WO2023226875A1 - 一种表面安装电感器的制造方法 - Google Patents

一种表面安装电感器的制造方法 Download PDF

Info

Publication number
WO2023226875A1
WO2023226875A1 PCT/CN2023/095065 CN2023095065W WO2023226875A1 WO 2023226875 A1 WO2023226875 A1 WO 2023226875A1 CN 2023095065 W CN2023095065 W CN 2023095065W WO 2023226875 A1 WO2023226875 A1 WO 2023226875A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
assembly
finished
blank
bodies
Prior art date
Application number
PCT/CN2023/095065
Other languages
English (en)
French (fr)
Inventor
张灵波
Original Assignee
张灵波
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张灵波 filed Critical 张灵波
Publication of WO2023226875A1 publication Critical patent/WO2023226875A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils

Definitions

  • the present invention relates to a method of manufacturing a surface mount inductor.
  • inductive devices are developing in the direction of miniaturization, thinness, high frequency, high current, high efficiency, and low electromagnetic interference.
  • Integrated inductors have the advantages of strong anti-electromagnetic interference capability, solid structure, precise product size, small size, and large throughput current. They are mainly used in equipment that uses high-density surface-mounted circuits that require high product volume and electromagnetic interference capabilities. .
  • the miniaturization of surface-mounted inductors first makes it difficult for the electrode areas at both ends of surface-mounted electronic components to be the same.
  • the contact areas between the terminal electrodes and the soldering solder are different. Therefore, the terminal electrodes are subjected to different amounts of stress due to the soldering solder, which causes the product base to rise (tombstone phenomenon) and other defects, leading to poor contact or even falling off of electronic components and circuit boards, thus seriously affecting the quality of electronic products.
  • the demand for surface mount inductors is huge, and a method for mass production is urgently needed.
  • Chinese patent document CN103050224A discloses a power inductor and its manufacturing method. It adopts magnetic metal powder and the inner core to be integrally die-cast to form a power inductor mother body, and the mother body is coated with a resin layer and electroplated electrodes respectively. Although it can Realize large-scale automated production of power inductor precursors, eliminating the traditional welding process between coils and electrodes, and reducing manufacturing difficulty. However, the power inductor precursors are still processed individually because they are coated with resin layers and electroplated electrodes, and their production efficiency remains to be seen. improve.
  • Chinese patent document CN105355409A discloses a manufacturing method for surface-mounted inductors.
  • this manufacturing method multiple prefabricated specific coils are installed on a prefabricated substrate, and then filled with powder and pressed to form an inductor green body, which is then heat treated and cut into inductors.
  • Main body the surface of other parts of the inductor body except the electrode part is insulated, and then the finished inductor is formed through processes such as metal deposition electrode molding.
  • this method solves the problem of inductor miniaturization well through molding, it encounters difficulties in manufacturing the electrodes of the inductor body.
  • the size of the inductor is small, the size of the prefabricated inductor body electrodes is even smaller, which is first cut into individual surface mounts. After the inductor, the electrodes of the surface-mounted inductor are then deposited. The electrodes cannot be consistent in size, which cannot ensure the consistency of batch products and seriously affects production efficiency.
  • the technical problem to be solved by the present invention is to overcome the above-mentioned deficiencies of the prior art and provide a manufacturing method for surface-mounted inductors with high production efficiency and good product consistency.
  • a method of manufacturing a surface-mounted inductor which includes the following steps:
  • the inductor body refers to the part of the finished inductor that does not include the resist plating layer and the metal conductive layer.
  • step 1) More specifically, the specific steps for preparing the inductor matrix in step 1) are:
  • step 3 the inductor assembly green body is subjected to body treatment and then its surface is subjected to resist plating treatment.
  • the specific steps to become the inductor assembly green body are:
  • step 4 More specifically, the specific steps of step 4) are:
  • step 5 More specifically, the specific steps of step 5) are:
  • Step 5)-1 One surface of the finished inductor assembly in the finished inductor assembly obtained after removing part of the resistive plating layer is processed to remove the resistive coating on the surface of part of the electrodes of the inductor body in the finished inductor assembly. plating.
  • these removed surface parts include the excess surface resist coating included in the processing process. Therefore, the removed surface parts have the same width and equal spacing, that is, the product length plus the cutting line width is equally spaced. Convenient for processing and production.
  • step 5 the finished inductor assembly is cut to obtain multiple finished inductor blanks without reloading and unloading the finished inductor assembly, the consistency is good.
  • the leads at both ends of the hollow coil in the finished inductor body are respectively exposed at the electrode surfaces on both sides of the finished inductor body obtained by cutting as described in 5)-2 or on the surface of the inductor body obtained after removing the resist plating layer as described in 5)-1 The formed electrode surface is exposed.
  • the preferred cutting method is multi-line cutting.
  • the metal conductive layer in step 6) is produced by one or more of physical vapor deposition, chemical vapor deposition, electroplating, electroless plating and other processes.
  • the present invention has the following advantages: since the magnetic powder and the air-core coil are molded and then cut to form an inductor assembly body containing multiple inductor bodies, multiple groups of inductor bodies are arranged in the same manner and include multiple inductor bodies.
  • the inductor assembly bodies of each inductor body are combined together in the length direction to collectively remove the resist coating and cut out the finished single inductor body.
  • the size of the processed intermediate product is doubled, which can reduce the difficulty of processing and achieve mass precision production. , reducing processing costs, the inductance electrodes can be consistent in size, ensuring the consistency of batch products, thereby eliminating the tombstone effect that may occur during the assembly process of the product.
  • Figure 1 is a schematic diagram of an air-core coil of a surface-mounted inductor according to an embodiment of the present invention.
  • Figure 2 is a schematic diagram of a base body of a surface-mounted inductor according to an embodiment of the present invention.
  • Figure 3 is a structural diagram of the assembly of the air-core coil and the base body of the present invention.
  • Figure 4 shows an inductor matrix including multiple inductor bodies produced according to an embodiment of the present invention.
  • Figure 5-1 is a schematic diagram of the inductor assembly preliminary blank after cutting the inductor matrix according to the embodiment of the present invention.
  • Figure 5-2 is an enlarged schematic diagram of the chamfered preliminary blank of the inductor assembly that has been chamfered.
  • Figure 6 is a schematic diagram of the inductor assembly after resist plating on the chamfered rough surface according to the embodiment of the present invention.
  • Figure 7 is a diagram of the fixture for processing the inductor assembly blank after surface resist plating.
  • Figure 8 is a diagram of the fixture after installing the inductor assembly blank.
  • Figure 9 is a diagram of the fixture after removing part of the resist coating.
  • Figure 10 shows the clamp after cutting.
  • Figure 11-1, Figure 11-2, Figure 11-3, Figure 11-4, Figure 11-5, and Figure 11-6 are schematic diagrams of various surface mount inductor finished bodies.
  • Figure 12 is a three-dimensional schematic diagram of a finished surface-mounted inductor according to an embodiment of the present invention.
  • Figure 13 is a top view of a finished surface mount inductor according to an embodiment of the present invention.
  • Figure 14 is a schematic diagram of cutting the finished body of the surface-mounted inductor according to the embodiment of the present invention.
  • Figure 15 shows several possible deformations of the structural diagram of the assembly of the air-core coil and the base body of the present invention.
  • any one or a mixture of multiple magnetic powders such as iron-silicon-chromium alloy powder, carbonyl iron powder, reduced iron powder, iron-silicon-aluminum alloy powder, iron-nickel alloy powder and iron-silicon alloy powder and mix them with auxiliary materials.
  • the auxiliary materials include passivating agents, insulating agents, adhesives and lubricants.
  • the adhesive solution and the insulating alloy powder are mixed and stirred for ⁇ 40 minutes, and then heated to 50 to 80°C to evaporate the solvent in the adhesive solution. , obtain bonded alloy powder; weigh the lubricant according to the proportion, mix the lubricant and the bonded alloy powder and stir, the stirring time is ⁇ 30 minutes. Then sieve and granulate, bake at 150°C for about 40 minutes, and mix powders with different particle size distributions to obtain magnetic powder.
  • the above-mentioned magnetic powder can also adopt other conventional compositions and methods, which are not listed here one by one.
  • the compositions and methods in the patent documents mentioned in the background technology can also be used.
  • the air-core coil is composed of a conductor with an insulating layer.
  • the conductor may have a self-adhesive layer.
  • the adhesion temperature of the self-adhesive layer is 80°C to 220°C.
  • the temperature resistance of the insulating layer of the conductor with the insulating layer is 180°C to 180°C. 450°C.
  • the (rounded) rectangular cross-section wire shown in Figure 1-1 can be used, and the coil is wound using the Alpha winding method, or the circular cross-section wire shown in Figure 1-2 can be used, and the coil is made using the ordinary winding method.
  • a multi-axis winding method is used to wind the air-core coil to increase the winding speed.
  • Air-core coils must meet corresponding technical standards.
  • a method of manufacturing a surface-mounted inductor which includes the following steps:
  • the inductor body refers to the part of the finished inductor that does not include the resist plating layer and the metal conductive layer.
  • the step 1) of preparing the inductor matrix is as follows:
  • the base body of the 5 inductor bodies and the inductor mother body includes a base and 4 ⁇ 5 bosses arranged in rows and columns on the base.
  • the boss will limit the degree of freedom of the hollow coil in the plane direction of the base body, and the connection direction of the coil's pins is fixed.
  • the above boss can also be replaced by a groove.
  • the above-mentioned boss can also be replaced with a groove that already limits the air-core coil, and it also has a boss that limits the air-core coil. In this way, the air-core coil can be better limited.
  • bosses can also be replaced with limiting posts around the air-core coil, and the limiting method of the air-core coil can be added to adapt to various situations.
  • the 4 ⁇ 5 small rectangle in the figure represents the outline of the inductor body, which is for explanation only and cannot be seen in the actual product.
  • the temperature of the cold pressing treatment is not higher than 50°C
  • the temperature of the hot pressing treatment is 60°C to 250°C
  • the pressure holding time is 10 seconds to 300 seconds.
  • the temperature of the heat treatment is 120°C to 250°C, and the heat treatment time is 30 minutes to 400 minutes.
  • the above-mentioned mechanical treatment includes grinding treatment or milling treatment or other treatment methods. Remove the designed thickness from the upper and lower surfaces of the inductor body to meet the design requirements.
  • the preferred processing treatment is grinding using a surface grinder.
  • the inductor body is designed as a rounded rectangle.
  • the rectangular inductor body is specially designed to have different sizes of fillet radii to facilitate the distinction between the upper and lower surfaces of the finished inductor body during the above processing process.
  • step 2) of preparing the preliminary blank of the inductor assembly are as follows:
  • Each group of inductor assembly preliminary blanks contains 5 inductor bodies. As shown in Figure 5-1, its two ends It contains the excess part (material head) that needs to be included in the processing technology, and the middle contains the aforementioned 5 inductor bodies arranged at intervals.
  • step 3 resist plating treatment of the inductor assembly blank are as follows:
  • the inductor assembly blank is chamfered to become the inductor assembly chamfered blank, as shown in Figure 5-2. Specifically, add a chamfering medium that is greater than the initial weight of the inductor assembly, put it into chamfering equipment to complete the chamfering operation, and the chamfering time shall not be less than 20 minutes.
  • the above-mentioned preliminary blank of the inductor assembly containing 5 inductor bodies is chamfered and becomes the preliminary blank of the inductor assembly; then the surface of the chamfered preliminary blank of the inductor assembly is subjected to ultrasonic cleaning treatment, the surface of the product is dried, and then the inductor assembly is
  • the body chamfered rough body is surface-coated with a resist plating layer, and the surface of the inductor body corresponding to the chamfered rough body of the inductor assembly is uniformly coated with a resist plating layer to obtain an inductor assembly green body.
  • the entire surface of the chamfered green body of the inductor assembly is uniformly coated with a plating resist layer to obtain an inductor assembly green body, as shown in Figure 6.
  • the resist plating layer has the characteristics of insulation and rust prevention.
  • the resist plating is carried out using common components and methods, which will not be described in detail here.
  • step 4 The specific arrangement of the inductor assembly body in step 4) is as follows:
  • Step 5 The removal and cutting of the resist plating layer of the inductor assembly body are as follows:
  • a finished inductor assembly is obtained, that is, 20 groups of inductor bodies aligned at one end and arranged in the same manner, including 5 inductor bodies.
  • the finished inductor assembly obtained after surface treatment that is, 20 groups of inductor bodies aligned at one end and arranged in the same manner, including 5 inductor bodies.
  • 310 indicates the processing of the inductor assembly blank.
  • the fixture; 311 is the middle part of the inductor body, which retains the resistive plating layer, and is a component of the resistive plating layer on the surface of the finished inductor;
  • 312 represents the exposed body part of the inductor assembly after processing to remove the resistive plating layer, which is the center of the two inductor bodies
  • the length of the removed plating layer is the sum of twice the length of the surface-mounted inductor electrode and the width of the cutting line; 313 and 314 represent the parts of the left and right process heads. It is preferable to design the partial lengths 313 and 314 of the process head to be equal in size and have a length T.
  • the preferred processing method for this step is laser burning.
  • the finished inductor is shown in Figure 13.
  • L represents the length of the product
  • W represents the width of the product
  • A represents the width of the resist plating layer on the surface of the product
  • B represents the length of the electrode of the product.
  • the air-core coil arrangement method in step 2-1 is preferably designed according to the following method of removing the plating resist layer and cutting the finished inductor body.
  • This step of the present invention can ensure that all 20 groups of inductor assembly blanks and inductor assembly finished products containing 5 inductor bodies, that is, inductor assembly blank combinations and inductor assembly finished product combinations, during the processing of these two processing steps There is no relative position change with the fixture, and the processing coordinate systems of the two processing equipment coincide. Preferably, the above two steps are completed on the same processing equipment.
  • the preferred processing method for removing the resistive coating in this step is laser burning; the preferred cutting method is multi-line cutting, that is, multiple inductor bodies can be cut at the same time.
  • the preferred method for removing the resist plating layer As shown in Figure 14, first retain the length T, remove the resist plating layer with a width of 2 ⁇ B+F, then retain the width of the resist plating layer A, and then repeat the width of 2 ⁇ B+F to remove the resist plating layer. The plating then retains the width A of the resist plating layer, and repeats until the last inductor, where F represents the width of the cutting line, 2 ⁇ B+F represents 2 times the width of the product electrode + the width of the cutting line, as shown in Figure 14, the width A of the resist plating layer is shown in Figure 13 What is shown indicates the width of the plating resist on the product surface.
  • the cutting width of the high-power laser beam is F.
  • the preferred method of cutting the finished inductor body is multi-line cutting.
  • the finished inductor body obtained after the above processing process has been coated with a resist plating layer except for the parts where the electrodes are located. See Figure 11.
  • 311 is the middle part of the inductor body.
  • the resist plating layer remains on it, which is the surface of the finished inductor.
  • a metal conductive layer can be deposited on the surface of the electrode part to form an electrode.
  • the surface-deposited metal conductive layer may adopt one or more of physical vapor deposition, chemical vapor deposition, electroplating, chemical plating and other processes to deposit one or more layers of metal on the surface of the finished inductor body without a plating resistive layer.
  • Conductive layer, this metal conductive layer is the electrode, and you have a surface mount inductor; see Figure 12.
  • a better metal conductive layer is a four-layer coating, the first layer is electroplated nickel layer, the second layer is electroplated copper layer, the third layer is electroplated nickel layer, and the fourth layer is electroplated tin layer.
  • the electrode coating area is shown in Figure 12 as the two end faces of the product in the length direction, and the part of the surface of the product in the length direction that is connected to the two end faces. Other areas of the product surface are coated with resist plating to prevent accidental conduction during assembly.
  • 4 ⁇ 5 arranged air-core coils and 20 groups of inductor assembly blanks are used as an example.
  • the arrangement of the air-core coils and the number of groups of inductor assembly blanks can be changed.
  • 5 ⁇ 5 is used Arranged air core coils, 30 groups of inductor combination bodies, etc.
  • M ⁇ N-Q arranged air-core coils can be used, the number of rows of inductor bodies can be changed, and each row can also be composed of different numbers of inductor bodies, as shown in Figure 15-1, Figure 15-2, Figure 15 -3 is shown.
  • M, N, and Q are all non-negative integers, and M and N are greater than 1.
  • the aforementioned inductor assembly blank containing five inductor bodies is replaced with the cut inductor assembly blank containing three or four inductor bodies in Figure 15 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

一种表面安装电感器的制造方法,其包括以下步骤:按行列阵列排列空心线圈并将空心线圈的引脚的连线方向排列一致,然后用磁粉通过模压方式制备电感母体;按照空心线圈的引脚的连线方向切割电感母体得到多组包含多个电感本体的电感组合体初坯;对电感组合体初坯进行本体处理后再进行表面阻镀处理,成为电感组合体坯体;将多组包含相同排列的电感本体的电感组合体坯体按行排列形成电感组合体坯体组合;按垂直于空心线圈的引脚的连线方向去除电感组合体坯体组合中电感本体的对应电极部位的阻镀层,再按垂直于空心线圈的引脚的连线方向切割出电感成品坯体;在电感成品坯体的电极表面沉积一层或多层金属导电层,得到表面安装电感器。

Description

一种表面安装电感器的制造方法 技术领域
 本发明涉及一种表面安装电感器的制造方法。
背景技术
 随着电子科技的迅猛发展,特别是移动类消费电子终端的快速普及,电感器件向小型化、轻薄化、高频化、大电流、高效率、低电磁干扰等方向发展。一体成型电感具有抗电磁干扰能力强,结构坚实牢固,产品尺寸精确,体积小、通过电流大等优点,主要应用于对产品体积和电磁干扰能力要求较高的采用高密度表面安装线路的设备上。
 但表面安装电感器小型化首先使表面安装电子元件两端电极面积的大小不易相同。在对这样的电子元件进行软钎焊时,端电极与软钎焊焊料的接触面积不一样,因此端电极因软钎焊焊料而承受不一样大的应力并导致产品基体升高现象(立碑现象)等缺陷,导致电子元件与电路板出现接触不良、甚至脱落,从而严重影响电子产品的质量。其次,表面安装电感器的需求量十分巨大,迫切需要一种大批量生产的方法。
 中国专利文献CN103050224A公开了一种功率电感器及其制造方法,其采用磁性金属粉料与内芯一体压铸成型功率电感器母体并在母体上分别进行涂树脂层、电镀电极,其虽可以实现大批量自动化生产功率电感器前体,取消传统线圈与电极间的焊接工艺,降低制造难度,但功率电感器前体因涂树脂层、电镀电极仍是单个进行处理,其生产效率仍有待提高。
 中国专利文献CN105355409A公开了一种表面安装电感器的制造方法,该制造方法将多个预制的特定线圈安装在预制的基体上,然后填粉压制,形成电感生坯,再经过热处理、切割成电感主体,对电感主体除电极部以外的其他部位的表面进行绝缘处理,再通过金属沉积电极成型等工序成型电感器成品。该方法虽然通过模制很好解决了电感小型化的问题,但在制造电感本体的电极上遇到困难,当电感尺寸很小时,预制电感本体电极的尺寸更小,其先切割成单个表面安装电感器后,再进行沉积制造表面安装电感器的电极,电极无法做到大小一致,无法保证批量产品的一致性,而且严重影响生产效率。
发明内容
 本发明所要解决的技术问题是克服现有技术的上述不足而提供一种生产效率高、产品一致性好的表面安装电感器的制造方法。
 本发明解决上述技术问题所采用的技术方案为:
一种表面安装电感器的制造方法,其包括以下步骤:
1)   按行列阵列排列空心线圈并将空心线圈的引脚的连线方向排列一致,然后用磁粉通过模压方式制备电感母体;
2)   按照空心线圈的引脚的连线方向切割电感母体得到多组包含多个电感本体的电感组合体初坯;
3)   对电感组合体初坯进行本体处理后再进行表面阻镀处理,成为电感组合体坯体;
4)   将多组电感本体排列相同的包含多个电感本体的电感组合体坯体按行排列形成电感组合体坯体组合; 
5)   按垂直于空心线圈的引脚的连线方向去除电感组合体坯体组合中电感本体的对应电极部位上所涂覆的阻镀层,再按垂直于空心线圈的引脚的连线方向切割出电感成品坯体;
6)   在电感成品坯体上没有阻镀层的表面上沉积一层或多层金属导电层,得到表面安装电感器成品。
 其中,电感本体指电感成品不包含其上的阻镀层以及金属导电层的部分。
 更具体地,所述的步骤1)中制备电感母体的具体步骤为:
1)-1按照规格设计绕制空心线圈;
1)-2使用磁性粉末材料按照规格设计制造包含按行列阵列排列的电感本体的电感母体的基体;设计时,按行列阵列排列空心线圈并将空心线圈引脚方向排列一致;
1)-3将按照1)-2所述方式制造的基体与按照1)-1所述方式制造的空心线圈装配,得到线圈与基体的装配体;
1)-4将线圈与基体的装配体置于模具的模腔之内,向模腔中填入磁粉后进行冷压成型或热压成型或进行冷压及热压成型和保压处理,得到电感母体初坯; 
1)-5对电感母体初坯进行热处理成为电感母体成品坯体;
1)-6对电感母体成品坯体进行机械处理,以达到设计要成为电感母体成品。
 更好地,所述的步骤3)中对电感组合体初坯进行本体处理后对其表面进行阻镀处理,成为电感组合体坯体的具体步骤为:
3)-1对电感组合体初坯进行倒角处理成为电感组合体倒角初坯;
3)-2对电感组合体倒角初坯表面进行超声波清洗处理;
3)-3烘干电感组合体倒角初坯表面,再对电感组合体倒角初坯进行表面涂覆阻镀层处理,在电感组合体倒角初坯的电感本体表面均匀地涂覆上阻镀层,得到电感组合体坯体。
 更具体地,所述的步骤4)的具体步骤为:
4)-1将多组电感本体排列方式相同的包含多个电感本体的电感组合体坯体整齐地排放在夹具中,并将这多组电感组合体坯体的一端对齐到一条直线的一侧,形成电感组合体坯体组合。
 更具体地,所述的步骤5)的具体步骤为:
5)-1除部分料头外,按垂直于线圈的引脚的连线方向去除电感组合体坯体组合中相同长度的阻镀层,去除的阻镀层的长度为表面安装电感器电极长度的2倍与切割线宽度之和;
5)-2以上述5)-1步骤中的去除的阻镀层的中线为切割线位置对上述5)-1步骤所得的电感组合体成品组合按垂直于线圈引脚连线方向进行切割,得到多个电感成品坯体。
 步骤5)-1经过去除部分阻镀层以后得到的电感组合体成品组合中的电感组合体成品,其一个表面经过加工,去除了电感组合体成品中电感本体的部分电极表面上所涂覆的阻镀层。
 通过优化设计,这些去除的表面部分包含加工工艺中所包含的多余的部分的表面阻镀层,因而去除的表面部分具有相同的宽度以及相等的间距,即以产品长度加切割线宽度等间距循环,方便加工生产。 
 由于步骤5)中在不重新装卸电感组合体成品的状态下,对感组合体成品组合进行切割得到多个电感成品坯体,因此,其一致性好。
 电感成品坯体中空心线圈两端的引线分别在5)-2所述切割得到的电感成品坯体的两侧电极面处外露或在5)-1所述去除阻镀层处理后得到的电感本体表面形成的电极面处外露。
 优选的切割方式为多线切割方式。
 更好地,所述的步骤6)中所述金属导电层采用物理气相沉积、化学气相沉积、电镀和化学镀等工艺中的一种或多种制得。
 与现有技术相比,本发明具有以下优点:由于磁粉和空心线圈通过模制方式后切割制得包含多个电感本体的电感组合体坯体,又将多组电感本体排列方式相同的包含多个电感本体的电感组合体坯体按长度方向组合在一起集体进行去除阻镀层和切割出单体电感成品坯体,其加工的中间产品尺寸成倍增大,能够减少加工难度,可以达到批量精密生产,降低加工成本,电感电极可以做到大小一致,能够保证批量产品的一致性,从而消除产品在装配过程中可能发生的立碑效应。
附图说明
 图1为本发明实施例表面安装电感器的空心线圈的示意图。
 图2为本发明实施例表面安装电感器的基体的示意图。
 图3为本发明的空心线圈和基体的装配体的结构图。
 图4为本发明实施例制得的包含多个电感本体的电感母体。
 图5-1为本发明实施例电感母体切割后的电感组合体初坯示意图,图5-2为经过倒角处理的放大的电感组合体倒角初坯示意图。
 图6为本发明实施例电感组合体倒角初坯表面阻镀后的示意图。
 图7为加工表面阻镀后的电感组合体坯体的夹具图。
 图8为安装电感组合体坯体后的夹具图。
 图9为去除部分阻镀层后的夹具图。
 图10为切割后的夹具图。
 图11-1、图11-2、图11-3、图11-4、图11-5、图11-6为各种表面安装电感器成品坯体的示意图。
 图12为本发明实施例表面安装电感器成品的立体示意图。
 图13为本发明实施例表面安装电感器成品的俯视图。
 图14为本发明实施例表面安装电感器成品坯体的切割示意图。
 图15为本发明的空心线圈和基体的装配体的结构图几种可能变形形式。
实施方式
 下面结合附图、实施例对本发明作详细描述。
 1、材料的制备
1.1磁性粉末
选用铁硅铬合金粉、羰基铁粉、还原铁粉、铁硅铝合金粉、铁镍合金粉和铁硅合金粉等磁性粉末中的任意一种或者多种的混合物和辅材混合。
 所述的辅材包括钝化剂、绝缘剂、粘结剂和润滑剂。
 将钝化剂溶液与主材合金粉混合,加温至≥40℃后保持温度然后搅拌,搅拌时间≥30分钟,随后将温度升高至50℃~90℃,使钝化剂溶液中的溶剂完全挥发得到干燥的钝化合金粉;按照比例称取绝缘剂,将绝缘剂与钝化合金粉混合后搅拌,搅拌时间≥40分钟,得到绝缘合金粉;按照比例称取粘结剂,将所述的粘接剂溶解在溶剂中得到粘结剂溶液,将粘结剂溶液与绝缘合金粉混合后搅拌,搅拌时间≥40分钟,随后加热至50~80℃将粘结剂溶液中的溶剂挥发,得到粘结合金粉;按照比例称取润滑剂,将润滑剂与粘结合金粉混合后搅拌,搅拌时间≥30分钟。再过筛造粒,150℃烘烤约40分钟,对不同粒径粗细分布的粉末进行配比,得到磁性粉末。
 当然,上述磁性粉末还可采用其他常规的组成和方法,在此不再一一列举,也可使用背景技术所提到的专利文献中的组成和方法。
 1.2空心线圈
空心线圈由具有绝缘层的导线构成,所述导线可以具有自粘层,自粘层的粘着温度为80℃~220℃,所述的具有绝缘层的导线的绝缘层的耐温为180℃~450℃。
 可采用图1-1所示的(圆角)矩形截面导线,使用阿尔法绕制方式绕制的线圈,也可采用图1-2的圆截面导线,使用普通绕制方法制成的线圈。
 优选地,采用多轴绕制的绕线方式绕制空心线圈,提升绕线速度。空心线圈必须达到相应的技术标准。
 2、表面安装电感器的制造
一种表面安装电感器的制造方法,其包括以下步骤:
1)   按行列阵列排列空心线圈并将空心线圈的引脚的方向连线排列一致然后用磁粉通过模压方式制备电感母体;
2)   按照空心线圈的引脚的连线方向切割电感母体得到多组包含多个电感本体的电感组合体初坯;
3)   对电感组合体初坯进行本体处理后再进行表面阻镀处理,成为电感组合体坯体;
4)   将多组电感本体排列相同的包含多个电感本体的电感组合体坯体按行排列形成电感组合体坯体组合; 
5)   按垂直于空心线圈的引脚的连线方向去除电感组合体坯体组合中电感本体的对应电极部位上所涂覆的阻镀层,再按垂直于空心线圈的引脚的连线方向切割出电感成品坯体;
6)   在电感成品坯体的电极表面沉积一层或多层金属导电层,得到表面安装电感器成品。
 其中,电感本体指电感成品不包含其上的阻镀层以及金属导电层的部分。
 本实施例中,所述步骤1)制备电感母体具体如下:
   ①.按照设计规格绕制出如图1-1所示的空心线圈。
  ②.用磁粉制出如图2-1所示的按照平行于线圈的引脚的连线方向与垂直于线圈的引脚的连线方向成4行或5列排成规则阵列的包含4×5个电感本体的电感母体的基体。其包括基座和设置在基座上的按行列排布的4×5个凸台。当空心线圈套在凸台上时,凸台将限制空心线圈在基体平面方向上的自由度,线圈的引脚的连线方向固定。
 如图2-2所示,上述凸台也可替换为凹槽。
 如图2-3所示,上述凸台也可替换为既有限位空心线圈的凹槽,同时还具备限位空心线圈的凸台,这样,能更好地限位空心线圈。
 如图2-4所示,上述凸台还可替换为空心线圈四周的限位柱,增加空心线圈的限位方法,以适应多种情形。
  ③.选用图1-1所示的空心线圈装配到图2-1的具有4×5个凸台的基体上,形成图3-1所示的具有4×5个凸台的基体与空心线圈的装配体。
 ④.将基体与空心线圈的装配体置于模具的模腔之内,装填磁性粉末材料进行冷压成型或热压成型或进行冷压及热压成型和保压处理,制成电感母体初坯,如图4所示,图中4×5小矩形表示电感本体的轮廓,仅为解释用,实际产品中并不可见。所述冷压处理的温度不高于50℃,所述的热压处理的温度为60℃~250℃,所述的保压处理时间为10秒~300秒。
 ⑤.对电感母体初坯进行加热固化处理成为电感母体成品坯体。所述的热处理的温度为120℃~250℃,所述的热处理时间为30分钟~400分钟。
 ⑥.对电感母体成品坯体进行机械处理,以达到设计要求,成为电感母体成品。
 上述机械处理包括磨削处理或者铣削处理或者其他处理方式。将电感母体的上下表面去除设计的厚度,达到设计要求。优选的加工处理是使用平面磨床磨削处理。
 更好地,电感母体设计成圆角矩形,特别设计该矩形电感母体具有不同大小的圆角半径,方便上述加工过程中区分电感母体成品坯体的上下表面。
 所述步骤2)制备电感组合体初坯具体如下:
将电感母体成品按照电感本体中线圈的引脚的连线方向进行切割得到4组电感组合体初坯,每组电感组合体初坯包含5个电感本体,图5-1所示,其两端包含有加工工艺中所需要包含的多余部分(料头),中间包含前述的间隔排列的5个电感本体。
 所述步骤3)电感组合体初坯阻镀处理具体如下:
对电感组合体初坯进行倒角处理成为电感组合体倒角初坯,见图5-2。具体为添加大于电感组合体初坯重量的倒角介质,放入倒角设备完成倒角作业,倒角时间不低于20分钟。
 上述包含5个电感本体的电感组合体初坯经过倒角后,成为电感组合体倒角初坯;然后对电感组合体倒角初坯表面进行超声波清洗处理,烘干产品表面,再对电感组合体倒角初坯进行表面涂覆阻镀层处理,在电感组合体倒角初坯中所对应的电感本体表面均匀地涂覆上阻镀层,得到电感组合体坯体。优选地在电感组合体倒角初坯全部表面均匀地涂覆上阻镀层,得到电感组合体坯体,见图6。
 所述阻镀层具有绝缘防锈的特性,阻镀采用常见的组分和方法进行,在此不再详细叙述。
 所述步骤4)电感组合体坯体排列具体如下:
设计出与步骤3)所得电感组合体坯体相对应的夹具,见图7,将20组电感本体排列方式相同的包含5个电感本体的电感组合体坯体整齐地排放在夹具中,并将这20组电感组合体坯体长度方向上的一端对齐到夹具中一条直线的一侧,形成电感组合体坯体组合。见图8。
 所述步骤5)电感组合体坯体阻镀层的去除和切割具体如下:
除部分料头外,按垂直于线圈的引脚的连线方向去除电感组合体坯体组合中相同长度的阻镀层,去除阻镀层的长度为表面安装电感器电极长度的2倍与切割线宽度之和。得到电感组合体成品组合,即20组一端对齐的电感本体排列方式相同的包含5个电感本体的电感组合体成品。
 如图9所示,为经过表面处理以后得到的电感组合体成品组合,即20组一端对齐的电感本体排列方式相同的包含5个电感本体的电感组合体成品,310表示加工电感组合体坯体的夹具;311为电感本体的中间部分,其上保留有阻镀层,是电感成品表面阻镀层的组成部分;312表示经过加工去除阻镀层后电感组合体露出的本体部分,为2个电感本体中心之间的去除的阻镀层的长度,为表面安装电感器电极长度的2倍与切割线宽度之和;313 与314 表示左右侧工艺料头的部分。优选地设计工艺料头的部分长度313与314大小相等、长度为T。
 此步骤优选的加工方式为激光烧除方式。 
 在不重新装卸产品的状态下,以上述步骤中去除的阻镀层的中线为切割线位置对上述步骤所得的电感组合体成品组合按垂直于线圈引脚连线方向进行切割,得到多个电感成品坯体。如图10所示,得到100个电感成品坯体。本实施例中,每个电感成品坯体中空心线圈两端的引线分别在本次切割得到的电感本体的长度方向的两个端面电极面处外露。
 本实施例中,电感成品如图13所示, L表示产品长度,W表示产品宽度,A表示产品表面的阻镀层宽度,B表示产品电极长度。
 本实施例中,优选地根据下述的去除阻镀层的方法和切割电感成品坯体的方法设计出步骤2-1中的空心线圈排列方法。
 图10中,序号310表示加工电感组合体坯体的夹具;311为电感本体的中间部分,其上保留有阻镀层,是电感成品表面阻镀层的组成部分;321表示电感本体一个表面上的左侧电极本体表面,322表示电感本体一个表面上的右侧电极本体表面;323表示切割去除部分;其中321与322以及323的宽度之和等于图9中的312的宽度; 324与325 表示工艺料头,优选地设计工艺料头长度324与325大小相等、长度为T+B,如图14所示,避免在切割时损伤加工夹具以降低生产成本。
 本发明该步骤能够保证所有的20组包含5个电感本体的电感组合体坯体及电感组合体成品,即电感组合体坯体组合及电感组合体成品组合,在这两个加工步骤的加工时与夹具没有发生相对位置变动,两个加工设备的加工坐标系重合。更好地,上述两个步骤在同一加工设备上完成。
 此步骤优选的除阻镀层加工方式为激光烧除方式;优选的切割方式为多线切割方式,即可以同时对多个电感本体进行切割。
 优选的除阻镀层的方法:如图14所示,先保留长度T后,以2×B+F的宽度去除阻镀层然后保留阻镀层宽度A,再重复进行2×B+F的宽度去除阻镀层然后保留阻镀层宽度A,重复至最后一个电感器进行,其中F表示切割线宽度,2×B+F表示2倍产品电极宽度+切割线宽度,图14所示阻镀层宽度A如图13所示表示产品表面的阻镀层宽度。
 切割电感成品坯体的方法:先保留长度S(数值上等于料头长度T+B),然后使用切割宽度为F的大功率激光束对这20组包含5个电感本体的电感组合体成品按照产品长度L(如图13所示L=A+2B)加切割线宽度F进行等间距(L+F)切割产品得到20×5个电感成品坯体,见图10、图11、图14,大功率激光束的切割宽度为F。
 优选的切割电感成品坯体的方法为多线切割方式。
 经过上述加工过程后所得到的电感成品坯体除电极所在部位以外的其他部位均已涂覆阻镀层,见图11,311为电感本体的中间部分,其上保留有阻镀层,是电感成品表面阻镀层的组成部分;321表示电感本体一个表面上的左侧电极本体表面;322表示电感本体一个表面上的右侧电极本体表面。
 为了提高加工效果,切割完毕后采用稀酸液清洗电感成品坯体,再用纯水超声波清洗1~10 分钟,然后在50℃~80℃下烘干表面水分后,在80℃~120℃下烘干30分钟。
 步骤6)电极的制备
由于步骤5)中得到的电感成品坯体仅有电极部位没有被阻镀层覆盖,因此,可对该电极部位进行表面沉积金属导电层而形成电极。
 所述表面沉积金属导电层可采用物理气相沉积、化学气相沉积、电镀和化学镀等工艺中的一种或多种,在电感成品坯体上没有阻镀层的表面上沉积一层或多层金属导电层,该金属导电层即为电极,就得到了表面安装电感器;见图12。
 更好的金属导电层为四层镀层,第一层采用电镀镍层,第二层采用电镀铜层,第三层采用电镀镍层,第四层采用电镀锡层。
 考虑到节约成本以及满足环保,电极镀层的区域如图12所示为产品长度方向的两个端面,以及产品的一个长度方向表面上的与两个端面连接的部分表面。在产品表面的其他区域均涂覆有阻镀层,防止在装配过程中出现意外导通。
本实施例中采用4×5排列的空心线圈,20组电感组合体坯体作为实施例,当然,空心线圈的排列方式、电感组合体坯体的组数均可变化,例如,采用5×5排列的空心线圈,30组电感组合体坯体等等。推而广之,可采用M×N-Q排列的空心线圈,电感母体的行数可以变化,并且在每行中也可由不同数量个电感本体组成,如图15-1、图15-2、图15-3 所示。其中M、N、Q均为非负整数,M、N大于1。例如,将前面所说的包含5个电感本体的电感组合体坯体替换为图15中的切割出的包含三个或四个电感本体的电感组合体坯体。

Claims (8)

  1. 一种表面安装电感器的制造方法,其特征在于:其包括以下步骤:
    1)按行列阵列排列空心线圈并将空心线圈的引脚的连线方向排列一致,然后用磁粉通过模压方式制备电感母体;
    2)按照空心线圈的引脚的连线方向切割电感母体得到多组包含多个电感本体的电感组合体初坯;
    3)对电感组合体初坯进行本体处理后再进行表面阻镀处理,成为电感组合体坯体;
    4)将多组电感本体排列相同的包含多个电感本体的电感组合体坯体按行排列形成电感组合体坯体组合; 
    5)按垂直于空心线圈的引脚的连线方向去除电感组合体坯体组合中电感本体的对应电极部位上所涂覆的阻镀层,再按垂直于空心线圈的引脚的连线方向切割出电感成品坯体;
    6)在电感成品坯体上没有阻镀层的表面上沉积一层或多层金属导电层,得到表面安装电感器成品;
    其中,电感本体指电感成品不包含其上的阻镀层以及金属导电层的部分。
  2.  根据权利要求1所述的表面安装电感器的制造方法,其特征在于:所述的步骤1)中制备电感母体的具体步骤为:
    1)-1按照设计规格绕制空心线圈;
    1)-2使用磁性粉末材料按照规格设计制造包含按行列阵列排列的电感本体的电感母体的基体;设计时,按行列阵列排列空心线圈并将空心线圈引脚方向排列一致;
    1)-3将按照1)-2所述方式制造的基体与按照1)-1所述方式制造的空心线圈装配,得到线圈与基体的装配体;
    1)-4将线圈与基体的装配体置于模具的模腔之内,向模腔中填入磁粉后进行冷压成型或热压成型或进行冷压及热压成型和保压处理,得到电感母体初坯;
    1)-5对电感母体初坯进行热处理成为电感母体成品坯体;
    1)-6对电感母体成品坯体进行机械处理,以达到设计要求成为电感母体成品。
  3.  根据权利要求1或2所述的表面安装电感器的制造方法,其特征在于:所述步骤3)具体如下:
    3)-1对电感组合体初坯进行倒角处理成为电感组合体倒角初坯;
    3)-2对电感组合体倒角初坯表面进行超声波清洗处理;
    3)-3烘干电感组合体倒角初坯表面,再对电感组合体倒角初坯进行表面涂覆阻镀层处理,在电感组合体倒角初坯的电感本体表面均匀地涂覆上阻镀层,得到电感组合体坯体。
  4.  根据权利要求1中所述的表面安装电感器的制造方法,其特征在于:所述步骤4)的具体步骤为:
    4)-1将多组电感本体排列方式相同的包含多个电感本体的电感组合体坯体整齐地排放在夹具中,并将这多组电感组合体坯体的一端对齐到一条直线的一侧,形成电感组合体坯体组合。
  5.  根据权利要求1所述的表面安装电感器的制造方法,其特征在于:所述步骤5)的具体步骤为:
    5)-1除部分料头外,按垂直于线圈的引脚的连线方向去除电感组合体坯体组合中相同长度的阻镀层,去除的阻镀层的长度为表面安装电感器电极长度的2倍与切割线宽度之和;
    5)-2以上述5)-1步骤中的去除的阻镀层的中线为切割线位置对上述5)-1步骤所得的电感组合体成品组合按垂直于线圈引脚连线方向进行切割,得到多个电感成品坯体。
  6.  根据权利要求1所述的表面安装电感器的制造方法,其特征在于:所述优选的切割方式为多线切割方式。
  7.  根据权利要求5所述的表面安装电感器的制造方法,其特征在于:所述去除阻镀层和切割均在同一加工夹具上完成。
  8.  根据权利要求1所述的表面安装电感器的制造方法,其特征在于:所述步骤6)中所述金属导电层采用物理气相沉积、化学气相沉积、电镀和化学镀等工艺中的一种或多种制得。
PCT/CN2023/095065 2022-05-27 2023-05-18 一种表面安装电感器的制造方法 WO2023226875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210587760.1A CN114843098A (zh) 2022-05-27 2022-05-27 一种表面安装电感器的制造方法
CN202210587760.1 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023226875A1 true WO2023226875A1 (zh) 2023-11-30

Family

ID=82571585

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/095065 WO2023226875A1 (zh) 2022-05-27 2023-05-18 一种表面安装电感器的制造方法

Country Status (2)

Country Link
CN (1) CN114843098A (zh)
WO (1) WO2023226875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117423547A (zh) * 2023-12-18 2024-01-19 惠州市德立电子有限公司 一种色码电感绕线系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114843098A (zh) * 2022-05-27 2022-08-02 张灵波 一种表面安装电感器的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032986A (ja) * 2003-07-14 2005-02-03 Matsushita Electric Ind Co Ltd 複合電子部品の製造方法
CN105355409A (zh) * 2015-11-18 2016-02-24 韵升控股集团有限公司 一种表面安装电感器的制造方法
CN112542305A (zh) * 2020-06-24 2021-03-23 华萃微感电子(江苏)有限公司 一种一体化分段成型微电感制程工艺
CN114843098A (zh) * 2022-05-27 2022-08-02 张灵波 一种表面安装电感器的制造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430427B1 (ko) * 2013-08-19 2014-08-21 오세종 콤포짓 파워 인덕터의 양측면에 전기 단자를 추가 형성하는 방법
WO2018219367A2 (zh) * 2018-09-13 2018-12-06 深圳顺络电子股份有限公司 传递模塑电感元件及其制造方法
CN109360731A (zh) * 2018-12-03 2019-02-19 东莞市高东电子科技有限公司 一种一体成型电感制作方法及利用该方法制作的电感
CN112164570A (zh) * 2020-10-19 2021-01-01 湖南创一电子科技股份有限公司 金属磁粉芯一体式芯片电感的制备方法
CN114334428B (zh) * 2020-10-30 2022-10-14 宁波磁性材料应用技术创新中心有限公司 一种一体成型模压电感的制造方法
CN113963928B (zh) * 2021-11-30 2022-11-25 横店集团东磁股份有限公司 一种功率电感及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005032986A (ja) * 2003-07-14 2005-02-03 Matsushita Electric Ind Co Ltd 複合電子部品の製造方法
CN105355409A (zh) * 2015-11-18 2016-02-24 韵升控股集团有限公司 一种表面安装电感器的制造方法
CN112542305A (zh) * 2020-06-24 2021-03-23 华萃微感电子(江苏)有限公司 一种一体化分段成型微电感制程工艺
CN114843098A (zh) * 2022-05-27 2022-08-02 张灵波 一种表面安装电感器的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117423547A (zh) * 2023-12-18 2024-01-19 惠州市德立电子有限公司 一种色码电感绕线系统
CN117423547B (zh) * 2023-12-18 2024-04-12 惠州市德立电子有限公司 一种色码电感绕线系统

Also Published As

Publication number Publication date
CN114843098A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023226875A1 (zh) 一种表面安装电感器的制造方法
JP7089576B2 (ja) 金属磁性粉末コアからなる一体式チップインダクタの製造方法
CN111755233A (zh) 一种分段成型微电感制程工艺
CN111724980B (zh) 侧表面开气隙二合一结构电感器的制造方法
CN114334428B (zh) 一种一体成型模压电感的制造方法
CN102122563B (zh) 一种绕线电感及其制造方法
CN112768176A (zh) 一种新型精密功率电感及其加工工艺
CN101354947A (zh) 磁性元件及其制造方法
CN111508694A (zh) 超低阻抗热压成型电感及其制造方法
CN202887925U (zh) 一种磁芯及一种贴片电感
CN111489890B (zh) 一种贴片功率电感器的制作方法
CN115631937A (zh) 一种低阻抗电感及其制造方法和应用
WO2023133994A1 (zh) 一种一体成型电感器的制造方法及应用其制备的电感器
JPH03247780A (ja) はんだ付け可能なめっきをしたプラスチック部材
CN115295299B (zh) 一体成型电感的制备方法及其应用
JPS6014416A (ja) 電子部品の製造方法
TWI729910B (zh) 磁芯、磁芯電極的製作方法及電感元件
CN110706879A (zh) 一种高性能锰锌smd贴片电感及其生产工艺
CN213124106U (zh) 一种金属磁粉芯一体式芯片电感
CN114188129B (zh) 变压器及其制备方法
CN115527768A (zh) 一种电感及其制备方法和应用
CN210984486U (zh) 一种电感或变压器
CN216597243U (zh) 一种电感器
CN116631739A (zh) 一种微型线圈、包含该微型线圈的微型电感及其制备方法
JPS58132907A (ja) インダクタの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23810947

Country of ref document: EP

Kind code of ref document: A1