WO2023226114A1 - 一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途 - Google Patents

一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途 Download PDF

Info

Publication number
WO2023226114A1
WO2023226114A1 PCT/CN2022/099541 CN2022099541W WO2023226114A1 WO 2023226114 A1 WO2023226114 A1 WO 2023226114A1 CN 2022099541 W CN2022099541 W CN 2022099541W WO 2023226114 A1 WO2023226114 A1 WO 2023226114A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
copper
hydrogenation catalyst
extrusion molding
molding method
Prior art date
Application number
PCT/CN2022/099541
Other languages
English (en)
French (fr)
Inventor
张遵亮
刘冬
张俞
牛锦森
徐志刚
Original Assignee
常州瑞华化工工程技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州瑞华化工工程技术股份有限公司 filed Critical 常州瑞华化工工程技术股份有限公司
Publication of WO2023226114A1 publication Critical patent/WO2023226114A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/143Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones
    • C07C29/145Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of ketones with hydrogen or hydrogen-containing gases

Definitions

  • the invention relates to a catalyst molding method, in particular to an extrusion molding method of a copper-based acetophenone hydrogenation catalyst and its use in the hydrogenation of acetophenone to prepare phenylethanol.
  • Acetophenone is a by-product during the co-oxidation of ethylbenzene and propylene to produce styrene and propylene oxide.
  • the by-product acetophenone can be converted into the main product benzene through two reactions: hydrogenation of acetophenone and dehydration of phenylethyl alcohol. Ethylene. Therefore, the process of selective hydrogenation of acetophenone to phenylethyl alcohol is of great economic value.
  • Acetophenone is a compound with a variety of unsaturated functional groups. It has both a benzene ring and a carbonyl group in the molecule.
  • the possible products during the hydrogenation process are phenylethyl alcohol, cyclohexyl methyl ketone and 1-cyclohexyl ethanol, as well as the generated benzene. Ethanol undergoes further hydrogenolysis reaction to produce benzene. Although the hydrogenation of carbonyl groups is easier than the hydrogenation of benzene rings from thermodynamic analysis, it is not easy to obtain phenylethyl alcohol with high selectivity and industrial value.
  • Copper-based catalysts are excellent catalysts for the hydrogenation of acetophenone to produce a-phenylethanol, which can effectively avoid the hydrogenation of unsaturated bonds on the benzene ring.
  • adding a pore expander can increase the pore size of the catalyst, thereby increasing the transfer rate of reaction raw materials, reaction products and heat in the catalyst, and ultimately improving the selectivity and life of the catalyst.
  • An extrusion molding method for a copper-based acetophenone hydrogenation catalyst The preparation steps are as follows: a. Add catalyst raw powder, extrusion aid and pore expander to a kneading device in a certain proportion and mix evenly; b. Add a certain amount of Knead silica sol and deionized water to form a wet plastomer; c. Extrude the plastomer prepared in step b in an extruder; d. Dry the strip catalyst plastomer obtained in step c in a drying equipment; e Calculate the catalyst obtained in step d to obtain a finished copper-based acetophenone hydrogenation catalyst; f. Reduce the copper-based acetophenone hydrogenation catalyst formed in step e in a hydrogen atmosphere.
  • the extrusion aid is sesbania powder, and its content is 1%-10% of the mass of the original catalyst powder.
  • the pore expander is one of polyethylene glycol, carbon black, activated carbon fiber, and dry starch, and its content is 1%-20% of the mass of the original catalyst powder.
  • the silica sol is alkaline or neutral silica sol, and the silica content in the added silica sol accounts for 10%-30% of the mass of the original catalyst powder.
  • the kneaded plastic body is extruded into a strip shape on the extruder to obtain a wet strip catalyst with a diameter of 1mm-5mm.
  • the dried catalyst is calcined at 350°C-650°C for 1h-6h in an air atmosphere.
  • the conditions for the reduction of the copper-based acetophenone hydrogenation catalyst in a hydrogen atmosphere are: weigh a certain amount of catalyst and install it in a fixed bed reactor, first heat it to 170°C in a nitrogen atmosphere, and then convert it into hydrogen. The mixed gas with nitrogen continues to heat up to 180°C-240°C for reduction for 3h-15h.
  • the invention also provides a copper-based acetophenone hydrogenation catalyst, which is prepared by the extrusion molding method of the copper-based acetophenone hydrogenation catalyst. Pore expanders are introduced during catalyst extrusion molding to improve the pore structure of the catalyst.
  • the amount of extrusion aid added is 1%-10% of the mass of the original catalyst powder
  • the amount of pore expander added is 1%-20% of the mass of the original catalyst powder
  • the amount of silica sol added is 10%-30% of the mass of the original catalyst powder.
  • the invention also provides the use of the catalyst obtained by the above-mentioned extrusion molding method of the copper-based acetophenone hydrogenation catalyst in the hydrogenation of acetophenone to prepare phenylethanol.
  • the pressure of the reactor equipped with the reduced catalyst is increased.
  • the temperature is as high as 1MPa-4MPa, the temperature is heated to 30°C-150°C, and the hydrogenation reaction of acetophenone is carried out at a space velocity of 0.1-20 to obtain phenylethanol.
  • a hole expander is added during catalyst extrusion molding, which significantly improves the selectivity and stability of the catalyst.
  • step e put 20g of the catalyst formed in step e into a 20mm inner diameter fixed bed reactor, first raise the temperature to 170°C in an N2 environment, and then in a hydrogen and nitrogen mixed atmosphere Raise the temperature to 200°C at a heating rate of 1°C/min and then hold the temperature constant for 3 hours; g. Conduct the hydrogenation reaction of acetophenone on the reduced catalyst at 75°C, 2.5MPa, and a space velocity of 6.
  • step e Put 20g of the catalyst formed in step e into a 20mm inner diameter fixed bed reactor, first raise the temperature to 170°C in an N 2 environment, and then In a mixed atmosphere of hydrogen and nitrogen, raise the temperature to 200°C at a heating rate of 1°C/min and then hold the temperature constant for 3 hours; g. Hydrogenate acetophenone on the reduced catalyst at 75°C, 2.5MPa, and a space velocity of 6 reaction.
  • step e Put 20g of the catalyst formed in step e into a 20mm inner diameter fixed bed reactor, first raise the temperature to 170°C in an N2 environment, and then in hydrogen and In a nitrogen mixed atmosphere, raise the temperature to 200°C at a heating rate of 1°C/min and then hold the temperature constant for 3 hours; g. Conduct the acetophenone hydrogenation reaction on the reduced catalyst at 75°C, 2.5MPa, and a space velocity of 6.
  • step e Put 20g of the catalyst formed in step e into a 20mm inner diameter fixed bed reactor, first raise the temperature to 170°C in an N 2 environment, and then In a mixed atmosphere of hydrogen and nitrogen, raise the temperature to 200°C at a heating rate of 1°C/min and then hold the temperature constant for 3 hours; g. Hydrogenate acetophenone on the reduced catalyst at 75°C, 2.5MPa, and a space velocity of 6 reaction.
  • step e Put 20g of the catalyst formed in step e into a 20mm inner diameter fixed bed reactor, first raise the temperature to 170°C in an N2 environment, and then in hydrogen and In a nitrogen mixed atmosphere, raise the temperature to 200°C at a heating rate of 1°C/min and then hold the temperature constant for 3 hours; g. Conduct the acetophenone hydrogenation reaction on the reduced catalyst at 75°C, 2.5MPa, and a space velocity of 6.
  • Table 1 shows that the catalyst formed after adding a pore expander according to the present invention has higher selectivity and longer life than ordinary copper-zinc-aluminum catalysts.
  • the larger pore size is conducive to the rapid diffusion of products from the inner pores of the catalyst to the outside of the catalyst pores, reducing the amount of product in the catalyst.
  • the residence time inside the catalyst thus reduces the formation of by-products.
  • the larger pore size facilitates the rapid transfer of heat generated by the hydrogenation reaction to the outside of the catalyst, effectively avoiding the agglomeration of copper nanoparticles inside the catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明提供一种苯乙酮加氢催化剂的挤条成型方法,其特征是将催化剂原粉,硅溶胶,去离子水,助挤剂和扩孔剂以一定比例捏合成塑性体,然后再进行挤条、干燥、焙烧后制备成条形催化剂。扩孔剂的加入可以明显改善催化剂的孔道结构,有利于苯乙酮加氢生成的苯乙醇快速从催化剂孔道内扩散出来,减少苯乙醇在催化剂表面的停留时间,有效减少了副产物乙苯的生成;同时也可以将催化加氢放出的热量迅速移走,有效避免了铜纳米颗粒的团聚,有利于提高催化剂的寿命。

Description

一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途 技术领域
本发明涉及催化剂成型方法,尤其涉及一种铜基苯乙酮加氢催化剂的挤条成型方法及其在苯乙酮加氢制备苯乙醇中的用途。
背景技术
苯乙酮是乙苯、丙烯共氧化生产苯乙烯和环氧丙烷工艺过程中的副产物,通过将苯乙酮加氢和苯乙醇脱水两个反应可以将副产物苯乙酮转化为主产物苯乙烯。因此,将苯乙酮选择性加氢生成苯乙醇的过程极具经济价值。苯乙酮是具有多种不饱和官能团的化合物,分子中既有苯环又有羰基,在加氢过程中可能的产物有苯乙醇、环己基甲基酮和1-环己基乙醇以及生成的苯乙醇进一步发生氢解反应产生笨乙苯。虽然从热力学上分析羰基加氢比苯环加氢容易,但要想高选择性的获得有工业价值的苯乙醇也并非易事。
铜基催化剂是苯乙酮加氢制备a-苯乙醇的优良催化剂,可以有效避免苯环上不饱和键的加氢,但是仍然存在苯乙醇过度加氢为乙苯以及铜纳米颗粒高温易于团聚的问题。故我们需要提高催化剂的孔径,来提高催化剂的传质、传热速率,达到减少苯乙醇在催化剂表面的氢解和降低铜纳米颗粒团聚的目的。
发明内容
本发明的意义在于加入扩孔剂可以提高催化剂的孔径,从而提高了反应原料、反应产物及热量在催化剂内的传递速度,最终提高了催化剂的选择性和寿命。
本发明所解决的技术问题通过以下技术方案来实现。
一种铜基苯乙酮加氢催化剂的挤条成型方法,其制备步骤如下:a.催化剂原粉、助挤剂和扩孔剂以一定比例加入捏合装置中混合均匀;b.加入一定量的硅溶胶和去离子水捏合成湿的塑性体;c.将步骤b制备的塑性体在挤条机中挤 出成型;d.将步骤c得到的条状催化剂塑性体在干燥设备中干燥;e将步骤d得到的催化剂焙烧后得到铜基苯乙酮加氢催化剂成品;f.将步骤e中成型后的铜基苯乙酮加氢催化剂于氢气氛围下还原。
优选地:助挤剂是田菁粉,其含量为催化剂原粉质量的1%-10%。
优选地:扩孔剂是聚乙二醇、炭黑、活性炭纤维、干淀粉中的一种,其含量为催化剂原粉质量的1%-20%。
优选地:硅溶胶为碱性或中性硅溶胶,加入的硅溶胶中二氧化硅的含量占催化剂原粉质量的10%-30%。
优选地:捏合好的塑性体在挤条机上的挤出形状为条形,得到湿的条状催化剂,其直径为1mm-5mm。
优选地:将湿的条状催化剂在100℃-120℃的干燥空气中干燥5h-24h,得到干燥过的催化剂。
优选地:干燥过的催化剂在空气氛围中于350℃-650℃焙烧1h-6h。
优选地:所述铜基苯乙酮加氢催化剂于氢气氛围下还原的条件为:称取一定量的催化剂装于固定床反应器中,先在氮气氛围下加热到170℃,然后转换为氢气和氮气混合气体继续升温到180℃-240℃还原3h-15h。
本发明还提供了一种铜基苯乙酮加氢催化剂,利用上述铜基苯乙酮加氢催化剂的挤条成型方法制备得到。在催化剂挤条成型时引入扩孔剂以改善催化剂的孔道结构。助挤剂加入量为催化剂原粉质量的1%-10%,扩孔剂加入量为催化剂原粉质量的1%-20%,硅溶胶加入量为催化剂原粉质量的10%-30%。
本发明还提供了上述一种铜基苯乙酮加氢催化剂的挤条成型方法得到的催化剂在苯乙酮加氢制备苯乙醇中的用途,将装有还原后的催化剂的反应器的压力升高到1MPa-4MPa,温度加热到30℃-150℃,在空速为0.1-20的条件下进行 苯乙酮加氢反应得到苯乙醇。
与现有技术相比,本发明的有益效果是:
本发明中在催化剂挤条成型时加入了扩孔剂,明显提高了催化剂的选择性和稳定性。
具体实施方式
为进一步说明此发明,列举以下实施例。
实施例1
a.称取1000g催化剂原粉、30g田菁粉加入捏合装置中搅拌10分钟使其混合均匀;b.称取666.7g硅溶胶(二氧化硅含量为30%)、120g去离子水加入捏合机捏合10分钟;c.将捏合成的塑性体取出放入挤条机中挤条成型,磨具为2.4mm圆孔;d.挤条后的催化剂于120℃干燥8h;e.将干燥好的催化剂于450℃焙烧4h;f.将20g步骤e中成型后的催化剂装入20mm内径的固定床反应器中,先在N 2环境中将温度升到170℃,然后于氢气和氮气混合氛围中以1℃/min的升温速度升温到200℃然后恒温3h;g.将还原后的催化剂在75℃、2.5MPa、空速为6的条件下进行苯乙酮加氢反应。
实施例2
a.称取1000g催化剂原粉、30g田菁粉、150g聚乙二醇6000加入捏合装置中搅拌10分钟使其混合均匀;b.称取666.7g硅溶胶(二氧化硅含量为30%)、138g去离子水加入捏合机捏合10分钟;c.将捏合成的塑性体取出放入挤条机中挤条成型,磨具为2.4mm圆孔;d.挤条后的催化剂于120℃干燥8h;e.将干燥好的催化剂于450℃焙烧4h;f.将20g步骤e中成型后的催化剂装入20mm内径的固定床反应器中,先在N 2环境中将温度升到170℃,然后于氢气和氮气混合氛围中以1℃/min的升温速度升温到200℃然后恒温3h;g.将还原后的催化剂在 75℃、2.5MPa、空速为6的条件下进行苯乙酮加氢反应。
实施例3
a.称取1000g催化剂原粉、30g田菁粉、150g炭黑加入捏合装置中搅拌10分钟使其混合均匀;b.称取666.7g硅溶胶(二氧化硅含量为30%)、120g去离子水加入捏合机捏合10分钟;c.将捏合成的塑性体取出放入挤条机中挤条成型,磨具为2.4mm圆孔;d.挤条后的催化剂于120℃干燥8h;e.将干燥好的催化剂于450℃焙烧4h;f.将20g步骤e中成型后的催化剂装入20mm内径的固定床反应器中,先在N 2环境中将温度升到170℃,然后于氢气和氮气混合氛围中以1℃/min的升温速度升温到200℃然后恒温3h;g.将还原后的催化剂在75℃、2.5MPa、空速为6的条件下进行苯乙酮加氢反应。
实施例4
a.称取1000g催化剂原粉、30g田菁粉、150g 3mm长的活性炭纤维加入捏合装置中搅拌10分钟使其混合均匀;b.称取666.7g硅溶胶(二氧化硅含量为30%)、140g去离子水加入捏合机捏合10分钟;c.将捏合成的塑性体取出放入挤条机中挤条成型,磨具为2.4mm圆孔;d.挤条后的催化剂于120℃干燥8h;e.将干燥好的催化剂于450℃焙烧4h;f.将20g步骤e中成型后的催化剂装入20mm内径的固定床反应器中,先在N 2环境中将温度升到170℃,然后于氢气和氮气混合氛围中以1℃/min的升温速度升温到200℃然后恒温3h;g.将还原后的催化剂在75℃、2.5MPa、空速为6的条件下进行苯乙酮加氢反应。
实施例5
a.称取1000g催化剂原粉、30g田菁粉、150g干淀粉加入捏合装置中搅拌10分钟使其混合均匀;b.称取666.7g硅溶胶(二氧化硅含量为30%)、152g去离子水加入捏合机捏合10分钟;c.将捏合成的塑性体取出放入挤条机中挤条成 型,磨具为2.4mm圆孔;d.挤条后的催化剂于120℃干燥8h;e.将干燥好的催化剂于450℃焙烧4h;f.将20g步骤e中成型后的催化剂装入20mm内径的固定床反应器中,先在N 2环境中将温度升到170℃,然后于氢气和氮气混合氛围中以1℃/min的升温速度升温到200℃然后恒温3h;g.将还原后的催化剂在75℃、2.5MPa、空速为6的条件下进行苯乙酮加氢反应。
参比实例
将20g外购的工业铜锌铝催化剂装入20mm内径的固定床反应器中,先在N 2环境中将温度升到170℃,然后于氢气和氮气混合氛围中以1℃/min的升温速度升温到200℃然后恒温3h;g.将还原后的催化剂在75℃、2.5MPa、空速为6的条件下进行苯乙酮加氢反应。
表1.
Figure PCTCN2022099541-appb-000001
表1说明本发明加入扩孔剂后成型的催化剂较普通铜锌铝催化剂具有较高的选择性和寿命,较大的孔径有利于产物从催化剂内孔迅速扩散到催化剂孔外,减少了产物在催化剂内部的停留时间因而减少了副产物的生成,同时较大的孔径有利于加氢反应生成的热量被快速转移至催化剂外部,有效避免了催化剂内 部铜纳米颗粒的团聚。

Claims (10)

  1. 一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于,其制备步骤如下:a.催化剂原粉、助挤剂和扩孔剂以一定比例加入捏合装置中混合均匀;b.加入一定量的硅溶胶和去离子水捏合成湿的塑性体;c.将步骤b制备的塑性体在挤条机中挤出成型;d.将步骤c得到的条状催化剂塑性体在干燥设备中干燥;e将步骤d得到的催化剂焙烧后得到铜基苯乙酮加氢催化剂成品;f.将步骤e中成型后的铜基苯乙酮加氢催化剂于氢气氛围下还原。
  2. 根据权利要求1所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于:助挤剂是田菁粉,其含量为催化剂原粉质量的1%-10%。
  3. 根据权利要求1所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于:扩孔剂是聚乙二醇、炭黑、活性炭纤维、干淀粉中的一种,其含量为催化剂原粉质量的1%-20%。
  4. 根据权利要求1所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于:硅溶胶为碱性或中性硅溶胶,加入的硅溶胶中二氧化硅的含量占催化剂原粉质量的10%-30%。
  5. 根据权利要求1所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于:捏合好的塑性体在挤条机上的挤出形状为条形,得到湿的条状催化剂,其直径为1mm-5mm。
  6. 根据权利要求5所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于:将湿的条状催化剂在100℃-120℃的干燥空气中干燥5h-24h,得到干燥过的催化剂。
  7. 根据权利要求6所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其特征在于:干燥过的催化剂在空气氛围中于350℃-650℃焙烧1h-6h。
  8. 根据权利要求1所述的一种铜基苯乙酮加氢催化剂的挤条成型方法,其 特征在于:所述铜基苯乙酮加氢催化剂于氢气氛围下还原的条件为:称取一定量的催化剂装于固定床反应器中,先在氮气氛围下加热到170℃,然后转换为氢气和氮气混合气体继续升温到180℃-240℃还原3h-15h。
  9. 一种铜基苯乙酮加氢催化剂,其特征在于,利用权利要求1-8中任一项所述一种铜基苯乙酮加氢催化剂的挤条成型方法制备得到。
  10. 根据权利要求1-8中任一项所述的一种铜基苯乙酮加氢催化剂的挤条成型方法得到的催化剂在苯乙酮加氢制备苯乙醇中的用途,其特征在于:将装有还原后的催化剂的反应器的压力升高到1MPa-4MPa,温度加热到30℃-150℃,在空速为0.1-20的条件下进行苯乙酮加氢反应得到苯乙醇。
PCT/CN2022/099541 2022-05-18 2022-06-17 一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途 WO2023226114A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210550834.4A CN114768885A (zh) 2022-05-18 2022-05-18 一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途
CN202210550834.4 2022-05-22

Publications (1)

Publication Number Publication Date
WO2023226114A1 true WO2023226114A1 (zh) 2023-11-30

Family

ID=82408151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/099541 WO2023226114A1 (zh) 2022-05-18 2022-06-17 一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途

Country Status (2)

Country Link
CN (1) CN114768885A (zh)
WO (1) WO2023226114A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016671A1 (en) * 2000-01-19 2001-08-23 Noriaki Oku Reduction-treated copper-based catalyst and process for producing alpha-phenylethyl alcohol using the same
WO2016101822A1 (zh) * 2014-12-24 2016-06-30 高化学株式会社 铜基催化剂及其制备方法
CN107999082A (zh) * 2017-12-19 2018-05-08 常州瑞华化工工程技术股份有限公司 一种铜系苯乙酮加氢催化剂的制备方法及其应用
CN109482192A (zh) * 2018-11-30 2019-03-19 万华化学集团股份有限公司 一种苯乙酮加氢制备α-苯乙醇的催化剂的制备方法及应用
CN109529870A (zh) * 2018-12-12 2019-03-29 万华化学集团股份有限公司 一种苯乙酮加氢催化剂及其制备方法
CN110467517A (zh) * 2019-08-07 2019-11-19 青岛科技大学 一种苯乙酮加氢制备α-苯乙醇的方法及催化剂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921065B1 (fr) * 2007-09-17 2009-11-27 Univ Haute Alsace Procede de fabrication de (co)polymeres a empreinte(s) moleculaire(s) par photopolymerisation sous ondes evanescentes, (co)polymeres obtenus et leurs applications
CN105170195B (zh) * 2015-09-14 2018-06-12 新奥科技发展有限公司 催化剂成型方法
CN105363489A (zh) * 2015-12-02 2016-03-02 中国天辰工程有限公司 一种高分子筛含量的钛硅分子筛催化剂的挤条成型方法
CN105854742A (zh) * 2016-04-07 2016-08-17 中国天辰工程有限公司 一种高性能钛硅分子筛催化剂及其挤条成型的方法
CN108043414B (zh) * 2017-12-06 2019-07-30 万华化学集团股份有限公司 苯乙酮加氢制备α-苯乙醇的催化剂、制备方法及应用
CN108057432A (zh) * 2017-12-15 2018-05-22 常州瑞华化工工程技术股份有限公司 一种适合α-苯乙醇脱水催化剂的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010016671A1 (en) * 2000-01-19 2001-08-23 Noriaki Oku Reduction-treated copper-based catalyst and process for producing alpha-phenylethyl alcohol using the same
WO2016101822A1 (zh) * 2014-12-24 2016-06-30 高化学株式会社 铜基催化剂及其制备方法
CN107999082A (zh) * 2017-12-19 2018-05-08 常州瑞华化工工程技术股份有限公司 一种铜系苯乙酮加氢催化剂的制备方法及其应用
CN109482192A (zh) * 2018-11-30 2019-03-19 万华化学集团股份有限公司 一种苯乙酮加氢制备α-苯乙醇的催化剂的制备方法及应用
CN109529870A (zh) * 2018-12-12 2019-03-29 万华化学集团股份有限公司 一种苯乙酮加氢催化剂及其制备方法
CN110467517A (zh) * 2019-08-07 2019-11-19 青岛科技大学 一种苯乙酮加氢制备α-苯乙醇的方法及催化剂

Also Published As

Publication number Publication date
CN114768885A (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
WO2021120644A1 (zh) 一种低碳烷烃脱氢工艺的方法、装置和反应系统
KR101340620B1 (ko) 허니컴 구조의 페라이트 금속산화물 촉매 성형체와 그의 제조방법 및 이를 이용한 1,3-부타디엔 제조방법
WO2023226114A1 (zh) 一种铜基苯乙酮加氢催化剂的挤条成型方法及其用途
CN109772298B (zh) 一种用于合成甲基丙烯腈的锰基催化剂及其制备与应用
JP2016501202A (ja) メチロールアルカナールの製造方法
CN101745433B (zh) 草酸酯加氢制乙二醇催化剂及其成型方法和应用
CN107790148B (zh) 二乙苯脱氢制二乙烯苯的催化剂及其制备方法和应用
US1938202A (en) Hydrogen production
US2631086A (en) Water gas shift catalyst preparation and water gas shift process
US1741308A (en) Process of reducing products of carbon monoxide
CN107442134B (zh) 一种铑/镍合金纳米催化剂及其制备方法和应用
US1741306A (en) Process of reducing products of carbon monoxide
US1741307A (en) Process of reducing products of carbon monoxide
US1824896A (en) Process of producing reduction products of carbon monoxide
US2840531A (en) Selective hydrogenation catalyst and process for producing same
CN112206803B (zh) 一种用于甲基丙烯醛选择性加氢生成异丁醛的催化剂及其制备方法
CN114950471A (zh) 镍基催化剂及其制备方法和在乙烯中乙炔选择性加氢中的应用
KR20050058998A (ko) 불포화 탄화수소의 탈수소화 방법
EP3707117B1 (en) Method for continuous production of 2,3-butanediol
US3235514A (en) Preparation of copper chromate containing catalytic pellets
US1799452A (en) Process of producing hydrogen
CN111672496A (zh) 一种丁醇催化脱氢制备醛类化合物的纳米碳催化剂及其应用
CN104447255A (zh) 一种由2-戊烯制备2-戊酮的方法
CN111841555A (zh) 甲醇直接裂解制co和h2的催化剂、制备方法及应用
US3178373A (en) Activation procedure for hydrogenation catalysts

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943308

Country of ref document: EP

Kind code of ref document: A1