力信号が前記オペアンプ(OP2)の非反転入力端子に入力され、前記積分回路(191)の出力信号が前記オペアンプ(OP2)の反転入力端子に入力されることを特徴とする項目1に記載の識別情報受信装置(10)。
 これによれば、入力信号の負の振幅を0に変換することが出来、マイクロコントローラによるデジタル信号処理との親和性を高めることが出来る。
 [項目4]
 前記積分回路(191)は、ローパスフィルタ(191)を構成し、
 前記ローパスフィルタ(191)のカットオフ周波数が、前記識別情報の通信速度に対応するクロック周波数の1/10以下になるように、前記ローパスフィルタ(191)の時定数が設定されることを特徴とする項目1に記載の識別情報受信装置(10)。
 これによれば、短期の電流変動分の影響を十分に除去することが出来る。
 [項目5]
 前記積分回路(191)は、RC回路(Rf、Cf)とボルテージフォロア(OP1)を含むことを特徴とする項目1に記載の識別情報受信装置(10)。
 これによれば、低コストで高精度なローパスフィルタを構築することが出来る。
 [項目6]
 前記識別情報の受信を含む認証期間が終了すると、前記積分回路(191)、前記減算回路(192)及び前記比較回路(193)に含まれる能動素子(OP1、OP2、OP3)への電源供給が遮断されることを特徴とする項目2に記載の識別情報受信装置(10)。
 これによれば、無駄な消費電力を無くすことが出来る。
 [項目7]
 項目1から6のいずれか1項に記載の識別情報受信装置(10)としての着脱自在な可搬式の蓄電パック(10)。
 これによれば、電力線の電流又は電圧に重畳された識別情報を検出する際の誤判定を低減された蓄電パック(10)を実現することが出来る。
 [項目8]
 電力線で接続された識別情報送信装置(20)により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置(10)における識別情報受信方法であって、
 前記電力線の電流又は電圧を電圧値で取得した入力信号を積分するステップと、
 前記入力信号から、前記入力信号の積分信号を減算するステップと、
 前記積分信号を減算後の入力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定するステップと、
 を備えることを特徴とする識別情報受信方法。
 これによれば、電力線の電流又は電圧に重畳された識別情報を検出する際の誤判定を低減することが出来る。
 [項目9]
 電力線で接続された識別情報送信装置(20)により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置(10)における識別情報受信プログラムであって、
 前記電力線の電流又は電圧を電圧値で取得した入力信号を積分する処理と、
 前記入力信号から、前記入力信号の積分信号を減算する処理と、
 前記積分信号を減算後の入力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定する処理と、
 をコンピュータに実行させることを特徴とする識別情報受信プログラム。
 これによれば、電力線の電流又は電圧に重畳された識別情報を検出する際の誤判定を低減することが出来る。
 10 電池パック、 20 車両、 11 蓄電池、 12 第1リレー、 13 第1電流センサ、 14 第1電源回路、 15 第1制御部、 16 第1無線通信部、 17 第1アンテナ、 18 第1ID重畳回路、 19 第1ID検出回路、 21 モータ、 22 インバータ、 23 第2リレー、 24 第2電源回路、 25 第2制御部、 26 第2無線通信部、 27 第2アンテナ、 28 第2ID重畳回路、 29 第2ID検出回路、 210 電圧検出回路、 T1 給電用端子、 T2 受電用端子、 Lp 電力線、 191 積分回路、 192 減算回路、 193 比較回路、 Rf フィルタ抵抗、 R1-R4 抵抗、 Cf フィルタコンデンサ、 OP1-OP3 第3オペアンプ、 S1-S3 スイッチ。

Claims (10)

  1.  電力線で接続された識別情報送信装置により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置であって、
     前記電力線の電流又は電圧を電圧値で取得した入力信号を積分する積分回路と、
     前記入力信号から、前記積分回路の出力信号を減算する減算回路と、
     前記減算回路の出力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定する2値変換部と、
     を備えることを特徴とする識別情報受信装置。
  2.  前記2値変換部は、
     前記減算回路の出力信号と前記閾値を比較して、ハイレベル信号又はローレベル信号を出力する比較回路を含むことを特徴とする請求項1に記載の識別情報受信装置。
  3.  前記減算回路は、単電源のオペアンプを用いて構成され、
     前記入力信号が前記オペアンプの非反転入力端子に入力され、前記積分回路の出力信号が前記オペアンプの反転入力端子に入力されることを特徴とする請求項1に記載の識別情報受信装置。
  4.  前記積分回路は、ローパスフィルタを構成し、
     前記ローパスフィルタのカットオフ周波数が、前記識別情報の通信速度に対応するクロック周波数の1/10以下になるように、前記ローパスフィルタの時定数が設定されることを特徴とする請求項1に記載の識別情報受信装置。
  5.  前記積分回路は、RC回路とボルテージフォロアを含むことを特徴とする請求項1に記載の識別情報受信装置。
  6.  前記識別情報の受信を含む認証期間が終了すると、前記積分回路、前記減算回路及び前記比較回路に含まれる能動素子への電源供給が遮断されることを特徴とする請求項2に記載の識別情報受信装置。
  7.  請求項1から6のいずれか1項に記載の識別情報受信装置としての着脱自在な可搬式の蓄電パック。
  8.  電力線で接続された識別情報送信装置により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置における識別情報受信方法であって、
     前記電力線の電流又は電圧を電圧値で取得した入力信号を積分するステップと、
     前記入力信号から、前記入力信号の積分信号を減算するステップと、
     前記積分信号を減算後の入力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定するステップと、
     を備えることを特徴とする識別情報受信方法。
  9.  電力線で接続された識別情報送信装置により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置における識別情報受信プログラムであって、
     前記電力線の電流又は電圧を電圧値で取得した入力信号を積分する処理と、
     前記入力信号から、前記入力信号の積分信号を減算する処理と、
     前記積分信号を減算後の入力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定する処理と、
     をコンピュータに実行させることを特徴とする識別情報受信プログラム。
  10.  電力線で接続された識別情報送信装置により前記電力線の電流又は電圧に重畳された、複数ビットで規定された識別情報を受信する識別情報受信装置における識別情報受信プログラムが記載された非一時的な記録媒体であって、
     前記電力線の電流又は電圧を電圧値で取得した入力信号を積分する処理と、
     前記入力信号から、前記入力信号の積分信号を減算する処理と、
     前記積分信号を減算後の入力信号が閾値以上のとき1と判定し、前記閾値未満のとき0と判定する処理と、
     をコンピュータに実行させることを特徴とする識別情報受信プログラムが記載された非一時的な記録媒体。
PCT/JP2023/016234 2022-05-27 2023-04-25 識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体 WO2023228663A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022086860 2022-05-27
JP2022-086860 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023228663A1 true WO2023228663A1 (ja) 2023-11-30

Family

ID=88919159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/016234 WO2023228663A1 (ja) 2022-05-27 2023-04-25 識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体

Country Status (1)

Country Link
WO (1) WO2023228663A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207976A (ja) * 1984-03-31 1985-10-19 Toshiba Corp 斜め四角形空間フイルタ及び空間フイルタリング装置
JP2005062951A (ja) * 2003-08-13 2005-03-10 Fuji Electric Holdings Co Ltd エンコーダ信号伝送方式
WO2021149468A1 (ja) * 2020-01-23 2021-07-29 パナソニックIpマネジメント株式会社 蓄電パックの認証方法、蓄電パック、充電装置、電動移動体、及び電動移動体の制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60207976A (ja) * 1984-03-31 1985-10-19 Toshiba Corp 斜め四角形空間フイルタ及び空間フイルタリング装置
JP2005062951A (ja) * 2003-08-13 2005-03-10 Fuji Electric Holdings Co Ltd エンコーダ信号伝送方式
WO2021149468A1 (ja) * 2020-01-23 2021-07-29 パナソニックIpマネジメント株式会社 蓄電パックの認証方法、蓄電パック、充電装置、電動移動体、及び電動移動体の制御装置

Similar Documents

Publication Publication Date Title
EP1977493B1 (en) Battery balancing apparatus
EP3699617B1 (en) Battery monitoring apparatus and battery monitoring system
AU744894B2 (en) Redox gel battery
US9721447B2 (en) Display of rechargeable battery charge notification
CN110896233B (zh) 电池管理系统
EP3623197B1 (en) Power-down detection circuit and control method
WO2013051688A1 (ja) 電池状態管理装置、電池状態管理方法
US20230155401A1 (en) Power storage pack, electric moving body, charging device
WO2007043250A1 (ja) Acアダプタ、電子機器及び電源システム
CN104377781A (zh) 适配器及包括该适配器的充电系统、充电的方法
US20230046158A1 (en) Authentication method for power storage pack, power storage pack, charging device, electric moving body, and control device for electric moving body
JP5642018B2 (ja) 電動車両のバッテリ監視装置
WO2023228663A1 (ja) 識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体
JP4790881B2 (ja) 電源制御システム、バッテリーパック、電子機器、及び、電子機器の警告表示方法
CN110879350A (zh) 一种电池均衡电路的检测方法及电池管理系统
JP2000294299A (ja) 電池パック制御装置
WO2000042690A1 (en) Energy monitoring and charging system
WO2023228658A1 (ja) 識別情報受信装置、蓄電パック、識別情報受信方法、及び識別情報受信プログラム、プログラムが記載された記録媒体
WO2024018822A1 (ja) 受信回路、蓄電パック、受信方法、及び受信プログラム、受信プログラムが記載された記憶媒体
US9669725B2 (en) Store for electrical energy, and holding device for at least one store for an electrically drivable vehicle
JP5658936B2 (ja) 二次電池パック、充電器および車両
CN115810812A (zh) 一种电池、电池状态检测方法及相关装置
WO2023223726A1 (ja) 識別情報受信装置、蓄電パック、および識別情報受信方法
WO2023021911A1 (ja) 蓄電パック、電動移動体
WO2023223727A1 (ja) 識別情報受信装置、蓄電パック、および識別情報受信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811541

Country of ref document: EP

Kind code of ref document: A1