WO2023226993A1 - 气雾生成装置和发热模组 - Google Patents

气雾生成装置和发热模组 Download PDF

Info

Publication number
WO2023226993A1
WO2023226993A1 PCT/CN2023/095872 CN2023095872W WO2023226993A1 WO 2023226993 A1 WO2023226993 A1 WO 2023226993A1 CN 2023095872 W CN2023095872 W CN 2023095872W WO 2023226993 A1 WO2023226993 A1 WO 2023226993A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
heating element
heating
aerosol
output terminal
Prior art date
Application number
PCT/CN2023/095872
Other languages
English (en)
French (fr)
Inventor
胡瑞龙
陈伟
徐中立
李永海
Original Assignee
深圳市合元科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市合元科技有限公司 filed Critical 深圳市合元科技有限公司
Publication of WO2023226993A1 publication Critical patent/WO2023226993A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/46Shape or structure of electric heating means
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring
    • A24F40/57Temperature control

Definitions

  • the embodiments of the present application relate to the technical field of aerosol generation, and in particular to aerosol generation devices and heating modules.
  • the aerosol generating device is used to heat the aerosol generating article to generate aerosol.
  • the aerosol generating device includes a heating body for heating aerosol-generating products.
  • existing heating bodies usually heat the entire section at the same time during the working process, and have a single heating method, which cannot meet the current various heating needs for aerosol-generating products.
  • Embodiments of the present application provide an aerosol generating device and a heating module, which are provided with multiple heating elements.
  • the electrodes connected to the positive output end and the negative output end of the power supply assembly are selected and controlled according to the switch control circuit, so that the heating element can be generated.
  • the heating element in the module has a variety of heating modes to meet different heating needs.
  • Power supply components including positive output terminals and negative output terminals
  • Heating module includes a plurality of heating elements and a plurality of electrodes, the plurality of heating elements include a first heating element and a second heating element, the plurality of electrodes include a first electrode, a second electrode and a A third electrode.
  • the first electrode is electrically connected to the first heating element.
  • the second electrode is electrically connected to the first heating element and the second heating element respectively.
  • the third electrode is electrically connected to the third heating element.
  • a switch control circuit respectively connecting the power component and the plurality of electrodes, to selectively connect one of the first electrode, the second electrode and the third electrode to the positive output terminal.
  • the other two electrodes among the first electrode, the second electrode and the third electrode are connected to the negative output terminal.
  • a heating module provided by an embodiment of the present application includes multiple heating elements and multiple electrodes
  • the plurality of heating elements include a first heating element and a second heating element, both of which are used to heat the aerosol-generating article;
  • the plurality of electrodes include:
  • a first electrode electrically connected to the first heating element
  • one electrode is a positive electrode, and the remaining electrodes are negative electrodes.
  • the above-mentioned aerosol generating device and heating module can control the positive output terminal and the negative output terminal of the power supply component to be connected to different electrodes through the switch control circuit, so that different electrodes can become negative electrodes and positive electrodes, thereby making the first
  • the heating element and the second heating element have a variety of switchable working modes.
  • the switch control circuit controls the second electrode to be connected to the positive output terminal, so that the second electrode becomes the positive electrode, and controls the first electrode and the third electrode respectively.
  • the switch control circuit controls the third One electrode is connected to the positive output terminal, so that the first electrode becomes the positive electrode, and the second electrode and the third electrode are controlled to be connected to the negative output terminal successively, so that the second electrode and the third electrode become negative electrodes successively, then the The first heating element is heated before the second heating element, and its heating mode can be: the first heating element is heated alone, or the first heating element and the second heating element are heated at the same time, etc.
  • the switch control circuit controls the third electrode to be connected to the positive output terminal, so that the third electrode becomes the positive electrode, and controls the second electrode and the first electrode to be connected to the negative output terminal successively, so that the second electrode and the first electrode are connected to each other.
  • the second heating element can be heated before the first heating element
  • the heating mode can be: the second heating element is heated alone, or the second heating element and the first heating element are heated at the same time. Therefore, the aerosol generating device and the heating element in the heating module provided by this application have multiple working modes and heating modes, thereby meeting and adapting to a variety of heating needs.
  • Figure 1 is a schematic diagram of an aerosol generating device provided by an embodiment of the present application.
  • Figure 2 is a cross-sectional view of an aerosol generating device provided by an embodiment of the present application
  • Figure 3 is an exploded schematic diagram of an aerosol generating device provided by an embodiment of the present application.
  • FIG. 4 is an exploded schematic diagram of a heating module provided by an embodiment of the present application.
  • FIG. 5 is another exploded schematic diagram of a heating module provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional view of a heating module provided by another embodiment of the present application.
  • Figure 7 is a cross-sectional schematic diagram of a heating module provided by another embodiment of the present application.
  • Figure 8 is a schematic diagram of a heating component provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of the electrodes and heating elements on the heating component provided in Figure 8.
  • Figure 10 is a schematic diagram of a heating component provided by another embodiment of the present application.
  • Figure 11 is a schematic view of the electrodes and heating elements of the heating component provided in Figure 10 unfolded;
  • Figure 12 is a schematic equivalent circuit diagram of the electrodes and heating elements on the heating component provided in Figure 10;
  • Figure 13 is another equivalent circuit schematic diagram of the electrodes and heating elements on the heating component provided in Figure 10;
  • Figure 14 is a schematic diagram of a heating component provided by yet another embodiment of the present application.
  • Figure 15 is a schematic view of the electrodes and heating elements of the heating component provided in Figure 14 unfolded;
  • Figure 16 is a schematic diagram of electrode selection in a switch control circuit provided by an embodiment of the present application.
  • Figure 17 is a schematic cross-sectional view of a heating module provided by another embodiment of the present application.
  • Aerosol generating products 2. Receiving cavity; 3. Power supply components; 31. Circuit board; 32. Battery core; 4. Heating module; 41. Heating component; 411. Heating element; 4111. First heating element; 4112. Second heating element; 412. Base body; 413, accommodation cavity; 414, first electrode; 415, second electrode; 416, third electrode; 42. Temperature measuring element; 43. Fixings; 44. Insulation layer; 441. Avoidance groove; 45. Shell; 451. Insulation layer; 461, first bracket; 462, second bracket; 471, first connector; 472, second connector; 5. Switch control circuit; 6. Air heater.
  • first”, “second” and “third” in this application are only used for descriptive purposes and shall not be understood as indicating or implying relative importance or implicitly indicating the number or order of indicated technical features. All directional indications (such as up, down, left, right, front, back%) in the embodiments of this application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawings). Or sports conditions, etc., if the specific posture changes, the directional indication will also change accordingly. Furthermore, the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • a process, method, system, product or device that includes a series of steps or units is not limited to the listed steps or units, but optionally also includes steps or units that are not listed, or optionally also includes Other steps or units inherent to such processes, methods, products or devices.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • An embodiment of the present application provides an aerosol-generating device, which can be used to heat an aerosol-generating product to volatilize the aerosol-generating product into an aerosol for smoking.
  • the aerosol can include Chinese herbal medicine, nicotine, or tobacco flavorings. and other flavor substances.
  • the aerosol-generating product 1 is a smoking product (such as cigarettes, cigars, etc.), but this is not limited.
  • the aerosol generating device includes a receiving chamber 2 for receiving the aerosol generating product 1 and a heating module 4 for heating the aerosol generating product 1, and also includes a power supply assembly 3.
  • Component 3 is used to provide energy for the heating module 4 to work.
  • the aerosol generating device has an insertion port through which the aerosol-generating product 1 is removably received in the receiving cavity 2; at least a portion of the heating module 4 extends longitudinally in the receiving cavity 2, and Heating is generated by electromagnetic induction under a changing magnetic field, or by resistance when energized, or by radiating infrared rays to the aerosol-generating product 1 when stimulated, thereby heating the aerosol-generating product 1 (such as a cigarette) to generate aerosols At least one component of the article 1 volatilizes to form an aerosol for smoking.
  • the power supply component 3 includes a battery core 32 and a circuit board 31.
  • the battery core 32 is a rechargeable DC battery core that can output DC current.
  • the circuit board 31 is electrically connected to the rechargeable battery core 32 and is used to control the current, voltage or voltage of the battery core 32.
  • the circuit board 31 can convert the DC output from the battery core 32 into AC using a magnetic field generator (such as an induction coil). ) generates a changing magnetic field under alternating current, thereby causing the heating module 4 to generate heat.
  • the battery core 32 may also be a disposable battery, which is not rechargeable or does not need to be charged.
  • the power supply component 3 may be a wired power supply, and the wired power supply is directly connected to the mains through a plug to power the aerosol generating device.
  • the DC power supply voltage provided by the battery core 32 is in the range of 2.5V-9.0V, and the DC current provided by the battery core 32 is in the range of 2.5A-20A.
  • the aerosol-generating article 1 is preferably made of a tobacco-containing material that releases volatile compounds from the aerosol-generating article 1 when heated; or it can also be a non-tobacco material suitable for electric heating to generate cigarettes.
  • the aerosol-generating product 1 can use a solid substrate, including vanilla leaves, tobacco leaves, One or more of powders, granules, fragments, strips or flakes of one or more of homogeneous tobacco, expanded tobacco; alternatively, the aerosol-generating article 1 may contain additional tobacco or non-tobacco volatilization Sexual fragrance compounds are released when the aerosol-generating article 1 is heated.
  • the aerosol-generating article 1 is prepared in the shape of a conventional cigarette or cigar.
  • the heating module 4 includes a heating member 41 that can release energy and heat the aerosol-generating article 1 through the released energy to generate aerosol.
  • the heating component 41 contains grade 430 stainless steel (SS430), grade 420 stainless steel (SS420), iron-nickel alloy materials (such as permalloy) and other magnetically sensitive materials that can generate heat in a changing magnetic field. , so that the heating member 41 can generate heat in a changing magnetic field, and in the changing magnetic field, it will self-heat due to the generation of eddy currents and hysteresis, and conduct and/or radiate heat to the aerosol-generating product 1 to heat the aerosol-generating product.
  • Product 1 the aerosol generating device also includes a magnetic field generator, such as an induction coil, for generating a changing magnetic field under alternating current.
  • the circuit board 31 connects the electric core 32 and the induction coil, and can convert the direct current output by the electric core 32 into The flow is converted into an alternating current, preferably the frequency of the alternating current is between 80KHz and 400KHz; more specifically, the frequency can be in the range of about 200KHz to 300KHz.
  • the heating member 41 includes resistive conductive materials such as iron-chromium-aluminum alloy, nickel-chromium alloy, nickel-iron alloy, platinum, tungsten, silver, conductive ceramics, or at least one of the above conductive materials, so that when conducting electricity
  • the aerosol-generating product 1 can be heated by resistive heating to volatilize at least one component of the aerosol-generating product 1 to form an aerosol.
  • the heating component 41 is provided with a heating element 411 .
  • the heating element 411 can be an infrared electric heating coating, a resistive film, a flexible heating film (such as an FPC heating film), etc., where the infrared electric heating coating can be provided by the battery core 32
  • the current is excited to radiate infrared rays to heat at least part of the aerosol-generating article 1 .
  • the wavelength of infrared rays matches the absorption wavelength of the aerosol-generating article 1 , the energy of the infrared rays is easily absorbed by the aerosol-generating article 1 .
  • the wavelength of infrared rays is not limited, and can be infrared rays of 0.75 ⁇ m to 1000 ⁇ m, and is preferably far infrared rays of 1.5 ⁇ m to 400 ⁇ m.
  • the heating component 41 further includes a base 412, which serves as a carrier of the heating element 411 and is used to support the heating element 411.
  • the base body 412 is configured as a tubular body with an internal A containing cavity 413 containing the aerosol-generating article 1 is provided.
  • the aerosol-generating article 1 is heated in the containing cavity 413 and generates aerosol.
  • the heating element 411 can be disposed on the inner surface of the tubular body.
  • the specific preparation method can be to use electroplating to form the heating element 411 on the inner surface of the tubular body.
  • the base 412 is used for insertion into the interior of the aerosol-generating article 1 .
  • the infrared electrothermal coating can be mixed evenly with far-infrared electrothermal ink, ceramic powder and inorganic binder, then applied and printed on the outer surface of the substrate 412, and then dried and cured for a certain period of time.
  • the thickness of the infrared electrothermal coating is 30 ⁇ m-50 ⁇ m.
  • the infrared electrothermal coating can also be mixed and stirred by tin tetrachloride, tin oxide, antimony trichloride, titanium tetrachloride and anhydrous copper sulfate in a certain proportion and then coated on the outer surface of the substrate 412; or Silicon carbide ceramic layer, carbon fiber composite layer, zirconium-titanium oxide ceramic layer, zirconium-titanium nitride ceramic layer, zirconium-titanium boride ceramic layer, zirconium-titanium carbide ceramic layer, iron-based oxide ceramic layer, iron-based Nitride ceramic layer, iron boride ceramic layer, iron carbide ceramic layer, rare earth oxide ceramic layer, rare earth nitride ceramic layer, rare earth boride ceramic layer, rare earth carbide ceramic layer, nickel cobalt ceramic layer An oxide ceramic layer, a nickel-cobalt nitride ceramic layer, a nickel-cobalt boride ceramic layer, a nickel
  • the heating element 411 can be disposed on the outer surface of the tubular body, and the preparation method can be achieved by arranging it on the outer surface of the tubular body using plasma spraying or other methods.
  • the base 412 can be made of a transparent material, such as quartz material, to increase the transmittance of infrared rays so that the infrared rays can be better radiated into the accommodation cavity 413 .
  • An accommodation cavity 413 for accommodating the aerosol-generating product 1 is provided inside the base 412.
  • the heating element 411 can be disposed on the outer surface of the base 412, thereby applying the infrared electric heating coating layer is isolated from aerosols.
  • a protective layer can also be arranged on the surface of the infrared electrothermal coating.
  • the protective layer can be one or a combination of polytetrafluoroethylene layers, glaze layers, or other high-temperature resistant materials.
  • the protective layer can be insulating. The infrared electric heating coating and aerosol simultaneously prevent the infrared electric heating coating from wearing.
  • the infrared electric heating coating can be disposed on the inner surface of the base 412 and in contact with the aerosol-generating product 1, thus shortening the distance between the aerosol-generating product 1 and the infrared electric heating coating. distance between layers to reduce energy loss.
  • the wall thickness of the base 412 is uniform, with no obvious dents and protrusions, hollow holes and blind grooves, to ensure that the heat is evenly distributed everywhere on the base 412 . Make sure to The aerosol-generating product 1 is heated uniformly.
  • the heating member 41 further includes a conductive module including a first electrode 414 and a second electrode 415 disposed on the base 412 . Both the first electrode 414 and the second electrode 415 are at least partially electrically connected to the infrared electrothermal coating 411 so that current can flow from one electrode to the other electrode via the infrared electrothermal coating.
  • the first electrode 414 and the second electrode 415 have opposite polarities. For example, the first electrode 414 is a positive electrode and the second electrode 415 is a negative electrode; or the first electrode 414 is a negative electrode and the second electrode 415 is a positive electrode.
  • the heating element 411 is disposed on the outer surface of the base 412
  • the first electrode 411 is disposed on the outer surface of the base 412 near one end
  • the second electrode 415 is disposed on the outer surface of the base 412 near the other end.
  • the conductive module can also be disposed on the inner surface of the base 412 , or span the inner and outer surfaces of the base 412 .
  • both the first electrode 414 and the second electrode 415 are in the shape of a circular ring (closed ring shape) or a strip shape (non-closed ring shape or strip shape).
  • the first electrode 414 and the second electrode 415 may be an annular conductive coating or a strip conductive coating coated on the outer surface of the base 412 and near its opposite ends.
  • the conductive coating may include silver, gold, palladium, platinum, Copper, nickel, molybdenum, tungsten, niobium or the above metal alloy materials; the first electrode 414 and the second electrode 415 can also be annular conductive sheets or arc-shaped conductive sheets sleeved on the outer surface of the base 412 near its opposite ends.
  • the conductive sheet is a conductive sheet made of metal, such as copper sheet, steel sheet, etc.
  • the conductive module includes three electrodes, namely a first electrode 414, a second electrode 415 and a third electrode. 416.
  • the first electrode 414 is electrically connected to the first heating element 4111
  • the third electrode 416 is electrically connected to the second heating element 4112
  • the first electrode 414 and the third electrode 415 are not in direct contact and have a gap
  • the second electrode 415 is electrically connected at the same time.
  • the first heating element 4111 and the second heating element 4112 are connected. Under the connection of the second electrode 415, the first heating element 4111 and the second heating element 4112 are electrically connected.
  • the first electrode 414 , the second electrode 415 and the third electrode 416 are disposed on the base 412 , and the first electrode 414 and the third electrode 416 are located on opposite sides of the second electrode 415 .
  • the first electrode 414 , the second electrode 415 and the third electrode 416 are disposed on the base 412 , and all extend to the same end of the base 412 .
  • the power component 3 includes a positive output terminal and a negative output terminal,
  • the positive output terminal is used to output positive current or voltage
  • the negative output terminal is used to output negative current or voltage.
  • the aerosol generating device also includes a switch control circuit 5.
  • the switch control circuit 5 can be arranged on the circuit board 31.
  • the switch control circuit 5 is connected to the power supply assembly 3 and the electrodes, and can connect one or more electrodes among the plurality of electrodes to the positive output terminal. conduction, thereby forming a positive electrode, and causing one or more electrodes among the plurality of electrodes to conduct conduction with the negative output terminal, thus forming a negative electrode.
  • the second electrode 415 is a positive electrode, used to connect a positive current or voltage, so that the second electrode 415 can form a common connection between the first heating element 4111 and the second heating element 4112 .
  • the positive electrode, the first electrode 414 and the third electrode 416 are used to connect to negative current or voltage, and are both negative electrodes. That is, the second electrode 415 is connected to the positive output terminal, and the other two electrodes are connected to the negative output terminal.
  • the equivalent circuit shown in FIG. 9 shows the circuit layout of the first heating element 4111, the second heating element 4112, the first electrode 414, the second electrode 415, and the third electrode 416.
  • the first heating element 4111 and the second heating element 4112 are connected in parallel, so that the first heating element 4111 and the second heating element 4112 can be switched to be heated individually, or they can be switched to be heated at the same time. Therefore, the first heating element 4111 and the second heating element 4112 can heat the aerosol-generating article 1 in sections, or heat the aerosol-generating article 1 in different periods of time, or heat the aerosol-generating article 1 in the same period. That is, the first electrode 414 or the third electrode 416 is selectively connected to the negative output terminal, and may be connected in time intervals.
  • the second electrode 415 is the common positive electrode of the first heating element 4111 and the second heating element 4112, when the first heating element 4111 and the second heating element 4112 are heated at the same time, the first heating element 4111 and the second heating element 4112 are heated simultaneously.
  • the two heating elements 4112 can have the same working voltage, so the heating efficiency of the first heating element 4111 and the second heating element 4112 is related to the working resistance of the first heating element 4111 and the second heating element 4112.
  • the third heating element can be set The first heating element 4111 and the second heating element 4112 have different working resistances. This embodiment does not specifically limit the working resistances of the first heating element 4111 and the second heating element 4112.
  • the first heating element 4111 is located downstream of the second heating element 4112.
  • the second heating element 4112 is used to heat the upstream section of the aerosol-generating article 1.
  • the first heating element 4111 is used for heating the aerosol-generating article 1. In the relatively downstream section of the heated aerosol-generating article 1.
  • the air and/or the generated aerosol in the upstream section of the aerosol-generating article 1 has a high temperature under the action of the second heating element 4112 , which will flow into and heat the aerosol-generating article 1 downstream section.
  • the heating efficiency of the first heating element 4111 may be smaller than the heating efficiency of the second heating element 4112.
  • the temperature for supplementing the incoming air and auxiliary heating of the downstream section of the aerosol-generating article 1 so that the downstream section of the aerosol-generating article 1 generates aerosol can be achieved by reducing the heating of the first heating element 4111 power, further reducing the power consumption of the aerosol generating device.
  • the switch control circuit 5 of the aerosol generating device can set the first heating element 4111 located downstream to heat the aerosol-generating product 1 in priority over the second heating element 4112.
  • the aerosol generated in the downstream part of the aerosol-generating article 1 can be preferably discharged to shorten the journey of the aerosol from the aerosol-generating article 1, and at the same time, it can also avoid condensation caused by being cooled by other aerosol-generating articles 1 when the aerosol flows.
  • the input voltage or current can be increased so that the first heating element 4111 has greater heating power to reduce the time for aerosol generation.
  • the first heating element 4111 is located downstream of the second heating element 4112, and the first electrode 414 electrically connected to the first heating element 4111 is positive.
  • the electrodes, the second electrode 415 and the third electrode 416 are negative electrodes. That is, the first electrode 414 is connected to the positive output terminal, and the other two electrodes are connected to the negative output terminal. Therefore, the first electrode 414 can constitute the common positive electrode of the first heating element 4111 and the second heating element 4112.
  • the third electrode 416 and the second electrode 415 are used to conduct time-phased conduction with the negative output terminal of the power supply component 3 . That is, the second electrode 415 or the third electrode 416 is selectively connected to the negative output terminal, and can be connected in time intervals.
  • the equivalent circuit shown in FIG. 12 shows the circuit layout of the first heating element 4111, the second heating element 4112, the first electrode 414, the second electrode 415, and the third electrode 416.
  • the first heating element 4111 and the second heating element 4112 are connected in series and work simultaneously; when the first electrode 414 and the second electrode 415 are connected, the first heating element 4111 and the second heating element 4112 are connected in series.
  • One heating element 4111 works, but the second heating element 4112 does not work.
  • the switch control circuit 5 Under the control of the switch control circuit 5 , taking the case where the first electrode 414 constitutes the common positive electrode of the first heating element 4111 and the second heating element 4112 as an example, and the total input voltage of the heating module 4 remains unchanged, the first case , if the first heating element 4111 works alone (the first electrode 414 and the second electrode 415 are connected through the first heating element 4111), the voltage applied to it is greater than when the first heating element 4111 and the second heating element 4112 work at the same time.
  • the first electrode 414 and the third electrode 416 are connected through the first heating element 4111, the second electrode 415 and the second heating element 4112.
  • the voltage applied to the first heating element 4111 makes the first heating element 4111 work alone When, it has a larger working voltage because it is not divided by the second heating element 4112, and thus has a greater heating efficiency, which can make the aerosol-generating product 1 quickly Rising temperatures will help reduce the waiting time for aerosol generation.
  • the first heating element 4111 and the second heating element 4112 work at the same time, since the first heating element 4111 and the second heating element 4112 are connected in series, the first heating element 4111 is divided by the second heating element 4112, so that the flow The current flowing through the first heating element 4111 decreases, and the current flowing through the second heating element 4112 is the same as the current flowing through the first heating element 4111, which is also smaller, so that the first heating element 4111 and the second heating element 4112 can be relatively gentle.
  • the aerosol-generating product 1 is heated uniformly and fully to gradually release volatile matter.
  • the above-mentioned first situation and the second situation can be set in different heating stages of the aerosol-generating product 1 according to the heating requirements of the aerosol-generating device. That is, the switch control circuit 5 is used to first control the conduction between the first electrode 414 and the second electrode 415, and then control the conduction between the first electrode 414 and the third electrode 416, so that the first heating element 4111 first The second heating element 4112 generates heat.
  • the switch control circuit 5 starts the heating module 4 to conduct the first electrode 414 and the second electrode 415, so that the first heating element 4111 works preferentially to meet the need of quickly releasing aerosol, and then the first electrode 414 The connection between the second electrode 415 and the negative output terminal is disconnected or the second electrode 415 is floating, so that the first heating element 4111 and the second heating element 4112 work together. It can be understood that the two negative electrodes are not connected to the positive electrode at the same time to prevent the first heating element 4111 or the second heating element 4112 from being short-circuited.
  • the axial extension length of the first heating element 4111 along the heating module 4 is smaller than the axial extension length of the second heating element 4112 along the heating module 4 .
  • the first electrode 414 constitutes the common positive electrode of the first heating element 4111 and the second heating element 4112
  • the first heating element 4111 can quickly heat up the aerosol-generating product 1 when working alone, it will inevitably cause aerosol generation.
  • the product 1 is heated unevenly in the radial direction. Therefore, on the premise that the aerosol generated meets the puffing volume, the axial length of the first heating element 4111 can be reduced to reduce the generation of aerosol corresponding to the first heating element 4111.
  • the axial length of the first heating element 4111 along the heating module 4 can be configured to be smaller than the axial length of the second heating element 4112 along the heating module 4 .
  • the first heating element 4111 moves along the axial direction of the heating module 4. The longer the axial length, the greater the resistance. Therefore, under the same operating voltage, the shorter the axial length of the first heating element 4111 along the heating module 4, the higher the heating efficiency. Therefore, shorten it appropriately.
  • the length of the first heating element 4111 along the axial direction of the heating module 4 can provide the heating efficiency when the first heating element 4111 is heated alone, helping to produce aerosol more quickly.
  • the first heating element 4111 is located downstream of the second heating element 4112; the third electrode 416 electrically connected to the second heating element 4112 is a positive electrode, so the third electrode 416 A common positive electrode of the first heating element 4111 and the second heating element 4112 may be formed. That is, the third electrode 416 is connected to the positive output terminal, and the other two electrodes are connected to the negative output terminal.
  • the first electrode 414 and the second electrode 415 are used to conduct time-phased conduction with the negative output terminal of the power supply component 3 . That is, the first electrode 414 or the second electrode 415 is selectively connected to the negative output terminal, and can be connected in time intervals.
  • the equivalent circuit shown in FIG. 13 shows the circuit layout of the first heating element 4111, the second heating element 4112, the first electrode 414, the second electrode 415, and the third electrode 416.
  • the first electrode 414 and the third electrode 416 are conductive, the connection between the second electrode 415 and the negative output terminal is disconnected or the second electrode 415 is floating, the first heating element 4111 and the second heating element 4112 are connected in series and work simultaneously; when the third electrode 416 and the second electrode 415 are connected, the connection between the first electrode 414 and the negative output terminal is disconnected or the first electrode 414 is floating, and the second heating element 4112 works,
  • the first heating element 4111 does not work.
  • the switch control circuit 5 Under the control of the switch control circuit 5 , taking the case where the third electrode 416 constitutes the common positive electrode of the first heating element 4111 and the second heating element 4112 as an example, and the total input voltage of the heating module 4 remains unchanged, the first case , if the second heating element 4112 works alone (the third electrode 416 and the second electrode 415 are connected through the second heating element 4112), the voltage applied to it is greater than when the first heating element 4111 and the second heating element 4112 work at the same time.
  • the first electrode 414 and the third electrode 416 are connected through the first heating element 4111, the second electrode 415 and the second heating element 4112.
  • the voltage applied to the second heating element 4112 causes the second heating element 4112 to work alone When , it has a larger operating voltage because it is not divided by the first heating element 4111, and thus has greater heating efficiency.
  • the second heating element 4112 is partially pressured by the second heating element 4111, so that the flow The current flowing through the second heating element 4112 is reduced, and the current flowing through the first heating element 4111 is the same as the current flowing through the second heating element 4112, which is also smaller, so that the first heating element 4111 and the second heating element 4112 can be relatively gentle.
  • Ground heating, the above-mentioned first situation and the second situation can be set in different heating stages of the aerosol-generating article 1 according to the heating requirements of the aerosol-generating device.
  • the switch control circuit 5 is used to first control the conduction between the third electrode 416 and the second electrode 415, and then control the conduction between the first electrode 414 and the third electrode 416, so that the second heating element 4112 first The first heating element 4111 generates heat.
  • the third electrode 416 forms the first heating element 4111 and the third heating element 4111 .
  • the aerosol generation device also includes an air heater 6.
  • the first heating element 4111 is used to heat or keep the aerosol-generating product 1 warm, and the second heating element 4112 is used to heat the air heater 6 .
  • the heating module 4 can be configured in a tubular shape with a cavity inside.
  • the upper end area of the cavity can be inserted into the aerosol-generating product 1 to accommodate the aerosol-generating product 1.
  • the first heating element 4111 is arranged on the aerosol-generating surface.
  • the periphery of the product 1, so that the aerosol-generating product 1 can be heated or kept warm; the lower end area of the cavity can be loaded with the air heater 6, so as to accommodate the air heater 6.
  • the air heater 6 can be made of a high thermal conductivity material.
  • the porous structure made, such as a honeycomb structure made of ceramics, graphite alloy, graphene, etc., or the air heater 6 is made of foam metal, etc., as long as it can allow air to pass through and can be heated by the energy released by the second heating element 4112 Furthermore, any structure that heats the flowing air can constitute the air heater 6 required by this embodiment.
  • the second heating element 4112 is arranged on the periphery of the air heater 6 for heating the air heater 6, and then the air heater 6 heats the air flowing into it, causing the air to form hot air, and the hot air continues to flow and enter the aerosol-generating product 1 In, baking aerosol-generating article 1.
  • the second heating element 4112 has a higher heating power when heated alone, so that the air heater 6 can be quickly heated, and thus Hot air can be formed quickly.
  • the heating powers of the first heating element 4111 and the second heating element 4112 are both low, so that the first heating element 4111 can heat the aerosol.
  • the product 1 is preheated and kept warm, and the second heating element 4112 can keep the air heater 6 warm, so the negative electrode connected to the third electrode 416 is switched back and forth according to the preset frequency through the switch control circuit 5, or according to The preset frequency causes the third electrode 416 to conduct in turns with the second electrode 415 and the first electrode 414 to heat the aerosol-generating product 1 and the air heater 6, which can not only fully bake the aerosol-generating product 1, but also generate air. Sol, and can also significantly reduce energy consumption and achieve energy saving.
  • the first heating element 4111 and the second heating element 4112 respectively extend along the axial direction of the heating module 4, and the first heating element 4111 and the second heating element 4112 are generating heat. Modules 4 are distributed side by side in the circumferential direction.
  • the electrode connection conditions between the first heating element 4111 and the second heating element 4112 can include the following three situations: (1) The second electrode 415 that simultaneously connects the first heating element 4111 and the second heating element 4112 is The common positive electrode, the first electrode 414 and the third electrode 416 are negative electrodes, and their equivalent circuit is shown in Figure 9 . Or (2), the first electrode 414 is the positive electrode, and the second electrode 415 and the third electrode 416 are negative electrodes.
  • the two negative electrodes are not connected to the positive electrode at the same time to avoid short-circuiting the first heating element 4111 or the second heating element 4112.
  • the third electrode 416 is a positive electrode
  • the second electrode 415 and the first electrode 414 are negative electrodes.
  • the two negative electrodes are not connected to the positive electrode at the same time to avoid adding the first heating element 4111.
  • the second heating element 4112 is short-circuited. That is, one of the first electrode 414, the second electrode 415 and the third electrode 416 is connected to the positive output terminal, and the other two electrodes are connected to the negative output terminal.
  • the heating elements 411 may have three or more.
  • the electrodes may include a fourth electrode, a fifth electrode, etc.
  • the electrodes may include a fourth electrode, a fifth electrode, etc.
  • the positive electrode can constitute the common positive electrode of multiple heating elements 411, and the remaining heating elements 411 are electrically connected to the negative electrode, so that different negative electrodes can be selected to be connected to the positive electrode.
  • different heating elements 411 are connected in series and participate in the heating work.
  • the first heating element 4111 and the second heating element 4112 are distributed on the base 412 along the circumferential direction of the base 412; the first electrode 414, the second electrode 415 and the Three electrodes 416 are disposed on the base 412, and the first electrode 414 and the third electrode 416 are respectively disposed on opposite sides of the second electrode 415.
  • the heating element 411 may have three or more, and correspondingly, the electrodes may include a fourth electrode, a fifth electrode, etc., so that the heating module 4 may include multiple heating groups, each heating group including
  • the above-mentioned first heating element 4111 and second heating element 4112 also include the above-mentioned first electrode 414, second electrode 415 and third electrode 416, wherein the second electrode 415 is electrically connected to the first heating element 4111 and the second heating element. 4112, the first electrode 414 is electrically connected to the first heating element 4111, and the third electrode 416 is electrically connected to the second heating element 4112.
  • first electrode 414, the second electrode 415 and the third electrode 416 one is the positive electrode, and the other two It is the negative electrode.
  • Multiple heating groups are arranged at different positions of the heating module 4, so that the multiple heating groups can cooperate with each other to generate heat. For example, all heating groups generate heat at the same time and with the same power (single-stage heating), or multiple heating groups do not generate heat at the same time (segmented heating). Heating), another example is that multiple heating groups generate heat at the same time but with different powers, or multiple heating groups do not generate heat at the same time and selectively generate heat according to the conditions preset by the switch control circuit 5, etc.
  • the heating element 411 is an annular metal sheet, and the electrode is also an annular metal sheet.
  • the electrodes are electrically connected by being nested with the corresponding heating element 411 to form a tube shape together.
  • the switch control circuit 5 automatically selects one of its electrodes to be connected to the positive output terminal of the power supply assembly 3 through a preset program according to the suction demand to become the positive electrode, and selects one of the remaining electrodes. One or more of them are connected to the negative output terminal of the power supply component 3 and become the negative electrode, so that the working mode of the heating components can be selected, such as determining the parallel relationship or series relationship between the heating components, etc. For example: select the second electrode 415 that is electrically connected to the first heating element 4111 and the second heating element 4112 at the same time as the positive electrode, select the first electrode 414 that is electrically connected to the first heating element 4111 and the second electrode that is electrically connected to the second heating element 4112.
  • the first heating element 4111 and the second heating element 4112 are connected in parallel and can generate heat at the same time. Select the first electrode 414 and the second heating element 4111 that are electrically connected to each other.
  • the negative output end of the power supply component 3 of one of the third electrodes 416 electrically connected to the second heating element 4112 is turned on, the first heating element 4111 or the second heating element 4112 can select one to generate heat alone.
  • the first heating element 4111 and the third heating element 4112 are electrically connected.
  • the two heating elements 4112 can be connected in series.
  • the first heating element 4111 and the second heating element 4112 generate heat at the same time.
  • the first electrode 414 electrically connected to the first heating element 4111 is selected as the positive electrode, and the first electrode 414 electrically connected to the second heating element 4112 is selected.
  • the second electrode 415 is connected to the negative output terminal, the first heating element 4111 can generate heat alone, and the second heating element 4112 does not generate heat.
  • the positive electrode can be switched by the switch control circuit 5, so that any electrode has the possibility of becoming a positive electrode.
  • the negative electrode can be switched by the switch control circuit 5, so that different electrodes can constitute the negative electrode and be connected to the positive electrode.
  • the switch control circuit 5 automatically selects the negative electrode that is preferentially turned on through a preset program, or performs negative electrode switching. For example: when the first electrode 414 is the positive electrode, when the heating module 4 is first started, the first electrode 414 and the second electrode 415 are automatically selected to be connected, so that the third electrode 416 is turned off or floating, thereby causing the first heating The component 4111 works independently at a higher voltage. After 3 seconds (not limited to this time), the circuit board 31 automatically switches the second electrode 415 and the third electrode 416, so that the third electrode 416 is connected to the first electrode 414. , the second electrode 415 is floating or turned off, so that the first heating element 4111 and the second heating element 4112 work at the same time.
  • the switch control circuit can be manually controlled through buttons or a control panel, so that the switch control circuit 5 selects the positive electrode and the negative electrode that is connected to the positive electrode.
  • the heating module 4 also includes a temperature measuring element 42 , which is used to detect the real-time temperature of the heating component 41 and transmit the detected temperature information to the circuit board 31
  • the controller controls the power input to the heating component 41 through the real-time temperature to prevent heating
  • the temperature of the component 41 is too high or too low to ensure the yield and taste of the aerosol and reduce the generation of harmful substances.
  • the temperature measuring element 42 is in contact with the heating member 41 , that is, the temperature of the heating member 41 is collected through contact.
  • the temperature measuring element 42 may include an NTC (negative temperature coefficient) thermistor element or a PTC (positive temperature coefficient) thermistor element. etc., there is no limitation here, as long as the heating member 41 can be contacted and the temperature of the heating member 41 can be detected in real time. Of course, it is not ruled out that in other embodiments, a non-contact temperature detection device may be used to measure the temperature of the heating member 41 in real time.
  • the temperature measuring element 42 directly contacts the infrared electrothermal coating 411 in the heating component 41 to improve the accuracy and real-time performance of temperature detection.
  • the heating member 41 includes the above-mentioned base 412, in order to prevent the temperature measuring element 42 from occupying the accommodation cavity 413, thereby affecting the close fit between the heating member 41 and the aerosol-generating product 1, or affecting the insertion and removal of the aerosol-generating product 1
  • the infrared electrothermal coating 411 is first disposed on the outer surface of the base 412, and the temperature measuring element 42 is in contact with the infrared electrothermal coating 411 on the outside of the base 412.
  • the temperature measuring element 42 is in surface contact with the heating component 41 to increase the accuracy and sensitivity of temperature detection.
  • the heating module 4 also includes a fixing part 43 , which is used to keep the temperature measuring element 42 in contact with the heating member 41 .
  • the fixing member 43 can be a heat shrink tube that shrinks after being heated to achieve tight clamping. After the heat shrink tube shrinks by heat, it will not return to its original state. That is to say, once the heat shrink tube shrinks, it can always compress the temperature measuring element. 42 and heating member 41.
  • Heat shrinkable tubes can be one of PVC heat shrinkable tubes, PET heat shrinkable tubes, PTFE heat shrinkable tubes, silicone heat shrinkable tubes and other heat shrinkable tubes.
  • the shrinkage ratio of the heat shrinkable tube can be 1.6:1 or 4:1.
  • the shrinkage ratio of the heat shrinkable tube can also be 1.8:1, 2.2:1 or 3.6:1.
  • the shrinkage ratio of the heat shrinkable tube can also be other ratios. This is not listed one by one.
  • the fixing member 43 may also be an adhesive tape, a structural member, or other objects that can keep the temperature measuring element 42 in contact with the heating member 41 through bundling, clamping, or other methods.
  • the heat shrink tube may melt and bubble at high temperatures, and after melting, it will stick to the infrared electric heating coating provided on the heating component 42.
  • the heating component 41 repeatedly generates heat and cools, the heat shrink tube cycles. Thermal expansion and contraction will tear and damage the infrared electric heating coating 411, or the heat shrinkable tube will tear and damage the infrared electric heating coating 411 due to stickiness during rework and disassembly.
  • the cost of heat shrinkable tubes that can withstand high temperatures is very high. Therefore, in one embodiment, a heat insulation layer 44 is provided between the heatable component 42 and the fixing part 43.
  • the heat insulation layer 44 can not only prevent the temperature of the heating component 42 from escaping outward, but also protect the fixing part 43 from being high temperature damage, and at the same time, the fixing part 43 and the heating component 42 are not in direct contact, so as to protect the infrared Electric heating coating 411 to prevent it from being damaged. Since the heat insulation layer 44 is provided between the heater 41 and the fixing part 43, the fixing part 43 cannot directly contact the heater 41.
  • the heat insulation layer 44 can isolate a large amount of heat emitted by the heater 41 to the fixing part 43, thereby Heat-shrinkable tubes with lower temperature resistance can be used as the fixing part 43 described in this application, such as PVC heat-shrinkable tubes, PET heat-shrinkable tubes, etc., which can reduce the requirements for the materials for heat-shrinkable tubes and reduce the selection of heat-shrinkable tubes.
  • the cost of shrinking tubes can be used as PVC heat-shrinkable tubes, PET heat-shrinkable tubes, etc.
  • the heat insulation layer 44 can be made of one or more of aerogel, fiberglass mat, and heat insulation cotton.
  • the heat insulation layer 44 can adapt to the shape of the surface of the heating member 42 so as to fit more closely on the surface of the heating member 42 .
  • the heat insulation layer 44 is disposed on the surface of the heating component 42, the heat insulation layer 44 is provided with an escape groove 441, and the temperature measuring element 42 is disposed in the escape groove 441, and It is in direct contact with the heating member 42 in the escape groove 441. At the same time, part of the temperature measuring element 42 protrudes out of the relief groove 441, so that the fixing member 43 can directly squeeze the temperature measuring element 42 to keep the temperature measuring element 42 and the heating member 41. contact and limit the temperature measuring element 42 in the avoidance groove 441 to ensure that the temperature measuring element 441 does not shake or shift.
  • the heat insulation layer 44 can absorb the thickness of the temperature measuring element 42 through the avoidance groove 441 to reduce the bulge height at the contact point between the fixing part 43 and the temperature measuring element 42, which can effectively prevent the fixing part 43 from being excessively tightened or stress concentrated locally, which is helpful to The forces on the fixing part 43 are balanced everywhere, thereby slowing down the aging speed of the fixing part 43 and extending the service life of the fixing part 43 .
  • the leads of the temperature measuring element 42 can be buried in the heat insulation layer 44 , and preferably they do not cause bulges to be formed on the outer surface of the heat insulation layer 44 .
  • the heat insulation layer 44 covers the temperature measuring element 42.
  • the temperature measuring element 42 is arranged between the heat insulation layer 44 and the tubular body 41.
  • the heat insulation layer 44 can be made to have a larger thickness to absorb the thickness of the temperature measuring element 42.
  • the outer surface of the heat insulation layer 44 corresponding to the temperature measuring element 42 and the outer surface adjacent to it have the same curvature. , that is, the temperature measuring element 42 does not form a bulge on the outer surface of the heat insulation layer 44 , thereby facilitating the installation of the fixing member 43 on the outside of the heat insulation layer 44 , and effectively preventing the fixing member 43 from being unevenly stressed due to local bulges.
  • the heat-insulating layer 44 is in the form of multiple sheets or blocks arranged intermittently, or the heat-insulating layer 44 does not form an annular strip.
  • the heat-insulating layer 44 mainly serves its spacing function to prevent the fixing member 43 from interacting with the heating element.
  • the components 41 are in direct contact, and at the same time, the fixing member 43 tightens the heat insulation layer 44 to fix the heat insulation layer 44 on the heating component 41 .
  • the heat insulation layer 44 forms a complete ring shape and is provided around the heating member 41 (at this time, the heating member 41 can be in a tubular, sheet, etc. shape).
  • the heat insulation layer 44 has each Uniform thickness everywhere. If the heating member 41 is tubular, regardless of the shape of its cross-sectional outer contour, it is preferable that the outer cross-sectional contour of the heat insulating layer 44 forms a circle, so that the fixing member 43 can be assembled more smoothly.
  • the fixing piece is arranged around the heat insulation layer to tighten the heat insulation layer and fix the heat insulation layer on the heating component.
  • the temperature measuring element 42 can be preliminarily fixed on the heating member 41 through high-temperature glue. It is preferred to use high-temperature adhesive tape to bind or cover the temperature measuring element. 42 maintains direct contact with the heating component 41.
  • high-temperature glue include: the thermal coefficient of the high-temperature glue is balanced and will not shrink after curing, so that the infrared electrothermal coating on the surface of the heating component 41 will not be torn during thermal expansion and contraction. 411 and destroy the infrared electric heating coating 411.
  • the heat insulation layer 44 can be first fixed with high-temperature glue.
  • high-temperature adhesive tape Preliminarily fixed on the heating component 41, it is preferable to use high-temperature adhesive tape by wrapping or covering and pasting to keep the insulation layer 44 on the heating component 41.
  • the thermal coefficient of the high-temperature adhesive is still balanced, and the thermal expansion and contraction rates are low. This will not affect the extent to which the heat-shrinkable tube used as the fixing member 43 shrinks under heat, and can ensure that the heat-shrinkable tube shrinks to the maximum extent and squeezes the heat insulation layer 44 and the temperature measuring element 42 .
  • the heating module 4 also includes a shell 45, a first bracket 461 and a second bracket 462.
  • the first bracket 461 connects the upper end of the heating member 41 and the shell 45, so that the upper end of the heating member 41 is Positioned in the housing 45
  • the second bracket 462 connects the lower end of the heating member 41 with the housing 45 such that the lower end of the heating member 42 is positioned in the housing 45 .
  • the first bracket 461 and the second bracket 462 can be made of high-temperature resistant plastic materials such as PEEK or PBI, which have low heat transfer efficiency, thereby effectively preventing the heat on the heating component 41 from being transferred to the housing 45, resulting in Heat loss and case 45 are hot to the touch, etc.
  • the heating module 4 also includes a first connecting piece 471 and a second connecting piece 472.
  • the first connecting piece 471 and the second connecting piece 472 can be made of ceramics that are more resistant to high temperatures than the first bracket 461 and the second bracket 462.
  • a connecting piece 471 connects the upper end of the heating member 41 and the first bracket 461 so that the first bracket 461 and the heating member 41 cannot be in direct contact, thereby preventing the first bracket 461 from being burned by high temperature.
  • the second connecting piece 472 connects the upper end of the heating member 41 The lower end and the second bracket 462 prevent the second bracket 462 from direct contact with the heating component 41, thereby preventing the second bracket 462 from being burned by high temperature. Therefore, the heating component 41 can use greater heating power, which helps to shorten the waiting time for aerosol generation, can meet the user's demand for quick smoke removal, and can ensure the generation amount of aerosol per unit time, which is beneficial to improving the taste. .
  • the first bracket 461 and the first connecting piece 471 can be riveted together using an interference fit
  • the second bracket 462 and the second connecting piece 472 can be riveted together using an interference fit.
  • the reasons for using the first bracket 461 and the first connector 471 to cooperate with each other to keep the upper end of the heating member 41 in the housing 45 include: complex structures can be arranged on the first bracket 461 through injection molding and other processes to simplify it as much as possible.
  • the reasons why the second bracket 462 and the second connector 472 cooperate with each other to maintain the lower end of the heating member 41 in the housing also include the above reasons.
  • the housing 45 includes a thermal insulation layer 451 .
  • the thermal insulation layer 451 is provided on the periphery of the heating component 41 to prevent heat from leaking and to insulate the heating component 41 .
  • the thermal insulation layer 451 is a vacuum thermal insulation layer to improve the thermal insulation effect.
  • the above-mentioned aerosol generating device and heating module can control the positive output terminal and the negative output terminal of the power supply component to be connected to different electrodes through the switch control circuit, so that different electrodes can become negative electrodes and positive electrodes, thereby making the first
  • the heating element 4111 and the second heating element 4112 have a variety of switchable working modes.
  • the switch control circuit controls the second electrode to be connected to the positive output terminal, so that the second electrode becomes the positive electrode, and controls the first electrode and the third electrode.
  • the electrodes are connected to the negative output terminal respectively or simultaneously, so that at least one of the first electrode and the third electrode is a negative electrode, then the first heating element 4111 and the second heating element 4112 can be heated individually or in parallel at the same time; another example: switch
  • the control circuit controls the first electrode to be connected to the positive output terminal, so that the first electrode becomes the positive electrode, and controls the second electrode and the third electrode to be connected to the negative output terminal successively, so that the second electrode and the third electrode become negative electrodes successively.
  • the first heating element 4111 can be heated before the second heating element 4112, and the heating mode can be: the first heating element 4111 is heated alone, Or the first heating element 4111 and the second heating element 4112 are heated at the same time, etc.
  • the switch control circuit controls the third electrode to be connected to the positive output terminal, so that the third electrode becomes the positive electrode, and controls the second electrode and the first electrode to be connected to the negative output terminal successively, so that the second electrode and the first electrode are connected to each other.
  • the second heating element 4112 can be heated before the first heating element 4111
  • the heating mode can be: the second heating element 4112 is heated alone, or the second heating element 4112 and the first heating element 4111 are heated at the same time. Heating etc. Therefore, the aerosol generating device and the heating element 411 in the heating module 4 provided by this application have multiple working modes and heating modes, thereby meeting and adapting to a variety of heating needs.

Landscapes

  • Resistance Heating (AREA)

Abstract

一种气雾生成装置和发热模组(4),包括电源组件(3),包括正极输出端和负极输出端;发热模组(4),包括多个加热件(411)和多个电极,多个加热件(411)包括第一加热件(4111)和第二加热件(412),多个电极包括第一电极(414)、第二电极(415)和第三电极(416),第一电极(414)电连接第一加热件(4111),第二电极(415)分别电连接第一加热件(4111)和第二加热件(412),第三电极(416)电连接第二加热件(412);开关控制电路(5),分别连接电源组件(3)与多个电极,以选择性地将第一电极(414)、第二电极(415)和第三电极(416)中一个电极与正极输出端导通,将第一电极(414)、第二电极(415)和第三电极(416)中的另外两个电极与负极输出端导通。

Description

气雾生成装置和发热模组
相关申请的交叉参考
本申请要求于2022年05月24日提交中国专利局,申请号为202210575878.2,发明名称为“气雾生成装置和发热模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及气溶胶产生技术领域,特别涉及气雾生成装置和发热模组。
背景技术
气雾生成装置用于加热气溶胶生成制品,从而产生气溶胶。
气雾生成装置包括加热体,用于加热气溶胶生成制品,然而现有的加热体在工作过程中通常整段同时发热,发热方式单一,不能满足当下对气溶胶生成制品的多种加热需求。
发明内容
本申请实施例提供一种气雾生成装置和发热模组,设置有多个加热件,根据开关控制电路选择和控制与电源组件的正极输出端和负极输出端导通的电极,从而可以使发热模组中的加热件具有多种发热模式,以满足不同的发热需求。
本申请实施例提供的一种气雾生成装置,包括:
电源组件,包括正极输出端和负极输出端;
发热模组,所述发热模组包括多个加热件和多个电极,所述多个加热件包括第一加热件和第二加热件,所述多个电极包括第一电极、第二电极和第三电极,所述第一电极电连接所述第一加热件,所述第二电极分别电连接所述第一加热件和所述第二加热件,所述第三电极电连接所述第二加热件;
开关控制电路,分别连接所述电源组件与所述多个电极,以选择性地将所述第一电极、所述第二电极和所述第三电极中一个电极与所述正极输出端导通, 将所述第一电极、所述第二电极和所述第三电极中的另外两个电极与所述负极输出端导通。
本申请实施例提供的一种发热模组,包括多个加热件和多个电极;
所述多个加热件包括第一加热件和第二加热件,均用于加热气溶胶生成制品;
所述多个电极包括:
第一电极,电连接所述第一加热件;
第二电极,分别电连接所述第一加热件和所述第二加热件;
第三电极,电连接所述第二加热件;
所述第一电极、所述第二电极和所述第三电极中,其一电极为正电极,其余电极均为负电极。
上述的气雾生成装置和发热模组,通过开关控制电路可以控制电源组件的正极输出端和负极输出端与不同的电极导通,从而使得不同的电极可以成为负电极和正电极,从而使得第一加热件和第二加热件具有多种可切换的工作模式,例如:开关控制电路控制第二电极与正极输出端导通,而使第二电极成为正电极,控制第一电极和第三电极分别或同时与负极输出端导通,使第一电极和第三电极至少其一为负电极,则第一加热件和第二加热件可单独加热或者同时并联加热;再例如:开关控制电路控制第一电极与正极输出端导通,而使第一电极成为正电极,控制第二电极和第三电极先后与负极输出端导通,使第二电极和第三电极先后成为负电极,则可使第一加热件先于第二加热件加热,且其加热模式可以是:第一加热件单独加热,或者第一加热件和第二加热件同时加热等。又例如:开关控制电路控制第三电极与正极输出端导通,而使第三电极成为正电极,控制第二电极和第一电极先后与负极输出端导通,使第二电极和第一电极先后成为负电极,则可使第二加热件先于第一加热件加热,且其加热模式可以是:第二加热件单独加热,或者第二加热件和第一加热件同时加热等。因此,本申请提供的气雾生成装置和发热模组中的加热件具有多种工作模式和加热模式,从而可以满足和适应多种加热需求。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请一实施例所提供的气雾生成装置的示意图;
图2是本申请一实施例所提供的气雾生成装置的剖视图;
图3是本申请一实施例所提供的气雾生成装置的分解示意图;
图4是本申请一实施例所提供的发热模组的分解示意图;
图5是本申请一实施例所提供的发热模组的另一分解示意图;
图6是本申请另一实施例所提供的发热模组的剖视图;
图7是本申请另一实施例所提供的发热模组的横截面示意图;
图8是本申请一实施例所提供的加热构件的示意图;
图9是图8所提供的加热构件上的电极和加热件示意图;
图10是本申请另一实施例所提供的加热构件的示意图;
图11是图10所提供的加热构件的电极和加热件展开的示意图;
图12是图10所提供的加热构件上的电极和加热件的等效电路示意图;
图13是图10所提供的加热构件上的电极和加热件的另一等效电路示意图;
图14是本申请又一实施例所提供的加热构件的示意图;
图15是图14所提供的加热构件的电极和加热件展开的示意图;
图16是本申请一实施例所提供的开关控制电路对电极选择的示意图;
图17是本申请另一实施例所提供的发热模组的横截面示意图。
图中:
1、气溶胶生成制品;2、接收腔;3、电源组件;31、电路板;32、电芯;
4、发热模组;
41、加热构件;411、加热件;4111、第一加热件;4112、第二加热件;412、
基体;413、容纳腔;414、第一电极;415、第二电极;416、第三电极;
42、测温元件;43、固定件;44、隔热层;441、避让槽;45、壳体;451、
保温层;461、第一支架;462、第二支架;471、第一连接件;472、第二连接件;
5、开关控制电路;6、空气加热器。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者次序。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系或者运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元 件,它可以是直接连接到另一个元件,或者其间可能同时存在一个或者多个居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
本申请的一实施例提供了一种气雾生成装置,该装置可用于加热气溶胶生成制品,使气溶胶生成制品挥发出气溶胶来,以供吸食,气溶胶可以包括中草药、尼古丁或比如烟草香料等风味物质。在如图1所示的实施例中,气溶胶生成制品1为烟制品(如烟支、雪茄等),但不对此做出限定。
在如图1所示的实施例中,气雾生成装置包括用于接收气溶胶生成制品1的接收腔2和用于加热气溶胶生成制品1的发热模组4,还包括电源组件3,电源组件3用于为发热模组4工作供能。
请参照图1和2,气雾生成装置具有插入口,气溶胶生成制品1通过插入口可移除地接收在接收腔2内;发热模组4至少一部分在接收腔2内沿纵向延伸,并在变化的磁场下通过电磁感应发热,或者在通电时通过电阻发热,或者在受激时向气溶胶生成制品1辐射红外线,进而使气溶胶生成制品1(例如烟支)受热,使气溶胶生成制品1的至少一种成分挥发,形成供抽吸的气溶胶。
电源组件3包括电芯32和电路板31,电芯32为可充电的直流电芯,可以输出直流电流,电路板31电连接可充电的电芯32,用于控制电芯32的电流、电压或电功率的输出,在有些实施例中,当采用能够在变化的磁场中发热的感受体作为发热件时,电路板31可将电芯32输出的直流电变为交流电,使用磁场发生器(如感应线圈)在交流电下产生变化的磁场,进而使发热模组4发热。在其他的实施例中,电芯32还可以为一次性电池,不可充电或无需对其进行充电。在其他实施例中,电源组件3可以为有线电源,有线电源通过插头直接连接市电来为气雾生成装置供电。
在一实施例中,电芯32提供的直流供电电压在2.5V~9.0V的范围内,电芯32可提供的直流电流在2.5A~20A的范围内。
进一步在可选的实施例中,气溶胶生成制品1优选采用加热时从气溶胶生成制品1中释放的挥发化合物的含烟草的材料;或者也可以是适合于电加热发烟的非烟草材料。气溶胶生成制品1可以采用固体基质,包括香草叶、烟叶、 均质烟草、膨胀烟草中的一种或多种的粉末、颗粒、碎片细条、条带或薄片中的一种或多种;或者,气溶胶生成制品1可以包含附加的烟草或非烟草的挥发性香味化合物,以在气溶胶生成制品1受热时被释放。在一些可选的实施例中,气溶胶生成制品1制备成常规的香烟或雪茄的形状。
在如图1和2所示的实施例中,发热模组4包括加热构件41,加热构件41可以释放能量,并通过释放的能量加热气溶胶生成制品1,使之产生气溶胶。
在一实施例中,加热构件41中含有等级430的不锈钢(SS430)、等级420的不锈钢(SS420)、铁镍的合金材料(比如坡莫合金)等可在变化的磁场中发热的磁感性材料,从而加热构件41在变化的磁场中可以发热,进而在变化的磁场中,因为产生涡电流和磁滞而自发热,并向气溶胶生成制品1传导和/或辐射热量,以加热气溶胶生成制品1。相应的,气雾生成装置还包括磁场发生器,例如感应线圈,用于在交变电流下产生变化的磁场,且电路板31连接电芯32和感应线圈,并且可将电芯32输出的直流电流转化为交变电流,优选该交变电流的频率介于80KHz~400KHz;更具体地,所述频率可以在大约200KHz到300KHz的范围。
在一实施例中,加热构件41包括铁铬铝合金、镍铬合金、镍铁合金、铂、钨、银、导电陶瓷等电阻性导电材料,或者包含上述至少其一的导电材料,从而在导电时可以通过电阻发热,来加热气溶胶生成制品1,使气溶胶生成制品1中的至少一种成分挥发,形成气溶胶。
在一实施例中,加热构件41上具有加热件411,加热件411可以是红外电热涂层、电阻膜、柔性加热膜(如FPC加热膜)等,其中红外电热涂层能由电芯32提供的电流激发进而辐射红外线,以加热气溶胶生成制品1的至少局部。当红外线的波长与气溶胶生成制品1的吸收波长匹配时,红外线的能量易于被气溶胶生成制品1吸收。在本申请实施方式中,对红外线的波长不作限定,可以为0.75μm~1000μm的红外线,优选的为1.5μm~400μm的远红外线。
在一实施例中,加热构件41还包括基体412,基体412作为加热件411的载体,用于支撑加热件411。请参照图5,基体412被构造成管状体,内部具有 容纳气溶胶生成制品1的容纳腔413,气溶胶生成制品1在容纳腔413中受热并产生气溶胶。加热件411可以设置在管状体的内表面,具体的制备方式可以是采用电镀的方式使加热件411形成在管状体的内表面。或者,基体412用于插入气溶胶生成制品1的内部。
红外电热涂层可以由远红外电热油墨、陶瓷粉末和无机粘合剂充分搅拌均匀后涂印在基体412的外表面上,然后烘干固化一定的时间,红外电热涂层的厚度为30μm-50μm;当然,红外电热涂层还可以由四氯化锡、氧化锡、三氯化锑、四氯化钛以及无水硫酸铜按一定比例混合搅拌后涂覆到基体412的外表面上;或者为碳化硅陶瓷层、碳纤维复合层、锆钛系氧化物陶瓷层、锆钛系氮化物陶瓷层、锆钛系硼化物陶瓷层、锆钛系碳化物陶瓷层、铁系氧化物陶瓷层、铁系氮化物陶瓷层、铁系硼化物陶瓷层、铁系碳化物陶瓷层、稀土系氧化物陶瓷层、稀土系氮化物陶瓷层、稀土系硼化物陶瓷层、稀土系碳化物陶瓷层、镍钴系氧化物陶瓷层、镍钴系氮化物陶瓷层、镍钴系硼化物陶瓷层、镍钴系碳化物陶瓷层或高硅分子筛陶瓷层中的一种;红外电热涂层还可以是现有的其他材料涂层。
在另一实施例中,如图5所示,加热件411可以设置在管状体的外表面,制备方式可以是采用等离子喷涂等方式布置在管状体的外表面获得。此时基体412可采用透明的材质制成,例如石英材料,以增加红外线的透射率,使红外线更好的辐射到容纳腔413中。
在基体412内部设置有用于容纳气溶胶生成制品1的容纳腔413,为了保护加热件411,防止其被气溶胶腐蚀破坏,可以将加热件411设置在基体412的外表面,从而将红外电热涂层与气溶胶隔绝。或者,也可以在红外电热涂层的表面布置保护层,保护层可以为聚四氟乙烯层、釉层中的一种或两种的组合,或者为其它耐高温材料制成,保护层可以隔绝红外电热涂层和气溶胶,同时防止红外电热涂层磨损,因此可以将红外电热涂层设置在基体412的内表面,与气溶胶生成制品1接触,这样通过缩短气溶胶生成制品1与红外电热涂层之间的距离,来减少能量损耗。
在一实施例中,如图5所示,基体412的壁厚均匀,其上无明显的凹痕和凸起,无镂空孔和盲槽,以确保热量在基体412上各处分布均匀,进而确保对 气溶胶生成制品1进行均匀加热。
在一实施例中,加热构件41还包括导电模块,导电模块包括设置在基体412上的第一电极414和第二电极415。第一电极414和第二电极415均至少部分地与红外电热涂层411电性连接,以使得电流可以经由红外电热涂层从其中一个电极流向另一个电极。第一电极414和第二电极415的极性相反,例如:第一电极414为正电极、第二电极415为负电极;或者第一电极414为负电极、第二电极415为正电极。若将加热件411设置在基体412的外表面,第一电极411设于基体412靠近一端的外表面,第二电极415设于基体靠近另一端的外表面。若加热件411设置在基体412的内表面,导电模块也可以设置在基体412的内表面、或者横跨基体412的内表面和外表面。
在一实施例中,第一电极414和第二电极415均呈圆环状(闭合的环形)或带状(非闭合的环形或者条形)。第一电极414和第二电极415可以为涂覆在基体412外表面且靠近其相对两端的圆环形导电涂层或带状导电涂层,导电涂层可以包括银、金、钯、铂、铜、镍、钼、钨、铌或上述金属合金材料;第一电极414和第二电极415也可以是套接在基体412外表面靠近其相对两端的圆环形导电片或圆弧形导电片,导电片为金属材质制成的导电片,例如铜片、钢片等等。
请参照图8-15,加热件411具有两个,分别为第一加热件4111和第二加热件4112,导电模块包括三个电极,分别为第一电极414、第二电极415和第三电极416。第一电极414与第一加热件4111电连接,第三电极416与第二加热件4112电连接,第一电极414与第三电极415之间不直接接触且具有间距,第二电极415同时电连接第一加热件4111和第二加热件4112,在第二电极415的连接下,第一加热件4111与第二加热件4112电连接。
请参照图8,第一电极414、第二电极415和第三电极416设置在基体412上,且第一电极414和第三电极416分置在第二电极415的相对两侧。
请参照图10,第一电极414、第二电极415和第三电极416设置在基体412上,且均延伸至基体412的同一端部。
在一实施例中,如图16所示,电源组件3包括正极输出端和负极输出端, 正极输出端用于输出正性电流或电压,负极输出端用于输出负性电流或电压。气雾生成装置还包括开关控制电路5,开关控制电路5可以布置在电路板31上,开关控制电路5连接电源组件3和电极,可以使多个电极中的一个或者多个电极与正极输出端导通,从而形成正电极,使多个电极中的一个或者多个电极与负极输出端导通,从而形成负电极。
在一实施例中,如图8所示,第二电极415为正电极,用于接通正性电流或电压,从而第二电极415可以构成第一加热件4111和第二加热件4112的公共正极,第一电极414与第三电极416则用于与负性电流或电压连接,均为负电极。即为第二电极415与正极输出端导通,另外两个电极与负极输出端导通的情况。此时,如图9所示的等效电路示出,第一加热件4111、第二加热件4112和第一电极414、第二电极415、第三电极416的电路布局。即第一加热件4111与第二加热件4112并联连接,使得第一加热件4111和第二加热件4112可以被切换地单独加热,也可以被切换地同时加热。从而第一加热件4111和第二加热件4112可以对气溶胶生成制品1进行分段加热,或者对气溶胶生成制品1进行不同时段的加热,或者对气溶胶生成制品1进行同时段的加热。即第一电极414或第三电极416择一地与负极输出端导通,可以分时段导通。
在一实施例中,由于第二电极415为第一加热件4111和第二加热件4112公共正极,所以在第一加热件4111和第二加热件4112同时加热时,第一加热件4111和第二加热件4112可以具有相同的工作电压,所以第一加热件4111和第二加热件4112的加热效率与第一加热件4111和第二加热件4112的工作电阻相关,根据加热需求,可以设置第一加热件4111和第二加热件4112具有不同的工作电阻,本实施例对第一加热件4111和第二加热件4112的工作电阻不做具体限定。
在一实施例中,沿气溶胶流动方向,第一加热件4111位于第二加热件4112的下游,第二加热件4112用于加热气溶胶生成制品1的上游区段,第一加热件4111用于加热气溶胶生成制品1的相对下游区段。在气溶胶生成制品1中,气溶胶生成制品1上游区段中的空气和/或所产生的气溶胶在第二加热件4112的作用下具有高温,其会流入并加热气溶胶生成制品1的下游区段。此时,第一加热件4111的发热效率可以小于第二加热件4112的加热效率,第一加热件4111 用于补充流入的空气的温度和对气溶胶生成制品1的下游区段进行辅助性加热,以使气溶胶生成制品1的下游区段产生气溶胶,并且可以通过降低第一加热件4111的加热功率,进一步地降低气溶胶生成装置的功耗。
在一实施例中,为了能够满足快速出气溶胶的需要,气溶胶生成装置的开关控制电路5可以设置位于下游的第一加热件4111优先于第二加热件4112对气溶胶生成制品1进行加热,可以优选将气溶胶生成制品1的下游部分所产生的气溶胶排出,缩短气溶胶脱离气溶胶生成制品1的行程,同时还能避免气溶胶流动时被其他气溶胶生成制品1冷却而发生冷凝。还可以,在第一加热件4111单独发热时,通过提高输入电压或电流,使得第一加热件4111具有更大的加热功率,以减少气溶胶生成的时间。
在一实施例中,如图10-13所示,沿气溶胶流动的方向,第一加热件4111位于第二加热件4112的下游,与第一加热件4111电连接的第一电极414为正电极,第二电极415和第三电极416为负电极。即为第一电极414与正极输出端导通,另外两个电极与负极输出端导通的情况。从而第一电极414可以构成第一加热件4111和第二加热件4112的公共正极。第三电极416和第二电极415则用于与电源组件3的负极输出端分时段地导通。即第二电极415或第三电极416择一地与负极输出端导通,可以分时段导通。
如图12所示的等效电路示出,第一加热件4111、第二加热件4112和第一电极414、第二电极415、第三电极416的电路布局。此时,在第一电极414与第三电极416导通时,第一加热件4111与第二加热件4112串联连接,且同时工作;在第一电极414与第二电极415导通时,第一加热件4111工作,而第二加热件4112不工作。在开关控制电路5的控制下,以第一电极414构成第一加热件4111和第二加热件4112的公共正极,且发热模组4的总输入电压不变的情况为例,第一种情况,若第一加热件4111单独工作(第一电极414和第二电极415通过第一加热件4111导通),施加在其上的电压大于第一加热件4111和第二加热件4112同时工作时(第一电极414和第三电极416通过第一加热件4111、第二电极415和第二加热件4112导通)施加在第一加热件4111上的电压,使得在第一加热件4111单独工作时,因未被第二加热件4112分压而具有更大的工作电压,进而具有更大的发热效率,能够使气溶胶生成制品1快速地 升温,有助于缩减气溶胶产生的等待时间。第二种情况,若第一加热件4111和第二加热件4112同时工作,由于第一加热件4111与第二加热件4112串联,第一加热件4111被第二加热件4112分压,使得流经第一加热件4111的电流减小,流经第二加热件4112的电流与流经第一加热件4111电流相同,亦较小,从而第一加热件4111和第二加热件4112能够较为温和地加热气溶胶生成制品1,使其均匀且充分地逐步释放挥发物。其中,上述的第一种情况和第二种情况可以根据气溶胶生成装置加热的需求,而被设置在气溶胶生成制品1的不同加热阶段中。即开关控制电路5用于先控制第一电极414与第二电极415之间的导通,然后再控制第一电极414和第三电极416之间的导通,以使第一加热件4111先于第二加热件4112发热。
具体的,开关控制电路5启动发热模组4工作,使第一电极414与第二电极415导通,使第一加热件4111优先工作,以满足快速出气溶胶的需要,然后使第一电极414与第三电极416导通,第二电极415与负极输出端之间的连接断开或第二电极415浮空,从而第一加热件4111和第二加热件4112一起工作。可以理解的是,两负电极不同时与正电极导通,以避免加第一加热件4111或第二加热件4112被短路。
如图10-13所示,第一加热件4111沿发热模组4的轴向延伸长度小于第二加热件4112沿发热模组4的轴向延伸长度。第一电极414构成第一加热件4111和第二加热件4112的公共正极的前提下,由于第一加热件4111单独工作时能够使气溶胶生成制品1快速地升温,但是难免会使得气溶胶生成制品1在径向上受热不均匀,因此在所产生的气溶胶满足一口抽吸量的前提下,可以减少第一加热件4111的轴向长度,以减少与第一加热件4111对应的气溶胶生成制品1下游区段外围的气溶胶生成制品1浪费,同时还有助于节能。即第一加热件4111沿发热模组4的轴向长度可以被配置为小于第二加热件4112沿发热模组4的轴向长度。在另一实施例中,在第一加热件4111中的电流方向为发热模组4的轴向时,如沿轴向向上或者沿轴向向下,第一加热件4111沿发热模组4的轴向的长度越长,则其电阻越大,所以在相同的工作电压下,第一加热件4111沿发热模组4的轴向的长度越短,其加热效率就越高,因此,适当缩短第一加热件4111沿发热模组4的轴向的长度,可以提供第一加热件4111单独加热时的加热效率,有助于更快速地产出气溶胶。
在另一实施例中,沿气溶胶流动的方向,第一加热件4111位于第二加热件4112的下游;与第二加热件4112电连接的第三电极416为正电极,从而第三电极416可以构成第一加热件4111和第二加热件4112的公共正极。即为第三电极416与正极输出端导通,另外两个电极与负极输出端导通的情况。第一电极414和第二电极415则用于与电源组件3的负极输出端分时段地导通。即第一电极414或第二电极415择一地与负极输出端导通,可以分时段导通。
如图13所示的等效电路示出,第一加热件4111、第二加热件4112和第一电极414、第二电极415、第三电极416的电路布局。此时,在第一电极414与第三电极416导通时,第二电极415与负极输出端之间的连接断开或第二电极415浮空,第一加热件4111与第二加热件4112串联连接,且同时工作;在第三电极416与第二电极415导通时,第一电极414与负极输出端之间的连接断开或第一电极414浮空,第二加热件4112工作,而第一加热件4111不工作。
在开关控制电路5的控制下,以第三电极416构成第一加热件4111和第二加热件4112的公共正极,且发热模组4的总输入电压不变的情况为例,第一种情况,若第二加热件4112单独工作(第三电极416和第二电极415通过第二加热件4112导通),施加在其上的电压大于第一加热件4111和第二加热件4112同时工作时(第一电极414和第三电极416通过第一加热件4111、第二电极415和第二加热件4112导通)施加在第二加热件4112上的电压,使得在第二加热件4112单独工作时,因未被第一加热件4111分压而具有更大的工作电压,进而具有更大的发热效率。第二种情况,若第一加热件4111和第二加热件4112同时工作,由于第一加热件4111与第二加热件4112串联,第二加热件4112被第二加热件4111分压,使得流经第二加热件4112的电流减小,流经第一加热件4111的电流与流经第二加热件4112电流相同,亦较小,从而第一加热件4111和第二加热件4112能够较为温和地加热,上述的第一种情况和第二种情况可以根据气溶胶生成装置加热的需求,而被设置在气溶胶生成制品1的不同加热阶段中。即开关控制电路5用于先控制第三电极416与第二电极415之间的导通,然后再控制第一电极414和第三电极416之间的导通,以使第二加热件4112先于第一加热件4111发热。
在一实施例中,可以参照图17,在第三电极416构成第一加热件4111和第 二加热件4112的公共正极的前提下,气雾生成装置还包括空气加热器6,第一加热件4111用于加热或者保温气溶胶生成制品1,第二加热件4112用于加热空气加热器6。
发热模组4可以被构造成管状,其内具有空腔,空腔的上端区域可供气溶胶生成制品1插入,从而用于容纳气溶胶生成制品1,第一加热件4111布置在气溶胶生成制品1的外围,从而能够对气溶胶生成制品1进行加热或者保温;空腔的下端区域可供空气加热器6装入,从而用于容纳空气加热器6,空气加热器6可以由高导热材料制成的多孔结构,如采用陶瓷、石墨合金、石墨烯等制成的蜂窝结构,或者空气加热器6为泡沫金属等,但凡能够允许空气通过且能够在第二加热件4112释放的能量下升温进而加热流经的空气的结构均可构成本实施例所要求的空气加热器6。第二加热件4112布置在空气加热器6的外围,用于加热空气加热器6,进而空气加热器6热流进其中的空气,使空气形成热空气,热空气继续流动从而进入气溶胶生成制品1中,烘烤气溶胶生成制品1。
在第三电极416构成第一加热件4111和第二加热件4112的公共正极的前提下,第二加热件4112单独加热时具有较高的加热功率,从而能够快速地加热空气加热器6,进而能够快速地形成热空气,第一加热件4111和第二加热件4112同时加热时,第一加热件4111和第二加热件4112的加热功率均较低,从而第一加热件4111能够对气溶胶生成制品1进行预热和保温,且第二加热件4112能够对空气加热器6进行保温,所以通过开关控制电路5按照预设的频率来回切换与第三电极416导通的负电极,或者按照预设的频率使第三电极416与第二电极415和第一电极414轮流导通,来加热气溶胶生成制品1和空气加热器6,不仅可以充分地烘烤气溶胶生成制品1,产生气溶胶,而且还可以大幅的降低能耗,实现节能。
在一实施例中,如图14和15所示,第一加热件4111和第二加热件4112分别沿发热模组4的轴向延伸,且第一加热件4111和第二加热件4112在发热模组4的周向上并列分布。此时,第一加热件4111和第二加热件4112之间的电极连接情况,可以包括以下三种情况:(1)同时连接第一加热件4111和第二加热件4112的第二电极415为公共正极,第一电极414和第三电极416为负电极,其等效电路如图9所示。或(2),第一电极414为正电极,第二电极415 和第三电极416为负电极,可以理解的是,两负电极不同时与正电极导通,以避免加第一加热件4111或第二加热件4112被短路。或(3),第三电极416为正电极,第二电极415和第一电极414为负电极,可以理解的是,两负电极不同时与正电极导通,以避免加第一加热件4111或第二加热件4112被短路。即第一电极414、第二电极415和第三电极416中一个电极与正极输出端导通,另外两个电极与负极输出端导通。在其他实施例中,加热件411可以具有三个或者更多,对应地,电极可以包括第四电极、第五电极等,当加热件411超过两个时,可以优选多个加热件411依次电连接,且相邻两加热件411可以共用一个电极,正电极可以构成多个加热件411的公共正极,其余加热件411则电连接负电极,从而可以通过选择不同负电极与正电极导通,来实现不同的加热件411相互串联并参与加热工作。
在一实施例中,如图14和15所示,第一加热件4111、第二加热件4112沿基体412的周向分布地排列在基体412上;第一电极414、第二电极415和第三电极416设置在基体412上,且第一电极414和第三电极416分别设置在第二电极415的相对两侧。
在其他实施例中,加热件411可以具有三个或者更多,对应地,电极可以包括第四电极、第五电极等,从而发热模组4可以包括多个加热组,每一加热组均包括上述的第一加热件4111、第二加热件4112,还包括上述第一电极414、第二电极415和第三电极416,其中,第二电极415电连接第一加热件4111和第二加热件4112,第一电极414电连接第一加热件4111,第三电极416电连接第二加热件4112,第一电极414、第二电极415和第三电极416中,其一是正电极,其余两个则是负电极。多个加热组布置在发热模组4的不同位置,从而多个加热组可以配合发热,如所有加热组同时、同功率发热(单段发热),再如多个加热组不同时发热(分段发热),又如多个加热组同时但不同功率发热,还如多个加热组不同时发热按开关控制电路5预设的条件有选择地发热等。
在其他实施例中,加热件411为环状金属片,电极亦为环状金属片,电极通过与对应的加热件411嵌套而实现电连接,从而共同构成管状。
在其他实施例中,开关控制电路5通过预设的程序,根据抽吸需求自动地选择其一电极与电源组件3的正极输出端导通,成为正电极,选择其余电极中 的一个或者多个与电源组件3的负极输出端导通,成为负电极,从而可以选择发热件的工作模式,如确定发热件之间的并联关系或者串联关系等。如:选择同时电连接第一加热件4111和第二加热件4112的第二电极415为正电极,选择与第一加热件4111电连接的第一电极414和与第二加热件4112电连接的第三电极416同时电源组件3的负极输出端导通时,则第一加热件4111与第二加热件4112相互并联,可以同时发热,选择与第一加热件4111电连接的第一电极414和与第二加热件4112电连接的第三电极416二者之一电源组件3的负极输出端导通时,则第一加热件4111与第二加热件4112可以择一单独发热。再如,选择与第一加热件4111电连接的第一电极414为正电极,选择与第二加热件4112电连接的第三电极416与负极输出端导通时,第一加热件4111与第二加热件4112可以相互串联,第一加热件4111与第二加热件4112同时发热;选择与第一加热件4111电连接的第一电极414为正电极,选择与第二加热件4112电连接的第二电极415与负极输出端导通时,则第一加热件4111可以单独发热,第二加热件4112不发热。
可以理解的是,正电极可以被开关控制电路5切换,从而使得任何一个电极均有成为正电极的可能。负电极可以被开关控制电路5切换,从而可以使不同的电极构成负电极并与正电极导通。
在其他实施例中,在正电极确定的情况下,开关控制电路5通过预设的程序,自动选择优先导通的负极,或进行负极切换。如:在第一电极414为正电极时,发热模组4刚启动时则自动选择第一电极414与第二电极415导通,使第三电极416关断或浮空,从而使第一加热件4111在较高的电压下单独地工作,3S(不以此时间为限)后,电路板31自动切换第二电极415和第三电极416,使第三电极416与第一电极414导通,第二电极415浮空或者关断,从而使得第一加热件4111和第二加热件4112同时工作。
在其他实施例中,可以通过按键或者控制面板手动控制开关控制电路,进而使开关控制电路5选择正电极和与正电极导通的负电极。
在如图2-7所示的实施例中,发热模组4还包括测温元件42,测温元件42用于检测加热构件41的实时温度,并将检测到的温度信息传递给电路板31上的控制器,控制器通过该实时温度控制对加热构件41的功率输入,以防止加热 构件41的温度过高或过低,确保气溶胶的产量和口感,并且减少有害物质产生。
测温元件42与加热构件41接触,即通过接触来采集加热构件41的温度,测温元件42可以包括NTC(负温度系数)的热敏电阻元件或PTC(正温度系数)的热敏电阻元件等,在此不做限定,只要能够接触加热构件41并能够实时检测加热构件41的温度即可。当然,不排除在其他实施例中采用非接触式的温度检测装置对加热构件41进行实时测温。
如图5-7所示,测温元件42直接接触加热构件41中的红外电热涂层411,以提高温度检测的准确性和实时性。在加热构件41包括上述的基体412时,为防止测温元件42占据容纳腔413,从而影响加热构件41与气溶胶生成制品1之间的紧密贴合,或者影响气溶胶生成制品1插入和拔出容纳腔413,优先将红外电热涂层411设置在基体412的外表面,测温元件42在基体412的外侧与红外电热涂层411接触。可选,测温元件42与加热构件41面接触,以增加温度检测的准确度和灵敏度。
如图3-7所示,发热模组4还包括固定件43,固定件43用于使测温元件42与加热构件41保持接触。
固定件43可以是在受热后收缩实现紧箍的热缩管,热缩管受热收缩后,便不会恢复原始状态,也就是说,热缩管一旦发生收缩,便可始终压紧测温元件42与加热构件41。热缩管可以是PVC热缩管、PET热缩管、PTFE热缩管、硅胶热缩管等热缩管中的一种。热缩管的收缩率可以为1.6:1或4:1,热缩管的收缩率还可以为1.8:1、2.2:1或3.6:1,热缩管的收缩率还可以是其他比值,在此不一一列举。在其他实施例中,固定件43还可以是胶带、结构件等可以通过捆绑、夹持等方式使测温元件42与加热构件41保持接触的物件。
然而,热缩管在高温下可能发生熔化起泡现象,且熔化后会与设置在加热构件42上的红外电热涂层粘黏在一起,随着加热构件41反复发热和冷却,热缩管循环热胀冷缩,从而会撕扯破坏红外电热涂层411,或者在返工拆机时,因粘黏,热缩管会撕扯破坏红外电热涂层411。而能够耐高温的热缩管的成本非常高。故,在一实施例中,可加热构件42与固定件43之间设置隔热层44,隔热层44不仅能够防止加热构件42的温度向外散失,还能保护固定件43,防止其被高温伤害,同时使固定件43与加热构件42不直接接触,以此可以保护红外 电热涂层411,防止其被破坏。由于在加热器41与固定件43之间设置有隔热层44,使得固定件43不能直接接触接触加热器41,同时隔热层44能够隔绝加热器41向固定件43散发的大量热量,从而使得具有较低耐受温度的热缩管可以成为本申请所述的固定件43,如PVC热缩管、PET热缩管等,即可以降低对热缩管制作材料的要求,降低选用的热缩管的成本。
隔热层44可以采用气凝胶、玻璃纤维毡、隔热棉中的一种或多种制成。可选的,隔热层44能够适应加热构件42表面的形状,从而能够更加贴合在加热构件42表面。
在一实施例中,如图3-5所示,隔热层44设置在加热构件42的表面上,隔热层44上开设有避让槽441,测温元件42设置在避让槽441中,并在避让槽441中与加热构件42直接接触,同时,测温元件42的局部凸伸出避让槽441,从而固定件43能够直接挤压测温元件42,使测温元件42与加热构件41保持接触,并将测温元件42限定在避让槽441中,确保测温元件441不晃动和不移位。
隔热层44通过避让槽441可以吸收测温元件42的厚度,以消减固定件43与测温元件42接触处的隆起高度,可有效防止固定件43局部过度紧绷或应力集中,有助于固定件43各处受力平衡,从而能够减缓固定件43的老化速度,延长固定件43的使用寿命。在一可选的实施例中,测温元件42的引线可以埋设在隔热层44中,并且优选其不使隔热层44的外表面形成隆起。
在一实施例中,如图6和7所示,隔热层44上无避让槽441,隔热层44覆盖在测温元件42上,测温元件42设置在隔热层44与管状体41之间,可以使隔热层44具有较大的厚度,以吸收测温元件42的厚度,优选隔热层44上与测温元件42对应的外表面和与之邻接的外表面具有相同的曲率,即测温元件42未使隔热层44的外表面形成隆起,从而方便固定件43设置在隔热层44的外侧,且能够有效防止固定件43因局部隆起而受力不均匀。
在一实施例中,隔热层44为断续布置的多个片状、块状,或者隔热层44未构成环形的带状,隔热层44主要其间隔作用,防止固定件43与加热构件41直接接触,同时固定件43通过紧箍隔热层44,使隔热层44固定在加热构件41上。
在另一实施例中,如图7所示,隔热层44构成完整的环形,环绕加热构件41(此时,加热构件41可以为管状、片状等形状)设置,优选隔热层44各处厚度均匀。若加热构件41为管状,无论其横截面的外轮廓为什么形状,均可优选隔热层44横截面的外侧轮廓构成圆形,从而可以使装配固定件43更加顺畅。固定件环绕隔热层设置,从而实现对隔热层进行紧箍,将隔热层固定在加热构件上。
由于将隔热层44设置在加热构件41上需要一个过程,在该过程中,测温元件42可能会发生移位,或者在该过程中需要兼顾测温元件42,防止其脱离加热构件41,为解决该问题,在一优选的实施例中,可以先通过高温胶将测温元件42初步地固定在加热构件41上,优选采用高温胶纸通过缠绑或覆盖粘贴的方式,使测温元件42与加热构件41保持直接接触,选用高温胶的原因包括:高温胶热系数均衡,固化后不会收缩,从而在热胀冷缩的过程中不会通过撕扯加热构件41表面的红外电热涂层411而破坏红外电热涂层411。
同理,将固定件43设置在隔热层44上也需要一个过程,为了防止隔热层44在该过程中移位,在一优选的实施例中,可以先通过高温胶将隔热层44初步地固定在加热构件41上,优选采用高温胶纸通过缠绑或覆盖粘贴的方式,将隔热层44保持加热构件41上,仍利用高温胶热系数均衡,热胀和冷缩率低,从而不会影响作为固定件43的热缩管在受热下收缩的程度,可以确保热缩管最大限度的收缩并挤压隔热层44和测温元件42。
请参照图2和3,发热模组4还包括壳体45、第一支架461和第二支架462,第一支架461连接加热构件41的上端与壳体45,从而使得加热构件41的上端被定位在壳体45中,第二支架462连接加热构件41的下端与壳体45,从而使得加热构件42的下端被定位在壳体45中。第一支架461和第二支架462可以采用PEEK或PBI等耐高温的塑胶材料制成,其具有较低的热传递效率,从而能够有效地防止加热构件41上的热量传递至壳体45,导致热量流失和壳体45烫手等。
然而当加热构件41上的温度超过第一支架461和第二支架462的熔融阈值时,如超过300℃时,第一支架461和第二支架462可能会发生变形,从而影响加热构件41的固定。为解决该问题,在一优选的实施例中,如图2和3所示, 发热模组4还包括第一连接件471和第二连接件472,第一连接件471和第二连接件472可以采用壁第一支架461和第二支架462更耐高温的陶瓷制成,第一连接件471连接加热构件41的上端和第一支架461,使得第一支架461与加热构件41不能直接接触,从而防止第一支架461被高温灼损,第二连接件472连接加热构件41的下端和第二支架462,使得第二支架462与加热构件41不能直接接触,从而防止第二支架462被高温灼损。从而,加热构件41可以采用更大加热功率,有助于缩短气溶胶产生的等待时间,能够满足用户快速出烟的需求,且能够保证单位时间内气溶胶的生成量,对提升口感是有利的。
第一支架461和第一连接件471可以采用过盈配合的方式铆压在一起,第二支架462和第二连接件472可以采用过盈配合的方式铆压在一起。采用第一支架461与第一连接件471相互配合的方式来将加热构件41的上端保持在壳体45中的原因包括:可以将复杂结构通过注塑等工艺设置在第一支架461上,尽量简化第一连接件471,从而使得由陶瓷制成的第一连接件471可以模块化批量生产,有助于降低生产成本和提高生产效率。同理,第二支架462与第二连接件472相互配合的方式来将加热构件41的下端保持在壳体中的原因也包括上述原因。
在如图2所示的实施例中,壳体45中包括保温层451,保温层451设置在加热构件41的外围,用于防止热量外泄,对加热构件41进行保温。优选该保温层451为真空保温层,以提升保温效果。
上述的气雾生成装置和发热模组,通过开关控制电路可以控制电源组件的正极输出端和负极输出端与不同的电极导通,从而使得不同的电极可以成为负电极和正电极,从而使得第一加热件4111和第二加热件4112具有多种可切换的工作模式,例如:开关控制电路控制第二电极与正极输出端导通,而使第二电极成为正电极,控制第一电极和第三电极分别或同时与负极输出端导通,使第一电极和第三电极至少其一为负电极,则第一加热件4111和第二加热件4112可单独加热或者同时并联加热;再例如:开关控制电路控制第一电极与正极输出端导通,而使第一电极成为正电极,控制第二电极和第三电极先后与负极输出端导通,使第二电极和第三电极先后成为负电极,则可使第一加热件4111先于第二加热件4112加热,且其加热模式可以是:第一加热件4111单独加热, 或者第一加热件4111和第二加热件4112同时加热等。又例如:开关控制电路控制第三电极与正极输出端导通,而使第三电极成为正电极,控制第二电极和第一电极先后与负极输出端导通,使第二电极和第一电极先后成为负电极,则可使第二加热件4112先于第一加热件4111加热,且其加热模式可以是:第二加热件4112单独加热,或者第二加热件4112和第一加热件4111同时加热等。因此,本申请提供的气雾生成装置和发热模组4中的加热件411具有多种工作模式和加热模式,从而可以满足和适应多种加热需求。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但并不限于本说明书所描述的实施例,进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (20)

  1. 一种气雾生成装置,其特征在于,包括:
    电源组件,包括正极输出端和负极输出端;
    发热模组,所述发热模组包括多个加热件和多个电极,所述多个加热件包括第一加热件和第二加热件,所述多个电极包括第一电极、第二电极和第三电极,所述第一电极电连接所述第一加热件,所述第二电极分别电连接所述第一加热件和所述第二加热件,所述第三电极电连接所述第二加热件;
    开关控制电路,分别连接所述电源组件与所述多个电极,以选择性地将所述第一电极、所述第二电极和所述第三电极中一个电极与所述正极输出端导通,将所述第一电极、所述第二电极和所述第三电极中的另外两个电极与所述负极输出端导通。
  2. 如权利要求1所述的气雾生成装置,其特征在于,所述第二电极与所述正极输出端导通,成为正电极,所述第一电极和/或所述第三电极与所述负极输出端导通,成为负电极;或者
    所述第一电极与所述正极输出端导通,成为正电极,所述第二电极或第三电极择一地与所述负极输出端导通,成为负电极;或者
    所述第三电极与所述正极输出端导通,成为正电极,所述第一电极或第二电极择一地与所述负极输出端导通,均为负电极。
  3. 如权利要求2所述的气雾生成装置,其特征在于,所述开关控制电路用于分别控制两个所述负电极与所述正电极导通,使得所述两个负电极分时段地与所述正电极之间导通。
  4. 如权利要求3所述的气雾生成装置,其特征在于,所述第一电极与所述正极输出端导通,成为正电极,其中所述开关控制电路用于择一地控制两个所述负电极与所述正电极导通,使得所述第一加热件单独发热,或者所述第一加热件与所述第二加热件同时发热;或者,
    所述第三电极与所述正极输出端导通,成为正电极,其中所述开关控制电路用于择一地控制两个所述负电极与所述正电极导通,使得所述第二加热件单 独发热,或者所述第一加热件与所述第二加热件同时发热。
  5. 如权利要求1所述的气雾生成装置,其特征在于,所述开关控制电路用于分别控制所述第一电极与所述第二电极之间的导通,或者所述第二电极和所述第三电极之间的导通,以使所述第一加热件与所述第二加热件分时段地发热。
  6. 如权利要求5所述的气雾生成装置,其特征在于,所述第二电极与所述正极输出端导通,成为正电极;所述第一电极或所述第三电极与所述负极输出端分时段地导通,成为负电极。
  7. 如权利要求1所述的气雾生成装置,其特征在于,沿气溶胶出口的方向,所述第一加热件位于所述第二加热件的下游,所述开关控制电路用于先控制所述第一电极与所述第二电极之间的导通,然后再控制所述第一电极和所述第三电极之间的导通,以使所述第一加热件先于所述第二加热件发热。
  8. 如权利要求7所述的气雾生成装置,其特征在于,所述第一电极与所述正极输出端导通,成为正电极;其中所述开关控制电路用于择一地控制所述第二电极或者第三电极与所述负极输出端导通而成为负电极,并且使所述第二电极与所述第一电极之间先于所述第三电极与所述第一电极之间被导通。
  9. 如权利要求1所述的气雾生成装置,其特征在于,沿气溶胶出口的方向,所述第一加热件位于所述第二加热件的下游,所述开关控制电路用于先控制所述第二电极与所述第三电极之间的导通,然后再控制所述第一电极和所述第三电极之间的导通,以使所述第二加热件先于所述第一加热件发热。
  10. 如权利要求9所述的气雾生成装置,其特征在于,所述第三电极与所述正极输出端导通,成为正电极;其中所述开关控制电路用于择一地控制所述第一电极或第二电极与所述负极输出端导通而为负电极,并且使所述第二电极与所述第三电极之间先于所述第一电极与所述第三电极之间被导通。
  11. 如权利要求9所述的气雾生成装置,其特征在于,所述气雾生成装置还包括空气加热器,其中所述第一加热件用于加热气溶胶生成制品,所述第二加热件用于加热所述空气加热器。
  12. 一种发热模组,用于加热气溶胶生成制品,其特征在于,包括多个加热件和多个电极;
    所述多个加热件包括第一加热件和第二加热件;
    所述多个电极包括:
    第一电极,电连接所述第一加热件;
    第二电极,分别电连接所述第一加热件和所述第二加热件;和
    第三电极,电连接所述第二加热件;
    其中,所述第一电极、所述第二电极和所述第三电极中,其一电极为正电极,其余电极均为负电极。
  13. 如权利要求12所述的发热模组,其特征在于,所述第一加热件和所述第二加热件沿所述发热模组的轴向排列。
  14. 如权利要求13所述的发热模组,其特征在于,所述发热模组还包括基体,所述第一加热件、第二加热件沿所述基体的轴向分布地排列在所述基体上;
    所述第一电极、第二电极和第三电极设置在所述基体上,且均延伸至所述基体的同一端部;或者
    所述第一电极、第二电极和第三电极设置在所述基体上,且所述第一电极和第三电极分置在所述第二电极的相对两侧。
  15. 如权利要求13所述的发热模组,其特征在于,沿气溶胶出口的方向,所述第一加热件位于所述第二加热件的下游,且所述第一加热件沿所述发热模组的轴向长度小于所述第二加热件沿所述发热模组的轴向长度。
  16. 如权利要求12所述的发热模组,其特征在于,所述第一加热件和所述第二加热件沿所述发热模组的周向排列。
  17. 如权利要求16所述的发热模组,其特征在于,所述发热模组还包括基体,所述第一加热件、第二加热件沿所述基体的周向分布地排列在所述基体上;
    所述第一电极、第二电极和第三电极设置在所述基体上,且所述第一电极和第三电极分别设置在所述第二电极的相对两侧。
  18. 如权利要求12所述的发热模组,其特征在于,所述发热模组还包括基体,所述基体为管状,所述第一加热件和所述第二加热件布置在所述基体的外表面 上;
    所述基体内具有容纳所述气溶胶生成制品的容纳腔;或者
    所述基体用于插入所述气溶胶生成制品的内部。
  19. 如权利要求18所述的发热模组,其特征在于,所述第一加热件和所述第二加热件至少其一包括设置在所述基体外表面的红外电热涂层。
  20. 如权利要求18所述的发热模组,其特征在于,所述第一电极、第二电极和第三电极至少其一为形成在所述管状体外表面的导电涂层。
PCT/CN2023/095872 2022-05-24 2023-05-23 气雾生成装置和发热模组 WO2023226993A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210575878.2A CN117137197A (zh) 2022-05-24 2022-05-24 气雾生成装置和发热模组
CN202210575878.2 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023226993A1 true WO2023226993A1 (zh) 2023-11-30

Family

ID=88906814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095872 WO2023226993A1 (zh) 2022-05-24 2023-05-23 气雾生成装置和发热模组

Country Status (2)

Country Link
CN (1) CN117137197A (zh)
WO (1) WO2023226993A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN212488479U (zh) * 2020-07-24 2021-02-09 深圳市卓力能技术股份有限公司 一种加热组件及气溶胶生成装置
CN113057376A (zh) * 2020-01-02 2021-07-02 湖南中烟工业有限责任公司 用于加热介质以形成气溶胶的加热器
CN113170927A (zh) * 2020-07-24 2021-07-27 深圳市卓力能技术有限公司 一种加热组件及气溶胶生成装置
CN213848764U (zh) * 2020-08-03 2021-08-03 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN114098166A (zh) * 2020-09-01 2022-03-01 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN219353083U (zh) * 2022-05-24 2023-07-18 深圳市合元科技有限公司 气雾生成装置和发热模组

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113057376A (zh) * 2020-01-02 2021-07-02 湖南中烟工业有限责任公司 用于加热介质以形成气溶胶的加热器
CN212488479U (zh) * 2020-07-24 2021-02-09 深圳市卓力能技术股份有限公司 一种加热组件及气溶胶生成装置
CN113170927A (zh) * 2020-07-24 2021-07-27 深圳市卓力能技术有限公司 一种加热组件及气溶胶生成装置
CN213848764U (zh) * 2020-08-03 2021-08-03 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
WO2022028431A1 (zh) * 2020-08-03 2022-02-10 深圳市合元科技有限公司 加热器以及包括该加热器的烟具
CN114098166A (zh) * 2020-09-01 2022-03-01 深圳市合元科技有限公司 气溶胶生成装置以及红外加热器
CN219353083U (zh) * 2022-05-24 2023-07-18 深圳市合元科技有限公司 气雾生成装置和发热模组

Also Published As

Publication number Publication date
CN117137197A (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
KR102124636B1 (ko) 에어로졸 생성 장치용 히터
US5613504A (en) Flavor generating article and method for making same
KR102491122B1 (ko) 향상된 히터를 구비한 전기적으로 가열되는 흡연 시스템
EP4082367A1 (en) Heater and smoking set comprising same
CN109587840A (zh) 一种电子烟加热元件的加热方法及电子烟加热元件
WO2021104472A1 (zh) 加热器以及包括该加热器的烟具
CN211910527U (zh) 加热器以及包括该加热器的烟具
EP4190185A1 (en) Heater and smoking set comprising heater
CN214431820U (zh) 气溶胶生成装置以及红外加热器
WO2023179108A1 (zh) 加热组件及气溶胶生成装置
US20220408814A1 (en) Heater and cigarette device having same
CN219182820U (zh) 加热组件以及气溶胶生成装置
CN218354597U (zh) 加热器以及包括该加热器的气溶胶生成装置
CN219353083U (zh) 气雾生成装置和发热模组
WO2023226993A1 (zh) 气雾生成装置和发热模组
CN208016926U (zh) 一种陶瓷片双面发热的电子烤烟
WO2024017059A1 (zh) 加热组件以及气溶胶生成装置
CN219182821U (zh) 加热组件以及气溶胶生成装置
CN219781579U (zh) 加热器及气溶胶生成装置
CN219353089U (zh) 加热器及气溶胶生成装置
WO2022028430A1 (zh) 加热器以及含有该加热器的烟具
CN218831990U (zh) 发热模组和气雾生成装置
WO2019148329A1 (zh) 一种具有玻璃镍片加热装置的电子烤烟
WO2024060982A1 (zh) 加热组件以及气溶胶生成装置
WO2024017370A1 (zh) 气溶胶生成装置及其控制方法、生成气溶胶的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23811064

Country of ref document: EP

Kind code of ref document: A1