WO2023226343A1 - 二次电池和二次电池的装配方法 - Google Patents

二次电池和二次电池的装配方法 Download PDF

Info

Publication number
WO2023226343A1
WO2023226343A1 PCT/CN2022/134817 CN2022134817W WO2023226343A1 WO 2023226343 A1 WO2023226343 A1 WO 2023226343A1 CN 2022134817 W CN2022134817 W CN 2022134817W WO 2023226343 A1 WO2023226343 A1 WO 2023226343A1
Authority
WO
WIPO (PCT)
Prior art keywords
tab
transfer conductor
assembly
secondary battery
pad
Prior art date
Application number
PCT/CN2022/134817
Other languages
English (en)
French (fr)
Inventor
曹辉
胡鹏
王兴东
侯敏
喻先锋
刘微
靳玲伟
蔡云龙
余招宇
吴仕明
Original Assignee
瑞浦兰钧能源股份有限公司
上海瑞浦青创新能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210583292.0A external-priority patent/CN117175148A/zh
Priority claimed from CN202221320750.3U external-priority patent/CN217933990U/zh
Priority claimed from CN202221683929.5U external-priority patent/CN218513644U/zh
Priority claimed from CN202222987617.XU external-priority patent/CN218783189U/zh
Priority claimed from CN202223000130.4U external-priority patent/CN218939953U/zh
Priority claimed from CN202211403651.6A external-priority patent/CN115579592B/zh
Priority claimed from CN202211402811.5A external-priority patent/CN115458872B/zh
Priority claimed from CN202222995055.3U external-priority patent/CN218919240U/zh
Application filed by 瑞浦兰钧能源股份有限公司, 上海瑞浦青创新能源有限公司 filed Critical 瑞浦兰钧能源股份有限公司
Publication of WO2023226343A1 publication Critical patent/WO2023226343A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • H01M50/273Lids or covers for the racks or secondary casings characterised by the material
    • H01M50/276Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/526Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/595Tapes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of secondary batteries, and in particular to a secondary battery and an assembly method of the secondary battery.
  • secondary batteries usually include a top cover, a casing, a cell and an adapter sheet.
  • the first assembly structure is to place one or more tabs below the adapter sheet.
  • the adapter piece is connected by welding, and the adapter piece connected to the cell tab is then welded to the pole of the top cover.
  • the second assembly structure is to place one or more pole tabs under the pole and directly weld and connect them to the top cover pole. After the pole tab is connected to the pole, the battery core is installed by bending the pole tab.
  • the structural assembly of the secondary battery is completed in the casing. In the above two assembly structures, the battery core and its tabs are usually kept horizontally first.
  • the battery core and its top tabs are always kept horizontally with the connecting piece or top cover.
  • the tabs are first bent. , and then rejoin the core.
  • the step of bending the tabs will cause the following problems: First, the battery core needs to leave space for the folded tabs in the height direction, resulting in low space utilization in the height direction, and it is difficult to increase the energy density of the secondary battery; second, the folding tabs There is little space for the lug, and the path and relaxation state from the lug to the adapter piece are different. The lug is redundant and sinks, causing a safety risk of short circuit in the secondary battery.
  • the present application proposes a secondary battery, which includes a secondary battery assembly.
  • the secondary battery assembly includes a cell assembly, a transfer conductor and an insulating pad.
  • the cell assembly includes at least two There are two battery cores arranged side by side, each of the battery cores has a tab extending from the top surface of the battery core; the transfer conductor is provided with a transfer conductor tab assembly; the insulating pad is located on Between the battery core assembly and the transfer conductor, a pad tab fitting portion is provided on the insulating pad plate; wherein the gathered tabs pass through the pad tab fitting portion and The transfer conductor lug fitting portion is then welded and connected to the transfer conductor.
  • a secondary battery assembly which includes: a battery core assembly, the battery core assembly includes at least two batteries arranged side by side, and the battery cores extend with tabs; a transfer conductor , the transfer conductor is provided with a tab assembly hole; the tabs of the battery core pass upward through the tab through holes and tab assembly holes in sequence after being folded up, and then are welded and connected to the transfer conductor; or, the outside of the battery assembly
  • the pole tabs of the battery core pass upwards through the pole tab through holes and both sides of the transfer conductor in sequence after being folded, and then are welded and connected to the transfer conductor.
  • the pole tabs of the remaining battery cores pass upwards through the pole tab through holes and poles in sequence after being folded up. After the ear is installed in the hole, it is welded and connected to the transfer conductor.
  • the tab mounting hole coincides with the height direction projection of the tab passing through the tab mounting hole.
  • the pole lug passes through the pole lug through hole and the pole lug assembly hole in sequence and is welded to the hole wall of the transfer conductor; or, the pole lug passes through the pole lug through hole and the pole lug assembly hole in sequence. After the ear is installed in the hole, it is connected to the top surface of the transfer conductor by bending and welding.
  • the battery core assembly includes at least three battery cores arranged side by side, and the tabs of the outermost battery core pass through the tab through holes and are welded and connected to the side walls of the transfer conductors; or, The tabs located at the outermost battery core pass through the tab through holes and then go around from the side of the transfer conductor to the top of the transfer conductor and are welded and connected to the top surface of the transfer conductor.
  • the number of battery cores is n
  • n is a positive integer ⁇ 3
  • the number of tab assembly holes opened on the transfer conductor is n-2.
  • the battery core assembly includes at least three battery cores arranged side by side.
  • the height of the tabs of the outermost battery core is greater than the height of the tabs of the innermost battery core.
  • the tabs of each battery core are facing toward the outermost.
  • the direction of the inner battery core is bent and welded to the tab of the innermost battery core.
  • the pole tabs include positive pole tabs and negative pole tabs located at intervals on the battery core;
  • the transfer conductor includes a positive pole adapter piece and a negative pole adapter piece, and the pole tab assembly holes Including the positive assembly hole on the positive adapter piece, and the negative assembly hole on the negative adapter piece.
  • chamfers or fillets are provided around the opening of the pole lug assembly hole, and a positioning groove matching the contour of the transfer conductor is provided on the top of the insulating pad. The conductor is located in the locating slot.
  • a secondary battery which includes: a casing.
  • the casing is a hollow structure with a top opening surrounded by a closed structure.
  • the casing is provided with a secondary battery as described in any of the above embodiments.
  • Battery assembly, the top of the casing is provided with a top cover to seal the secondary battery assembly in the casing, and the top cover is provided with poles connected to the transfer conductor.
  • this application also proposes a secondary battery assembly method.
  • the method uses the above-mentioned secondary battery and includes the following steps: ultrasonic pre-welding after laminating the multi-layer pole pieces drawn from the battery core To form pole tabs; bundle multiple battery cells side by side, and bundle multiple battery cores to form a battery core assembly; set an insulating pad on the top of the battery core assembly, and the pole tabs of each cell pass through the tabs of the insulating pad. hole; set a transfer conductor on the top of the insulating pad, and the tabs of each battery core pass through the tab assembly holes of the transfer conductor; bend the tabs that pass through the tab assembly holes, and connect the tabs with the tabs of the transfer conductor.
  • the top surface is bonded and welded to form a secondary battery component; a top cover connected to the transfer conductor is set on the top of the secondary battery component, and the poles of the top cover are electrically connected to the transfer conductor; the secondary battery component is installed into the shell with the top opening inside the body, and use the top cover to seal the secondary battery assembly in the casing.
  • this application also proposes a secondary battery casing that self-matches with the gasket, including : Battery casing, the battery casing is a cylindrical structure with a top opening surrounded by a closed cylinder, and the inner wall of the battery casing is provided with a limiting structure for limiting the gasket in the battery casing.
  • the limiting structure is a plurality of bosses fixed on the inner wall of the battery casing, and the bosses are located on two parallel side walls of the battery casing.
  • the boss is in the shape of a spherical crown protruding toward the inside of the battery casing, and the plurality of bosses are located at the same height on the inner wall of the battery casing.
  • the boss is a triangular limiting block protruding toward the inside of the battery casing.
  • the top of the triangular limiting block is provided with a guide surface sloping downward.
  • the bottom of the triangular limiting block is There is a limit surface that contacts the gasket.
  • the boss includes: an upper limit block and a lower limit block.
  • the upper limit blocks are located on the top of the lower limit block and are spaced apart from each other.
  • a formation is formed between the upper limit block and the lower limit block. Positioning space for snap-on gaskets.
  • the boss and the battery casing are made of an aluminum alloy material and are integrally formed, and the boss is close to the top opening of the battery casing.
  • the limiting structure is a groove provided on the inner wall of the battery casing, and the groove is engaged with an edge of the gasket to engage the gasket in the battery casing.
  • the groove is located on two parallel side walls of the battery casing, and the groove extends along the length direction of the gasket.
  • the plurality of grooves are spaced apart along the length direction of the gasket, and the edge of the gasket is provided with a plurality of bumps that match the grooves.
  • this application also proposes a secondary battery.
  • the secondary battery includes any of the above.
  • this application also proposes a secondary battery, which includes: a roll core with multiple tabs on the top; two rotating A connecting piece is provided on the top of the roll core, and the tabs are welded to the surfaces of the two adapter pieces respectively to form a welding area; at least one double-sided protective adhesive layer, both sides of which are adhesive surfaces, are attached Attached to the adapter sheet and at least covering the soldering area.
  • the double-sided protective adhesive layer includes: two adhesive layers; and a carbonate protective layer located between the two adhesive layers.
  • the carbonate protective layer is a sodium bicarbonate or sodium carbonate layer structure.
  • the adhesive layer is a double-sided adhesive layer
  • the carbonate protective layer is a powder layer structure laid and adhered between two layers of the adhesive layer.
  • the double-sided protective adhesive layer has a whole-piece structure and is attached to cover the soldering areas on the two adapter sheets at the same time.
  • the double-sided protective adhesive layer is provided with multiple pieces, and each piece of the double-sided protective adhesive layer is pasted to cover one or more of the soldering areas on the two adapter sheets.
  • the adapter piece is provided with an adapter boss and a liquid injection hole
  • the double-sided protective adhesive layer is provided with a first hole corresponding to the adapter boss and a first hole corresponding to the adapter plate. The second hole position of the liquid injection hole.
  • the shape and size of the first hole are consistent with the peripheral edge of the transfer boss; the shape and size of the second hole are consistent with the peripheral edge of the liquid injection hole.
  • a gasket covering the top surface of the winding core is provided between the adapter sheet and the winding core, and the pole lug passes through the gasket and the adapter sheet. and then welded to the surface of the adapter piece.
  • the double-sided protective adhesive layer completely covers the adapter sheet, and both ends of the double-sided protective adhesive layer extend from both sides of the gasket and are adhered to the Core side walls.
  • the use of the secondary battery and its assembly method of the present invention can avoid various problems caused by bending the tabs, improve the performance of the secondary battery, and reduce safety risks.
  • Figure 1 is a schematic diagram of a secondary battery assembly tab in a secondary battery according to an embodiment of the present application before bending;
  • Figure 2 is a schematic diagram of a cell in a secondary battery according to an embodiment of the present application.
  • Figure 3 is an exploded schematic diagram of the assembly structure of a secondary battery assembly according to an embodiment of the present application.
  • Figure 4A is a schematic diagram of Embodiment 1 of a transfer conductor in a secondary battery according to an embodiment of the present application;
  • Figure 4B is a schematic diagram of the battery assembly assembled with the transfer conductor of Figure 4A;
  • Figure 4C is a perspective view of the assembly structure of the secondary battery assembly equipped with the transfer conductor of Figure 4A and the cell assembly of Figure 4B;
  • Figure 4D is a cross-sectional view along line A1A1' of Figure 4C;
  • Figure 5 is a schematic diagram of a second embodiment of a transfer conductor in a secondary battery according to an embodiment of the present application
  • Figure 6A is a schematic diagram of Embodiment 3 of a transfer conductor in a secondary battery according to an embodiment of the present application
  • Figure 6B is a cross-sectional view along line A2A2' of Figure 6A;
  • Figure 7 is a schematic diagram of a fourth embodiment of a transfer conductor in a secondary battery according to an embodiment of the present application.
  • Embodiment 5 of a transfer conductor in a secondary battery is a schematic diagram of Embodiment 5 of a transfer conductor in a secondary battery according to an embodiment of the present application
  • 8B is a perspective view of the assembly structure of the secondary battery assembly equipped with the transfer conductor 800;
  • FIGS. 9A and 9B are schematic diagrams of Embodiment 1 of an insulating pad in a secondary battery according to an embodiment of the present application;
  • Figure 9C is a cross-sectional view of the vertical plane along line A3A3' of Figure 9A;
  • Figure 9D is an enlarged view of area B1 in Figure 9C;
  • Figure 10 is a top view of Embodiment 2 of an insulating pad in a secondary battery according to an embodiment of the present application;
  • Figure 11 is a top view of Embodiment 3 of an insulating pad in a secondary battery according to an embodiment of the present application.
  • Figure 12 is a top view of Embodiment 4 of an insulating pad in a secondary battery according to an embodiment of the present application;
  • Figure 13A is an exploded schematic diagram of the assembly structure of a secondary battery assembly with staggered tabs according to an embodiment of the present application
  • Figure 13B shows a schematic structural diagram of Figure 13A after assembly
  • Figure 14A is an exploded schematic diagram of the assembly structure of a secondary battery assembly with integrated tabs according to an embodiment of the present application
  • Figure 14B shows a schematic structural diagram of Figure 14A after assembly
  • Figure 15A is a schematic diagram of Embodiment 1 of a secondary battery assembly in a secondary battery according to an embodiment of the present application;
  • Figure 15B is a cross-sectional view along line A4A4' of the secondary battery assembly shown in Figure 15A when the tabs are not folded;
  • Figure 15C is a cross-sectional view of the secondary battery assembly shown in Figure 15A along line A4A4';
  • Figure 15D is an exploded schematic diagram of the assembly structure of the secondary battery assembly shown in Figure 15A;
  • Figure 16A is a schematic diagram of Embodiment 2 of a secondary battery assembly in a secondary battery according to an embodiment of the present application;
  • Figure 16B is a cross-sectional view along line A5A5' of the secondary battery assembly shown in Figure 16A without folding the tabs;
  • Figure 16C is a cross-sectional view of the secondary battery assembly shown in Figure 16A along line A5A5';
  • Figure 16D is an exploded schematic diagram of the assembly structure of the secondary battery assembly shown in Figure 16A;
  • Figure 17A is a schematic diagram of Embodiment 3 of a secondary battery assembly in a secondary battery according to an embodiment of the present application;
  • Figure 17B is a cross-sectional view along line A6A6' of the secondary battery assembly shown in Figure 17A without folding the tabs;
  • Figure 17C is a cross-sectional view of the secondary battery assembly shown in Figure 17A along line A6A6';
  • Figure 17D is an exploded schematic diagram of the assembly structure of the secondary battery assembly shown in Figure 17A;
  • Figure 18A is a schematic diagram of Embodiment 4 of a secondary battery assembly in a secondary battery according to an embodiment of the present application;
  • Figure 18B is a cross-sectional view along line A7A7' of the secondary battery assembly shown in Figure 18A without folding the tabs;
  • Figure 18C is a cross-sectional view of the secondary battery assembly shown in Figure 18A along line A7A7';
  • Figure 18D is an exploded schematic diagram of the assembly structure of the secondary battery assembly shown in Figure 18A;
  • Figure 19A is a schematic diagram of Embodiment 5 of a secondary battery assembly in a secondary battery according to an embodiment of the present application;
  • Figure 19B is a cross-sectional view along line A8A8' of the secondary battery assembly shown in Figure 19A when the tabs are not folded;
  • Figure 19C is a cross-sectional view of the secondary battery assembly shown in Figure 19A along line A8A8';
  • Figure 19D is an exploded schematic diagram of the assembly structure of the secondary battery assembly shown in Figure 19A;
  • Figure 20A is a schematic structural diagram of the appearance of a secondary battery according to an embodiment of the present application.
  • Figure 20B is an exploded schematic diagram of the secondary battery of the embodiment shown in Figure 20A;
  • Figure 20C is a cross-sectional view along line A9A9' of Figure 20A;
  • Figure 21 is a schematic diagram of the housing of a secondary battery according to an embodiment of the present application.
  • Figure 22 is a schematic diagram after the secondary battery assembly is installed into the case according to an embodiment of the present application.
  • 23A to 23D are side cross-sectional views of the housing of a secondary battery according to an embodiment of the present application.
  • 24A and 24B are top views of a secondary battery assembly according to an embodiment of the present application.
  • Figure 25 is a schematic diagram of a secondary battery assembly including a double-sided protective adhesive layer according to an embodiment of the present application.
  • Figure 26 is a cross-sectional view of the double-sided protective adhesive layer in the secondary battery assembly according to an embodiment of the present application.
  • Figure 27 is an exploded schematic diagram of the secondary battery assembly of the embodiment shown in Figure 25;
  • Figure 28 is an exploded schematic diagram of a secondary battery assembly including a double-sided protective adhesive layer according to an embodiment of the present application.
  • Secondary batteries in this application include, but are not limited to, secondary lithium-ion batteries, nickel-hydrogen batteries, nickel-chromium batteries, lead-acid batteries, polymer lithium-ion batteries, sodium batteries, etc.
  • the first aspect of the embodiment of the present application provides a secondary battery, which includes a secondary battery assembly.
  • the secondary battery assembly includes: a battery core assembly, a transfer conductor, and an insulating pad 14 .
  • the battery core assembly includes at least two battery cores 15 arranged side by side.
  • the top surface TS of the battery core 15 extends with tabs.
  • the tabs include positive electrode tabs 151a and negative electrodes located on both sides of the top surface TS of the battery core 15. Ji Er 151b.
  • the battery core 15 is made by winding or stacking, and includes a positive electrode sheet, a negative electrode sheet, and a separator for separating the positive electrode sheet and the negative electrode sheet.
  • Both the positive electrode sheet and the negative electrode sheet include a coated part coated with active material and an uncoated part uncoated with active material. Since the active material materials coated by the positive electrode sheet and the negative electrode sheet are different, the positive electrode sheet and the negative electrode sheet can have different polarities from each other. Referring to Figure 2, the uncoated portion of the positive electrode sheet forms a positive electrode tab 151a, and the uncoated portion of the negative electrode sheet forms a negative electrode tab 151b. The positive electrode tab 151a and the negative electrode tab 151b respectively extend from the top surface TS of the battery core 15. .
  • the adapter conductor is an adapter piece
  • the secondary battery includes two adapter pieces, namely a positive electrode adapter piece 12 and a negative electrode adapter piece 13.
  • the positive electrode adapter piece 12 is an aluminum sheet
  • the negative electrode adapter piece 13 is an aluminum sheet.
  • the adapter piece 13 is a copper piece.
  • the adapter conductor lug assembly part includes a positive electrode assembly hole located on the positive electrode adapter piece 12, and a negative electrode assembly hole located on the negative electrode adapter piece 13.
  • the positive electrode assembly hole is located above the positive electrode tab, and the negative electrode assembly hole is located on the negative electrode tab. above.
  • the projection area of the tab in the height direction is located inside the projection area of the tab assembly of the transfer conductor in the height direction, that is, the width and length of the tab should be less than or equal to the width and length of the tab assembly of the transfer conductor to ensure that the pole The lugs can pass through the corresponding adapter conductor lug fitting portion.
  • one pole tab includes multi-layer pole pieces led out from the battery core. The multi-layer pole pieces are gathered into one pole tab through ultrasonic welding and other methods. The folded position is located directly below the tab assembly of the transfer conductor.
  • the positive electrode mounting hole coincides with the projection of the positive electrode tab passing through the positive electrode mounting hole in the height direction, that is, the positive electrode mounting hole of the positive electrode adapter piece 12 is located directly above the positive electrode tab, so that the positive electrode tab
  • the distance to the positive electrode adapter piece 12 is the shortest, shortening the length of the positive electrode tab
  • the negative electrode assembly hole coincides with the projection of the negative electrode tab passing through the negative electrode assembly hole in the height direction, that is, the negative electrode assembly hole of the negative electrode adapter piece 13 It is located directly above the negative electrode tab to minimize the distance between the negative electrode tab and the negative electrode adapter piece 13 and shorten the length of the negative electrode tab.
  • the number of positive electrode mounting holes and negative electrode mounting holes is specifically set according to the number of battery cores 15 of the battery core assembly. For example, when the number of battery cores 15 is two, the number of positive electrode mounting holes and negative electrode mounting holes may both be one or two. For example, when the number of battery cores 15 is n, and n is a positive integer ⁇ 3, the number of positive electrode assembly holes and negative electrode assembly holes can both be n-2.
  • the battery core If the number of battery cells 15 is four, then the number of positive electrode assembly holes and negative electrode assembly holes is both 2, corresponding to the first tabs of the two inner cells; for another example, if the number of battery cells 15 is six, then the number of positive electrode assembly holes The number of holes and negative electrode assembly holes are both four.
  • the insulating pad 14 is located between the battery core assembly and the positive adapter piece 12 and the negative adapter piece 13 of the transfer conductor.
  • the insulating pad 14 is provided with a pad tab fitting portion that penetrates the tab. , here, the pad tab fitting part is the tab through hole.
  • the insulating pad 14 is disposed above the battery core 15 and below the positive adapter piece 12 and the negative adapter piece 13 .
  • the positive adapter piece 12 and the negative adapter piece 13 are separated from the battery core 15 by the insulating pad 14 .
  • the number of tab through holes of the insulating pad 14 is at least four.
  • the four tab through holes are respectively located at the four corners of the insulating pad 14 for respectively passing through the insulating pad 14 .
  • the positive pole tab and the negative pole tab of the battery core 15 are folded up and pass upward through the tab through holes of the insulating pad 14 in sequence.
  • the negative electrode tab penetrates into the negative electrode assembly hole of the negative electrode adapter piece 13 and is welded to the negative electrode adapter piece 13 .
  • the positive electrode tabs and negative electrode tabs of the battery core outside the battery assembly are folded upward and pass upward through the tab through holes and the side assembly parts on both sides of the positive electrode adapter piece 12 and the negative electrode adapter piece 13, and then connect with the positive electrode adapter.
  • the tab 12 and the negative electrode adapter piece 13 are welded and connected; the positive electrode tabs and negative electrode tabs of the remaining inner cells are folded upward and pass through the tab through holes in sequence, and then the positive electrode tabs are inserted into the positive electrode assembly of the positive electrode adapter piece 12
  • the hole is welded and connected with the positive electrode adapter piece 12
  • the negative electrode tab is inserted into the negative electrode assembly hole of the negative electrode adapter piece 13 and is welded and connected with the negative electrode adapter piece 13 .
  • the secondary battery assembly of the embodiment of the present application can fully solidify the shape of the tabs by folding the tabs through the insulating pad 14 and rolling the transfer conductor, laying them flat on the transfer conductor, and welding and fixing the connection.
  • the path of the conductor welding joint is consistent and the relaxation state is the same.
  • the tabs will not be redundant or sink. There is no risk of the tabs being inserted into the pole pieces. There is no safety risk of short circuit in the secondary battery.
  • the insulating pad 14 acts between the cell component and the transfer conductor. While solidifying the shape of the tab, it provides insulation protection to prevent short circuit and can also provide positioning for the transfer conductor.
  • the secondary battery components in the secondary battery of the present application are assembled from cell components, transfer conductors, insulating pads, etc., so some of the drawings show the assembly structure including these structures, and some contents of this specification The description will be given based on these assembly structures.
  • the transfer conductor in the secondary battery assembly is provided with a transfer conductor tab assembly portion for the tabs to pass through, and the insulating pad is provided with a pad tab for the tabs to pass through.
  • Cooperation Department The transfer conductor tab assembly part on the transfer conductor of the secondary battery of the present application includes three types: the transfer conductor tab assembly hole, the side assembly part and the side recessed part, wherein the transfer conductor tab.
  • the assembly hole also includes a first transfer conductor tab assembly hole and a second transfer conductor tab assembly hole. The first transfer conductor tab assembly hole is used to allow a tab on a battery core in the battery core assembly to pass through.
  • the second transfer conductor tab assembly hole is used to allow two tabs of the same polarity on two adjacent cells in the battery core assembly to pass through.
  • One transfer conductor can include these types of Any combination of types; the pad tab fitting part on the insulating pad includes two types: the pad tab fitting hole and the pad side recessed part.
  • the pole tab through hole on the insulating pad above belongs to Pad tab fitting holes, wherein the pad tab fitting holes include first pad fitting holes and/or second pad fitting holes, and each first pad fitting hole is used to allow one pole to pass therethrough, Each second pad mating hole is used to allow multiple tabs of the same polarity on adjacent cells to pass through it.
  • One insulating pad can include any combination of the multiple types. The details will be explained below.
  • Figure 3 is used to illustrate the connection relationship between the battery core components, transfer conductors and insulating pads.
  • FIG. 3 is an exploded schematic diagram of the assembly structure of a secondary battery according to an embodiment of the present application.
  • the assembly structure of the secondary battery of this embodiment includes a cell assembly 210 , an insulating pad 250 and transfer conductors 220 a and 220 b.
  • the three-dimensional coordinate system XYZ is marked in FIG. 3 , where the X direction is the width direction of the secondary battery, the Y direction is the thickness direction of the secondary battery, and the Z direction is the height direction of the secondary battery.
  • the battery core assembly 210 includes four battery cores, and the top surface of each battery core has two extending tabs. It includes two transfer conductors, namely transfer conductor 220a and transfer conductor 220b.
  • each transfer conductor has a first side 221a and a second side 222a extending along the thickness direction Y of the secondary battery, and a third side 223a and a third side 223a extending along the width direction X.
  • the transfer conductor 220b also has four sides.
  • the first side 221a of one transfer conductor 220a faces the first side 221b of the other transfer conductor 220b.
  • adapter conductors 220a and 220b in FIG. 3 may respectively correspond to the positive electrode adapter piece 12 and the negative electrode adapter piece 13 shown in FIG. 1 .
  • the transfer conductor tab fitting portion includes a transfer conductor tab fitting hole.
  • the transfer conductor tab fitting hole is a through hole located inside the transfer conductor, and part or all of the gathered tabs pass through in turn. After passing through the pad lug fitting part and the adapter conductor lug assembly hole, it is welded and connected to the adapter conductor.
  • the transfer conductor 220a has transfer conductor tab mounting holes 231a and 232a, respectively corresponding to the tabs 212a and 213a of the inner battery core;
  • the transfer conductor 220b has transfer conductor tab assembly holes 231b and 232b. , respectively corresponding to the tabs 212b and 213b of the inner battery core.
  • the transfer conductor tab mounting holes 231a and 232a are positive electrode mounting holes
  • the transfer conductor tab mounting holes 231b and 232b are negative electrode mounting holes.
  • some of the tabs pass through the tab fitting portion of the backing plate and the tab assembly hole of the transfer conductor in sequence, and then are welded and connected to the transfer conductor.
  • the adapter conductor may be an integrated adapter plate, such as an integrated adapter plate formed by connecting the positive electrode adapter plate 12 and the negative electrode adapter plate 13 in FIG. 1 through an insulating material.
  • an integrated adapter plate formed by connecting the positive electrode adapter plate 12 and the negative electrode adapter plate 13 in FIG. 1 through an insulating material. This manual uses a separately installed adapter plate as an example.
  • the tab fitting portion of the transfer conductor includes a side fitting portion located on the third side and/or the fourth side of the transfer conductor, and some or all of the gathered tabs pass through in turn. After passing through the lug fitting part of the backing plate and bypassing the side assembly part, it is welded and connected to the transfer conductor.
  • the side mounting part 241a is located on the third side 223a, and the side mounting part 242a is located on the fourth side 224a, respectively corresponding to the tabs 211a and 214a of the outer battery core; similarly Specifically, in the transfer conductor 220b, the side mounting portion 241b is located on the third side 223b, and the side mounting portion 242b is located on the fourth side 224b, respectively corresponding to the tabs 211b and 214b of the outer battery core. In this embodiment, some of the tabs pass through the tab fitting portion of the pad in sequence and bypass the side assembly portion, and then are welded and connected to the transfer conductor.
  • the insulating pad 250 in Figure 3 is an embodiment of the insulating pad, in which the pad tab fitting portions 251a, 252a, 253a, 254a, 251b, 252b, 253b, 254b are marked, respectively corresponding to the tab 211a. , 212a, 213a, 214a, 211b, 212b, 213b, 214b.
  • the inner battery core is located inside the battery core assembly.
  • the tabs 212a, 212b, 213a, and 213b of the inner battery core are the first tabs.
  • the gathered first tabs pass through the pad in sequence.
  • the plate lug fitting parts 252a, 252b, 253a, 253b and the transfer conductor lug assembly holes 231a, 231b, 232a, 232b are then welded and connected to the transfer conductor;
  • the outer battery core is located on the outside of the battery core assembly and is the lowest point of the battery core assembly.
  • the tabs 211a, 211b, 214a, and 214b of the outer cell are the second tabs.
  • the gathered second tabs pass through the pad tab mating portions 251a, 251b, 254a, and 254b in turn. After bypassing the side mounting parts 241a, 241b, 242a, 242b, they are welded and connected to the transfer conductor.
  • the adapter conductor tab assembly hole includes a first adapter conductor tab assembly hole and/or a second adapter conductor tab assembly hole, and the positive electrode tab or the negative electrode on one cell in the cell assembly The ears pass through the first adapter conductor tab assembly hole; the two positive electrode tabs or the two negative electrode tabs on the two adjacent cells in the battery core assembly pass through the second adapter conductor tab assembly hole.
  • this embodiment includes two transfer conductors 401 and 402.
  • the transfer conductor 401 includes a second transfer conductor lug assembly hole 420 and a side assembly portion 411, 412, both of which are located at the bottom.
  • the depth of the sinkers 421 and 422 is greater than or equal to the thickness of the battery cell tab and smaller than the thickness of the adapter piece. By setting the sinker, no additional transfer conductor will be added after bending the tab. The height can further improve the space utilization between the top of the cell assembly and the top cover.
  • Figure 4B is a battery core assembly 440 corresponding to the transfer conductor in Figure 4A.
  • Figure 4C is a perspective view after the tab is bent.
  • Figure 4D is a cross-sectional view along line A1A1' in Figure 4C. 4A to 4D, the second transfer conductor tab assembly hole 420 is used to allow the two inner positive tabs 412a, 413a to pass through it together and be bent outward respectively, and the side assembly portions 411, 412 are respectively used.
  • the outer positive electrode tabs 411a and 414a are bypassed and bent inward respectively.
  • the transfer conductors 401 and 402 are adapted to cooperate with a battery cell assembly 440 composed of four battery cells, and the positive electrode lugs on each battery cell are aligned and the negative electrode lugs are aligned.
  • the transfer conductor has a central axis C1 of the transfer conductor.
  • the central axis C1 of the transfer conductor extends along the width direction X of the secondary battery.
  • the second transfer conductor tab assembly hole 420 is located on the central axis C1 of the transfer conductor. And the second transfer conductor tab assembly hole 420 is symmetrical to the vertical plane where the central axis C1 of the transfer conductor is located.
  • the transfer conductor 401 also includes transfer conductor poles 430 for conductively connecting the tabs to corresponding poles on the top cover of the secondary battery.
  • transfer conductors 401 and 402 shown in Figure 4A can be adapted to a battery cell assembly in which pole tabs are provided inside each cell.
  • the one shown in Figure 4B is one that is provided inside each cell. Battery core components of pole tabs. This battery cell component will be described in detail later.
  • FIG. 5 is a schematic diagram of a second embodiment of a transfer conductor in a secondary battery according to an embodiment of the present application.
  • the transfer conductor of this embodiment includes both a first transfer conductor tab assembly hole and a second transfer conductor tab assembly hole.
  • the transfer conductor 500 of this embodiment includes two first transfer conductor tab assembly holes 511, 512, a second transfer conductor tab assembly hole 520, sinks 521, 522 and transfer conductor poles. Column 530.
  • the transfer conductor 500 is suitable for mating with a cell assembly composed of four cells.
  • the secondary battery includes two transfer conductors, each transfer conductor has a first side and a second side extending along a thickness direction of the secondary battery, and the transfer conductor tab assembly hole is at the first side.
  • One side has an opening, and a first side of each transfer conductor faces a first side of the other transfer conductor.
  • the first transition conductor tab mounting hole has a first opening on a first side.
  • FIG. 6A is a schematic diagram of Embodiment 3 of a transfer conductor in a secondary battery according to an embodiment of the present application.
  • the transfer conductor 600 has a first side 601 and a second side 602.
  • the first transfer conductor tab assembly hole 611 has a first opening 611a on the first side 601.
  • the first transfer conductor tab assembly hole 611 has a first opening 611a.
  • the ear fitting hole 612 has a first opening 612a on the first side 601.
  • the transfer conductor of this embodiment also includes sinks 621 and 622 and a transfer conductor pole 630 .
  • the transfer conductor 600 is suitable for mating with a cell assembly composed of two cells. If the third side 603 and the fourth side 604 are respectively used as side mounting parts, the transfer conductor 600 is suitable for matching a battery cell assembly composed of four battery cells.
  • first transfer conductor tab assembly hole with a first opening, it is advantageous for the pole tab to enter the first transfer conductor tab assembly hole from the first opening during assembly, and the operation is convenient.
  • FIG. 6B is a cross-sectional view along line A2A2' of FIG. 6A.
  • the junction between the tab fitting portion of the transfer conductor 600 and the upper surface of the transfer conductor and/or the lower surface of the transfer conductor is a rounded corner structure 640 .
  • the range of the fillet radius R1 is: 0.1mm ⁇ R1 ⁇ (Tc-Hd)T2/2, where Tc is the thickness of the adapter piece and Hd is the depth of the sinking platform.
  • the second transition conductor tab mounting hole has a second opening on the first side.
  • FIG. 7 is a schematic diagram of a fourth embodiment of a transfer conductor in a secondary battery according to an embodiment of the present application.
  • the transfer conductor 700 of this embodiment has a first side 701 and a second side 702 .
  • the transfer conductor 700 only includes a second transfer conductor tab assembly hole 720 , and the second transfer conductor tab assembly hole 720 has a second opening 720 a on the first side 701 .
  • the second transfer conductor tab assembly hole 720 is located between the sinking platform 721 and the sinking platform 722 .
  • the transition conductor 700 of this embodiment does not include transition conductor posts.
  • the transfer conductor 700 is suitable for mating with a cell assembly composed of two cells. If the third side 703 and the fourth side 704 are respectively used as side mounting parts, the transfer conductor 700 is suitable for matching a battery cell assembly composed of four battery cells.
  • the pole tab By providing the second transfer conductor tab assembly hole with a second opening, it is advantageous for the pole tab to enter the second transfer conductor tab assembly hole from the second opening during assembly, and the operation is convenient.
  • the transfer conductor tab assembly further includes a side recess, the side recess is located on the third side and/or the fourth side of the transfer conductor, and the side recess faces the transfer conductor.
  • the inside of the connecting conductor is recessed, and the side recesses are used to allow the corresponding tabs to pass through and bend into the inside of the connecting conductor.
  • the side fitting portion and the plurality of side recessed portions are connected in sequence to form a ladder-like structure, and the ladder-like structure is sequentially indented toward the interior of the transfer conductor from the second side to the first side, or stepped.
  • the like structure is sequentially indented toward the interior of the transfer conductor from the first side to the second side.
  • FIG. 8A is a schematic diagram of Embodiment 5 of a transfer conductor in a secondary battery according to an embodiment of the present application.
  • the transfer conductor 800 has a first side 841 , a second side 842 , a third side 843 and a fourth side 844 .
  • the third side 843 has a side mounting portion 811 and two side sides.
  • the side recessed portions 813 and 814 are formed in sequence, and the side mounting portion 811 and the side recessed portions 813 and 814 form a ladder-like structure in sequence; the fourth side 844 has a side mounting portion 812 and two side recessed portions 815 , 816, and the side mounting portion 812 and the side recessed portions 815 and 816 form a ladder-like structure in sequence.
  • FIG. 8B is a schematic perspective view of the assembly structure of the secondary battery equipped with the transfer conductor 800. As shown in FIG. 8B , the pole tabs are respectively passed around the side mounting portion and the side recessed portion and then bent inward. Such an embodiment has the beneficial effects of making it easier to insert the pole lug and simplifying the installation process.
  • FIG. 8A and FIG. 8B are suitable for matching a battery core assembly with staggered distribution of pole tabs.
  • FIG. 8A is a battery core assembly with staggered distribution of pole tabs. This battery cell assembly will be described later.
  • the above-described first to fifth embodiments of the transfer conductor do not exhaust all structures of the transfer conductor claimed in this application.
  • the transfer conductor tab fitting portion on the transfer conductor of the present application may include one or more first transfer conductor tab fitting holes, second transfer conductor tab fitting holes, side fitting portions and side recesses. Any combination of these components is within the scope of protection claimed by this application. It should be noted that the cell components, transfer conductors, and insulating pads in secondary batteries are used together. Therefore, the structures of the insulating pads and cell assemblies corresponding to different transfer conductors may be different.
  • the insulating pad has a first pad side and a second pad side extending along the width direction of the secondary battery.
  • the first pad side and the second pad side are arranged oppositely, and the pad
  • the pad tab fitting part includes a pad tab fitting hole and/or a pad side recessed part.
  • the pad tab fitting hole is a through hole that penetrates the insulating pad, and the pad side recessed part is located at The first pad side and/or the second pad side, the pad side recessed portion is recessed into the interior of the insulating pad.
  • the insulating pad of this embodiment includes two separate insulating pads 901 and 902.
  • FIG. 9A is a top view of an insulating pad 901 according to an embodiment of the present application
  • FIG. 9B is a top view of another insulating pad 902 according to an embodiment of the present application.
  • the pad tab fitting portion includes a pad tab fitting hole.
  • the pad tab fitting holes 911a, 912a, 913a, 914a on the insulating pad 901 and the pad tab fitting holes 911b, 912b, 913b, 914b on the insulating pad 902 are symmetrically distributed with each other.
  • each pad tab fitting hole is a strip-shaped through hole extending along the width direction X of the secondary battery, and is parallel to each other. Assuming that the pad tab fitting hole has a first length L1 along the width direction, the first length L1 of each tab fitting portion is equal.
  • the insulating pad 901 further includes a positioning reinforcing structure 910 protrudingly disposed on the upper surface.
  • the positioning reinforcing structure 910 is disposed around the periphery of the lug fitting portion of the pad.
  • the positioning reinforcing structure 910 is a reinforcing rib with a certain thickness.
  • 9C is a cross-sectional view of the vertical plane (the vertical plane is a plane parallel to the YZ plane) of FIG. 9A along line A3A3'
  • FIG. 9D is an enlarged view of area B1 in FIG. 9C.
  • Figure 9D shows that the structure in area B1 is placed horizontally and displayed enlarged.
  • the positioning reinforcement structure 910 clearly protrudes from the upper surface 901U of the insulating pad 901 .
  • the thickness of the insulating pad is T, and the thickness is 0.1mm ⁇ T ⁇ 2mm.
  • T ranges from 0.4 to 0.8mm.
  • the pad lug fitting holes 911a, 912a have a rounded corner structure 920 at the junction with the upper surface 901U and the lower surface 901D.
  • the radius R of the rounded corner structure 920 is 0.1mm ⁇ R ⁇ T/ 2.
  • T is the thickness of the insulating gasket.
  • the insulating pads 901 and 902 are suitable for matching a battery core assembly composed of four battery cores, and are also suitable for a transfer conductor that matches four battery cores.
  • FIG. 10 is a top view of Embodiment 2 of an insulating gasket in a secondary battery according to an embodiment of the present application.
  • the insulating pad 1000 is an integrated insulating pad, which has a first pad side 1001 and a second pad side 1002 that are oppositely arranged along the X direction.
  • the pad tab fitting parts in this embodiment are all pad side recessed parts 1031a, 1031b, 1032a, 1032b, wherein the pad side recessed parts 1031a, 1031b are located at the first pad side 1001, and the pad side recessed parts 1031a, 1031b are located at the first pad side 1001.
  • the plate side recesses 1032a, 1032b are located on the second backing plate side 1002.
  • the insulating pad 1000 is suitable for matching a battery core assembly composed of two battery cores, and is also suitable for a transfer conductor that matches the two battery cores.
  • the pad tab assembly portion on the insulating gasket includes both a pad tab fitting hole and a pad side recess, wherein the pad side recess corresponds to the outer pole located on the outside.
  • the pad lug mating holes correspond to the remaining inner lug. It is suitable to cooperate with a cell assembly including multiple cells to form a thicker secondary battery.
  • the mating holes of the pad tabs include first mating holes and/or second mating holes of the pad. Each first mating hole is used to pass one pole lug through, and each second mating hole is used for To allow multiple tabs of the same polarity on adjacent cells to pass through.
  • the pad tab fitting holes in the embodiment shown in FIG. 9A are all first pad fitting holes, and are used to allow one tab to pass therethrough.
  • FIG. 11 is a top view of Embodiment 3 of an insulating gasket in a secondary battery according to an embodiment of the present application.
  • the insulating gasket 1100 is an integrated insulating gasket, including a set of second pad mating holes 1121a, 1122a, another set of second pad mating holes 1121b, 1122b, and positioning reinforcement structures 1120a, 1120b. .
  • the width D111 of the second pad mating hole along the Y direction is significantly larger, and can be used to simultaneously allow the tabs of the same polarity of at least two adjacent cells to pass through.
  • the insulating pad 1100 is suitable for matching a battery core assembly composed of four battery cores, and is also suitable for a transfer conductor that is matched with four battery cores.
  • the width of the second pad fitting hole along the Y direction may be wider than that shown in FIG. 11 , and in extreme cases, the second pad fitting holes 1121 a and 1122 a are connected to each other. It can be understood that the wider the width of the second pad fitting hole, the greater the number of pole tabs that can pass through.
  • the insulating gasket is provided with a plurality of first gasket fitting holes
  • the secondary battery has a first central axis E1 extending along its width direction
  • the vertical plane where the axis E1 is located is a plane of symmetry and is symmetrically distributed.
  • the secondary battery also has a second central axis E2 extending along its thickness direction Y.
  • the plurality of first pad fitting holes are symmetrically distributed with the vertical plane where the second central axis E2 is located as a symmetry plane.
  • the plurality of pad lug fitting parts are evenly divided into 2 parallel groups, wherein each parallel group includes N pads
  • the N pad lug fitting parts are evenly divided into 2 vertical groups based on the vertical plane where the first central axis E1 is located (the vertical plane is a plane parallel to the YZ plane).
  • N N/2 pad tab fitting parts
  • N N/2 pad tab fitting parts
  • first distance between the N/2 pad tab fitting parts and the vertical plane where the first central axis E1 is located (the vertical plane is a plane parallel to the YZ plane)
  • second distance between the N/2 pad tab fitting parts and the vertical plane where the second central axis E2 is located (the vertical plane is a plane parallel to the YZ plane)
  • the second distance increases with the first distance. Large and increase or decrease, where N is an even number greater than or equal to 4.
  • FIG. 12 is a top view of Embodiment 4 of an insulating gasket in a secondary battery according to an embodiment of the present application.
  • the insulating pad 1200 of this embodiment includes 12 pad tab fitting parts, and these pad tab fitting parts are all first pad fitting holes, including the first pad Fitting holes 1221a to 1226a, 1221b to 1226b.
  • N 6
  • the first pad fitting holes 1221b to 1226b has a first distance D121 and a second distance L121
  • the first pad fitting hole 1225b has a first distance D122 and a second distance L122.
  • a pad fitting hole 1226b has a first distance D123 and a second distance L123, D123>D122>D121 and L123>L122>L121, that is, the second distance increases as the first distance increases.
  • each vertical group at least two pad lug fitting portions are connected to each other, and the formed connected pattern is in a Z-shape.
  • the tab mounting portions 1222a and 1223a are connected, and the formed connected pattern is a Z-shape.
  • the insulating pad 1200 is suitable for use in the six-core battery assembly shown in FIG. 8B .
  • the above-described first to fourth embodiments of the insulating gasket do not exhaust all structures of the insulating gasket claimed in this application.
  • the pad lug fitting portion on the insulating pad of the present application may include any combination of one or more first pad fitting holes, second pad fitting holes, and pad side recesses, all of which are included in this application. within the scope of protection requested by the application.
  • different insulating pads may correspond to different transfer conductors and battery core components.
  • each battery core has a first side and a second side disposed oppositely along the thickness direction of the battery core assembly, the first side of each battery core is disposed close to the inner side of the battery core assembly, and the first side of each battery core is disposed close to the inner side of the battery core assembly.
  • the second side is disposed close to the outside of the battery core assembly; in the thickness direction of the battery core assembly, the tabs protrude from the top surface of the battery core close to the first side. The tabs protrude from the top surface of the battery core close to the first side, which can reduce the internal resistance of the secondary battery and greatly improve the voltage platform and battery performance.
  • the battery core assembly 440 includes four battery cells, namely battery cells 441, 442, 443, and 444.
  • the first side of each battery core is marked in Figure 4D. , are the first side surfaces 441a, 442a, 443a, and 444a respectively.
  • the positive electrode tabs 411a, 412a, 413a, 414a and the negative electrode tabs 411b, 412b, 413b, 414b all protrude from the top surface of the corresponding battery core close to the first side surface.
  • the upper surface of the transfer conductor 401 is divided into a first transfer conductor area F1 and a second transfer conductor by a dividing line F extending along the thickness direction of the battery core assembly.
  • area F2 the transfer conductor poles 430 on the transfer conductor 401 are located in the first transfer conductor area F1
  • the second transfer conductor tab assembly holes 420 corresponding to the two cells inside the battery core assembly are located in the second transfer conductor.
  • the second projection of the transfer conductor pole 430 along the width direction X of the battery core assembly covers the first projection of the second transfer conductor tab assembly hole 420 along the width direction of the battery core assembly. According to such an embodiment, it has at least the following three beneficial effects:
  • the width of the second transfer conductor tab mounting hole 420 along the Y direction will not be too wide, so that the connecting portion formed by connecting the pole tab of the battery core close to the outside and the transfer conductor 401 to the transfer conductor pole 430 There is no weak point in the current conduction caused by the tab mounting part, especially the weak point in the current conduction caused by the through hole of the second transfer conductor tab mounting hole 420, thereby reducing the pole tab of the outer battery core.
  • the internal resistance between the connection formed with the transfer conductor 401 and the transfer conductor pole 430 further reduces the internal resistance of the secondary battery, greatly improving the voltage platform and performance.
  • the tabs of the two innermost battery cells close to the battery core assembly can be bent toward the outside of the battery core assembly after passing through the second transfer conductor tab assembly hole 420 on the transfer conductor 401. After the tabs pass through the tab fitting portion on the adapter piece, they can be bent toward the inside of the battery core assembly; thus, the tabs of the battery cores close to the outside of the battery core assembly are connected to the transfer conductor 401 to form a connection to the transfer conductor.
  • the internal resistance between the poles 430 and the internal resistance between the pole lug of the cell close to the inside of the cell assembly and the transfer conductor 401 to the transfer conductor poles 430 tend to be consistent, improving the long-term performance of the secondary battery. .
  • the tab mounting parts are all arranged in the second transfer conductor area F2, which can take into account the production of battery cores and reduce the connection between the tabs of the outer battery core and the transfer conductor 401 to the transfer conductor pole.
  • the internal resistance between the columns 430 thereby reduces the internal resistance of the secondary battery, greatly improving the voltage platform and performance.
  • FIG. 13A is an exploded schematic diagram of the assembly structure of a secondary battery with staggered tabs according to an embodiment of the present application.
  • the assembly structure includes a battery core assembly 1310, an insulating pad 1320, and transfer conductors 1330a and 1330b.
  • the cell assembly 1310 includes two cell groups 1301 and 1302, which are adjacent along the thickness direction Y of the secondary battery; each cell group includes at least two cells.
  • each cell includes a pole protruding from the top surface of the cell, and the pole includes a positive pole and a negative pole, and multiple cells
  • the top surface of the core forms a plane, which is divided into equal first plane areas Zone1 and second plane areas Zone2 by the central axis C2 extending along the thickness direction, wherein all positive electrode lugs are located in the first plane area Zone1, and all The negative electrode tabs are located in the second planar area Zone2.
  • the projections of all the positive electrode tabs located in the first planar area Zone1 in each cell group along the thickness direction Y do not overlap.
  • the projections of all the positive electrode tabs located in the first planar area Zone1 in each cell group are located in the second planar area Zone2.
  • the projections of all negative electrode tabs along the thickness direction Y have no overlap.
  • the positive electrode tabs 1311a and 1312a in the battery core group 1301 are located in the first planar area Zone1, and they are interleaved with each other without overlapping; the negative electrode tabs 1311b and 1312b in the battery core group 1301 are located in the second planar area Zone2, and they are interleaved with each other.
  • the positive electrode tabs 1313a and 1314a in the battery core group 1302 are located in the first planar area Zone1, and they are interlaced with each other without overlap; the negative electrode tabs 1313b and 1314a in the battery core group 1302 are located in the second planar area Zone2, and they are interlaced with each other. There is no overlap.
  • the projections of all positive electrode lugs located in the first plane zone Zone1 in each battery cell group along the width direction have no overlap.
  • the insulating pad 1320 is provided with pad lug fitting portions 1321a, 1322a, 1323a, 1324a, 1321b, 1322b, 1323b, 1324b
  • the transfer conductor 1330a has side mounting portions 1331a, 1334a and a first transfer
  • the transfer conductor 1330b has side mounting portions 1331b, 1323b and the first transfer conductor tab mounting holes 1332b, 1333b.
  • Figure 13B shows a schematic structural diagram of Figure 13A after assembly.
  • the positive tabs 1311a, 1312a, 1313a, and 1314a pass through the pad tab fitting portions 1321a, 1322a, 1323a, 1324a, the side mounting portion 1331a, the first transfer conductor tab mounting hole 1332a, and the first transfer conductor pole respectively in sequence.
  • the ear mounting holes 1333a and the side mounting portions 1334a; the negative electrode ears 1311b, 1312b, 1313b, and 1314b pass through the pad tab mounting portions 1321b, 1322b, 1323b, 1324b, the side mounting portion 1331b, and the first transfer conductor pole respectively.
  • each battery core has a tab height, and the tab heights of all the tabs in each battery core group are the same; or, two adjacent battery core groups are adjacent to each other through an abutment surface.
  • each battery core includes a plurality of tabs, and in each battery core group, the tab height of some or all of the tabs increases as the distance between the tabs and the adjacent surface increases.
  • Figures 13A and 13B are only one example of staggered tabs.
  • the number of the adapter conductor tab fitting portion on the adapter conductor and the pad tab fitting portion on the insulating pad plate also changes appropriately.
  • the structures can be referred to Figure 8A and Figure 12 respectively. Embodiments.
  • the battery core assembly includes at least one group of battery core pairs, each group of battery core pairs includes two adjacent battery cores, and the tabs of the same polarity of the two adjacent battery cores are merged into a single battery core pair.
  • the pole tabs and single pole tabs pass through the pad tab fitting part and the transfer conductor tab assembly part in sequence, and then are welded and connected to the transfer conductor.
  • FIG. 14A is an exploded schematic diagram of the assembly structure of a secondary battery with integrated tabs according to an embodiment of the present application.
  • Figure 14B shows a schematic structural diagram of Figure 14A after assembly.
  • 14A and 14B which includes a battery core assembly 1410, including two battery core groups 1401 and 1402, in which the positive electrode ears 1411a and 1412a of the two adjacent battery cells in the battery core group 1401 are merged into one monopolar ear. 1401, the negative electrode ears 1411b and 1412b of the two adjacent cells in the cell group 1401 merge with each other to form a single pole ear 1402; the positive electrode ears 1413a and 1414a of the two adjacent cells in the cell group 1402 merge with each other.
  • a single-pole tab 1403, the negative electrode tabs 1413b and 1414b of two adjacent cells in the battery core group 1402 are merged with each other to form a single-pole tab 1404.
  • the insulating pad 1420 has pad tab fitting holes 1421a, 1421b, 1422a, 1422b
  • the transfer conductor 1430a has transfer conductor tab fitting holes 1431a, 1432a
  • the transfer conductor 1430b has a transfer conductor pole.
  • the single pole tab 1401 passes through the pad tab fitting hole 1421a and the transfer conductor tab assembly hole 1431a in sequence; the single pole tab 1402 passes through the pad tab fitting hole 1421b and the transfer conductor tab assembly hole 1431b in sequence; single pole The ear 1403 passes through the pad tab fitting hole 1422a and the transfer conductor tab assembly hole 1432a in sequence; the single pole tab 1404 passes through the pad tab fitting hole 1422b and the transfer conductor tab assembly hole 1432b in sequence.
  • the cell assembly, transfer conductor and insulating pad in the secondary battery assembly of the present application cooperate with each other to assemble a variety of secondary battery assemblies with different structures. Several different embodiments of the secondary battery assembly of the present application are shown below.
  • inventions of the present application provide a secondary battery assembly.
  • the secondary battery assembly uses a four-core battery assembly.
  • the battery assembly of the secondary battery assembly It includes a first battery core 151, a second battery core 152, a third battery core 153 and a fourth battery core 154 arranged side by side.
  • a first positive electrode tab 151a and a first negative electrode tab 151b are respectively provided on both sides of the top of the first battery core 151.
  • a second positive electrode tab 152a and a second negative electrode tab 152b are respectively provided on both sides of the top of the second battery core 152.
  • a third positive electrode tab 153a and a third negative electrode tab 153b are respectively provided on both sides of the top of the third battery core 153.
  • a fourth positive electrode tab 154a and a fourth negative electrode tab 154b are respectively provided on both sides of the top of the fourth cell 154.
  • the first battery core 151 and the fourth battery core 154 are outer battery cores
  • the second battery core 152 and the third battery core 153 are inner battery cores.
  • the tabs 151a, 151b, 154a, and 154b all belong to the second battery core.
  • the pole ears, pole ears 152a, 152b, 153a, and 153b all belong to the first pole ear.
  • the positive electrode adapter piece 12 is provided with a first positive electrode mounting hole 12 a that penetrates the second positive electrode tab 152 a, and a second positive electrode mounting hole 12 b that penetrates the third positive electrode tab 153 a.
  • the negative electrode adapter piece 13 is provided with a second negative electrode assembly hole 13b that penetrates the second negative electrode tab 152b, and a first negative electrode assembly hole 13a that penetrates the third negative electrode tab 153b.
  • the positive adapter blade 12 also includes side mounting portions 121 a and 121 b located on the sides of the adapter conductor, respectively used to provide the first positive electrode tab 151 a and the fourth positive electrode tab. 154a passes through and surrounds the side.
  • the negative adapter piece 13 also includes side mounting portions 131a and 131b located on the sides of the adapter conductor, respectively used for the first negative electrode tab 151b and the fourth negative electrode tab 154b to pass through and wrap around the side. department.
  • the side fitting portions 121a, 121b, 131a, 131b are actually the side portions of the transfer conductor and do not need to be additionally formed, so as to save materials and reduce processing costs.
  • the insulating pad 14 is located between the positive electrode adapter piece 12 and the negative electrode adapter piece 13 of the battery core assembly and the transfer conductor.
  • the insulating pad 14 is provided with pad tabs for penetrating the tabs.
  • the mating part, in this embodiment, the pad tab fitting part is the pad tab fitting hole.
  • the insulating pad 14 is provided with a first tab through hole 14a that penetrates the first positive electrode tab 151a and the second positive electrode tab 152a, and a second tab through hole 14a that penetrates the third positive electrode tab 153a and the fourth positive electrode tab 154a.
  • the tab through hole 14b, the third tab through hole 14c that penetrates the third negative electrode tab 153b and the fourth negative electrode tab 154b, and the fourth electrode that penetrates the first negative electrode tab 151b and the second negative electrode tab 152b Auricular opening 14d.
  • the insulating pad 14 is disposed above the battery core 15 and below the positive adapter piece 12 and the negative adapter piece 13 .
  • the positive adapter piece 12 and the negative adapter piece 13 are separated from the battery core 15 by the insulating pad 14 .
  • the first tab is bent after passing through the tab fitting portion of the pad and the tab assembly hole of the transfer conductor in sequence, and the bent first tab is welded and connected to the top surface of the transfer conductor.
  • the second tab passes through the pad tab fitting part and the side assembly part in sequence and is then bent.
  • the bent second tab goes from the side of the transfer conductor to above the transfer conductor and connects with the transfer conductor. top welded connection.
  • Figure 15B shows a cross-sectional view along line A4A4' of the secondary battery assembly shown in Figure 15A when the tabs are not folded.
  • Figures 15A to 15D after the first positive tab 151a passes through the first tab through hole 14a Go from the side mounting portion 121a of the positive electrode adapter piece 12 to the top of the positive electrode adapter piece 12, bend the first positive electrode tab 151a, and then weld and connect it to the top surface of the positive electrode adapter piece 12 to form the first welding portion S1 .
  • the second positive electrode tab 152a passes through the first tab through hole 14a and the first positive electrode assembly hole 12a from bottom to top, the second positive electrode tab 152a is bent and the top surface of the positive electrode adapter piece 12 is welded and connected to form The second welding part S2.
  • the third positive electrode tab 153a passes through the second tab through hole 14b and the second positive electrode assembly hole 12b from bottom to top, the third positive electrode tab 153a is bent and then welded to the top surface of the positive electrode adapter piece 12
  • the third welding portion S3 is formed.
  • the fourth positive electrode tab 154a passes through the second tab through hole 14b and then winds from the side mounting portion 121b of the positive electrode adapter piece 12 to the top of the positive electrode adapter piece 12, and then bends the fourth positive electrode tab 154a with it.
  • the top surface of the positive electrode adapter piece 12 is welded and connected to form a fourth welding portion S4.
  • the first negative electrode tab 151b passes through the fourth tab through hole 14d and then winds from the side mounting portion 131a of the negative electrode adapter piece 13 to the top of the negative electrode adapter piece 13.
  • the first negative electrode tab 151b is bent and connected to The top surface of the negative electrode adapter piece 13 is welded and connected to form a fifth welding portion S5.
  • the second negative electrode tab 152b passes through the fourth tab through hole 14d and the second negative electrode assembly hole 13b from bottom to top, the second negative electrode tab 152b is bent and then welded to the top surface of the negative electrode adapter 13
  • the sixth welding portion S6 is formed.
  • the third negative electrode tab 153b passes through the third tab through hole 14c and the first negative electrode assembly hole 13a from bottom to top, the third negative electrode tab 153b is bent and then welded to the top surface of the negative electrode adapter 13 A seventh welding portion S7 is formed.
  • the fourth negative electrode tab 154b passes through the third tab through hole 14c and then winds from the side mounting portion 131b of the negative electrode adapter piece 13 to the top of the negative electrode adapter piece 13, and then bends the fourth negative electrode tab 154b with it.
  • the top surface of the negative electrode adapter piece 13 is welded and connected to form an eighth welding portion S8.
  • the transfer conductor tab assembly hole has a hole wall, and the first tab sequentially passes through the pad tab fitting portion and the transfer conductor tab assembly hole and then is welded and connected to the hole wall of the transfer conductor.
  • the side assembly part has a side wall, and the second tab passes through the pad tab fitting part and the side assembly part in sequence and is then welded and connected to the side wall.
  • the positive electrode tabs and negative electrode tabs of the second battery core 152 and the third battery core 153 pass through the tab through holes and the tab assembly holes in sequence, they can be directly connected to the positive electrode adapter piece 12 and the negative electrode adapter piece 13 respectively.
  • the hole wall of the pole lug assembly hole is welded.
  • the positive electrode tabs and negative electrode tabs of the first battery core 151 and the fourth battery core 154 pass through the tab through holes, they can be directly welded and connected to the side walls of the positive electrode adapter piece 12 and the negative electrode adapter piece 13 respectively.
  • inventions of the present application provide a secondary battery assembly.
  • the secondary battery assembly uses a two-core battery assembly.
  • the battery assembly of the secondary battery assembly It includes a first battery core 151 and a second battery core 152 arranged side by side.
  • a first positive electrode tab 151a and a first negative electrode tab 151b are respectively provided on both sides of the top of the first battery core 151.
  • a second positive electrode tab 152a and a second negative electrode tab 152b are respectively provided on both sides of the top of the second battery core 152.
  • the adapter conductor includes a positive adapter piece 12 and a negative adapter piece 13.
  • the positive adapter piece 12 is an aluminum sheet, and the negative adapter piece 13 is a copper piece.
  • the transfer conductor in this embodiment only includes side fitting parts, such as side fitting parts 122a, 122b, 132a, 132b in Figure 16D. According to this embodiment, the material cost and processing cost can be reduced, and no additional holes are needed on either the positive electrode adapter piece 12 or the negative electrode adapter piece 13 .
  • the positive adapter piece 12 is disposed between the first positive tab 151a and the second positive tab 152a
  • the negative adapter piece 13 is disposed between the first negative tab 151b and the second negative tab 152b.
  • a sinking platform is provided on the top surface of the transfer conductor.
  • the sinking platform has a sinking platform depth relative to the top surface.
  • the tab assembly of the transfer conductor is located in the sinking platform.
  • the sinking platform is used to accommodate the bent poles. Ear.
  • the side mounting parts 122a, 122b, 132a, and 132b are respectively located in the sink.
  • the first positive electrode tab 151a passes through the first tab through hole 14a and then winds from the side mounting portion 122a of the positive electrode adapter piece 12 to the top of the positive electrode adapter piece 12, and the first positive electrode
  • the tab 151a is bent and welded to the top surface of the positive electrode adapter piece 12 to form a first welding portion S1.
  • the second positive electrode tab 152a passes through the second tab through hole 14b and then winds from the side mounting portion 122b of the positive electrode adapter piece 12 to the top of the positive electrode adapter piece 12, and then bends the second positive electrode tab 152a with it.
  • the top surface of the positive electrode adapter piece 12 is welded and connected to form a second welding portion S2.
  • the first negative electrode tab 151b passes through the fourth tab through hole 14d and then winds from the side mounting portion 132a of the negative electrode adapter piece 13 to the top of the negative electrode adapter piece 13.
  • the first negative electrode tab 151b is bent and connected to
  • the top surface of the negative electrode adapter piece 12 is welded and connected to form a third welding portion S3.
  • the second negative electrode tab 152b passes through the third tab through hole 14c and then winds from the side mounting portion 132b of the negative electrode adapter piece 13 to the top of the negative electrode adapter piece 13.
  • the second negative electrode tab 152b is bent and connected to the side assembly portion 132b of the negative electrode adapter piece 13.
  • the top surface of the negative electrode adapter piece 13 is welded and connected to form a fourth welding portion S4.
  • chamfers or fillets are provided around the opening of the tab assembly portion of the transfer conductor, and a positioning groove matching the contour of the transfer conductor is provided on the top of the insulating pad, and the transfer conductor is located in the positioning slot.
  • positioning grooves 125 and fillets 126 are marked.
  • the positioning groove 125 is similar to the positioning reinforcement structure 910 shown in FIG. 9A. Since it protrudes from the top of the insulating pad 14, the transfer conductor can be limited therein, thus playing a positioning role.
  • the chamfer or rounded corner 126 is beneficial to support the pole tab and prevents the pole tab from being torn due to burrs and sharp corners.
  • Positioning grooves 125 matching the contours of the positive electrode adapter piece 12 and the negative electrode adapter piece 13 are respectively provided on the top of the insulating pad 14.
  • the positive electrode adapter piece 12 and the negative electrode adapter piece 13 are respectively located in the positioning slots 125, as The positive adapter piece 12 and the negative adapter piece 13 provide installation and fixing positions.
  • embodiments of the present application provide a secondary battery assembly.
  • the secondary battery assembly uses a six-cell battery assembly.
  • the six-cell battery assembly is different from a four-cell battery assembly.
  • the six-cell battery assembly adds a fifth battery cell 155 and a sixth battery cell 156.
  • Fifth positive electrode tabs 155a and fifth negative electrode tabs 155b are respectively provided on both sides of the top of the fifth battery core 155.
  • Sixth positive electrode tabs 156a and sixth negative electrode tabs 156b are respectively provided on both sides of the top of the sixth battery core 156.
  • the corresponding positive electrode adapter sheet 12 used in the six-cell battery assembly has a third positive electrode assembly hole 12c and a fourth positive electrode assembly hole 12d added
  • the negative electrode adapter sheet 13 used in the six-cell battery assembly has a third negative electrode assembly hole 13c added. and the fourth negative electrode mounting hole 13d.
  • the positive electrode adapter piece 12 has side mounting portions 123a and 123b
  • the negative electrode adapter piece 13 has side mounting portions 133a and 133b.
  • the transfer conductor tab mounting holes and the side mounting portions are respectively located in the sinking platform.
  • the installation method of the first to sixth positive electrode tabs, the first to sixth negative electrode tabs, the positive electrode adapter piece 12 and the negative electrode adapter piece 13 of the six-core battery assembly is the same as that of the first to fourth positive electrode tabs of the four-core battery assembly.
  • the installation methods of the ears, the first to fourth negative electrode tabs, the positive electrode adapter piece 12 and the negative electrode adapter piece 13 are the same, and the specific installation and connection methods will not be repeated.
  • the first to sixth positive electrode tabs of the six-cell battery assembly are welded and connected to the positive electrode adapter piece 12 and sequentially form a first welding part S1 , a second welding part S2 , a third welding part S3 , and a fourth welding part.
  • the first to sixth negative electrode tabs are welded and connected to the negative electrode adapter piece 13 to sequentially form the seventh welding part S7, the eighth welding part S8, the ninth welding part S9, the tenth welding part S10, and the eleventh welding part S11. and the twelfth welding section S12.
  • embodiments of the present application provide a secondary battery assembly.
  • the secondary battery assembly uses an eight-cell battery assembly.
  • the eight-cell battery assembly is the same as a six-cell battery assembly.
  • the eight-cell battery component adds a seventh battery cell 157 and an eighth battery cell 158.
  • a seventh positive electrode tab 157a and a seventh negative electrode tab 157b are respectively provided on both sides of the top of the seventh cell 157.
  • An eighth positive electrode tab 158a and an eighth negative electrode tab 158b are respectively provided on both sides of the top of the eighth cell 158.
  • the corresponding positive electrode adapter sheet 12 used in the eight-cell battery assembly has a fifth positive electrode assembly hole 12e and a sixth positive electrode assembly hole 12f
  • the negative electrode adapter sheet 13 used in the eight-cell battery assembly has a fifth negative electrode assembly hole 13e. and the sixth negative electrode mounting hole 13f.
  • the positive electrode adapter piece 12 has side mounting portions 124a and 124b
  • the negative electrode adapter piece 13 has side mounting portions 134a and 134b.
  • the transfer conductor tab mounting holes and the side mounting portions are respectively located in the sinking platform.
  • the installation method of the first to eighth positive electrode tabs, the first to eighth negative electrode tabs, the positive electrode adapter piece 12 and the negative electrode adapter piece 13 of the eight-cell battery assembly is the same as that of the first to sixth positive electrode tabs of the six-cell battery assembly.
  • the installation methods of the ears, the first to sixth negative electrode tabs, the positive electrode adapter piece 12 and the negative electrode adapter piece 13 are the same, and the specific installation and connection methods will not be repeated.
  • the first to eighth positive electrode tabs of the eight-cell battery assembly in the embodiment of the present application are welded and connected to the positive electrode adapter piece 12 to form a first welding part S1, a second welding part S2, a third welding part S3, and a fourth welding part in sequence.
  • the first to eighth negative electrode tabs are welded and connected to the negative electrode adapter piece 13 to form the ninth welding part S9, the tenth welding part S10, the eleventh welding part S11, the twelfth welding part S12, and the thirteenth welding part in sequence. part S13, the fourteenth welding part S14, the fifteenth welding part S15, and the sixteenth welding part S16.
  • embodiments of the present application provide a secondary battery assembly that uses a four-core battery assembly with different tab heights.
  • the first positive electrode tab 151a, the first negative electrode tab 151b, and the fourth positive electrode tab of the first battery cell 151 and the fourth battery cell 154 are located outside.
  • the fourth negative electrode tab 154b have the same height; the second positive electrode tab 152a, the second negative electrode tab 152b, the third positive electrode tab 153a and the second battery core 152 and the third battery core 153 located inside The heights of the three negative electrode tabs 153b are all the same; and the outer first positive electrode tab 151a, the first negative electrode tab 151b, the fourth positive electrode tab 154a and the fourth negative electrode tab 154b are all higher than the inner second positive electrode. The heights of the pole tab 152a, the second negative pole tab 152b, the third positive pole tab 153a and the third negative pole tab 153b.
  • the second positive electrode tab 152a and the third positive electrode tab 153a respectively pass through the side mounting portion of the positive electrode adapter piece 12 and the adapter conductor tab assembly hole, the second positive electrode tab 152a and The third positive electrode tabs 153 a are all bent toward the central axis of the positive electrode adapter piece 12 , and are welded and connected to the top surface of the positive electrode adapter piece 12 .
  • the second negative electrode tab 152b and the third positive electrode tab 153a pass through the side mounting portion and the adapter conductor tab mounting hole of the negative electrode adapter piece 13 respectively, the second negative electrode tab 152b and the third positive electrode tab 153a are both They are bent toward the central axis of the negative electrode adapter piece 13 and are welded and connected to the top surface of the negative electrode adapter piece 13 .
  • the first positive electrode tab 151a and the fourth positive electrode tab 154a pass through the side mounting portion of the positive electrode adapter piece 12 and are both bent in the direction of the second positive electrode tab 152a and the third positive electrode tab 153a.
  • the first positive electrode tab 151a and the second positive electrode tab 152a are welded and connected to form the first welding part S1
  • the fourth positive electrode tab 154a and the third positive electrode tab 153a are welded and connected to form the second welding part S2.
  • first negative electrode tab 151b and the fourth negative electrode tab 154b pass through the side mounting portion of the negative electrode adapter 13, they are both bent in the direction of the second negative electrode tab 152b and the third positive electrode tab 153a, and the first negative electrode
  • the tab 151b and the second negative tab 152b are welded and connected to form a third welding portion S3, and the fourth negative tab 154b and the third negative tab 153b are welded and connected to form a fourth welding portion S4.
  • the height of the second tab of the outer cell is greater than the height of the first tab of the inner cell. From the outer cell to the inner cell The tab height of the core can be gradually reduced.
  • the cell located in the middle has the lowest tab height, and the tab heights of the remaining tabs also decrease in sequence from the outer cell to the inner cell.
  • the two cells located in the middle have the lowest tab heights, and the tab heights of the remaining tabs also decrease in sequence from the outer cells to the inner cells.
  • FIGS. 20A to 20C are a secondary battery provided in the second aspect of the embodiment of the present application.
  • the cell components, insulating pads 14 and transfer conductors included therein are the same as those in the embodiment shown in Figure 1. Therefore, the same label.
  • FIG. 20A is an overall schematic diagram of the secondary battery 1
  • FIG. 20B is an exploded view of the secondary battery 1
  • FIG. 20C is a cross-sectional view along line A9A9' of FIG. 20A.
  • the secondary battery 1 includes: a casing 16 , which is a hollow structure with a top opening that is closed around.
  • a top cover 11 is provided on the top of the case 16 to seal the secondary battery assembly in the case 16.
  • the top cover 11 is provided with poles 11a and 11b connected to the transfer conductor.
  • the poles 11a and 11b will The current of the secondary battery assembly is led outside the case 16 .
  • One of the poles 11a and 11b is a positive pole and the other is a negative pole, the polarity of which corresponds to the polarity of the transfer conductor below.
  • the top cover 11 includes a top cover plate 111 and a lower insulator 112 located at the bottom of the top cover plate 111 .
  • the transfer conductor of the secondary battery assembly installed in the housing 16 is connected to the pole on the top cover 11 Finally, the assembly of the secondary battery 1 is completed.
  • the transfer conductor needs to be welded and connected to the tab of the battery core.
  • the transfer conductor and the tab of the battery core are welded vertically, which requires force in the height direction to ensure the welding strength. Therefore, external force is required to press the transfer conductor and the insulating pad, which reduces the efficiency of production and assembly. Increased production costs.
  • the inner wall of the casing of the secondary battery of the present application is provided with a limiting structure for limiting the insulating pad within the casing.
  • Figures 21 to 23D are used to illustrate these embodiments. These embodiments can solve the problem in the related art that during the assembly and welding process of secondary batteries, external force is required to press the adapter piece and the insulating pad, which reduces the production and assembly efficiency and increases the production cost.
  • the housing 2101 includes: a battery housing 2111.
  • the battery housing 2111 is a rectangular cylinder with a top opening and a closed perimeter. structure, a limiting structure 2112 is provided on the inner wall 2111a of the battery casing 2111 to limit the insulating pad 2102 in the battery casing 2111.
  • the limiting structure 2112 can firmly fix the insulating pad 2102 in the battery casing 2111. In order to facilitate the welding connection between the tabs and the transfer conductors 2103a and 2103b on the top of the insulating pad 2102.
  • the limiting structure 2112 is a plurality of bosses fixed on the inner wall 2111a of the battery housing 2111.
  • the plurality of bosses are located on two parallel inner walls 2111a of the battery housing 11.
  • the inner wall 2111a is a side wall inside the battery housing 2111.
  • the inside of the battery housing 2111 includes four side walls, and the limiting structure 2112 can be located on any side wall.
  • the plurality of bosses and the battery housing 2111 are made of an aluminum alloy material and are integrally formed, and the plurality of bosses are close to the top opening of the battery housing 2111.
  • a plurality of bosses are respectively provided on the inner wall of the battery casing 2111 and surround the insulating pad 2102. After the insulating pad 2102 is installed in the battery casing 2111, the multiple bosses jointly engage the surroundings of the insulating pad 2102. Prevent the insulating pad 2102 from coming out of the battery casing 2111.
  • the snap-in here means that the insulating pad 2102 is located above the boss or in the middle of the boss.
  • the boss fixes the insulating pad 2102 and prevents the insulating pad 2102 from moving up and down.
  • 23A to 23D are side cross-sectional views of the housing, showing four different embodiments of the limiting structure.
  • the limiting structure 2112 is a boss 2113a
  • the boss 2113a is a spherical crown protruding toward the inside of the battery housing 2111
  • a plurality of bosses 2113a are on the inner wall of the battery housing 2111.
  • 2111a is located at the same height.
  • the boss 2113a in the embodiment of the present application is designed as a spherical crown-shaped structure protruding toward the inside of the battery casing 2111.
  • the spherical crown-shaped boss 2113a is easy to process.
  • a stamping die is used to stamp from the outside of the battery casing 2111 to the inside of the battery casing 2111.
  • the spherical crown-shaped boss 2113a can be obtained, which is beneficial to reducing production costs, and the spherical crown-shaped boss 2113a facilitates pressing the insulating pad 2102 into the battery shell 2111, reducing installation difficulty.
  • the limiting structure 2112 is a boss 2113b, and the boss 2113b is a triangular limiting block protruding toward the inside of the battery housing 11.
  • the top of the triangular limiting block is provided with a downwardly inclined guide surface 2114, and the bottom of the triangular limiting block is provided with a limiting surface 2115 that abuts the insulating pad 2102.
  • the boss 2113b in the embodiment of the present application is designed as a triangular limiting block protruding toward the inside of the battery casing 2111.
  • the guide surface 2114 on the top of the triangular limiting block facilitates pressing the insulating pad 2102 into the battery casing 2111.
  • the bottom of the triangular limiting block The limiting surface 2115 is used to limit the insulating pad 2102 in the battery casing 2111, prevent the insulating pad 2102 from coming out of the battery casing 2111, and improve the reliability of the snap connection between the insulating pad 2102 and the battery casing 2111.
  • the limiting structure 2112 is a boss 2113c.
  • the boss 2113c includes: an upper limit block 2121 and a lower limit block 2117.
  • the upper limit block 2121 is located on the top of the lower limit block 2117. They are spaced apart from each other.
  • the upper limit block 2121 and the lower limit block 2117 form a limit space 2123 for engaging the insulating pad 2102.
  • the upper limit block 2121 and the lower limit block 2117 are used to position the insulating pad 2102 in the height direction to ensure that the height position of the insulating pad 2102 remains constant and to reduce excessive pressing of the insulating pad 2102 that may cause the tabs to overshoot.
  • the sunken contact pole piece creates the risk of short circuit.
  • the limiting structure 2112 of the secondary battery case 2101 is a groove 2119 provided on the inner wall 2111a of the battery case 2111 , and the groove 2119 is in contact with the gasket 2 The edge snaps to snap the gasket 2 into the battery housing 2111.
  • the groove 2119 is located on two parallel inner walls 2111a of the battery casing 2111, and the groove 2119 extends along the length direction of the insulating pad 2102.
  • the left and right sides of the insulating pad 2102 are located in the grooves 2119 on the two parallel side walls of the battery casing 2111.
  • the grooves 2119 can ensure that the height position of the insulating pad 2102 remains constant and reduce excessive pressure on the insulating pad 2102. Excessively sinking the pole lug into contact with the pole piece may cause the risk of short circuit.
  • multiple grooves 2119 may be provided.
  • the plurality of grooves 2119 are spaced apart along the length direction of the insulating pad 2102 .
  • the bumps of the insulating pad 2102 are respectively located in a plurality of grooves 2119, so that the insulating pad 2102 located in the battery casing 2111 moves up and down.
  • Figures 24A and 24B are both top views of a secondary battery assembly, in which the insulating pad 2401 shown in Figure 24A can be engaged with the limiting structure.
  • the insulating pad 2402 shown in FIG. 24B is based on the insulating pad 2401 and adds a bump 2411 that matches the groove 2119.
  • the inner wall 2111a of the battery casing 2111 of the present application is provided with a limiting structure 2112 for limiting the insulating pad 2102 in the battery casing 2111.
  • the limiting structure 2112 can limit the insulating pad 2102.
  • the insulating pad 2102 and the battery casing 2111 are self-locked. When welding the transfer conductor and the tab, no external force is required to press the transfer piece, which reduces the processing difficulty and improves production efficiency.
  • the assembly includes: a battery core assembly 2501 (also known as a winding core), with multiple tabs provided on the top; two transfer conductors 2511 (also known as transfer sheets), which are provided on the battery core.
  • a battery core assembly 2501 also known as a winding core
  • two transfer conductors 2511 also known as transfer sheets
  • the pole tabs are respectively welded to the surfaces of the two transfer conductors 2511 to form a soldering area 2512; at least one double-sided protective adhesive layer 2502, both sides of which are adhesive surfaces, is attached to the top of the transfer conductor 2511. and cover at least the solder print area 2512.
  • the double-sided protective adhesive layer 2502 includes: two adhesive layers 2622 and a carbonate protective layer 2623 located between the two adhesive layers 2622 .
  • the carbonate protective layer 2623 can release gas that inhibits combustion, thus improving the safety performance of the secondary battery.
  • the double-sided protective adhesive layer 2502 adheres and covers the soldering area 2512, thus effectively preventing soldering marks.
  • the soldering slag that may fall on the area 2512 breaks away from the soldering area 2512 and falls into the inside of the battery core assembly 2501.
  • the double-sided protective adhesive layer 2502 It can also adhere to foreign matter such as welding slag or dust particles falling on it, effectively reducing the possibility of foreign matter entering the cell assembly 2501, and the double-sided protective adhesive layer 2502 covering the soldering area 2512 can also effectively avoid the soldering area. 2512 comes into contact with the electrolyte after the secondary battery is filled with liquid to reduce its corrosion rate, and ultimately achieves effective protection of the secondary battery through the double-sided protective adhesive layer 2502.
  • the carbonate protective layer 2623 is a sodium bicarbonate or sodium carbonate layer structure.
  • the adhesive layer 2622 is a double-sided adhesive layer 2622
  • the carbonate protective layer 2623 is a powder layer structure laid and adhered between the two adhesive layers 2622.
  • the carbonate protective layer 2623 can be quickly and efficiently placed in the double protective adhesive layer, which reduces the process difficulty and is easy to implement.
  • FIG. 27 is an exploded view of the secondary battery assembly of the embodiment shown in FIG. 25 .
  • the double-sided protective adhesive layer 2502 of this embodiment includes two mutually separated double-sided protective adhesive layers 2502 .
  • Each piece of double-sided protective adhesive layer 2502 is pasted to cover one or more soldering areas 2512 on two transfer conductors 2511.
  • two double-sided protective adhesive layers 2502 are specifically provided to cover the soldering areas 2512 on each transfer conductor 2511 respectively.
  • the double-sided protective adhesive layer has a whole-piece structure and is attached to cover the soldering areas 2512 on the two adapter sheets 2511 at the same time, such as the double-sided protective adhesive layer 2503 shown in Figure 28 .
  • a piece of double-sided protective adhesive layer 2503 can be used to cover multiple soldering areas 2512 at the same time, which makes the operation faster and allows the double-sided protective adhesive layer 2503 to cover a wider area on the top surface of the battery cell assembly 2501, and its adhesion The effect of foreign objects will be more obvious.
  • the transfer conductor 2511 is provided with a transfer boss 2530 and a liquid injection hole 2531
  • the double-sided protective adhesive layer 2502 is provided with a first hole 2520 corresponding to the transfer boss 2530 and a corresponding injection hole.
  • Transfer boss 2530 is also known as transfer conductor post.
  • the shape and size of the first hole 2520 are consistent with the peripheral edge of the transfer boss 2530; the shape and size of the second hole 2521 are consistent with the peripheral edge of the liquid injection hole 2531.
  • the double-sided protective adhesive layer 2502 can more fully cover the transfer conductor 2511 while not affecting the normal use of the secondary battery, thereby protecting the transfer conductor 2511 and preventing welding slag from falling off.
  • an insulating pad 2510 covering the top surface of the battery core assembly 2501 is provided between the transfer conductor 2511 and the battery core assembly 2501, and the tabs pass through the insulating pad 2510 and the transfer The conductor 2511 is then welded to the surface of the transfer conductor 2511, that is, the top surface of the transfer conductor 2511.
  • the insulating pad 2510 is provided with ventilation holes 2514 in the area between the two transfer conductors 2511 to improve the heat dissipation capacity of the battery core assembly 2501. Breather holes are also called explosion-proof valves.
  • the double-sided protective adhesive layer 2502 completely covers the transfer conductor 2511, and the two ends of the double-sided protective adhesive layer 2502 extend from both sides of the insulating pad 2510 and adhere to the side wall of the battery core assembly 2501. Among them, the double-sided protective adhesive layer 2502 extending out of the periphery of the insulating pad 2510 is adhered to the side wall of the battery core assembly 2501. Specifically, in this embodiment, the double-sided protective adhesive layer 2502 is provided as a whole piece, and It covers two transfer conductors 2511 at the same time.
  • Its length in the long side direction of the insulating pad 2510 is consistent with the insulating pad 2510, and its length in the width of the insulating pad 2510 is 20mm longer than the width of the insulating pad 2510. Then its two ends in the length direction extend to the side wall of the battery core assembly 2501. This further improves the protective effect of the double-sided protective adhesive layer 2502 on the cell assembly 2501, and ultimately improves the safety performance of the secondary battery.
  • the assembly method of the secondary battery 1 includes the following steps:
  • Step 101 The multi-layer pole pieces drawn from the battery core 15 are laminated and pre-welded ultrasonically into pole tabs.
  • the pole tabs include positive pole tabs and negative pole tabs.
  • Step 102 Bundle multiple battery cores 15 side by side, and bundle the multiple battery cores 15 to form a battery core assembly.
  • Step 103 Set an insulating pad 14 on the top of the battery core assembly, and the positive and negative electrode tabs of each battery core 15 pass through the pad tab mating portion of the insulating pad 14.
  • Step 104 Arrange a transfer conductor on the top of the insulating pad 14.
  • the positive electrode tab and the negative electrode tab of each battery core 15 pass through the transfer conductor tab assembly part of the transfer conductor.
  • the transfer conductor includes the positive electrode adapter piece 12. and negative electrode adapter piece 13.
  • Step 105 Bend the positive electrode tab and the negative electrode tab that pass through the tab assembly part of the transfer conductor, fit and weld the positive electrode tab and the negative electrode tab to the top surfaces of the positive electrode adapter piece 12 and the negative electrode adapter piece 13 respectively. Connected to form secondary battery components.
  • Step 106 Set a top cover 11 connected to the positive electrode adapter piece 12 and the negative electrode adapter piece 13 on the top of the secondary battery assembly.
  • the poles of the top cover 11 are electrically connected to the adapter conductor.
  • the poles include positive poles and negative poles.
  • the positive pole and the negative pole are connected to the positive adapter piece 12 and the negative adapter piece 13 respectively.
  • Step 107 Install the secondary battery assembly into the casing 16 with an open top, and use the top cover 11 to seal the secondary battery assembly in the casing 16.
  • the secondary battery assembly method of the embodiment of the present application greatly reduces the height requirements for the tabs and reduces the cost of raw materials.
  • the shortening of the tabs can effectively improve the rolling and stretching effects (poor stretching of the empty foil area will cause the die-cut electrodes to The ears will produce sharp burrs, which is a safety risk).
  • Shortening the tab increases the volumetric energy density of the battery core, improves the space utilization of the secondary battery, and improves the short circuit problem caused by bending the tab when the positive tab presses down and contacts the negative electrode.

Abstract

本申请涉及一种二次电池及其装配方法。该二次电池包括二次电池组件,所述二次电池组件包括电芯组件、转接导体和绝缘垫板,其中,所述电芯组件包括至少两个并排设置的电芯,每个所述电芯具有从所述电芯的顶面延伸出的极耳;所述转接导体上开设有转接导体极耳装配部;所述绝缘垫板位于所述电芯组件和所述转接导体之间,所述绝缘垫板上开设有垫板极耳配合部;其中,经收拢的所述极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配部之后与转接导体焊接连接。本申请的二次电池极耳长度短,电池性能好,安全性高,装配效率高,成本低。

Description

二次电池和二次电池的装配方法 技术领域
本发明涉及二次电池领域,特别涉及一种二次电池和二次电池的装配方法。
背景技术
目前,二次电池通常包括顶盖、壳体、电芯和转接片,电池内部的装配结构通常包括两种,第一种装配结构是将一个或多个极耳设置于转接片的下方与转接片采用焊接连接,连接电芯极耳的转接片再与顶盖的极柱焊接连接。第二种装配结构是将一个或多个极耳设置于极柱的下方直接与顶盖极柱焊接连接,在实现极耳与极柱的连接后,通过弯折极耳,将电芯装入壳体内完成二次电池的结构装配。上述两种装配结构,通常为电芯及其极耳先保持水平,装配连接时电芯及其顶部极耳与连接片或顶盖始终保持水平,在电芯入壳体时先弯折极耳,再合芯。其中,弯折极耳的步骤会导致以下问题:一是电芯在高度方向需要留有折极耳空间,导致高度方向上空间利用率低,二次电池的能量密度难以提升;二是折极耳空间少,且极耳到转接片路径、松弛状态不同,极耳冗余、下沉,造成二次电池短路安全风险;三是折极耳后极耳没有支撑,极耳容易插入极片中,同时会造成二次电池短路安全风险;四是极耳易被挤压,外侧极耳受力,极耳易损坏断裂导致过流能力下降,影响电池的性能和使用寿命;五是极耳较长,电池内阻大影响二次电池性能;同时原材料成本高。
此外,随着二次电池在各个应用领域的不断深入与扩大,各领域对其安全性能要求也越来越高,二次电池的胶带粘贴结构是影响电池安全性能的重要因素,而当前所使用的二次电池胶带安全性存在较大提升空间,有待进一步改善。
发明内容
本申请为解决上述技术问题提出了一种二次电池,包括二次电池组件,所述二次电池组件包括电芯组件、转接导体和绝缘垫板,其中,所述电芯组件包括至少两个并排设置的电芯,每个所述电芯具有从所述电芯的顶面延伸出的极耳;所述转接导体上开设有转接导体极耳装配部;所述绝缘垫板位于所述电芯组件和所述转接导体之间,所述绝缘垫板上开设有垫板极耳配合部;其中,经收拢的 所述极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配部之后与所述转接导体焊接连接。
本申请为解决上述技术问题提出了一种二次电池组件,包括:电芯组件,所述电芯组件包括至少两个并排设置的电芯,所述电芯延伸出有极耳;转接导体,所述转接导体上开设有极耳装配孔;所述电芯的极耳在收拢后向上依次穿过极耳通孔和极耳装配孔后与转接导体焊接连接;或者,电池组件外侧电芯的极耳在收拢后向上依次穿过极耳通孔和转接导体的两侧后与转接导体焊接连接,其余电芯的极耳在收拢后向上依次穿过极耳通孔和极耳装配孔后与转接导体焊接连接。
在本申请一实施例中,所述极耳装配孔与穿过该极耳装配孔的极耳在高度方向的投影重合。
在本申请一实施例中,所述极耳依次穿过极耳通孔和极耳装配孔后与转接导体的孔壁焊接连接;或者,所述极耳依次穿过极耳通孔和极耳装配孔后通过弯折与转接导体的顶面焊接连接。
在本申请一实施例中,所述电芯组件包括至少三个并排设置的电芯,位于最外侧电芯的极耳穿过极耳通孔后与转接导体的侧壁焊接连接;或者,位于最外侧电芯的极耳穿过极耳通孔后从转接导体的侧部绕至转接导体的上方与转接导体的顶面焊接连接。
在本申请一实施例中,所述电芯的数量为n个,n为≥3的正整数,所述转接导体上开设的极耳装配孔数量为n-2个。
在本申请一实施例中,所述电芯组件包括至少三个并排设置的电芯,位于最外侧电芯的极耳高度大于位于内侧电芯的极耳高度,各电芯的极耳向最内侧电芯的方向弯折且与最内侧电芯的极耳焊接连接。
在本申请一实施例中,所述极耳包括位于电芯上间隔设置的正极极耳和负极极耳;所述转接导体包括正极转接片和负极转接片,所述极耳装配孔包括位于正极转接片上的正极装配孔,以及位于负极转接片上的负极装配孔。
在本申请一实施例中,所述极耳装配孔的孔口四周设有倒角或圆角,所述绝缘垫板的顶部设有与转接导体轮廓相匹配的定位槽,所述转接导体位于定位槽内。
本申请为解决上述技术问题还提出了一种二次电池,包括:壳体,所述壳体为顶部开口四周封闭的空心结构,所述壳体内设有上述任一实施例所述的二次电池组件,所述壳体的顶部设有将二次电池组件封闭在壳体内的顶盖,所述顶盖上设有与转接导体连接的极柱。
本申请为解决上述技术问题还提出了一种二次电池的装配方法,所述方法使用上述的二次电池,所述包括以下步骤:将电芯引出的多层极片进行层叠后超声预焊成极耳;将多个电芯进行并排捆扎,多个电芯捆扎组合成电芯组件;在电芯组件的顶部设置绝缘垫板,各电芯的极耳穿过绝缘垫板的极耳通孔;在绝缘垫板的顶部设置转接导体,各电芯的极耳穿过转接导体的极耳装配孔;弯折穿过极耳装配孔的极耳,将极耳与转接导体的顶面贴合并焊接连接组成二次电池组件;在二次电池组件顶部设置连接转接导体的顶盖,顶盖的极柱与转接导体电连接;将二次电池组件装入顶部开口的壳体内,并利用顶盖将二次电池组件封闭在壳体内。
本申请为解决二次电池装配焊接过程中需要外力按压转接片和绝缘垫片,降低了生产效率、增加了生产成本的问题还提出了一种与垫片自配合的二次电池外壳,包括:电池外壳,所述电池外壳为顶部开口四周封闭的筒体结构,所述电池外壳的内壁上设有将垫片限位在电池外壳内的限位结构。
在本申请一实施例中,所述限位结构为固定在电池外壳内壁上的多个凸台,所述凸台位于电池外壳相互平行的两个侧壁上。
在本申请一实施例中,所述凸台为向电池外壳内部凸起的球冠形,多个凸台在电池外壳的内壁上位于同一高度。
在本申请一实施例中,所述凸台为向电池外壳内部凸起的三角形限位块,所述三角形限位块的顶部设有倾斜向下的导向面,所述三角形限位块的底部设有抵接垫片的限位面。
在本申请一实施例中,所述凸台包括:上限位块和下限位块,所述上限位块位于下限位块的顶部且相互间隔设置,所述上限位块和下限位块之间形成卡接垫片的定位空间。
在本申请一实施例中,所述凸台与电池外壳为铝合金材料一体成型结构,所述凸台靠近电池外壳的顶部开口。
在本申请一实施例中,所述限位结构为设置在电池外壳内壁上的凹槽,所述凹槽与垫片的边缘卡接以将垫片卡接在电池外壳内。
在本申请一实施例中,所述凹槽位于电池外壳的相互平行的两个侧壁上,所述凹槽沿垫片的长度方向延伸。
在本申请一实施例中,所述凹槽设有多个,多个凹槽沿垫片的长度方向间隔设置,所述垫片的边缘设有多个与凹槽相适配的凸块。
本申请为解决二次电池装配焊接过程中需要外力按压转接片和绝缘垫片,降低了生产效率、增加了生产成本的问题还提出一种二次电池,所述二次电池包括上述任一实施例所述的二次电池外壳;以及位于所述二次电池外壳内的垫片,所述垫片与二次电池外壳内的限位结构卡接。
本申请为解决二次电池胶带在二次电池的使用过程中安全性能有待改善的技术问题还提出了一种二次电池,其包括:卷芯,其顶部设有多片极耳;两个转接片,其设于所述卷芯顶部,所述极耳分别焊接于两所述转接片表面并形成焊印区;至少一片双面保护胶层,其两面均为粘接面,其贴附于所述转接片上方并至少覆盖所述焊印区。
在本申请一实施例中,所述双面保护胶层包括:两层粘性层;碳酸盐保护层,其设于两层所述粘性层之间。
在本申请一实施例中,所述碳酸盐保护层为碳酸氢钠或碳酸钠层结构。
在本申请一实施例中,所述粘性层为双面粘性层,所述碳酸盐保护层为铺设并粘附于两层所述粘性层之间的粉层结构。
在本申请一实施例中,所述双面保护胶层为整片结构,并同时贴附覆盖两个所述转接片上的所述焊印区。
在本申请一实施例中,所述双面保护胶层设有多片,每片所述双面保护胶层分别粘贴覆盖两所述转接片上的一个或多个所述焊印区。
在本申请一实施例中,所述转接片上设有转接凸台与注液孔,所述双面保护胶层上开设有对应所述转接凸台的第一孔位与对应所述注液孔的第二孔位。
在本申请一实施例中,所述第一孔位形状及大小与所述转接凸台周沿一致;所述第二孔位形状及大小与所述注液孔周沿一致。
在本申请一实施例中,所述转接片与所述卷芯之间设有覆盖所述卷芯顶面 的垫片,且所述极耳穿过所述垫片与所述转接片后焊接至所述转接片表面。
在本申请一实施例中,所述双面保护胶层完全覆盖所述转接片,且所述双面保护胶层的两端伸出所述垫片的两侧边沿并粘附至所述卷芯侧壁。
采用本发明的二次电池及其装配方法可以避免弯折极耳所带来的各种问题,改善二次电池性能,降低安全风险。
附图概述
本发明的特征、性能由以下的实施例及其附图进一步描述。
图1是本申请一实施例的二次电池中的二次电池组件极耳弯折前的示意图;
图2是本申请一实施例的二次电池中一个电芯的示意图;
图3是本申请一实施例的二次电池组件的装配结构的爆炸示意图;
图4A是本申请一实施例的二次电池中的转接导体的实施例一的示意图;
图4B是与图4A的转接导体进行装配的电芯组件示意图;
图4C是装配有图4A的转接导体和图4B的电芯组件的二次电池组件的装配结构的立体图;
图4D是图4C沿A1A1'线的剖面图;
图5是本申请一实施例的二次电池中的转接导体的实施例二的示意图;
图6A是本申请一实施例的二次电池中的转接导体的实施例三的示意图;
图6B是图6A沿A2A2'线的剖面图;
图7是本申请一实施例的二次电池中的转接导体的实施例四的示意图;
图8A是本申请一实施例的二次电池中的转接导体的实施例五的示意图;
图8B是装配有转接导体800的二次电池组件的装配结构的立体示意图;
图9A和图9B是本申请一实施例的二次电池中的绝缘垫板的实施例一的示意图;
图9C是图9A沿A3A3'线所在的竖直平面的剖视图;
图9D是图9C中的区域B1的放大图;
图10是本申请一实施例的二次电池中的绝缘垫板的实施例二的俯视图;
图11是本申请一实施例的二次电池中的绝缘垫板的实施例三的俯视图
图12是本申请一实施例的二次电池中的绝缘垫板的实施例四的俯视图;
图13A是本申请一实施例的具有交错极耳的二次电池组件的装配结构的爆 炸示意图;
图13B所示为图13A装配之后的结构示意图;
图14A是本申请一实施例的具有合并极耳的二次电池组件的装配结构的爆炸示意图;
图14B所示为图14A装配之后的结构示意图;
图15A是本申请一实施例的二次电池中的二次电池组件的实施例一的示意图;
图15B是图15A所示的二次电池组件未折极耳时沿A4A4'线的剖面图;
图15C是图15A所示的二次电池组件沿A4A4'线的剖面图;
图15D是图15A所示的二次电池组件的装配结构的爆炸示意图;
图16A是本申请一实施例的二次电池中的二次电池组件的实施例二的示意图;
图16B是图16A所示的二次电池组件未折极耳时沿A5A5'线的剖面图;
图16C是图16A所示的二次电池组件沿A5A5'线的剖面图;
图16D是图16A所示的二次电池组件的装配结构的爆炸示意图;
图17A是本申请一实施例的二次电池中的二次电池组件的实施例三的示意图;
图17B是图17A所示的二次电池组件未折极耳时沿A6A6'线的剖面图;
图17C是图17A所示的二次电池组件沿A6A6'线的剖面图;
图17D是图17A所示的二次电池组件的装配结构的爆炸示意图;
图18A是本申请一实施例的二次电池中的二次电池组件的实施例四的示意图;
图18B是图18A所示的二次电池组件未折极耳时沿A7A7'线的剖面图;
图18C是图18A所示的二次电池组件沿A7A7'线的剖面图;
图18D是图18A所示的二次电池组件的装配结构的爆炸示意图;
图19A是本申请一实施例的二次电池中的二次电池组件的实施例五的示意图;
图19B是图19A所示的二次电池组件未折极耳时沿A8A8'线的剖面图;
图19C是图19A所示的二次电池组件沿A8A8'线的剖面图;
图19D是图19A所示的二次电池组件的装配结构的爆炸示意图;
图20A是本申请一实施例的二次电池的外观结构示意图;
图20B是图20A所示实施例的二次电池的爆炸示意图;
图20C是图20A沿A9A9'线的剖面图;
图21是本申请一实施例的二次电池的壳体的示意图;
图22是本申请一实施例的二次电池组件装入壳体之后的示意图;
图23A至图23D是本申请一实施例的二次电池的壳体的侧视剖视图;
图24A和图24B是本申请一实施例的二次电池组件的俯视图;
图25是本申请一实施例的包括双面保护胶层的二次电池组件的示意图;
图26是本申请一实施例的二次电池组件中的双面保护胶层的剖视图;
图27是图25所示实施例的二次电池组件的爆炸示意图;
图28是本申请一实施例的包括双面保护胶层的二次电池组件的爆炸示意图。
本发明的较佳实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的二次电池包括但不限于二次锂离子电池、镍氢电池、镍铬电池、铅酸电池、聚合物锂离子电池、钠电池等。
参见图1和图2所示,本申请实施例第一方面提供了一种二次电池,其包括二次电池组件,该二次电池组件包括:电芯组件、转接导体和绝缘垫板14。其中,该电芯组件包括至少两个并排设置的电芯15,电芯15的顶面TS延伸出有极耳,极耳包括位于电芯15顶面TS上两侧的正极极耳151a和负极极耳151b。电芯15通过卷绕或层叠的方式制成,其包括正极片、负极片以及用于隔开正极片和负极片的隔膜。正极片和负极片均包括涂覆活性物质的涂覆部分和未涂覆活性物质的未涂覆部分,由于正极片和负极片所涂覆的活性物质的材料不同,使得正极片和负极片可以具有彼此不同的极性。参考图2,正极片的未涂覆部分形成正极极耳151a,负 极片的未涂覆部分形成负极极耳151b,正极极耳151a和负极极耳151b分别从电芯15的顶面TS延伸出来。
如图1所示,转接导体是转接片,并且该二次电池包括两个转接片,分别是正极转接片12和负极转接片13,正极转接片12为铝片,负极转接片13为铜片。转接导体极耳装配部包括位于正极转接片12上的正极装配孔,以及位于负极转接片13上的负极装配孔,正极装配孔位于正极极耳的上方,负极装配孔位于负极极耳的上方。极耳在高度方向的投影区域位于转接导体极耳装配部在高度方向的投影区域的内部,即极耳的宽度、长度应小于等于转接导体极耳装配部的宽度、长度,以保证极耳能够从对应的转接导体极耳装配部穿出。需说明,一个极耳包括从电芯引出的多层极片,多层极片通过超声波焊接等方式收拢为一个极耳,收拢位置位于转接导体极耳装配部的正下方。在一实施例中,正极装配孔与穿过该正极装配孔的正极极耳在高度方向的投影重合,即正极转接片12的正极装配孔位于正极极耳的正上方,以使正极极耳至正极转接片12之间的距离最短,缩短正极极耳的长度;负极装配孔与穿过该负极装配孔的负极极耳在高度方向的投影重合,即负极转接片13的负极装配孔位于负极极耳的正上方,以使负极极耳至负极转接片13之间的距离最短,缩短负极极耳的长度。
正极装配孔和负极装配孔的数量根据电芯组件的电芯15的数量具体设定。例如,电芯15的数量为2个时,正极装配孔和负极装配孔的数量可以均为1个或2个。例如,电芯15的数量为n个,且n为≥3的正整数时,则正极装配孔和负极装配孔的数量可以均为n-2个;具体的,例如图1所示,电芯15的数量为四个,则正极装配孔和负极装配孔的数量均为2个,对应于两个内侧电芯的第一极耳;再例如,电芯15的数量为六个,则正极装配孔和负极装配孔的数量均为四个。
如图1,绝缘垫板14位于电芯组件和转接导体的正极转接片12和负极转接片13之间,在绝缘垫板14上开设有穿入极耳的垫板极耳配合部,在此处,该垫板极耳配合部是极耳通孔。绝缘垫板14设置于电芯15的上方以及正极转接片12和负极转接片13的下方,正极转接片12和负极转接片13通过绝缘垫板14与电芯15隔开。绝缘垫板14的极耳通孔的数量至少设有四个,当极耳通孔数量为四个时,四个极耳通孔分别位于绝缘垫板14的四角位置,以用于分别穿过各电芯15的极耳。由于绝缘垫板14的存在,当顶盖与壳体装配时,即使在装配力的挤压作用下,正 极转接片12和负极转接片13也不会与电芯15接触,更不会由于接触导致内短路,由此提高了二次电池的安全性。
电芯15的正极极耳和负极极耳在收拢后向上依次穿过绝缘垫板14的极耳通孔后,正极极耳穿入正极转接片12的正极装配孔内与正极转接片12焊接连接,负极极耳穿入负极转接片13的负极装配孔内与负极转接片13焊接连接。或者,电池组件外侧电芯的正极极耳和负极极耳在收拢后向上依次穿过极耳通孔和正极转接片12、负极转接片13的两侧的侧边装配部后与正极转接片12、负极转接片13焊接连接;其余内侧电芯的正极极耳和负极极耳在收拢后向上依次穿过极耳通孔后,正极极耳穿入正极转接片12的正极装配孔内与正极转接片12焊接连接,负极极耳穿入负极转接片13的负极装配孔内与负极转接片13焊接连接。
本申请实施例的二次电池组件通过收拢极耳穿过绝缘垫板14和转接导体揉压平铺在转接导体上焊接固定连接,能够完全固化极耳的形态,每层极耳到转接导体焊接处的路径一致、松弛状态相同,极耳不会冗余、下沉,极耳无插入极片中的风险,二次电池无短路安全风险。通过固化极耳形态,使极耳不会被挤压,极耳不受力,极耳不会损坏和断裂,从而提升电池的性能和延长使用寿命。绝缘垫板14作用于电芯组件与转接导体之间,在固化极耳形态的同时,做绝缘保护防止短路,还能够为转接导体提供定位。
本申请的二次电池中的二次电池组件是由电芯组件、转接导体和绝缘垫板等组装而成,因此一些附图示出了包括该些结构的装配结构,本说明书的一些内容结合这些装配结构进行说明。
在本申请的实施例中,二次电池组件中的转接导体上开设有用于极耳穿过的转接导体极耳装配部,绝缘垫板上开设有用于极耳穿过的垫板极耳配合部。本申请的二次电池的转接导体上的转接导体极耳装配部包括3种类型:转接导体极耳装配孔、侧边装配部和侧边凹进部,其中,转接导体极耳装配孔还包括第一转接导体极耳装配孔和第二转接导体极耳装配孔,第一转接导体极耳装配孔用于使电芯组件中的一个电芯上的一个极耳从中穿过,第二转接导体极耳装配孔用于使电芯组件中相邻的两个电芯上的同极性的两个极耳从中穿过,一个转接导体上可以包括该几种类型的任意个的组合;绝缘垫板上的垫板极耳配合部包括2种类型:垫板极耳配合孔和垫板侧边凹进部,上述绝缘垫板上的极耳通孔即属于垫板极耳 配合孔,其中,垫板极耳配合孔包括第一垫板配合孔和/或第二垫板配合孔,每个第一垫板配合孔用于使一个极耳从中穿过,每个第二垫板配合孔用于使相邻电芯上同极性的多个极耳从中穿过,一个绝缘垫板上可以包括该多种类型的任意个的组合。具体将在下文中说明。
首先采用图3说明电芯组件、转接导体和绝缘垫板之间的连接关系。
图3是本申请一实施例的二次电池的装配结构的爆炸示意图。如图3,该实施例的二次电池的装配结构包括电芯组件210、绝缘垫板250和转接导体220a、220b。图3中标示出了三维坐标系XYZ,其中,X方向是二次电池的宽度方向,Y方向是二次电池的厚度方向,Z方向是二次电池的高度方向。电芯组件210中包括四个电芯,每个电芯的顶面具有延伸出的两个极耳。其中包括两个转接导体,分别是转接导体220a和转接导体220b。以转接导体220a为例,每个转接导体具有沿二次电池的厚度方向Y延伸的第一侧边221a和第二侧边222a,以及沿宽度方向X延伸的第三侧边223a和第四侧边224a。转接导体220b同样具有四条侧边。一个转接导体220a的第一侧边221a朝向另一个转接导体220b的第一侧边221b。
需要说明,图3中的转接导体220a、220b可以分别对应于图1中所示的正极转接片12和负极转接片13。
在一些实施例中,转接导体极耳装配部包括转接导体极耳装配孔,转接导体极耳装配孔是位于转接导体的内部的通孔,部分或全部经收拢的极耳依次穿过垫板极耳配合部和转接导体极耳装配孔之后与转接导体焊接连接。
如图3,转接导体220a中具有转接导体极耳装配孔231a、232a,分别对应于内侧电芯的极耳212a、213a;转接导体220b中具有转接导体极耳装配孔231b、232b,分别对应于内侧电芯的极耳212b、213b。例如,转接导体极耳装配孔231a、232a是正极装配孔,转接导体极耳装配孔231b、232b是负极装配孔。在该实施例中,部分极耳依次穿过垫板极耳配合部和转接导体极耳装配孔之后与转接导体焊接连接。
在其他的实施例中,转接导体可以是一体的转接片,例如将图1中的正极转接片12和负极转接片13通过绝缘材料相连接而形成的一体转接片。本说明书以分离设置的转接片为例进行说明。
在一些实施例中,转接导体极耳装配部包括侧边装配部,侧边装配部位于转 接导体的第三侧边和/或第四侧边,部分或全部经收拢的极耳依次穿过垫板极耳配合部并绕过侧边装配部之后与转接导体焊接连接。
如图3,以转接导体220a为例,侧边装配部241a位于第三侧边223a,侧边装配部242a位于第四侧边224a,分别对应于外侧电芯的极耳211a、214a;类似地,在转接导体220b中,侧边装配部241b位于第三侧边223b,侧边装配部242b位于第四侧边224b,分别对应于外侧电芯的极耳211b、214b。在该实施例中,部分极耳依次穿过垫板极耳配合部并绕过侧边装配部之后与转接导体焊接连接。
图3中的绝缘垫板250是绝缘垫板的一种实施例,其中标示出了垫板极耳配合部251a、252a、253a、254a、251b、252b、253b、254b,分别对应于极耳211a、212a、213a、214a、211b、212b、213b、214b。
在图3所示的实施例中,内侧电芯位于电芯组件的内部,内侧电芯的极耳212a、212b、213a、213b为第一极耳,经收拢的第一极耳依次穿过垫板极耳配合部252a、252b、253a、253b和转接导体极耳装配孔231a、231b、232a、232b之后与转接导体焊接连接;外侧电芯位于电芯组件的外侧,为电芯组件最外侧的两个电芯,外侧电芯的极耳211a、211b、214a、214b为第二极耳,经收拢的第二极耳依次穿过垫板极耳配合部251a、251b、254a、254b并绕过侧边装配部241a、241b、242a、242b之后与转接导体焊接连接。
下面首先结合附图说明几种转接导体的实施例。
转接导体实施例一
在一些实施例中,转接导体极耳装配孔包括第一转接导体极耳装配孔和/或第二转接导体极耳装配孔,电芯组件中的一个电芯上的正极耳或负极耳从第一转接导体极耳装配孔穿过;电芯组件中相邻的两个电芯上的两个正极耳或两个负极耳从第二转接导体极耳装配孔穿过。
如图4A,该实施例包括两个转接导体401、402,以转接导体401为例,其中包括第二转接导体极耳装配孔420和侧边装配部411、412,都分别位于沉台421、422中,其中,沉台421、422的深度大于等于电芯极耳的厚度并且小于转接片的厚度,通过设置沉台,在弯折极耳之后,不会额外增加转接导体的高度,可以进一步提高电芯组件的顶部到顶盖之间的空间利用率。图4B是图 4A的转接导体对应的电芯组件440,图4C是极耳弯折之后的立体图,图4D是图4C沿A1A1'线的剖面图。结合图4A至图4D,第二转接导体极耳装配孔420用于使内侧的两个正极耳412a、413a一起从中穿过并分别向外侧弯折,侧边装配部411、412分别用于使外侧的正极耳411a、414a绕过并分别向内侧弯折。转接导体401、402适于配合由四个电芯组成的电芯组件440,并且每个电芯上的正极耳都对齐,负极耳都对齐。
如图4A,转接导体具有转接导体中轴线C1,转接导体中轴线C1沿二次电池的宽度方向X延伸,第二转接导体极耳装配孔420位于转接导体中轴线C1上,并且第二转接导体极耳装配孔420以转接导体中轴线C1所在的竖直平面为对称。
在该实施例中,转接导体401上还包括转接导体极柱430,用于使极耳与二次电池顶盖上各自对应的极柱导电连接。
需要说明,图4A所示的转接导体401、402可适配于电芯组件中每个电芯内侧设置极耳的电芯组件,图4B中所示即为一种每个电芯内侧设置极耳的电芯组件。关于这种电芯组件将在后文详细说明。
转接导体实施例二
图5是本申请一实施例的二次电池中的转接导体的实施例二的示意图。该实施例的转接导体上同时包括第一转接导体极耳装配孔和第二转接导体极耳装配孔。如图5,该实施例的转接导体500包括2个第一转接导体极耳装配孔511、512、一个第二转接导体极耳装配孔520以及沉台521、522和转接导体极柱530。该转接导体500适于配合由四个电芯组成的电芯组件。
转接导体实施例三
在一些实施例中,二次电池包括两个转接导体,每个转接导体具有沿二次电池的厚度方向延伸的第一侧边和第二侧边,转接导体极耳装配孔在第一侧边具有开口,每个转接导体的第一侧边朝向另一个转接导体的第一侧边。
在一些实施例中,第一转接导体极耳装配孔在第一侧边具有第一开口。
图6A是本申请一实施例的二次电池中的转接导体的实施例三的示意图。如图6A,该转接导体600具有第一侧边601和第二侧边602,第一转接导体极耳装配孔611在第一侧边601具有第一开口611a,第一转接导体极耳装配孔 612在第一侧边601具有第一开口612a。如图6A,该实施例的转接导体还包括沉台621、622和转接导体极柱630。该转接导体600适于配合由两个电芯组成的电芯组件。若将其第三侧边603和第四侧边604分别作为侧边装配部,则转接导体600适于配合由四个电芯组成的电芯组件。
通过使第一转接导体极耳装配孔具有第一开口,有利于在装配时使极耳从第一开口处进入第一转接导体极耳装配孔中,操作方便。
图6B是图6A沿A2A2'线的剖面图。如图6B所示,在一些实施方式中,转接导体600的极耳装配部与转接导体的上表面和/或转接导体的下表面的交界处为圆角结构640,圆角结构的圆角半径R1的范围是:0.1mm≤R1≤(Tc-Hd)T2/2,其中,Tc是转接片的厚度,Hd是沉台深度。
转接导体实施例四
在一些实施例中,第二转接导体极耳装配孔在第一侧边具有第二开口。
图7是本申请一实施例的二次电池中的转接导体的实施例四的示意图。如图7,该实施例的转接导体700具有第一侧边701和第二侧边702。该转接导体700只包括一个第二转接导体极耳装配孔720,该第二转接导体极耳装配孔720在第一侧边701具有第二开口720a。该第二转接导体极耳装配孔720位于沉台721和沉台722之间。该实施例的转接导体700不包括转接导体极柱。该转接导体700适于配合由两个电芯组成的电芯组件。若将其第三侧边703和第四侧边704分别作为侧边装配部,则转接导体700适于配合由四个电芯组成的电芯组件。
通过使第二转接导体极耳装配孔具有第二开口,有利于在装配时使极耳从第二开口处进入第二转接导体极耳装配孔中,操作方便。
转接导体实施例五
在一些实施例中,转接导体极耳装配部还包括侧边凹进部,侧边凹进部位于转接导体的第三侧边和/或第四侧边,侧边凹进部向转接导体的内部凹进,侧边凹进部用于使对应的极耳从中穿过并向转接导体的内部弯折。
在一些实施例中,侧边装配部和多个侧边凹进部依次连接形成阶梯状结构,阶梯状结构从第二侧边到第一侧边依次向转接导体的内部缩进,或阶梯状结构从第一侧边到第二侧边依次向转接导体的内部缩进。
图8A是本申请一实施例的二次电池中的转接导体的实施例五的示意图。如图8A,该转接导体800具有第一侧边841、第二侧边842、第三侧边843和第四侧边844,在第三侧边843具有侧边装配部811和两个侧边凹进部813、814,并且侧边装配部811、侧边凹进部813、814依次形成阶梯状结构;在第四侧边844具有侧边装配部812和两个侧边凹进部815、816,并且侧边装配部812、侧边凹进部815、816依次形成阶梯状结构。
图8B是装配有转接导体800的二次电池的装配结构的立体示意图。如图8B所示,极耳分别从侧边装配部、侧边凹进部绕过之后向内侧弯折。这样的实施例具有方便穿极耳,简化安装过程的有益效果。
需要说明,图8A和图8B所示的转接导体800适于配合具有交错分布极耳的电芯组件,图8A中所示即为一种具有交错分布极耳的电芯组件。关于这种电芯组件将在后文说明。
上述转接导体的实施例一至五并未穷举本申请所要求保护的转接导体的所有结构。本申请的转接导体上的转接导体极耳装配部可以包括一个或多个第一转接导体极耳装配孔、第二转接导体极耳装配孔、侧边装配部和侧边凹进部中任意个的组合,都在本申请所要求保护的范围之内。需要说明的是,二次电池中的电芯组件、转接导体、绝缘垫板是配合使用的,因此,不同的转接导体对应的绝缘垫板、电芯组件的结构可能不同。
在一些实施例中,绝缘垫板具有沿二次电池的宽度方向延伸的第一垫板侧边和第二垫板侧边,第一垫板侧边和第二垫板侧边相对设置,垫板极耳配合部包括垫板极耳配合孔和/或垫板侧边凹进部,垫板极耳配合孔是贯穿所述绝缘垫板的通孔,所述垫板侧边凹进部位于所述第一垫板侧边和/或第二垫板侧边,垫板侧边凹进部向所述绝缘垫板的内部凹进。
下面结合附图说明几种本申请的二次电池组件中的绝缘垫板的实施例。
绝缘垫板实施例一
该实施例的绝缘垫板包括2个分离的绝缘垫板901、902。图9A是本申请一实施例的一个绝缘垫板901的俯视图,图9B是本申请一实施例的另一个绝缘垫板902的俯视图。该实施例中,垫板极耳配合部包括垫板极耳配合孔。绝缘垫板901上的垫板极耳配合孔911a、912a、913a、914a和绝缘垫板902上的垫板极耳配合孔911b、912b、913b、914b互为对称分布。
在该实施例中,每个垫板极耳配合孔都是沿二次电池的宽度方向X延伸的长条状通孔,都相互平行。假设垫板极耳配合孔沿该宽度方向具有第一长度L1,则每个极耳装配部的第一长度L1都相等。
参考图9A,在一些实施例中,绝缘垫板901上还包括凸出设置在上表面上的定位加强结构910,定位加强结构910围设在垫板极耳配合部的外周。具体地,定位加强结构910是一种具有一定厚度的加强筋。图9C是图9A沿A3A3'线所在的竖直平面(竖直平面为平行YZ面的平面)的剖视图,图9D是图9C中的区域B1的放大图。图9D所示为将区域B1中的结构水平放置并放大显示。如图9D所示,定位加强结构910明显地凸出于绝缘垫板901的上表面901U。
如图9D,在一些实施例中,绝缘垫板的厚度为T,厚度大小为0.1mm≤T≤2mm,优选T的范围是0.4~0.8mm。
如图9D,垫板极耳配合孔911a、912a与上表面901U和下表面901D交界处都具有圆角结构920,该圆角结构920的圆角半径R的大小为0.1mm≤R≤T/2,T为绝缘垫片的厚度。
该绝缘垫板901、902适于配合由四个电芯组成的电芯组件,同时也适于四电芯配合的转接导体。
绝缘垫板实施例二
图10是本申请一实施例的二次电池中的绝缘垫板的实施例二的俯视图。如图10所示,该绝缘垫板1000是一体的绝缘垫板,其沿X方向具有相对设置的第一垫板侧边1001和第二垫板侧边1002。该实施例中的垫板极耳配合部都是垫板侧边凹进部1031a、1031b、1032a、1032b,其中,垫板侧边凹进部1031a、1031b位于第一垫板侧边1001,垫板侧边凹进部1032a、1032b位于第二垫板侧边1002。
该绝缘垫板1000适于配合由两个电芯组成的电芯组件,同时也适于两电芯配合的转接导体。
在一些实施例中,绝缘垫片上的垫板极耳装配部同时包括垫板极耳配合孔和垫板侧边凹进部,其中,垫板侧边凹进部对应于位于外侧的外侧极耳,垫板极耳配合孔则对应于其余的内侧极耳。适于与包括多个电芯的电芯组件相配合来形成较厚的二次电池。
绝缘垫板实施例三
垫板极耳配合孔包括第一垫板配合孔和/或第二垫板配合孔,每个第一垫板配合孔用于使一个极耳从中穿过,每个第二垫板配合孔用于使相邻电芯上同极性的 多个极耳从中穿过。图9A所示的实施例中的垫板极耳配合孔都是第一垫板配合孔,都用于使一个极耳从中穿过。
图11是本申请一实施例的二次电池中的绝缘垫板的实施例三的俯视图。如图11所示,绝缘垫片1100是一体的绝缘垫片,包括一组第二垫板配合孔1121a、1122a和另一组第二垫板配合孔1121b、1122b,和定位加强结构1120a、1120b。与第一垫板配合孔相比,第二垫板配合孔沿Y方向的宽度D111明显较大,可以同时用于使得至少2个相邻电芯的同极性的极耳从中穿出。该绝缘垫板1100适于配合由四个电芯组成的电芯组件,同时也适于四电芯配合的转接导体。
在一些实施例中,第二垫板配合孔沿Y方向的宽度可以比图11中所示更宽,极端情况下,第二垫板配合孔1121a和1122a相互连通。可以理解,第二垫板配合孔的宽度越宽,则可穿过的极耳的数量越多。
绝缘垫板实施例四
在一些实施例中,绝缘垫片上设置有多个第一垫板配合孔,二次电池具有沿其宽度方向X延伸的第一中轴线E1,多个第一垫板配合孔以第一中轴线E1所在的竖直平面为对称面而对称分布。二次电池还具有沿其厚度方向Y延伸的第二中轴线E2,该多个第一垫板配合孔以第二中轴线E2所在的竖直平面为对称面而对称分布。以第二中轴线E2所在的竖直平面(竖直平面为平行YZ面的平面)将多个垫板极耳配合部平均分为2个平行组,其中,每个平行组中包括N个垫板极耳配合部,以第一中轴线E1所在的竖直平面(竖直平面为平行YZ面的平面)将N个垫板极耳配合部平均分为2个垂直组,每个垂直组中包括N/2个垫板极耳配合部,N/2个垫板极耳配合部与第一中轴线E1所在的竖直平面(竖直平面为平行YZ面的平面)之间具有第一距离,N/2个垫板极耳配合部与第二中轴线E2所在的竖直平面(竖直平面为平行YZ面的平面)之间具有第二距离,第二距离随着第一距离的增大而增大或减小,其中,N是大于等于4的偶数。
图12是本申请一实施例的二次电池中的绝缘垫板的实施例四的俯视图。在图12所示的实施例中,该实施例的绝缘垫板1200包括12个垫板极耳配合部,该些垫板极耳配合部都是第一垫板配合孔,包括第一垫板配合孔1221a~1226a、1221b~1226b。在该实施例中,N=6。以第一垫板配合孔1221b~1226b为例,第一垫板配合孔1224b具有第一距离D121和第二距离L121,第一垫板配合孔1225b具有第一距离D122和第二距离L122,第一垫板配合孔1226b具有第一距离 D123和第二距离L123,D123>D122>D121并且L123>L122>L121,即第二距离随着第一距离的增大而增大。
在一些实施例中,在每个垂直组中,至少2个垫板极耳配合部相互连通,并且所形成的连通图形为Z字形。如图12,极耳装配部1222a、1223a连通,并且所形成的连通图形为Z字形。
结合图8B和图12,绝缘垫板1200适于用于图8B所示的六芯电芯组件中。
上述绝缘垫板的实施例一至四并未穷举本申请所要求保护的绝缘垫片的所有结构。本申请的绝缘垫板上的垫板极耳配合部可以包括一个或多个第一垫板配合孔、第二垫板配合孔、垫板侧边凹进部中任意个的组合,都在本申请所要求保护的范围之内。同样的,不同的绝缘垫板对应的转接导体、电芯组件可能不同。
在一些实施方式中,每个电芯具有沿电芯组件的厚度方向相对设置的第一侧面和第二侧面,每个电芯的第一侧面靠近电芯组件的内侧设置,每个电芯的第二侧面靠近电芯组件的外侧设置;在电芯组件的厚度方向上,极耳从电芯的顶面靠近第一侧面的位置伸出。极耳从电芯的顶面靠近第一侧面的位置伸出,可以减少二次电池的内阻,极大的提升了电压平台和电池性能。下面结合附图说明每个电芯内侧设置极耳的电芯组件的一种实施例。
如图4A-图4D所示,该实施例中,电芯组件440包括4个电芯,分别是电芯441、442、443、444,图4D中标示出了每个电芯的第一侧面,分别是第一侧面441a、442a、443a、444a。在电芯组件440的厚度方向上,正极耳411a、412a、413a、414a和负极耳411b、412b、413b、414b均从对应的电芯的顶面靠近第一侧面的位置伸出。
结合转接导体401进行示例的进一步说明,如图4A,转接导体401的上表面被沿电芯组件的厚度方向延伸的分隔线F分为第一转接导体区域F1和第二转接导体区域F2,转接导体401上的转接导体极柱430位于第一转接导体区域F1,电芯组件内侧的两个电芯对应的第二转接导体极耳装配孔420位于第二转接导体区域F2,转接导体极柱430沿电芯组件的宽度方向X的第二投影覆盖第二转接导体极耳装配孔420沿电芯组件的宽度方向的第一投影。根据这样的实施例,至少具有以下3方面有益效果:
(1)第二转接导体极耳装配孔420沿Y方向的宽度不会太宽,则靠近外 侧的电芯的极耳与转接导体401连接形成的连接部到转接导体极柱430之间不存在由极耳装配部引起的导流的薄弱点,特别是由于第二转接导体极耳装配孔420这样的通孔引发的导流的薄弱点,从而降低外侧的电芯的极耳与转接导体401连接形成的连接部到转接导体极柱430间的内阻,进而降低了二次电池的内阻,极大的提升了电压平台和性能。
(2)靠近电芯组件最内侧的两个电芯的极耳穿过转接导体401上的第二转接导体极耳装配孔420后可以朝向电芯组件的外侧折弯,其余电芯的极耳穿过转接片上的极耳装配部后可以朝向电芯组件的内侧折弯;由此靠近电芯组件外侧的电芯的极耳与转接导体401连接形成的连接部到转接导体极柱430间的内阻和靠近电芯组件内侧的电芯的极耳与转接导体401的连接处到转接导体极柱430间的内阻趋于一致,提升二次电池的长期使用性能。
(3)将极耳装配部均设置于第二转接导体区域F2,能够兼顾电芯的生产,并降低外侧的电芯的极耳与转接导体401连接形成的连接部到转接导体极柱430间的内阻,进而降低了二次电池的内阻,极大的提升了电压平台和性能。
下面结合附图说明具有交错极耳的电芯组件的一种实施例。
图13A是本申请一实施例的具有交错极耳的二次电池的装配结构的爆炸示意图。如图13A所示,该装配结构中包括电芯组件1310、绝缘垫板1320和转接导体1330a、1330b。在该实施例中,电芯组件1310包括两个电芯组1301、1302,该两个电芯组1301、1302沿二次电池的厚度方向Y邻接;每个电芯组中包括至少两个电芯,每个电芯组中的至少两个电芯沿厚度方向Y依次邻接;每个电芯包括从电芯的顶面凸出的极耳,极耳包括正极耳和负极耳,多个电芯的顶面形成一平面,该平面被沿厚度方向延伸的中轴线C2划分为相等的第一平面区域Zone1和第二平面区域Zone2,其中,所有的正极耳位于第一平面区域Zone1中,所有的负极耳位于第二平面区域Zone2中,每个电芯组中位于第一平面区域Zone1中的所有正极耳沿厚度方向Y的投影没有重叠,每个电芯组中位于第二平面区域Zone2中的所有负极耳沿厚度方向Y的投影没有重叠。具体地,电芯组1301中的正极耳1311a、1312a位于第一平面区域Zone1,二者相互交错没有重叠;电芯组1301中的负极耳1311b、1312b位于第二平面区域Zone2,二者相互交错没有重叠;电芯组1302中的正极耳1313a、1314a位于第一平面 区域Zone1,二者相互交错没有重叠;电芯组1302中的负极耳1313b、1314a位于第二平面区域Zone2,二者相互交错没有重叠。
在一些实施例中,每个电芯组中位于第一平面区域Zone1中的所有正极耳沿宽度方向X和高度方向Z的投影都没有重叠,每个电芯组中位于第二平面区域Zone2中的所有负极耳沿宽度方向X和高度方向Z的投影都没有重叠。
如图13A,绝缘垫板1320开设有垫板极耳配合部1321a、1322a、1323a、1324a、1321b、1322b、1323b、1324b,转接导体1330a上具有侧边装配部1331a、1334a和第一转接导体极耳装配孔1332a、1333a,转接导体1330b上具有侧边装配部1331b、1323b和第一转接导体极耳装配孔1332b、1333b。
图13B所示为图13A装配之后的结构示意图。正极耳1311a、1312a、1313a、1314a依次分别穿过垫板极耳配合部1321a、1322a、1323a、1324a和侧边装配部1331a、第一转接导体极耳装配孔1332a、第一转接导体极耳装配孔1333a和侧边装配部1334a;负极耳1311b、1312b、1313b、1314b依次分别穿过垫板极耳配合部1321b、1322b、1323b、1324b和侧边装配部1331b、第一转接导体极耳装配孔1332b、第一转接导体极耳装配孔1333b和侧边装配部1334b。
根据图13A和图13B所示的实施例,由于在每个电芯组中的第一平面区域或第二平面区域中的各个极耳相互交错,沿厚度方向Y的投影没有重叠,在极耳弯折之后,从外侧极耳流过的电流不会经过其他极耳对应的转接导体极耳装配孔的缝隙,从而减小了该部分电路的内阻,进一步降低了二次电池内阻,提升了二次电池的电压平台和性能。在其他实施方式中,每个电芯的极耳具有极耳高度,每个电芯组中的全部极耳的极耳高度都相同;或者,相邻的两个电芯组通过邻接面相互邻接,每个电芯包括多个极耳,在每个电芯组中,部分或全部所述极耳的极耳高度随着所述极耳和所述邻接面之间的距离的增加而增高。
图13A和13B仅作为交错极耳的一种示例。当电芯数量增加时,转接导体上的转接导体极耳装配部和绝缘垫板上的垫板极耳配合部的数量也做适当变化,其结构可以分别参考图8A和图12所示的实施例。
在一些实施例中,电芯组件包括至少一组电芯对,每组电芯对包括相互邻接的两个电芯,相互邻接的两个电芯的同极性的极耳相互合并为一个单极耳,单极耳依次穿过垫板极耳配合部和转接导体极耳装配部之后与转接导体焊接连接。
图14A是本申请一实施例的具有合并极耳的二次电池的装配结构的爆炸示意图。图14B所示为图14A装配之后的结构示意图。结合图14A和图14B,其中包括电芯组件1410,包括2个电芯组1401、1402,其中电芯组1401中相邻的两个电芯的正极耳1411a、1412a相互合并为一个单极耳1401,电芯组1401中相邻的两个电芯的负极耳1411b、1412b相互合并为一个单极耳1402;电芯组1402中相邻的两个电芯的正极耳1413a、1414a相互合并为一个单极耳1403,电芯组1402中相邻的两个电芯的负极耳1413b、1414b相互合并为一个单极耳1404。在该实施例中,绝缘垫板1420具有垫板极耳配合孔1421a、1421b、1422a、1422b,转接导体1430a具有转接导体极耳装配孔1431a、1432a,转接导体1430b具有转接导体极耳装配孔1431b、1432b。单极耳1401依次穿过垫板极耳配合孔1421a和转接导体极耳装配孔1431a;单极耳1402依次穿过垫板极耳配合孔1421b和转接导体极耳装配孔1431b;单极耳1403依次穿过垫板极耳配合孔1422a和转接导体极耳装配孔1432a;单极耳1404依次穿过垫板极耳配合孔1422b和转接导体极耳装配孔1432b。
根据图14A和图14B所示的实施例,通过合并相同极性的极耳,可以减少转接导体极耳装配部和垫板极耳配合部的数量,进一步简化了装配工艺,有利于提高二次电池的生产效率。
本申请的二次电池组件中的电芯组件、转接导体和绝缘垫板相互配合,可以装配出多种不同结构的二次电池组件。下面示出本申请的二次电池组件的几种不同的实施例。
二次电池组件实施例一
在一些可选实施例中:参见图15A至图15D所示,本申请实施例提供了一种二次电池组件,该二次电池组件采用了四芯电池组件,该二次电池组件的电池组件包括并排设置的第一电芯151、第二电芯152、第三电芯153和第四电芯154。第一电芯151的顶部两侧分别设有第一正极极耳151a和第一负极极耳151b。第二电芯152的顶部两侧分别设有第二正极极耳152a和第二负极极耳152b。第三电芯153的顶部两侧分别设有第三正极极耳153a和第三负极极耳153b。第四电芯154的顶部两侧分别设有第四正极极耳154a和第四负极极耳154b。其中,第一电芯151和第四电芯154是外侧电芯,第二电芯152和第三电芯153是内侧电芯,相应地,极 耳151a、151b、154a、154b都属于第二极耳,极耳152a、152b、153a、153b都属于第一极耳。
如图15D所示,正极转接片12上开设有穿入第二正极极耳152a的第一正极装配孔12a,以及穿入第三正极极耳153a的第二正极装配孔12b。负极转接片13上开设有穿入第二负极极耳152b的第二负极装配孔13b,以及穿入第三负极极耳153b的第一负极装配孔13a。
在图15D所示的实施例中,正极转接片12上还包括位于转接导体的侧部的侧边装配部121a、121b,分别用于供第一正极极耳151a和第四正极极耳154a穿过并包绕该侧部。同样,负极转接片13上还包括位于转接导体的侧部的侧边装配部131a、131b,分别用于供第一负极极耳151b和第四负极极耳154b穿过并包绕该侧部。在该实施例中,侧边装配部121a、121b、131a、131b实际上是转接导体的侧部,无需额外形成,以节省材料和降低加工成本。
如图15D,该绝缘垫板14位于电芯组件和转接导体的正极转接片12和负极转接片13之间,在绝缘垫板14上开设有用于穿入极耳的垫板极耳配合部,在该实施例中,垫板极耳配合部是垫板极耳配合孔。在绝缘垫板14上开设有穿入第一正极极耳151a和第二正极极耳152a的第一极耳通孔14a,穿入第三正极极耳153a和第四正极极耳154a的第二极耳通孔14b,穿入第三负极极耳153b和第四负极极耳154b的第三极耳通孔14c,以及穿入第一负极极耳151b和第二负极极耳152b的第四极耳通孔14d。绝缘垫板14设置于电芯15的上方以及正极转接片12和负极转接片13的下方,正极转接片12和负极转接片13通过绝缘垫板14与电芯15隔开。
在一些实施例中,第一极耳依次穿过垫板极耳配合部和转接导体极耳装配孔之后被弯折,弯折后的第一极耳与转接导体的顶面焊接连接。第二极耳依次穿过垫板极耳配合部和侧边装配部之后被弯折,弯折的第二极耳从转接导体的侧部绕至转接导体的上方,并与转接导体的顶面焊接连接。
需说明,图15A所示的二次电池组件中,极耳已经经过弯折并焊接在转接导体的顶面上。图15B所示为图15A所示的二次电池组件未折极耳时沿A4A4'线的剖面图,结合图15A~图15D,第一正极极耳151a穿过第一极耳通孔14a后从正极转接片12的侧边装配部121a绕至正极转接片12的上方,并将第一正极极耳 151a弯折后与正极转接片12的顶面焊接连接形成第一焊接部S1。第二正极极耳152a由下至上依次穿过第一极耳通孔14a和第一正极装配孔12a后,并将第二正极极耳152a弯折后正极转接片12的顶面焊接连接形成第二焊接部S2。第三正极极耳153a由下至上依次穿过第二极耳通孔14b和第二正极装配孔12b后,并将第三正极极耳153a弯折后与正极转接片12的顶面焊接连接形成第三焊接部S3。第四正极极耳154a穿过第二极耳通孔14b后从正极转接片12的侧边装配部121b绕至正极转接片12的上方,并将第四正极极耳154a弯折后与正极转接片12的顶面焊接连接形成第四焊接部S4。
第一负极极耳151b穿过第四极耳通孔14d后从负极转接片13的侧边装配部131a绕至负极转接片13的上方,并将第一负极极耳151b弯折后与负极转接片13的顶面焊接连接形成第五焊接部S5。第二负极极耳152b由下至上依次穿过第四极耳通孔14d和第二负极装配孔13b后,并将第二负极极耳152b弯折后与负极转接片13的顶面焊接连接形成第六焊接部S6。第三负极极耳153b由下至上依次穿过第三极耳通孔14c和第一负极装配孔13a后,并将第三负极极耳153b弯折后与负极转接片13的顶面焊接连接形成第七焊接部S7。第四负极极耳154b穿过第三极耳通孔14c后从负极转接片13的侧边装配部131b绕至负极转接片13的上方,并将第四负极极耳154b弯折后与负极转接片13的顶面焊接连接形成第八焊接部S8。
在一些实施例中,转接导体极耳装配孔具有孔壁,第一极耳依次穿过垫板极耳配合部和转接导体极耳装配孔之后与转接导体的孔壁焊接连接。侧边装配部具有侧壁,第二极耳依次穿过所述垫板极耳配合部和所述侧边装配部之后与所述侧壁焊接连接。
例如,第二电芯152、第三电芯153的正极极耳和负极极耳依次穿过极耳通孔和极耳装配孔后可直接分别与正极转接片12和负极转接片13的极耳装配孔的孔壁焊接连接。第一电芯151、第四电芯154的正极极耳和负极极耳穿过极耳通孔后可直接分别与正极转接片12和负极转接片13的侧壁焊接连接。
二次电池组件实施例二
在一些可选实施例中:参见图16A至图16D所示,本申请实施例提供了一种二次电池组件,该二次电池组件采用了两芯电池组件,该二次电池组件的电池组件包括并排设置的第一电芯151、第二电芯152。第一电芯151的顶部两侧分别设有 第一正极极耳151a和第一负极极耳151b。第二电芯152的顶部两侧分别设有第二正极极耳152a和第二负极极耳152b。转接导体包括正极转接片12和负极转接片13,正极转接片12为铝片,负极转接片13为铜片。
该实施例中的转接导体仅包括侧边装配部,如图16D中的侧边装配部122a、122b、132a、132b。根据该实施例可以降低材料成本和加工成本,正极转接片12和负极转接片13上均无需另外开孔。正极转接片12设置在第一正极极耳151a和第二正极极耳152a之间,负极转接片13设置在第一负极极耳151b和第二负极极耳152b之间。在一些实施例中,转接导体的顶面上设置有沉台,沉台相对于顶面具有沉台深度,转接导体极耳装配部位于沉台中,沉台用于容纳弯折之后的极耳。如图5D,侧边装配部122a、122b、132a、132b都分别位于沉台中。
结合图16A~图16D,第一正极极耳151a穿过第一极耳通孔14a后从正极转接片12的侧边装配部122a绕至正极转接片12的上方,并将第一正极极耳151a弯折后与正极转接片12的顶面焊接连接形成第一焊接部S1。第二正极极耳152a穿过第二极耳通孔14b后从正极转接片12的侧边装配部122b绕至正极转接片12的上方,并将第二正极极耳152a弯折后与正极转接片12的顶面焊接连接形成第二焊接部S2。第一负极极耳151b穿过第四极耳通孔14d后从负极转接片13的侧边装配部132a绕至负极转接片13的上方,并将第一负极极耳151b弯折后与负极转接片12的顶面焊接连接形成第三焊接部S3。第二负极极耳152b穿过第三极耳通孔14c后从负极转接片13的侧边装配部132b绕至负极转接片13的上方,并将第二负极极耳152b弯折后与负极转接片13的顶面焊接连接形成第四焊接部S4。
在一些实施例中,转接导体极耳装配部的开口四周设有倒角或圆角,绝缘垫板的顶部设有与转接导体轮廓相匹配的定位槽,转接导体位于定位槽内。参考图16A和图16B所示,其中标出了定位槽125和圆角126。其中,定位槽125是类似图9A中所示的定位加强结构910,由于其凸出于绝缘垫板14的顶部,可以将转接导体限位在其中,因此起到定位作用。倒角或圆角126利于支撑极耳,不会因为毛刺和利角撕裂极耳。在绝缘垫板14的顶部分别设有与正极转接片12和负极转接片13的轮廓相匹配的定位槽125,正极转接片12和负极转接片13分别位于定位槽125内,为正极转接片12和负极转接片13提供安装固定位置。
二次电池组件实施例三
在一些可选实施例中:参见图17A至图17D所示,本申请实施例提供了一种二次电池组件,该二次电池组件采用了六芯电池组件,该六芯电池组件与四芯电池组件相比,六芯电池组件增加了第五电芯155和第六电芯156。第五电芯155的顶部两侧分别设有第五正极极耳155a和第五负极极耳155b。第六电芯156的顶部两侧分别设有第六正极极耳156a和第六负极极耳156b。相应的六芯电池组件所使用的正极转接片12增加了第三正极装配孔12c和第四正极装配孔12d,六芯电池组件所使用的负极转接片13增加了第三负极装配孔13c和第四负极装配孔13d。如图17D,正极转接片12具有侧边装配部123a、123b,负极转接片13具有侧边装配部133a、133b。并且在该实施例中,转接导体极耳装配孔和侧边装配部都分别位于沉台中。
六芯电池组件的第一至第六正极极耳、第一至第六负极极耳与正极转接片12和负极转接片13的安装方式与四芯电池组件的第一至第四正极极耳、第一至第四负极极耳与正极转接片12和负极转接片13的安装方式相同,具体安装和连接方式不再重复赘述。如图17A,六芯电池组件的第一至第六正极极耳与正极转接片12焊接连接并依次形成第一焊接部S1、第二焊接部S2、第三焊接部S3、第四焊接部S4、第五焊接部S5和第六焊接部S6。第一至第六负极极耳与和负极转接片13焊接连接并依次形成第七焊接部S7、第八焊接部S8、第九焊接部S9、第十焊接部S10、第十一焊接部S11和第十二焊接部S12。
二次电池组件实施例四
在一些可选实施例中:参见图18A至图18D所示,本申请实施例提供了一种二次电池组件,该二次电池组件采用了八芯电池组件,该八芯电池组件与六芯电池组件相比,八芯电池组件增加了第七电芯157和第八电芯158。第七电芯157的顶部两侧分别设有第七正极极耳157a和第七负极极耳157b。第八电芯158的顶部两侧分别设有第八正极极耳158a和第八负极极耳158b。相应的八芯电池组件所使用的正极转接片12增加了第五正极装配孔12e和第六正极装配孔12f,八芯电池组件所使用的负极转接片13增加了第五负极装配孔13e和第六负极装配孔13f。如图18D,正极转接片12具有侧边装配部124a、124b,负极转接片13具有侧边装配部134a、134b。并且在该实施例中,转接导体极耳装配孔和侧边装配部都分别位于沉台中。
八芯电池组件的第一至第八正极极耳、第一至第八负极极耳与正极转接片12和负极转接片13的安装方式与六芯电池组件的第一至第六正极极耳、第一至第六负极极耳与正极转接片12和负极转接片13的安装方式相同,具体安装和连接方式不再重复赘述。本申请实施例八芯电池组件的第一至第八正极极耳与正极转接片12焊接连接并依次形成第一焊接部S1、第二焊接部S2、第三焊接部S3、第四焊接部S4、第五焊接部S5、第六焊接部S6、第七焊接部S7和第八焊接部S8。第一至第八负极极耳与和负极转接片13焊接连接并依次形成第九焊接部S9、第十焊接部S10、第十一焊接部S11、第十二焊接部S12、第十三焊接部S13、第十四焊接部S14、第十五焊接部S15、第十六焊接部S16。
二次电池组件实施例五
在一些可选实施例中:参见图19A至图19D所示,本申请实施例提供了一种二次电池组件,该二次电池组件采用了极耳高度不同的四芯电池组件。在本申请实施例极耳高度不同的四芯电池组件中,位于外侧的第一电芯151和第四电芯154的第一正极极耳151a、第一负极极耳151b、第四正极极耳154a和第四负极极耳154b的高度均相同;位于内侧的第二电芯152和第三电芯153的第二正极极耳152a、第二负极极耳152b、第三正极极耳153a和第三负极极耳153b的高度均相同;且外侧的第一正极极耳151a、第一负极极耳151b、第四正极极耳154a和第四负极极耳154b的高度均高于内侧的第二正极极耳152a、第二负极极耳152b、第三正极极耳153a和第三负极极耳153b的高度。
结合图19B和图19C,第二正极极耳152a和第三正极极耳153a分别穿过正极转接片12的侧边装配部和转接导体极耳装配孔后,第二正极极耳152a和第三正极极耳153a均向正极转接片12的中轴线方向弯折,并均与正极转接片12的顶面焊接连接。第二负极极耳152b和第三正极极耳153a分别穿过负极转接片13的侧边装配部和转接导体极耳装配孔后,第二负极极耳152b和第三正极极耳153a均向负极转接片13的中轴线方向弯折,并均与负极转接片13的顶面焊接连接。
结合图19A,第一正极极耳151a和第四正极极耳154a穿过正极转接片12的侧边装配部后均向第二正极极耳152a和第三正极极耳153a的方向弯折,且第一正极极耳151a与第二正极极耳152a焊接连接形成第一焊接部S1,第四正极极耳154a与第三正极极耳153a焊接连接形成第二焊接部S2。第一负极极耳151b和第四负 极极耳154b穿过负极转接片13的侧边装配部后均向第二负极极耳152b和第三正极极耳153a的方向弯折,且第一负极极耳151b与第二负极极耳152b焊接连接形成第三焊接部S3,第四负极极耳154b与第三负极极耳153b焊接连接形成第四焊接部S4。
参考图19A至图19D,在包括大于等于3个电芯的电芯组件中,外侧电芯的第二极耳的高度大于内侧电芯的第一极耳的高度,从外侧电芯到内侧电芯的极耳高度可以依次降低。对于包括奇数个电芯的实施例,位于中间的一个电芯具有最低的极耳高度,其余的极耳同样按照从外侧电芯到内侧电芯的顺序极耳高度依次降低。对于包括偶数个电芯的实施例,位于中间的两个电芯具有最低的极耳高度,其余的极耳同样按照从外侧电芯到内侧电芯的顺序极耳高度依次降低。
前述二次电池组件实施例一至实施例五及其附图用于说明几种二次电池组件的实施例,其中不同的电芯组件对应的转接导体、绝缘垫板也可能不同。
图20A至图20C是本申请实施例第二方面提供的一种二次电池,其中所包括的电芯组件、绝缘垫板14和转接导体与图1所示的实施例相同,因此采用相同的标号。其中,图20A是该二次电池1的整体示意图,图20B是二次电池1的爆炸图,图20C是图20A沿A9A9'线的剖面图。结合图20A至图20C,该二次电池1包括:壳体16,该壳体16为顶部开口四周封闭的空心结构,在壳体16内安装有上述任一实施例所述的二次电池组件,在壳体16的顶部设有将二次电池组件封闭在壳体16内的顶盖11,在顶盖11上设有与转接导体连接的极柱11a、11b,极柱11a、11b将二次电池组件的电流引出壳体16外部。极柱11a、11b中的一个为正极柱,另一个为负极柱,其极性与下方的转接导体的极性相对应。如图20C所示,顶盖11包括顶盖板111和位于顶盖板111底部的下绝缘件112,装入壳体16内二次电池组件的转接导体与顶盖11上的极柱连接后,完成二次电池1的装配。此装配结构的二次电池1的极耳完全固定在转接导体和下绝缘件112形成的空间之中;同时顶盖板111到电芯的高度H1=T1(下绝缘件112厚度)+T2(转接导体12厚度)+T3(绝缘垫板14厚度),使得电芯的高度得到提升,极大的提升了二次电池的体积能量密度。
在对上述的装配结构进行装配焊接的过程中,转接导体需要与电芯的极耳焊接连接。在一些情况下,转接导体与电芯的极耳采用立式焊接的方式,在高度方向 需要受力才能保证焊接强度,因此需要外力按压转接导体和绝缘垫板,降低了生产装配效率,增加了生产成本。
在一些实施例中,本申请的二次电池的壳体的内壁上设有将绝缘垫板限位在壳体内的限位结构。图21至图23D用于说明这些实施例。这些实施例能解决相关技术中在二次电池装配焊接过程中,需要外力按压转接片和绝缘垫板,降低了生产装配效率,增加了生产成本的问题。
参见图21所示,本申请实施例第一方面提供了一种与绝缘垫板自配合的壳体,该壳体2101包括:电池外壳2111,该电池外壳2111为顶部开口四周封闭的矩形筒体结构,在电池外壳2111的内壁2111a上设有将绝缘垫板2102限位在电池外壳2111内的限位结构2112,限位结构2112能够将绝缘垫板2102牢牢地固定在电池外壳2111内,以便于极耳与绝缘垫板2102顶部的转接导体2103a、2103b焊接连接。
在一些可选实施例中:参考图21,限位结构2112为固定在电池外壳2111内壁2111a上的多个凸台,多个凸台位于电池外壳11相互平行的两个内壁2111a上。内壁2111a为电池外壳2111内部的侧壁,该电池外壳2111的内部包括四个侧壁,限位结构2112可以位于任意的侧壁上。
多个凸台与电池外壳2111为铝合金材料一体成型结构,并且多个凸台靠近电池外壳2111的顶部开口处。多个凸台分别设置在电池外壳2111的内壁上,且围在绝缘垫板2102的四周,绝缘垫板2102安装在电池外壳2111内后,多个凸台共同卡接绝缘垫板2102的四周,防止绝缘垫板2102从电池外壳2111内脱出。这里的卡接指绝缘垫板2102位于凸台的上方或位于凸台的中间部位,凸台将绝缘垫板2102固定,防止绝缘垫板2102上下移动。
图23A至图23D都是壳体的侧视剖视图,其中示出了限位结构的四种不同实施例。
在一些可选实施例中:参见图23A所示,限位结构2112为凸台2113a,凸台2113a为向电池外壳2111内部凸起的球冠形,多个凸台2113a在电池外壳2111的内壁2111a上位于同一高度。本申请实施例的凸台2113a设计为向电池外壳2111内部凸起的球冠形结构,球冠形结构的凸台2113a便于加工,采用冲压模具从电池外壳2111的外部向电池外壳2111的内部冲压即可得到球冠形的凸台2113a,有利 于降低生产成本,且球冠形的凸台2113a便于将绝缘垫板2102压入电池外壳2111内,降低安装难度。
在一些可选实施例中:参见图23B所示,限位结构2112为凸台2113b,凸台2113b为向电池外壳11内部凸起的三角形限位块。以其中一个凸台2113b为例,三角形限位块的顶部设有倾斜向下的导向面2114,在三角形限位块的底部设有抵接绝缘垫板2102的限位面2115。
本申请实施例的凸台2113b设计为向电池外壳2111内部凸起的三角形限位块,三角形限位块顶部的导向面2114便于将绝缘垫板2102压入电池外壳2111内,三角形限位块底部的限位面2115用于将绝缘垫板2102限位在电池外壳2111内,防止绝缘垫板2102从电池外壳2111内脱出,提高了绝缘垫板2102与电池外壳2111卡接的可靠性。
在一些可选实施例中:参见图23C所示,限位结构2112为凸台2113c,凸台2113c包括:上限位块2121和下限位块2117,上限位块2121位于下限位块2117的顶部且相互间隔设置,上限位块2121和下限位块2117之间形成卡接绝缘垫板2102的限位空间2123。在该实施例中,上限位块2121和下限位块2117用于在高度方向定位绝缘垫板2102,以保证绝缘垫板2102的高度位置保持恒定,降低过度下压绝缘垫板2102使极耳过度下沉接触极片产生短路风险。
在一些可选实施例中:参见图23D所示,该二次电池的壳体2101的限位结构2112为设置在电池外壳2111内壁2111a上的凹槽2119,该凹槽2119与垫片2的边缘卡接以将垫片2卡接在电池外壳2111内。凹槽2119位于电池外壳2111的相互平行的两个内壁2111a上,凹槽2119沿绝缘垫板2102的长度方向延伸。绝缘垫板2102的左右两侧位于电池外壳2111的相互平行的两个侧壁上的凹槽2119内,凹槽2119可以保证绝缘垫板2102的高度位置保持恒定,降低过度下压绝缘垫板2102使极耳过度下沉接触极片产生短路风险。
当然,在其他实施例中,凹槽2119可设有多个,多个凹槽2119沿绝缘垫板2102的长度方向间隔设置,绝缘垫板2102的边缘设有多个与凹槽2119相适配的凸块,绝缘垫板2102的凸块分别位于多个凹槽2119内,以使位于电池外壳2111内的绝缘垫板2102上下运动。
图24A和图24B都是一种二次电池组件的俯视图,其中,图24A所示的绝缘 垫板2401可以与限位结构卡接。图24B所示的绝缘垫板2402在绝缘垫板2401的基础上增加了与凹槽2119配合的凸块2411。
如图21和图22,本申请的电池外壳2111的内壁2111a上设有将绝缘垫板2102限位在电池外壳2111内的限位结构2112,该限位结构2112能够将绝缘垫板2102限位在电池外壳2111内,可实现以下有益效果:
(1)实现绝缘垫板2102与电池外壳2111的自锁,转接导体与极耳焊接时,无需外力按压转接片,降低了加工难度,提高了生产效率。
(2)减小电芯与绝缘垫板2102在高度方向的距离,提高二次电池的能量密度。
(3)可增加转接导体与电芯的连接强度,提高电芯的抗震动能力,增加极耳与转接导体的连接可靠性。
针对相关技术中二次电池胶带在二次电池的使用过程中安全性能有待改善的问题,本申请在前文所述的二次电池的基础上,还提出一种如图25所示的二次电池组件,其包括:电芯组件2501(也被称为卷芯),其顶部设有多片极耳;两个转接导体2511(也被称为转接片),其设于所述电芯组件2501顶部,极耳分别焊接于两所述转接导体2511表面并形成焊印区2512;至少一片双面保护胶层2502,其两面均为粘接面,其贴附于转接导体2511上方并至少覆盖焊印区2512。
如图26所示,双面保护胶层2502包括:两层粘性层2622和设于两层粘性层2622之间的碳酸盐保护层2623。这样设置,实现在二次电池因意外出现热失控情况时,碳酸盐保护层2623可放出抑制燃烧的气体,进而提高二次电池的安全性能。
根据这些实施例,由于在转接导体2511上设置了双面均为粘性层2622的双面保护胶层2502,双面保护胶层2502对焊印区2512进行粘贴覆盖,进而可有效防止焊印区2512上可能掉落的焊渣脱离焊印区2512掉落至电芯组件2501内部,同时,由于其另一侧也具有粘性层2622,在后续的加工工序中,该双面保护胶层2502也可对落至其上的焊渣或灰尘颗粒等异物进行沾附,有效降低异物进入电芯组件2501的可能,且覆盖焊印区2512的双面保护胶层2502也可有效避免焊印区2512在二次电池注液后同电解液进行接触,降低其腐蚀速度,最终实现通过双面保护胶层2502对二次电池进行有效保护。
进一步地,碳酸盐保护层2623为碳酸氢钠或碳酸钠层结构。
可选地,粘性层2622为双面粘性层2622,碳酸盐保护层2623为铺设并粘附于两层粘性层2622之间的粉层结构。
这样设置,实现碳酸盐保护层2623可快捷高效的设置于双层保护胶层中,降低工艺难度,易于实施。
图27是图25所示实施例的二次电池组件的爆炸图。如图27,该实施例的双面保护胶层2502包括两片相互分离双面保护胶层2502。每片双面保护胶层2502分别粘贴覆盖两转接导体2511上的一个或多个焊印区2512。参照图25,在本实施例中,具体设置两片双面保护胶层2502分别对应覆盖每个转接导体2511上的焊印区2512。
在一些实施例中,双面保护胶层为整片结构,并同时贴附覆盖两个转接片2511上的焊印区2512,如图28中所示的双面保护胶层2503。这样设置,实现利用一片双面保护胶层2503同时覆盖多个焊印区2512,操作更为快捷,并使得双面保护胶层2503在电芯组件2501顶面的覆盖区域更广,其粘附异物的效果将更加明显。
参照图25,可选地,转接导体2511上设有转接凸台2530与注液孔2531,双面保护胶层2502上开设有对应转接凸台2530的第一孔位2520与对应注液孔2531的第二孔位2521。转接凸台2530也被称为转接导体极柱。
进一步的,第一孔位2520的形状及大小与转接凸台2530周沿一致;第二孔位2521的形状及大小与注液孔2531周沿一致。
这样设置,实现双面保护胶层2502不影响二次电池正常使用的同时,更加充分的对转接导体2511进行覆盖,进而对转接导体2511进行防护,避免焊渣脱落。
参照图25,在一些优选地实施例中,转接导体2511与电芯组件2501之间设有覆盖电芯组件2501顶面的绝缘垫板2510,且极耳穿过绝缘垫板2510与转接导体2511后焊接至转接导体2511表面,也就是转接导体2511的顶面。
其中,绝缘垫板2510于两个转接导体2511之间的区域设置有透气孔2514,以实现提高电芯组件2501的散热能力。透气孔也被称为防爆阀。
进一步的,双面保护胶层2502完全覆盖转接导体2511,且双面保护胶层2502的两端伸出绝缘垫板2510的两侧边沿并粘附至电芯组件2501侧壁。其中,伸出绝缘垫板2510周沿的双面保护胶层2502粘附至电芯组件2501的侧壁上,具体的,在本实施例中,双面保护胶层2502为整片设置,并同时覆盖于两个转接导体2511 上,其在绝缘垫板2510长边方向上的长度与绝缘垫板2510一致,其在绝缘垫板2510宽度上的长度则比绝缘垫板2510宽度多20mm,进而使其长度方向上的两端延伸至电芯组件2501侧壁。实现进一步提高双面保护胶层2502对电芯组件2501的保护效果,最终提高二次电池的安全性能。
前文说明了本申请的二次电池的各种装配结构。本申请实施例还提供了一种前文所述二次电池的装配方法,以图20A所示的二次电池1为例,该二次电池1的装配方法包括以下步骤:
步骤101、将电芯15引出的多层极片进行层叠后超声预焊成极耳,极耳包括正极极耳和负极极耳。
步骤102、将多个电芯15进行并排捆扎,多个电芯15捆扎组合成电芯组件。
步骤103、在电芯组件的顶部设置绝缘垫板14,各电芯15的正极极耳和负极极耳穿过绝缘垫板14的垫板极耳配合部。
步骤104、在绝缘垫板14的顶部设置转接导体,各电芯15的正极极耳和负极极耳穿过转接导体的转接导体极耳装配部,转接导体包括正极转接片12和负极转接片13。
步骤105、弯折穿过转接导体极耳装配部的正极极耳和负极极耳,将正极极耳和负极极耳分别与正极转接片12和负极转接片13的顶面贴合并焊接连接组成二次电池组件。
步骤106、在二次电池组件顶部设置连接正极转接片12和负极转接片13的顶盖11,顶盖11的极柱与转接导体电连接,极柱包括正极极柱和负极极柱,正极极柱和负极极柱分别与正极转接片12和负极转接片13连接。
步骤107、将二次电池组件装入顶部开口的壳体16内,并利用顶盖11将二次电池组件封闭在壳体16内。
本申请实施例的二次电池装配方法大幅降低了对极耳的高度要求,降低了原材料成本,极耳缩短后可有效改善辊压、拉伸效果(空箔区拉伸不良会导致模切极耳产生披锋毛刺、有安全风险)。极耳缩短后提高了电芯的体积能量密度,提高了二次电池的空间利用率,改善弯折极耳时带来的正极极耳下压接触负极片导致的短路问题。

Claims (44)

  1. 一种二次电池,其特征在于,包括二次电池组件,所述二次电池组件包括电芯组件、转接导体和绝缘垫板,其中,所述电芯组件包括至少两个并排设置的电芯,每个所述电芯具有从所述电芯的顶面延伸出的极耳;所述转接导体上开设有转接导体极耳装配部;所述绝缘垫板位于所述电芯组件和所述转接导体之间,所述绝缘垫板上开设有垫板极耳配合部;其中,经收拢的所述极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配部之后与所述转接导体焊接连接。
  2. 如权利要求1所述的二次电池,其特征在于,所述转接导体极耳装配部包括转接导体极耳装配孔,所述转接导体极耳装配孔是位于所述转接导体的内部的通孔,部分或全部经收拢的所述极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配孔之后与所述转接导体焊接连接。
  3. 如权利要求2所述的二次电池,其特征在于,所述电芯包括内侧电芯,所述内侧电芯位于所述电芯组件的内部,所述内侧电芯的极耳为第一极耳,经收拢的所述第一极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配孔之后与所述转接导体焊接连接。
  4. 如权利要求2所述的二次电池,其特征在于,所述转接导体极耳装配孔具有孔壁,所述极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配孔并与所述转接导体的孔壁焊接连接;或者,所述极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配孔之后被弯折,弯折后的所述极耳与所述转接导体的顶面焊接连接。
  5. 如权利要求3所述的二次电池,其特征在于,所述电芯的数量为n个,n为≥3的正整数,所述转接导体极耳装配孔的数量为n-2个。
  6. 如权利要求3所述的二次电池,其特征在于,所述极耳包括正极耳和负极耳,所述转接导体极耳装配孔包括第一转接导体极耳装配孔和/或第二转接导体极耳装配孔,所述电芯组件中的一个所述电芯上的正极耳或负极耳从所述第一转接导体极耳装配孔穿过;所述电芯组件中相邻的两个电芯上的两个正极耳或两个负极耳从所述第二转接导体极耳装配孔穿过。
  7. 如权利要求6所述的二次电池,其特征在于,所述转接导体具有转接导 体中轴线,所述转接导体中轴线沿所述二次电池的宽度方向延伸,所述第二转接导体极耳装配孔位于所述转接导体中轴线上,并且所述第二转接导体极耳装配孔以所述转接导体中轴线所在的竖直平面为对称。
  8. 如权利要求2所述的二次电池,其特征在于,所述二次电池包括两个所述转接导体,每个所述转接导体具有沿所述二次电池的厚度方向延伸的第一侧边和第二侧边,所述转接导体极耳装配孔在所述第一侧边具有开口,每个转接导体的所述第一侧边朝向另一个转接导体的第一侧边。
  9. 如权利要求1至3任一项所述的二次电池,其特征在于,所述转接导体极耳装配部包括侧边装配部,所述转接导体具有沿所述二次电池的宽度方向延伸的第三侧边和第四侧边,所述侧边装配部位于所述转接导体的第三侧边和/或第四侧边;部分或全部经收拢的所述极耳依次穿过所述垫板极耳配合部并绕过所述侧边装配部之后与所述转接导体焊接连接。
  10. 如权利要求9所述的二次电池,其特征在于,所述电芯还包括外侧电芯,所述外侧电芯位于所述电芯组件的外侧,所述外侧电芯的极耳为第二极耳,经收拢的所述第二极耳依次穿过所述垫板极耳配合部并绕过所述侧边装配部之后与所述转接导体焊接连接。
  11. 如权利要求9所述的二次电池,其特征在于,所述侧边装配部具有侧壁,所述极耳依次穿过所述垫板极耳配合部和所述侧边装配部并与所述侧壁焊接连接;或者,所述极耳依次穿过所述垫板极耳配合部和所述侧边装配部之后被弯折,弯折的所述极耳从所述转接导体的侧部绕至所述转接导体的上方,并与所述转接导体的顶面焊接连接。
  12. 如权利要求9所述的二次电池,其特征在于,所述转接导体极耳装配部还包括侧边凹进部,所述侧边凹进部位于所述转接导体的第三侧边和/或第四侧边,所述侧边凹进部向所述转接导体的内部凹进,所述侧边凹进部用于使对应的极耳从中穿过并向所述转接导体的内部弯折。
  13. 如权利要求2所述的二次电池,其特征在于,所述转接导体极耳装配部还包括侧边凹进部,所述侧边凹进部位于所述转接导体的第三侧边和/或第四侧边,所述侧边凹进部向所述转接导体的内部凹进,所述侧边凹进部用于使对应的极耳从中穿过并向所述转接导体的内部弯折。
  14. 如权利要求12所述的二次电池,其特征在于,所述二次电池包括两个所述转接导体,每个所述转接导体具有沿所述二次电池的厚度方向延伸的第一侧边和第二侧边,其中,每个转接导体的所述第一侧边朝向另一个转接导体的第一侧边;所述侧边装配部和多个所述侧边凹进部依次连接形成阶梯状结构,所述阶梯状结构从所述第二侧边到所述第一侧边依次向转接导体的内部缩进,或所述阶梯状结构从所述第一侧边到所述第二侧边依次向转接导体的内部缩进。
  15. 如权利要求1所述的二次电池,其特征在于,所述转接导体的顶面上设置有沉台,所述沉台相对于所述顶面具有沉台深度,所述转接导体极耳装配部位于所述沉台中,所述沉台用于容纳弯折之后的极耳。
  16. 如权利要求1所述的二次电池,其特征在于,所述绝缘垫板具有沿所述二次电池的宽度方向延伸的第一垫板侧边和第二垫板侧边,所述第一垫板侧边和所述第二垫板侧边相对设置,所述垫板极耳配合部包括垫板极耳配合孔和/或垫板侧边凹进部,所述垫板极耳配合孔是贯穿所述绝缘垫板的通孔,所述垫板侧边凹进部位于所述第一垫板侧边和/或第二垫板侧边,所述垫板侧边凹进部向所述绝缘垫板的内部凹进。
  17. 如权利要求16所述的二次电池,其特征在于,所述垫板极耳配合孔包括第一垫板配合孔和/或第二垫板配合孔,每个所述第一垫板配合孔用于使一个所述极耳从中穿过,每个所述第二垫板配合孔用于使相邻电芯上同极性的多个极耳从中穿过。
  18. 如权利要求1所述的二次电池,其特征在于,每个所述电芯具有沿所述电芯组件的厚度方向相对设置的第一侧面和第二侧面,每个所述电芯的所述第一侧面靠近所述电芯组件的内侧设置,每个所述电芯的所述第二侧面靠近所述电芯组件的外侧设置;在所述电芯组件的厚度方向上,所述极耳从所述电芯的顶面靠近所述第一侧面的位置伸出。
  19. 如权利要求18所述的二次电池,其特征在于,所述转接导体包括有转接导体极柱,所述转接导体的上表面被沿所述电芯组件的厚度方向延伸的分隔线分为第一转接导体区域和第二转接导体区域,所述转接导体极柱位于所述第一转接导体区域;靠近所述电芯组件最内侧的两个所述电芯对应的转接导体极耳装配部位于 所述第二转接导体区域;靠近所述电芯组件最内侧的两个所述电芯对应的所述转接导体极耳装配部沿所述电芯组件的宽度方向具有第一投影,所述转接导体极柱沿所述电芯组件的宽度方向具有第二投影,所述第二投影覆盖所述第一投影。
  20. 如权利要求1所述的二次电池,其特征在于,所述电芯组件包括至少一组电芯对,每组所述电芯对包括相互邻接的两个电芯,所述相互邻接的两个电芯的同极性的极耳相互合并为一个单极耳,所述单极耳依次穿过所述垫板极耳配合部和所述转接导体极耳装配部之后与所述转接导体焊接连接。
  21. 如权利要求1所述的二次电池,其特征在于,所述电芯组件包括至少两个电芯组,所述至少两个电芯组沿所述二次电池的厚度方向邻接;每个电芯组中包括至少两个电芯,每个电芯组中的所述至少两个电芯沿所述厚度方向依次邻接;所述极耳包括正极耳和负极耳,多个所述电芯的顶面形成一平面,所述平面被沿所述厚度方向延伸的中轴线划分为相等的第一平面区域和第二平面区域,其中,所有的正极耳位于所述第一平面区域中,所有的负极耳位于所述第二平面区域中,每个电芯组中位于所述第一平面区域中的所有正极耳沿所述厚度方向的投影没有重叠,每个电芯组中位于所述第二平面区域中的所有负极耳沿所述厚度方向的投影没有重叠。
  22. 如权利要求21所述的二次电池,其特征在于,每个电芯组中位于所述第一平面区域中的所有正极耳对应的所述转接导体极耳装配部沿所述厚度方向的投影没有重叠;每个电芯组中位于所述第二平面区域中的所有负极耳对应的所述转接导体极耳装配部沿所述厚度方向的投影没有重叠。
  23. 如权利要求21所述的二次电池,其特征在于,每个电芯组中位于所述第一平面区域中的所有正极耳对应的所述垫板极耳配合部沿所述厚度方向的投影没有重叠;每个电芯组中位于所述第二平面区域中的所有负极耳对应的所述垫板极耳配合部沿所述厚度方向的投影没有重叠。
  24. 如权利要求23所述的二次电池,其特征在于,所述二次电池具有沿其宽度方向延伸的第一中轴线,多个所述垫板极耳配合部以所述第一中轴线所在的竖直平面为对称面而对称分布;所述二次电池具有沿其厚度方向延伸的第二中轴线,多个所述垫板极耳配合部以所述第二中轴线所在的竖直平面为对称面而对称分布;以所述第二中轴线所在的竖直平面将多个所述垫板极耳配合部平均分为2个 平行组,其中,每个平行组中包括N个垫板极耳配合部,以所述第一中轴线所在的竖直平面将所述N个垫板极耳配合部平均分为2个垂直组,每个垂直组中包括N/2个垫板极耳配合部,所述N/2个垫板极耳配合部与所述第一中轴线所在的竖直平面之间具有第一距离,所述N/2个垫板极耳配合部与所述第二中轴线所在的竖直平面之间具有第二距离,所述第二距离随着所述第一距离的增大而增大或减小,其中,N是大于等于4的偶数。
  25. 如权利要求24所述的二次电池,其特征在于,在所述每个垂直组中,至少2个垫板极耳配合部相互连通,并且所形成的连通图形为Z字形。
  26. 如权利要求1所述的二次电池,其特征在于,所述垫板极耳配合部与绝缘垫板的上表面和/或下表面的交界处为圆角结构,所述圆角结构的圆角半径R的范围是:0.1mm≤R≤Tp/2,其中,Tp是所述绝缘垫板的厚度。
  27. 如权利要求1所述的二次电池,其特征在于,所述电芯组件包括至少三个并排设置的电芯,位于外侧的外侧电芯的第二极耳的高度大于位于内侧的内侧电芯的第一极耳的高度,各电芯的极耳向内侧电芯的方向弯折且与最内侧电芯的第一极耳焊接连接。
  28. 如权利要求1所述的二次电池,其特征在于,所述转接导体极耳装配部的开口四周设有倒角或圆角,所述绝缘垫板的顶部设有与转接导体轮廓相匹配的定位槽,所述转接导体位于所述定位槽内。
  29. 如权利要求1所述的二次电池,其特征在于,还包括壳体和顶盖,所述壳体为顶部开口四周封闭的空心结构,所述二次电池组件设置在所述壳体内,所述顶盖用于设置在所述壳体的顶部并将所述二次电池组件封闭在所述壳体内,所述顶盖上设有与所述转接导体连接的极柱,所述壳体的内壁上设有将所述绝缘垫板限位在所述壳体内的限位结构。
  30. 如权利要求29所述的二次电池,其特征在于,所述限位结构为固定在所述壳体的内壁上的多个凸台或凹槽,所述凸台位于所述壳体的相互平行的两个内壁上,所述凹槽与所述绝缘垫板的边缘卡接以将所述绝缘垫板卡接在所述壳体内,所述凹槽位于所述壳体的相互平行的两个内壁上。
  31. 如权利要求30所述的二次电池,其特征在于,所述凸台为向所述壳体的内部凸起的球冠形,多个所述凸台在所述壳体的内壁上位于同一高度。
  32. 如权利要求30所述的二次电池,其特征在于,所述凸台为向所述壳体的内部凸起的三角形限位块,所述三角形限位块的顶部设有倾斜向下的导向面,所述三角形限位块的底部设有抵接所述绝缘垫板的限位面。
  33. 如权利要求30所述的二次电池,其特征在于,所述凸台包括上限位块和下限位块,所述上限位块位于所述下限位块的顶部且相互间隔设置,所述上限位块和所述下限位块之间形成卡接所述绝缘垫板的定位空间。
  34. 如权利要求30所述的二次电池,其特征在于,所述凸台与所述壳体为铝合金材料一体成型结构,所述凸台靠近所述壳体的顶部开口。
  35. 如权利要求30所述的二次电池,其特征在于,所述凹槽设有多个,多个凹槽沿所述绝缘垫板的长度方向间隔设置,所述绝缘垫板的边缘设有多个与所述凹槽相适配的凸块。
  36. 如权利要求1所述的二次电池,其特征在于,还包括至少一片双面保护胶层,所述双面保护胶层的两面均为粘接面,每个所述极耳分别焊接在所述转接导体的顶面并在所述顶面形成焊印区,其中,所述双面保护胶层贴附在所述转接导体的顶面并至少覆盖所述焊印区。
  37. 如权利要求36所述的二次电池,其特征在于,所述双面保护胶层包括两层粘性层和碳酸盐保护层,所述碳酸盐保护层设于两层所述粘性层之间。
  38. 如权利要求37所述的二次电池,其特征在于,所述碳酸盐保护层为碳酸氢钠或碳酸钠层结构。
  39. 如权利要求37所述的二次电池,其特征在于,所述粘性层为双面粘性层,所述碳酸盐保护层为铺设并粘附于两层所述粘性层之间的粉层结构。
  40. 如权利要求36所述的二次电池,其特征在于,所述转接导体包括分离的两个转接片,所述双面保护胶层为整片结构,并同时贴附覆盖两个所述转接片上的所述焊印区。
  41. 如权利要求36所述的二次电池,其特征在于,所述转接导体包括分离的两个转接片,所述双面保护胶层设有多片,每片所述双面保护胶层分别粘贴覆盖所述转接片上的一个或多个所述焊印区。
  42. 如权利要求36所述的二次电池,其特征在于,所述转接导体上设有转接导体极柱与注液孔,所述双面保护胶层上开设有对应所述转接导体极柱的第一孔位 与对应所述注液孔的第二孔位,所述第一孔位的形状及大小与所述转接导体极柱的周沿一致;所述第二孔位的形状及大小与所述注液孔的周沿一致。
  43. 如权利要求36所述的二次电池,其特征在于,所述双面保护胶层完全覆盖所述转接导体,且所述双面保护胶层的两端伸出所述绝缘垫板的两侧边沿并粘附至所述电芯组件的外侧壁。
  44. 一种如权利要求1-43任一项所述的二次电池的装配方法,其特征在于,所述方法包括以下步骤:
    将从所述电芯引出的多层极片进行层叠后超声预焊成所述极耳;
    将多个电芯进行并排捆扎,所述多个电芯捆扎组合成所述电芯组件;
    在所述电芯组件的顶部设置所述绝缘垫板,各电芯的极耳穿过所述绝缘垫板上的垫板极耳配合部;
    在所述绝缘垫板的顶部设置所述转接导体,各电芯的极耳再穿过所述转接导体上的转接导体极耳装配部;
    弯折穿过所述转接导体极耳装配部的极耳,将弯折后的所述极耳与所述转接导体的顶面贴合并焊接连接组成所述二次电池组件;
    在所述二次电池组件的顶部设置连接所述转接导体的顶盖,所述顶盖的极柱与所述转接导体电连接;
    将所述二次电池组件装入顶部开口的壳体内,并利用所述顶盖将所述二次电池组件封闭在所述壳体内。
PCT/CN2022/134817 2022-05-25 2022-11-28 二次电池和二次电池的装配方法 WO2023226343A1 (zh)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
CN202210583292.0 2022-05-25
CN202221320750.3 2022-05-25
CN202210583292.0A CN117175148A (zh) 2022-05-25 2022-05-25 一种二次电池组件、二次电池及其装配方法
CN202221320750.3U CN217933990U (zh) 2022-05-26 2022-05-26 一种与垫片自配合的二次电池外壳及二次电池
CN202221683929.5U CN218513644U (zh) 2022-06-30 2022-06-30 一种二次电池
CN202221683929.5 2022-06-30
CN202222987617.XU CN218783189U (zh) 2022-11-10 2022-11-10 二次电池
CN202222995055.3 2022-11-10
CN202223000130.4U CN218939953U (zh) 2022-11-10 2022-11-10 用于二次电池的装配组件和二次电池
CN202211403651.6A CN115579592B (zh) 2022-11-10 2022-11-10 二次电池
CN202211402811.5 2022-11-10
CN202211403651.6 2022-11-10
CN202211402811.5A CN115458872B (zh) 2022-11-10 2022-11-10 二次电池的转接片
CN202222995055.3U CN218919240U (zh) 2022-11-10 2022-11-10 二次电池的绝缘垫片
CN202223000130.4 2022-11-10
CN202222987617.X 2022-11-10

Publications (1)

Publication Number Publication Date
WO2023226343A1 true WO2023226343A1 (zh) 2023-11-30

Family

ID=84689241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/134817 WO2023226343A1 (zh) 2022-05-25 2022-11-28 二次电池和二次电池的装配方法

Country Status (4)

Country Link
US (1) US20230411799A1 (zh)
EP (1) EP4283730A3 (zh)
JP (1) JP2023174493A (zh)
WO (1) WO2023226343A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110064996A1 (en) * 2009-09-15 2011-03-17 Jeong-Man Park Secondary battery
CN108428852A (zh) * 2018-01-12 2018-08-21 宁德时代新能源科技股份有限公司 二次电池及汽车
CN213401441U (zh) * 2020-09-24 2021-06-08 银隆新能源股份有限公司 电芯组件以及电池
CN113067041A (zh) * 2021-03-22 2021-07-02 宁德新能源科技有限公司 电芯及电子装置
CN216213956U (zh) * 2021-09-13 2022-04-05 欣旺达电动汽车电池有限公司 绝缘隔板组件、电池模组及电池包
CN216488407U (zh) * 2021-12-02 2022-05-10 宁德时代新能源科技股份有限公司 一种电池单体、二次电池及用电装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106654139B (zh) * 2017-01-03 2019-12-10 曙鹏科技(深圳)有限公司 一种极耳极片转接结构、电芯及其制作方法
EP3639316A4 (en) * 2017-06-15 2021-03-10 A123 Systems LLC PRISMATIC STACKED ARCHITECTURE FOR ELECTROCHEMICAL CELL
US11670771B2 (en) * 2018-02-28 2023-06-06 Sanyo Electric Co., Ltd. Battery including tab tape covering electrode tab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110064996A1 (en) * 2009-09-15 2011-03-17 Jeong-Man Park Secondary battery
CN108428852A (zh) * 2018-01-12 2018-08-21 宁德时代新能源科技股份有限公司 二次电池及汽车
CN213401441U (zh) * 2020-09-24 2021-06-08 银隆新能源股份有限公司 电芯组件以及电池
CN113067041A (zh) * 2021-03-22 2021-07-02 宁德新能源科技有限公司 电芯及电子装置
CN216213956U (zh) * 2021-09-13 2022-04-05 欣旺达电动汽车电池有限公司 绝缘隔板组件、电池模组及电池包
CN216488407U (zh) * 2021-12-02 2022-05-10 宁德时代新能源科技股份有限公司 一种电池单体、二次电池及用电装置

Also Published As

Publication number Publication date
JP2023174493A (ja) 2023-12-07
EP4283730A3 (en) 2024-02-28
US20230411799A1 (en) 2023-12-21
EP4283730A2 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
EP2858162B1 (en) Electrode assembly including steps having corner portions of various shapes, battery cell, battery pack, and device including same
WO2020238660A1 (zh) 电池单元及其制造方法、电池模组
WO2023185283A1 (zh) 电池
KR102229624B1 (ko) 이차전지
JP2005285773A (ja) 電極組立体とこれを備えた二次電池
JP2006012834A (ja) 二次電池
WO2020151549A1 (zh) 二次电池以及电池模组
US11949128B2 (en) Current collecting member, secondary battery and fabrication method
WO2020133675A1 (zh) 二次电池以及电池模组
WO2023103993A1 (zh) 极片及电池
CN216354304U (zh) 极片及电池
CN216488280U (zh) 一种具有新型电池盖板连接结构的电芯
WO2023226343A1 (zh) 二次电池和二次电池的装配方法
CN111509150B (zh) 一种锂离子电池的电芯结构
CN210607438U (zh) 一种锂电池极耳
CN217903362U (zh) 一种二次电池组件及二次电池
CN216750226U (zh) 电极组件及电池
CN112534610A (zh) 电极组件和电池
EP3349286B1 (en) Electrode assembly including electrode plates with coupled additional taps formed thereon
CN216085239U (zh) 电池模组
CN215911557U (zh) 电芯极片、电芯极组和电芯
CN115764179A (zh) 电池及用电设备
CN211929603U (zh) 多极柱端子锂电池
CN115842093A (zh) 极片及制作方法、电极组件及制作方法、电池单体和电池
CN218414703U (zh) 电芯连接组件和电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943530

Country of ref document: EP

Kind code of ref document: A1