WO2023226389A1 - 一种偏心半球轮式自适应机器人 - Google Patents

一种偏心半球轮式自适应机器人 Download PDF

Info

Publication number
WO2023226389A1
WO2023226389A1 PCT/CN2022/139438 CN2022139438W WO2023226389A1 WO 2023226389 A1 WO2023226389 A1 WO 2023226389A1 CN 2022139438 W CN2022139438 W CN 2022139438W WO 2023226389 A1 WO2023226389 A1 WO 2023226389A1
Authority
WO
WIPO (PCT)
Prior art keywords
eccentric
driver
walking
hemisphere
half body
Prior art date
Application number
PCT/CN2022/139438
Other languages
English (en)
French (fr)
Inventor
万安平
缪徐
袁建涛
殷锐
苏旭明
石燕栋
李文凯
刘璨贤
俞天曜
吴中杰
Original Assignee
浙大城市学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙大城市学院 filed Critical 浙大城市学院
Publication of WO2023226389A1 publication Critical patent/WO2023226389A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for

Definitions

  • the invention relates to the field of robots, and in particular to an eccentric hemispherical wheel-type adaptive robot.
  • the object of the present invention is to provide an eccentric hemispherical wheel-type adaptive robot.
  • the invention can improve the passability and stability of the robot when walking on potholed road sections, and has strong terrain adaptability.
  • An eccentric hemispheric wheel-type adaptive robot includes a front half body and a rear half body, and the front half body and the rear half body are connected through a connecting component;
  • the front half is provided with a detection mechanism and a control unit
  • the front half and the rear half There are mounting slots on both sides of the front half and the rear half.
  • the side of the shaft driver is connected with a deflection angle driver.
  • the outer part of the deflection angle driver is equipped with a walking wheel.
  • shaft, the end of the walking shaft is equipped with an eccentric hemisphere driver, and both sides of the eccentric hemisphere driver are eccentrically connected to eccentric plates.
  • the outside of the eccentric plate is equipped with a walking driver, and the outside of the walking driver is equipped with a walking hemisphere.
  • the walking hemisphere and the eccentric plate are connected through bearings. connect;
  • the detection mechanism monitors the terrain at the front, and the terrain data is sent to the shaft drive, deflection angle drive, eccentric hemisphere drive and walking drive through the control unit; the shaft drive drives the walking shaft to rotate radially, and the deflection angle drive drives the walking shaft to rotate axially.
  • the eccentric hemisphere drive drives the eccentric plate to rotate to adjust the height of the walking hemisphere, and the walking drive is used to adjust the rotational speed of the walking hemisphere to adjust to a suitable posture to pass the terrain ahead.
  • the detection mechanism includes a laser radar and a camera arranged on the front part of the front half body, and the laser radar and camera are both connected to the control unit.
  • the connection assembly includes two side connection blocks provided on the front half body and a main connection block provided on the rear half body.
  • the side connection blocks are respectively located on both sides of the main connection block. And rotationally connected with the main connecting block.
  • the main connecting block and the side connecting block are both triangular prism structures, and the ends of the main connecting block and the side connecting block are provided with chamfers.
  • the lower end of the walking shaft has a flat part
  • the eccentric hemispheric driver is connected to the flat part
  • the walking hemispheres are distributed on both sides of the flat part.
  • the walking hemisphere has a tangential surface and a spherical surface, a circular groove is provided on the tangential surface of the walking hemisphere, and the eccentric plate is arranged in the circular groove.
  • a TOF sensor is integrated inside the camera.
  • the front half body and the rear half body are provided with arcuate surfaces in the circumferential direction.
  • the present invention has the following beneficial effects:
  • the end of the traveling shaft is provided with an eccentric hemispheric driver. Both sides of the eccentric hemispheric driver are eccentrically connected to eccentric plates.
  • the exterior of the eccentric plate is provided with a traveling driver.
  • the exterior of the traveling driver is provided with a traveling hemisphere.
  • the traveling hemisphere and the eccentric The plates are connected by bearings; when the robot walks to an uneven road section, the eccentric hemisphere driver on one side of the pothole section drives the eccentric plate to rotate, thereby adjusting the height of the walking hemisphere and changing the height of the robot on the side of the pothole.
  • the front half and the rear half of the robot are still kept at the same height and will not sway up and down with the ups and downs of the road surface; in addition, in the present invention, installation grooves are provided on both sides of the front half and the rear half, and the installation grooves are equipped with There is a rotating shaft driver.
  • the shaft driver can be started. The rotation of the shaft driver can drive the deflection angle driver to rotate, and ultimately drive the walking hemisphere in the vertical direction.
  • the front half body and the rear half body are connected through a connecting assembly.
  • the connecting assembly includes two side connecting blocks provided on the front half body.
  • the connecting assembly also includes a main connecting block provided on the rear half body.
  • the side connecting blocks are located on both sides of the main connecting block and are rotationally connected with the main connecting block; when the robot walks to a road section with different slopes, relative rotation can occur between the side connecting blocks and the main connecting block, so that the front half and the rear half
  • the relative rotation between the bodies can make the front and rear half of the robot match the slope of the road where it is located, thereby improving the stability of the robot when walking on sections with different slopes.
  • Figure 1 is a schematic structural diagram of the eccentric hemispherical wheeled adaptive robot of the present invention
  • Figure 2 is a schematic top structural view of the eccentric hemispherical wheeled adaptive robot of the present invention
  • Figure 3 is an assembly diagram of the central axis driver and the deflection angle driver of the eccentric hemispherical wheel-type adaptive robot of the present invention
  • Figure 4 is a schematic structural diagram of the walking axis in the eccentric hemispherical wheeled adaptive robot of the present invention
  • Figure 5 is an assembly diagram of the walking hemisphere and the eccentric hemisphere driver in the eccentric hemisphere wheeled adaptive robot of the present invention
  • Figure 6 is a schematic structural diagram of the walking hemisphere in the eccentric hemispheric wheeled adaptive robot of the present invention.
  • An eccentric hemispherical wheel-type adaptive robot as shown in Figure 1, includes a front half body 1 and a rear half body 4.
  • the front half body 1 and the rear half body 4 are both provided with arc surfaces in the circumferential direction.
  • the front half body The body 1 and the rear half body 4 are connected through a connecting assembly.
  • the connecting assembly includes two side connecting blocks 11 provided on the front half body 1.
  • the connecting assembly also includes a main connecting block 12 provided on the rear half body 4.
  • the connecting blocks 11 are respectively located on both sides of the main connecting block 12 and are rotationally connected to the main connecting block 12; the main connecting block 12 and the side connecting blocks 11 are both triangular prism structures, and the ends of the main connecting block 12 and the side connecting blocks 11 They are all provided with chamfers, which can prevent the main connecting block 12 or the side connecting block 11 from being hindered by the front half 1 or the rear half 4 when rotating.
  • the front half body 1 is provided with a detection mechanism and a control unit.
  • the detection mechanism includes a lidar 3 and a camera 2 arranged at the front of the front half body.
  • the lidar 3 and camera 2 are both connected to the control unit; the camera 2 is integrated with a TOF sensor.
  • TOF sensors can accurately measure the distance between objects, obstacles, walls or the ground around the robot, assist the robot in judging the terrain and position, thereby helping the robot avoid obstacles.
  • the mounting slot 5 is equipped with a rotatable shaft driver 6.
  • the shaft driver 6 has two built-in drive motors.
  • the drive motor is located on both sides of the shaft driver 6, and the output shaft of the drive motor is connected to the inner wall of the installation slot 5.
  • the drive motor can cause the shaft driver 6 to rotate relative to the installation slot 5, and the sides of the shaft driver 6 are connected
  • a walking shaft 8 is provided on the outside of the deflection angle driver 7.
  • a motor is built into the deflection angle driver 7.
  • the output shaft of the motor extends downward and is connected to the upper end surface of the walking shaft 8, so that the walking shaft 8 It can rotate relative to the deflection angle driver 7.
  • the lower end of the traveling shaft 8 has a flat part 801.
  • the end of the traveling shaft 8 is provided with an eccentric hemispheric driver 9.
  • the eccentric hemispheric driver 9 Connected to the flat part 801, eccentric plates 15 are eccentrically connected to both sides of the eccentric hemisphere driver 9.
  • the eccentric hemisphere driver 9 has two built-in eccentric drive motors.
  • the eccentric drive motors are located at both ends of the eccentric hemisphere driver 9.
  • the output of the eccentric drive motor The shaft is connected to the corresponding eccentric plate 15.
  • a traveling drive 14 is provided outside the eccentric plate 15.
  • a traveling hemisphere 10 is provided outside the traveling drive 14.
  • the traveling drive 14 has a built-in hub motor.
  • the output shaft of the hub motor is connected to the corresponding traveling hemisphere 10.
  • the walking hemisphere 10 is distributed on both sides of the flat part 801, the walking hemisphere 10 and the eccentric plate 15 are connected through the bearing 16;
  • the walking hemisphere 10 has a tangential surface and a spherical surface, as shown in Figure 6, the tangential surface of the walking hemisphere 10
  • a circular groove 13 is provided, and the eccentric plate 15 is arranged in the circular groove 13 .
  • the detection mechanism monitors the terrain at the front and sends the terrain data to the shaft driver 6, deflection angle driver 7, eccentric hemispheric driver 9 and walking driver 14 through the control unit; the shaft driver 6 drives the walking shaft 8 to rotate radially, and the deflection angle driver 7 drives the walking shaft 8 to rotate axially, the eccentric hemisphere driver 9 drives the eccentric plate 15 to rotate to adjust the height of the walking hemisphere 10, and the walking driver 14 is used to adjust the rotation speed of the walking hemisphere 10 to adjust to a suitable posture to pass the terrain ahead.
  • the four feet of the robot namely the four deflection angle drivers 7 and the walking axis 8, are all vertical.
  • the intersection of the tangential surface of the walking hemisphere 10 and the spherical surface serves as a rolling surface and is in contact with the ground.
  • the walking driver 14 The walking hemisphere 10 is driven to rotate around the center of the circle of the section, thereby achieving the effect of normal walking.
  • the deflection angle driver 7 is started to drive the walking shaft 8 to rotate, which in turn drives the eccentric hemisphere driver 9 to rotate, and finally the walking hemisphere 10 rotates, thereby realizing the steering of the robot.
  • the robot When the robot walks to an arc-shaped road section, such as some pipelines or smaller tunnels, it can start the shaft driver 6.
  • the rotation of the shaft driver 6 can drive the deflection angle driver 7 to rotate, and ultimately drive the walking hemisphere 10 to rotate in the vertical plane. , thereby changing the opening and closing angle of each "leg" of the robot, so that the intersection of the tangential surface of the walking hemisphere 10 and the spherical surface or the spherical surface of the walking hemisphere 10 located on the lower side can contact the inner walls of both sides of the pipe, thereby enabling the robot to move within the pipe.
  • the effect of walking is
  • the robot When the robot walks on roads with different slopes, for example, when the robot walks from a flat road to an uphill section, the front half 1 of the robot walks to the uphill section, while the rear half 4 of the robot is still on the flat section, and the side connecting blocks 11 and Relative rotation occurs between the main connecting blocks 12, causing relative rotation between the front half 1 and the rear half 4, so that the inclination angle of the front half 1 of the robot matches the slope, and the inclination of the rear half 4 of the robot The angle matches the flat ground.
  • the side connecting block 11 and the main connecting block 12 rotate relative to each other again, and the front half 1 and the rear half 4 also rotate relative to each other.
  • the inclination angles of the front half 1 and the rear half 4 are the same and match the angle of the slope.

Abstract

本发明公开了一种偏心半球轮式自适应机器人,包括前半体和后半体,前半体与后半体之间通过连接组件相连接;所述前半体上设有探测机构和控制单元;所述前半体和后半体的两侧均设有安装槽,安装槽内设有能够转动的轴式驱动器,轴式驱动器的侧部连接有偏转角驱动器,偏转角驱动器的外侧部设有行走轴,行走轴的端部设有偏心半球驱动器,偏心半球驱动器的两侧偏心连接有偏心板,偏心板的外部设有行走驱动器,行走驱动器外部设有行走半球,行走半球与偏心板经轴承相连接。本发明能够提高机器人行走在坑洼路段时的稳定性,方便对地貌信息的采集,还能够减轻机器人内部零件的震动。

Description

一种偏心半球轮式自适应机器人 技术领域
本发明涉及机器人领域,特别涉及一种偏心半球轮式自适应机器人。
背景技术
随着人工智能科技的不断发展,诞生了各种各样的人工智能机器人,这些机器人应用于生活、科研等各个领域。在地形勘测领域,也会使用到勘测机器人对环境的地形地貌信息进行采集。
为了方便机器人的行走,传统的勘测机器人一般都是通过普通的滚轮进行移动,而由于勘测环境的不同,一旦遇到一些崎岖路段或者坑洼路段,机器人的身体会随着路面的起伏上下晃动,因此现有的机器人的通过性和稳定性还不够理想。因此,研发一款可以提高机器人行走在坑洼路段时的通过性和稳定性,具有较强的地型自适应能力的机器人,成为了业界亟待解决的课题。
发明内容
本发明的目的在于,提供一种偏心半球轮式自适应机器人。本发明可以提高机器人行走在坑洼路段时的通过性和稳定性,具有较强的地型自适应能力。
本发明的技术方案:
一种偏心半球轮式自适应机器人,包括前半体和后半体,前半体与后半体之间通过连接组件相连接;
所述前半体上设有探测机构和控制单元;
所述前半体和后半体的两侧均设有安装槽,安装槽内设有能够转动的轴式驱动器,轴式驱动器的侧部连接有偏转角驱动器,偏转角驱动器的外侧部设有行走轴,行走轴的端部设有偏心半球驱动器,偏心半球驱动器的两侧偏心连接有偏心板,偏心板的外部设有行走驱动器,行走驱动器外部设有行走半球,行走半球与偏心板经轴承相连接;
探测机构监测前部的地形,地形数据经控制单元发送至轴式驱动器、偏转角驱动器、偏心半球驱动器和行走驱动器;轴式驱动器驱动行走轴径向转动,偏转角驱动器驱动行走轴轴向转动,偏心半球驱动器驱动偏心板转动以调节行走半球的高度,行走驱动器用以调节行走半球的转速,从而调整到合适的姿势以通过前方地形。
前述的偏心半球轮式自适应机器人中,所述的探测机构包括设置在前半体前部的激光雷达和摄像头,所述的激光雷达和摄像头均与控制单元相连。
前述的偏心半球轮式自适应机器人中,所述连接组件包括设置在前半体上的两个侧连接块和设置在后半体上的主连接块,侧连接块分别位于主连接块的两侧并与主连接块转动连接。
前述的偏心半球轮式自适应机器人中,所述主连接块和侧连接块均呈三棱柱状结构,并且主连接块和侧连接块的端部均设有倒角。
前述的偏心半球轮式自适应机器人中,所述行走轴的下端具有扁平部,偏心半球驱动器与扁平部连接,行走半球分布在扁平部的两侧。
前述的偏心半球轮式自适应机器人中,所述行走半球上具有切面和球面,行走半球的切面上设有圆形槽,偏心板设置在圆形槽内。
前述的偏心半球轮式自适应机器人中,所述摄像头内部集成有TOF传感器。
前述的偏心半球轮式自适应机器人中,所述前半体和后半体的周向均设有弧面。
与现有技术相比,本发明具有以下有益效果:
1、本发明中,行走轴的端部设有偏心半球驱动器,偏心半球驱动器的两侧偏心连接有偏心板,偏心板的外部设有行走驱动器,行走驱动器外部设有行走半球,行走半球与偏心板经轴承相连接;当机器人行走至不平整的路段时,通过坑洼路段一侧的偏心半球驱动器带动偏心板转动,从而调节行走半球的高度,改变机器人位于坑洼处一侧的高度,能够使得机器人的前半体和后半体仍然保持在同一高度,不会随着路面的起伏上下晃动;此外,本发明中,前半体和后半体的两侧均设有安装槽,安装槽内设有能够转动的轴式驱动器,当机器人行走至弧状的路段,例如一些管道或 者较小的隧道内时,可以启动轴式驱动器,轴式驱动器转动能够带动偏转角驱动器转动,最终带动行走半球在竖直平面内转动,从而改变机器人每条“腿”的开合角度,使得行走半球的切面与球面的交汇处或者位于下侧的行走半球的球面能够与管道的两侧内壁接触,从而实现机器人在管道内行走的效果,扩大了机器人的适用范围。由此可见,本发明具有优越的野外通过性和稳定性,地型自适应能力较强。
2、本发明中,前半体与后半体之间通过连接组件相连接,连接组件包括设置在前半体上的两个侧连接块,连接组件还包括设置在后半体上的主连接块,侧连接块分别位于主连接块的两侧并与主连接块转动连接;当机器人行走至坡度不同的路段时,侧连接块和主连接块之间能够发生相对转动,从而使得前半体与后半体之间发生相对转动,能够使得机器人的前半体和后半体均与自身所在路面的坡度相匹配,进而提高机器人在行走至坡度不同的路段时的稳定性。
附图说明
图1是本发明偏心半球轮式自适应机器人的结构示意图;
图2是本发明偏心半球轮式自适应机器人的俯视结构示意图;
图3是本发明偏心半球轮式自适应机器人中轴式驱动器与偏转角驱动器的装配图;
图4是本发明偏心半球轮式自适应机器人中行走轴的结构示意图;
图5是本发明偏心半球轮式自适应机器人中行走半球与偏心半球驱动器的装配图;
图6是本发明偏心半球轮式自适应机器人中行走半球的结构示意图。
附图中的标记为:1-前半体;2-摄像头;3-激光雷达;4-后半体;5-安装槽;6-轴式驱动器;7-偏转角驱动器;8-行走轴;801-扁平部;9-偏心半球驱动器;10-行走半球;11-侧连接块;12-主连接块;13-圆形槽;14-行走驱动器;15-偏心板;16-轴承。
具体实施方式
下面结合附图和实施例对本发明作进一步的说明,但并不作为对本发 明限制的依据。
实施例:
一种偏心半球轮式自适应机器人,如附图1所示,包括前半体1和后半体4,前半体1和后半体4的周向均设有弧面,如附图2所示,前半体1与后半体4之间通过连接组件相连接,连接组件包括设置在前半体1上的两个侧连接块11,连接组件还包括设置在后半体4上的主连接块12,侧连接块11分别位于主连接块12的两侧并与主连接块12转动连接;主连接块12和侧连接块11均呈三棱柱状结构,并且主连接块12和侧连接块11的端部均设有倒角,设置倒角能够避免主连接块12或者侧连接块11转动时受到前半体1或者后半体4的阻碍。
前半体1上设有探测机构和控制单元,的探测机构包括设置在前半体前部的激光雷达3和摄像头2,的激光雷达3和摄像头2均与控制单元相连;摄像头2内部集成有TOF传感器,TOF传感器能够精确测算机器人周围物体、障碍、墙面或者地面距离,辅助机器人判断地形与位置,从而帮助机器人实现避障的作用。
前半体1和后半体4的两侧均设有安装槽5,如附图3所示,安装槽5内设有能够转动的轴式驱动器6,轴式驱动器6内置有两个驱动电机,驱动电机位于轴式驱动器6的两侧,并且驱动电机的输出轴与安装槽5内壁相连接,驱动电机启动时能够使得轴式驱动器6相对于安装槽5转动,轴式驱动器6的侧部连接有偏转角驱动器7,偏转角驱动器7的外侧部设有行走轴8,偏转角驱动器7内置有电机,电机的输出轴向下伸出并与行走轴8的上端面相连接,从而使得行走轴8能够相对偏转角驱动器7而转动,如附图4所示,行走轴8的下端具有扁平部801,如附图5所示,行走轴8的端部设有偏心半球驱动器9,偏心半球驱动器9与扁平部801连接,偏心半球驱动器9的两侧偏心连接有偏心板15,偏心半球驱动器9内置有两个偏心驱动电机,偏心驱动电机分别位于偏心半球驱动器9的两端,偏心驱动电机的输出轴与对应的偏心板15相连接,偏心板15的外部设有行走驱动器14,行走驱动器14外部设有行走半球10,行走驱动器14内置有轮毂电机,轮毂电机的输出轴与对应的行走半球10相连接,行走半球10分布在扁平部801的两侧,行走半球10与偏心板15经轴承16 相连接;行走半球10上具有切面和球面,如附图6所示,行走半球10的切面上设有圆形槽13,偏心板15设置在圆形槽13内。
探测机构监测前部的地形,将地形数据经控制单元发送至轴式驱动器6、偏转角驱动器7、偏心半球驱动器9和行走驱动器14;轴式驱动器6驱动行走轴8径向转动,偏转角驱动器7驱动行走轴8轴向转动,偏心半球驱动器9驱动偏心板15转动以调节行走半球10的高度,行走驱动器14用以调节行走半球10的转速,从而调整到合适的姿势以通过前方地形。
工作原理:正常行驶时,机器人的四个脚即四个偏转角驱动器7和行走轴8均呈竖直状,行走半球10的切面与球面的交汇处作为滚动面并与地面接触,行走驱动器14带动行走半球10以切面的圆心为中心转动,从而实现正常行走的效果。
当机器人行走至不平整的路段时,例如机器人的其中一个或多个行走半球10行走至坑洼处,则偏心半球驱动器9带动偏心板15转动,使得偏心半球驱动器9位于偏心板15圆心的上方,而其他的偏心半球驱动器9位于偏心板15圆心的下方,即将机器人位于坑洼处的一侧向上抬起,从而保持机器人前半体1与后半体4的稳定性;当机器人的其中一个或者多个行走半球10行走至凸起处时,则偏心半球驱动器9带动偏心板15转动,使得偏心半球驱动器9位于偏心板15圆心的下方,而其他的偏心半球驱动器9则位于偏心板15圆心的上方,即使机器人位于凸起处的一侧下降,从而保持机器人前半体1与后半体4的稳定性;综上,通过偏心半球驱动器9能够控制偏心板15的转动,从而调节行走半球的高度,提高机器人在坑洼路段行走时的稳定性,同时也能够起到减震的效果。
在机器人行走的过程中,启动偏转角驱动器7,带动行走轴8转动,进而带动偏心半球驱动器9转动,最终行走半球10转动,即可实现机器人的转向。
当机器人行走至弧状的路段,例如一些管道或者较小的隧道内时,可以启动轴式驱动器6,轴式驱动器6转动能够带动偏转角驱动器7转动,最终带动行走半球10在竖直平面内转动,从而改变机器人每条“腿”的开合角度,使得行走半球10的切面与球面的交汇处或者位于下侧的行走半球10的球面能够与管道的两侧内壁接触,从而实现机器人在管道内行走 的效果。
当机器人行走至坡度不同的路面时,例如机器人由平坦的路面行走至上坡路段时,机器人的前半体1行走至上坡路段,而机器人的后半体4仍然位于平坦的路段,侧连接块11和主连接块12之间发生相对转动,从而使得前半体1与后半体4之间发生相对转动,使得机器人的前半体1的倾斜角度与坡面相匹配,而机器人的后半体4的倾斜角度则与平坦的地面相匹配,当机器人完全移动到坡面上时,侧连接块11与主连接块12再次发生相对转动,前半体1与后半体4之间也发生相对转动,机器人的前半体1与后半体4的倾斜角度相同,均与坡面的角度相匹配,通过上述操作即可提高机器人在行走至坡度不同的路面时的稳定性。
本发明中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种偏心半球轮式自适应机器人,其特征在于:包括前半体(1)和后半体(4),前半体(1)与后半体(4)之间通过连接组件相连接;
    所述前半体(1)上设有探测机构和控制单元;
    所述前半体(1)和后半体(4)的两侧均设有安装槽(5),安装槽(5)内设有能够转动的轴式驱动器(6),轴式驱动器(6)的侧部连接有偏转角驱动器(7),偏转角驱动器(7)的外侧部设有行走轴(8),行走轴(8)的端部设有偏心半球驱动器(9),偏心半球驱动器(9)的两侧偏心连接有偏心板(15),偏心板(15)的外部设有行走驱动器(14),行走驱动器(14)外部设有行走半球(10),行走半球(10)与偏心板(15)经轴承(16)相连接;
    所述探测机构监测前部的地形,地形数据经所述控制单元发送至轴式驱动器(6)、偏转角驱动器(7)、偏心半球驱动器(9)和行走驱动器(14);轴式驱动器(6)驱动行走轴(8)径向转动,偏转角驱动器(7)驱动行走轴(8)轴向转动,偏心半球驱动器(9)驱动偏心板(15)转动以调节行走半球(10)的高度,行走驱动器(14)用以调节行走半球(10)的转速,从而调整到合适的姿势以通过前方地形。
  2. 根据权利要求1所述的偏心半球轮式自适应机器人,其特征在于:所述探测机构包括设置在前半体前部的激光雷达(3)和摄像头(2),所述激光雷达(3)和摄像头(2)均与所述控制单元相连。
  3. 根据权利要求1所述的偏心半球轮式自适应机器人,其特征在于:所述连接组件包括设置在前半体(1)上的两个侧连接块(11)和设置在后半体(4)上的主连接块(12),侧连接块(11)分别位于主连接块(12)的两侧并与主连接块(12)转动连接。
  4. 根据权利要求3所述的偏心半球轮式自适应机器人,其特征在于:所述主连接块(12)和侧连接块(11)均呈三棱柱状结构,并且主连接块(12)和侧连接块(11)的端部均设有倒角。
  5. 根据权利要求1所述的偏心半球轮式自适应机器人,其特征在于:所述行走轴(8)的下端具有扁平部(801),偏心半球驱动器(9)与扁平部(801)连接,行走半球(10)分布在扁平部(801)的两侧。
  6. 根据权利要求1所述的偏心半球轮式自适应机器人,其特征在于:所述行走半球(10)上具有切面和球面,行走半球(10)的切面上设有圆形槽(13),偏心板(15)设置在圆形槽(13)内。
  7. 根据权利要求2所述的偏心半球轮式自适应机器人,其特征在于:所述摄像头(2)内部集成有TOF传感器。
  8. 根据权利要求1-7任一项所述的偏心半球轮式自适应机器人,其特征在于:所述前半体(1)和后半体(4)的周向均设有弧面。
PCT/CN2022/139438 2022-05-24 2022-12-16 一种偏心半球轮式自适应机器人 WO2023226389A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210566476.6A CN114654443B (zh) 2022-05-24 2022-05-24 一种偏心半球轮式自适应机器人
CN202210566476.6 2022-05-24

Publications (1)

Publication Number Publication Date
WO2023226389A1 true WO2023226389A1 (zh) 2023-11-30

Family

ID=82036963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139438 WO2023226389A1 (zh) 2022-05-24 2022-12-16 一种偏心半球轮式自适应机器人

Country Status (2)

Country Link
CN (1) CN114654443B (zh)
WO (1) WO2023226389A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654443B (zh) * 2022-05-24 2022-08-12 浙大城市学院 一种偏心半球轮式自适应机器人

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234870A (ja) * 2009-03-30 2010-10-21 Fukuoka Prefecture 車輪および走行装置
CN102107685A (zh) * 2011-01-12 2011-06-29 西南大学 偏心轮腿六足机器人
JP2012157968A (ja) * 2011-02-02 2012-08-23 Kochi Univ Of Technology 多形態ロボット
CN104670355A (zh) * 2015-03-20 2015-06-03 西南大学 一种双偏心圆可变偏心距越障组件及轮足机器人
CN105856258A (zh) * 2016-06-15 2016-08-17 徐洪恩 一种反地雷机器人
CN110901784A (zh) * 2019-11-26 2020-03-24 北京工业大学 一种基于os轮的轮足一体化特种六足机器人
CN112389561A (zh) * 2019-08-12 2021-02-23 诸暨市蓝了电子科技有限公司 多足轮式机器人的可倾斜轮式足
CN113016357A (zh) * 2021-03-18 2021-06-25 南昌工学院 一种全地形采摘机器人
CN114654443A (zh) * 2022-05-24 2022-06-24 浙大城市学院 一种偏心半球轮式自适应机器人
CN217198431U (zh) * 2022-05-24 2022-08-16 浙大城市学院 一种高稳定性的偏心半球轮式机器人

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2340315Y (zh) * 1998-06-23 1999-09-29 应小义 窗帘导轨
AU2004203633A1 (en) * 2003-08-12 2005-03-03 Anthony Innovations Pty Ltd Wheel support structure for sliding doors or panels
JP6172996B2 (ja) * 2013-03-28 2017-08-02 大阪瓦斯株式会社 管内走行台車
CN106142050B (zh) * 2016-09-08 2018-10-16 肇庆市小凡人科技有限公司 一种车轮高低差自适应的移动机器人
CN207411077U (zh) * 2017-11-09 2018-05-29 江苏新格灌排设备有限公司 一种喷灌机行走装置
CN109018057A (zh) * 2018-08-13 2018-12-18 杭州简泊智能科技有限公司 多足轮式平台机器人
CN110525691B (zh) * 2019-08-20 2021-04-20 武汉理工大学 可折叠型月球营地辅助搭建机器人
CN213226187U (zh) * 2020-07-09 2021-05-18 梅里科技(广州)有限公司 一种园艺机器人和装置
CN113510678B (zh) * 2021-03-16 2023-01-10 行星算力(深圳)科技有限公司 一种全地形机器人控制方法及全地形机器人
CN113443041B (zh) * 2021-07-29 2022-05-17 山东大学 复合腿足机构及3-ups并联轮足复合弹跳机器人

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234870A (ja) * 2009-03-30 2010-10-21 Fukuoka Prefecture 車輪および走行装置
CN102107685A (zh) * 2011-01-12 2011-06-29 西南大学 偏心轮腿六足机器人
JP2012157968A (ja) * 2011-02-02 2012-08-23 Kochi Univ Of Technology 多形態ロボット
CN104670355A (zh) * 2015-03-20 2015-06-03 西南大学 一种双偏心圆可变偏心距越障组件及轮足机器人
CN105856258A (zh) * 2016-06-15 2016-08-17 徐洪恩 一种反地雷机器人
CN112389561A (zh) * 2019-08-12 2021-02-23 诸暨市蓝了电子科技有限公司 多足轮式机器人的可倾斜轮式足
CN110901784A (zh) * 2019-11-26 2020-03-24 北京工业大学 一种基于os轮的轮足一体化特种六足机器人
CN113016357A (zh) * 2021-03-18 2021-06-25 南昌工学院 一种全地形采摘机器人
CN114654443A (zh) * 2022-05-24 2022-06-24 浙大城市学院 一种偏心半球轮式自适应机器人
CN217198431U (zh) * 2022-05-24 2022-08-16 浙大城市学院 一种高稳定性的偏心半球轮式机器人

Also Published As

Publication number Publication date
CN114654443B (zh) 2022-08-12
CN114654443A (zh) 2022-06-24

Similar Documents

Publication Publication Date Title
CN107160963B (zh) 轮式运动底盘
US9989970B1 (en) Systems and methods for robots having an adjustable multi-wheel
CN105857423B (zh) 一种高机动高适应性地面无人平台
WO2023226389A1 (zh) 一种偏心半球轮式自适应机器人
US8322471B2 (en) Angular momentum torque enhancement for spherical vehicles
JP4724845B2 (ja) 脚車輪分離型ロボット
CN102642445A (zh) 一种可智能调节偏心距的偏心车轮
JP6719183B2 (ja) 自律走行装置
CN105730538A (zh) 摩擦式内驱动全方位球形机器人机构
JP2580542B2 (ja) おにぎり機構を有するフレキシブルクローラ
US20210039726A1 (en) Reconfigurable joint track compound mobile robot
CN111902332A (zh) 操舵系统和具有它的车辆
CN205769684U (zh) 一种全地形螺旋推进滚轮
WO2019128855A1 (zh) 一种松软地面爬行机器人
Zhang et al. Q‐Whex: A simple and highly mobile quasi‐wheeled hexapod robot
CN217198431U (zh) 一种高稳定性的偏心半球轮式机器人
US20230140923A1 (en) Bogie systems for autonomous and remote-piloted vehicles
US20230211841A1 (en) Walking vehicle
CN1186175C (zh) 双滚轮式机器人行走装置
WO2020047609A1 (en) Wheel arrangement
US20170056260A1 (en) Caster wheel arrangement
JP2004268858A (ja) 車両用操舵装置
CN209921457U (zh) 仿生四足机器人
CN112519943A (zh) 一种自平衡自主行驶两轮车及平衡控制方法
KR100977881B1 (ko) 휠 배치 가변 구조를 갖는 자동차 로봇

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943576

Country of ref document: EP

Kind code of ref document: A1