WO2023227002A1 - 一种跑鞋用碳板及其制备方法 - Google Patents

一种跑鞋用碳板及其制备方法 Download PDF

Info

Publication number
WO2023227002A1
WO2023227002A1 PCT/CN2023/095916 CN2023095916W WO2023227002A1 WO 2023227002 A1 WO2023227002 A1 WO 2023227002A1 CN 2023095916 W CN2023095916 W CN 2023095916W WO 2023227002 A1 WO2023227002 A1 WO 2023227002A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
metatarsal
carbon plate
fiber layer
plate body
Prior art date
Application number
PCT/CN2023/095916
Other languages
English (en)
French (fr)
Inventor
毛宁
林敏清
Original Assignee
特步(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 特步(中国)有限公司 filed Critical 特步(中国)有限公司
Publication of WO2023227002A1 publication Critical patent/WO2023227002A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/12Soles with several layers of different materials
    • A43B13/125Soles with several layers of different materials characterised by the midsole or middle layer
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts

Definitions

  • the invention relates to a carbon plate for running shoes and a preparation method thereof, and belongs to the field of shoe accessories.
  • a carbon fiber plate is provided between the first midsole and the second midsole.
  • Another example is the Chinese utility model authorized announcement number CN213487263U, which is titled “Sports Shoes Containing Racing Carbon Plate”, which has a racing carbon plate in the sole.
  • the so-called “carbon board” within the industry is a carbon fiber reinforced resin composite material, which is mainly composed of fiber materials and resin materials. Carbon fiber has the characteristics of high specific strength, tensile resistance, low bending, and low elongation. Therefore, the carbon plate has the characteristics of high elastic modulus and high tensile strength. However, it is not resistant to shearing and bending, has poor toughness, and is difficult to According to the force characteristics of running, both support and quick response are taken into consideration, which affects the propulsion performance and user experience.
  • the object of the present invention is to provide a carbon plate for running shoes that can achieve both support and response speed. Another object of the present invention is to provide a method for manufacturing the carbon plate.
  • a carbon plate for running shoes including a carbon plate body, the area of the carbon plate body corresponding to each metatarsal bone is set as a metatarsal area, and the metatarsal areas are sequentially set as a first metatarsal area, a second metatarsal area, a third metatarsal area, a fourth metatarsal area, and
  • the elastic modulus of the fifth metatarsal area, the first metatarsal area, the second metatarsal area, the fourth metatarsal area and the fifth metatarsal area are all smaller than the elastic modulus of the third metatarsal area.
  • the elastic modulus of the fifth metatarsal region is smaller than the elastic modulus of the fourth metatarsal region.
  • the carbon plate body further includes a toe area arranged corresponding to the toes, and the toe area includes a first area arranged corresponding to the thumb and a second area arranged corresponding to the second to fifth toes.
  • the carbon plate body also includes a midfoot area corresponding to the human foot arch and a heel area corresponding to the heel.
  • the side of the carbon plate body corresponding to the inner side of the human instep is set to the inner side
  • the side corresponding to the outer side of the instep is set to the inner side.
  • One side of the heel is set as the outer side
  • the heel area is divided into a third area corresponding to the inner side of the carbon plate body and a fourth area corresponding to the outer side of the carbon plate body.
  • the carbon plate body includes a carbon fiber layer and a polyimide fiber layer that are composited together through a resin adhesive. Both the carbon fiber layer and the polyimide fiber layer are multi-layered.
  • the inner and outer direction of the carbon plate body is the left-right direction
  • the toe area of the carbon plate body is the front
  • the heel area of the carbon plate body is the rear
  • the carbon fiber layer and The polyimide fiber layers all extend in the front-to-back direction
  • the carbon fiber layer and the polyimide fiber layer are arranged in the left-right direction in the left-right direction area of the carbon plate body to form different elastic moduli.
  • the carbon fiber layer and the polyimide fiber layer are stacked in the up and down direction to form the carbon plate body with a thickness of 0.8-1.2 mm.
  • the width of the toe area is 3-6 cm
  • the width of the metatarsal area is 5-8 cm
  • the width of the midfoot area is 4-5 cm
  • the width of the heel area is 4 -7cm
  • the width of the first metatarsal area is 1-1.5cm
  • the width of the second metatarsal area is 1-1.5 cm
  • the width of the third metatarsal area and the fourth metatarsal area are both 3- 4cm
  • the width of the fifth metatarsal area is 1-1.5cm.
  • the first metatarsal area and the second metatarsal area are each provided with at least three layers of polyimide fiber layers, and the third metatarsal area and the fourth metatarsal area are each provided with at least 1 layer of the polyimide fiber layer, the fifth metatarsal area is provided with at least 5 layers of the polyimide fiber layer, the toe area transitions to the metatarsal area through a smooth arc, the curvature range of the arc is 9-12.
  • the metatarsal area has a smooth arc in the length direction, and the curvature range of the arc is 5-9.
  • the metatarsal area transitions from the first metatarsal area to the fifth metatarsal area through a smooth arc.
  • the curvature of the midfoot area is 8-12, the midfoot area has a smooth arc in the length direction, and the arc curvature range is 4-7.
  • the midfoot area has a smooth arc from the outside to the inside, and the arc curvature range is 2-6.
  • the heel area has a smooth arc in the length direction, and the arc curvature ranges from 4 to 6.
  • the present invention also proposes a method for preparing a carbon plate for running shoes, which includes a carbon plate body.
  • the area of the carbon plate body corresponding to each metatarsal bone is set as a metatarsal area.
  • the metatarsal area includes a first metatarsal area, a second metatarsal area, and a third metatarsal area in sequence.
  • the third metatarsal area, the fourth metatarsal area and the fifth metatarsal area are set with different elastic modulus according to the stress situation of each metatarsal area during running. A smaller elastic modulus is set at the weak force-bearing parts, and a smaller elastic modulus is set at the strong force-bearing parts.
  • the elastic modulus of the first metatarsal area, the second metatarsal area, the fourth metatarsal area, and the fifth metatarsal area are all smaller than the elastic modulus of the third metatarsal area.
  • the resin-impregnated carbon fiber layer and/or the polyimide fiber layer are arranged in the left-right direction to form the first layer, and the resin-impregnated carbon fiber layer and/or the polyimide fiber layer are arranged along the left and right directions. They are arranged in the up and down direction to form a second layer, and the first layer and the second layer are molded and solidified to form the carbon plate body.
  • the carbon plate structure is designed according to the force generation process and force stress difference in each area of the foot, so that it has different mechanical responses in different parts, and a lower elastic modulus is designed in the weak force-bearing parts.
  • the amount allows the carbon plate in this part to respond quickly and bend and deform; a larger elastic modulus is designed in the strong force-bearing part so that this part can provide sufficient support.
  • the present invention also proposes a method for making the carbon board, which forms carbon boards with different properties in different areas through the arrangement of carbon fiber layers and polyimide fiber layers, which can take into account the support and quick response of the carbon board.
  • Figure 1 is a top view of the present invention.
  • Figure 2 is a side view of the present invention.
  • Figure 3 is a cross-sectional view taken along line A-A in Figure 1 .
  • Figure 4 is a cross-sectional view taken at B-B in Figure 2 .
  • Figure 5 is a schematic diagram of fiber laying in step one of the present invention.
  • Figure 6 is a schematic diagram of fiber laying in step two of the present invention.
  • Figure 7 is a schematic diagram of fiber laying in step three of the present invention.
  • Figure 8 is a schematic diagram of fiber laying in step four of the present invention.
  • Figure 9 is a schematic diagram of fiber laying in step five of the present invention.
  • Figure 10 is a schematic diagram of fiber laying in step six of the present invention.
  • Figure 11 is a schematic diagram of fiber laying in step seven of the present invention.
  • Figure 12 is a schematic cross-sectional view of the fiber layup in the present invention.
  • Carbon plate body 100 First area 101
  • Second area 102 First metatarsal area 201
  • Second metatarsal area 202 Third metatarsal area 203
  • Polyimide fiber layer 20 Polyimide fiber layer 20.
  • a carbon plate for running shoes includes a carbon plate body 100.
  • the area of the carbon plate body 100 corresponding to each metatarsal bone is set as the metatarsal area, and the metatarsal area (that is, area II) is set in turn as the first metatarsal area 201.
  • the second metatarsal area 202, the third metatarsal area 203, the fourth metatarsal area 204 and the fifth metatarsal area 205 the elasticity of the first metatarsal area 201, the second metatarsal area 202, the fourth metatarsal area 204 and the fifth metatarsal area 205
  • the moduli are all smaller than the elastic modulus of the third metatarsal region 203 .
  • the carbon plate of the present invention is used in running shoes, and the carbon plate can be arranged between two midsoles as in the prior art.
  • the elastic modulus of the fifth metatarsal region 205 is smaller than the elastic modulus of the fourth metatarsal region 204 .
  • the carbon plate body 100 also includes a toe area (that is, area I) corresponding to the toes.
  • the toe area includes a first area 101 corresponding to the thumb and second to fifth toes.
  • the second area 102 is set.
  • the carbon plate body 100 can only be arranged corresponding to the front part of the sole of the foot. In the embodiment, its shape corresponds to the entire sole of the foot. The length of the carbon plate body 100 is based on the actual length of the sole of the adult wearer, and its length is 80% of the actual sole length. %-90%.
  • the carbon plate body 100 also includes a midfoot area 301 (i.e., area III) corresponding to the arch of the human body and a heel area (i.e., area IV) arranged corresponding to the heel.
  • the carbon plate body 100 corresponds to the human body.
  • the inner side of the instep is called the inner side
  • the side corresponding to the outer side of the instep is called the outer side.
  • the heel area is divided into a third area 401 corresponding to the inner side of the carbon plate body 100 and a third area 401 corresponding to the outer side of the carbon plate body 100 .
  • the present invention analyzes the force generation process of the soles of the feet during running from a biomechanical perspective, and divides the soles of the feet into four large areas and ten small areas.
  • the soles of the feet are running forward, the contact between the soles of the feet and the ground is from the heel to the forward sole. There is a transition from the outside of the foot to the inside of the foot, and the force on the sole of the foot is also generated.
  • the pressure generated by each area of the sole of the foot during running is very different.
  • the force-generating area transitions from the fifth metatarsal to the first metatarsal, the force first increases and then decreases. Metatarsal bone peaks and then decreases, reflecting the different roles each area of the foot plays during running.
  • the carbon plate body 100 includes a carbon fiber layer 10 and a polyimide fiber layer 20 that are composited together through a resin adhesive.
  • the carbon fiber layer 10 and the polyimide fiber layer 20 are both multi-layered.
  • the so-called "carbon board” within the industry is a carbon fiber reinforced resin composite material, which is mainly composed of fiber materials and resin materials. The properties of composite materials can be effectively controlled by regulating the properties and stacking structure of fiber materials. Carbon fiber has the characteristics of high specific strength, tensile resistance, low bending and low elongation.
  • the carbon plate has high elastic modulus and high tensile strength, but it is not resistant to shearing and bending and has poor toughness; polyimide Amine fiber has high specific strength, good tensile resistance, large elongation and good toughness. It can make up for the shortcomings of carbon fiber's high rigidity and poor toughness.
  • the carbon plate embedded in the sole will bend, especially in the metatarsal area of the forefoot, where the bending variable is the largest.
  • the maximum bending angle of the metatarsal area can reach 15 °, so running has higher requirements on the bending performance of carbon plates.
  • the inner and outer direction of the carbon plate body 100 is the left-right direction
  • the toe area of the carbon plate body 100 is the front
  • the heel area of the carbon plate body 100 is the rear.
  • the carbon fiber layer 10 and the polyimide fiber layer 20 both extend in the front-to-back direction
  • the carbon fiber layer 10 and the polyimide fiber layer 20 are arranged in the left-right direction of the carbon plate body 100.
  • the carbon fiber layer 10 and the polyimide fiber layer 20 are stacked in the up and down direction to form the carbon plate body 100 with a thickness of 0.8-1.2 mm.
  • the width of the toe area is 3-6 cm
  • the width of the metatarsal area is 5-8 cm
  • the width of the midfoot area 301 is 4-5 cm
  • the width of the heel area is 3-6 cm. 4-7cm
  • the width of the first metatarsal area 201 is 1-1.5cm
  • the width of the second metatarsal area 202 is 1-1.5 cm
  • the width of the third metatarsal area 203 and the fourth metatarsal area 204 is The width is 3-4cm
  • the width of the fifth metatarsal area 205 is 1-1.5cm.
  • the first metatarsal area 201 and the second metatarsal area 202 are each provided with at least three layers of the polyimide fiber layer 20, and the third metatarsal area 203 and the fourth metatarsal area are provided with at least three layers of polyimide fiber layers 20.
  • Each area 204 is provided with at least one layer of the polyimide fiber layer 20, and the fifth metatarsal area 205 is provided with at least five layers of the polyimide fiber layer 20.
  • the toe area passes through a smooth path toward the metatarsal area.
  • the curvature range of the arc is 9-12
  • the metatarsal area has a smooth arc in the length direction
  • the curvature range of the arc is 5-9
  • the metatarsal area is from the first metatarsal area 201 to the fifth
  • the metatarsal area 205 transitions through a smooth arc with a curvature of 8-12.
  • the midfoot area 301 has a smooth arc in the length direction with an arc curvature ranging from 4-7.
  • the midfoot area 301 has a curvature from the outside to the inside.
  • the heel area has a smooth arc with a curvature range of 2-6, and the heel area has a smooth arc in the length direction with a curvature range of 4-6.
  • each area does not operate independently, but is a continuous whole, making the force transmission process smooth.
  • the present invention also proposes a method for preparing a carbon plate for running shoes, which includes a carbon plate body 100.
  • the area of the carbon plate body 100 corresponding to each metatarsal bone is set as a metatarsal area.
  • the metatarsal area includes a first metatarsal area 201 and a second metatarsal area in sequence.
  • the area 202, the third metatarsal area 203, the fourth metatarsal area 204 and the fifth metatarsal area 205 are set with different elastic modulus according to the stress situation of each metatarsal area during running, and a smaller elastic modulus is set at the weak force-bearing part. A larger elastic modulus is set at the strong stress-bearing part.
  • the elastic modulus of the first metatarsal area 201, the second metatarsal area 202, the fourth metatarsal area 204 and the fifth metatarsal area 205 are all smaller than that of the third metatarsal area 203. Elastic Modulus.
  • the resin-impregnated carbon fiber layer 10 and/or the polyimide fiber layer 20 are arranged in the left and right directions to form the first layer of laminates, that is, all of the first layer of laminates can be carbon fiber layers. 10 or the polyimide fiber layer 20, or the carbon fiber layer 10 and the polyimide fiber layer 20 are alternately arranged, and the resin-impregnated carbon fiber layer 10 and/or the polyimide fiber layer 20 are arranged in the up and down direction to form a third For the second lay-up, the first lay-up and the second lay-up are molded and solidified to form the carbon plate body 100 .
  • the carbon plate body 100 of the present invention has at least seven layers. Taking seven layers as an example, it is produced in the following manner:
  • This embodiment is planned to arrange seven layers of fibers, with the fibers being the first to seventh layers from the bottom layer to the top layer respectively.
  • CF represents the carbon fiber layer
  • PI represents the polyimide fiber layer 20.
  • the figure is represented by squares with different filling densities.
  • the fiber arrangement is CF/PI/CF/ CF/CF/PI/PI; in the third metatarsal area 203 area and the fourth metatarsal area 204 area, the fiber arrangement is CF/CF/CF/CF/CF/PI; in the fifth metatarsal area 205 area, the fiber arrangement
  • the arrangement is CF/PI/PI/CF/PI/PI.
  • the fibers of the same layer are continuous and uninterrupted, based on the fiber arrangement of the first metatarsal, second metatarsal, third metatarsal, fourth metatarsal, and fifth metatarsal. Extend to obtain the fiber arrangement of the entire carbon plate.
  • the carbon plate forms a three-dimensional special-shaped structure, in which the carbon plate has a smooth arc when transitioning from zone I to zone II, and the curvature of the arc ⁇ 1 transitions smoothly between 10-12.
  • the carbon plate has a smooth arc in the length direction in zone II, and the curvature ⁇ 2 of the arc smoothly transitions between 5.5-8.3.
  • the transition of the carbon plate from the first metatarsal area 201 to the fifth metatarsal area 205 in zone II has a smooth arc, and the curvature ⁇ 3 of the arc smoothly transitions between 9 and 11.
  • the carbon plate has an upward arc in the length direction in zone III to provide support for the arch of the foot, and the curvature ⁇ 4 of the arc smoothly transitions between 4-6.
  • the carbon plate has a smooth arc from the outside to the inside in zone III, and the curvature of the arc ⁇ 5 transitions smoothly between 3-6.
  • the carbon plate has a curvature in the length direction in the IV zone to provide support for the heel.
  • the curvature of the curvature ⁇ 6 transitions smoothly between 4-6.
  • the arrangement of fibers in each layer is customized according to design requirements during the prepreg preparation process.
  • 12K CF and 1500D PI are interspersed and laid.
  • Figure 5 it is a full carbon fiber layup (approximately the spread of 6 CF fiber bundles); in Figure 6, from left to right, a PI of about 2.5 cm wide (approximately the spread of 8 PI fiber bundles) is laid out, and then 2 CF about cm wide (approximately the width of 2 CF fiber bundles), and then lay about 1.5 cm wide PI (approximately the width of 4 PI fiber bundles);
  • Figure 7 From left to right, first lay out CF about 5 cm wide ( The width of about 5 CF fiber bundles), and then lay about 1.5 cm wide PI (the width of about 4 PI fiber bundles);
  • Figure 8 shows a full carbon fiber layup (the width of about 6 CF fiber bundles);
  • Figure 8 9 From left to right, first lay out CF about 5 cm wide (the broaden
  • Figure 11 shows the all-polyimide fiber layup (approximately the broadening of 18 PI fiber bundles).
  • Each layer of prepreg obtained is pre-impregnated and immersed in epoxy resin. After stacking according to the layup sequence, it is molded and cured at 120°C for 30 minutes to obtain the finished carbon plate (the thickness of the single-layer fiber layup is 0.1 -0.12mm.
  • the bending modulus of the area corresponding to the fifth metatarsal is reduced by about 40% compared with the areas corresponding to the third and fourth metatarsals, and the bending failure strain is increased by about three times to about 5.5%. This means that the fifth metatarsal area can achieve a large deformation effect under small stress.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

一种跑鞋用碳板,包括碳板本体(100),碳板本体(100)对应各跖骨的区域设为跖骨区,跖骨区依次设为第一跖骨区(201)、第二跖骨区(202)、第三跖骨区(203)、第四跖骨区(204)以及第五跖骨区(205),第一跖骨区(201)、第二跖骨区(202)、第四跖骨区(204)以及第五跖骨区(205)的弹性模量均小于第三跖骨区(203)的弹性模量。还提出了一种碳板的制作方法,其通过碳纤维层(10)和聚酰亚胺纤维层(20)的排布形成不同区域具有不同性能的碳板,能够兼顾碳板的支撑性和快速响应。

Description

一种跑鞋用碳板及其制备方法 技术领域
本发明涉及一种跑鞋用碳板及其制备方法,属于鞋配件领域。
背景技术
市面上有一类鞋子,在鞋底中加入用于增强支撑性能和回弹性能的踏板,从而弥补了鞋底的支撑性能和回弹性能,能够更加高效地辅助足部的推进。
例如在授权公告号CN215532060U,名称为“一种新型助推减震鞋底”的中国实用新型中,其在第一中底与第二中底之间设置碳纤维板。再如授权公告号CN213487263U,名称为“一种含有竞速碳板的运动鞋”的中国实用新型中,其在鞋底中设置竞速碳板。在行业内部所谓的“碳板”,是一种碳纤维增强树脂复合材料,它主要由纤维材料和树脂材料组成。碳纤维具有高比强、抗拉伸、低弯曲、低伸长的特性,因此碳板具有高弹性模量,高拉伸强度的特点,但是其不抗剪切和弯折,韧性较差,难以根据跑步的受力特点兼顾支撑性和快速相应,影响推进性能和用户体验。
鉴于此,本案发明人对上述问题进行深入研究,遂有本案产生。
技术问题
本发明的目的在于提供一种能够兼顾支撑性和响应速度的跑鞋用碳板,本发明的另一目的在于提出该碳板的制作方法。
技术解决方案
为了达到上述目的,本发明采用这样的技术方案:
一种跑鞋用碳板,包括碳板本体,碳板本体对应各跖骨的区域设为跖骨区,跖骨区依次设为第一跖骨区、第二跖骨区、第三跖骨区、第四跖骨区以及第五跖骨区,第一跖骨区、第二跖骨区、第四跖骨区以及第五跖骨区的弹性模量均小于第三跖骨区的弹性模量。
作为本发明的优选方式,所述第五跖骨区的弹性模量小于所述第四跖骨区的弹性模量。
作为本发明的优选方式,所述碳板本体还包括对应脚趾的设置的脚趾区,脚趾区包括对应大拇指设置的第一区域和对应第二脚趾至第五脚趾设置的第二区域。
作为本发明的优选方式,所述碳板本体还包括对应人体足弓设置的中足区和对应脚后跟设置的后跟区,所述碳板本体对应人体脚背内侧的一侧设为内侧,对应脚背外侧的一侧设为外侧,后跟区分为对应所述碳板本体的内侧设置的第三区域和对应所述碳板本体的外侧设置的第四区域。
作为本发明的优选方式,所述碳板本体包括通过树脂胶粘剂复合在一起的碳纤维层和聚酰亚胺纤维层,碳纤维层和聚酰亚胺纤维层均为多层。
作为本发明的优选方式,以所述碳板本体的内侧外侧方向为左右方向,以所述碳板本体的脚趾区为前,以所述碳板本体的后跟区为后,所述碳纤维层和所述聚酰亚胺纤维层均沿前后方向延伸,所述碳纤维层和所述聚酰亚胺纤维层沿左右方向排布在所述碳板本体的左右方向区域形成不同的弹性模量,所述碳纤维层和所述聚酰亚胺纤维层在上下方向堆叠形成厚度在0.8-1.2mm的所述碳板本体。
作为本发明的优选方式,所述脚趾区的宽度在3-6 cm,所述跖骨区的宽度在5-8cm,所述中足区的宽度在4-5cm,所述后跟区的宽度在4-7cm,所述第一跖骨区的宽度为1-1.5cm,所述第二跖骨区的宽度为1-1.5 cm,所述第三跖骨区和所述第四跖骨区的宽度均为3-4cm,所述第五跖骨区的宽度为1-1.5cm。
作为本发明的优选方式,所述第一跖骨区和所述第二跖骨区均至少设置3层所述聚酰亚胺纤维层,所述第三跖骨区和所述第四跖骨区均至少设置1层所述聚酰亚胺纤维层,所述第五跖骨区至少设置5层所述聚酰亚胺纤维层,所述脚趾区向所述跖骨区通过平滑的弧度过渡,弧度的曲率范围为9-12,所述跖骨区在长度方向具有平滑的弧度,弧度的曲率范围在5-9,所述跖骨区从所述第一跖骨区至所述第五跖骨区通过平滑的弧度过渡,弧度的曲率在8-12,所述中足区在长度方向具有平滑的弧度,弧度曲率范围在4-7,所述中足区从外侧向内侧具有平滑的弧度,弧度曲率范围在2-6,所述后跟区在长度方向具有平滑的弧度,弧度曲率范围在4-6。
本发明还提出了一种跑鞋用碳板的制备方法,包括碳板本体,碳板本体对应各跖骨的区域设为跖骨区,跖骨区包括依次设为第一跖骨区、第二跖骨区、第三跖骨区、第四跖骨区以及第五跖骨区,根据跑步过程中,各跖骨区受力情况设置不同的弹性模量,在弱受力部位设置较小的弹性模量,在强受力部位设置较大的弹性模量,第一跖骨区、第二跖骨区、第四跖骨区以及第五跖骨区的弹性模量均小于第三跖骨区的弹性模量。
作为本发明的优选方式,将浸渍树脂的碳纤维层和/或聚酰亚胺纤维层沿左右方向排布形成第一层铺层,将浸渍树脂的碳纤维层和/或聚酰亚胺纤维层沿上下方向排布形成第二铺层,将第一铺层和第二铺层模压固化形成所述碳板本体。
有益效果
采用本发明的技术方案后,根据脚掌各区域的发力过程和受力的不同,设计碳板结构,使其在不同的部位具有不同的力学响应,在弱受力部位设计较低的弹性模量,使该部位碳板能够快速响应,弯曲形变;在强受力部位设计较大的弹性模量,使该部位能够提供足够的支撑。本发明还提出了该碳板的制作方法,其通过碳纤维层和聚酰亚胺纤维层的排布形成不同区域具有不同性能的碳板,能够兼顾碳板的支撑性和快速响应。
附图说明
图1为本发明的俯视图。
图2为本发明的侧视图。
图3为图1中A-A处的剖视图。
图4为图2中B-B处的剖视图。
图5为本发明中步骤一的纤维铺层示意图。
图6为本发明中步骤二的纤维铺层示意图。
图7为本发明中步骤三的纤维铺层示意图。
图8为本发明中步骤四的纤维铺层示意图。
图9为本发明中步骤五的纤维铺层示意图。
图10为本发明中步骤六的纤维铺层示意图。
图11为本发明中步骤七的纤维铺层示意图。
图12为本本发明中纤维铺层断面示意图。
图中:
碳板本体100                  第一区域101
第二区域102                  第一跖骨区201
第二跖骨区202                第三跖骨区203
第四跖骨区204                第五跖骨区205
中足区301                    第三区域401
第四区域402                  碳纤维层10
聚酰亚胺纤维层20。
本发明的实施方式
为了进一步解释本发明的技术方案,下面结合实施例进行详细阐述。
参照图1至图12,一种跑鞋用碳板,包括碳板本体100,碳板本体100对应各跖骨的区域设为跖骨区,跖骨区(也即Ⅱ区)依次设为第一跖骨区201、第二跖骨区202、第三跖骨区203、第四跖骨区204以及第五跖骨区205,第一跖骨区201、第二跖骨区202、第四跖骨区204以及第五跖骨区205的弹性模量均小于第三跖骨区203的弹性模量。本发明的碳板用于跑鞋中,可以像现有技术那样,将碳板设置在两个中底之间。
作为本发明的优选方式,所述第五跖骨区205的弹性模量小于所述第四跖骨区204的弹性模量。作为本发明的优选方式,所述碳板本体100还包括对应脚趾的设置的脚趾区(也即Ⅰ区),脚趾区包括对应大拇指设置的第一区域101和对应第二脚趾至第五脚趾设置的第二区域102。
本发明中,碳板本体100可以仅仅对应脚掌前部设置,在实施例中,其形状与整个足掌对应,碳板本体100根据成年穿着者实际脚掌的长度,其长度是实际脚掌长度的80%-90%。本发明中,所述碳板本体100还包括对应人体足弓设置的中足区301(也即Ⅲ区)和对应脚后跟设置的后跟区(也即Ⅳ区),所述碳板本体100对应人体脚背内侧的一侧设为内侧,对应脚背外侧的一侧设为外侧,后跟区分为对应所述碳板本体100的内侧设置的第三区域401和对应所述碳板本体100的外侧设置的第四区域402。
本发明,从生物力学角度对跑步过程中脚掌发力过程进行分析,将脚掌分为四个大区,十个小区,脚掌在跑步前进过程中,脚掌与地面的接触,自后跟向前脚掌,自脚外侧向脚内侧进行过渡,脚掌的受力也随之产生。但根据脚掌压力的分析,脚掌各区域在跑步过程中产生的压力具有很大的差异,当发力区域从第五跖骨向第一跖骨过渡时,受力先增大后减小,在第三跖骨出达到峰值,随后减小,反映出脚掌各区域在跑步过程中发挥的作用各不相同。
作为本发明的优选方式,所述碳板本体100包括通过树脂胶粘剂复合在一起的碳纤维层10和聚酰亚胺纤维层20,碳纤维层10和聚酰亚胺纤维层20均为多层。在行业内部所谓的“碳板”,是一种碳纤维增强树脂复合材料,它主要由纤维材料和树脂材料组成。通过调控纤维材料的性能和堆砌结构可以有效地调控复合材料的性能。碳纤维具有高比强、抗拉伸、低弯曲、低伸长的特性,因此碳板具有高弹性模量,高拉伸强度,但其不抗剪切和弯折,韧性较差;聚酰亚胺纤维具有较高的比强度、较好的抗拉伸性能,同时具有较大的伸长和较好的韧性。能够弥补碳纤维刚性大、韧性差的不足。
在跑步过程中,嵌入鞋底的碳板会发生弯曲,特别是在前脚掌的跖骨区域,弯曲型变量最大,据实验分析,对于植入碳板的运动鞋,跖骨部位的最大弯曲角度能够达到15°左右,因此跑步对碳板的弯曲性能有更高的要求。
作为本发明的优选方式,以所述碳板本体100的内侧外侧方向为左右方向,以所述碳板本体100的脚趾区为前,以所述碳板本体100的后跟区为后,所述碳纤维层10和所述聚酰亚胺纤维层20均沿前后方向延伸,所述碳纤维层10和所述聚酰亚胺纤维层20沿左右方向排布在所述碳板本体100的左右方向区域形成不同的弹性模量,所述碳纤维层10和所述聚酰亚胺纤维层20在上下方向堆叠形成厚度在0.8-1.2mm的所述碳板本体100。
作为本发明的优选方式,所述脚趾区的宽度在3-6 cm,所述跖骨区的宽度在5-8cm,所述中足区301的宽度在4-5cm,所述后跟区的宽度在4-7cm,所述第一跖骨区201的宽度为1-1.5cm,所述第二跖骨区202的宽度为1-1.5 cm,所述第三跖骨区203和所述第四跖骨区204的宽度均为3-4cm,所述第五跖骨区205的宽度为1-1.5cm。
作为本发明的优选方式,所述第一跖骨区201和所述第二跖骨区202均至少设置3层所述聚酰亚胺纤维层20,所述第三跖骨区203和所述第四跖骨区204均至少设置1层所述聚酰亚胺纤维层20,所述第五跖骨区205至少设置5层所述聚酰亚胺纤维层20,所述脚趾区向所述跖骨区通过平滑的弧度过渡,弧度的曲率范围为9-12,所述跖骨区在长度方向具有平滑的弧度,弧度的曲率范围在5-9,所述跖骨区从所述第一跖骨区201至所述第五跖骨区205通过平滑的弧度过渡,弧度的曲率在8-12,所述中足区301在长度方向具有平滑的弧度,弧度曲率范围在4-7,所述中足区301从外侧向内侧具有平滑的弧度,弧度曲率范围在2-6,所述后跟区在长度方向具有平滑的弧度,弧度曲率范围在4-6。本发明中,各区域不是独立运作,而是连续的一个整体,使得力传导过程顺畅。
本发明还提出了一种跑鞋用碳板的制备方法,包括碳板本体100,碳板本体100对应各跖骨的区域设为跖骨区,跖骨区包括依次设为第一跖骨区201、第二跖骨区202、第三跖骨区203、第四跖骨区204以及第五跖骨区205,根据跑步过程中,各跖骨区受力情况设置不同的弹性模量,在弱受力部位设置较小的弹性模量,在强受力部位设置较大的弹性模量,第一跖骨区201、第二跖骨区202、第四跖骨区204以及第五跖骨区205的弹性模量均小于第三跖骨区203的弹性模量。
作为本发明的优选方式,将浸渍树脂的碳纤维层10和/或聚酰亚胺纤维层20沿左右方向排布形成第一层铺层,也即第一层铺层中,可以全部为碳纤维层10或聚酰亚胺纤维层20,或者碳纤维层10和聚酰亚胺纤维层20交替排布,将浸渍树脂的碳纤维层10和/或聚酰亚胺纤维层20沿上下方向排布形成第二铺层,将第一铺层和第二铺层模压固化形成所述碳板本体100。
优选地,本发明的碳板本体100铺层至少为七层,以七层为例,采用如下方式制作:
该实施例计划排布七层纤维,纤维从底层到顶层分别为第一层至第七层。CF代表碳纤维层10,PI代表聚酰亚胺纤维层20,图中用不同填充密度的方块进行表示,在第一跖骨区201和第二跖骨区202,纤维排布为CF/PI/CF/CF/CF/PI/PI;在第三跖骨区203域和第四跖骨区204域,纤维排布为CF/CF/CF/CF/CF/CF/PI;在第五跖骨区205域,纤维排布为CF/PI/PI/CF/PI/PI/PI。
为了让保证力传导的顺畅和碳板的整体性,同一铺层的纤维连续不间断,以第一跖骨、第二跖骨、第三跖骨、第四跖骨、第五跖骨纤维排布为基础,进行延伸,获得整只碳板的纤维排布。再经过模压固化工艺,使碳板形成三维的异形结构,其中碳板在Ⅰ区向Ⅱ区过渡时具有平滑的弧度,弧度的曲率ρ1在10-12之间平滑过渡。碳板在Ⅱ区内长度方向上具有平滑的弧度,弧度的曲率ρ2在5.5-8.3之间平滑过渡。碳板在Ⅱ区内的第一跖骨区201域到第五跖骨区205域的过渡具有平滑的弧度,弧度的曲率ρ3在9-11之间平滑过渡。碳板在Ⅲ区内长度方向具有向上的弧度,为足弓部位提供支撑,弧度的曲率ρ4在4-6之间平滑过渡。碳板在Ⅲ区内从外侧向内侧具有平滑的弧度,弧度的曲率ρ5在3-6之间平滑过渡。碳板在Ⅳ区内长度方向具有弧度,为脚跟提供支撑,弧度的曲率ρ6在4-6之间平滑过渡。
每一层纤维的排列方式,在制备预浸料的过程中,根据设计需求定制。在纤维铺展成形时,将12K CF与1500D PI穿插铺层。如图5中为全碳纤维铺层(约为6束CF纤维束的展宽);图6中从左至右先铺2.5 cm左右宽的PI(约8束PI纤维束的展宽),再铺2 cm左右宽的CF(约为2束CF纤维束的展宽),再铺1.5左右宽的PI(约4束PI纤维束的展宽);图7从左至右先铺5 cm左右宽的CF(约5束CF纤维束的展宽),再铺1.5 cm左右宽的PI(约4束PI纤维束的展宽);图8中为全碳纤维铺层(约为6束CF纤维束的展宽);图9从左至右先铺5 cm左右宽的CF(约5束CF纤维束的展宽),再铺1.5 cm左右宽的PI(约4束PI纤维束的展宽);图10中从左至右先铺2.5 cm左右宽的PI(约8束PI纤维束的展宽),再铺2 cm左右宽的CF(约为2束CF纤维束的展宽),再铺1.5 cm左右宽的PI(约4束PI纤维束的展宽);图11中为全聚酰亚胺纤维铺层(约为18束PI纤维束的展宽)。得到的每一层预浸料都进行了预含浸,浸入了环氧树脂,根据铺层顺序堆叠后,在120℃下,模压固化30分钟,得到成品碳板(单层纤维铺层厚度在0.1-0.12mm。
根据测算,第五跖骨对应区域较第三和第四跖骨对应区域,弯曲模量减小约40%,弯曲破坏应变提高约3倍,达到约5.5%。意味着第五跖骨区域在受到小应力作用下即可获得较大的形变效果。
本发明的产品形式并非限于本案实施例,任何人对其进行类似思路的适当变化或修饰,皆应视为不脱离本发明的专利范畴。

Claims (10)

  1. 一种跑鞋用碳板,包括碳板本体,碳板本体对应各跖骨的区域设为跖骨区,跖骨区依次设为第一跖骨区、第二跖骨区、第三跖骨区、第四跖骨区以及第五跖骨区,其特征在于:第一跖骨区、第二跖骨区、第四跖骨区以及第五跖骨区的弹性模量均小于第三跖骨区的弹性模量。
  2. 如权利要求1所述的一种跑鞋用碳板,其特征在于:所述第五跖骨区的弹性模量小于所述第四跖骨区的弹性模量。
  3. 如权利要求2所述的一种跑鞋用碳板,其特征在于:所述碳板本体还包括对应脚趾的设置的脚趾区,脚趾区包括对应大拇指设置的第一区域和对应第二脚趾至第五脚趾设置的第二区域。
  4. 如权利要求3所述的一种跑鞋用碳板,其特征在于:所述碳板本体还包括对应人体足弓设置的中足区和对应脚后跟设置的后跟区,所述碳板本体对应人体脚背内侧的一侧设为内侧,对应脚背外侧的一侧设为外侧,后跟区分为对应所述碳板本体的内侧设置的第三区域和对应所述碳板本体的外侧设置的第四区域。
  5. 如权利要求4所述的一种跑鞋用碳板,其特征在于:所述碳板本体包括通过树脂胶粘剂复合在一起的碳纤维层和聚酰亚胺纤维层,碳纤维层和聚酰亚胺纤维层均为多层。
  6. 如权利要求5所述的一种跑鞋用碳板,其特征在于:以所述碳板本体的内侧外侧方向为左右方向,以所述碳板本体的脚趾区为前,以所述碳板本体的后跟区为后,所述碳纤维层和所述聚酰亚胺纤维层均沿前后方向延伸,所述碳纤维层和所述聚酰亚胺纤维层沿左右方向排布在所述碳板本体的左右方向区域形成不同的弹性模量,所述碳纤维层和所述聚酰亚胺纤维层在上下方向堆叠形成厚度在0.8-1.2mm的所述碳板本体。
  7. 如权利要求6所述的一种跑鞋用碳板,其特征在于:所述脚趾区的宽度在3-6 cm,所述跖骨区的宽度在5-8cm,所述中足区的宽度在4-5cm,所述后跟区的宽度在4-7cm,所述第一跖骨区的宽度为1-1.5cm,所述第二跖骨区的宽度为1-1.5 cm,所述第三跖骨区和所述第四跖骨区的宽度均为3-4cm,所述第五跖骨区的宽度为1-1.5cm。
  8. 如权利要求7所述的一种跑鞋用碳板,其特征在于:所述第一跖骨区和所述第二跖骨区均至少设置3层所述聚酰亚胺纤维层,所述第三跖骨区和所述第四跖骨区均至少设置1层所述聚酰亚胺纤维层,所述第五跖骨区至少设置5层所述聚酰亚胺纤维层,所述脚趾区向所述跖骨区通过平滑的弧度过渡,弧度的曲率范围为9-12,所述跖骨区在长度方向具有平滑的弧度,弧度的曲率范围在5-9,所述跖骨区从所述第一跖骨区至所述第五跖骨区通过平滑的弧度过渡,弧度的曲率在8-12,所述中足区在长度方向具有平滑的弧度,弧度曲率范围在4-7,所述中足区从外侧向内侧具有平滑的弧度,弧度曲率范围在2-6,所述后跟区在长度方向具有平滑的弧度,弧度曲率范围在4-6。
  9. 一种跑鞋用碳板的制备方法,包括碳板本体,碳板本体对应各跖骨的区域设为跖骨区,跖骨区包括依次设为第一跖骨区、第二跖骨区、第三跖骨区、第四跖骨区以及第五跖骨区,其特征在于:根据跑步过程中,各跖骨区受力情况设置不同的弹性模量,在弱受力部位设置较小的弹性模量,在强受力部位设置较大的弹性模量,第一跖骨区、第二跖骨区、第四跖骨区以及第五跖骨区的弹性模量均小于第三跖骨区的弹性模量。
  10. 如权利要求9所述的一种跑鞋用碳板的制备方法,其特征在于:将浸渍树脂的碳纤维层和/或聚酰亚胺纤维层沿左右方向排布形成第一层铺层,将浸渍树脂的碳纤维层和/或聚酰亚胺纤维层沿上下方向排布形成第二铺层,将第一铺层和第二铺层模压固化形成所述碳板本体。
PCT/CN2023/095916 2022-05-25 2023-05-24 一种跑鞋用碳板及其制备方法 WO2023227002A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210577319.5A CN114794651B (zh) 2022-05-25 2022-05-25 一种跑鞋用碳板及其制备方法
CN202210577319.5 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023227002A1 true WO2023227002A1 (zh) 2023-11-30

Family

ID=82516916

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095916 WO2023227002A1 (zh) 2022-05-25 2023-05-24 一种跑鞋用碳板及其制备方法

Country Status (2)

Country Link
CN (2) CN116784565A (zh)
WO (1) WO2023227002A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116784565A (zh) * 2022-05-25 2023-09-22 特步(中国)有限公司 一种跑鞋用碳板的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016134139A1 (en) * 2015-02-20 2016-08-25 Roar Licensing, Llc Ankle foot orthosis products and systems
CN110815966A (zh) * 2018-08-08 2020-02-21 曾凯熙 鞋用复合材料
CN113287830A (zh) * 2020-02-21 2021-08-24 阿迪达斯股份公司 包括可单独偏转的加强构件的鞋底、具有这种鞋底的鞋以及制造这种物品的方法
CN114794651A (zh) * 2022-05-25 2022-07-29 特步(中国)有限公司 一种跑鞋用碳板及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411559C (zh) * 2003-04-24 2008-08-20 株式会社爱世克私 改良了鞋面的舒适性的运动鞋
EP3383638A1 (en) * 2015-12-02 2018-10-10 Carbitex, Inc. Joined fiber-reinforced composite material assembly with tunable anisotropic properties
KR102255721B1 (ko) * 2016-07-20 2021-05-27 나이키 이노베이트 씨.브이. 신발 물품용 플레이트를 형성하는 방법
TWM572667U (zh) * 2017-04-28 2019-01-11 荷蘭商耐克創新有限合夥公司 具有多層之鞋類物件及用於鞋類物件之固定系統
WO2020072854A1 (en) * 2018-10-05 2020-04-09 Worcester Polytechnic Institute Impact absorbing footwear apparatus
CN112716095A (zh) * 2020-12-07 2021-04-30 滋森生物科技(广州)有限公司 一码式弹性鞋套

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016134139A1 (en) * 2015-02-20 2016-08-25 Roar Licensing, Llc Ankle foot orthosis products and systems
CN110815966A (zh) * 2018-08-08 2020-02-21 曾凯熙 鞋用复合材料
CN113287830A (zh) * 2020-02-21 2021-08-24 阿迪达斯股份公司 包括可单独偏转的加强构件的鞋底、具有这种鞋底的鞋以及制造这种物品的方法
CN114794651A (zh) * 2022-05-25 2022-07-29 特步(中国)有限公司 一种跑鞋用碳板及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BAOPING WU, YAN SONGHUA; ZHANG KUAN; ZHAO YU; SONG HONGFANG: "Plantar pressure distribution of college students in different movement patterns", BEIJING BIOMEDICAL ENGINEERING, vol. 35, no. 2, 21 April 2016 (2016-04-21), pages 161 - 166, 179, XP093112082 *
QING-LA ZHANG, SONG SHAO-XING, DONG JIE: "Parameter Features of Foot Pressure in Healthy University Students", CHINESE JOURNAL OF SCHOOL HEALTH, vol. 28, no. 9, 25 September 2007 (2007-09-25), pages 814 - 816, XP093112083 *

Also Published As

Publication number Publication date
CN116784565A (zh) 2023-09-22
CN114794651B (zh) 2023-12-05
CN114794651A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US11647808B2 (en) Composite plate for an article of footwear or equipment
US20210052036A1 (en) Plate for footwear
US20220346492A1 (en) Shoe sole
WO2023227002A1 (zh) 一种跑鞋用碳板及其制备方法
US8028442B2 (en) Athletics shoe
US10441027B2 (en) Footwear plate
US10172411B2 (en) Base for a ski boot and ski boot incorporating such a base
US20090307930A1 (en) Innerboot for a sports boot
CN1232653A (zh) 具有刚硬或至少半刚硬性能的夹心式鞋类加强部件
US20230270203A1 (en) Footwear plate
CN114515044B (zh) 翼状支撑板、鞋底及鞋
CN216723354U (zh) 无后跟鞋底及鞋
US11889886B2 (en) Tuned sole shank component for dance footwear
JP2014500109A (ja) 靴、特にスポーツシューズ、及び靴の作製方法
EP3574790A1 (en) Rubber compound, rubber sole, and manufacturing method therefor
CN218245919U (zh) 一种用于运动鞋鞋底的碳板、运动鞋鞋底及运动鞋
CN217958987U (zh) 一种用于运动鞋鞋底的支撑件、运动鞋鞋底及运动鞋
TW202315540A (zh) 鞋底墊片
CN114451629B (zh) 无后跟鞋底及鞋
CN218245925U (zh) 一种用于运动鞋鞋底的支撑件、运动鞋鞋底及运动鞋
KR200308054Y1 (ko) 세미 몰드 스케이트화용 골재
CN218515268U (zh) 一种高耐磨性安全防护鞋
US20230075506A1 (en) Foamless shoe
CN219047550U (zh) 鞋中底
CN106723644A (zh) 公路自行车锁鞋鞋底及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811073

Country of ref document: EP

Kind code of ref document: A1