WO2023227114A1 - 钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件 - Google Patents

钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件 Download PDF

Info

Publication number
WO2023227114A1
WO2023227114A1 PCT/CN2023/096567 CN2023096567W WO2023227114A1 WO 2023227114 A1 WO2023227114 A1 WO 2023227114A1 CN 2023096567 W CN2023096567 W CN 2023096567W WO 2023227114 A1 WO2023227114 A1 WO 2023227114A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
molecular weight
average molecular
weight average
transmission layer
Prior art date
Application number
PCT/CN2023/096567
Other languages
English (en)
French (fr)
Inventor
吴颐良
Original Assignee
北京曜能光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京曜能光电科技有限公司 filed Critical 北京曜能光电科技有限公司
Publication of WO2023227114A1 publication Critical patent/WO2023227114A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/85Layers having high electron mobility, e.g. electron-transporting layers or hole-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/84Layers having high charge carrier mobility
    • H10K30/86Layers having high hole mobility, e.g. hole-transporting layers or electron-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present disclosure relates to the technical field of solar cells, and in particular to a perovskite solar cell and its preparation method, passivation layer materials and photovoltaic components.
  • Perovskite solar cells are not only potential candidates for single-junction solar cells, but also for multi-junction solar cells due to their adjustable bandgap, solution-based preparation, and low cost. .
  • inventions of the present disclosure provide a perovskite solar cell.
  • the perovskite solar cell may include a perovskite light-absorbing layer, and a transmission layer located on one side of the perovskite light-absorbing layer. layer; the material of the transmission layer is a first high weight average molecular weight material whose weight average molecular weight value is not lower than the first target value;
  • a passivation layer may be provided between the transmission layer and the perovskite light-absorbing layer, and the material of the passivation layer may be a second highest weight average molecular weight with a weight average molecular weight not less than the first target value. Material.
  • the first target value may be approximately 80,000.
  • the first high weight average molecular weight material and the second high weight average molecular weight material may be independently selected from one or more of the following: PTAA, Poly-TPD, P3HT, N2200 and N2300, and any of the above. Modified materials.
  • the transport layer may be an electron transport layer or a hole transport layer.
  • the transport layer can be an electron transport layer
  • the first high weight average molecular weight material is used to form the electron transport layer
  • the first high weight average molecular weight material can be selected from modified or unmodified N2200, One or more of modified or unmodified N2300; or,
  • the first high weight average molecular weight material may be selected from modified or unmodified PTAA, modified or One or more of unmodified Poly-TPD, modified or unmodified P3HT.
  • the thickness of the transmission layer may be 3 to 30 nm.
  • the thickness of the transmission layer is preferably 4 to 5 nm.
  • the material of the transport layer may include PTAA with a weight average molecular weight of 200,000 and Poly-TPD with a weight average molecular weight of 80,000 to 120,000.
  • a passivation layer may also be provided between the transmission layer and the perovskite light-absorbing layer, and the material of the passivation layer is a second material with a weight average molecular weight value not lower than the first target value.
  • the materials of the transmission layer may include SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO x , NiO x , MoS 2 , WS 2 , spiro -One or more of TTB, spiro-MeOTAD, PEDOT:PSS.
  • the thickness of the passivation layer made of the second high weight average molecular weight material may be 1 to 20 nm, and the thickness of the passivation layer is preferably 2 nm.
  • the perovskite solar cell may include a rough substrate, and the rough substrate may include any of the following: an industrial silicon wafer with diamond wire cuts or micron-scale roughness on the surface, and a surface deposited with Conductive glass with transparent conductive electrodes, crystalline silicon cells with suede pyramid surface.
  • Another embodiment of the present disclosure also provides a transmission layer material for solar cells, wherein the transmission layer material is a first high weight average molecular weight material with a weight average molecular weight not less than a first target value, and the first target value The value is 80000.
  • the passivation layer material may be a first high weight average molecular weight material with a weight average molecular weight value not less than a first target value, and the passivation layer material The first target value may be 80,000.
  • the passivation layer material is selected from one or more of the following: PTAA, Poly-TPD, P3HT, N2200, N2300 and modified materials of any of the above.
  • the passivation layer made of the passivation layer material can simultaneously serve as the transmission layer of the solar cell.
  • Another embodiment of the present disclosure also provides a photovoltaic component, which may include the perovskite solar cell described in any one of the above.
  • the photovoltaic component may include: a perovskite cell, a stacked cell of crystalline silicon and perovskite, or an all-perovskite stacked cell.
  • the preparation method may include: a process of preparing a transmission layer; in the process of preparing the transmission layer, the value of the weight average molecular weight is not low A wet process is used to form a transmission layer on a first high weight average molecular weight material with a first target value.
  • the preparation method may include: a process of preparing a transmission layer and a process of preparing a perovskite light-absorbing layer; in the process of preparing the transmission layer and The steps of preparing the perovskite light-absorbing layer also include:
  • a passivation layer is formed on the surface of the transmission layer using a wet process using a second high weight average molecular weight material whose weight average molecular weight is not lower than the first target value.
  • the transmission layer includes a first transmission layer and a second transmission layer;
  • the second high weight average molecular weight material includes high molecular weight Sub-material A and polymer material B;
  • the preparation method includes:
  • a first transmission layer is formed on the rough substrate.
  • the material of the first transmission layer is selected from SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO x , NiO x , and MoS 2.
  • SnO x SnO x
  • TiO x TiO x
  • ZnO x ZnO x
  • WO x fullerene and its derivatives
  • CuI CuSCN
  • CuO x CuO x
  • NiO x NiO x
  • MoS 2 nO x
  • WS 2 spiro-TTB
  • spiro-MeOTAD PEDOT:PSS
  • a solution containing the polymer material A is coated on the first transmission layer to form a passivation layer of the first transmission layer;
  • the polymer material A is selected from modified or unmodified PTAA, modified One or more of modified or unmodified Poly-TPD, modified or unmodified P3HT, modified or unmodified N2200, modified or unmodified N2300;
  • a second transmission layer is formed on the perovskite light-absorbing layer; the material of the second transmission layer is selected from SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO One or more of x , NiO x , MoS 2 , WS 2 , spiro-TTB, spiro-MeOTAD, PEDOT:PSS;
  • a solution containing polymer material B is coated on the second transmission layer to form a passivation layer of the second transmission layer; the polymer material B is selected from modified or unmodified PTAA, modified or One or more of unmodified Poly-TPD, modified or unmodified P3HT, modified or unmodified N2200, modified or unmodified N2300.
  • Another embodiment of the present disclosure provides the use of a high weight average molecular weight material with a weight average molecular weight value not lower than a first target value as a passivation layer or a transmission layer in a solar cell, and the first target value may be 80,000.
  • Embodiments of the present disclosure provide a perovskite solar cell and its preparation method, passivation layer and photovoltaic module.
  • a weight average molecular weight of not less than a first target value (such as 80000) material, or the transmission layer itself is directly made of a material whose weight average molecular weight is not less than the first target value (such as 80000).
  • the inventor found that materials with a weight average molecular weight not lower than the first target value are easy to spread over a large area on a rough surface to form a continuously distributed film layer, thereby avoiding device shunt resistance caused by uneven distribution of the transmission layer or its passivation layer. ) is too small and the passivation effect is poor.
  • the specific value of the first target value can be determined according to the transmission layer design requirements in specific application scenarios.
  • the first target value is about 80,000.
  • the transmission layer design requires a thinner layer and a stronger passivation effect.
  • the first target value can be larger, and conversely, the first target value can be smaller.
  • the solution provided by the embodiments of the present disclosure can use a wet process to form a thin transmission layer or passivation layer, which is very suitable for large-scale industrial production, especially for the preparation of large-area perovskite solar cells.
  • Figure 1 is a schematic structural diagram of a perovskite battery provided in Embodiment 1 of the present disclosure
  • Figure 2 is a schematic structural diagram of a perovskite battery provided in Embodiment 2 of the present disclosure
  • Figure 3 is a schematic structural diagram of a perovskite and crystalline silicon stacked battery provided in Embodiment 3 of the present disclosure
  • Figure 4 is a confocal microscope image of the surface morphology of an industrial wafer (a) and a laboratory-grade wafer (b) in Example 3 of the present disclosure;
  • Figure 5 is the V OC statistical data of opaque devices using PTAA (c) and Poly-TPD (d) interface passivation in Example 3 of the present disclosure
  • Figure 6 shows the CAFM and AFM image stacks of Poly-TPD 15k (e) and Poly-TPD 200k (f) on the top of FTO glass in Example 3 of the present disclosure.
  • the surface of industrial silicon wafers has micron-scale roughness, which poses a challenge to the solution method for preparing perovskite and becomes a A major difficulty in large-scale production. If the industrial silicon wafer is used directly without treatment, its roughness is usually not less than 1 ⁇ m. The related wet process is difficult to form an ultra-thin and uniformly covered transmission layer on the industrial silicon wafer, and it is easy for the perovskite (or The parallel resistance of crystalline silicon-perovskite stacked cells is too small, which leads to device short circuit and poor interface passivation effect.
  • conductive glass such as FTO glass has transparent electrodes on its surface
  • industrial crystalline silicon cells have textured pyramid surfaces. That is, these substrates also have roughness that affects the preparation of the transmission layer. The same problem exists in preparing perovskite cells on these substrates. .
  • the inventor of the present application found that this problem can be effectively avoided by using materials with high molecular weight (such as polymers with a weight average molecular weight of not less than 80,000) in wet processes.
  • materials with high molecular weight such as polymers with a weight average molecular weight of not less than 80,000
  • the use of high molecular weight materials can be spread over a large area on a rough surface to form a dense coverage on the perovskite light-absorbing layer, which avoids the loss of materials with layer structures such as transmission layers and/or passivation layers when prepared by wet processes. Uniform distribution results in low device parallel resistance and poor passivation effect.
  • the technical solution of this application is very suitable for large-scale industrial production, especially for the preparation of large-area perovskite batteries.
  • the high molecular weight materials (or high weight average molecular weight materials) appearing in the description herein refer to materials with a molecular weight large enough to form a continuously distributed film layer on a rough substrate.
  • the molecular weight is large enough generally means that the molecular weight of the material is not lower than the first target value.
  • the value of the first target value is related to the specific material, the roughness of the substrate, the specific wet film forming process and the thickness of the film layer. This disclosure does not Specific limitations.
  • the first target value of most transmission layer materials or passivation layer materials is about 80,000.
  • Rough substrate refers to a substrate with a certain roughness commonly used in solar cell preparation, including but not limited to unpolished silicon wafers with diamond line cuts on the surface, conductive glass (such as FTO glass) with transparent electrodes on the surface, and Crystalline silicon cells with suede pyramid surfaces, etc.
  • the molecular weight of high-molecular-weight materials can exist in a certain distribution range.
  • this article uses weight average molecular weight to describe the molecular weight of high-molecular-weight materials appearing in this article.
  • high molecular weight materials are not limited to high molecular polymers.
  • the weight average molecular weight herein should be understood as the relative molecular mass of the material composed of molecules of a single relative molecular mass; if When a high molecular weight material includes two or more molecules with different relative molecular masses, the weight average molecular weight in this article should be understood as the average of the relative molecular masses of two or more molecules with different relative molecular masses; If the high molecular weight material is a polymer with a certain distribution range of molecular weight, the weight average molecular weight in this article should be understood as the statistical average molecular weight by mass.
  • the first or second highest weight average molecular weight material appearing in the description of this article only means that it is a high molecular weight material that can form a continuously distributed film layer, and is not used to limit it to a high molecular polymer.
  • some embodiments of the present disclosure provide a perovskite solar cell, which includes a perovskite light-absorbing layer and a transmission layer located on one side of the perovskite light-absorbing layer; the material of the transmission layer is heavy
  • the first high weight average molecular weight material has an average molecular weight not lower than the first target value.
  • a passivation layer is further provided between the transmission layer and the perovskite light-absorbing layer.
  • the material of the passivation layer is a second highest weight average molecular weight with a weight average molecular weight not lower than the first target value. Material.
  • Perovskite solar cells in this article refer to all mineral solar cells that include a perovskite absorber layer, including but not limited to single-junction perovskite solar cells, perovskite-crystalline silicon tandem solar cells, and all-perovskite multi-junction solar cells. Battery. These batteries can use this solution to solve similar problems of poor passivation effect of the transmission layer or passivation layer and low parallel resistance caused by rough substrate.
  • the first high weight average molecular weight material in this article is the transmission layer material, and its weight average molecular weight is not lower than the first target value;
  • the second high weight average molecular weight material is the passivation layer material, and its weight average molecular weight is not lower than the first target value.
  • the first target value is approximately 80,000, for example.
  • the first high weight average molecular weight material and the second high weight average molecular weight material should be understood as: when the first high weight average molecular weight material and the second high weight average molecular weight material independently select a single relative molecular weight polymer, their relative The molecular weight is the weight average molecular weight of the polymer; when the first high molecular weight material and the second high molecular weight material independently select multiple polymers, the weight average molecular weight is the weight average molecular weight of the multiple polymers.
  • the statistical average molecular weight of a mass when the first high weight average molecular weight material and the second high weight average molecular weight material independently select a single relative molecular weight polymer, their relative The molecular weight is the weight average molecular weight of the polymer; when the first high molecular weight material and the second high molecular weight material independently select multiple polymers, the weight average molecular weight is the weight average molecular weight of the multiple polymers.
  • the statistical average molecular weight of a mass when the
  • the above-mentioned polymer is a polymer material with a weight average molecular weight of not less than 50,000.
  • material, that is, the first target value can be 50,000.
  • a passivation layer made of a high weight average molecular weight material is disposed between the traditional transmission layer light-absorbing layers, or the transmission layer itself is directly made of a high weight average molecular weight material, because the high weight average molecular weight material can be formed on a rough surface using a wet process.
  • a large area is expanded to form a continuous distribution, which can solve the problem of poor passivation and short-circuit paths caused by uneven distribution of the passivation layer or transmission layer.
  • the weight average molecular weight of the high weight average molecular weight material is not lower than the first target value, it can be used in specific applications to form a continuous film layer covering the rough substrate using a wet process, and meet the functional design requirements of the passivation layer or transmission layer, that is, Can.
  • the first target value is related to the specific material and the rough substrate to be covered, and is not specifically limited in this embodiment.
  • its specific value can be determined based on experiments, so that the transmission layer or passivation layer can form a film layer that continuously covers the rough substrate, and the passivation effect and device resistance meet the requirements.
  • the thickness of the film layer is also designed. within the required range.
  • the first target value is about 80,000.
  • 80,000 is a rough range. According to current experimental results, weight average molecular weights above 80,000 can be measured on conventional rough substrates (industrialized silicon wafers, conductive glass or crystalline silicon cells with textured pyramid surfaces). ) Using conventional wet processes can achieve better coverage effects and can meet the design requirements of the transmission layer or passivation layer.
  • the first target value is 100,000 or 150,000.
  • the first high weight average molecular weight material and the second high molecular weight material are independently selected from PTAA (N,N'-bis-4-butylphenyl-N,N'-diphenyl ), Poly-TPD (polybenzidine, also represented as PolyTPD in the drawings of this article), P3HT (poly-3 hexylthiophene), N2200 and N2300, and modified materials of any of the above.
  • PTAA N,N'-bis-4-butylphenyl-N,N'-diphenyl
  • Poly-TPD polybenzidine, also represented as PolyTPD in the drawings of this article
  • P3HT poly-3 hexylthiophene
  • N2200 and N2300 and modified materials of any of the above.
  • the materials of the transmission layer or passivation layer may not only include PTAA, Poly-TPD, P3HT, N2200 and N2300, but also materials obtained by modification based on any of these materials, or may include these materials and their modified materials A mixture of at least two materials. Modification of materials refers to improving the materials through various means (for example, including but not limited to grafting functional groups on a certain branch) in order to obtain excellent properties of the materials.
  • the types of polymers that can be used for the passivation layer or transmission layer made of high weight average molecular weight materials include PTAA, Poly-TPD, P3HT, N2200 and N2300, as well as modified varieties of these types.
  • modified varieties of N2200 F-N2200OS0400-F N2200-F P(NDI-2FT)P(NDIOD-2FT)PNDI-2FT, its molecular formula is:
  • modified varieties of Poly-TPD are: Poly-TPD-C6, Poly-TPD-C8; modified varieties of PTAA such as PTAA-2F, PTAA-3F, PTAA-2Me, PTAA-3Me, etc.
  • the transport layer may be an electron transport layer or a hole transport layer. If the transport layer is an electron transport layer, and the first high weight average molecular weight material is used to form the electron transport layer, the first high molecular weight material is selected from modified or unmodified N2200, modified or unmodified One or more of the N2300. If the transport layer is a hole transport layer, and the first high weight average molecular weight material is used to form the hole transport layer, the first high weight average molecular weight material is selected from modified or unmodified PTAA, modified or unmodified PTAA, One or more of modified Poly-TPD, modified or unmodified P3HT.
  • the first high weight average molecular weight material is used to form the transmission layer, since the first high weight average molecular weight material is easy to spread over a large area on the rough surface, a wet process can be used to form an evenly covered ultra-thin transmission layer ( ⁇ 20nm) to avoid problems caused by uneven distribution of the transmission layer.
  • the parallel resistance of the device is too small and the passivation effect is poor.
  • the corresponding passivation layer can be omitted.
  • the thickness of the transmission layer based on the first high weight average molecular weight material is 3 to 30nm, for example, 3nm, 5nm, 10nm, 13nm, 15nm, 18nm, 20nm, 23nm, 25nm, 28nm, 30nm, which can achieve better experiments. Effect. Among them, the range of 3 to 10nm can not only avoid device short circuit, but also achieve better film quality and obtain better photoelectric parameters of the device. Furthermore, the effect is better when the thickness of the transmission layer is preferably 4 to 5 nm.
  • the transmission layer uses traditional materials, such as SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO x , NiO x , MoS 2 , WS 2 , spiro-TTB
  • traditional materials such as SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO x , NiO x , MoS 2 , WS 2 , spiro-TTB
  • a film layer based on the second highest weight average molecular weight material can be used as the passivation layer of the transmission layer made of the above traditional materials.
  • a film layer based on the second highest weight average molecular weight material can also be used as the passivation layer of the transmission layer made of the above-mentioned materials to avoid low parallel resistance of the device and ensure passivation. Effect.
  • the second highest weight average molecular weight material can be PTAA, Poly-TPD, P3HT, N2200 or N2300 with a weight average molecular weight of not less than 80,000, or modified polymers of these polymers, or modified or unmodified polymers mentioned above A mixture of at least two materials.
  • the passivation layer of the transmission layer generally cannot be omitted.
  • the thickness of the passivation layer may be 1 to 20 nm.
  • the thickness of the passivation layer may be 3 nm, 5 nm, 8 nm, 10 nm, 13 nm, 15 nm, 18 nm, or 20 nm.
  • the thickness of the passivation layer in the range of 1 to 15nm can achieve a good passivation effect, and the film quality and device photoelectric parameters are also relatively good.
  • the thickness of the passivation layer is 2 to 3 nm, which is more effective.
  • the thickness of the passivation layer may be 2 nm.
  • the material of the transmission layer may include a mixture of two or more high weight average molecular weight materials.
  • a variety of polymers with a weight average molecular weight of not less than 80,000 may be included.
  • the mixing of a variety of polymers with a weight average molecular weight of not less than 80,000 can improve the performance of the transmission layer.
  • a hole transport layer based on a material with a high weight average molecular weight is prepared from a solution of PTAA with a weight average molecular weight of 200,000 and Poly-TPD with a weight average molecular weight of 80,000 to 120,000 as solutes.
  • PTAA cannot passivate the perovskite surface very well, resulting in low open circuit voltage.
  • PTAA has high hole transport efficiency, which can reduce string groups and improve the filling factor.
  • Poly-TPD has low hole transmission efficiency, resulting in low device fill factor, but it has good passivation effect and high open circuit voltage. Therefore, mixing PTAA and Poly-TPD in the precursor solution for preparing the transmission layer can simultaneously increase the open circuit voltage and fill factor.
  • a perovskite solar cell includes a rough substrate 10.
  • the cell also includes a perovskite light-absorbing layer 14 formed on the rough substrate 10, and is located on both sides of the perovskite light-absorbing layer 14.
  • the electron transport layer 12 and the hole transport layer 16 are provided; a first passivation layer 13 is also provided between the electron transport layer 12 and the perovskite light absorption layer 14.
  • the material of the first passivation layer 13 has a weight average molecular weight value of Polymer material A that is lower than the first target value.
  • a second passivation layer 15 may be provided between the hole transport layer 16 and the perovskite light-absorbing layer 14.
  • the material of the second passivation layer 15 has a weight average molecular weight of not less than 10%.
  • the existence of other film layers such as the first passivation layer 13 is not limited.
  • the first passivation layer 13 and the second passivation layer 15 may also exist at the same time.
  • the first passivation layer 13 and the second passivation layer 15 both have a weight average molecular weight of not less than the second passivation layer 13 .
  • the first target value may be 80,000, for example.
  • the specific material of the second highest weight average molecular weight material is not limited, as long as the weight average molecular weight is large enough to form a passivation layer material that is continuously distributed and meets passivation requirements.
  • the transmission layer in this embodiment can use a traditional transmission layer material or a polymer with a weight average molecular weight lower than the first target value. Material.
  • the transmission layer and the corresponding passivation layer can also use high weight average molecular weight materials at the same time.
  • the material of the electron transport layer in this embodiment may include, for example, one or more of SnO x , TiO x , and Zno x ; the material of the hole transport layer in this embodiment may include, for example, NiO of one or more.
  • the material of the electron transport layer may also include one or more of ZrO 2 , fullerene and derivatives, TiSnO X and SnZnO X ; the material of the hole transport layer may also include PTAA, Poly-TPD, One or more of P3HT, V 2 O 5 , MoO x , PEDOT:PSS, WO x , Spiro-OMeTAD, Cu 2 O, Spiro-TTB, m-MTDATA and TAPC.
  • the perovskite light-absorbing layer generally has an ABX 3 crystal structure, in which A and B are cations and X is an anion.
  • A can be a monovalent cation, including but not limited to one or more cations of lithium, sodium, potassium, cesium, rubidium, amine or amidine;
  • B can be a divalent cation, including but not limited to lead, tin , tungsten, copper, zinc, gallium, selenium, rhodium, germanium, arsenic, palladium, silver, gold, indium, antimony, mercury, iridium, thallium, bismuth, one or more cations;
  • X can be a monovalent anion, Including but not limited to one or more anions of iodine, bromine, chlorine or astatine.
  • the perovskite light-absorbing layer can be methylammonium lead trihalide CH 3 NH 3 PbX 3 , where X is a halide ion, such as iodine ion, bromide or chloride ion, with an optical band gap between ⁇ 1.2 and 2.3 eV (depending on the halide content).
  • X is a halide ion, such as iodine ion, bromide or chloride ion, with an optical band gap between ⁇ 1.2 and 2.3 eV (depending on the halide content).
  • the perovskite solar cell may further include an upper electrode 17 and a lower electrode 11 .
  • a perovskite solar cell includes a rough substrate 10 .
  • the cell also includes a perovskite light-absorbing layer 14 formed on the rough substrate 10 .
  • the electron transport layer 12 and the hole transport layer 16; the material of at least one layer structure of the electron transport layer 12 and the hole transport layer 16 includes a first high weight average molecular weight material whose weight average molecular weight is not lower than the first target value.
  • the first target value may be 80,000, for example.
  • the perovskite solar cell also includes an upper electrode 17 and a lower electrode 11 .
  • the material of the electron transport layer of the perovskite cell is N2200 or a modified material of N2200 or a mixed material of the two.
  • the weight average molecular weight of the N2200 and N2200 modified materials is not Lower than the first target value, the solution of N2200 or N2200 modified material can form a continuously distributed film layer on the rough substrate 10, solving the problem that it is difficult to form an ultra-thin and uniformly covered electron transport layer on the rough substrate using a wet process. This can improve the problem of low resistance of perovskite cells, which can lead to device short circuits.
  • the thickness of the electron transport layer formed of high weight average molecular weight material is preferably 4 to 5 nm.
  • the ultra-thin electron transport layer can be made using a wet process suitable for industrialization (such as spin-coating a solution into a film).
  • the material of the electron transport layer of the perovskite cell is N2300, or a modified material of N2300, or a mixture of the two, and the weight average molecular weight of the N2300 and N2300 modified materials is not less than With a target value, an ultra-thin electron transport layer that uniformly covers the rough substrate 10 can be formed on the rough substrate 10 .
  • the material of the hole transport layer of the perovskite cell includes a first high weight average molecular weight material, where the first high weight average molecular weight material can be PTAA, Poly-TPD, P3HT and modifications of any of the above. one or more types of sexual material.
  • the weight average molecular weight of the first high weight average molecular weight material is not less than the first target value, and can form a continuously distributed film on the rough substrate 10, solving the problem of difficulty in forming an ultra-thin and uniformly covered hole transport layer on the rough substrate using a wet process. This can improve the problem of device short circuit caused by low parallel resistance of perovskite cells.
  • the thickness of the hole transport layer formed of the first high weight average molecular weight material is preferably 4 to 5 nm, which can ensure the realization of the function of the hole transport layer, and the interface passivation effect in contact with the perovskite is relatively good, without additional Add passivation layer.
  • the ultra-thin hole transport layer in this embodiment can be made by a wet process suitable for industrialization (such as solution coating and film formation).
  • This embodiment provides a stacked battery of perovskite and crystalline silicon.
  • a layer of NiO Use 5nm Poly-TPD (PolyTPD in Figure 3) as a passivation layer to passivate the transmission layer and increase the voltage of the perovskite top cell. Since the surface of the crystalline silicon cell has diamond wire cuts and the surface is very rough, conventional polymers with small weight average molecular weight cannot effectively passivate the perovskite layer. However, in this embodiment, the use in the wet process is not lower than the first target value. Poly-TPD with high weight average molecular weight (such as 80000) is used to form a passivation layer, which greatly improves the uniformity, repeatability and voltage of the device.
  • the crystalline silicon solar cell used as the bottom cell is a TOPCon structure cell.
  • the perovskite cell as a top cell also includes a C 60 layer, a SnO x layer, and a transparent electrode IZO.
  • Figure 4 it is a confocal microscope image of the surface morphology of an industrial wafer (a) and a laboratory-grade wafer (b). It can be seen from the figure that the surface of the industrial wafer has micron-level roughness. The proportions of the x-axis, y-axis and z-axis in Figure 4 are different.
  • Figure 5 shows V OC statistics for opaque devices interface passivated with PTAA (c) and Poly-TPD (d).
  • the corresponding samples in Figure 5 are all stacked cells with the structure shown in Figure 3 prepared using crystalline silicon cells based on industrial wafers.
  • the first step sputtering a 10nm thick NiO x film layer as the hole transport layer (HTL) on the crystalline silicon solar cell to minimize the possibility of pinholes that may cause shunt paths.
  • the sputtered film forms a dense, conformal film on the rough silicon surface.
  • PTAA N,N'-bis-4-butylphenyl-N,N'-diphenyl
  • polyconjugate between NiO x and the perovskite film.
  • Aniline (Poly-TPD) layer to passivate the interface between NiOx and perovskite film.
  • the weight average molecular weight of PTAA in the experimental samples ranged from 9K to 325K, and the weight average molecular weight of Poly-TPD ranged from 15K to 200K.
  • the experimental results are shown in Figure 5, c and d, with both polymers showing significant V OC enhancement (>100 mV) on opaque devices.
  • This embodiment provides a perovskite battery using FTO transparent conductive glass.
  • FTO conductive glass is fluorine-doped SnO 2 (i.e. SnO 2 :F), referred to as FTO.
  • PTAA is used as a hole transport layer on the surface of FTO transparent conductive glass. Due to the rough surface of FTO, it is difficult for the ultra-thin transport layer to completely cover the substrate surface. Conventional low molecular weight polymers cannot form effective passivation.
  • PTAA with a weight average molecular weight of not less than 80,000 is used as the solute of the precursor solution of the hole transport layer, The use of wet processes to prepare ultra-thin transport layers for perovskite cells greatly improves device uniformity, repeatability and voltage.
  • FIG. 6 shows CAFM and AFM image stacks of Poly-TPD 15k (e) and Poly-TPD 200k (f) on top of FTO glass.
  • CAFM conductive atomic force microscopy
  • AFM atomic force microscopy
  • e and f we superimpose the CAFM results on top of the AFM morphology results.
  • the white patches on the image are where CAFM measurements show high current flow (i.e. high conductivity).
  • e in Figure 6 shows significantly more and larger high current areas than f. Since the conductivity of polymer films is significantly lower than that of FTO glass substrates, this suggests that high weight average molecular weight (Mw) polymers provide better surface coverage on rough surfaces.
  • Mw weight average molecular weight
  • the solution provided by the above embodiments involves the transmission layer or passivation layer of a perovskite solar cell on a rough substrate.
  • the rough substrate may include any of the following: a surface with diamond wire cuts or micron-scale roughness. Industrial silicon wafers, conductive glass with diamond line cuts on the surface, and crystalline silicon cells with suede pyramid surfaces.
  • Embodiments of the present disclosure also provide a passivation layer for solar cells, the passivation layer being made of a second high weight average molecular weight material with a weight average molecular weight not lower than a first target value, the first target value being about to 80,000.
  • the passivation layer is made of a second highest weight average molecular weight material with a weight average molecular weight not less than the first target value. It is easy to form a film.
  • the thickness can be formed by wet processes such as coating film formation or spin coating film formation. A dense film of no more than 20nm achieves passivation effect.
  • the film layer formed of the second highest weight average molecular weight material with a weight average molecular weight of not less than 80,000 also serves as an electron transport layer or a hole transport layer.
  • the electron transport layer or hole transport layer made of the first high weight average molecular weight material can be continuously distributed over a large area on a rough substrate, and a large area of ultra-thin transport layer (less than 20nm) can be easily formed using a wet process without passivation.
  • An embodiment of the present disclosure also provides a photovoltaic component, which includes the perovskite solar cell described in any one of the above, or the passivation layer mentioned above.
  • the photovoltaic module may be a perovskite cell or a stacked cell of crystalline silicon and perovskite.
  • the photovoltaic module provided in this embodiment uses a film layer formed of a high weight average molecular weight material with a weight average molecular weight of not less than the first target value, such as 80,000, as the transmission layer or the passivation layer of the transmission layer. Therefore, a wet film suitable for industrial mass production can be used. Formed by legal process.
  • Embodiments of the present disclosure also provide a method for preparing a perovskite solar cell, including: the steps of preparing a transmission layer; In the process of preparing the transmission layer, a first high weight average molecular weight material whose weight average molecular weight is not lower than the first target value is used to form the transmission layer using a wet process.
  • the first target value is, for example, 80,000.
  • the wet process described in this embodiment refers to first making the first high weight average molecular weight material into a solution, and then using spin coating, blade coating, slit coating, spray coating, printing, transfer, etc. to spread the solution on the substrate to form a film.
  • the first high weight average molecular weight material is selected from one or more of modified or unmodified N2200, modified or unmodified N2300.
  • the transport layer is a hole transport layer
  • the first high weight average molecular weight material is selected from one of modified or unmodified PTAA, modified or unmodified Poly-TPD, modified or unmodified P3HT or more.
  • the hole transport layer is made of a mixture of PTAA with a weight average molecular weight of 200,000 and Poly-TPD with a weight average molecular weight of 80,000 to 120,000.
  • Embodiments of the present disclosure also provide another method for preparing a perovskite solar cell, including: a process of preparing a transmission layer and a process of preparing a perovskite light-absorbing layer.
  • the process of preparing the transmission layer is the same as the process of preparing a perovskite solar cell.
  • the process of mineral light-absorbing layer also includes:
  • a passivation layer is formed on the surface of the transmission layer using a wet process using a second high weight average molecular weight material whose weight average molecular weight is not less than the first target value; the first target value is, for example, 80,000.
  • Embodiments of the present disclosure also provide another method for preparing the perovskite solar cell, wherein the transmission layer includes a first transmission layer and a second transmission layer; the second high weight average molecular weight material includes polymer material A and polymer material B; the preparation method includes:
  • the first transmission layer is formed on the rough substrate using one or more of the following materials: SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO x , NiO x , MoS 2 , WS 2 , spiro-TTB, spiro-MeOTAD, PEDOT:PSS; if the first transport layer is an electron transport layer, the material of the first transport layer can be selected from SnO x , TiO x , Zno x , Rich One or more of Lerene and its derivatives; if the first transport layer is a hole transport layer, the material of the second transport layer can be selected from WO x , CuI, CuSCN, CuO x , NiO x , and MoS 2 , WS 2 , one or more of spiro-TTB, spiro-MeOTAD, PEDOT:PSS.
  • the polymer material A is prepared into a polymer solution, and the polymer solution containing the polymer material A is coated on the first transmission layer to form a passivation layer of the first transmission layer; the polymer material A is selected One of self-modified or unmodified PTAA, modified or unmodified Poly-TPD, modified or unmodified P3HT, modified or unmodified N2200, modified or unmodified N2300 species or species;
  • the polymer material B is prepared into a polymer solution, and the polymer solution containing the polymer material B is coated on the perovskite light-absorbing layer to form a passivation layer of the second transmission layer.
  • the polymer material B is selected from modified or unmodified PTAA, modified or unmodified Poly-TPD, modified or unmodified P3HT, modified or unmodified N2200, modified or unmodified Modified N2300 one or more of;
  • a second transmission layer is formed on the perovskite light-absorbing layer; the material of the second transmission layer is selected from SnO x , TiO x , ZnO x , WO x , fullerene and its derivatives, CuI, CuSCN, CuO x , NiO x , MoS 2 , WS 2 , spiro-TTB, spiro-MeOTAD, PEDOT:PSS, one or more; wherein, one of the first transport layer and the second transport layer is an electron transport layer, and the other is the hole transport layer.
  • embodiments of the present disclosure also provide a method for preparing a tandem perovskite crystalline silicon solar cell, which includes the following steps:
  • Phosphorus is expanded on the front side of the battery to form a pn junction
  • a metal grid electrode is prepared on the transparent electrode.
  • Embodiments of the present disclosure also provide the use of a high weight average molecular weight material with a weight average molecular weight value of not less than 80,000 as a passivation layer or transmission layer in a solar cell, so that a wet process of less than 20 nm can be used during solar cell preparation.
  • Passivation layer or transmission layer can also increase the open circuit voltage of the battery.
  • An embodiment of the present application also provides a passivation layer material for a solar cell, the weight average molecular weight of the passivation layer material is not less than a first target value, and the first target value is 80,000.
  • the passivation layer material can be selected from one or more of the following: PTAA, Poly-TPD, P3HT, N2200, N2300 and modified materials of any of the above.
  • the passivation layer made of the passivation layer material can simultaneously serve as the transmission layer of the solar cell.
  • the passivation layer material adopts one or more selected from modified or unmodified N2200, modified or unmodified N2300. If the passivation layer is a passivation layer of a hole transport layer, the passivation layer The material is selected from one or more of modified or unmodified PTAA, modified or unmodified Poly-TPD, modified or unmodified P3HT.
  • Embodiments of the present application also provide a transmission layer material for a solar cell.
  • the weight average molecular weight of the transmission layer material is not less than a first target value, and the first target value is 80,000.
  • the electron transport layer material is selected from one or more of modified or unmodified N2200, modified or unmodified N2300. If the transport layer is a hole transport layer, the hole transport layer material is selected from one of modified or unmodified PTAA, modified or unmodified Poly-TPD, and modified or unmodified P3HT. Kind or variety.
  • the transmission layer material may be a mixture of two materials with high weight average molecular weight.
  • the high weight average molecular weight material may be a polymer.
  • the material of the hole transport layer is made of a mixture of PTAA with a weight average molecular weight of 200,000 and Poly-TPD with a weight average molecular weight of 80,000 to 120,000.
  • PTAA cannot passivate the perovskite surface very well, resulting in low open circuit voltage.
  • PTAA has high hole transport efficiency, which can reduce string groups and improve the filling factor.
  • the hole transmission efficiency of Poly-TPD is low, resulting in a low device fill factor, but the passivation effect is good and the open circuit voltage is high.
  • Mixing PTAA and Poly-TPD in the precursor solution can increase the open circuit voltage and fill factor.
  • This application provides a perovskite solar cell and its preparation method, passivation layer and photovoltaic components. It relates to the technical field of solar cells and can solve the problem of device and bias caused by the inability of the existing wet process to form a dense transmission layer well. Small and poor passivation effect.
  • the perovskite solar cell includes a perovskite light-absorbing layer, and a transmission layer located on one side of the perovskite light-absorbing layer; the transmission layer is made of a high weight average molecular weight material with a weight average molecular weight not lower than the first target value, or , a passivation layer is also provided between the transmission layer and the perovskite light-absorbing layer, and the passivation layer is made of a high weight average molecular weight material whose weight average molecular weight is not lower than the first target value.
  • the perovskite solar cell and its preparation method, passivation layer and photovoltaic component of the present application are reproducible and can be applied in a variety of industrial applications.
  • the perovskite solar cell and its preparation method of the present application can be applied to the field of solar cell technology.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本公开提供一种钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件,涉及太阳能电池技术领域,能够解决由于现有湿法工艺不能很好地形成致密传输层导致的器件并阻偏小以及钝化效果差。所述钙钛矿太阳能电池包括钙钛矿吸光层,以及位于所述钙钛矿吸光层一侧的传输层;所述传输层由重均分子量不低于第一目标值的高重均分子量材料制成,或者,所述传输层与所述钙钛矿吸光层之间还设置有:钝化层,所述钝化层由重均分子量不低于第一目标值的高重均分子量材料制成。

Description

钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件
相关申请的交叉引用
本申请要求于2022年5月27日提交中国国家知识产权局的申请号为202210600315.4、名称为“钙钛矿太阳能电池及其制备方法、钝化层及光伏组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及太阳能电池技术领域,尤其涉及一种钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件。
背景技术
目前太阳能电池行业发展迅猛,市场上以p型晶体硅太阳能电池为主,量产效率超过20%,已经接近单结硅效率的理论极限。为了能够进一步的减低光伏系统的成本,需要进一步开发成本低廉的光伏太阳能电池。钙钛矿太阳能电池由于其禁带宽度可调,可使用溶液法制备,成本低等诸多优点,使得钙钛矿电池不仅是单结太阳能电池的潜在候选者,也是多结太阳能电池的潜在候选者。
发明内容
在一些示例性实施方式中,本公开的实施例提供一种钙钛矿太阳能电池,所述钙钛矿太阳能电池可以包括钙钛矿吸光层,以及位于所述钙钛矿吸光层一侧的传输层;所述传输层的材料为重均分子量的值不低于第一目标值的第一高重均分子量材料;
或者,所述传输层与所述钙钛矿吸光层之间还可以设置有钝化层,所述钝化层的材料可以为重均分子量的值不低于第一目标值的第二高重均分子量材料。
可选地,所述第一目标值可以约为80000。
可选地,所述第一高重均分子量材料和第二高重均分子量材料可以分别独立地选自下述中的一项或多项:PTAA、Poly-TPD、P3HT、N2200和N2300以及上述任一项的改性材料。
可选地,所述传输层可以为电子传输层或者空穴传输层。
可选地,如果所述传输层可以为电子传输层,且采用所述第一高重均分子量材料形成所述电子传输层,所述第一高重均分子量材料可以选自改性或未改性的N2200、改性或未改性的N2300中的一种或多种;或者,
如果所述传输层为空穴传输层,且采用所述第一高重均分子量材料形成所述空穴传输层,所述第一高重均分子量材料可以选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT中的一种或多种。
可选地,所述传输层的厚度可以为3~30nm。所述传输层的厚度优选为4~5nm。
可选地,如果传输层为空穴传输层,传输层的材料可以包括重均分子量为200000的PTAA与重均分子量为80000~120000的Poly-TPD。
可选地,所述传输层与所述钙钛矿吸光层之间还可以设置有钝化层,且所述钝化层的材料为重均分子量的值不低于第一目标值的第二高重均分子量材料时,所述传输层的材料可以包括SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种。
可选地,所述第二高重均分子量材料制成的钝化层的厚度可以为1~20nm,所述钝化层的厚度优选为2nm。
可选地,所述钙钛矿太阳能电池可以包括粗糙基底,所述粗糙基底可以包括下述中的任一项:表面有金刚线切痕或具有微米尺度粗糙度的工业硅晶片,表面沉积有透明导电电极的导电玻璃,有绒面金字塔表面的晶硅电池。
本公开的另一实施例还提供一种用于太阳能电池的传输层材料,其中,所述传输层材料为重均分子量不低于第一目标值的第一高重均分子量材料,所述第一目标值为80000。
本公开的另一实施例还提供一种用于太阳能电池的钝化层材料,所述钝化层材料可以为重均分子量的值不低于第一目标值的第一高重均分子量材料,所述第一目标值可以为80000。
可选地,所述钝化层材料选自下述中的一项或多项:PTAA、Poly-TPD、P3HT、N2200和N2300及上述任一项的改性材料。所述钝化层材料制成的钝化层可以同时作为太阳能电池的传输层。
本公开的另一实施例还提供一种光伏组件,所述光伏组件可以包括上述任一项所述的钙钛矿太阳能电池。
可选地,所述光伏组件可以包括:钙钛矿电池,晶硅与钙钛矿的叠层电池,或者全钙钛矿叠层电池。
本公开的另一实施例还提供一种钙钛矿太阳能电池的制备方法,该制备方法可以包括:制备传输层的工序;在所述制备传输层的工序中,利用重均分子量的值不低于第一目标值的第一高重均分子量材料,采用湿法工艺形成传输层。
本公开的另一实施例还提供另一种钙钛矿太阳能电池的制备方法,制备方法可以包括:制备传输层的工序和制备钙钛矿吸光层的工序;在所述制备传输层的工序与所述制备钙钛矿吸光层的工序之间,还包括:
利用重均分子量不低于第一目标值的第二高重均分子量材料,采用湿法工艺在所述传输层表面形成钝化层。
可选地,所述传输层包括第一传输层和第二传输层;所述第二高重均分子量材料包括高分 子材料A和高分子材料B;
所述的制备方法包括:
在粗糙基底形成第一传输层,所述第一传输层的材料选自SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种;
在所述第一传输层上涂敷含有所述高分子材料A的溶液,形成所述第一传输层的钝化层;所述高分子材料A选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT、改性或未改性的N2200,改性或未改性的N2300中的一种或多种;
在所述钝化层上形成钙钛矿吸光层;
在所述钙钛矿吸光层上形成第二传输层;所述第二传输层的材料选自SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种;
在所述第二传输层上涂敷含有高分子材料B的溶液,形成所述第二传输层的钝化层;所述高分子材料B选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT、改性或未改性的N2200、改性或未改性的N2300中的一种或多种。
本公开的另一实施例提供一种重均分子量的值不低于第一目标值的高重均分子量材料在太阳能电池中作为钝化层或传输层的用途,所述第一目标值可以为80000。
本公开的实施例提供一种钙钛矿太阳能电池及其制备方法、钝化层及光伏组件,在传输层与钙钛矿吸光层之间设置有重均分子量不低于第一目标值(如80000)的材料制成的钝化层,或者传输层本身直接采用重均分子量不低于第一目标值(如80000)的材料制成。发明人发现重均分子量不低于第一目标值的材料易于在粗糙表面大面积展开形成连续分布的膜层,从而可避免传输层或其钝化层不均匀分布导致的器件并阻(shunt resistance)偏小以及钝化效果差。其中,第一目标值的具体取值可在具体应用场景中根据传输层设计要求确定,一般第一目标值取值约为8万。传输层设计要求薄一些,钝化效果强些,第一目标值取值可以更大些,反之第一目标值取值可以更小些。本公开实施例提供的方案,可采用湿法工艺形成薄的传输层或钝化层,非常适于大规模工业化生产,特别是大面积的钙钛矿太阳能电池制备。
附图说明
图1为本公开实施例一提供的钙钛矿电池的结构示意图;
图2为本公开实施例二提供的钙钛矿电池的结构示意图;
图3为本公开实施例三提供的钙钛矿与晶硅的叠层电池的结构示意图;
图4为本公开实施例三中工业晶圆(a)和实验室级晶圆(b)的表面形态的共聚焦显微镜图像;
图5为本公开实施例三中使用PTAA(c)和Poly-TPD(d)界面钝化的不透明器件的VOC统计数据;
图6为本公开实施例三中FTO玻璃顶部的Poly-TPD 15k(e)和Poly-TPD 200k(f)的CAFM和AFM图像堆栈。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
对晶硅与钙钛矿的叠层电池(晶硅-钙钛矿叠层电池)而言,工业硅晶片表面具有微米尺度的粗糙度,这对溶液法制备钙钛矿工艺提出了挑战,成为了大规模生产的一个重大难点。如果工业硅晶片不加处理直接使用,其粗糙度通常不低于1μm,相关的湿法工艺难以在工业硅晶片上很好地形成超薄且均匀覆盖的传输层,易使钙钛矿(或晶硅-钙钛矿叠层电池)电池的并阻偏小,进而导致器件短路,且界面钝化效果差。
实验室通常通过化学机械抛光来显著降低粗糙度,但化学机械抛光对于商业生产来说会极大地增加成本,而其他方法如真空物理沉积并不适合大规模量产。
目前在粗糙基底(例如晶硅底电池和导电玻璃)表面不能很好的用湿法工艺形成均匀覆盖的传输层(例如厚度小于20nm)或者超薄钝化层,这会造成两个主要问题:钙钛矿吸光层和已有传输层之间不能形成良好的钝化效果;传输层不能在钙钛矿吸光层上形成致密覆盖。这样,钙钛矿和钙钛矿/晶硅叠层容易并阻偏低,进而导致器件短路,良品率低。但传输层或钝化层如果过厚也不好,会影响太阳能电池尤其叠层电池的转化效率。
类似地,导电玻璃例如FTO玻璃表面有透明电极,工业化的晶硅电池有绒面金字塔表面,即这些基底也具有影响传输层制备的粗糙度,在这些基底上制备钙钛矿电池也存在同样问题。
在解决上述问题实现本公开的过程中,本申请的发明人发现:在湿法工艺中使用高分子量(如重均分子量不低于80,000的聚合物)的材料可以有效地避免这个问题。例如,采用高分子量的材料可以在粗糙表面大面积展开,在钙钛矿吸光层上形成致密覆盖,避免了传输层和/或钝化层等层结构的材料在采用湿法工艺制备时材料不均匀分布导致的器件并阻偏小以及钝化效果差。本申请的技术方案非常适合大规模工业化生产,尤其适合大面积的钙钛矿电池制备。
本文描述中出现的高分子量的材料(或高重均分子量材料)均指分子量足够大以能在粗糙基底形成连续分布膜层的材料。分子量足够大一般指材料的分子量不低于第一目标值,第一目标值取值与具体的材料、基底的粗糙度、具体的湿法成膜工艺以及膜层厚度相关,本公开不作 具体限定。大部分传输层材料或钝化层材料的第一目标值取值约为8万。粗糙基底指太阳能电池制备中通常采用的具有一定粗糙度的基底,包括但不限于未经过抛光处理的表面有金刚线切痕的硅晶片,表面有透明电极的导电玻璃(如FTO玻璃),有绒面金字塔表面的晶硅电池等。
高分子量的材料尤其是高分子聚合物,其分子量可存在一定分布范围,为便于叙述,本文统一用重均分子量来描述本文中出现的高分子量的材料的分子量的大小。但本领域技术人员应理解,高分子量的材料并不限于高分子聚合物。
但是本领域技术人员应理解,如果高分子量的材料存在由单一相对分子质量的分子组成的情况,本文中的重均分子量应理解为该单一相对分子质量的分子组成的材料的相对分子质量;如果高分子量的材料包括两种或两种以上不同相对分子质量的分子时,则本文中的重均分子量应理解为该两种或两种以上不同相对分子质量的分子的相对分子质量的平均值;如果高分子量的材料是分子量存在一定分布范围的高分子聚合物,本文中的重均分子量应理解为按质量的统计平均分子量。
本文描述中出现的第一或第二高重均分子量材料均仅代表其为能形成连续分布膜层的高分子量的材料,并不用于限制其一定为高分子聚合物。
基于此,本公开的一些实施例提供一种钙钛矿太阳能电池,该钙钛矿太阳能电池包括钙钛矿吸光层,以及位于钙钛矿吸光层一侧的传输层;传输层的材料为重均分子量不低于第一目标值的第一高重均分子量材料。
或者,根据本公开的另一些实施例,传输层与钙钛矿吸光层之间还设置有钝化层,该钝化层的材料为重均分子量不低于第一目标值的第二高重均分子量材料。
本文的钙钛矿太阳能电池指所有包括钙钛矿吸收层的矿太阳能电池,包括但不限于单结钙钛矿太阳能电池,钙钛矿-晶硅叠层太阳能电池,全钙钛矿多结太阳能电池。这些电池都可以应用本方案解决类似的基底粗糙导致传输层或钝化层钝化效果差以及并阻偏小的问题。
本文的第一高重均分子量材料为传输层材料,且其重均分子量不低于第一目标值;第二高重均分子量材料为钝化层材料,且其重均分子量不低于第一目标值。第一目标值例如约为80000。
在本文中,第一高重均分子量材料和第二高重均分子量材料应当理解为:当第一高重均分子量材料和第二高重均分子量材料分别独立的选择某一单一相对分子质量的高分子聚合物时,其相对分子质量即为该高分子聚合物的重均分子量;当第一高分子量材料和第二高分子量材料分别独立的选择多种高分子聚合物时,其重均分子量为多种高分子聚合物按质量的统计平均分子量。
示例性地,在一些实施例中,上述的高分子聚合物为重均分子量不低于50000的高分子材 料,即第一目标值可以为5万。
本公开的实施例,传统的传输层吸光层之间设置有高重均分子量材料制成的钝化层,或者传输层自身直接采用高重均分子量材料制成,因高重均分子量材料可以采用湿法工艺在粗糙表面大面积展开形成连续分布,因而可解决钝化层或传输层不均匀分布导致的不良钝化以及短路通路。其中,高重均分子量材料的重均分子量只要不低于第一目标值,能够使得其在具体应用时采用湿法工艺形成连续覆盖粗糙基底的膜层,且满足钝化层或传输层功能设计要求即可。
所述的第一目标值与具体材料以及要覆盖的粗糙基底相关,本实施例不做具体限定。具体实施时可以根据实验确定其具体取值,以使传输层或钝化层能形成连续覆盖粗糙基底的膜层,并且钝化效果以及器件并阻满足要求为宜,同时膜层厚度也在设计要求的范围内。示例性,第一目标值约为80000。本领域技术人员可以理解的是,80000是个大概范围,根据目前的实验结果来看80000以上的重均分子量,在常规的粗糙基底(工业化硅晶片、导电玻璃或有绒面金字塔表面的晶硅电池)采用常规湿法工艺都可以实现比较好的覆盖效果,能满足传输层或钝化层的设计要求。
在其他示例中,所述第一目标值为10万或15万。
其中,可选地,所述第一高重均分子量材料和所述第二高分子量材料分别独立地选自PTAA(N,N'-bis-4-丁基苯基-N,N'-双苯基)、Poly-TPD(聚联苯胺,本文附图中也表示为PolyTPD)、P3HT(聚-3已基噻吩)、N2200和N2300,及上述任一项的改性材料。
传输层或钝化层的材料不仅可以包括PTAA,Poly-TPD、P3HT、N2200和N2300,还可以包括基于这些材料中任一项通过改性获得的材料,或者可以包括这些材料及其改性材料中至少两种材料的混合。对材料进行改性,是指通过各种手段(例如,包括但不限于在某一支链接枝功能团)对材料进行改进,以期使材料获得优异性能。具体地,高重均分子量材料制成的钝化层或传输层可采用的聚合物的种类包括PTAA、Poly-TPD、P3HT、N2200和N2300,以及这些种类的改性品种。例如,N2200的改性品种:F-N2200OS0400-F N2200-F P(NDI-2FT)P(NDIOD-2FT)PNDI-2FT,其分子式为:
Poly-TPD的改性品种例如为:Poly-TPD-C6,Poly-TPD-C8;PTAA的改性品种如PTAA-2F, PTAA-3F,PTAA-2Me,PTAA-3Me等。
其中,所述的传输层可以为电子传输层或者空穴传输层。如果所述传输层为电子传输层,且采用所述第一高重均分子量材料形成所述电子传输层,所述第一高分子量材料选自改性或未改性的N2200、改性或未改性的N2300中的一种或多种。如果所述传输层为空穴传输层,且采用所述第一高重均分子量材料形成所述空穴传输层,所述第一高重均分子量材料选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT中的一种或多种。如果采用第一高重均分子量材料形成传输层,因第一高重均分子量材料易于在粗糙表面大面积展开,可用湿法工艺形成均匀覆盖的超薄传输层(<20nm),避免传输层不均匀分布导致的器件并阻偏小以及钝化效果差。采用第一高重均分子量材料形成传输层时,可以省去相应的钝化层。
其中,基于所述第一高重均分子量材料的传输层的厚度3~30nm,例如为3nm、5nm、10nm、13nm、15nm、18nm、20nm、23nm、25nm、28nm、30nm,都可以实现较好的实验效果。其中,3~10nm范围内既可以避免器件短路,也可以达到较好的膜层质量和获得较好的器件光电参数。进一步地,传输层的厚度优选为4~5nm时效果更好。
其中,当传输层采用传统材料,例如由SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSSx中的一种或多种制备时,可采用基于第二高重均分子量材料的膜层作为上述传统材料制成的传输层的钝化层。
当传输层采用目前未公开的其他传输层材料时,同样可采用基于第二高重均分子量材料的膜层作为上述材料制成的传输层的钝化层,以避免器件并阻偏小以及保证钝化效果。第二高重均分子量材料可以为重均分子量不低于8万的PTAA,Poly-TPD,P3HT,N2200或N2300,或者这些聚合物的改性聚合物,或者上述改性或未改性的聚合物的至少两种的混合材料。
当传输层采用传统材料或非公开的其他传输层材料时,因这些材料一般不是高重均分子量材料,传输层的钝化层一般不能省去。
此时,该钝化层的厚度可以为1~20nm,例如钝化层的厚度可以为3nm、5nm、8nm、10nm、13nm、15nm、18nm、20nm。其中,钝化层的厚度在1~15nm范围内可以起到很好的钝化效果,膜层质量、器件光电参数也比较好。进一步优选地,钝化层2~3nm的厚度效果更好。示例性地,钝化层的厚度可以为2nm。
传输层的材料可包括两种以上高重均分子量的材料的混合。例如可以包括多种重均分子量不低于8万的聚合物。多种重均分子量不低于8万的聚合物的混合可以改进传输层性能。例如,一种基于高重均分子量的材料的空穴传输层,由重均分子量为200000的PTAA与重均分子量为80000~120000的Poly-TPD做为溶质混合而成的溶液制备。
PTAA作为空穴传输层不能很好的钝化钙钛矿表面,导致开路电压偏低,但是PTAA空穴传输效率高,可以减少串组并提升填充因子。Poly-TPD的空穴传输效率低,导致器件填充因子偏低,但是钝化效果佳,开路电压高。因此在制备传输层的前驱体溶液中混合PTAA和Poly-TPD可以同时达成提升开路电压以及填充因子。
为便于理解,下面结合具体实施例及附图对本申请的技术方案进行进一步地说明。
实施例一
参照图1所示,提供一种钙钛矿太阳能电池,该电池包括粗糙基底10,该电池还形成于粗糙基底10上的包括钙钛矿吸光层14,以及位于钙钛矿吸光层14两侧的电子传输层12和空穴传输层16;电子传输层12与钙钛矿吸光层14之间还设置有第一钝化层13,第一钝化层13的材料为重均分子量的值不低于第一目标值的高分子材料A。
在本实施例的其他实施方式中,空穴传输层16与钙钛矿吸光层14之间可设置有第二钝化层15,第二钝化层15的材料为重均分子量的值不低于第一目标值的高分子材料B。其他膜层如第一钝化层13是否存在不做限定。
在本实施例的其他实施方式中,还可同时存在第一钝化层13和第二钝化层15,第一钝化层13和第二钝化层15均由重均分子量不低于第一目标值的第二高重均分子量材料制成。第一目标值例如可以是80000。第二高重均分子量材料的具体材质不做限定,只要是重均分子量足够大,能形成连续分布、符合钝化要求的钝化层材料即可。
当钝化层采用高重均分子量材料(如高分子材料A或高分子材料B)时,本实施例中的传输层可采用传统传输层材料或者重均分子量的值低于第一目标值的高分子材料。当然也可以传输层和相应钝化层同时采用高重均分子量材料。
本实施例的电子传输层的材料例如可包括SnOx、TiOx和Znox中的一种或多种;本实施例的空穴传输层的材料例如可包括NiOx、CuI、CuSCN以及PTAA中的一种或多种。
所述电子传输层的材料还可包括ZrO2、富勒烯及衍生物、TiSnOX和SnZnOX中的一种或多种;所述空穴传输层的材料还可包括PTAA、Poly-TPD、P3HT、V2O5、MoOx、PEDOT:PSS、WOx、Spiro-OMeTAD、Cu2O、Spiro-TTB、m-MTDATA和TAPC中的一种或多种。
本实施例对钙钛矿吸光层14的材质也不做具体限定。所述的钙钛矿吸光层一般具有ABX3晶体结构,其中A和B为阳离子,X为阴离子。其中A可以为一价阳离子,包括但不限于锂、钠、钾、铯、铷、胺基或者脒基中的一种或几种阳离子;B可以为二价阳离子,包括但不限于铅、锡、钨、铜、锌、镓、硒、铑、锗、砷、钯、银、金、铟、锑、汞、铱、铊、铋中的一种或几种阳离子;X可以为一价阴离子,包括但不限于碘、溴、氯或砹中的一种或几种阴离子。示例性地,钙钛矿吸光层可以为甲基铵三卤化铅CH3NH 3PbX3,其中X是卤素离子,例如碘 离子、溴离子或氯离子,具有光学带隙介于~1.2和2.3eV之间(具体取决于卤化物含量)。
进一步地,钙钛矿太阳能电池还可包括上电极17和下电极11。
实施例二
参照图2所示,提供一种钙钛矿太阳能电池,该电池包括粗糙基底10,该电池还包括形成于粗糙基底10上的钙钛矿吸光层14,以及位于钙钛矿吸光层14两侧的电子传输层12和空穴传输层16;电子传输层12与空穴传输层16中的至少一个层结构的材料包括重均分子量不低于第一目标值的第一高重均分子量材料。第一目标值例如可以是80000。该钙钛矿太阳能电池还包括上电极17和下电极11。
作为本实施例的一种实施方式,钙钛矿电池的电子传输层的材料为N2200或N2200的改性材料或这二者的混合材料,该N2200和N2200的改性材料的重均分子量均不低于第一目标值,使N2200或N2200的改性材料的溶液能够在粗糙基底10上形成连续分布的膜层,解决粗糙基底上用湿法工艺难以形成超薄且均匀覆盖的电子传输层的问题,进而可以改善钙钛矿电池并阻偏低进而导致器件短路的问题。进一步地,高重均分子量材料形成的电子传输层的厚度优选为4~5nm,在实现电子传输层功能的基础上,与钙钛矿接触的界面钝化效果比较好,无需额外增加钝化层。可采用适于工业化的湿法工艺(如制成溶液旋涂成膜的方式)制成超薄的电子传输层。在其他实施方式中,钙钛矿电池的电子传输层的材料为N2300,或N2300的改性材料,或这二者的混合材料,该N2300和N2300的改性材料的重均分子量不低于第一目标值,能够在粗糙基底10上形成超薄且均匀覆盖粗糙基底10的电子传输层。
作为本实施例的一种实施方式,钙钛矿电池的空穴传输层的材料包括第一高重均分子量材料,其中第一高重均分子量材料可以为PTAA,Poly-TPD,P3HT及上述任一项的改性材料中的一种或多种。第一高重均分子量材料的重均分子量不低于第一目标值,能够在粗糙基底10上形成连续分布的膜,解决粗糙基底上用湿法工艺难以形成超薄且均匀覆盖的空穴传输层的问题,进而可以改善钙钛矿电池的并阻偏低而导致器件短路的问题。进一步地,第一高重均分子量材料形成的空穴传输层的厚度优选为4~5nm,可以在保证实现空穴传输层功能的基础上,与钙钛矿接触的界面钝化效果比较好,无需额外增加钝化层。本实施例的超薄空穴传输层可采用适于工业化的湿法工艺(如制成溶液涂覆成膜的方式)制成。
本领域技术人员可以理解的是,能够作为传输层(电子传输层/空穴传输层)的高重均分子量的材料均能达到本实施例所述的技术效果,因此均应涵盖在本申请保护范围内,并不局限于上述提到的材料。包含上述材料制成的膜层的太阳能电池也应涵盖在本申请保护范围内。
实施例三
本实施例提供一种钙钛矿与晶硅的叠层电池。参照图3所示,作为底层电池的晶硅太阳能电池表面形成有一层NiOx作为钙钛矿电池的空穴传输层,由于NiOx与钙钛矿之间的界面缺陷过多,本实施例中使用5nm的Poly-TPD(即图3中的PolyTPD)作为钝化层,用来钝化传输层,提升钙钛矿顶电池的电压。由于晶硅电池的表面有着金刚线切痕,表面非常粗糙,常规的小重均分子量的聚合物不能有效钝化钙钛矿层,而本实施例在湿法工艺中使用不低于第一目标值(如80000)的高重均分子量的Poly-TPD以形成钝化层,大幅提升了器件的均一性,可重复性和电压。
做为底层电池的晶硅太阳能电池为TOPCon结构的电池。作为顶电池的钙钛矿电池还包括C60层,SnOx层,以及透明电极IZO。
实验数据:
如图4所示,为工业晶圆(a)和实验室级晶圆(b)的表面形态的共聚焦显微镜图像,从图中可以看出,工业晶圆表面具有微米级粗糙度。图4中x轴、y轴与z轴的比例不同。
图5为使用PTAA(c)和Poly-TPD(d)界面钝化的不透明器件的VOC统计数据。图5对应样品均为使用基于工业晶圆的晶硅电池制备的图3所示结构的叠层电池。图5的实验中,第一步:在晶硅太阳能电池片上溅射10nm厚的NiOx膜层作为空穴传输层(HTL),以最大限度地减少可能导致分流路径的针孔的可能性。溅射成膜的膜层在粗糙的硅表面上形成致密的保形膜层。为了减少复合损失,进一步地,我们在NiOx和钙钛矿薄膜之间插入薄的PTAA(N,N'-bis-4-丁基苯基-N,N'-双苯基)或聚联苯胺(Poly-TPD)层以钝化NiOx和钙钛矿薄膜之间的界面。实验样品中PTAA的重均分子量从9K到325K,Poly-TPD重均分子量从15K到200K。实验结果如图5的c和d所示,两种聚合物在不透明装置上都显示出显著的VOC增强(>100mV)。
从图5的c和d所示,我们发现具有较高重均分子量(Mw)PTAA和Poly-TPD的不透明器件显示出明显更好的VOC一致性。对于串联电池的粗糙表面,低重均分子量的聚合物倾向于形成珠粒,但高重均分子量的聚合物倾向于在溶液中形成纤维,这可能是高重均分子量聚合物在粗糙表面上具有更好的覆盖率的原因。
实施例四
本实施例提供一种使用了FTO透明导电玻璃的钙钛矿电池。FTO导电玻璃为掺杂氟的SnO2(即SnO2:F),简称为FTO。在FTO透明导电玻璃表面使用PTAA作为空穴传输层,由于FTO的表面粗糙,超薄传输层很难完整的覆盖基底表面。常规的小分子量聚合物不能形成有效的钝化。本实施例中以重均分子量不低于80000的PTAA为空穴传输层的前驱体溶液的溶质, 使用湿法工艺制备钙钛矿电池的超薄传输层,大幅提升了器件的均一性、可重复性和电压。
图6为FTO玻璃顶部的Poly-TPD 15k(e)和Poly-TPD 200k(f)的CAFM和AFM图像堆栈。我们对涂在FTO基板顶部的薄聚合物层进行了导电原子力显微镜(CAFM)和原子力显微镜(AFM)测试。在图6的e和f中,我们将CAFM结果叠加在AFM形态结果之上。图像上的白色斑块是CAFM测量显示高电流(即高电导率)的地方。图6中e显示了比f明显更多和更大的高电流区域。由于聚合物薄膜的电导率明显低于FTO玻璃基板,这表明高重均分子量(Mw)聚合物可在粗糙表面上提供更好的表面覆盖率。
上述实施例提供的方案涉及粗糙基底上的钙钛矿太阳能电池的传输层或钝化层,所述粗糙基底可包括下述中的任一项:表面有金刚线切痕或具有微米尺度粗糙度的工业硅晶片,表面有金刚线切痕的导电玻璃,有绒面金字塔表面的晶硅电池。
另外,需要说明的是,虽然本方案是针对微米级粗糙基底上制备钙钛矿提出的解决方案,但也可应用其他尺度的粗糙基底或非粗糙的基底,仍然具有易于形成超薄钝化层或超薄传输层的效果。
实施例五
本公开的实施例还提供一种用于太阳能电池的钝化层,所述钝化层由重均分子量不低于第一目标值的第二高重均分子量材料制成,所述第一目标值约为80000。本实施例中钝化层采用重均分子量不低于第一目标值的第二高重均分子量材料制成,易于成膜,可以用湿法工艺例如涂覆成膜或旋涂成膜等方式形成厚度不超过20nm的致密薄膜,实现钝化效果。
在另一些实施例中,重均分子量不低于80000的第二高重均分子量材料形成的膜层同时作为电子传输层或空穴传输层。采用第一高重均分子量材料制成的电子传输层或空穴传输层可以在粗糙基底上大面积连续分布,易用湿法工艺形成大面积的超薄传输层(小于20nm),无需钝化。
实施例六
本公开的实施例还提供一种光伏组件,所述光伏组件包括上述任一项所述的钙钛矿太阳能电池,或者,上述的钝化层。所述光伏组件可以是钙钛矿电池,也可以是晶硅与钙钛矿的叠层电池。
本实施例提供的光伏组件,由于采用重均分子量不低于第一目标值例如80000的高重均分子量材料形成的膜层作为传输层或传输层的钝化层,可采用适合工业化大规模生产的湿法工艺形成。
实施例七
本公开的实施例还提供一种钙钛矿太阳能电池的制备方法,包括:制备传输层的工序;在 所述制备传输层的工序中,利用重均分子量的值不低于第一目标值的第一高重均分子量材料,采用湿法工艺形成所述传输层。第一目标值例如为80000。
本实施例所述湿法工艺指先将第一高重均分子量材料制成成溶液,再采用旋涂、刮涂、狭缝涂布、喷涂或者打印、转印等方式将溶液在基底展开成膜。
示例性地,如果所述传输层为电子传输层,第一高重均分子量材料选自改性或未改性的N2200、改性或未改性的N2300中的一种或多种。如果所述传输层为空穴传输层,第一高重均分子量材料选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT中的一种或多种。在一些实施例中,空穴传输层由重均分子量为200000的PTAA与重均分子量为80000~120000的Poly-TPD混合制成。
本公开的实施例还提供另一种钙钛矿太阳能电池的制备方法,包括:制备传输层的工序和制备钙钛矿吸光层的工序,在所述制备传输层的工序与所述制备钙钛矿吸光层的工序之间,还包括:
利用重均分子量不低于第一目标值的第二高重均分子量材料,采用湿法工艺在所述传输层表面形成钝化层;第一目标值例如为80000。
本公开的实施例还提供另一种所述钙钛矿太阳能电池的制备方法,其中,所述传输层包括第一传输层和第二传输层;所述第二高重均分子量材料包括高分子材料A和高分子材料B;该制备方法包括:
采用下述材料中的一种或多种在粗糙基底上形成第一传输层:SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS;如果第一传输层为电子传输层,则第一传输层的材料可选择其中的SnOx、TiOx、Znox、富勒烯及衍生物中的一种或多种;如果第一传输层为空穴传输层,则第二传输层的材料可选择其中的WOx、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种。
将高分子材料A制备成聚合物溶液,在所述第一传输层上涂敷含有所述高分子材料A的聚合物溶液,形成所述第一传输层的钝化层;高分子材料A选自改性或未改性的PTAA、改性或未改性的Poly-TPD,改性或未改性的P3HT,改性或未改性的N2200,改性或未改性的N2300中的一种或多种;
在钝化层上形成钙钛矿吸光层;
将高分子材料B制备成聚合物溶液,在钙钛矿吸光层上涂敷含有所述高分子材料B的聚合物溶液,形成第二传输层的钝化层。所述高分子材料B选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT、改性或未改性的N2200、改性或未改性的N2300 中的一种或多种;
在钙钛矿吸光层上形成第二传输层;第二传输层的材料选自SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种;其中,所述第一传输层和所述第二传输层其一为电子传输层,另一为空穴传输层。
此外,本公开的实施例还提供一种串联型钙钛矿晶硅太阳能电池的制备方法,包括以下步骤:
对p型硅片表面进行制绒;
对硅背面局部或全扩硼重掺结;
在电池正面扩磷形成pn结;
在硅背面制备底电极开孔钝化层;
在硅背面钝化层开孔;
在硅背面制备底电极;
在硅前表面制备发射极钝化层;
在硅发射钝化层上制备隧穿层;
在隧穿层上制备含第一高重均分子量材料的空穴传输层;
在含第一高重均分子量材料的空穴传输层上制备钙钛矿吸光层;
在钙钛矿吸光层上制备含第一高重均分子量材料的电子传输层;
在含第一高重均分子量材料的电子传输层上沉积顶电极缓冲层;
在顶电极缓冲层上制备透明电极;
在透明电极上制备金属栅线电极。
本公开的实施例还提供一种重均分子量的值不低于80000的高重均分子量材料在太阳能电池中作为钝化层或传输层的用途,这样太阳能电池制备时能够用湿法工艺形成小于20nm的钝化层或传输层,还可提高电池的开路电压。
本申请的实施例还提供一种太阳能电池的钝化层材料,所述钝化层材料的重均分子量的值不低于第一目标值,所述第一目标值为80000。
可选地,所述钝化层材料可选自下述中的一项或多项:PTAA、Poly-TPD、P3HT、N2200和N2300及上述任一项的改性材料。所述钝化层材料制成的钝化层可以同时作为太阳能电池的传输层。
如果钝化层为电子传输层的钝化层,所述钝化层材料采用选自改性或未改性的N2200、改性或未改性的N2300中的一种或多种。如果所述钝化层为空穴传输层的钝化层,所述钝化层 材料选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT中的一种或多种。
本申请的实施例还提供一种太阳能电池的传输层材料,所述传输层材料的重均分子量的值不低于第一目标值,所述第一目标值为80000。
如果所述传输层为电子传输层,则电子传输层材料选自改性或未改性的N2200、改性或未改性的N2300中的一种或多种。如果所述传输层为空穴传输层,则空穴传输层材料选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT中的一种或多种。
进一步地,所述传输层材料可以是两种高重均分子量的材料的混合。高重均分子量的材料可以是聚合物。例如,空穴传输层的材料由重均分子量为200000的PTAA与重均分子量为80000~120000的Poly-TPD混合制成。
PTAA作为空穴传输层不能很好的钝化钙钛矿表面,导致开路电压偏低,但是PTAA空穴传输效率高,可以减少串组并提升填充因子。反之Poly-TPD的空穴传输效率低,导致器件填充因子偏低,但是钝化效果佳,开路电压高。在前驱体溶液中混合PTAA和Poly-TPD可以达成提升开路电压以及填充因子。
本领域技术人员可以理解的是,虽然本公开的技术方案针对钙钛矿太阳能电池及包含钙钛矿吸光层的多结电池提出,但该技术方案任然可以应用于其他不包含钙钛矿吸光层材料的太阳能电池中,同样实现本公开生成的技术效果。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应该以权利要求的保护范围为准。
工业实用性
本申请提供一种钙钛矿太阳能电池及其制备方法、钝化层及光伏组件,涉及太阳能电池技术领域,能够解决由于现有湿法工艺不能很好地形成致密传输层导致的器件并阻偏小以及钝化效果差。钙钛矿太阳能电池包括钙钛矿吸光层,以及位于所述钙钛矿吸光层一侧的传输层;所述传输层由重均分子量不低于第一目标值的高重均分子量材料制成,或者,所述传输层与所述钙钛矿吸光层之间还设置有:钝化层,所述钝化层由重均分子量不低于第一目标值的高重均分子量材料制成。
此外,可以理解的是,本申请的钙钛矿太阳能电池及其制备方法、钝化层及光伏组件是可以重现的,并且可以应用在多种工业应用中。例如,本申请的钙钛矿太阳能电池及其制备方法可以应用于太阳能电池技术领域。

Claims (17)

  1. 一种钙钛矿太阳能电池,包括钙钛矿吸光层,以及位于所述钙钛矿吸光层一侧的传输层,其中,所述传输层的材料为重均分子量的值不低于第一目标值的第一高重均分子量材料;或者,所述传输层与所述钙钛矿吸光层之间设置有钝化层,所述钝化层的材料为重均分子量的值不低于第一目标值的第二高重均分子量材料。
  2. 根据权利要求1所述的钙钛矿太阳能电池,其中,所述第一目标值为80000。
  3. 根据权利要求1所述的钙钛矿太阳能电池,其中,所述第一高重均分子量材料和所述第二高分子量材料分别独立地选自下述中的一项或多项:
    PTAA、Poly-TPD、P3HT、N2200和N2300及上述任一项的改性材料。
  4. 根据权利要求1至3中的任一项所述的钙钛矿太阳能电池,其中,如果所述传输层为电子传输层,且采用所述第一高重均分子量材料形成所述电子传输层,所述第一高重均分子量材料选自改性或未改性的N2200、改性或未改性的N2300中的一种或多种;或者,
    如果所述传输层为空穴传输层,且采用所述第一高重均分子量材料形成所述空穴传输层,所述第一高重均分子量材料选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT中的一种或多种。
  5. 根据权利要求4所述的钙钛矿太阳能电池,其中,
    所述传输层的厚度为3~30nm;
    所述传输层的厚度优选为4~5nm。
  6. 根据权利要求4或5所述的钙钛矿太阳能电池,其中,如果所述传输层为空穴传输层,所述传输层的材料包括重均分子量为200000的PTAA与重均分子量为80000~120000的Poly-TPD。
  7. 根据权利要求1-3任一项所述的钙钛矿太阳能电池,其中,所述传输层与所述钙钛矿吸光层之间还设置有钝化层,且所述钝化层的材料为重均分子量的值不低于第一目标值的第二高重均分子量材料时,所述传输层的材料包括:SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种。
  8. 根据权利要求7所述的钙钛矿太阳能电池,其中,所述第二高重均分子量材料制成的钝化层厚度为1~20nm,优选为2nm。
  9. 根据权利要求1至8中的任一项所述的钙钛矿太阳能电池,其中,所述钙钛矿太阳能电池包括粗糙基底,所述粗糙基底包括下述中的任一项:
    表面有金刚线切痕或具有微米尺度粗糙度的工业硅晶片,表面沉积有透明导电电极的导电玻璃,有绒面金字塔表面的晶硅电池。
  10. 一种用于太阳能电池的传输层材料,其中,所述传输层材料为重均分子量不低于第一目标值的第一高重均分子量材料,所述第一目标值为80000。
  11. 一种用于太阳能电池的钝化层材料,其中,所述钝化层材料为重均分子量不低于第一目标值的第一高重均分子量材料,所述第一目标值为80000。
  12. 根据权利要求11所述的钝化层材料,其中,所述钝化层材料选自下述中的一项或多项:
    PTAA、Poly-TPD、P3HT、N2200和N2300及上述任一项的改性材料。
  13. 一种光伏组件,其中,所述光伏组件包括权利要求1至9中的任一项所述的钙钛矿太阳能电池。
  14. 一种钙钛矿太阳能电池的制备方法,包括:制备传输层的工序;其中,在所述制备传输层的工序中,利用重均分子量的值不低于第一目标值的第一高重均分子量材料,采用湿法工艺形成所述传输层。
  15. 一种钙钛矿太阳能电池的制备方法,包括:制备传输层的工序和制备钙钛矿吸光层的工序,其中,在所述制备传输层的工序与所述制备钙钛矿吸光层的工序之间,还包括:
    利用重均分子量不低于第一目标值的第二高重均分子量材料,采用湿法工艺在所述传输层表面形成钝化层。
  16. 根据权利要求15所述的制备方法,其中,所述传输层包括第一传输层和第二传输层;所述第二高重均分子量材料包括高分子材料A和高分子材料B;
    所述制备方法包括:
    在粗糙基底上形成第一传输层,所述第一传输层的材料选自SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中一种或多种;
    在所述第一传输层上涂敷含有所述高分子材料A的溶液,形成所述第一传输层的钝化层;所述高分子材料A选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT、改性或未改性的N2200,改性或未改性的N2300中的一种或多种;
    在所述钝化层上形成钙钛矿吸光层;
    在所述钙钛矿吸光层上形成第二传输层,所述第二传输层的材料选自SnOx、TiOx、ZnOx、WOx、富勒烯及其衍生物、CuI、CuSCN、CuOx、NiOx、MoS2、WS2、spiro-TTB、spiro-MeOTAD、PEDOT:PSS中的一种或多种;
    在所述第二传输层上涂敷含有高分子材料B的溶液,形成所述第二传输层的钝化层;所 述高分子材料B选自改性或未改性的PTAA、改性或未改性的Poly-TPD、改性或未改性的P3HT、改性或未改性的N2200、改性或未改性的N2300中的一种或多种。
  17. 一种重均分子量的值不低于第一目标值的高重均分子量材料在太阳能电池中作为钝化层或传输层的用途,所述第一目标值为80000。
PCT/CN2023/096567 2022-05-27 2023-05-26 钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件 WO2023227114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210600315.4 2022-05-27
CN202210600315.4A CN117202677A (zh) 2022-05-27 2022-05-27 钙钛矿太阳能电池及其制备方法、钝化层及光伏组件

Publications (1)

Publication Number Publication Date
WO2023227114A1 true WO2023227114A1 (zh) 2023-11-30

Family

ID=88918510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/096567 WO2023227114A1 (zh) 2022-05-27 2023-05-26 钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件

Country Status (2)

Country Link
CN (1) CN117202677A (zh)
WO (1) WO2023227114A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278584A (ja) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd 有機薄膜太陽電池素子
KR20190032070A (ko) * 2017-09-19 2019-03-27 한국화학연구원 페로브스카이트 태양전지, 페로브스카이트 태양전지용 중합체 및 이의 제조방법
JP2019175970A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 光電変換素子及び太陽電池モジュール

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006278584A (ja) * 2005-03-28 2006-10-12 Dainippon Printing Co Ltd 有機薄膜太陽電池素子
KR20190032070A (ko) * 2017-09-19 2019-03-27 한국화학연구원 페로브스카이트 태양전지, 페로브스카이트 태양전지용 중합체 및 이의 제조방법
JP2019175970A (ja) * 2018-03-28 2019-10-10 三菱ケミカル株式会社 光電変換素子及び太陽電池モジュール

Also Published As

Publication number Publication date
CN117202677A (zh) 2023-12-08

Similar Documents

Publication Publication Date Title
US10672930B2 (en) Photoelectric conversion device and photoelectric conversion module
Jiang et al. High performance of PEDOT: PSS/n-Si solar cells based on textured surface with AgNWs electrodes
TW201513380A (zh) 高效率堆疊太陽電池
US20190334048A1 (en) Multi-junction photovoltaic cell having wide bandgap oxide conductor between subcells and method of making same
CN114447126B (zh) 一种太阳能电池及其制备方法
CN102282297A (zh) 包括异质结的光伏装置
CN114792704B (zh) 一种钙钛矿/硅异质结叠层太阳能电池及其制备方法
CN112103392A (zh) 一种复合空穴传输层及包含其的钙钛矿太阳能电池
CN117715485A (zh) 一种多孔溶解制备钙钛矿薄膜的方法及叠层太阳能电池
WO2023227114A1 (zh) 钙钛矿太阳能电池及其制备方法、钝化层材料及光伏组件
KR102218417B1 (ko) 전하선택 박막을 포함하는 실리콘 태양전지 및 이의 제조방법
CN112126425A (zh) 钙钛矿薄膜及其制作方法和应用
CN116801652A (zh) 一种晶硅钙钛矿叠层太阳能电池及制备方法
CN111540791A (zh) 太阳电池及其制作方法
CN115802769A (zh) 一种钙钛矿太阳能电池及其制备方法
KR20200125067A (ko) 이종 접합 태양 전지 제조 방법
CN115568263A (zh) 一种太阳电池中钙钛矿活性层的制备方法
WO2021253751A1 (zh) 背接触太阳电池及生产方法、背接触电池组件
CN110854271B (zh) 一种高稳定钙钛矿太阳能电池及其制备方法
CN114447127A (zh) 一种太阳能电池及其制备方法
WO2023227122A1 (zh) 太阳能电池传输层、混合传输层材料及太阳能电池
CN113629193A (zh) 一种三明治构型活性层的有机太阳能电池及其制备方法
CN115274868A (zh) 太阳能电池及光伏组件
CN111180593A (zh) 硅基双面有机/无机异质结太阳能电池及其制备方法
FR3115929A1 (fr) Dispositif photovoltaïque tandem combinant une sous-cellule à base de silicium et une sous-cellule à base de pérovskite comportant une couche composite pérovskite/matériau de type P ou N

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811184

Country of ref document: EP

Kind code of ref document: A1