WO2023227119A1 - 一种新型的新生絮凝净水方法及其装置 - Google Patents

一种新型的新生絮凝净水方法及其装置 Download PDF

Info

Publication number
WO2023227119A1
WO2023227119A1 PCT/CN2023/096599 CN2023096599W WO2023227119A1 WO 2023227119 A1 WO2023227119 A1 WO 2023227119A1 CN 2023096599 W CN2023096599 W CN 2023096599W WO 2023227119 A1 WO2023227119 A1 WO 2023227119A1
Authority
WO
WIPO (PCT)
Prior art keywords
water purification
water
flocculation
liquid
agent precursor
Prior art date
Application number
PCT/CN2023/096599
Other languages
English (en)
French (fr)
Inventor
叶涛
叶旖婷
Original Assignee
叶涛
叶旖婷
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 叶涛, 叶旖婷 filed Critical 叶涛
Publication of WO2023227119A1 publication Critical patent/WO2023227119A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities

Definitions

  • the invention belongs to the technical field of water purification, and specifically relates to a new type of new flocculation water purification method and its device.
  • Water is an important resource for the survival of all life, including humans, and is also the most important component of living organisms. Therefore, for the sake of health, people pay more and more attention to water treatment.
  • aluminum hydroxide and/or ferric hydroxide and/or ferrous hydroxide colloids are generated in the treated water body through chemical reaction methods to settle suspended solids in the water and perform solid-liquid separation;
  • the third step is to use pH and/or disinfection of the water.
  • the hydrolysis chemical reaction principle of the aluminum salt and/or iron salt is as shown in the following chemical reaction equation: AlCl 3 +3H 2 O ⁇ Al(OH) 3 +3HCl; FeCl 3 +3H 2 O ⁇ Fe(OH) 3 +3HCl; 2FeCl 2 +5H 2 O+[O] ⁇ 2Fe(OH) 3 +4HCl; Al 2 (SO 4 ) 3 +6H 2 O ⁇ 2Al(OH) 3 +3H 2 SO 4 ; Fe 2 (SO 4 ) 3 +6H 2 O ⁇ 2Fe(OH) 3 +3H 2 SO 4 ; 2FeSO 4 +5H 2 O+[O] ⁇ 2Fe(OH) 3 +2H 2 SO 4 .
  • the acidity and salt content of the water body are relatively high; long-term drinking
  • the drinking water purified by this process will destroy the acid-base balance of the human body and greatly increase the risk of cardiovascular and cerebrovascular diseases, hypertension, and hyperlipidemia.
  • the use of this process for industrial water reuse will directly affect the quality of the products produced.
  • the existing technology uses ion exchange resin and/or reverse osmosis technology to remove salt and acidic compounds from the water body.
  • the process equipment is complex to manufacture and the equipment management cost is high.
  • the ion exchange resin and reverse osmosis membrane need to be replaced frequently, and the cost of each replacement of consumables is often high. It amounts to tens of thousands or even hundreds of thousands of yuan, so the running costs are also very high. Therefore, ion exchange and reverse osmosis methods are difficult to be widely used in production.
  • the first object of the present invention is to provide a new method for nascent flocculation water purification, which can effectively settle suspended solids in water and adsorb some organic impurities, and can avoid acids and salts caused by nascent hydroxides. , protect drinking health and reduce the adverse effects of water reuse in industry.
  • the second object of the present invention is to provide a flocculation water purification device suitable for the above method.
  • a new type of new flocculation water purification method including the following steps:
  • the stimulation treatment includes adding oxidizing substances
  • a new type of new flocculation water purification method 2 including the following steps:
  • the water purification agent precursor is directly mixed with the water body to be purified and stimulated, so that the water purification agent precursor reacts to form ferric hydroxide, which reacts with suspended solids and/or impurities in the water body to be purified. for co-settlement;
  • the stimulation treatment includes adding oxidizing substances
  • the above two methods can be carried out together, that is, while mixing the water purifying agent precursor with the liquid and performing an excitation treatment and then adding it to the water body to be purified, the water purifying agent precursor is used to directly interact with the water to be purified. water mixing And perform stimulation processing.
  • the water purifying agent precursor described in step (1) is ferrous carbonate and/or ferrous hydroxide; the liquid is any one of the water purifying agent precursor aqueous solution, pure water, and the water to be purified. one or a combination of more than one; preferably pure water.
  • the liquid is a combination of more than one component mentioned above, the ratio between the components is not limited.
  • the water purification agent precursor may be mixed with a small amount of water body to be purified and subjected to stimulation treatment and then added to a large amount of water body to be purified, or the purified water may be The agent precursor is directly mixed with the water to be purified and stimulated.
  • the present invention utilizes the water purification agent precursor to settle suspended solids and/or impurities in the water body through stimulation treatment, that is, oxidation reaction or its newly generated ferric hydroxide colloid with hydrolysis reaction; the water purification agent is discussed below.
  • stimulation treatment that is, oxidation reaction or its newly generated ferric hydroxide colloid with hydrolysis reaction; the water purification agent is discussed below.
  • the chemical reaction of the precursor is detailed:
  • ferrous ions are oxidized into ferric ions; when the water purifying agent precursor contains ferrous carbonate, due to the carbonic acid Iron is unstable in water. When ferrous carbonate is stimulated and contacted with oxidizing substances, it will be rapidly oxidized and hydrolyzed in the water to form ferric hydroxide and release carbon dioxide.
  • the method of the present invention can realize the new generation of iron hydroxide from the water purification agent precursor, creating a water purification process without the generation of by-products such as acids or salts, which can not only achieve the effect of flocculation water purification, but also It avoids the negative effects of acids and salts on human health and water reuse in industry, and also saves the cost of processing by-products.
  • the excitation treatment adopted in step (1) of the present invention includes adding oxidizing substances to generate iron hydroxide, and utilizing the characteristics of ferric ions to adsorb anions to adsorb organic matter to better reduce the COD of the purified water body. value effect.
  • the oxidizing substance described in step (1) is one or a combination of more than one of oxygen, air, ozone, and hydrogen peroxide.
  • the oxidizing substance is a combination of more than one component mentioned above, the ratio between the components is not limited.
  • the oxidizing substance is oxygen and/or air.
  • the oxidizing substance described in step (1) includes at least one gas oxidizing substance among oxygen, air, and ozone
  • jet flow, spraying, aeration, aeration, and liquid spraying are used.
  • the gas oxidizing substance is added to the liquid mixed with the water purification agent precursor in at least one of the methods. wherein said liquid is ejected
  • the specific method is: spraying the liquid mixed with the water purification agent precursor to a high place using pressure to let it fall into the water body to be purified through an environment containing gas oxidizing substances, or spraying the liquid mixed with the water purification agent precursor.
  • the liquid is mixed with at least one of the oxidizing substances and is sprayed to a high place together using pressure and allowed to fall into the water body to be purified through an environment containing gaseous oxidizing substances.
  • the process of the mixture falling from a high place is fully utilized.
  • the present invention adopts aeration and/or liquid injection to add air in step (1). More preferably, when the oxidizing substance in step (1) includes air, the present invention adopts liquid injection to add air in step (1), thereby facilitating the mixing of the liquid mixed with the water purification agent precursor with more The air contact stimulates the water purification agent precursor more quickly.
  • the excitation treatment described in step (1) is a combination of adding an oxidizing substance and one or more of heating and ultrasonic oscillation.
  • the water purification agent precursor When the water purification agent precursor comes into contact with water or oxidizing substances and is heated or subjected to ultrasonic vibration, it will promote its hydrolysis reaction to generate hydroxide; among them, ultrasonic waves generated in the liquid can absorb the sound wave energy and generate a very short period of time.
  • the cavitation bubbles collapse and release energy over time. When the cavitation bubbles collapse, they can generate high temperature and high pressure in a very small surrounding space, thus promoting the hydrolysis reaction and oxidation reaction of the water purification agent precursor.
  • the water purification agent precursor contains ferrous carbonate
  • the ferrous carbonate when the ferrous carbonate is heated or subjected to ultrasonic vibration, the following hydrolysis reaction may occur before it comes into contact with oxidizing substances to generate ferrous hydroxide, see the formula 3; FeCO 3 +H 2 O ⁇ Fe(OH) 2 +CO 2 ⁇ Formula 3.
  • each liter of water to be purified is mixed with ⁇ 300g of iron element from ferrous carbonate as the precursor of the water purification agent, and mixed with The iron element of ferrous hydroxide as the precursor is ⁇ 500g.
  • ferrous carbonate as the precursor of the water purifier will absorb a large amount of water when it forms hydroxide; when each liter of water to be purified is mixed with water from the purifier When the iron element of ferrous carbonate in the aqueous agent precursor exceeds 300g, it will absorb a large amount of water, and the generated flocculated sediment will be larger in volume, increasing the difficulty of solid-liquid separation and causing high processing costs; and when every liter of water to be purified is When more than 500g of iron element from ferrous hydroxide, which is the precursor of water purification agent, is mixed in the water, the volume of flocculated sediment will be large and the treatment cost will be high.
  • each liter of water to be purified is mixed with ⁇ 0.002g of iron element from the water purification agent precursor.
  • the inventor found through multiple sets of experiments that when the iron element from the water purification agent precursor is mixed with not less than 0.002g per liter of water to be purified, the suspended solids and/or in the water to be purified can be better treated. Impurities flocculate and settle.
  • step (1) the pH value of the water to be purified is ⁇ 2 to obtain better flocculation effect. This is because when the pH value of the solution environment is less than 2, acid will obviously exist in the solution; at this time, more of the hydroxide generated by the water purification agent precursor will react with the acid to form a soluble salt. The amount of flocculation gel is reduced, thereby affecting the flocculation water purification treatment effect.
  • One of the new types of new flocculation water purification devices including a flocculation sedimentation tank, which is characterized in that: an oxidizing substance adding device is added, and the oxidizing substance adding device is provided with a liquid oxidizing substance outlet and a gas oxidizing substance outlet. At least one of an outlet and a liquid outlet; the oxidizing substance adding device is connected to or located in the flocculating sedimentation tank, and is used for adding oxidizing substances into the flocculating sedimentation tank.
  • a new type of new flocculation water purification device No. 2 includes a flocculation sedimentation tank, which is characterized in that: a water purification agent precursor excitation tank is added to form a combination with the flocculation sedimentation tank;
  • the water purifying agent precursor excitation tank is used to excite the water purifying agent precursor
  • An oxidizing substance adding device is provided to the water purifying agent precursor stimulating tank or an oxidizing substance adding device is provided to the water purifying agent precursor stimulating tank and the flocculation sedimentation tank at the same time;
  • the oxidizing substance adding device is The dosing device is connected to or located in the corresponding water purifying agent precursor excitation tank and/or flocculation sedimentation tank, and is used to add oxidizing substances into the water purification agent precursor excitation tank and/or flocculation sedimentation tank; the described
  • the oxidizing substance adding device is provided with at least one of a liquid oxidizing substance outlet, a gas oxidizing substance outlet, and a liquid outlet;
  • the liquid outlet of the water purifying agent precursor stimulating tank is connected to the flocculation and sedimentation tank through a pipeline, or the liquid outlet of the oxidizing substance adding device provided in the water purifying agent precursor stimulating tank is directed towards The flocculation and sedimentation tank guides the liquid flow to the flocculation and sedimentation tank.
  • the described oxidizing substance adding device may be a liquid oxidizing substance adding device composed of a temporary storage tank and a pump, or may be a gas-liquid device used to mix gaseous oxidizing substances and the water to be purified. Mixing device.
  • the gas-liquid mixing device may be at least one selected from the group consisting of a gas-liquid mixing jet device (venturi tube), a liquid spray absorption tower, an aeration device, an aeration device, and a liquid injection device.
  • the liquid oxidizing substance adding device is provided with a liquid oxidizing substance outlet
  • the aeration device in the gas-liquid mixing device is provided with a gas oxidizing substance outlet
  • the gas-liquid mixing jet in the gas-liquid mixing device The device (venturi tube) and the liquid spray absorption tower are both equipped with liquid outlets.
  • the aeration device in the gas-liquid mixing device is equipped with a gas oxidizing substance outlet or a liquid outlet.
  • the gas-liquid mixing device The liquid injection device is provided with a liquid outlet. What flows out from the liquid outlet is a liquid mixed with a water purifying agent precursor and/or newly formed ferric hydroxide, or a mixture thereof with at least one of the oxidizing substances.
  • the air pumping device is a combination of an air pump/compressed gas source and a connecting channel.
  • the liquid injection device is provided with a pump It consists of a pipeline and a nozzle of a compressed gas source and/or a nozzle.
  • the nozzle is the liquid outlet, which sprays the water to be purified through a combination of a pump and/or a compressed gas source and a nozzle to an environment containing gas oxidizing substances for chemical reaction. .
  • the flocculation sedimentation tank and/or the water purification agent precursor excitation tank are also provided with at least one of a cold and heat exchange device and an ultrasonic generator.
  • the ultrasonic generator adopts a fixed ultrasonic generator that is integrated with the flocculation sedimentation tank or the water purification agent precursor excitation tank, or is independent of the flocculation sedimentation tank and/or the water purification agent precursor excitation tank. Removable ultrasonic generator.
  • the present invention can make the following improvements: add a sediment tank at the bottom of the flocculation sedimentation tank, and the flocculation sedimentation tank is provided with a discharge port at a position higher than the sediment tank. Such an arrangement can cause flocculation by standing still.
  • the purified water body and the flocculated impurities are separated, so that the flocculated and purified water body can flow out of the flocculation sedimentation tank, so that the purified water body contains less impurities.
  • the sediment tank has an inverted conical structure, and a discharge port is provided at the bottom.
  • the present invention can be improved as follows: a stirring device is added to the flocculation sedimentation tank and/or the water purifying agent precursor excitation tank to promote the mixing of the water purifying agent precursor and/or the hydroxide converted therefrom.
  • the purified water is mixed evenly.
  • the stirring device is specifically one or more of an impeller mechanical stirrer and a circulating liquid pump tube stirrer.
  • the present invention can be improved as follows: a solid-liquid separation device is added, which is connected to the outlet of the flocculation and sedimentation tank, and is used for solid-liquid separation of the mixture in the flocculation and sedimentation tank.
  • the solid-liquid separation device is selected from a filter press, a filter, a centrifuge and an inclined tube sedimentation tank.
  • the present invention can be improved as follows: add a temporary storage tank, which is directly connected to the flocculation sedimentation tank and/or the water purification agent precursor excitation tank and/or the solid-liquid separation device or connected through a pump or solid feeder. It is used to load materials to be involved in water purification treatment, or to temporarily store materials from the water purification process and beyond.
  • a process data detection device is installed in the flocculation sedimentation tank and/or the water purification agent precursor excitation tank.
  • the process data detection device includes at least one of a liquid level meter, a hydrometer, a viscometer, a turbidity meter, a pH meter, a conductivity meter, a redox potentiometer, a flow meter, a Tyndall effect detection device and a COD detector.
  • a viscometer detection device and/or a Tyndall effect detection device are added to the flocculation sedimentation tank and/or the water purification agent precursor excitation tank to detect the generation of hydroxide online.
  • the results measured by the process data detection device ensure that the water purification agent precursor is effectively converted into hydroxide to achieve full utilization of the water purification agent precursor.
  • the present invention can be improved as follows: install a process data detection device and an automatic detection and feeding controller component in the flocculation sedimentation tank and/or the water purification agent precursor excitation tank, and use the automatic detection and feeding controller to receive the information of the process data detection device. Data, and based on the obtained data, the operation of the entire flocculation water purification device is automatically controlled.
  • the present invention has the following beneficial effects.
  • the water purification agent precursor is stimulated to cause an oxidation reaction and/or a hydrolysis reaction to newly generate hydroxide colloid for flocculation water purification treatment, without producing by-products such as acid or salt, and avoiding Acids and salts caused by nascent hydroxide in existing water purification technologies are avoided or reduced, while the use of ion exchange resins and/or reverse osmosis equipment for neutralization and desalination is saved, saving a large amount of expensive equipment investment funds and expensive equipment maintenance and management. fee.
  • the present invention uses the hydrolysis reaction and/or oxidation reaction of the water purification agent precursor to newly generate hydroxide colloid for flocculation water purification treatment.
  • the subsequent water purification process there is no need to purchase additional liquid alkali to treat the hydroxide generated during the generation process.
  • the acid is neutralized, and there is no need to frequently replace device accessories because unhydrolyzed aluminum salts and/or iron salts enter the impurity removal water treatment process and hydrolyze to form colloids that adhere to the equipment.
  • the conversion of the process will not cause an increase in production costs. .
  • the present invention does not generate acids and salts due to hydrolysis reactions, improves the quality of water purification, enhances people's health, and reduces the use of equipment for water reuse in industry.
  • Figure 1 shows the flocculation water purification device used in Example 1;
  • FIG. 1 shows the flocculation water purification device used in Embodiment 2;
  • FIG. 3 shows the flocculation water purification device used in Embodiment 3;
  • FIG. 4 shows the flocculation water purification device used in Embodiment 4.
  • Figure 5 shows the flocculation water purification device used in Example 5
  • Figure 6 shows the flocculation water purification device used in Example 6.
  • the flocculation sedimentation tank, water purification agent precursor excitation tank, impeller mechanical agitator, and circulating liquid pump tube agitator are all manufactured by Yegao Environmental Protection Equipment Manufacturing Co., Ltd., Foshan City, Guangdong province ;Ultrasonic generator They are commercially available products. Ferrous hydroxide, ferrous carbonate, hydrogen peroxide, and oxygen are commercially available products. The ozone generator, detection instrument device, and automatic detection and feeding controller are commercially available products. In addition to the above examples, those skilled in the art can also choose other products with similar properties to the above-mentioned products listed in the present invention based on routine selection, all of which can achieve the purpose of the present invention.
  • Potassium hydrogen phthalate is used to prepare a standard organic solution with a COD value of 500 ppm. As 1 ton of water to be purified, it is flocculated and settled and the COD value of the resulting clear liquid is sampled and tested.
  • the hydroxide generated from the water purification agent precursor is mixed with the water to be purified for co-sedimentation. Afterwards, detect the purification effect through a turbidity meter and/or use a condensed light source for irradiation; specifically, judge based on the comparison of the pre- and post-turbidimeter test results or use a bright path to observe the purified water liquid from the direction of vertical incident light. If there is The Tyndall effect indicates the presence of colloids.
  • FIG. 1 it is a flocculation water purification device used in this embodiment, which includes a flocculation sedimentation tank 1; the flocculation sedimentation tank 1 is provided with an oxidizing substance adding device 6; the oxidizing substance adding device 6 is a gas-liquid mixing device , specifically a gas-liquid mixing jet device, the gas-liquid mixture outlet is located in the flocculation sedimentation tank 1.
  • the oxidizing substance 62 used in this embodiment is oxygen
  • the water purifying agent precursor 56 is a mixture of ferrous carbonate and ferrous hydroxide, which is added to the flocculation sedimentation tank 1 from the feeding port.
  • a new type of new flocculation water purification method including the following steps:
  • oxidizing substance adding device 6 use oxygen as the oxidizing substance to excite the water purifying agent precursor in the flocculation sedimentation tank 1, so that the water purifying agent precursor reacts to generate ferric hydroxide and reacts with the water to be purified
  • the suspended solids and/or impurities in the water body are co-sedimented, and the water body after flocculation and purification is obtained.
  • the pH value of the water body 60 to be purified is 7, and the water purification agent precursor used is a mixture of ferrous carbonate and ferrous hydroxide. Testing revealed that the amount of ferric iron hydroxide produced per cubic meter of water to be purified in this example was 100g, and no acid or salt newly generated due to the water purification agent precursor was found.
  • the water purification treatment effect data of this embodiment are listed in Table 1.
  • FIG. 2 it is a flocculation water purification device used in this embodiment, which includes a flocculation sedimentation tank 1, a water purification agent precursor activator Hair tank 2, ultrasonic generators 4 and 5, oxidizing substance adding device 6, process data detection devices 19-23, automatic detection and feeding controller 24, temporary storage tank 15, solid feeder 55, ozone generator 70.
  • the liquid outlet of the water purification agent precursor excitation tank 2 is connected to the flocculation and sedimentation tank 1 through a pipeline equipped with a pump 26, and the liquid flow is directed to the flocculation and sedimentation tank 1.
  • the flocculation sedimentation tank 1 is provided with a mobile ultrasonic generator 4, process data detection devices 19 and 20 (specifically a pH meter and a liquid level meter), a stirring device 11 (specifically a circulating liquid flow pump tube mixer), and is also installed There is an oxidizing substance adding and dosing device 6; the oxidizing substance adding and dosing device 6 is a bubbling aeration device connected to an ozone generator to add ozone to the flocculation and sedimentation tank 1; the flocculation and sedimentation tank 1 is installed and connected to a solid feeder 55.
  • the pH value of the purified water body is adjusted by adding solid sodium hydroxide; the outlet 51 below the flocculation sedimentation tank 1 is connected to a COD detector 23 for sampling inspection of the water body.
  • a sediment tank 10 is provided at the bottom of the flocculation sedimentation tank 1, and a valve 40 and a discharge port 50 are provided at the bottom.
  • the water purification agent precursor excitation tank 2 is provided with an integrated fixed ultrasonic generator 5 and process data detection devices 21 and 22 (specifically, an oxidation-reduction potentiometer and a viscometer).
  • the mixture of the water body 60 to be purified and the water purification agent precursor 56 is oxidized by starting the ultrasonic generator 5; the water purification agent precursor excitation tank 2 is connected to a temporary storage tank 15 and a pump.
  • the automatic detection and feeding controller 24 controls the pump 25 to add oxidizing substances to the water purification agent precursor excitation tank 2 and controls the ultrasonic generator 5 according to the results measured by the process data detection device 21 (oxidation-reduction potentiometer). Start and stop.
  • the pump 26 is controlled to add the mixture in the water purification agent precursor excitation tank 2 into the flocculation sedimentation tank 1 , according to the results measured by the process data detection device 19 (pH meter), the solid feeder 55 is controlled to add inorganic alkali to the flocculation sedimentation tank 1 to adjust the pH value of the liquid in the tank.
  • the oxidizing substance 62 added to the temporary storage tank 15 is hydrogen peroxide
  • the oxidizing substance 63 added to the flocculation sedimentation tank 1 is ozone
  • the water body 60 to be purified is industrial acid-containing recycled water, and its pH value is 0.2
  • net The aqueous agent precursor 56 is ferrous carbonate.
  • a new type of new flocculation water purification method including the following steps:
  • the pump 26 is controlled to deliver the solution in the water purification agent precursor excitation tank 2 into the flocculation sedimentation tank 1.
  • the pH value of the water body 60 to be purified is 0.2
  • the water purification agent precursor 56 used is ferrous carbonate
  • the pH value of the purified water body is 5. Testing revealed that the amount of ferric iron hydroxide produced per cubic meter of water to be purified in this example was 8g, and no newly generated acid or salt due to the water purification agent precursor was found.
  • the water purification treatment effect data of this embodiment are listed in Table 1.
  • the flocculation water purification device used in this embodiment, which includes a flocculation sedimentation tank 1, a temporary storage tank 15, an oxidizing substance adding device 6, a solid-liquid separation device 14 and an automatic detection and feeding controller 24;
  • the flocculation sedimentation tank 1 is provided with a cold and heat exchange device 3, an oxidizing substance adding device 6, a stirring device 11 and a process data detection device 20-22;
  • the oxidizing substance adding device 6 is a gas-liquid mixing device, specifically a liquid spraying device.
  • the leaching absorption tower uses air as the oxidizing substance, and its gas-liquid mixture outlet is connected to the flocculation sedimentation tank 1;
  • the stirring device 11 is an impeller mechanical stirrer;
  • the process data detection devices 20 to 22 are Tyndall effect detection devices and conductivity detection devices respectively. Rate meter, thermometer.
  • the flocculation sedimentation tank 1 is installed and connected with a solid feeder 55 for adding water purification agent precursor 56 .
  • the temporary storage tank 15 contains the water body 60 to be purified and is connected to the flocculation sedimentation tank 1 through a pipeline equipped with a process data detection device 19 (specifically a flow meter) and a pump 25 .
  • the solid-liquid separation device 14 is a centrifuge, which is connected to the outlet of the flocculation sedimentation tank 1 through the valve 40 and the pump 27, and the filtrate outlet of the centrifuge is connected to the temporary storage tank 16.
  • the automatic detection and feeding controller 24 controls the pump 25 to add the water body 60 to be purified into the flocculation sedimentation tank 1 according to the results measured by the process data detection device 19, and detects the water body to be purified according to the process data detection devices 20 and 21. 60, and control the opening and closing of the cold and heat exchange device 3 and adjust the size of the heat exchange according to the results measured by the process data detection device 22.
  • the water purifying agent precursor 56 used in this embodiment is ferrous hydroxide solid.
  • a new type of new flocculation water purification method including the following steps:
  • the mixture in the flocculation sedimentation tank 1 is separated from solid and liquid by the centrifuge of the solid-liquid separation device 14 to obtain the water body 61 after flocculation and purification, which is temporarily stored in the temporary storage tank 16 .
  • the pH value of the water body 60 to be purified is 5, and the water purifying agent precursor used is ferrous hydroxide. Testing revealed that the amount of ferric iron hydroxide generated per cubic meter of water to be purified in this example was 500g, and no newly generated acid or salt due to the water purification agent precursor was found.
  • the water purification treatment effect data of this embodiment are listed in Table 1.
  • the flocculation water purification device used in this embodiment includes a flocculation sedimentation tank 1; the flocculation sedimentation tank 1 is equipped with an oxidizing substance adding device 6 and process data detection devices 19 and 20;
  • the injection device 6 is a gas-liquid mixing device, specifically a liquid injection device.
  • the pump 27 and the nozzle the nozzle is the liquid outlet
  • the water body 60 to be purified is sprayed into the air to chemically react with the oxygen in the air.
  • the air is the environment containing oxidizing substances as mentioned above;
  • the process data detection devices 19 and 20 are respectively a turbidity meter and a liquid level meter.
  • the flocculation sedimentation tank 1 is also connected to an oxidizing substance adding device composed of a temporary storage tank 16 and a pump 26.
  • the oxidizing substance 62 (specifically hydrogen peroxide) is added to the flocculating sedimentation tank 1, and the water purification agent precursor 56 is added.
  • the device of the present invention has two sets of oxidizing substance adding devices.
  • the flocculation sedimentation tank 1 is installed and connected with a solid feeder 55 for adding the water purification agent precursor 56; it is also connected to the temporary storage tank 15 through the pump 25 to divert the water body 60 to be purified.
  • the solid-liquid separator 14 is an inclined tube sedimentation tank, which is connected to the outlet of the flocculation sedimentation tank 1 via the pump 28; the outlet of the solid-liquid separator 14 is connected to the temporary storage tank 17 to store the purified water 61 .
  • the water purifying agent precursor 56 used in this embodiment is ferrous carbonate solid.
  • a new type of new flocculation water purification method including the following steps:
  • the water purification agent precursor 56 in the lake 1 is stimulated, causing the water purification agent precursor 56 to react to generate iron hydroxide and release carbon dioxide, and the produced colloid acts with the suspended solids and/or impurities in the water body 60 to be purified. total sedimentation.
  • the mixture in the flocculation sedimentation tank 1 is directed to the solid-liquid separation device 14, and the water body 61 after flocculation and purification is obtained by separation through the solid-liquid separation device 14, and is temporarily stored in the temporary storage tank 17.
  • the water body 60 to be purified is a water body containing suspended impurities with a pH value of 8.
  • the water purification agent precursor used is ferrous carbonate, and the oxidizing substances are oxygen and hydrogen peroxide in the air. Testing revealed that the amount of ferric iron hydroxide produced per cubic meter of water to be purified in this example was 300g, and no newly generated acid or salt due to the water purification agent precursor was found.
  • the water purification treatment effect data of this embodiment are listed in Table 1.
  • the flocculation water purification device used in this embodiment, which includes a flocculation sedimentation tank 1, an oxidizing substance adding device 6, a liquid flow stirrer 11, a solid-liquid separator 14, and temporary storage tanks 15 and 16. .
  • the flocculation sedimentation tank 1 is provided with an oxidizing substance adding device 6 and process data detection devices 19 and 20;
  • the oxidizing substance adding device 6 is a gas-liquid mixing device, specifically a liquid spraying device, which communicates with a nozzle through a pump 26 (the nozzle is (liquid outlet)), the water body 60 to be purified is sprayed into the air to perform an oxidation reaction with the oxygen in the air.
  • the air is the environment containing oxidizing substances as mentioned above, so that the water purification agent precursor is oxidized After the reaction, colloidal ferric hydroxide is generated;
  • the process data detection devices 19 and 20 are respectively a turbidity meter and a liquid level meter.
  • the temporary storage tank 15 is used to prepare the water purification agent precursor 57 using pure water 71. It is provided with a stirring device 11 (specifically a circulating liquid pump tube mixer), and is installed and connected with a solid feeder 55 for adding Add the water purification agent precursor 56; the discharge port of the temporary storage tank 15 is connected to the flocculation sedimentation tank 1 through the pump 25.
  • a stirring device 11 specifically a circulating liquid pump tube mixer
  • the solid-liquid separator 14 is an inclined tube sedimentation tank, which is connected to the outlet of the flocculation sedimentation tank 1 via the pump 27; the outlet of the solid-liquid separator 14 is connected to the temporary storage tank 16 to store the purified water 61 .
  • the water purifying agent precursor 56 used in this embodiment is ferrous hydroxide solid.
  • a new type of new flocculation water purification method including the following steps:
  • oxidizing substance adding device 6 use air as the oxidizing substance to excite the water purifying agent precursor 57 in the flocculation sedimentation tank 1, so that the water purifying agent precursor 57 reacts to generate ferric hydroxide colloid and reacts with it. Suspended solids and/or impurities in the purified water body 60 are co-sedimented.
  • the mixture in the flocculation sedimentation tank 1 is directed to the solid-liquid separation device 14, and the water body 61 after flocculation and purification is obtained by separation through the solid-liquid separation device 14, and is temporarily stored in the temporary storage tank 16.
  • the water body 60 to be purified is a water body containing suspended impurities with a pH value of 6.9, and the water purification agent precursor used is ferrous hydroxide liquid. Testing revealed that the amount of ferric iron hydroxide generated per cubic meter of water to be purified in this example was 0.002g, and no newly generated acid or salt due to the water purification agent precursor was found.
  • the water purification treatment effect data of this embodiment are listed in Table 1. The equipment and operation of this embodiment are simple, no carbon dioxide and other impurities are generated during the process, and can be used as a city tap water purification treatment solution.
  • the flocculation water purification device used in this embodiment, which includes a flocculation sedimentation tank 1, a water purification agent precursor excitation tank 2, an oxidizing substance adding device 6, an oxidizing substance adding device 7, and an oxidizing substance adding device 7.
  • the water purification agent precursor excitation tank 2 is provided with an oxidizing substance adding device 6 and a stirring device 11 (specifically, a paddle stirring device).
  • the oxidizing material adding device 6 is a gas-liquid mixing device, specifically a liquid injection device.
  • the compressed gas source 29 is specifically a high-pressure gas tank equipped with compressed air. .
  • the flocculation sedimentation tank 1 is provided with an oxidizing substance adding device 7 and an oxidizing substance adding device 8;
  • the oxidizing substance adding device 7 is a gas-liquid mixing device, specifically an aeration device, which is provided with a gas oxidizing substance outlet. Air is forcibly added into the water body 60 to be purified;
  • the oxidizing substance adding device 8 is a gas-liquid mixing device, specifically an air pumping device, which is composed of an air pump and a connecting channel, and drives air into the water body 60 to be purified;
  • the substance adding device 7 and the oxidizing substance adding device 8 cause the unreacted water purifying agent precursor in the flocculation sedimentation tank 1 to undergo an oxidation reaction with oxygen in the air to generate colloidal ferric hydroxide.
  • the solid-liquid separator 14 is a filter press device and is connected to the outlet of the flocculation sedimentation tank 1 via a pump 26 .
  • the water purifying agent precursor 56 used in this embodiment is ferrous carbonate solid.
  • a new type of new flocculation water purification method including the following steps:
  • the adding device 6 uses air as an oxidizing substance to excite the water purification agent precursor 56, and guides the liquid flow to the flocculation sedimentation tank 1; open the oxidizing substance adding device 7 and the oxidizing substance adding device 8, Excite the unreacted water purification agent precursor 56 in the flocculation sedimentation tank 1; cause the water purification agent precursor 56 to react to generate ferric hydroxide colloid and react with suspended solids and/or impurities in the water body 60 to be purified. settlement.
  • the mixture in the flocculation sedimentation tank 1 is directed to the solid-liquid separation device 14, and is separated by the solid-liquid separation device 14 to obtain the flocculated and purified water body 61.
  • the water body 60 to be purified is a water body containing suspended impurities with a pH value of 7, and the water purification agent precursor used is ferrous carbonate. Testing revealed that the amount of ferric iron hydroxide produced per cubic meter of water to be purified in this example was 50 g, and no newly generated acid or salt due to the water purification agent precursor was found.
  • the water purification treatment effect data of this embodiment are listed in Table 1.
  • the flocculation water purification device of Example 1 is used, and the water body to be purified is the same as Example 1. According to the amount of iron shown in Table 1, acidic ferric sulfate is added to the water body to be purified; hydrogen is added during the purification process.
  • the sodium oxide solution adjusts the pH value of the mixed solution to 7, causing all the iron ions in the mixed solution to be hydrolyzed into ferric hydroxide and co-precipitated with impurities.
  • Example 3 Using the device for the water body to be purified in Example 3, and the water body to be purified is the same as that in Example 3, acidic iron sulfate is added to the water body to be purified according to the amount of iron shown in Table 1; during the purification process, add Add sodium hydroxide to adjust the pH value of the water to be purified to 5.
  • Example 5 Using the device for water to be purified in Example 5, and the water to be purified is the same as in Example 5, acidic ferric chloride is added to the water to be purified according to the amount of iron shown in Table 1; during the purification process Add sodium hydroxide to adjust the pH value of the treated water to 6.9.
  • the difference from Example 2 is that inorganic alkali is no longer added to the flocculation sedimentation tank 1 to adjust the liquid pH value.
  • Comparative Example 6 uses the device for the water body to be purified in Example 6, and the water body to be purified is the same as that in Example 6.
  • the water purification agent precursor carbonate is added to the water body to be purified according to the dosage shown in Table 1. iron.
  • Example 1 and Comparative Example 1 As can be seen from Table 1 above, in Example 1 and Comparative Example 1, Example 3 and Comparative Example 2, and Example 5 and Comparative Example 3, when the amount of iron element from hydroxide is the same, the water body to be purified The processing effect is also similar.
  • Comparative Examples 1-3 new salts were produced, but the water purification agent precursor of the present invention did not bring in new anions existing in the water body, proving that the process of the present invention does not produce acid and salt during the flocculation purification treatment project. / or salt conditions can achieve the current There are technical level effects.
  • Example 2 adjusts the pH value of the water to be treated in the tank to ⁇ 2 by adding inorganic alkali solids to the flocculation sedimentation tank 1, while the latter does not need to be treated.
  • the pH value of the water body is adjusted, causing part of the iron hydroxide to be converted into iron salts, reducing the amount of iron hydroxide colloid, thus affecting the water treatment effect.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

一种絮凝净水方法,包括以下步骤:(1)将净水剂前驱体与液体混合并作激发处理后加入至待净化处理的水体中,和/或将净水剂前驱体直接与待净化处理的水体混合并作激发处理,令净水剂前驱体发生反应生成氢氧化铁,并与待净化处理的水体中的悬浮物和/或杂质作共沉降;激发处理包括加入氧化性物质;(2)对步骤(1)所得的混合物作固液分离,得到絮凝净化处理后的水体;该方法能沉降水中悬浮物并吸附部分有机杂质,且能避免因新生氢氧化物而带来的酸和盐;还提供一种絮凝净水装置。

Description

一种新型的新生絮凝净水方法及其装置 技术领域
本发明属于净水处理技术领域,具体涉及一种新型的新生絮凝净水方法及其装置。
背景技术
水是包括人类在内所有生命生存的重要资源,也是生物体最重要的组成部分。因此,为了健康,人们对水的处理越来越重视。
现有的净水处理工艺如自来水净水处理工艺通常是:
第一步,通过化学反应方法在被处理的水体中生成氢氧化铝和/或氢氧化铁和/或氢氧化亚铁胶体来沉降水中的悬浮物,并作固液分离;
第二步,对不可沉悬的金属离子、有机物和氮、磷化合物等进行处理;
第三步,采用对水的酸碱度PH值和/或消毒等处理。
由于氢氧化铝、氢氧化铁、氢氧化亚铁都不溶于水,直接将其加投到水中时其大部分都无法成为胶体,难以与水中的悬浮物形成絮凝物并沉降,从而造成极大的浪费。因此,现有技术通常采用价格便宜但效果良好的铝盐和/或铁盐进行所述第一步的化学反应,使其在对应的pH值条件下水解生成上述氢氧化物絮凝胶体来对水中的悬浮物作沉降净水处理。
其中,所述铝盐和/或铁盐的水解化学反应原理如下列化学反应方程式所示:
AlCl3+3H2O→Al(OH)3+3HCl;
FeCl3+3H2O→Fe(OH)3+3HCl;
2FeCl2+5H2O+[O]→2Fe(OH)3+4HCl;
Al2(SO4)3+6H2O→2Al(OH)3+3H2SO4
Fe2(SO4)3+6H2O→2Fe(OH)3+3H2SO4
2FeSO4+5H2O+[O]→2Fe(OH)3+2H2SO4
从上述化学反应式可知,铝盐和/或铁盐的水解反应在得出Al(OH)3和/或Fe(OH)3胶体的同时必然伴随着酸的产生。这些酸导致水解反应的化学平衡系统向左移动,造成铝盐和/或铁盐水解不完全,从而导致有少部分的铝盐和/或铁盐进入了下一步水处理工序中,并于第二步处理时水解形成胶体粘附于设备上,影响了第二步的水处理效果。另外,在第三步中,向水中投放越多的碱性氧化剂作消毒,便会导致被处理的水体中生成更多的盐分。因此,经过现有的净水处理工艺流程后,水体的酸度和含盐量都较高;长期饮 用以此工艺净化的饮用水会破坏人体酸碱平衡,大大提高心脑血管疾病、高血压、高血脂的风险;而采用此工艺进行工业中水回用处理,则会直接影响生产产品质量。
针对上述存在的不足,现有技术会采用离子交换树脂和/或反渗透工艺技术对水体的盐分和酸性化合物作去除处理。但是,由于离子交换树脂和反渗透膜的选择性强,工艺装置制造复杂,且设备管理成本高;装置运行过程中的离子交换树脂和反渗透膜都需要经常更换,每次更换耗材的成本常达数万元甚至数十万元,所以运行成本同样很高。因此,离子交换法和反渗透法难以在生产中得到广泛使用。
目前而言,现有技术尚没有既能新生氢氧化物来絮凝净水,又能无盐或无酸物质生成的两全方案。由于关乎到人们的身体健康和工业用水资源的环保利用,人们需要对现有的净水处理的工艺技术作优化。
发明内容
本发明的第一个目的在于提供一种新型的新生絮凝净水方法,该方法能很有效地沉降水中悬浮物和吸附部分有机杂质,且能避免因新生氢氧化物而带来的酸和盐,保障饮用健康和降低工业中水回用的不良影响。
本发明的第二个目的在于提供一种适用于上述方法的絮凝净水装置。
本发明的第一个目的通过以下技术方案实现:
一种新型的新生絮凝净水方法之一,包括以下步骤:
(1)将净水剂前驱体与液体混合并作激发处理后加入至待净化处理的水体中,令净水剂前驱体发生反应生成氢氧化铁,并与待净化处理的水体中的悬浮物和/或杂质作共沉降;
所述激发处理包括加入氧化性物质;
(2)将对步骤(1)所得的混合物作固液分离,得到絮凝净化处理后的水体。
一种新型的新生絮凝净水方法之二,包括以下步骤:
(1)采用净水剂前驱体直接与待净化处理的水体混合并作激发处理,令净水剂前驱体发生反应生成氢氧化铁,并与待净化处理的水体中的悬浮物和/或杂质作共沉降;
所述激发处理包括加入氧化性物质;
(2)将对步骤(1)所得的混合物作固液分离,得到絮凝净化处理后的水体。
上述的两种方法可以共同进行,即是,在将净水剂前驱体与液体混合并作激发处理后加入至待净化处理的水体中的同时,采用净水剂前驱体直接与待净化处理的水体混合 并作激发处理。
在步骤(1)中所述的净水剂前驱体为碳酸亚铁和/或氢氧化亚铁;所述的液体为净水剂前驱体水溶液、纯水、待净化处理的水体中的任意一种或一种以上的组合;优选为纯水。当所述的液体为上述一种以上组份的组合时,各组份之间的比例没有限制。
当所述的液体为待净化处理的水体时,可以是将净水剂前驱体与少量待净化处理的水体混合并作激发处理后加入至大量待净化处理的水体中,也可以是将净水剂前驱体直接与待净化处理的水体混合并作激发处理。
本发明是利用所述的净水剂前驱体通过激发处理即氧化反应或者其与水解反应新生成的氢氧化铁胶体来沉降水体中的悬浮物和/或杂质;下面对所述净水剂前驱体的化学反应进行详述:
当含有亚铁的所述净水剂前驱体进行激发处理时与氧化性物质接触,亚铁离子被氧化成为三价铁离子;当所述的净水剂前驱体含有碳酸亚铁时,由于碳酸铁在水中不稳定,碳酸亚铁进行激发处理与氧化性物质接触的同时与水接触会在水中迅速氧化水解生成氢氧化铁并放出二氧化碳,参见式1;当所述的净水剂前驱体为氢氧化亚铁时,其进行激发处理与氧化性物质迅速反应被氧化为氢氧化铁,且反应过程中无二氧化碳生成,更加环保,参见式2;
4FeCO3+6H2O+2[O]→4Fe(OH)3+4CO2↑   式1;
2Fe(OH)2+H2O+[O]→2Fe(OH)3   式2。
由以上化学反应方程式可知,本发明的方法能够实现从净水剂前驱体新生成氢氧化铁,创造了没有酸或盐等副产物生成的净水工艺,既能达到絮凝净水的效果,又能避免酸和盐对身体健康和工业中水回用的负面影响,还节省了处理副产物所需的费用成本。
而且,本发明在步骤(1)中所采取激发处理包括加入氧化性物质,从而生成氢氧化铁,利用三价铁离子吸附阴离子的特性来吸附有机物,达到更好的降低被净化处理的水体COD值的效果。
在步骤(1)中所述的氧化性物质为氧气、空气、臭氧、过氧化氢中的一种或一种以上的组合。当所述的氧化性物质为上述一种以上组份的组合时,各组份之间的比例没有限制。
优选地,所述的氧化性物质为氧气和/或空气。
作为本发明的进一步实施方式,在步骤(1)中所述的氧化性物质包括氧气、空气、臭氧中的至少一种气体氧化性物质时,采用射流、喷淋、打气、曝气、液体喷射中的至少一种方式将气体氧化性物质加入到混有净水剂前驱体的液体中。其中所述液体喷射的 方式具体为:将混有净水剂前驱体的液体利用压力向高处喷射使其通过含有气体氧化性物质的环境中落至待净化处理的水体中,或者将混有净水剂前驱体的液体与至少一种所述的氧化性物质混合并一同利用压力向高处喷射并使其通过含有气体氧化性物质的环境中落至待净化处理的水体中,利用混合物从高处下落的过程充分与气体的氧化性物质接触来实现净水剂前驱体的氧化反应。
优选地,在步骤(1)中所述的氧化性物质包括空气时,本发明在步骤(1)中采取曝气和/或液体喷射的方式加入空气。更优选地,在步骤(1)中所述的氧化性物质包括空气时,本发明在步骤(1)中采取液体喷射的方式加入空气,从而利于混有净水剂前驱体的液体与更多的空气接触,更迅速地对净水剂前驱体作激发。
作为本发明的进一步实施方式,在步骤(1)中所述的激发处理为加入氧化性物质与加热和超声波振荡中一种或以上的组合。
当所述净水剂前驱体与水、氧化性物质接触并辅以加热或者受到超声波震荡时,都会促进其水解反应生成氢氧化物;其中,超声波在液体中产生能吸收声波能量并在极短时间内又崩溃释放能量的空化气泡,当空化气泡崩溃后在周围极小的空间能产生高温高压,从而促进所述净水剂前驱体的水解反应和氧化反应。
当所述净水剂前驱体中包含碳酸亚铁时,碳酸亚铁在加热或者受到超声波震荡的情况下,未与氧化性物质接触反应之前也可能发生下列水解反应生成氢氧化亚铁,参见式3;
FeCO3+H2O→Fe(OH)2+CO2↑   式3。
本发明可以作以下改进:在步骤(1)中,使每升待净化处理的水体中,混有来自作为净水剂前驱体的碳酸亚铁的铁元素≤300g,以及混有来自作为净水剂前驱体的氢氧化亚铁的铁元素≤500g。
由于溶液中的铁离子是以水合离子的形态物质存在,作为净水剂前驱体的碳酸亚铁形成氢氧化物时会吸收大量的水分;当每升待净化处理的水体中混有来自作为净水剂前驱体的碳酸亚铁的铁元素超过300g时会吸走大量的水分,所生成的絮凝沉泥体积较大,增加固液分离的难度,处理成本高;而当每升待净化处理的水体中混有来自作为净水剂前驱体的氢氧化亚铁的铁元素超过500g时,絮凝沉泥体积大,处理成本高。
本发明可以作以下改进:在步骤(1)中,使每升待净化处理的水体中,混有来自净水剂前驱体的铁元素≥0.002g。
发明人经过多组实验发现,当每升待净化处理的水体中混有来自净水剂前驱体的铁元素不低于0.002g时,能较好地对待净化处理水体中的悬浮物和/或杂质进行絮凝沉降。
本发明可以作以下改进:在步骤(1)中,令所述待净化处理的水体的pH值≥2,以获得更好的絮凝效果。这是因为当溶液环境的pH值小于2时,溶液中会明显地存在有酸;此时,由净水剂前驱体所生成的氢氧化物会有较多的部分与酸反应形成可溶性盐,降低了絮凝胶体的量,从而影响絮凝净水处理效果。
本发明为实现第二个目的采取的方案为:
一种新型的新生絮凝净水装置之一,包括絮凝沉淀槽,其特征在于:增设氧化性物质加投装置,所述的氧化性物质加投装置设有液体氧化性物质出口、气体氧化性物质出口、出液口中的至少一种;所述的氧化性物质加投装置与絮凝沉淀槽联通或设于其中,用于将氧化性物质加投入絮凝沉淀槽中。
一种新型的新生絮凝净水装置之二,包括絮凝沉淀槽,其特征在于:增设净水剂前驱体激发槽与所述絮凝沉淀槽形成组合;
所述的净水剂前驱体激发槽用于对净水剂前驱体做激发处理;
对所述的净水剂前驱体激发槽设置氧化性物质加投装置或者同时对净水剂前驱体激发槽和所述的絮凝沉淀槽设置氧化性物质加投装置;所述的氧化性物质加投装置与其对应的净水剂前驱体激发槽和/或絮凝沉淀槽联通或设于其中,用于将氧化性物质加投入净水剂前驱体激发槽和/或絮凝沉淀槽中;所述的氧化性物质加投装置设有液体氧化性物质出口、气体氧化性物质出口、出液口中的至少一种;
所述的净水剂前驱体激发槽的出液口通过管道与所述的絮凝沉淀槽连接,或者通过设置于所述净水剂前驱体激发槽的氧化性物质加投装置的出液口朝向所述的絮凝沉淀槽,将液流引至絮凝沉淀槽。
所述的氧化性物质加投装置可以是由暂存槽与泵浦组合而成的液体氧化性物质加投装置,也可以是用于将气体氧化性物质与被净化处理水体作混合的气液混合装置。所述的气液混合装置可以为选自气液混合射流装置(文丘里管)、液体喷淋吸收塔、打气装置、曝气装置、液体喷射装置中的至少一种。
所述的液体氧化性物质加投装置设有液体氧化性物质出口,所述的气液混合装置中的打气装置设有气体氧化性物质出口,所述的气液混合装置中的气液混合射流装置(文丘里管)和液体喷淋吸收塔均设有出液口,所述的气液混合装置中的曝气装置设有气体氧化性物质出口或者出液口,所述的气液混合装置中的液体喷射装置设有出液口。自所述的出液口流出的是混有净水剂前驱体和/或新生成氢氧化铁的液体,或者其与至少一种所述的氧化性物质的混合物。所述的打气装置为气泵/压缩气体源与连接通道的组合。所述液体喷射装置由设有泵浦 和/或压缩气体源的管道与喷头组成,喷头即为出液口,其通过泵浦和/或压缩气体源与喷头的组合将待净化处理水体喷洒向含有气体氧化性物质的环境作化学反应。
进一步地,所述的絮凝沉淀槽和/或净水剂前驱体激发槽还设有冷热交换装置、超声波发生器中的至少一种。
所述的超声波发生器采用与所述絮凝沉淀槽或净水剂前驱体激发槽合为一体的固定的超声波发生器,或者是独立于絮凝沉淀槽和/或净水剂前驱体激发槽的分立可移动的超声波发生器。
本发明可以做以下改进:在所述絮凝沉淀槽的底部增设沉渣槽,且所述的絮凝沉淀槽在高于所述沉渣槽的位置设有出料口,这样的设置能通过静置使絮凝净化后的水体与絮凝杂质得到分离,令所述絮凝净化后的水体得以从所述絮凝沉淀槽流出从而使净化后的水体中含有较少杂质。所述的沉渣槽呈倒锥形结构,其最底部设有出料口。
本发明可以作以下改进:在所述的絮凝沉淀槽和/或净水剂前驱体激发槽中增置搅拌装置,促使净水剂前驱体和/或由其转化而成的氢氧化物与被净化处理水体混合均匀。所述的搅拌装置具体为叶轮机械式搅拌器和循环液流泵管式搅拌器中的一种或多种。
本发明可以作以下改进:增设固液分离装置,其与所述絮凝沉淀槽的出料口作连接,用于对所述絮凝沉淀槽中的混合物进行固液分离。所述固液分离装置选自压滤机、过滤机、离心机和斜管沉淀槽。
本发明可以作以下改进:增设暂存槽,其与所述的絮凝沉淀槽和/或净水剂前驱体激发槽和/或固液分离装置直接连接或者通过泵浦或固体投料机连接,用于装载待参与净水处理的物料,或者暂储来自于净水处理过程及其后的物料。
本发明可以作以下改进:在絮凝沉淀槽和/或净水剂前驱体激发槽安设工艺数据检测装置。所述的工艺数据检测装置包含液位计、比重计、粘度计、浊度计、pH值计、电导率仪、氧化还原电位计、流量计、丁达尔效应检测装置和COD检测仪中的至少一种。其中,在所述的絮凝沉淀槽和/或净水剂前驱体激发槽增设粘度计检测装置和/或丁达尔效应检测装置,以在线检测氢氧化物的生成情况。通过工艺数据检测装置测得的结果,确保净水剂前驱体有效地转化为氢氧化物,达到对净水剂前驱体较充分的利用。
本发明可以作以下改进:在絮凝沉淀槽和/或净水剂前驱体激发槽安设工艺数据检测装置和自动检测投料控制器的组件,利用所述自动检测投料控制器接收工艺数据检测装置的数据,并根据获得的数据对整个絮凝净水装置的作业进行自动化控制。
与现有技术相比,本发明具有以下有益效果。
1.本发明通过对净水剂前驱体进行激发处理,使其发生氧化反应和/或发生水解反应新生成氢氧化物胶体进行絮凝净水处理,不会产生酸或盐等副产物,避免了现有净水技术中因新生氢氧化物而带来的酸和盐,同时避免或减少使用离子交换树脂和/或反渗透设备进行中和脱盐,节省了大批昂贵设备投资资金和昂贵设备维护管理费。
2.本发明通过净水剂前驱体的水解反应和/或氧化反应新生成氢氧化物胶体进行絮凝净水处理,在后续净水处理工艺中无需额外购买液碱对氢氧化物生成过程中产生的酸进行中和,也无需因未水解的铝盐和/或铁盐进入了除杂水处理工序时水解形成胶体粘附于设备上而频繁更换装置附件,工艺的转换不会造成生产成本增加。
3.本发明在新生氢氧化物的过程中没有因水解反应生成的酸和盐,提高了净水质量,增强人们的身体健康,减少工业中水回用的使用设备。
4.本发明方法处理过程无新增污染源,净水处理成本低。
附图说明
以下通过附图对本发明作进一步的说明。
图1为实施例1所采用的絮凝净水装置;
图2为实施例2所采用的絮凝净水装置;
图3为实施例3所采用的絮凝净水装置;
图4为实施例4所采用的絮凝净水装置;
图5为实施例5所采用的絮凝净水装置;
图6为实施例6所采用的絮凝净水装置。
附图标记:1-絮凝沉淀槽;2-净水剂前驱体激发槽;3-冷热交换装置,4~5-超声波发生器;6~8氧化性物质加投装置;10-沉渣槽;11-搅拌装置;14-固液分离装置;15~17-暂存槽;19~23-工艺数据检测装置;24-自动检测投料控制器;25~28-泵浦;29-压缩气体源;40~41-阀门;50~51-出料口;55-固体投料机、56~57-净水剂前驱体、60-待净化处理的水体、61-净化处理后的水体、62~63-氧化性物质、67-絮凝沉淀物、69-固体氢氧化钠、70-臭氧发生器、71-纯水。
具体实施方式
以下通过具体的实施例,对本发明作进一步说明。
在以下实施例中,所使用的絮凝沉淀槽、净水剂前驱体激发槽、叶轮机械式搅拌器、循环液流泵管式搅拌器均为广东省佛山市业高环保设备制造有限公司生产制造;超声波发生器 为市售商品,氢氧化亚铁、碳酸亚铁、双氧水、氧气采用市售商品,臭氧发生器、检测仪器装置及自动化检测投料控制器为市售商品。除上述举例之外,本领域技术人员根据常规选择,也可以选择其他具有与本发明列举的上述产品具有相似性能的产品,均可以实现本发明的目的。
净水中对COD处理效果试验
采用邻苯二甲酸氢钾制作COD值为500ppm的标准有机溶液,作为1吨待净化处理的水体进行絮凝沉降后对所得清液的COD值进行抽样检测。
净水中絮凝胶体验证试验
对1吨的待净化处理的水体中由所述净水剂前驱体生成氢氧化物进行共沉降后,将由所述净水剂前驱体生成的氢氧化物与待净化处理的水体混合进行共沉降后,通过浊度计和/或采用聚光光源进行照射来检测净化效果;具体根据浊度计前后检测结果作比较来判断或使用从垂直入射光方向观察净化处理水液的光亮通路,若出现丁达尔效应说明有胶体存在。
实施例1
如图1所示,为本实施例采用的絮凝净水装置,其包括絮凝沉淀槽1;絮凝沉淀槽1设置有氧化性物质加投装置6;氧化性物质加投装置6为气液混合装置,具体为气液混合射流装置,其气液混合物出口设于絮凝沉淀槽1中。
本实施例采用的氧化性物质62为氧气,净水剂前驱体56为碳酸亚铁和氢氧化亚铁的混合物,从投料口向絮凝沉淀槽1加投。
一种新型的新生絮凝净水方法,包括以下步骤:
1.如图1设置絮凝净水装置,按表一中所示的量使净水剂前驱体与待净化处理的水体在絮凝沉淀槽1中混合;
2.启动氧化性物质加投装置6,以氧气作为氧化性物质对絮凝沉淀槽1中的净水剂前驱体作激发,令净水剂前驱体发生反应生成氢氧化铁并与待净化处理的水体中的悬浮物和/或杂质作共沉降,得到絮凝净化处理后的水体。
本实施例1中待净化处理的水体60的pH值=7,所采用的净水剂前驱体为碳酸亚铁和氢氧化亚铁的混合物。检测得知本实施例中每立方米待净化处理水体中所生成氢氧化铁的三价铁的量为100g,未发现有因净水剂前驱体而新生成的酸或者盐。本实施例的净水处理效果数据列入表一中。
实施例2
如图2所示,为本实施例采用的絮凝净水装置,其包括絮凝沉淀槽1、净水剂前驱体激 发槽2、超声波发生器4和5、氧化性物质加投装置6、工艺数据检测装置19~23、自动检测投料控制器24,暂存槽15、固体投料机55、臭氧发生器70。
净水剂前驱体激发槽2的出液口通过装有泵浦26的管道连接絮凝沉淀槽1,将液流引至絮凝沉淀槽1中。
絮凝沉淀槽1中设置有移动式超声波发生器4、工艺数据检测装置19和20(具体为pH计和液位计)、搅拌装置11(具体为循环液流泵管式搅拌器),还安装有氧化性物质加投装置6;氧化性物质加投装置6为鼓泡式打气装置,连接着臭氧发生器,为絮凝沉淀槽1加投臭氧;絮凝沉淀槽1安装连接有固体投料机55,以加投固体氢氧化钠调整净化处理水体的pH值;絮凝沉淀槽1下方的出料口51连接有COD检测仪23,对水体作抽样检查。絮凝沉淀槽1底部设有沉渣槽10,其最底部设有阀门40和出料口50。
净水剂前驱体激发槽2中设置有与其合为一体的固定式超声波发生器5、工艺数据检测装置21和22(具体为氧化还原电位计和粘度计)。
净水剂前驱体激发槽2中是通过启动超声波发生器5对待净化处理的水体60与净水剂前驱体56的混合物进行氧化;净水剂前驱体激发槽2连接有暂存槽15与泵浦25组合而成的氧化性物质加投装置。
所述的自动检测投料控制器24根据工艺数据检测装置21(氧化还原电位计)测得的结果控制泵浦25向净水剂前驱体激发槽2加投氧化性物质和控制超声波发生器5的启停。根据工艺数据检测装置22(粘度计)和工艺数据检测装置20(液位计)测得的结果控制泵浦26将净水剂前驱体激发槽2内的混合物加入所述的絮凝沉淀槽1中,根据工艺数据检测装置19(pH计)测得的结果控制固体投料机55向所述絮凝沉淀槽1加投无机碱以调整槽内液体的pH值。
本实施例中加入暂存槽15的氧化性物质62为双氧水,加入絮凝沉淀槽1的氧化性物质63为臭氧;待净化处理水体60为工业的含酸回用水,其pH值为0.2;净水剂前驱体56为碳酸亚铁。
一种新型新生絮凝净水方法,包括以下步骤:
1.如图2设置絮凝净水装置,按表一中所示的量将净水剂前驱体56与待净化处理水体60投入到的净水剂前驱体激发槽2中混合;
2.将氧化性物质62加投至暂存槽15,开启泵浦25,并启动超声波发生器5,以双氧水作为氧化性物质协同超声波振荡器对净水剂前驱体激发槽2中的净水剂前驱体56作激发,使其发生反应生成氢氧化物。当净水剂前驱体激发槽2的氧化还原电位计和粘度计的数据达到 设定值后,关停泵浦25、超声波发生器5和所有投料设备。
3.根据工艺检测装置21、22、19的现场检测数据,控制泵浦26将净水剂前驱体激发槽2内的溶液投送进絮凝沉淀槽1中。
4.启动固体投料机55向絮凝沉淀槽1投入氢氧化钠调整槽内溶液的pH值为5,并同时开动超声波发生器4、臭氧发生器70和氧化性物质加投装置6引入臭氧到絮凝沉淀槽1的溶液中;以臭氧作为氧化性物质协同超声波振荡对仍未反应的净水剂前驱体和生成的氢氧化亚铁作进一步激发,令净水剂前驱体反应完全生成的氢氧化铁与待净化处理的水体中的悬浮物和/或杂质作共沉降。
5.打开阀门41引流絮凝沉淀槽1中的净化处理后的水体61,并通过COD检测仪作抽样检测取得COD的数值,收集沉渣槽10的沉淀物67另作处理。
本实施例中待净化处理的水体60的pH值为0.2,所采用的净水剂前驱体56为碳酸亚铁,净化处理后的水体其pH值为5。检测得知本实施例中每立方米待净化处理水体中所生成氢氧化铁的三价铁的量为8g,未发现有因净水剂前驱体而新生成的酸或者盐。本实施例的净水处理效果数据列入表一中。
实施例3
如图3所示,为本实施例采用的絮凝净水装置,其包括絮凝沉淀槽1、暂存槽15、氧化性物质加投装置6、固液分离装置14和自动检测投料控制器24;
絮凝沉淀槽1中设置有冷热交换装置3、氧化性物质加投装置6、搅拌装置11和工艺数据检测装置20~22;氧化性物质加投装置6为气液混合装置,具体为液体喷淋吸收塔,采用的氧化性物质为空气,其气液混合物出口与絮凝沉淀槽1连接;搅拌装置11为叶轮机械式搅拌器;工艺数据检测装置20~22分别是丁达尔效应检测装置、电导率仪、温度计。絮凝沉淀槽1安装连接有固体投料机55,用于加投净水剂前驱体56。
暂存槽15装有待净化处理的水体60,通过设有工艺数据检测装置19(具体为流量计)和泵浦25的管道与絮凝沉淀槽1连接。
固液分离装置14是一台离心机,通过阀门40和泵浦27与絮凝沉淀槽1的出料口连接,其离心机的滤液出料口与暂存槽16连接。
本实施例采用自动检测投料控制器24根据工艺数据检测装置19测得的结果控制泵浦25向絮凝沉淀槽1加入待净化处理的水体60,根据工艺数据检测装置20和21检测待净化处理水体60的处理状况,以及根据工艺数据检测装置22测得的结果控制冷热交换装置3的开启关停和调节热量交换的大小。
本实施例采用的净水剂前驱体56为氢氧化亚铁固体。
一种新型新生絮凝净水方法,包括以下步骤:
1.如图3设置絮凝净水装置,按表一中所示的量将净水剂前驱体56与待净化处理的水体60在絮凝沉淀槽1中混合;
2.开启氧化性物质加投装置6和冷热交换装置3,以空气作为氧化性物质协同加热对絮凝沉淀槽1中的净水剂前驱体56作激发,令净水剂前驱体56发生反应生成氢氧化铁并与待净化处理的水体60中的悬浮物和/或杂质作共沉降;
3.将絮凝沉淀槽1中的混合物通过固液分离装置14离心机进行固液分离,得到絮凝净化处理后的水体61,暂存至暂存槽16。
本实施例中待净化处理的水体60的pH值为5,所采用的净水剂前驱体为氢氧化亚铁。检测得知本实施例中每立方米待净化处理水体中所生成氢氧化铁的三价铁的量为500g,未发现有因净水剂前驱体而新生成的酸或者盐。本实施例的净水处理效果数据列入表一中。
实施例4
如图4所示,为本实施例采用的絮凝净水装置,其包括絮凝沉淀槽1;絮凝沉淀槽1设置有氧化性物质加投装置6、工艺数据检测装置19和20;氧化性物质加投装置6为气液混合装置,具体为液体喷射装置,通过泵浦27与喷头(喷头即为出液口)的组合将待净化处理水体60喷洒向空中与空气中的氧气作化学反应,这里所述空中即为前文所述的含有氧化性物质的环境;工艺数据检测装置19和20分别是浊度计和液位计。
絮凝沉淀槽1还连接有暂存槽16与泵浦26组合而成的氧化性物质加投装置,向絮凝沉淀槽1加投氧化性物质62(具体为双氧水),对净水剂前驱体56作辅助的氧化反应,即本发明装置具有两套氧化性物质加投装置。
絮凝沉淀槽1安装连接有固体投料机55,用于加投净水剂前驱体56;还经泵浦25连通暂存槽15,引流待净化处理水体60。
固液分离器14为斜管沉淀槽,经泵浦28与絮凝沉淀槽1的出料口连通;固液分离器14的出料口与暂存槽17连接,装储净化处理后的水体61。
本实施例采用的净水剂前驱体56为碳酸亚铁固体。
一种新型新生絮凝净水方法,包括以下步骤:
1.如图4设置絮凝净水装置,按表一中所示的量将净水剂前驱体56与待净化处理的水体60在絮凝沉淀槽1中混合;
2.开启氧化性物质加投装置6和泵浦26,以空气作为氧化性物质和双氧水一起对絮凝沉 淀槽1中的净水剂前驱体56作激发,令净水剂前驱体56发生反应生成氢氧化铁和放出二氧化碳,产出胶体与待净化处理的水体60中的悬浮物和/或杂质作共沉降。
3.将絮凝沉淀槽1混合物引流至固液分离装置14,通过固液分离装置14分离得到絮凝净化处理后的水体61,暂存至暂存槽17中。
本实施例中待净化处理的水体60是pH值为8的含有悬浮杂质的水体,所采用的净水剂前驱体为碳酸亚铁,氧化性物质为空气中的氧气和双氧水。检测得知本实施例中每立方米待净化处理水体中所生成氢氧化铁的三价铁的量为300g,未发现有因净水剂前驱体而新生成的酸或者盐。本实施例的净水处理效果数据列入表一中。
实施例5
如图5所示,为本实施例采用的絮凝净水装置,其包括絮凝沉淀槽1、氧化性物质加投装置6、液流搅拌器11、固液分离器14、暂存槽15和16。
絮凝沉淀槽1设置有氧化性物质加投装置6和工艺数据检测装置19和20;氧化性物质加投装置6为气液混合装置,具体为液体喷射装置,通过泵浦26与喷头(喷头即为出液口)的组合将待净化处理水体60喷洒向空中与空气中的氧气作氧化反应,这里所述空中即为前文所述的含有氧化性物质的环境,使净水剂前驱体在氧化反应后生成胶体氢氧化铁;工艺数据检测装置19和20分别为浊度计和液位计。
暂存槽15用于使用纯水71来配制净水剂前驱体57,其设有搅拌装置11(具体为循环液流泵管式搅拌器),以及安装连接有固体投料机55,用于加投净水剂前驱体56;暂存槽15的出料口通过泵浦25与絮凝沉淀槽1连通。
固液分离器14为斜管沉淀槽,经泵浦27与絮凝沉淀槽1的出料口连通;固液分离器14的出料口与暂存槽16连接,装储净化处理后的水体61。
本实施例采用的净水剂前驱体56为氢氧化亚铁固体。
一种新型新生絮凝净水方法,包括以下步骤:
1.如图5设置絮凝净水装置,向暂存槽15加投纯水71,并启动固体投料机55加投氢氧化亚铁56来配制净水剂前驱体57,即氢氧化亚铁溶液。
2.向絮凝沉淀槽1加投待净化处理的水体60,按表一中所示的量将净水剂前驱体57与待净化处理的水体60在所述的絮凝沉淀槽1中混合;
3.开启氧化性物质加投装置6,以空气作为氧化性物质对絮凝沉淀槽1中的净水剂前驱体57作激发,令净水剂前驱体57发生反应生成氢氧化铁胶体并与待净化处理的水体60中的悬浮物和/或杂质作共沉降。
4.将絮凝沉淀槽1混合物引流至固液分离装置14,通过固液分离装置14分离得到絮凝净化处理后的水体61,暂存至暂存槽16中。
本实施例中待净化处理的水体60是pH值为6.9的含有悬浮杂质的水体,所采用的净水剂前驱体为氢氧化亚铁液体。检测得知本实施例中每立方米待净化处理水体中所生成氢氧化铁的三价铁的量为0.002g,未发现有因净水剂前驱体而新生成的酸或者盐。本实施例的净水处理效果数据列入表一中。这实施例的设备和操作简单,过程中没有二氧化碳和其他杂质生成,可作为城市自来水净化处理方案。
实施例6
如图6所示,为本实施例采用的絮凝净水装置,其包括絮凝沉淀槽1、净水剂前驱体激发槽2、氧化性物质加投装置6、氧化性物质加投装置7、氧化性物质加投装置8、搅拌装置11、固液分离器14。
净水剂前驱体激发槽2设有氧化性物质加投装置6和搅拌装置11(具体为桨叶搅拌装置),氧化性物质加投装置6为气液混合装置,具体为液体喷射装置,其设有朝向所述的絮凝沉淀槽1的喷头(即为出液口),通过压缩气体源29与喷头的组合将净水剂前驱体56和纯水71的混合物喷洒向空中与空气中的氧气作氧化反应,这里所述空中即为前文所述的含有氧化性物质的环境,并将液流引至絮凝沉淀槽1中,所述的压缩气体源29具体为装有压缩空气的高压气罐。
絮凝沉淀槽1设置有氧化性物质加投装置7和氧化性物质加投装置8;氧化性物质加投装置7为气液混合装置,具体为曝气装置,其设有气体氧化性物质出口,将空气强制加入待净化处理水体60中;氧化性物质加投装置8为气液混合装置,具体为打气装置,其由气泵和连接通道组成,将空气打入待净化处理水体60中;氧化性物质加投装置7和氧化性物质加投装置8使絮凝沉淀槽1中未反应的净水剂前驱体在与空气中的氧气进行氧化反应后生成胶体氢氧化铁。
固液分离器14为压滤设备,经泵浦26与絮凝沉淀槽1的出料口连通。
本实施例采用的净水剂前驱体56为碳酸亚铁固体。
一种新型新生絮凝净水方法,包括以下步骤:
1.如图6设置絮凝净水装置,向净水剂前驱体激发槽2加投纯水71和净水剂前驱体碳酸亚铁56。
2.向絮凝沉淀槽1加投待净化处理的水体60;
3.按表一中所示的量向净水剂前驱体激发槽2加入净水剂前驱体56,开启氧化性物质 加投装置6,以空气作为氧化性物质对净水剂前驱体56作激发,并将液流引至絮凝沉淀槽1中;开启氧化性物质加投装置7和氧化性物质加投装置8,对絮凝沉淀槽1中未反应的净水剂前驱体56作激发;令净水剂前驱体56发生反应生成氢氧化铁胶体并与待净化处理的水体60中的悬浮物和/或杂质作共沉降。
4.将絮凝沉淀槽1混合物引流至固液分离装置14,通过固液分离装置14分离得到絮凝净化处理后的水体61。
本实施例中待净化处理的水体60是pH值为7的含有悬浮杂质的水体,所采用的净水剂前驱体为碳酸亚铁。检测得知本实施例中每立方米待净化处理水体中所生成氢氧化铁的三价铁的量为50g,未发现有因净水剂前驱体而新生成的酸或者盐。本实施例的净水处理效果数据列入表一中。
比较例1
使用实施例1的絮凝净水装置,且待净化处理的水体和实施例1相同,按表一中所示的铁元素用量,向待净化处理的水体加投酸性硫酸铁;净化过程中加入氢氧化钠溶液将混合液的pH值调至7,令混合液中的铁离子全部水解成为氢氧化铁并与杂质共沉降。
检测得知本比较例中每立方米待净化处理水体中所生成氢氧化铁的三价铁量为100g。过程中加入的氢氧化钠溶液与酸性硫酸铁反应新生成硫酸钠。本比较例的净化处理效果数据列于表一中。
比较例2
使用实施例3中的待净化处理水体的装置,且待净化处理的水体和实施例3相同,按表一中所示的铁元素用量向待净化处理的水体投入酸性硫酸铁;净化过程中加投氢氧化钠调整待净化处理水体的pH值为5。
检测得知本比较例中每立方米待净化处理水体中所生成氢氧化铁的三价铁量为500g。过程中加入的氢氧化钠与酸性硫酸铁反应新生成硫酸钠。本比较例的净化处理效果数据列于表一中。
比较例3
使用实施例5中的待净化处理水体的装置,且待净化处理的水体和实施例5相同,按表一中所示的铁元素用量向待净化处理的水体投入酸性氯化铁;净化过程中投入氢氧化钠调整处理水体的pH值为6.9。
检测得知本比较例中每立方米待净化处理水体中所生成氢氧化铁的三价铁量为0.002g。过程中加入的氢氧化钠与酸性氯化铁反应新生成氯化钠。本比较例的净化处理效果数据列于 表一中。
比较例4
采用实施例2的装置,按表一中所示的量并采用实施例2的方法对pH=0.2的待处理的水体进行处理。其与实施例2不同的是,不再向所述絮凝沉淀槽1加投无机碱调节液体pH值。
检测得知本比较例中每立方米待净化处理水体中所生成氢氧化铁的三价铁量为0.001g。本比较例的净化处理效果数据列于表一中。
比较例5
采用实施例5的装置,按表一中所示的量并采用实施例5的方法对pH=6.9的待处理的水体进行处理,并将净水处理效果数据列入表一中。
检测得知本比较例中每立方米待净化处理水体中所生成氢氧化铁的三价铁量为0.001g。本比较例的净化处理效果数据列于表一中。
比较例6使用实施例6中的待净化处理水体的装置,且待净化处理的水体和实施例6相同,按表一中所示的用量向待净化处理的水体投入净水剂前驱体碳酸亚铁。
检测得知本比较例中每立方米待净化处理水体中所生成氢氧化铁的三价铁量为650g。本比较例的净化处理效果数据列于表一中。
表一

从上表一可知,实施例1和比较例1、实施例3和比较例2、实施例5和比较例3中,在来自氢氧化物的铁元素量相同的情况下,对待净化处理的水体的处理效果也相近。比较例1-3中均有新生的盐产生,而本发明的净水剂前驱体均没有带入新的存在于水体中的阴离子,证明本发明的工艺在絮凝净化处理工程中不产生酸和/或盐的条件下能够达到现 有技术水平的效果。
实施例2和比较例4的不同之处在于,前者通过向所述絮凝沉淀槽1中加投无机碱固体以将槽中待处理的水体的pH值调整至≥2,而后者则没有对待处理的水体的pH值进行调整,导致部分铁的氢氧化物转化为铁盐,降低了氢氧化铁胶体的量,从而影响了水处理效果。

Claims (19)

  1. 一种新型的新生絮凝净水方法,其特征在于,包括以下步骤:
    (1)将净水剂前驱体与液体混合并作激发处理后加入至待净化处理的水体中,令净水剂前驱体发生反应生成氢氧化铁,并与待净化处理的水体中的悬浮物和/或杂质作共沉降;
    所述激发处理包括加入氧化性物质;
    (2)将对步骤(1)所得的混合物作固液分离,得到絮凝净化处理后的水体。
  2. 一种新型的新生絮凝净水方法,其特征在于,包括以下步骤:
    (1)采用净水剂前驱体直接与待净化处理的水体混合并作激发处理,令净水剂前驱体发生反应生成氢氧化铁,并与待净化处理的水体中的悬浮物和/或杂质作共沉降;
    所述激发处理包括加入氧化性物质;
    (2)将对步骤(1)所得的混合物作固液分离,得到絮凝净化处理后的水体。
  3. 根据权利要求1所述的新生絮凝净水方法,其特征在于,在将净水剂前驱体与液体混合并作激发处理后加入至待净化处理的水体中的同时,采用净水剂前驱体直接与待净化处理的水体混合并作激发处理。
  4. 根据权利要求1或2或3所述的新生絮凝净水方法,其特征在于,所述的净水剂前驱体为碳酸亚铁和/或氢氧化亚铁;所述的液体为净水剂前驱体水溶液、纯水、待净化处理的水体中的任意一种或一种以上的组合。
  5. 根据权利要求4所述的新生絮凝净水方法,其特征在于,所述的氧化性物质为氧气、空气、臭氧、过氧化氢中的一种或一种以上的组合。
  6. 根据权利要求5所述的新生絮凝净水方法,其特征在于,在步骤(1)中所述的氧化性物质包括氧气、空气、臭氧中的至少一种气体氧化性物质时,采用射流、喷淋、打气、曝气、液体喷射中的至少一种方式将气体氧化性物质加入到混有净水剂前驱体的液体中;
    所述液体喷射的方式具体为:将混有净水剂前驱体的液体利用压力向高处喷射使其通过含有气体氧化性物质的环境中落至待净化处理的水体中,或者将混有净水剂前驱体的液体与至少一种所述的氧化性物质混合并一同利用压力向高处喷射并使其通过含有气体氧化性物质的环境中落至待净化处理的水体中,利用混合物从高处下落的过程充分与气体的氧化性物质接触来实现净水剂前驱体的氧化反应。
  7. 根据权利要求6所述的新生絮凝净水方法,其特征在于,在步骤(1)中所述的激发处理为加入氧化性物质与加热和超声波振荡中一种或以上的组合。
  8. 根据权利要求7所述的新生絮凝净水方法,其特征在于,在步骤(1)中,使每升待净化处理的水体中,混有来自作为净水剂前驱体的碳酸亚铁的铁元素≤300g,以及混有来自作为净水剂前驱体的氢氧化亚铁的铁元素≤500g,且使每升待净化处理的水体中,混有来自净水剂前驱体的铁元素≥0.002g。
  9. 根据权利要求8所述的新生絮凝净水方法,其特征在于,在步骤(1)中,令所述待净化处理的水体的pH值≥2,以获得更好的絮凝效果。
  10. 一种适用于权利要求1-9任一项所述新生絮凝净水方法的絮凝净水装置,包括絮凝沉淀槽,其特征在于:增设氧化性物质加投装置,所述的氧化性物质加投装置设有液体氧化性物质出口、气体氧化性物质出口、出液口中的至少一种;所述的氧化性物质加投装置与絮凝沉淀槽联通或设于其中,用于将氧化性物质加投入絮凝沉淀槽中。
  11. 一种适用于权利要求1-9任一项所述新生絮凝净水方法的絮凝净水装置,包括絮凝沉淀槽,其特征在于:增设净水剂前驱体激发槽与所述絮凝沉淀槽形成组合;
    所述的净水剂前驱体激发槽用于对净水剂前驱体做激发处理;
    对所述的净水剂前驱体激发槽设置氧化性物质加投装置或者同时对所述的絮凝沉淀槽和净水剂前驱体激发槽设置氧化性物质加投装置;所述的氧化性物质加投装置与其对应的净水剂前驱体激发槽和/或絮凝沉淀槽联通或设于其中,用于将氧化性物质加投入净水剂前驱体激发槽和/或絮凝沉淀槽中;所述的氧化性物质加投装置设有液体氧化性物质出口、气体氧化性物质出口、出液口中的至少一种;
    所述的净水剂前驱体激发槽的出液口通过管道与所述的絮凝沉淀槽连接,或者通过设置于所述净水剂前驱体激发槽的氧化性物质加投装置的出液口朝向所述的絮凝沉淀槽,将液流引至絮凝沉淀槽。
  12. 根据权利要求10或11所述的絮凝净水装置,其特征在于,所述的氧化性物质加投装置为由暂存槽与泵浦组合而成的液体氧化性物质加投装置,以及用于将气体氧化性物质与被净化处理水体作混合的气液混合装置;
    所述的气液混合装置为选自气液混合射流装置、液体喷淋吸收塔、打气装置、曝气装置、液体喷射装置中的至少一种。
  13. 根据权利要求12所述的絮凝净水装置,其特征在于,所述的液体氧化性物质加投装置设有液体氧化性物质出口,所述的打气装置设有气体氧化性物质出口,所述的气液混合射流装置和液体喷淋吸收塔均设有出液口,所述的曝气装置设有气体氧化性物质出口或者出液口,所述的液体喷射装置设有出液口;
    所述的打气装置为气泵/压缩气体源与连接通道的组合;所述液体喷射装置由设有泵浦和/或压缩气体源的管道与喷头组成,其通过泵浦和/或压缩气体源与喷头的组合将待净化处理水体喷洒向含有气体氧化性物质的环境作化学反应。
  14. 根据权利要求13所述的絮凝净水装置,其特征在于,所述的絮凝沉淀槽和/或净水剂前驱体激发槽还设有冷热交换装置、超声波发生器中的至少一种。
  15. 根据权利要求14所述的絮凝净水装置,其特征在于,在所述絮凝沉淀槽的底部增设沉渣槽,且所述的絮凝沉淀槽在高于所述沉渣槽的位置设有出料口;所述的沉渣槽呈倒锥形结构,其最底部设有出料口。
  16. 根据权利要求15所述的絮凝净水装置,其特征在于,在所述的絮凝沉淀槽和/或净水剂前驱体激发槽中增置搅拌装置,促使净水剂前驱体和/或由其转化而成的氢氧化物与被净化处理水体混合均匀;
    所述的搅拌装置具体为叶轮机械式搅拌器和循环液流泵管式搅拌器中的一种或多种。
  17. 根据权利要求16所述的絮凝净水装置,其特征在于,增设固液分离装置,其与所述絮凝沉淀槽的出料口作连接,用于对所述絮凝沉淀槽中的混合物进行固液分离。
  18. 根据权利要求17所述的絮凝净水装置,其特征在于,增设暂存槽,其与所述的絮凝沉淀槽和/或净水剂前驱体激发槽和/或固液分离装置直接连接或者通过泵浦或固体投料机连接,用于装载待参与净水处理的物料,或者暂储来自于净水处理过程及其后的物料。
  19. 根据权利要求17所述的絮凝净水装置,其特征在于,在絮凝沉淀槽和/或净水剂前驱体激发槽安设工艺数据检测装置;所述的工艺数据检测装置包含液位计、比重计、粘度计、浊度计、pH值计、电导率仪、氧化还原电位计、流量计、丁达尔效应检测装置和COD检测仪中的至少一种;
    在絮凝沉淀槽和/或净水剂前驱体激发槽安设工艺数据检测装置和自动检测投料控制器的组件,利用所述自动检测投料控制器接收工艺数据检测装置的数据,并根据获得的数据对整个絮凝净水装置的作业进行自动化控制。
PCT/CN2023/096599 2022-05-27 2023-05-26 一种新型的新生絮凝净水方法及其装置 WO2023227119A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210584264.0 2022-05-27
CN202210584264 2022-05-27
CN202210667004.X 2022-06-14
CN202210667004 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023227119A1 true WO2023227119A1 (zh) 2023-11-30

Family

ID=88918530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096599 WO2023227119A1 (zh) 2022-05-27 2023-05-26 一种新型的新生絮凝净水方法及其装置

Country Status (1)

Country Link
WO (1) WO2023227119A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763038A (en) * 1970-04-10 1973-10-02 Kurita Water Ind Ltd Process for purifying water that contains organic matter
CN101264965A (zh) * 2008-04-11 2008-09-17 哈尔滨工业大学 一种去除水中As(V)的方法
JP2012239947A (ja) * 2011-05-17 2012-12-10 Toray Ind Inc 水処理方法および水処理装置
CN105254072A (zh) * 2015-11-05 2016-01-20 无锡市新都环保科技有限公司 一种污废水处理装置及方法
CN106554104A (zh) * 2015-09-28 2017-04-05 陈雷 一种净化微污染污水的方法
CN106554105A (zh) * 2015-09-28 2017-04-05 陈雷 一种盐酸酸洗废液处理污水的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763038A (en) * 1970-04-10 1973-10-02 Kurita Water Ind Ltd Process for purifying water that contains organic matter
CN101264965A (zh) * 2008-04-11 2008-09-17 哈尔滨工业大学 一种去除水中As(V)的方法
JP2012239947A (ja) * 2011-05-17 2012-12-10 Toray Ind Inc 水処理方法および水処理装置
CN106554104A (zh) * 2015-09-28 2017-04-05 陈雷 一种净化微污染污水的方法
CN106554105A (zh) * 2015-09-28 2017-04-05 陈雷 一种盐酸酸洗废液处理污水的方法
CN105254072A (zh) * 2015-11-05 2016-01-20 无锡市新都环保科技有限公司 一种污废水处理装置及方法

Similar Documents

Publication Publication Date Title
JP2009541036A (ja) 水からのシリカ除去を必要とする冷却塔及び各種工程での水処理の方法と統合的システム
CN105540947A (zh) 一种处理钻井废水的方法和系统
CN104261624B (zh) 一种黄金氰化企业含氰废水处理方法
CN103693788A (zh) 一种工业污水处理方法及其一体机装置
CN104193058B (zh) 一种黄金矿山含氰废水综合治理方法
CN104445751A (zh) 一种含氰废水回收处理方法
CN104129875A (zh) 一种氰化废水处理方法
CN113087229A (zh) 一种浓海水的固碳应用系统及方法
CN105502765A (zh) 一种处理脱硫废水协同回收资源的系统及方法
CN110028178A (zh) 混凝化学氧化共沉法处理脱硫废水的方法及其装置
CN104176884A (zh) 一种含氰废水综合处理方法
WO2023227119A1 (zh) 一种新型的新生絮凝净水方法及其装置
CN112661359A (zh) 车辆零部件化学镀镍残液破络氧化处理系统及其处理方法
CN112811665A (zh) 一种高硬度来水用软化装置及软化方法
CN107417010B (zh) 一种高浓度含盐有机废水催化氧化处理工艺及系统
CN106396187B (zh) 一种含氰废水处理和回用的方法
CN108545871A (zh) 一种电路板行业化学镍废水处理系统及其处理方法
CN113582399A (zh) 一种利用废气co2除硬度的方法
CN114149106A (zh) 一种混凝-电化学催化氧化处理高盐度有机废水的方法
CN210595626U (zh) 一种工业废水超声波协同催化氧化装置
CN211521881U (zh) 一种用于电镀焦铜废水的处理装置
CN104193040B (zh) 一种黄金矿山含氰废水综合处理方法
CN209567895U (zh) 化学镀废水深度处理系统
CN104071916B (zh) 一种工业废酸处理方法
CN209128117U (zh) 一种反渗透浓水有机物和氨氮同时去除的装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811189

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)