WO2023228356A1 - 数値制御装置およびコンピュータ読み取り可能な記憶媒体 - Google Patents

数値制御装置およびコンピュータ読み取り可能な記憶媒体 Download PDF

Info

Publication number
WO2023228356A1
WO2023228356A1 PCT/JP2022/021555 JP2022021555W WO2023228356A1 WO 2023228356 A1 WO2023228356 A1 WO 2023228356A1 JP 2022021555 W JP2022021555 W JP 2022021555W WO 2023228356 A1 WO2023228356 A1 WO 2023228356A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
contact body
position information
measured
control device
Prior art date
Application number
PCT/JP2022/021555
Other languages
English (en)
French (fr)
Inventor
召輝 谷
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/021555 priority Critical patent/WO2023228356A1/ja
Publication of WO2023228356A1 publication Critical patent/WO2023228356A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes

Definitions

  • the present disclosure relates to a numerical control device and a computer-readable storage medium.
  • the position of a workpiece has been measured using a measuring instrument attached to the main axis of a machine tool (for example, Patent Document 1).
  • the position of the workpiece can be measured by an operator bringing the probe into contact with the workpiece in manual mode.
  • the operator needs to correct the coordinate value indicating the contact position in the positive or negative direction by the length of the contact or the outer diameter of the contact. be.
  • the coordinate value indicating the contact position is corrected in the plus direction by the length of the contact or the outer diameter of the contact.
  • the coordinate value indicating the contact position is corrected in the minus direction by the length of the contact or the outer diameter of the contact. This allows the accurate position of the workpiece to be determined.
  • the numerical control device includes a first acquisition unit that acquires start position information indicating a starting position at which the contact body starts measuring the object to be measured in manual measurement, and a first acquisition unit that indicates a contact position where the contact body and the object to be measured come into contact.
  • a second acquisition unit that acquires contact position information, and a contact object approaches the object to be measured based on the start position information acquired by the first acquisition unit and the contact position information acquired by the second acquisition unit.
  • a calculation section that calculates a measurement position by correcting contact position information based on the direction determined by the determination section.
  • a computer-readable storage medium acquires start position information indicating a starting position at which a contacting body starts measuring an object in manual measurement, and contact indicating a contact position at which the contacting body and the measured object make contact. acquiring position information; determining the direction in which the contact object approaches the object to be measured based on the acquired starting position information and the acquired contact position information; and determining the contact position based on the determined direction. It stores instructions that cause the computer to correct the information and calculate the measurement position.
  • FIG. 2 is a block diagram showing an example of a hardware configuration of an industrial machine.
  • FIG. 3 is a diagram for explaining a method of calculating a measurement position.
  • FIG. 3 is a diagram for explaining a method of calculating a measurement position.
  • FIG. 2 is a block diagram showing an example of functions of a numerical control device that controls industrial machinery.
  • FIG. 3 is a diagram for explaining an example of a method of acquiring start position information.
  • FIG. 3 is a diagram for explaining an example of a method of acquiring start position information.
  • FIG. 3 is a diagram for explaining an example of a method of acquiring start position information.
  • FIG. 3 is a diagram for explaining an example of a method of acquiring start position information.
  • It is a flowchart which shows an example of the process performed in a numerical control device.
  • FIG. 2 is a block diagram illustrating an example of functions of a numerical control device including a control section.
  • a numerical control device is a device that controls industrial machinery.
  • Industrial machines are, for example, machine tools, wire electrical discharge machines, injection molding machines, industrial robots and three-dimensional printers.
  • Machine tools are, for example, lathes, machining centers, and multitasking machines.
  • FIG. 1 is a block diagram showing an example of the hardware configuration of an industrial machine equipped with a numerical control device.
  • the industrial machine 1 includes a numerical control device 2, an input/output device 3, a servo amplifier 4, a servo motor 5, a spindle amplifier 6, a spindle motor 7, and an auxiliary device 8.
  • the numerical control device 2 is a control device that controls the entire industrial machine 1.
  • the numerical control device 2 includes a hardware processor 201 , a bus 202 , a ROM (Read Only Memory) 203 , a RAM (Random Access Memory) 204 , and a nonvolatile memory 205 .
  • the hardware processor 201 is a processor that controls the entire numerical control device 2 according to a system program.
  • the hardware processor 201 reads a system program stored in the ROM 203 via the bus 202 and performs various processes based on the system program. Further, the hardware processor 201 controls the servo motor 5 and the spindle motor 7 based on, for example, an operation program for operating the industrial machine.
  • the hardware processor 201 is, for example, a CPU (Central Processing Unit) or an electronic circuit.
  • the hardware processor 201 analyzes a machining program and outputs control commands to the servo motor 5 and spindle motor 7, for example, every control cycle.
  • the bus 202 is a communication path that connects each piece of hardware within the numerical control device 2 to each other. Each piece of hardware within the numerical control device 2 exchanges data via a bus 202.
  • the ROM 203 is a storage device that stores system programs and the like for controlling the entire numerical control device 2.
  • ROM 203 is a computer readable storage medium.
  • the RAM 204 is a storage device that temporarily stores various data.
  • the RAM 204 functions as a work area for the hardware processor 201 to process various data.
  • the nonvolatile memory 205 is a storage device that retains data even when the industrial machine 1 is powered off and the numerical control device 2 is not supplied with power. Nonvolatile memory 205 stores, for example, operating programs and various parameters. Non-volatile memory 205 is a computer readable storage medium. The non-volatile memory 205 is configured with, for example, battery-backed memory or an SSD (Solid State Drive).
  • the numerical control device 2 further includes an interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, and an I/O unit 210.
  • an interface 206 an interface 206, an axis control circuit 207, a spindle control circuit 208, a PLC (Programmable Logic Controller) 209, and an I/O unit 210.
  • PLC Programmable Logic Controller
  • the interface 206 connects the bus 202 and the input/output device 3.
  • the interface 206 sends various data processed by the hardware processor 201 to the input/output device 3, for example.
  • the input/output device 3 receives various data via the interface 206 and displays the various data on the display screen.
  • the input/output device 3 also receives input of various data and sends the various data to, for example, the hardware processor 201 via the interface 206.
  • the input/output device 3 is, for example, a touch panel.
  • the input/output device 3 is, for example, a capacitive touch panel. Note that the touch panel is not limited to a capacitive type, and may be a touch panel of another type.
  • the input/output device 3 is installed on an operation panel (not shown) in which the numerical control device 2 is housed.
  • the input/output device 3 includes a pulse handle.
  • a pulse handle is a device that generates a pulse signal based on an operator's operation.
  • the hardware processor 201 controls the control axes of the industrial machine 1 based on pulse signals received from the pulse handle.
  • the axis control circuit 207 is a circuit that controls the servo motor 5.
  • the axis control circuit 207 receives control commands from the hardware processor 201 and sends various commands for driving the servo motor 5 to the servo amplifier 4.
  • the axis control circuit 207 sends a torque command for controlling the torque of the servo motor 5 to the servo amplifier 4, for example.
  • the servo amplifier 4 receives a command from the axis control circuit 207 and supplies current to the servo motor 5.
  • the servo motor 5 is driven by receiving current from the servo amplifier 4.
  • Servo motor 5 is provided on each control axis of industrial machine 1 .
  • the servo motor 5 is, for example, an X-axis servo motor, a Y-axis servo motor, a Z-axis servo motor, an A-axis servo motor, and a C-axis servo motor. Including motor.
  • the servo motor 5 is connected to, for example, a ball screw that drives a tool rest. By driving the servo motor 5, structures of the industrial machine 1, such as a tool post, move in the direction of a predetermined control axis.
  • the servo motor 5 has a built-in encoder (not shown) that detects the position of the control axis and the feed rate. Position feedback information and speed feedback information indicating the position of the control axis detected by the encoder and the feed rate of the control axis, respectively, are fed back to the axis control circuit 207. Thereby, the axis control circuit 207 performs feedback control of the control axis.
  • the spindle control circuit 208 is a circuit for controlling the spindle motor 7.
  • the spindle control circuit 208 receives a control command from the hardware processor 201 and sends a command for driving the spindle motor 7 to the spindle amplifier 6.
  • the spindle control circuit 208 sends a spindle speed command for controlling the rotational speed of the spindle motor 7 to the spindle amplifier 6, for example.
  • the spindle amplifier 6 receives a command from the spindle control circuit 208 and supplies current to the spindle motor 7.
  • the spindle motor 7 is driven by receiving current from the spindle amplifier 6.
  • the spindle motor 7 is connected to the main shaft and rotates the main shaft.
  • the PLC 209 is a device that executes a ladder program to control the auxiliary equipment 8. PLC 209 sends commands to auxiliary equipment 8 via I/O unit 210.
  • the I/O unit 210 is an interface that connects the PLC 209 and the auxiliary equipment 8.
  • the I/O unit 210 sends the command received from the PLC 209 to the auxiliary device 8.
  • the auxiliary equipment 8 is installed in the industrial machine 1 and is a device that performs auxiliary operations in the industrial machine 1. Auxiliary equipment 8 operates based on instructions received from I/O unit 210. The auxiliary equipment 8 may be equipment installed around the industrial machine 1. The auxiliary equipment 8 is, for example, a tool changer, a cutting fluid injection device, or an opening/closing door drive device.
  • the measurement position is the position of the measurement point of the object to be measured. In other words, it is the position of the object to be measured with which the contact body comes into contact.
  • Manual measurement means that the operator manually measures the position of the object while the numerical control device 2 is set to manual mode.
  • Manual means that the operator moves the contact body using, for example, a pulse handle connected to the numerical control device 2. Alternatively, the operator may move the contact body using an axis movement switch on the operation panel.
  • the contact body is a member that is brought into contact with the object to be measured.
  • the contact body is, for example, a touch probe.
  • the contact body may be a tool such as an end mill.
  • the object to be measured is the object to be measured in manual measurement.
  • the object to be measured is, for example, a workpiece.
  • the object to be measured may be a table on which the work is placed, or a jig for fixing the work to the table.
  • the position of the contact object when the contact object contacts the object to be measured and the measurement position of the object to be measured with which the contact object comes in contact are determined by the size of the contact object. A discrepancy occurs between the two. Therefore, it is necessary to use information indicating the size of the contact body to calculate the measurement position by correcting a value indicating the position of the contact body when the contact body contacts the object to be measured.
  • the position of the contact body when the contact body contacts the object to be measured is a reference position in measurement of the object to be measured. This reference position is called the machine position.
  • the machine position is the position of the control axis in the machine coordinate system. When the industrial machine 1 is a machining center, the machine position is, for example, the position of the end face of the spindle and the position of the central axis of the spindle.
  • FIGS. 2A and 2B are diagrams for explaining a method of calculating a measurement position.
  • the mechanical position Pma in the X-axis direction in FIG. 2A is located in the minus direction by the radius d of the contact body T from the measurement position Pme where the contact body T is in contact with the object W to be measured. Therefore, as will be described in detail later, in manual measurement, the numerical control device 2 calculates a position obtained by moving the mechanical position Pma in the positive direction by the radius d of the contact body T as the measurement position Pme.
  • the mechanical position Pma in the Z-axis direction in FIG. 2B is located in the positive direction by the length l of the contact body T from the measurement position Pme where the contact body T is in contact with the object W to be measured. Therefore, as will be described in detail later, in manual measurement, the numerical control device 2 calculates a position obtained by moving the mechanical position Pma in the negative direction by the length l of the contact body T as the measurement position Pme.
  • FIG. 3 is a block diagram showing an example of the functions of the numerical control device 2 that controls the industrial machine 1.
  • the numerical control device 2 includes a first acquisition section 211, a second acquisition section 212, a determination section 213, a calculation section 214, and a display section 215.
  • the first acquisition unit 211, the second acquisition unit 212, the determination unit 213, the calculation unit 214, and the display unit 215 are, for example, This is realized by performing arithmetic processing using stored operating programs and various data.
  • the first acquisition unit 211 acquires start position information indicating the start position at which the contact body T starts measuring the object W in manual measurement.
  • the start position is a reference position when the determination unit 213 determines the approach direction of the contact body T to the object W to be measured.
  • the start position is any position from the position of the contact body T to the contact position when the moving direction of the contact body T is set immediately before the contact body T reaches the contact position where it contacts the object W to be measured.
  • the start position may be the position of the contact body T when the moving direction of the contact body T is set immediately before the contact body T reaches the contact position.
  • FIGS. 4A to 4D are diagrams for explaining an example of a method by which the first acquisition unit 211 acquires start position information.
  • the contact body T is placed at a position in the positive direction of the Z-axis with respect to the object W to be measured. There is.
  • the coordinate values indicating the position of the contact body T at this time are, for example, (100, 100) (see FIG. 4A).
  • the operator performs an operation of selecting the X-axis in manual mode. Selecting an axis means selecting a control axis to be moved. The operator selects the X axis using, for example, an axis changeover switch provided on the pulse handle.
  • the first acquisition unit 211 acquires position information of the contact body T based on a signal from a sensor (not shown) that detects the position of the control axis. That is, the first acquisition unit 211 acquires information indicating the position of the contact body T when the moving direction of the contact body T is set in the axial direction of one of the plurality of control axes.
  • the information indicating the position is, for example, coordinate values.
  • the acquired positional information of the contact body T is stored in a predetermined storage area of the nonvolatile memory 205, for example.
  • the operator moves the contact body T in the negative direction of the X axis using, for example, a pulse handle (see FIG. 4B).
  • the coordinate values indicating the position of the contact body T at this time are, for example, (50, 100).
  • the operator performs an operation to select the Z axis.
  • the operator selects the Z axis using, for example, an axis changeover switch provided on the pulse handle.
  • the first acquisition unit 211 acquires the position information of the contact body T and stores it in a predetermined storage area.
  • the first acquisition unit 211 may store the newly acquired position information of the contact body T in a storage area where already acquired position information is stored. That is, the first acquisition unit 211 may overwrite and store the newly acquired position information over the already acquired position information. Alternatively, the first acquisition unit 211 may store newly acquired position information in a storage area different from that of already acquired position information.
  • the operator moves the contact body T in the negative direction of the Z axis (see FIG. 4C).
  • the coordinate values indicating the position of the contact body T at this time are, for example, (50, 80).
  • the operator performs an operation to select the X axis.
  • the first acquisition unit 211 acquires the position information of the contact body T and stores it in a predetermined storage area.
  • the coordinate values indicating the contact position PT at this time are, for example, (75, 80).
  • the position information of the contact body T acquired last by the first acquisition unit 211 becomes the start position information. That is, the latest position information of the contact body T acquired by the first acquisition unit 211 and stored in a predetermined storage area becomes the start position information indicating the start position.
  • the coordinate values indicating the starting position are (50, 80).
  • the second acquisition unit 212 acquires contact position information indicating a contact position PT where the contact body T and the object to be measured W come into contact.
  • the contact position information is information indicating the position of the control axis when the contact body T contacts the object W to be measured.
  • the second acquisition unit 212 acquires contact position information, for example, based on a signal indicating that the contact body T has contacted the object W to be measured.
  • the signal indicating that the contact body T has contacted the object W to be measured is a signal output by the touch probe.
  • a signal indicating that the contact body T has contacted the object W to be measured is a signal indicating a load applied to a control axis that moves the tool. The load applied to the control shaft is obtained based on the current value supplied to the servo motor 5, for example.
  • the second acquisition unit 212 may acquire contact position information based on, for example, a signal output based on an operation of a predetermined operation unit (not shown) such as a switch by an operator. In this case, the operator operates a predetermined operation section while the contact body T is in contact with the object W to be measured.
  • a predetermined operation unit not shown
  • the operator operates a predetermined operation section while the contact body T is in contact with the object W to be measured.
  • the determining unit 213 determines the direction in which the contacting body T approaches the object W to be measured based on the starting position information acquired by the first acquiring unit 211 and the contact position information acquired by the second acquiring unit 212. do.
  • the determination unit 213 determines that the direction in which the contact body T approaches the object W to be measured is the negative direction. I judge that.
  • the determination unit 213 determines that the approach direction of the contact body T is a positive direction.
  • the determination unit 213 Since the X-axis coordinate value of the start position indicated by the start position information is less than or equal to the X-axis coordinate value of the contact position PT indicated by the contact position information, the determination unit 213 The approach direction of the body T is determined to be the positive direction.
  • the calculation unit 214 corrects the contact position information based on the direction determined by the determination unit 213 and calculates the measurement position Pme.
  • correction means adding a value indicating the size of the contact body T to a value indicated by the contact position information to calculate the measurement position Pme, or calculating the size of the contact body T from the value indicated by the contact position information. This is to calculate the measurement position Pme by subtracting the value indicating .
  • the value indicating the size of the contact body T is, for example, either a value indicating the radius d of the contact body T or a value indicating the length l of the contact body T.
  • the calculation unit 214 may use a tool diameter correction value or a tool length correction value stored in the numerical control device 2 as a value indicating the size of the contact body T.
  • the approach direction of the contact body T with respect to the measured object W is the positive direction.
  • the radius d of the contact body T is, for example, 5 [mm].
  • the determination unit 213 calculates the measurement position Pme by adding a value indicating the size of the radius d of the contact body T to the X-axis coordinate value 75 indicating the contact position PT. That is, the calculated X-axis coordinate value of the measurement position Pme is 80.
  • the display unit 215 displays information indicating the measurement position Pme calculated by the calculation unit 214 on the display screen.
  • the display unit 215 displays a pop-up screen on the display screen of the input/output device 3, and displays coordinate values indicating the measurement position Pme in the pop-up screen.
  • the numerical control device 2 can make the operator recognize the position of the object W to be measured.
  • the display unit 215 may display the correction direction of the contact position information on the display screen. For example, when the calculation unit 214 corrects the coordinate value indicating the contact position PT in the negative direction, the display unit 215 displays a character string “minus direction” on the display screen. Further, when the calculation unit 214 corrects the coordinate value indicating the contact position PT in the positive direction, the display unit 215 displays a character string “in the positive direction” on the display screen. Further, the display unit 215 may represent the correction direction of the contact position information using a graphic such as an arrow.
  • FIG. 5 is a flowchart showing an example of processing executed in the numerical control device 2.
  • the numerical control device 2 sets the operation mode to manual mode based on the operator's operation (step S1).
  • the first acquisition unit 211 acquires information indicating the position of the control axis and stores the acquired information in a predetermined storage area (step S2).
  • This information indicating the position of the control axis is information indicating the position of the control axis when the manual mode is set.
  • step S3 it is determined whether the control axis to be moved has been set. In other words, it is determined whether the control axis to be moved has been changed. For example, in response to an operator performing an X-axis selection operation, the control axis to be moved is set to the X-axis.
  • step S3 If there is no change in the control axis to be moved (No in step S3), the numerical control device 2 moves the contact body T based on the operator's operation on the pulse handle (step S5). On the other hand, if the control axis to be moved has been changed (Yes in step S3), the first acquisition unit 211 acquires information indicating the position of the control axis (step S4). After that, the process moves to step S5.
  • step S6 it is determined whether the measurement has been performed.
  • the numerical control device 2 determines whether the measurement has been performed, for example, depending on whether a signal indicating that the contact body T has contacted the object W to be measured is received.
  • step S6 If measurement has not been performed (No in step S6), the process moves to step S3 again. If the measurement is performed (Yes in step S6), the second acquisition unit 212 acquires contact position information (step S7). When the contact position information is acquired, the information indicating the position of the control axis acquired in step S4 becomes the start position information. Furthermore, if step S4 is not executed, the information indicating the position of the control axis acquired in step S2 becomes the start position information.
  • the numerical control device 2 compares the coordinate values of the start position indicated by the start position information and the coordinate values of the contact position PT indicated by the contact position information (step S8).
  • Step S9 If the coordinate value of the start position is larger than the coordinate value of the contact position PT (Yes in step S8), the determination unit 213 determines that the approach direction of the contact body T with respect to the measured object W is the negative direction ( Step S9). On the other hand, if the coordinate value of the start position is less than or equal to the coordinate value of the contact position PT (No in step S8), the determination unit 213 determines that the approach direction of the contact body T to the object to be measured is the positive direction. (Step S10).
  • the calculation unit 214 calculates the measurement position Pme based on the approach direction (step S11).
  • the display unit 215 displays the measurement position Pme on the display screen (step S12), and ends the process.
  • the numerical control device 2 includes the first acquisition unit 211 that acquires the start position information indicating the starting position at which the contact body T starts measuring the object W in manual measurement;
  • a second acquisition unit 212 acquires contact position information indicating a contact position PT where the object to be measured W comes into contact, and the start position information acquired by the first acquisition unit 211 and the start position information acquired by the second acquisition unit 212 are a determination unit 213 that determines the direction in which the contact body T approaches the object W to be measured based on the contact position information; and a determination unit 213 that corrects the contact position information based on the direction determined by the determination unit 213 to determine the measurement position Pme.
  • a calculation unit 214 that calculates the calculation is provided.
  • the numerical control device 2 can automatically designate the direction of correction of the coordinate values indicating the contact position PT and calculate the measurement position Pme.
  • the determination unit 213 determines the approach direction. judge correctly. Therefore, the calculation unit 214 can calculate the accurate measurement position Pme.
  • the start position is any position from the position of the contact body T when the moving direction of the contact body T is set immediately before the contact body T reaches the contact position PT to the contact position PT. Therefore, the first acquisition unit 211 can acquire the start position information at any timing after the moving direction of the contact body T is set. For example, after the moving direction of the contact body T is set, the first acquisition unit 211 sets the position of the contact body T when the moving speed of the contact body T exceeds a predetermined speed as the start position. I can do it.
  • the start position may be the position of the contact body T when the moving direction of the contact body T is set immediately before the contact body T reaches the contact position PT.
  • the first acquisition unit 211 acquires the start position information in response to the movement direction being set.
  • the second acquisition unit 212 acquires contact position information based on a signal indicating that the contact body T has contacted the object W to be measured.
  • the signal indicating that the contact body T has contacted the object W to be measured is at least one of a signal output by the contact body T and a signal indicating a load applied to a control shaft that moves the contact body T. Therefore, when the operator performs an operation to bring the contact body T into contact with the object W to be measured, the second acquisition unit 212 can automatically acquire the contact position information. As a result, operator operations in manual measurement are simplified.
  • the numerical control device 2 further includes a display section 215 that displays the direction in which the contact position information is to be corrected. Therefore, the numerical control device 2 can make the operator recognize the correction direction of the contact position information.
  • the numerical control device 2 may further include a control unit that moves the contact body T to the starting position when the second acquisition unit 212 acquires the contact position information.
  • FIG. 6 is a block diagram showing an example of a numerical control device 2 including a control section.
  • the block diagram shown in FIG. 6 differs from the numerical control device 2 shown in FIG. 3 in that the numerical control device 2 includes a control section 216. Therefore, the control unit 216 and its related functions will be described here, and the description of the same functions as those described using FIG. 3 will be omitted.
  • control unit 216 moves the contact body T to the starting position. This eliminates the need for the operator to manually return the contact body T to the starting position. Therefore, it is possible to prevent the operator from accidentally colliding the contact body T with the object W to be measured.
  • control unit 216 may operate each control axis of the industrial machine 1 based on an operation program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

数値制御装置が、手動計測において接触体が被計測物の計測を開始する開始位置を示す開始位置情報を取得する第1の取得部と、接触体と被計測物とが接触する接触位置を示す接触位置情報を取得する第2の取得部と、第1の取得部によって取得された開始位置情報と第2の取得部によって取得された接触位置情報とに基づいて接触体が被計測物にアプローチする方向を判断する判断部と、判断部によって判断された方向に基づいて接触位置情報を補正して計測位置を算出する算出部と、を備える。

Description

数値制御装置およびコンピュータ読み取り可能な記憶媒体
 本開示は、数値制御装置およびコンピュータ読み取り可能な記憶媒体に関する。
 従来、工作機械の主軸に取り付けられた計測器でワークの位置を計測することが行われている(例えば、特許文献1)。例えば、手動モードでオペレータが測定子をワークに接触させることにより、ワークの位置を計測することができる。この場合、接触子のワークに対するアプローチ方向に応じて、オペレータは、接触子の長さ、または接触子の外径の分だけ接触位置を示す座標値をプラス方向、またはマイナス方向に補正する必要がある。
 例えば、マイナス方向からプラス方向に向かって接触子をワークにアプローチさせた場合は、接触子の長さ、または接触子の外径の分だけ接触位置を示す座標値をプラス方向に補正する。一方、プラス方向からマイナス方向に向かって接触子をワークにアプローチさせた場合は、接触子の長さ、または接触子の外径の分だけ接触位置を示す座標値をマイナス方向に補正する。これにより、ワークの正確な位置を求めることができる。
特開平5-66820号公報
 しかし、オペレータが補正の方向を誤って指定すると、ワークの正確な位置を求めることができない。
 よって、手動モードでワークの位置を計測する場合に、接触位置を示す座標値の補正の方向を自動的に指定して計測位置を算出する技術が求められている。
 数値制御装置が、手動計測において接触体が被計測物の計測を開始する開始位置を示す開始位置情報を取得する第1の取得部と、接触体と被計測物とが接触する接触位置を示す接触位置情報を取得する第2の取得部と、第1の取得部によって取得された開始位置情報と第2の取得部によって取得された接触位置情報とに基づいて接触体が被計測物にアプローチする方向を判断する判断部と、判断部によって判断された方向に基づいて接触位置情報を補正して計測位置を算出する算出部と、を備える。
 コンピュータ読み取り可能な記憶媒体が、手動計測において接触体が被計測物の計測を開始する開始位置を示す開始位置情報を取得することと、接触体と被計測物とが接触する接触位置を示す接触位置情報を取得することと、取得された開始位置情報と取得された接触位置情報とに基づいて接触体が被計測物にアプローチする方向を判断することと、判断された方向に基づいて接触位置情報を補正して計測位置を算出することと、をコンピュータに実行させる命令を記憶する。
 本開示の一態様により、手動モードでワークの位置を計測する場合に、計測値の補正の方向を自動的に指定して計測位置を算出することが可能となる。
産業機械のハードウェア構成の一例を示すブロック図である。 計測位置の算出方法について説明するための図である。 計測位置の算出方法について説明するための図である。 産業機械を制御する数値制御装置の機能の一例を示すブロック図である。 開始位置情報を取得する方法の一例を説明するための図である。 開始位置情報を取得する方法の一例を説明するための図である。 開始位置情報を取得する方法の一例を説明するための図である。 開始位置情報を取得する方法の一例を説明するための図である。 数値制御装置において実行される処理の一例を示すフローチャートである。 制御部を備える数値制御装置の機能の一例を示すブロック図である。
 以下、本開示の実施形態に係る数値制御装置について図面を用いて説明する。なお、以下の実施形態で説明する特徴のすべての組み合わせが課題解決に必ずしも必要であるとは限らない。また、必要以上の詳細な説明を省略する場合がある。また、以下の実施形態の説明、および図面は、当業者が本開示を十分に理解するために提供されるものであり、請求の範囲を限定することを意図していない。
 数値制御装置は、産業機械を制御する装置である。産業機械は、例えば、工作機械、ワイヤ放電加工機、射出成形機、産業用ロボットおよび3次元プリンタである。工作機械は、例えば、旋盤、マシニングセンタおよび複合加工機である。
 図1は、数値制御装置を備える産業機械のハードウェア構成の一例を示すブロック図である。産業機械1は、数値制御装置2と、入出力装置3と、サーボアンプ4と、サーボモータ5と、スピンドルアンプ6と、スピンドルモータ7と、補助機器8とを備える。
 数値制御装置2は、産業機械1全体を制御する制御装置である。数値制御装置2は、ハードウェアプロセッサ201と、バス202と、ROM(Read Only Memory)203と、RAM(Random Access Memory)204と、不揮発性メモリ205とを備える。
 ハードウェアプロセッサ201は、システムプログラムに従って数値制御装置2全体を制御するプロセッサである。ハードウェアプロセッサ201は、バス202を介してROM203に格納されたシステムプログラムを読み出し、システムプログラムに基づいて各種処理を行う。また、ハードウェアプロセッサ201は、例えば、産業機械を動作させる動作プログラムに基づいて、サーボモータ5、およびスピンドルモータ7を制御する。ハードウェアプロセッサ201は、例えば、CPU(Central Processing Unit)、または電子回路である。
 ハードウェアプロセッサ201は、制御周期ごとに、例えば、加工プログラムの解析、ならびに、サーボモータ5、およびスピンドルモータ7に対する制御指令の出力を行う。
 バス202は、数値制御装置2内の各ハードウェアを互いに接続する通信路である。数値制御装置2内の各ハードウェアはバス202を介してデータをやり取りする。
 ROM203は、数値制御装置2全体を制御するためのシステムプログラムなどを記憶する記憶装置である。ROM203は、コンピュータ読み取り可能な記憶媒体である。
 RAM204は、各種データを一時的に格納する記憶装置である。RAM204は、ハードウェアプロセッサ201が各種データを処理するための作業領域として機能する。
 不揮発性メモリ205は、産業機械1の電源が切られ、数値制御装置2に電力が供給されていない状態でもデータを保持する記憶装置である。不揮発性メモリ205は、例えば、動作プログラム、および各種パラメータを記憶する。不揮発性メモリ205は、コンピュータ読み取り可能な記憶媒体である。不揮発性メモリ205は、例えば、バッテリでバックアップされたメモリ、または、SSD(Solid State Drive)で構成される。
 数値制御装置2は、さらに、インタフェース206と、軸制御回路207と、スピンドル制御回路208と、PLC(Programmable Logic Controller)209と、I/Oユニット210とを備える。
 インタフェース206は、バス202と入出力装置3とを接続する。インタフェース206は、例えば、ハードウェアプロセッサ201によって処理された各種データを入出力装置3に送る。
 入出力装置3は、インタフェース206を介して各種データを受け、各種データを表示画面に表示させる。また、入出力装置3は、各種データの入力を受け付けてインタフェース206を介して各種データを、例えば、ハードウェアプロセッサ201に送る。
 入出力装置3は、例えば、タッチパネルである。入出力装置3は、例えば、静電容量方式のタッチパネルである。なお、タッチパネルは、静電容量方式に限らず、他の方式のタッチパネルであってもよい。入出力装置3は、数値制御装置2が格納される操作盤(不図示)に設置される。
 入出力装置3は、パルスハンドルを含む。パルスハンドルとは、オペレータの操作に基づいてパルス信号を発生させる装置である。ハードウェアプロセッサ201は、パルスハンドルから受けたパルス信号に基づいて産業機械1の制御軸を制御する。
 軸制御回路207は、サーボモータ5を制御する回路である。軸制御回路207は、ハードウェアプロセッサ201からの制御指令を受けてサーボモータ5を駆動させるための各種指令をサーボアンプ4に送る。軸制御回路207は、例えば、サーボモータ5のトルクを制御するトルクコマンドをサーボアンプ4に送る。
 サーボアンプ4は、軸制御回路207からの指令を受けて、サーボモータ5に電流を供給する。
 サーボモータ5は、サーボアンプ4から電流の供給を受けて駆動する。サーボモータ5は、産業機械1の各制御軸に設けられる。産業機械1が5軸を有する工作機械である場合、サーボモータ5は、例えば、X軸用サーボモータ、Y軸用サーボモータ、Z軸用サーボモータ、A軸用サーボモータ、およびC軸用サーボモータを含む。
 サーボモータ5は、例えば、刃物台を駆動させるボールねじに連結される。サーボモータ5が駆動することにより、刃物台などの産業機械1の構造物が所定の制御軸方向に移動する。サーボモータ5は、制御軸の位置、および送り速度を検出するエンコーダ(不図示)を内蔵する。エンコーダによって検出される制御軸の位置、および制御軸の送り速度をそれぞれ示す位置フィードバック情報、および速度フィードバック情報は、軸制御回路207にフィードバックされる。これにより、軸制御回路207は、制御軸のフィードバック制御を行う。
 スピンドル制御回路208は、スピンドルモータ7を制御するための回路である。スピンドル制御回路208は、ハードウェアプロセッサ201からの制御指令を受けてスピンドルモータ7を駆動させるための指令をスピンドルアンプ6に送る。スピンドル制御回路208は、例えば、スピンドルモータ7の回転速度を制御するスピンドル速度コマンドをスピンドルアンプ6に送る。
 スピンドルアンプ6は、スピンドル制御回路208からの指令を受けて、スピンドルモータ7に電流を供給する。
 スピンドルモータ7は、スピンドルアンプ6から電流の供給を受けて駆動する。スピンドルモータ7は、主軸に連結され、主軸を回転させる。
 PLC209は、ラダープログラムを実行して補助機器8を制御する装置である。PLC209は、I/Oユニット210を介して補助機器8に対して指令を送る。
 I/Oユニット210は、PLC209と補助機器8とを接続するインタフェースである。I/Oユニット210は、PLC209から受けた指令を補助機器8に送る。
 補助機器8は、産業機械1に設置され、産業機械1において補助的な動作を行う機器である。補助機器8は、I/Oユニット210から受けた指令に基づいて動作する。補助機器8は、産業機械1の周辺に設置される機器であってもよい。補助機器8は、例えば、工具交換装置、切削液噴射装置、または開閉ドア駆動装置である。
 次に、数値制御装置2において実行される計測位置の算出方法について説明する。計測位置とは、被計測物の計測箇所の位置である。つまり、接触体が接触する被計測物の位置である。
 手動計測において被計測物の位置を計測する場合、オペレータは接触体を被計測物に接触させる。手動計測とは、数値制御装置2が手動モードに設定された状態においてオペレータが手動で被計測物の位置を計測することである。手動とは、オペレータが、例えば、数値制御装置2に接続されているパルスハンドルを用いて接触体を移動させることである。あるいは、オペレータが、操作盤の軸移動スイッチを用いて接触体を移動させることである。
 接触体は、被計測物に接触させる部材である。接触体は、例えば、タッチプローブである。接触体は、エンドミルなどの工具であってもよい。
 被計測物は、手動計測において計測対象となる物である。被計測物は、例えば、ワークである。被計測物は、ワークが載置されるテーブル、または、ワークをテーブルに固定する治具であってもよい。
 接触体を用いて被計測物を計測する場合、接触体の大きさの分だけ、接触体が被計測物に接触したときの接触体の位置と接触体が接触した被計測物の計測位置との間にはずれが生じる。そのため、接触体の大きさを示す情報を用いて、接触体が被計測物に接触したときの接触体の位置を示す値を補正して計測位置を算出する必要がある。なお、接触体が被計測物に接触したときの接触体の位置とは、被計測物の計測において基準となる位置である。この基準となる位置を機械位置と称する。機械位置は、機械座標系における制御軸の位置である。産業機械1がマシニングセンタである場合、機械位置は、例えば、主軸の端面の位置であって主軸の中心軸の位置である。
 図2Aおよび図2Bは、計測位置の算出方法について説明するための図である。図2AにおけるX軸方向の機械位置Pmaは、接触体Tが被計測物Wに接触している計測位置Pmeよりも、接触体Tの半径dの分だけ、マイナス方向に位置する。そのため、後に詳しく説明するように、数値制御装置2は、手動計測において、機械位置Pmaを接触体Tの半径dの分だけプラス方向に移動させた位置を計測位置Pmeとして算出する。
 また、図2BにおけるZ軸方向の機械位置Pmaは、接触体Tが被計測物Wに接触している計測位置Pmeよりも、接触体Tの長さlの分だけ、プラス方向に位置する。そのため、後に詳しく説明するように、数値制御装置2は、手動計測において、機械位置Pmaを接触体Tの長さlの分だけマイナス方向に移動させた位置を計測位置Pmeとして算出する。
 図3は、産業機械1を制御する数値制御装置2の機能の一例を示すブロック図である。数値制御装置2は、第1の取得部211と、第2の取得部212と、判断部213と、算出部214と、表示部215とを備える。第1の取得部211、第2の取得部212、判断部213、算出部214、および表示部215は、例えば、ハードウェアプロセッサ201が、ROM203に記憶されているシステムプログラムならびに不揮発性メモリ205に記憶されている動作プログラム、および各種データを用いて演算処理することにより実現される。
 第1の取得部211は、手動計測において接触体Tが被計測物Wの計測を開始する開始位置を示す開始位置情報を取得する。開始位置は、判断部213が、接触体Tの被計測物Wに対するアプローチ方向を判断する際の基準となる位置である。
 開始位置は、接触体Tが被計測物Wと接触する接触位置に到達する直前に接触体Tの移動方向が設定されたときの接触体Tの位置から接触位置までのいずれかの位置である。開始位置は、接触体Tが接触位置に到達する直前に接触体Tの移動方向が設定されたときの接触体Tの位置であってもよい。
 図4A~図4Dは、第1の取得部211が開始位置情報を取得する方法の一例を説明するための図である。図4A~図4Dの各図が示す計測位置PmeのX軸の座標値を計測する場合において、まず、接触体Tは、被計測物Wに対してZ軸のプラス方向の位置に配置されている。この時の接触体Tの位置を示す座標値は、例えば、(100,100)である(図4A参照)。接触体TをX軸のマイナス方向に移動させるために、オペレータは、手動モードにおいてX軸を選択する操作を行う。軸を選択するとは、移動させる制御軸を選択することである。オペレータは、例えば、パルスハンドルに設けられた軸切換スイッチを用いてX軸を選択する。
 X軸が選択されることに応じて、第1の取得部211は、制御軸の位置を検出するセンサ(不図示)からの信号に基づいて、接触体Tの位置情報を取得する。つまり、第1の取得部211は、接触体Tの移動方向が複数の制御軸のうちの1つの軸方向に設定されたときの接触体Tの位置を示す情報を取得する。位置を示す情報は、例えば、座標値である。取得された接触体Tの位置情報は、例えば、不揮発性メモリ205の所定の記憶領域に記憶される。次に、オペレータは、例えば、パルスハンドルを用いて接触体TをX軸のマイナス方向に移動させる(図4B参照)。この時の接触体Tの位置を示す座標値は、例えば、(50,100)である
 次に、オペレータは、Z軸を選択する操作を行う。オペレータは、例えば、パルスハンドルに設けられた軸切換スイッチを用いてZ軸を選択する。Z軸が選択されることに応じて、第1の取得部211は、接触体Tの位置情報を取得して所定の記憶領域に記憶させる。
 第1の取得部211は、新たに取得した接触体Tの位置情報をすでに取得している位置情報が記憶されている記憶領域に記憶させてよい。すなわち、第1の取得部211は、新たに取得した位置情報をすでに取得している位置情報に上書きして記憶させてもよい。あるいは、第1の取得部211は、新たに取得した位置情報をすでに取得している位置情報とは別の記憶領域に記憶させてもよい。次に、オペレータは、接触体TをZ軸のマイナス方向に移動させる(図4C参照)。この時の接触体Tの位置を示す座標値は、例えば、(50,80)である。
 次に、オペレータは、X軸を選択する操作を行う。X軸が選択されることに応じて、第1の取得部211は、接触体Tの位置情報を取得して所定の記憶領域に記憶させる。
 次に、オペレータは、接触体Tが被計測物Wに接触する接触位置PTまで接触体Tを移動させる(図4D参照)。この時の接触位置PTを示す座標値は、例えば、(75,80)である。接触体Tが接触位置PTまで移動すると、第1の取得部211が最後に取得した接触体Tの位置情報が開始位置情報となる。すなわち、第1の取得部211が取得して所定の記憶領域に記憶された最新の接触体Tの位置情報が開始位置を示す開始位置情報となる。図4A~図4Dに示す例において、開始位置を示す座標値は、(50,80)である。
 第2の取得部212は、接触体Tと被計測物Wとが接触する接触位置PTを示す接触位置情報を取得する。接触位置情報は、接触体Tが被計測物Wに接触したときの制御軸の位置を示す情報である。第2の取得部212は、例えば、接触体Tが被計測物Wに接触したことを示す信号に基づいて、接触位置情報を取得する。
 接触体Tが、例えば、タッチプローブである場合、接触体Tが被計測物Wに接触したことを示す信号は、タッチプローブが出力する信号である。接触体Tが、例えば、工具である場合、接触体Tが被計測物Wに接触したことを示す信号は、工具を移動させる制御軸に掛かる負荷を示す信号である。制御軸に掛かる負荷は、例えば、サーボモータ5に供給される電流値に基づいて取得される。
 第2の取得部212は、例えば、オペレータによるスイッチなどの所定の操作部(不図示)に対する操作に基づいて出力される信号に基づいて接触位置情報を取得してもよい。この場合、オペレータは、接触体Tを被計測物Wに接触させた状態において所定の操作部に対する操作を行う。
 判断部213は、第1の取得部211によって取得された開始位置情報と第2の取得部212によって取得された接触位置情報とに基づいて接触体Tが被計測物Wにアプローチする方向を判断する。
 開始位置情報が示す開始位置の座標値が、接触位置情報が示す接触位置PTの座標値よりも大きい場合、判断部213は、接触体Tが被計測物Wにアプローチする方向をマイナス方向であると判断する。一方、開始位置情報が示す開始位置の座標値が、接触位置情報が示す接触位置PTの座標値以下である場合、判断部213は、接触体Tのアプローチ方向をプラス方向であると判断する。
 図4A~図4Dに示す例では、開始位置情報が示す開始位置のX軸の座標値が、接触位置情報が示す接触位置PTのX軸の座標値以下であるため、判断部213は、接触体Tのアプローチ方向をプラス方向であると判断する。
 算出部214は、判断部213によって判断された方向に基づいて接触位置情報を補正して計測位置Pmeを算出する。ここで、補正とは、接触体Tの大きさを示す値を接触位置情報が示す値に加算して計測位置Pmeを算出すること、または、接触位置情報が示す値から接触体Tの大きさを示す値を減算して計測位置Pmeを算出することである。接触体Tの大きさを示す値は、例えば、接触体Tの半径dを示す値、および接触体Tの長さlを示す値のいずれかである。算出部214は、接触体Tの大きさを示す値として、数値制御装置2が記憶する工具径補正の値、または工具長補正の値を利用すればよい。
 図4A~図4Dに示す例において、接触体Tの被計測物Wに対するアプローチ方向は、プラス方向である。また、接触体Tの半径dは、例えば、5[mm]である。この場合、判断部213は、接触位置PTを示すX軸の座標値75に接触体Tの半径dの大きさを示す値を加算して計測位置Pmeを算出する。つまり、算出される計測位置PmeのX軸の座標値は80である。
 表示部215は、算出部214によって算出された計測位置Pmeを示す情報を表示画面に表示させる。表示部215は、例えば、入出力装置3の表示画面にポップアップ画面を表示させ、ポップアップ画面中に計測位置Pmeを示す座標値を表示させる。これにより、数値制御装置2は、被計測物Wの位置をオペレータに認識させることができる。
 また、表示部215は、接触位置情報の補正方向を表示画面に表示させてもよい。例えば、算出部214が接触位置PTを示す座標値をマイナス方向に補正した場合、表示部215は表示画面に「マイナス方向」との文字列を表示させる。また、算出部214が接触位置PTを示す座標値をプラス方向に補正した場合、表示部215は表示画面に「プラス方向」との文字列を表示させる。また、表示部215は、接触位置情報の補正方向を矢印などの図形で表してもよい。
 図5は、数値制御装置2において実行される処理の一例を示すフローチャートである。手動計測が行われる場合、まず、オペレータの操作に基づいて、数値制御装置2は動作モードを手動モードに設定する(ステップS1)。
 次に、第1の取得部211は、制御軸の位置を示す情報を取得して、取得した情報を所定の記憶領域に記憶させる(ステップS2)。この制御軸の位置を示す情報は、手動モードに設定されたときの制御軸の位置を示す情報である。
 次に、オペレータの操作に基づいて、移動させる制御軸の設定がされたか否かが判断される(ステップS3)。言い換えれば、移動の対象となる制御軸が変更されたか否かが判断される。例えば、オペレータがX軸の選択操作を行ったことに応じて、移動の対象となる制御軸がX軸に設定される。
 移動させる制御軸の変更がなかった場合(ステップS3においてNoの場合)、数値制御装置2は、オペレータのパルスハンドルに対する操作に基づいて接触体Tを移動させる(ステップS5)。一方、移動させる制御軸が変更された場合(ステップS3においてYesの場合)、第1の取得部211が制御軸の位置を示す情報を取得する(ステップS4)。その後、ステップS5に移行する。
 次に、計測が実行されたか否かが判断される(ステップS6)。数値制御装置2は、例えば、接触体Tが被計測物Wに接触したことを示す信号が受信されたか否かに応じて計測が実行されたか否かを判断する。
 計測が実行されていない場合(ステップS6においてNoの場合)、再び、ステップS3に移行する。計測が実行された場合(ステップS6においてYesの場合)、第2の取得部212が、接触位置情報を取得する(ステップS7)。接触位置情報が取得されると、ステップS4で取得された制御軸の位置を示す情報が開始位置情報となる。また、ステップS4が実行されていない場合は、ステップS2で取得された制御軸の位置を示す情報が開始位置情報となる。
 次に、数値制御装置2は、開始位置情報が示す開始位置の座標値と接触位置情報が示す接触位置PTの座標値とを比較する(ステップS8)。
 開始位置の座標値が接触位置PTの座標値よりも大きい場合(ステップS8においてYesの場合)、判断部213は、接触体Tの被計測物Wに対するアプローチ方向がマイナス方向であると判断する(ステップS9)。一方、開始位置の座標値が接触位置PTの座標値以下である場合(ステップS8においてNoの場合)、判断部213は、接触体Tの被計測物に対するアプローチ方向がプラス方向であると判断する(ステップS10)。
 次に、算出部214は、アプローチ方向に基づいて計測位置Pmeを算出する(ステップS11)。次に、表示部215は、計測位置Pmeを表示画面に表示させて(ステップS12)、処理を終了する。
 以上説明したように、数値制御装置2は、手動計測において接触体Tが被計測物Wの計測を開始する開始位置を示す開始位置情報を取得する第1の取得部211と、接触体Tと被計測物Wとが接触する接触位置PTを示す接触位置情報を取得する第2の取得部212と、第1の取得部211によって取得された開始位置情報と第2の取得部212によって取得された接触位置情報とに基づいて接触体Tが被計測物Wにアプローチする方向を判断する判断部213と、判断部213によって判断された方向に基づいて接触位置情報を補正して計測位置Pmeを算出する算出部214と、を備える。
 したがって、数値制御装置2は、手動モードでワークの位置を計測する場合に、接触位置PTを示す座標値の補正の方向を自動的に指定して計測位置Pmeを算出することができる。その結果、手動計測に不慣れなオペレータが補正の方向を誤って指定することを防ぐことができる。また、オペレータが接触体Tを被計測物Wに誤って食い込ませた後に接触体Tをアプローチ方向とは反対方向に戻して接触位置PTまで移動させたとしても、判断部213は、アプローチ方向を正しく判断する。そのため、算出部214が正確な計測位置Pmeを算出することができる。
 また、開始位置は、接触体Tが接触位置PTに到達する直前に接触体Tの移動方向が設定されたときの接触体Tの位置から接触位置PTまでのいずれかの位置である。したがって、第1の取得部211は、接触体Tの移動方向が設定された後の任意のタイミングで開始位置情報を取得することができる。第1の取得部211は、例えば、接触体Tの移動方向が設定された後、接触体Tの移動速度があらかじめ定められた速度を超えたときの接触体Tの位置を開始位置とすることができる。
 また、開始位置は、接触体Tが接触位置PTに到達する直前に接触体Tの移動方向が設定されたときの接触体Tの位置であってよい。この場合、第1の取得部211は、移動方向が設定されたことに応じて開始位置情報を取得する。
 また、第2の取得部212は、接触体Tが被計測物Wに接触したことを示す信号に基づいて、接触位置情報を取得する。接触体Tが被計測物Wに接触したことを示す信号は、接触体Tが出力する信号、および接触体Tを移動させる制御軸に掛かる負荷を示す信号の少なくともいずれかである。したがって、オペレータが接触体Tを被計測物Wに接触させる操作をすることによって自動的に第2の取得部212は、接触位置情報を取得することができる。その結果、手動計測におけるオペレータの操作が簡略化される。
 また、数値制御装置2は、接触位置情報を補正する方向を表示する表示部215をさらに備える。したがって、数値制御装置2は、接触位置情報の補正方向をオペレータに認識させることができる。
 数値制御装置2は、第2の取得部212が接触位置情報を取得すると、接触体Tを開始位置に移動させる制御部をさらに備えていてもよい。
 図6は、制御部を備える数値制御装置2の一例を示すブロック図である。図6に示すブロック図は、数値制御装置2が制御部216を備えている点で図3に示す数値制御装置2と異なる。したがって、ここでは、制御部216、およびこれに関連する機能について説明し、図3を用いて説明した機能と同じ機能については説明を省略する。
 制御部216は、第2の取得部212が接触位置情報を取得すると、接触体Tを開始位置に移動させる。これにより、オペレータは、接触体Tを開始位置に手動で戻す必要がなくなる。そのため、オペレータが誤って接触体Tを被計測物Wに衝突させることを防ぐことができる。なお、制御部216は、動作プログラムに基づいて産業機械1の各制御軸を動作させてもよい。
 なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、本開示の実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
  1       産業機械
  2       数値制御装置
  201     ハードウェアプロセッサ
  202     バス
  203     ROM
  204     RAM
  205     不揮発性メモリ
  206     インタフェース
  207     軸制御回路
  208     スピンドル制御回路
  209     PLC
  210     I/Oユニット
  211     第1の取得部
  212     第2の取得部
  213     判断部
  214     算出部
  215     表示部
  216     制御部
  3       入出力装置
  4       サーボアンプ
  5       サーボモータ
  6       スピンドルアンプ
  7       スピンドルモータ
  8       補助機器
  Pma     機械位置
  Pme     計測位置

Claims (8)

  1.  手動計測において接触体が被計測物の計測を開始する開始位置を示す開始位置情報を取得する第1の取得部と、
     前記接触体と前記被計測物とが接触する接触位置を示す接触位置情報を取得する第2の取得部と、
     前記第1の取得部によって取得された前記開始位置情報と前記第2の取得部によって取得された前記接触位置情報とに基づいて前記接触体が前記被計測物にアプローチする方向を判断する判断部と、
     前記判断部によって判断された前記方向に基づいて前記接触位置情報を補正して計測位置を算出する算出部と、
    を備える数値制御装置。
  2.  前記開始位置は、前記接触体が前記接触位置に到達する直前に前記接触体の移動方向が設定されたときの前記接触体の位置から前記接触位置までのいずれかの位置である請求項1に記載の数値制御装置。
  3.  前記開始位置は、前記接触体が前記接触位置に到達する直前に前記接触体の移動方向が設定されたときの前記接触体の位置である請求項1または2に記載の数値制御装置。
  4.  前記第2の取得部は、前記接触体が前記被計測物に接触したことを示す信号に基づいて、前記接触位置情報を取得する請求項1~3のいずれか1項に記載の数値制御装置。
  5.  前記接触体が前記被計測物に接触したことを示す前記信号は、前記接触体が出力する信号、および前記接触体を移動させる制御軸に掛かる負荷を示す信号の少なくともいずれかである請求項4に記載の数値制御装置。
  6.  前記接触位置情報を補正する方向を表示する表示部をさらに備える請求項1~5のいずれか1項に記載の数値制御装置。
  7.  前記第2の取得部が前記接触位置情報を取得すると、前記接触体を前記開始位置に移動させる制御部をさらに備える請求項1~6のいずれか1項に記載の数値制御装置。
  8.  手動計測において接触体が被計測物の計測を開始する開始位置を示す開始位置情報を取得することと、
     前記接触体と前記被計測物とが接触する接触位置を示す接触位置情報を取得することと、
     取得された前記開始位置情報と取得された前記接触位置情報とに基づいて前記接触体が前記被計測物にアプローチする方向を判断することと、
     判断された前記方向に基づいて前記接触位置情報を補正して計測位置を算出することと、
    をコンピュータに実行させる命令を記憶するコンピュータ読み取り可能な記憶媒体。
PCT/JP2022/021555 2022-05-26 2022-05-26 数値制御装置およびコンピュータ読み取り可能な記憶媒体 WO2023228356A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021555 WO2023228356A1 (ja) 2022-05-26 2022-05-26 数値制御装置およびコンピュータ読み取り可能な記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/021555 WO2023228356A1 (ja) 2022-05-26 2022-05-26 数値制御装置およびコンピュータ読み取り可能な記憶媒体

Publications (1)

Publication Number Publication Date
WO2023228356A1 true WO2023228356A1 (ja) 2023-11-30

Family

ID=88918743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/021555 WO2023228356A1 (ja) 2022-05-26 2022-05-26 数値制御装置およびコンピュータ読み取り可能な記憶媒体

Country Status (1)

Country Link
WO (1) WO2023228356A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877613A (ja) * 1981-11-02 1983-05-11 Mitsutoyo Mfg Co Ltd 座標測定方法及び装置
JPH07285051A (ja) * 1994-04-15 1995-10-31 Fanuc Ltd ならい制御方式
JPH09145354A (ja) * 1995-11-29 1997-06-06 Nikon Corp 多次元座標測定機
US6131301A (en) * 1997-07-18 2000-10-17 Renishaw Plc Method of and apparatus for measuring workpieces using a coordinate positioning machine
JP2021086370A (ja) * 2019-11-27 2021-06-03 オークマ株式会社 工作機械の反転誤差計測方法
JP2021096561A (ja) * 2019-12-16 2021-06-24 ファナック株式会社 制御装置、計測システム、計測方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5877613A (ja) * 1981-11-02 1983-05-11 Mitsutoyo Mfg Co Ltd 座標測定方法及び装置
JPH07285051A (ja) * 1994-04-15 1995-10-31 Fanuc Ltd ならい制御方式
JPH09145354A (ja) * 1995-11-29 1997-06-06 Nikon Corp 多次元座標測定機
US6131301A (en) * 1997-07-18 2000-10-17 Renishaw Plc Method of and apparatus for measuring workpieces using a coordinate positioning machine
JP2021086370A (ja) * 2019-11-27 2021-06-03 オークマ株式会社 工作機械の反転誤差計測方法
JP2021096561A (ja) * 2019-12-16 2021-06-24 ファナック株式会社 制御装置、計測システム、計測方法

Similar Documents

Publication Publication Date Title
US4442493A (en) Cutting tool retreat and return for workpiece protection upon abnormality occurrence in a preprogrammed machine tool
US7657356B2 (en) Controller
JP5905158B2 (ja) 数値制御装置
CN105320064B (zh) 具有设备异常履历的解析支援功能的数值控制装置
US11048215B2 (en) Tool selecting apparatus and machine learning device
US20190294144A1 (en) Abnormality detection device
US20190266296A1 (en) Machining simulation device of machine tool
WO2014181424A1 (ja) 数値制御装置
US10073432B2 (en) Numerical controller having tool tip point control function
JP7414507B2 (ja) 制御装置、計測システム、計測方法
JPH11143514A (ja) 加工誤差チェックができる数値制御装置
WO2023228356A1 (ja) 数値制御装置およびコンピュータ読み取り可能な記憶媒体
JP5168738B2 (ja) 数値制御装置
JP5908552B1 (ja) 工作機械の制御装置
US20180181101A1 (en) Numerical controller
JP3405744B2 (ja) 工作機械におけるワーク及び経時変化の計測方法
JP4233559B2 (ja) 数値制御工作機械
US10564630B2 (en) Numerical controller
JPH0976144A (ja) 工作機械における加工状態監視方法
WO2022039142A1 (ja) 数値制御装置、工作機械、および工作機械の制御方法
WO2023162001A1 (ja) 加工面推定装置およびコンピュータ読み取り可能な記憶媒体
KR100224862B1 (ko) 로봇 암의 캘리브레이션 장치 및 방법
WO2024116223A1 (ja) ロボット制御装置
WO2023058085A1 (ja) 数値制御装置
WO2023026368A1 (ja) 数値制御装置、及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943758

Country of ref document: EP

Kind code of ref document: A1