WO2023226014A1 - 液晶显示面板和显示装置 - Google Patents

液晶显示面板和显示装置 Download PDF

Info

Publication number
WO2023226014A1
WO2023226014A1 PCT/CN2022/095683 CN2022095683W WO2023226014A1 WO 2023226014 A1 WO2023226014 A1 WO 2023226014A1 CN 2022095683 W CN2022095683 W CN 2022095683W WO 2023226014 A1 WO2023226014 A1 WO 2023226014A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical compensation
liquid crystal
compensation layer
layer
polarizing plate
Prior art date
Application number
PCT/CN2022/095683
Other languages
English (en)
French (fr)
Inventor
黄建华
薄灵丹
曲莹莹
陈东川
董霆
田晓菡
韩天洋
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/095683 priority Critical patent/WO2023226014A1/zh
Priority to CN202280001511.8A priority patent/CN117480443A/zh
Publication of WO2023226014A1 publication Critical patent/WO2023226014A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a liquid crystal display panel and a display device.
  • Liquid crystal displays (English full name: Liquid Crystal Display, English abbreviation: LCD) have the characteristics of small size, low power consumption, and no radiation. They are currently a widely used display type.
  • a liquid crystal display panel in one aspect, includes a first polarizing plate, a second polarizing plate, a liquid crystal layer, a first optical compensation layer and a second optical compensation layer.
  • the second polarizing plate is arranged opposite to the first polarizing plate.
  • the transmission axis of the first polarizing plate is perpendicular to the transmission axis of the second polarizing plate.
  • the first polarizing plate is closer to the light incident side of the liquid crystal display panel than the second polarizing plate.
  • the liquid crystal layer is disposed between the first polarizing plate and the second polarizing plate.
  • the liquid crystal layer includes liquid crystal molecules, and the orthographic projection of the optical axis of the liquid crystal molecules on the first polarizer is parallel to the transmission axis of the first polarizer or the transmission axis of the second polarizer.
  • the first optical compensation layer and the second optical compensation layer are stacked and arranged between the first polarizer and the liquid crystal layer or between the liquid crystal layer and the second polarizer.
  • the orthographic projection of the optical axis of the first optical compensation layer on the first polarizer is parallel to the transmission axis of the first polarizer.
  • the optical axis of the second optical compensation layer is perpendicular to the plane of the second optical compensation layer.
  • m 1 is an integer
  • n 1 is The range of ⁇ 1 is 390nm to 780nm.
  • n 1 the value of n 1 is
  • the first optical compensation layer is a single optical axis optical compensation layer
  • the second optical compensation layer is disposed on a side of the first optical compensation layer away from the first polarizer.
  • the in-plane retardation R O1 of the first optical compensation layer ranges from 105 nm to 145 nm.
  • the thickness direction retardation R th1 of the first optical compensation layer ranges from 42.5 nm to 82.5 nm.
  • m 2 is an integer
  • the range of n 2 is The range of ⁇ 2 is 390nm to 780nm.
  • n 2 the value of n 2 is
  • the thickness direction retardation R th2 of the second optical compensation layer ranges from -100 nm to -60 nm.
  • the first optical compensation layer is a +A compensation film layer
  • the second optical compensation layer is a +C compensation film layer
  • the second optical compensation layer is disposed on a side of the first optical compensation layer close to the first polarizer.
  • the first optical compensation layer is a bi-optical axis optical compensation layer.
  • the first optical compensation layer includes a first optical axis and a second optical axis, and the length of the first optical axis is greater than the length of the second optical axis.
  • the orthographic projection of the first optical axis on the first polarizer is parallel to the transmission axis of the first polarizer.
  • the in-plane retardation R O1 of the first optical compensation layer ranges from 95 nm to 135 nm.
  • the thickness direction retardation R th1 of the first optical compensation layer ranges from -130 nm to -90 nm.
  • m 3 is an integer
  • the range of n 3 is The range of ⁇ 3 is 390nm ⁇ 780nm.
  • n 3 is
  • the thickness direction retardation R th2 of the second optical compensation layer ranges from 90 nm to 130 nm.
  • the first optical compensation layer is a +B compensation film layer
  • the second optical compensation layer is a -C compensation film layer
  • a display device in yet another aspect, includes a backlight module and the above-mentioned liquid crystal display panel.
  • the liquid crystal display panel is arranged on the light exit side of the backlight module.
  • Figure 1A is a structural diagram of a display device according to some embodiments.
  • Figure 1B is a structural diagram of a liquid crystal display panel according to some embodiments.
  • Figure 1C is a diagram showing the relative position of the first polarizing plate and the second polarizing plate according to some embodiments
  • Figure 1D is a structural diagram of a liquid crystal display panel according to other embodiments.
  • Figure 1E is a structural diagram of a liquid crystal display panel according to further embodiments.
  • Figure 1F is a structural diagram of a liquid crystal molecular layer according to some embodiments.
  • FIG. 2A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 2B is a structural diagram of a liquid crystal display panel according to further embodiments.
  • Figure 2C is a diagram showing the relative positional relationship of the transmission axes of the first polarizer and the second polarizer in a side view according to some embodiments;
  • Figure 2D is a full viewing angle contrast distribution diagram according to some embodiments.
  • Figure 2E is a diagram of the position of side-view rays in a Poincaré sphere according to some embodiments
  • FIG. 3A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • Figure 3B is a structural diagram of a liquid crystal display panel according to still other embodiments.
  • Figure 3C is a position diagram of side view light rays in a Poincaré sphere according to other embodiments.
  • Figure 3D is a position diagram of side view light rays in a Poincaré sphere according to some embodiments
  • Figure 3E is a structural diagram of a second optical compensation layer according to some embodiments.
  • FIG. 4A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4B is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4C is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4D is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4E is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4F is a structural diagram of a liquid crystal display panel according to further embodiments.
  • Figure 5A is a full viewing angle contrast distribution diagram according to other embodiments.
  • Figure 5B is a side view light leakage brightness curve according to some embodiments.
  • FIG. 6A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • Figure 6B is a structural diagram of a liquid crystal display panel according to still other embodiments.
  • Figure 6C is a position diagram of side view light rays in a Poincaré sphere according to some embodiments.
  • Figure 6D is a position diagram of side view light rays in a Poincaré sphere according to some embodiments.
  • FIG. 6E is a full-viewing contrast distribution diagram according to further embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • Example embodiments are described herein with reference to cross-sectional illustrations and/or plan views that are idealized illustrations.
  • the thickness of layers and regions are exaggerated for clarity. Accordingly, variations from the shapes in the drawings due, for example, to manufacturing techniques and/or tolerances are contemplated.
  • example embodiments should not be construed as limited to the shapes of regions illustrated herein but are to include deviations in shapes that result from, for example, manufacturing. For example, an etched area shown as a rectangle will typically have curved features. Accordingly, the regions shown in the figures are schematic in nature and their shapes are not intended to illustrate the actual shapes of regions of the device and are not intended to limit the scope of the exemplary embodiments.
  • Figure 1A is a structural diagram of a display device according to some embodiments.
  • an embodiment of the present disclosure provides a display device 200.
  • the display device 200 may be any device that displays images, whether moving (eg, video) or fixed (eg, still images), and whether text or pictures.
  • the display device 200 can be a variety of display devices 200.
  • the multiple display devices 200 include but are not limited to mobile phones, wireless devices, personal data assistants (English full name: Portable Android Device, English abbreviation: PAD), handheld or portable computers, GPS (English full name: Global Positioning System, Chinese name: Global Positioning System) receiver/navigator, camera, MP4 (English full name: MPEG-4 Part 14) video player, camera, game console, flat panel display, computer monitor monitors, car displays (for example, car driving recorders or reversing images, etc.).
  • personal data assistants English full name: Portable Android Device, English abbreviation: PAD
  • GPS English full name: Global Positioning System, Chinese name: Global Positioning System
  • MP4 English full name: MPEG-4 Part 14
  • video player camera
  • game console flat panel display
  • computer monitor monitors for example, car driving recorders or reversing images, etc.
  • the display device 200 includes a backlight module 210 and a liquid crystal display panel 100 .
  • the liquid crystal display panel 100 is disposed on the light emitting side of the backlight module 210 .
  • the backlight module 210 is used to provide the liquid crystal display panel 100 with a light source for display, so that the display device 200 can implement an image display function.
  • the backlight module 210 may be a direct-type backlight module or an edge-type backlight module.
  • the embodiments of the present disclosure do not further limit the backlight module 210, and the liquid crystal display panel 100 is illustrated below.
  • the liquid crystal display panel 100 includes a first polarizing plate 110 , a second polarizing plate 120 and a liquid crystal layer 130 .
  • the second polarizing plate 120 and the first polarizing plate 110 are arranged opposite to each other.
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 .
  • the liquid crystal layer 130 is disposed between the first polarizing plate 110 and the second polarizing plate 120 .
  • the polarizing plate (such as the first polarizing plate 110 and the second polarizing plate 120) has an absorption axis and a transmission axis, and the absorption axis and the transmission axis are perpendicular or approximately perpendicular.
  • the polarizer can convert light into linearly polarized light whose polarization direction is parallel or approximately parallel to the transmission axis direction.
  • the light irradiating the polarizer has no component in the direction parallel or approximately parallel to the transmission axis, that is, when the polarization direction of the light irradiating the polarizer is parallel or approximately parallel to the absorption axis. , the light cannot pass through the polarizer.
  • Figure 1B is a structural diagram of a liquid crystal display panel according to some embodiments.
  • FIG. 1C is a diagram showing the relative position relationship between the first polarizing plate and the second polarizing plate according to some embodiments.
  • the first polarizing plate 110 and the second polarizing plate 120 are arranged oppositely, that is, the first polarizing plate 110 and the second polarizing plate 120 are arranged at intervals, and the orthographic projection of the first polarizing plate 110 on the liquid crystal layer 130 is different from the second polarizing plate 110 . At least part of the orthographic projection of the polarizing plate 120 on the liquid crystal layer 130 overlaps. In some examples, the orthographic projection of the first polarizing plate 110 on the liquid crystal layer 130 coincides or approximately coincides with the orthographic projection of the second polarizing plate 120 on the liquid crystal layer 130 .
  • the liquid crystal display panel 100 is disposed on the light emitting side of the backlight module 210 .
  • the first polarizing plate 110 is closer to the light exit side of the backlight module 210 relative to the second polarizing plate 120 , that is, the light emitted by the backlight module 210 passes along the first polarizing plate 110 to the second polarizing plate 110 .
  • the direction of the two polarizing plates 120 illuminates the liquid crystal display panel 100 so that the first polarizing plate 110 can be closer to the light incident side of the liquid crystal display panel 100 relative to the second polarizing plate 120 .
  • the first polarizing plate 110 is far away from the light exit side of the backlight module 210 relative to the second polarizing plate 120 , that is, the light emitted by the backlight module 210 passes along the path from the second polarizing plate 120 to the first polarizing plate 110 .
  • the liquid crystal display panel 100 is irradiated in a direction such that the first polarizing plate 110 can be farther away from the light incident side of the liquid crystal display panel 100 relative to the second polarizing plate 120 .
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 relative to the second polarizing plate 120 as an example for illustration.
  • the illumination direction of the light emitted by the backlight module 210 is the display side of the liquid crystal display panel 100 . That is, when the first polarizer 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizer 120 , the first polarizer 110 is farther away from the display side of the liquid crystal display panel 100 than the second polarizer 120 .
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 , that is, the transmission axis 121 of the second polarizing plate 120 is on the first polarizing plate 110
  • the orthographic projection is perpendicular or approximately perpendicular to the transmission axis 111 of the first polarizing plate 110 .
  • the polarization direction of the light passing through the first polarizing plate 110 is parallel or approximately parallel to the transmission axis 111 of the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120, so that the linearly polarized light passing through the first polarizing plate 110 is parallel or approximately parallel to the transmission axis of the second polarizing plate 120.
  • There is no component in the direction of axis 121 that is, the linearly polarized light passing through the first polarizing plate 110 cannot pass through the second polarizing plate 120 .
  • the liquid crystal layer 130 is disposed between the first polarizing plate 110 and the second polarizing plate 120. As shown in FIG. 1B , the liquid crystal layer 130 includes liquid crystal molecules 131 . It can be understood that by changing the deflection angle of the liquid crystal molecules 131, the polarization direction of the linearly polarized light passing through the first polarizing plate 110 can be changed, so that the linearly polarized light passing through the first polarizing plate 110 can be parallel or approximately parallel.
  • the deflection angle of the liquid crystal molecules 131 By controlling the deflection angle of the liquid crystal molecules 131, the intensity of light passing through the second polarizing plate 120 can be controlled, so that the liquid crystal display panel 100 can realize the image display function.
  • FIG. 1D is a structural diagram of a liquid crystal display panel according to other embodiments.
  • FIG. 1E is a structural diagram of a liquid crystal display panel according to further embodiments. The following will continue to illustrate the liquid crystal display panel 100 with reference to FIGS. 1B to 1E .
  • the liquid crystal display panel 100 includes an array substrate 160 and an opposite substrate 170 .
  • the array substrate 160 and the opposite substrate 170 are arranged opposite to each other and are arranged between the first polarizing plate 110 and the second polarizing plate 120 .
  • the array substrate 160 is closer to the first polarizer 110 than the opposite substrate 170 .
  • the liquid crystal layer 130 is provided between the array substrate 160 and the counter substrate 170 .
  • the liquid crystal display panel 100 has a display area AA and a peripheral area BB.
  • the peripheral area BB is located around the display area AA.
  • the dotted frame in FIG. 1D is only for convenience of showing the display area AA and does not further limit the display area AA.
  • the liquid crystal display panel 100 includes a plurality of sub-pixels 101, and the plurality of sub-pixels 101 are disposed in the display area AA of the liquid crystal display panel 100.
  • a plurality of sub-pixels 101 are arranged in an array, so that the liquid crystal display panel 100 can implement an image display function. It can be understood that embodiments of the present disclosure do not further limit the number of sub-pixels 101.
  • the sub-pixel 101 includes a pixel driving circuit 102 and a pixel electrode V2.
  • the pixel driving circuit 102 and the pixel electrode V2 are electrically connected.
  • the liquid crystal display panel 100 further includes a plurality of gate lines G and a plurality of data lines D.
  • a gate line G is electrically connected to each pixel driving circuit 102 in a row of sub-pixels 101
  • a data line D is electrically connected to each pixel driving circuit 102 in a column of sub-pixels 101.
  • the pixel driving circuit 102 includes a thin film transistor (English full name: Thin Film Transistor, English abbreviation: TFT) T and a storage capacitor C.
  • the gate line G is electrically connected to the gate electrode of the thin film transistor T
  • the data line D is electrically connected to the source electrode of the thin film transistor T.
  • the array substrate 160 includes a first substrate 162 on which a plurality of gate lines G, a plurality of data lines D, a pixel driving circuit 102 and a pixel electrode V2 are disposed. one side.
  • the material of the first substrate 162 includes glass.
  • the liquid crystal display panel 100 further includes a common electrode V1.
  • An electric field can be formed between the common electrode V1 and each pixel electrode V2.
  • the intensity of the electric field formed between the common electrode V1 and each pixel electrode V2 can be controlled, thereby controlling the deflection angle of the liquid crystal molecules 131 in the liquid crystal layer 130.
  • the common electrode V1 is also disposed on one side of the first substrate 162 .
  • the common electrode V1 may be closer to the first substrate 162 than the pixel electrode V2.
  • the common electrode V1 is a plate-shaped electrode
  • the pixel electrode V2 is a strip-shaped electrode.
  • the pixel electrode V2 may also be a comb-shaped electrode.
  • the LCD panel 100 may be an LCD panel in an Advanced Super Dimension Switch (English full name: Advanced Super Dimension Switch, English abbreviation: ADS) display mode.
  • the liquid crystal display panel 100 may also be an in-plane switching (English full name: In-plane Switching, English abbreviation: IPS) display mode liquid crystal display panel.
  • the liquid crystal display panel 100 further includes a counter substrate 170 .
  • the counter substrate 170 includes a second substrate 172 and a filter film 174 .
  • the filter film 174 is disposed on one side of the second substrate 172 .
  • the filter film 174 is disposed on the side of the second substrate 172 close to the liquid crystal layer 130 .
  • the filter film 174 includes a red filter film, a green filter film, and a blue filter film. After the light passing through the first polarizer 110 and the liquid crystal layer 130 is irradiated to the filter film 174 , it can be filtered by the filter film 174 into red light, green light and blue light, and then emitted through the second polarizer 120 .
  • the intensity of the red light, green light and blue light emitted through the second polarizer 120 can be controlled.
  • the function enables the liquid crystal display panel 100 to realize full-color image display.
  • FIG. 1F is a structural diagram of a liquid crystal molecular layer according to some embodiments. Next, with reference to FIG. 1F , the liquid crystal layer 130 will be described as an example.
  • the liquid crystal layer 130 includes a liquid crystal molecule layer 132 in which the liquid crystal molecules 131 are disposed.
  • the liquid crystal molecules 131 belong to single optical axis crystals and have only one optical axis.
  • the liquid crystal molecules 131 can be divided into rod-shaped (English full name: Rod-Type) liquid crystal molecules and disc-shaped (English full name: Discotic) liquid crystal molecules according to their shapes.
  • the long axis is the optical axis; in the disk-shaped liquid crystal molecules 131, the short axis is the optical axis.
  • the liquid crystal molecules 131 in the liquid crystal molecule layer 132 are all rod-shaped liquid crystal molecules.
  • the optical axis (for example, the optical axis of the liquid crystal molecules 131) is also called the optical axis.
  • the direction in which two orthogonal waves advance at equal speeds is the extension direction of the optical axis.
  • Light in this direction has no change in optical properties.
  • anisotropic crystals have a birefringent effect on light propagating therein, but when light propagates in an anisotropic crystal along its optical axis, the light does not undergo birefringence. Therefore, the optical axis of an anisotropic crystal can also be defined as the direction in which light can propagate without birefringence.
  • the liquid crystal layer 130 further includes a first alignment film 133 and a second alignment film 134 .
  • the first alignment film 133 and the second alignment film 134 are respectively disposed on both sides of the liquid crystal molecule layer 132 .
  • the alignment film (such as the first alignment film 133 and the second alignment film 134) is made of a polymer material, such as polyimide (English full name: Polyamic, English abbreviation: PI).
  • the first alignment film 133 is configured to anchor the liquid crystal molecules 131 close to it in the liquid crystal molecule layer 132 so that the liquid crystal molecules 131 close to the first alignment film 133 generate a first pretilt angle.
  • the second alignment film 134 is configured to anchor the liquid crystal molecules 131 close to it in the liquid crystal molecule layer 132 so that the liquid crystal molecules 131 close to the second alignment film 134 generate a second pretilt angle.
  • the alignment direction of the first alignment film 133 is the same as the alignment direction of the second alignment film 134 .
  • the pretilt angle can cause the liquid crystal molecules 131 to be in a pretilt state.
  • the pretilt state means that the liquid crystal molecules 131 near the alignment film (including the first alignment film 133 and the second alignment film 134) are in a pretilt state relative to the alignment film (including the first alignment film 134).
  • the plane on which the alignment film 133 and the second alignment film 134) are located is tilted in a specific direction.
  • the long axis of the rod-shaped liquid crystal molecules intersects the plane where the alignment film is located, and the pretilt angle refers to the angle formed between the long axis of the rod-shaped liquid crystal molecules and the alignment direction of the alignment film.
  • the pretilt angle presented by the liquid crystal molecules 131 is, in the state presented by the liquid crystal molecules 131 when the liquid crystal display panel 100 is not powered on, or when the voltage between the pixel electrode V2 and the common electrode V1 is 0, the liquid crystal close to the first alignment film 133
  • the angle between the long axis of the molecules and the alignment direction of the first alignment film 133 ie, the first pretilt angle
  • the long axis of the liquid crystal molecules 131 close to the second alignment film 134 and the alignment direction of the second alignment film 134 angle (i.e. the second pretilt angle).
  • FIG. 2A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 2B is a structural diagram of a liquid crystal display panel according to further embodiments.
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 is consistent with the transmission axis 111 of the first polarizer 110 or the transmission axis of the second polarizer 120 .
  • Axis 121 is parallel.
  • the orthographic projection of the optical axis of the liquid crystal molecule 131 on the first polarizer 110 is parallel or approximately parallel to the transmission axis 111 of the first polarizer 110 , or the optical axis of the liquid crystal molecule 131 is on the first polarizer 110
  • the orthographic projection on the first polarizing plate 110 is parallel or approximately parallel to the orthographic projection of the transmission axis 121 of the second polarizing plate 120 on the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 .
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 is parallel to the transmission axis 121 of the second polarizer 120 (that is, parallel to the transmission axis 121 of the second polarizer 120 ).
  • the orthographic projection of the transmission axis 121 of the plate 120 on the first polarizing plate 110 is parallel).
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 is perpendicular to the transmission axis 111 of the first polarizer 110 .
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 is parallel to the transmission axis 111 of the first polarizer 110 .
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 (that is, the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizing plate 120 is perpendicular to the transmission axis 121 of the second polarizing plate 120 on the first polarizing plate 110 ).
  • the orthographic projection on the polarizer 110 is vertical).
  • the first polarizing plate 110 is closer to the light emitting side of the liquid crystal display panel 100 than the second polarizing plate 120 .
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 and the arrangement perpendicular to the transmission axis 111 of the first polarizer 110 can be called O mode ( Full English name: O Mode).
  • the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 can be arranged parallel to the transmission axis 111 of the first polarizer 110 , which is called E Mode (English full name: E Mode) ).
  • the liquid crystal layer 130 can be regarded as a +A compensation film layer (English full name: +A Plate, Chinese name: +A plate).
  • the backlight module 210 provides the light source normally, the liquid crystal display panel 100 is in the L0 state, that is, a dark state display (full black display).
  • the optical axis of the liquid crystal molecules 131 is parallel to the transmission axis 111 of the first polarizer 110 or the transmission axis 121 of the second polarizer 120, after the linearly polarized light passing through the first polarizer 110 irradiates the liquid crystal layer 130, It can propagate along the thickness direction of the liquid crystal molecules 131 , that is, it can propagate along the Z-axis direction of the liquid crystal molecules 131 . It can be understood that the light propagating along the Z-axis direction of the liquid crystal molecules 131 will not undergo birefringence or only a very small amount of light will undergo birefringence. Therefore, when the liquid crystal display panel 100 is in the L0 state, the liquid crystal molecules 131 The light leakage caused by birefringence is not obvious.
  • the transmission axis 111 of the first polarizing plate 110 and the transmission axis 121 of the second polarizing plate 120 are perpendicular, that is, from the normal direction (normal line) of the display side of the liquid crystal display panel 100 direction, the normal line is perpendicular or approximately perpendicular to the display side of the liquid crystal display panel 100 ), the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 , passing through the first polarizing plate 110 The light cannot pass through the second polarizing plate 120, so that the liquid crystal display panel 100 can achieve dark state display.
  • 2C is a diagram showing the relative positional relationship of the transmission axes of the first polarizing plate and the second polarizing plate in a side view according to some embodiments.
  • the transmission axis 111 of the first polarizing plate 110 and the The transmission axes 121 of the two polarizers 120 are not vertical.
  • the linearly polarized light passing through the first polarizing plate 110 has a component in a direction that is parallel or approximately parallel to the transmission axis 121 of the second polarizing plate 120 .
  • part of the linearly polarized light that passes through the first polarizer 110 at a side viewing angle can pass through the second polarizing plate 120 , causing the liquid crystal display panel 100 to have light leakage at a side viewing angle during dark display, which affects the liquid crystal display panel. 100 display effect.
  • Figure 2D is a full viewing angle contrast distribution diagram according to some embodiments.
  • Figure 2E is a diagram of the position of side-view rays in a Poincaré sphere according to some embodiments.
  • the position of the side-viewing light ray in the Poincaré sphere is as follows: As shown in Figure 2E.
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizing plate 120 . That is, the light emitted by the backlight module 210 irradiates the liquid crystal display panel 100 along the direction from the first polarizing plate 110 to the second polarizing plate 120 .
  • the position of point A1 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the first polarizing plate 110 .
  • the position of point T1 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 111 of the first polarizing plate 110 .
  • the position of point A2 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 .
  • the position of point T2 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 121 of the second polarizing plate 120 .
  • point T1 and point A2 do not coincide with each other, that is, the polarization direction of the linearly polarized light passing through the first polarizer 110 (position T1 in FIG. 2E ) is not parallel or approximately parallel to the second polarizing plate 110 .
  • the absorption axis of the polarizer 120 position A2 in Figure 2E. Therefore, part of the linearly polarized light passing through the first polarizing plate 110 can pass through the second polarizing plate 120 , causing the liquid crystal display panel 100 to have light leakage at side viewing angles during dark display, affecting the display effect of the liquid crystal display panel 100 .
  • FIG. 3A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 3B is a structural diagram of a liquid crystal display panel according to further embodiments.
  • an embodiment of the present disclosure provides a liquid crystal display panel 100.
  • the liquid crystal display panel 100 includes a first polarizer 110 , a second polarizer 120 , a liquid crystal layer 130 , a first optical compensation layer 140 and a second optical compensation layer 150 .
  • the second polarizing plate 120 is arranged opposite to the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 .
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizing plate 120 .
  • the liquid crystal layer 130 is disposed between the first polarizing plate 110 and the second polarizing plate 120 .
  • the liquid crystal layer 130 includes liquid crystal molecules 131 , and the orthographic projection of the optical axis of the liquid crystal molecules 131 on the first polarizer 110 is parallel to the transmission axis 111 of the first polarizer 110 or the transmission axis 121 of the second polarizer 120 .
  • the first polarizing plate 110, the second polarizing plate 120, the liquid crystal layer 130, the liquid crystal molecules 131 in the liquid crystal layer 130, etc. have been exemplified, and will not be described again here. .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the first polarizing plate 110 and the liquid crystal layer 130 or between the liquid crystal layer 130 and the second polarizing plate 120 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the liquid crystal layer 130 and the second polarizing plate 120 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked and disposed between the first polarizer 110 and the liquid crystal layer 130 .
  • the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizer 110 is parallel to the transmission axis 111 of the first polarizer 110 . Since the transmission axis 111 of the first polarizing plate 110 is perpendicular to the absorption axis, that is, the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 is perpendicular to the absorption axis of the first polarizing plate 110 .
  • the optical axis of the second optical compensation layer 150 is perpendicular to the plane where the second optical compensation layer 150 is located.
  • the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizer 110 may be parallel or approximately parallel to the transmission axis 111 of the first polarizer 110.
  • the acute angle between the orthographic projection of the first optical compensation layer 140 on the first polarizing plate 110 and the transmission axis 111 of the first polarizing plate 110 is less than or equal to 5°, it can be considered that when The orthographic projection of the first optical compensation layer 140 on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is parallel to the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 , the linearly polarized light passing through the first polarizing plate 110
  • the polarization direction can be parallel to the optical axis direction of the first optical compensation layer 110 , so that the first optical compensation layer 140 can compensate the linearly polarized light that passes through the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 , in this way, the light of the first optical compensation layer 140 is
  • the orthographic projection of the axis on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110 , so that the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 can be aligned with the second polarizing plate 110 .
  • the orthographic projection of the transmission axis 121 of the polarizing plate 120 on the first polarizing plate 110 is vertical.
  • the optical axis of the second optical compensation layer 150 is perpendicular to the plane where the second optical compensation layer 150 is located. It can be understood that the optical axis of the second optical compensation layer 150 is perpendicular to or approximately perpendicular to the plane where the second optical compensation layer 150 is located.
  • the acute angle between the optical axis of the second optical compensation layer 150 and the plane of the second optical compensation layer 150 is greater than or equal to 88° (that is, the angle between the optical axis of the second optical compensation layer 150 and the plane of the second optical compensation layer 150 is greater than or equal to 88°.
  • the obtuse angle between the planes of the compensation layer 150 is less than or equal to 92°) it can be considered that the optical axis of the second optical compensation layer 150 is perpendicular to the plane of the second optical compensation layer 150 .
  • the phase delay of the linearly polarized light passing through the first polarizing plate 110 under the side viewing angle can be compensated, and the polarization state of the polarized light can be changed.
  • the liquid crystal display panel 100 is displayed in a dark state, the light intensity passing through the second polarizing plate 120 at a side viewing angle is reduced, thereby improving the light leakage phenomenon at a side viewing angle when the liquid crystal display panel 100 is displayed in a dark state, and improving the performance of the liquid crystal display panel 100 display effect.
  • the optical axis of the optical compensation layer (such as the first optical compensation layer 140 and the second optical compensation layer 150) is the direction in which the refractive index is maximum when light irradiates the optical compensation layer.
  • the propagation speed of light along the optical axis of the optical compensation layer (eg, the first optical compensation layer 140 and the second optical compensation layer 150 ) is the slowest.
  • first optical compensation layer 140 includes an anisotropic crystal layer having at least one optical axis.
  • first optical compensation layer 140 may be a single optical axis optical compensation layer or a dual optical axis optical compensation layer.
  • the second optical compensation layer 150 also includes an anisotropic crystal layer having at least one optical axis.
  • the second optical compensation layer 150 is a single optical axis optical compensation layer, having only one optical axis.
  • the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110, so that the optical axis of the first optical compensation layer 140 can be parallel to the transmission axis 111 of the first polarizing plate 110.
  • the orthographic projection of the transmission axis 121 of the second polarizing plate 121 on the first polarizing plate 110 is vertical. That is, the optical axis of the first optical compensation layer 140 can be parallel to the orthographic projection of the absorption axis of the second polarizing plate 121 on the first polarizing plate 110 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the liquid crystal layer 130 and the second polarizing plate 120 , so that the first optical compensation layer 140 is in contact with the second polarizing plate 120 .
  • the distance between the plates 120 is smaller than the distance between the first optical compensation layer 140 and the first polarizing plate 110 .
  • the optical axis of the first optical compensation layer 140 is parallel to the orthographic projection of the absorption axis of the second polarizer 121 on the first polarizer 110, which can simplify the preparation process of the liquid crystal display panel 100 and reduce the cost of the liquid crystal display panel 100. the cost of.
  • the in-plane retardation R O1 of the first optical compensation layer 140 and the in-plane retardation R OLC of the liquid crystal layer 130 satisfy the following formula:
  • R O1 n 1 ⁇ R OLC +m 1 ⁇ 1 ;
  • n 1 is an integer
  • n 1 is The range of ⁇ 1 is 390nm to 780nm.
  • R O1 is the in-plane phase retardation of the first optical compensation layer 140 , that is, when light passes through the first optical compensation layer 140 in the normal direction (vertical direction), the surface of the first optical compensation layer 140 the phase delay generated within.
  • the in-plane phase retardation of the first optical compensation layer 140 is the actual retardation of light passing through the first optical compensation layer 140 in the normal direction (vertical direction).
  • R O1 (n x1 -n y1 ) ⁇ d 1 .
  • n x1 is the refractive index in the X 1 axis direction within the first optical compensation layer 140
  • n y1 is the refractive index in the Y 1 axis direction perpendicular to the X 1 axis in the first optical compensation layer 140 surface
  • d 1 is the thickness of the first optical compensation layer 140 .
  • the X 1 axis has a small inclination angle with the first optical compensation layer 140 (for example, an inclination angle within 5°)
  • the X 1 axis can also be considered to be disposed in the plane of the first optical compensation layer 140 .
  • the inclination angle between the X 1 axis and the first optical compensation layer 140 is within 2°, which improves the compensation effect of the first optical compensation layer 140 .
  • R OLC is the in-plane phase retardation of the liquid crystal layer 130 , that is, the phase retardation generated in the liquid crystal layer 130 when light passes through the liquid crystal layer 130 in the normal direction (vertical direction).
  • the in-plane phase retardation of the liquid crystal layer 130 is the actual retardation of light passing through the liquid crystal layer 130 in the normal direction (vertical direction).
  • R OLC (n xLC -nyLC ) ⁇ d LC .
  • n xLC is the refractive index in the X-axis direction within the surface of the liquid crystal layer 130
  • nyLC is the refractive index in the Y-axis direction perpendicular to the X-axis in the surface of the liquid crystal layer 130
  • d LC is the thickness of the liquid crystal layer 130 .
  • the X-axis is the optical axis of the liquid crystal molecules 131 in the liquid crystal layer 130 .
  • the X-axis has a small inclination angle with the liquid crystal layer 130 (for example, an inclination angle within 4°), the X-axis can also be considered to be disposed in the plane of the liquid crystal layer 130 .
  • n 1 is an integer, and understandably, m 1 can be a positive integer, a negative integer or 0.
  • n 1 is For example, the value of n 1 can be or wait.
  • n 1 is the same as The smaller the difference, the better the compensation effect of the first optical compensation layer 140.
  • ⁇ 1 ranges from 390 nm to 780 nm.
  • ⁇ 1 is the wavelength of light emitted by the backlight module 210 .
  • the light emitted by the backlight module 210 may be natural light.
  • ⁇ 1 may range from 400 nm to 700 nm, or from 500 nm to 600 nm, etc.
  • the value of ⁇ 1 can be 450nm, 550nm, 650nm or 750nm.
  • FIG. 3C is a position diagram of side view light rays in a Poincaré sphere according to other embodiments.
  • FIG. 3D is a position diagram of side view light rays in a Poincaré sphere according to some embodiments.
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the liquid crystal layer 130 and the second polarizer 120 , and the first optical compensation layer 140
  • the optical axis is parallel to the transmission axis 111 of the first polarizer 110 and perpendicular to the transmission axis 121 of the second polarizer 120
  • the position of the side view light ray in the Poincaré sphere is as shown in FIG. 3C .
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizing plate 120 . That is, the light emitted by the backlight module 210 irradiates the liquid crystal display panel 100 along the direction from the first polarizing plate 110 to the second polarizing plate 120 .
  • point A1 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the first polarizer 110 .
  • the point T1 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 111 of the first polarizer 110 .
  • the position of point A2 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 .
  • the position of point T2 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 121 of the second polarizing plate 120 .
  • the linearly polarized light at point T1 can be converted into elliptically polarized light (as shown at point Q1 in FIG. 3C ) after passing through the first optical compensation layer 140 .
  • the elliptically polarized light can be converted into linearly polarized light again, and the polarization direction of the linearly polarized light is parallel or approximately parallel to the absorption axis direction of the second polarizer 120 (that is, with The direction of the transmission axis 121 of the second polarizing plate 120 is vertical or approximately vertical, as shown at the midpoint A2 in FIG. 3C ).
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the first polarizer 110 and the liquid crystal layer 130 , and the first optical compensation layer
  • the optical axis of 140 is parallel to the transmission axis 111 of the first polarizer 110 and perpendicular to the transmission axis 121 of the second polarizer 120
  • the position of the side view light ray in the Poincaré sphere is as shown in FIG. 3D.
  • point A1 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the first polarizer 110 .
  • the position of point T1 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 111 of the first polarizing plate 110 .
  • the position of point A2 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 .
  • the position of point T2 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 121 of the second polarizing plate 120 .
  • the linearly polarized light at point T1 can be converted into elliptically polarized light (as shown at point Q2 in FIG. 3D ) after passing through the first optical compensation layer 140 .
  • the elliptically polarized light can be converted into linearly polarized light again, and the polarization direction of the linearly polarized light is parallel or approximately parallel to the absorption axis direction of the second polarizer 120 (that is, with The direction of the transmission axis 121 of the second polarizing plate 120 is vertical or approximately vertical, as shown at the midpoint A2 in FIG. 3D).
  • the linearly polarized light passing through the first polarizer 110 can be converted into The linearly polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 (that is, perpendicular or approximately perpendicular to the transmission axis 121 direction of the second polarizing plate 120) cannot pass through the second polarizing plate 120.
  • the polarizing plate 120 improves the light leakage phenomenon at side viewing angles when the liquid crystal display panel 100 is displayed in a dark state, thereby improving the visual effect of the liquid crystal display panel 100 .
  • the phase delay of the polarized light passing through it along the side viewing angle is compensated, and the polarization state of the polarized light is changed.
  • the polarization direction of the linearly polarized light can be rotated to be perpendicular or approximately perpendicular to the transmission axis 121 of the second polarizing plate 120 so that it cannot pass through the second polarizing plate 120 .
  • the side viewing angle light leakage phenomenon that exists when the liquid crystal display panel 100 is displayed in a dark state can be reduced, and the display effect of the liquid crystal display panel 100 can be improved.
  • m 1 is an integer
  • the range of n 1 is The range of ⁇ 1 is 390nm ⁇ 780nm, which improves the compensation effect of the first optical compensation layer 140 for linearly polarized light, improves the light leakage phenomenon of the liquid crystal display panel 100 at side viewing angles under dark display, and improves the display effect of the liquid crystal display panel 100 .
  • the first optical compensation layer 140 is an optical compensation film layer based on liquid crystal molecule coating or an optical compensation film layer based on stretched polymer film.
  • the second optical compensation layer 150 is an optical compensation film layer based on liquid crystal molecule coating or an optical compensation film layer based on stretched polymer film.
  • the first optical compensation layer 140 and the second optical compensation layer 150 may be the same or different.
  • Figure 3E is a structural diagram of the second optical compensation layer according to some embodiments.
  • the second optical compensation layer 150 includes a compensation liquid crystal molecule layer 151 and a compensation alignment film 153 .
  • the compensation liquid crystal molecule layer 151 includes compensation liquid crystal molecules 152 .
  • the compensation alignment film 153 is used to anchor the compensation liquid crystal molecules 152 close to the compensation liquid crystal molecule layer 151 so that the optical axis of the compensation liquid crystal molecules 152 can be perpendicular or approximately perpendicular to the compensation liquid crystal molecule layer 151 .
  • the optical axis of the compensation liquid crystal molecules 152 is also the optical axis of the second optical compensation layer 150 .
  • the acute angle between the optical axis of the compensation liquid crystal molecules 152 and the compensation liquid crystal molecule layer 151 is greater than or equal to 88° (that is, the obtuse angle between the optical axis of the compensation liquid crystal molecules 152 and the compensation liquid crystal molecule layer 151 When the angle is less than or equal to 92°), it can be considered that the optical axis of the compensation liquid crystal molecules 152 is perpendicular to the compensation liquid crystal molecule layer 151 .
  • the liquid crystal display panel 100 includes an array substrate 160 and a counter substrate 170 .
  • the array substrate 160 includes a first substrate 162 and the counter substrate 170 includes a second substrate 172 .
  • the first substrate 162 and the second substrate 172 are disposed between the first polarizing plate 110 and the second polarizing plate 120 .
  • FIG. 4A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4B is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4C is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4D is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4E is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 4F is a structural diagram of a liquid crystal display panel according to further embodiments.
  • the following describes an example of the positional relationship between the first substrate 162, the second substrate 172, the first optical compensation layer 140 and the second optical compensation layer 150 with reference to FIGS. 4A to 4F.
  • the first optical compensation layer 140 and the second optical compensation layer 150 are disposed between the liquid crystal layer 130 and the second polarizing plate 120 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are both disposed on a side of the second substrate 172 away from the liquid crystal layer 130 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are both disposed on the side of the second substrate 172 close to the liquid crystal layer 130 .
  • FIG. 4A the first optical compensation layer 140 and the second optical compensation layer 150 are both disposed on the side of the second substrate 172 close to the liquid crystal layer 130 .
  • one of the first optical compensation layer 140 and the second optical compensation layer 150 is disposed on a side of the second substrate 172 close to the liquid crystal layer 130 , and the other is disposed on the second optical compensation layer 172 .
  • the second substrate 172 is on a side away from the liquid crystal layer 130 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are disposed between the first polarizing plate 110 and the liquid crystal layer 130 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are both disposed on a side of the first substrate 162 away from the liquid crystal layer 130 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are both disposed on the side of the first substrate 162 close to the liquid crystal layer 130 .
  • FIG. 4E the first optical compensation layer 140 and the second optical compensation layer 150 are both disposed on the side of the first substrate 162 close to the liquid crystal layer 130 .
  • one of the first optical compensation layer 140 and the second optical compensation layer 150 is disposed on a side of the first substrate 162 close to the liquid crystal layer 130 , and the other one is disposed on the first substrate 162 close to the liquid crystal layer 130 .
  • a substrate 162 is located away from the liquid crystal layer 130 .
  • the embodiments of the present disclosure do not further limit the positional relationship between the first substrate 162, the second substrate 172, the first optical compensation layer 140 and the second optical compensation layer 150.
  • n 1 the value of n 1 is
  • n 1 is That is to say In some examples, the value of m 1 is 0, which is the in-plane retardation of the first optical compensation layer 140
  • Such arrangement improves the compensation effect of the first optical compensation layer 140 on the phase delay of the linearly polarized light passing through the first polarizing plate 110, changes the polarization state of the polarized light, and rotates the polarization direction of the linearly polarized light to
  • the transmission axis 121 of the second polarizing plate 120 is vertical or nearly vertical (that is, parallel or parallel to the absorption axis of the second polarizing plate 120), thereby improving the light leakage phenomenon of the liquid crystal display panel 100 in the dark state at side viewing angles.
  • the display effect of the liquid crystal display panel 100 is improved.
  • the value of m 1 is set to 0, as shown in Figure 3C, so that the first optical compensation layer 140 can directly convert linearly polarized light into elliptically polarized light (shown from point T1 to point Q1 in Figure 3C), shortening
  • the path of the conversion process on the Poincaré sphere is simplified, which simplifies the process of converting linearly polarized light into elliptically polarized light.
  • Such an arrangement can simplify the preparation process of the first optical compensation layer 140 and reduce the production cost.
  • the in-plane retardation R OLC of the liquid crystal layer 130 has a value of Based on this, the in-plane retardation of the first optical compensation layer 140
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizing plate 120 .
  • the first optical compensation layer 140 is a single optical axis optical compensation layer.
  • the second optical compensation layer 150 is disposed on the side of the first optical compensation layer 140 away from the first polarizing plate 110 .
  • the first optical compensation layer 140 is a single optical axis optical compensation layer, that is, the first optical compensation layer 140 only includes one optical axis.
  • the second optical compensation layer 150 is disposed on a side of the first optical compensation layer 140 away from the first polarizer 110.
  • the second optical compensation layer 150 is disposed between the first optical compensation layer 140 and the second polarizing plate 120 .
  • FIG. 3B when the first optical compensation layer 140 and the second optical compensation layer 150 are stacked and disposed between the first polarizing plate 110 and the liquid crystal layer 130 , the second optical compensation layer 150 is disposed between between the first optical compensation layer 140 and the liquid crystal layer 130 .
  • the second optical compensation layer 150 is disposed on the side of the first optical compensation layer 140 away from the first polarizing plate 110 so that the linearly polarized light passing through the first polarizing plate 110 can be converted into elliptically polarized light by the first optical compensation layer 140 , and then converted from elliptically polarized light to linearly polarized light again by the second optical compensation layer 150 , and the polarization direction of the linearly polarized light passing through the second optical compensation layer 150 is parallel or approximately parallel to the second polarizer 120
  • the absorption axis that is, the polarization direction of the linearly polarized light passing through the second optical compensation layer 150 is perpendicular or approximately perpendicular to the transmission axis 121 of the second polarizer 120).
  • the liquid crystal display panel 100 when the liquid crystal display panel 100 is displayed in a dark state, the light intensity passing through the second polarizer 120 at a side viewing angle is reduced, the light leakage phenomenon of the liquid crystal display panel 100 at a side viewing angle is improved, and the liquid crystal display is improved.
  • the display effect of the display panel 100 when the liquid crystal display panel 100 is displayed in a dark state, the light intensity passing through the second polarizer 120 at a side viewing angle is reduced, the light leakage phenomenon of the liquid crystal display panel 100 at a side viewing angle is improved, and the liquid crystal display is improved.
  • the display effect of the display panel 100 when the liquid crystal display panel 100 is displayed in a dark state, the light intensity passing through the second polarizer 120 at a side viewing angle is reduced, the light leakage phenomenon of the liquid crystal display panel 100 at a side viewing angle is improved, and the liquid crystal display is improved.
  • the display effect of the display panel 100 when the liquid crystal display panel 100 is displayed in a dark state, the light intensity passing through the second polarizer 120
  • the in-plane retardation R O1 of the first optical compensation layer 140 ranges from 105 nm to 145 nm.
  • the thickness d 1 of the first optical compensation layer 140 can adjust the in-plane retardation R O1 of the first optical compensation layer 140 , so that the range of the in-plane retardation R O1 of the first optical compensation layer 140 can be from 105 nm to 105 nm. 145nm.
  • the in-plane retardation R O1 of the first optical compensation layer 140 may range from 105 nm to 145 nm, 110 nm to 140 nm, 115 nm to 135 nm, 120 nm to 130 nm, or 123 nm to 127 nm, etc.
  • the value of the in-plane retardation R O1 of the first optical compensation layer 140 may be 125 ⁇ 15 nm, 125 ⁇ 10 nm, 125 ⁇ 5 nm, or 125 ⁇ 2 nm. It can be understood that in some examples, the smaller the difference between the value of the in-plane retardation R O1 of the first optical compensation layer 140 and 125 nm, the better the compensation effect of the first optical compensation layer 140 .
  • the value of the in-plane retardation R O1 of the first optical compensation layer 140 may be 108 nm, 112 nm, 118 nm, 125 nm, 128 nm, 132 nm, 138 nm or 142 nm, etc.
  • the in-plane retardation R O1 of the first optical compensation layer 140 ranges from 105 nm to 145 nm, that is, the first optical compensation layer 140 can perform forward phase compensation on the light in the plane, so that the light passing through the first optical compensation layer 140 can perform forward phase compensation.
  • the phase of the polarized light behind the compensation layer 140 can be delayed compared with the phase of the polarized light before passing through the first optical compensation layer 140 .
  • the thickness direction retardation R th1 of the first optical compensation layer 140 ranges from 42.5 nm to 82.5 nm.
  • R th1 is the phase retardation in the thickness direction of the first optical compensation layer 140 , that is, when light passes through the first optical compensation layer 140 in the normal direction (vertical direction), when the first optical compensation layer 140 Phase retardation in the thickness direction.
  • n x1 is the refractive index in the X 1 axis direction of the first optical compensation layer 140
  • n y1 is the refractive index in the Y 1 axis direction perpendicular to the X 1 axis in the first optical compensation layer 140.
  • n z1 is the refractive index in the thickness direction (Z 1 axis direction) of the first optical compensation layer 140
  • d 1 is the thickness of the first optical compensation layer 140 .
  • the X 1 axis has a small inclination angle with the first optical compensation layer 140 (for example, an inclination angle within 5°)
  • the X 1 axis can also be considered to be disposed in the plane of the first optical compensation layer 140 .
  • the inclination angle between the X 1 axis and the first optical compensation layer 140 is within 2°, which improves the compensation effect of the first optical compensation layer 140 .
  • the refractive index n x1 in the X 1 axis direction within the first optical compensation layer 140 can adjust the thickness direction retardation R th1 of the first optical compensation layer 140 , so that The thickness direction retardation R th of the first optical compensation layer 140 can range from 42.5 nm to 82.5 nm.
  • the thickness direction retardation R th1 of the first optical compensation layer 140 may range from 42.5nm to 82.5nm, 47.5nm to 77.5nm, 52.5nm to 72.5nm, 60.5nm to 70.5nm, or 60.5nm to 64.5nm. wait.
  • the thickness direction retardation R th1 of the first optical compensation layer 140 may have a value of 62.5 ⁇ 15 nm, 62.5 ⁇ 10 nm, 62.5 ⁇ 5 nm, or 62.5 ⁇ 2 nm. It can be understood that in some examples, the smaller the difference between the thickness direction retardation R th1 of the first optical compensation layer 140 and 62.5 nm, the better the compensation effect of the first optical compensation layer 140 .
  • the value of the thickness direction retardation R th1 of the first optical compensation layer 140 may be 43 nm, 48 nm, 52 nm, 58 nm, 62.5 nm, 67 nm, 76 nm or 80 nm, etc.
  • the thickness direction retardation R th1 of the first optical compensation layer 140 ranges from 42.5 nm to 82.5 nm, that is, the first optical compensation layer 140 can perform forward phase compensation on the light in the thickness direction, so that the light passes through The phase of the polarized light after passing through the first optical compensation layer 140 can be delayed compared with the phase of the polarized light before passing through the first optical compensation layer 140 .
  • the first optical compensation layer 140 can Meet different compensation requirements and improve the applicability of the first optical compensation layer 140.
  • the thickness direction retardation R th2 of the second optical compensation layer 150 and the in-plane retardation R OLC of the liquid crystal layer 130 satisfy the following formula:
  • R th2 n 2 ⁇ R OLC +m 2 ⁇ 2 ;
  • n 2 is an integer
  • ⁇ 2 is 390nm to 780nm.
  • R th2 is the phase retardation in the thickness direction of the second optical compensation layer 150 , that is, when light passes through the second optical compensation layer 150 in the normal direction (vertical direction), when the second optical compensation layer 150 Phase retardation in the thickness direction.
  • n x2 is the refractive index in the X 2- axis direction in the second optical compensation layer 150
  • n y2 is the refractive index in the Y 2 -axis direction perpendicular to the X 2 -axis in the second optical compensation layer 150.
  • n z2 is the refractive index in the thickness direction (Z 2 -axis direction) of the second optical compensation layer 150
  • d 2 is the thickness of the second optical compensation layer 150 .
  • n 2 is an integer, and understandably, m 2 can be a positive integer, a negative integer or 0.
  • n 2 is For example, the value of n 2 can be or wait.
  • n 2 is the same as The smaller the difference, the better the compensation effect of the second light compensation layer 150.
  • ⁇ 2 ranges from 390 nm to 780 nm.
  • ⁇ 2 is the wavelength of light emitted by the backlight module 210 .
  • the light emitted by the backlight module 210 may be natural light.
  • ⁇ 2 may range from 400 nm to 700 nm, or from 500 nm to 600 nm, etc.
  • the value of ⁇ 2 can be 450nm, 550nm, 650nm or 750nm.
  • Such arrangement improves the compensation effect of the second optical compensation layer 150 for linearly polarized light, improves the light leakage phenomenon of the liquid crystal display panel 100 at side viewing angles in dark display, and improves the display effect of the liquid crystal display panel 100.
  • n 2 the value of n 2 is
  • n 2 is That is to say In some examples, the value of m 2 is 0, which is the thickness direction retardation of the second optical compensation layer 150
  • Such arrangement improves the compensation effect of the second optical compensation layer 150 on the phase delay of the linearly polarized light passing through the first polarizing plate 110, changes the polarization state of the polarized light, and rotates the polarization direction of the linearly polarized light to
  • the transmission axis 121 of the second polarizing plate 120 is vertical or approximately vertical, thereby improving the light leakage phenomenon of the liquid crystal display panel 100 at side viewing angles in a dark state, and improving the display effect of the liquid crystal display panel 100 .
  • the value of m 2 is set to 0, as shown in FIG. 3C , so that the second optical compensation layer 150 can directly convert the elliptically polarized light into linearly polarized light, and the polarization direction of the linearly polarized light is consistent with the second polarizer 120
  • the absorption axis direction is parallel or approximately parallel (as shown from point Q1 to point A2 in Figure 3C), which shortens the path of the conversion process on the Poincaré sphere and simplifies the process of converting linearly polarized light into elliptically polarized light.
  • Such an arrangement can simplify the preparation process of the second optical compensation layer 150 and reduce the production cost.
  • the in-plane retardation R OLC of the liquid crystal layer 130 has a value of Based on this, the thickness direction of the second optical compensation layer 150 retards
  • the thickness direction retardation R th2 of the second optical compensation layer 150 ranges from -100 nm to -60 nm.
  • the thickness direction retardation R th2 of the second optical compensation layer 150 may range from -100 nm to -60 nm, -95 nm to -65 nm, -90 nm to -70 nm, -85 nm to -75 nm, or -82 nm to -78 nm. wait.
  • the value of the thickness direction retardation R th2 of the second optical compensation layer 150 is -80 ⁇ 15nm, -80 ⁇ 10nm, -80 ⁇ 5nm or -80 ⁇ 2nm, etc. It can be understood that in some examples, the smaller the difference between the thickness direction retardation R th2 of the second optical compensation layer 150 and -80 nm, the better the compensation effect of the second optical compensation layer 150 .
  • the value of the thickness direction retardation R th2 of the second optical compensation layer 150 may be -93 nm, -80 nm, -76 nm or -63 nm, etc.
  • the thickness direction retardation R th2 of the second optical compensation layer 150 ranges from -100 nm to -60 nm, that is, the second optical compensation layer 150 can perform reverse phase compensation on the light in the thickness direction, so that the light passes through The phase of the polarized light after passing through the second optical compensation layer 150 can be advanced compared to the phase of the polarized light before passing through the second optical compensation layer 150 .
  • the second optical compensation layer 150 can meet different compensation requirements and improve the applicability of the second optical compensation layer 150 .
  • the in-plane retardation R O2 of the second optical compensation layer 150 has a value of 0 nm. It can be understood that R O2 is the in-plane phase retardation of the second optical compensation layer 150 , that is, when light passes through the second optical compensation layer 150 in the normal direction (vertical direction), the surface of the second optical compensation layer 150 the phase delay generated within.
  • the first optical compensation layer 140 is a +A compensation film layer
  • the second optical compensation layer 150 is a +C compensation film layer.
  • n x1 is the refractive index in the X 1 axis direction in the +A compensation film layer
  • n y1 is the refractive index in the Y 1 axis direction perpendicular to the X 1 axis in the +A compensation film layer
  • n z1 is the refractive index in the thickness direction (Z 1- axis direction) of the +A compensation film layer.
  • the X 1 axis when the X 1 axis has a small inclination angle with the +A compensation film layer (for example, an inclination angle within 5°), the X 1 axis can also be considered to be disposed in the plane of the +A compensation film layer. It can be understood that when there is a small inclination angle between the X 1 axis and the +A compensation film layer, there will be a certain difference between n y1 and n z1 . Considering the above situation, n y1 can be equal or approximately equal to n z1 .
  • n z2 is the refractive index in the thickness direction (Z 2- axis direction) of the +C compensation film layer
  • n x2 is the refractive index in the X 2- axis direction within the +C compensation film layer
  • n y2 is + C compensates for the refractive index in the Y axis direction perpendicular to the X axis within the film layer.
  • n x2 can be equal or approximately equal to n y2 .
  • the inclination angle between the X 2 axis and the second optical compensation layer 150 is within 2°, which improves the compensation effect of the second optical compensation layer 150 .
  • the second optical compensation layer 150 is disposed on the side of the first optical compensation layer 140 away from the first polarizing plate 110 , that is, the +C compensation film layer is disposed on the +A compensation film layer. The side away from the first polarizing plate 110 .
  • Figure 5A is a full viewing angle contrast distribution diagram according to other embodiments.
  • FIG. 5A is a full viewing angle contrast distribution diagram of the liquid crystal display panel 100 when the first optical compensation layer 140 is a +A compensation film layer and the second optical compensation layer 150 is a +C compensation film layer.
  • multiple concentric circles distributed along the direction away from the center of the circle represent different polar angles, and different points on each concentric circle represent different azimuthal angles.
  • Figure 5B is a side view light leakage brightness curve graph according to some embodiments.
  • curve a indicates that no optical compensation layer (such as the first optical compensation layer 140 and the second optical compensation layer 150 ) is provided.
  • the light leakage brightness (unit nits) is measured at a side viewing angle.
  • Curve b is a curve showing how the light leakage brightness (unit: nit, English abbreviation: nit) changes with the polar angle at side viewing angles when the +A compensation film layer and the +C compensation film layer are set and the liquid crystal display panel 100 is displayed in a dark state.
  • FIG. 6A is a structural diagram of a liquid crystal display panel according to further embodiments.
  • FIG. 6B is a structural diagram of a liquid crystal display panel according to further embodiments.
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizing plate 120, and the second optical compensation layer 150 is disposed away from the first optical compensation layer 140.
  • One side of the polarizing plate 110 is disposed on the side of the first optical compensation layer 140 close to the first polarizing plate 110 .
  • the second optical compensation layer 150 when the first optical compensation layer 140 and the second optical compensation layer 150 are stacked and disposed between the liquid crystal layer 130 and the second polarizing plate 120 , the second optical compensation layer 150 is disposed between the second optical compensation layer 140 and the second optical compensation layer 150 . between an optical compensation layer 140 and the liquid crystal layer 130 .
  • the second optical compensation layer 150 when the first optical compensation layer 140 and the second optical compensation layer 150 are stacked and disposed between the first polarizer 110 and the liquid crystal layer 130 , the second optical compensation layer 150 is disposed between between the first optical compensation layer 140 and the first polarizer 110 .
  • the first optical compensation layer 140 is a bi-optical axis optical compensation layer.
  • the first optical compensation layer 140 includes a first optical axis and a second optical axis, and the length of the first optical axis is greater than the length of the second optical axis.
  • the orthographic projection of the first optical axis on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110 . That is to say, among the two optical axes of the first optical compensation layer 140 , the orthographic projection of the longer optical axis on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110 .
  • the first optical axis is the X 1 axis within the plane of the first optical compensation layer 140 , that is, the optical axis of the first optical compensation layer 140 is the X 1 axis within the plane of the first optical compensation layer 140 .
  • the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizer 110 may be parallel or approximately parallel to the transmission axis 111 of the first polarizer 110 . .
  • the acute angle between the orthographic projection of the first optical compensation layer 140 on the first polarizing plate 110 and the transmission axis 111 of the first polarizing plate 110 is less than or equal to 5°, it can be considered that when The orthographic projection of the first optical compensation layer 140 on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110 . Since the transmission axis 111 of the first polarizing plate 110 is perpendicular to the absorption axis, that is, the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 is perpendicular to the absorption axis of the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is parallel to the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 , the linearly polarized light passing through the first polarizing plate 110
  • the polarization direction can be parallel to the optical axis direction of the first optical compensation layer 110 , so that the first optical compensation layer 140 can compensate the linearly polarized light that passes through the first polarizing plate 110 .
  • the transmission axis 111 of the first polarizing plate 110 is perpendicular to the transmission axis 121 of the second polarizing plate 120 , in this way, the light of the first optical compensation layer 140 is
  • the orthographic projection of the axis on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110 , so that the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 can be aligned with the second polarizing plate 110 .
  • the orthographic projection of the transmission axis 121 of the polarizing plate 120 on the first polarizing plate 110 is vertical.
  • the phase delay of the linearly polarized light passing through the first polarizing plate 110 under the side viewing angle can be compensated, and the polarization state of the polarized light can be changed.
  • the liquid crystal display panel 100 is displayed in a dark state, the light intensity passing through the second polarizing plate 120 at a side viewing angle is reduced, thereby improving the light leakage phenomenon at a side viewing angle when the liquid crystal display panel 100 is displayed in a dark state, and improving the performance of the liquid crystal display panel 100 display effect.
  • the optical axis of the optical compensation layer (such as the first optical compensation layer 140 and the second optical compensation layer 150) is the direction in which the refractive index is maximum when light irradiates the optical compensation layer.
  • the propagation speed of light along the optical axis of the optical compensation layer (eg, the first optical compensation layer 140 and the second optical compensation layer 150 ) is the slowest.
  • FIG. 6C is a position diagram of side view light rays in a Poincaré sphere according to some embodiments.
  • FIG. 6D is a position diagram of side view light rays in a Poincaré sphere according to some embodiments.
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the liquid crystal layer 130 and the second polarizer 120 , and the first optical compensation layer 140
  • the optical axis is parallel to the transmission axis 111 of the first polarizer 110 and perpendicular to the transmission axis 121 of the second polarizer 120
  • the position of the side view light ray in the Poincaré sphere is as shown in FIG. 6C .
  • the first polarizing plate 110 is closer to the light incident side of the liquid crystal display panel 100 than the second polarizing plate 120 . That is, the light emitted by the backlight module 210 irradiates the liquid crystal display panel 100 along the direction from the first polarizing plate 110 to the second polarizing plate 120 .
  • point A1 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the first polarizer 110 .
  • the point T1 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 111 of the first polarizer 110 .
  • the position of point A2 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 .
  • the position of point T2 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 121 of the second polarizing plate 120 .
  • the linearly polarized light at point T1 can be converted into elliptically polarized light (as shown at point Q3 in FIG. 6C ) after passing through the second optical compensation layer 150 .
  • the elliptically polarized light can be converted into linearly polarized light again, and the polarization direction of the linearly polarized light is parallel or approximately parallel to the absorption axis direction of the second polarizer 120 (that is, with The transmission axis 121 of the second polarizing plate 120 is vertical or approximately vertical, as shown at the midpoint A2 in FIG. 6C ).
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the first polarizer 110 and the liquid crystal layer 130 , and the first optical compensation layer
  • the optical axis of 140 is parallel to the transmission axis 111 of the first polarizer 110 and perpendicular to the transmission axis 121 of the second polarizer 120
  • the position of the side view light ray in the Poincaré sphere is as shown in Figure 6D.
  • point A1 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the first polarizer 110 .
  • the point T1 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 111 of the first polarizer 110 .
  • the position of point A2 is the polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 .
  • the position of point T2 is the polarized light whose polarization direction is parallel or approximately parallel to the direction of the transmission axis 121 of the second polarizing plate 120 .
  • the linearly polarized light at point T1 can be converted into elliptically polarized light (as shown at point Q4 in FIG. 6D ) after passing through the second optical compensation layer 150 .
  • the elliptically polarized light can be converted into linearly polarized light again, and the polarization direction of the linearly polarized light is parallel or approximately parallel to the absorption axis direction of the second polarizer 120 (that is, with The transmission axis 121 of the second polarizing plate 120 is vertical or approximately vertical, as shown at the midpoint A2 in FIG. 6D).
  • the linearly polarized light passing through the first polarizer 110 can be converted into The linearly polarized light whose polarization direction is parallel or approximately parallel to the absorption axis direction of the second polarizing plate 120 (that is, perpendicular or approximately perpendicular to the transmission axis 121 direction of the second polarizing plate 120) cannot pass through the second polarizing plate 120.
  • the polarizing plate 120 improves the light leakage phenomenon at side viewing angles when the liquid crystal display panel 100 is displayed in a dark state, thereby improving the visual effect of the liquid crystal display panel 100 .
  • the second optical compensation layer 150 can be disposed on the side of the first optical compensation layer 140 away from the first polarizing plate 110 , or can be disposed on the side of the first optical compensation layer 140 close to the first polarizing plate 110 .
  • One side of the polarizing plate 110 meets different compensation requirements and improves the applicability of the liquid crystal display panel 100 .
  • the orthographic projection of the optical axis of the first optical compensation layer 140 on the first polarizing plate 110 is parallel to the transmission axis 111 of the first polarizing plate 110, so that the optical axis of the first optical compensation layer 140 can be parallel to the transmission axis 111 of the first polarizing plate 110.
  • the orthographic projection of the transmission axis 121 of the second polarizing plate 121 on the first polarizing plate 110 is vertical. That is, the optical axis of the first optical compensation layer 140 can be parallel to the orthographic projection of the absorption axis of the second polarizing plate 121 on the first polarizing plate 110 .
  • the first optical compensation layer 140 and the second optical compensation layer 150 are stacked between the liquid crystal layer 130 and the second polarizing plate 120 , so that the first optical compensation layer 140 is in contact with the second polarizing plate 120 .
  • the distance between the plates 120 is smaller than the distance between the first optical compensation layer 140 and the first polarizing plate 110 .
  • the optical axis of the first optical compensation layer 140 is parallel to the orthographic projection of the absorption axis of the second polarizer 121 on the first polarizer 110, which can simplify the preparation process of the liquid crystal display panel 100 and reduce the cost of the liquid crystal display panel 100. the cost of.
  • the in-plane retardation R O1 of the first optical compensation layer 140 ranges from 95 nm to 135 nm.
  • R O1 is the in-plane phase retardation of the first optical compensation layer 140 .
  • the in-plane retardation R O1 of the first optical compensation layer 140 may range from 95 nm to 135 nm, 100 nm to 130 nm, 105 nm to 125 nm, 110 nm to 120 nm, or 113 nm to 117 nm.
  • the in-plane retardation R O1 of the first optical compensation layer 140 has a value of 115 ⁇ 15 nm, 115 ⁇ 10 nm, 115 ⁇ 5 nm, or 115 ⁇ 2 nm. It can be understood that in some examples, the smaller the difference between the in-plane retardation R O1 of the first optical compensation layer 140 and 115 nm, the better the compensation effect of the first optical part layer 140 .
  • the value of the in-plane retardation R O1 of the first optical compensation layer 140 may be 98 nm, 102 nm, 115 nm, 127 nm, or 132 nm, etc.
  • the in-plane retardation R O1 of the first optical compensation layer 140 ranges from 95 nm to 135 nm, that is, the first optical compensation layer 140 can perform forward phase compensation on the light in the plane, so that the light passing through the first optical compensation layer 140 can perform forward phase compensation.
  • the phase of the polarized light behind the compensation layer 140 can be delayed compared with the phase of the polarized light before passing through the first optical compensation layer 140 .
  • the thickness direction retardation R th1 of the first optical compensation layer 140 ranges from -130 nm to -90 nm.
  • R th1 is the phase retardation in the thickness direction of the first optical compensation layer 140 , that is, when light passes through the first optical compensation layer 140 in the normal direction (vertical direction), when the first optical compensation layer 140 Phase retardation in the thickness direction.
  • n x1 is the refractive index in the X 1 axis direction of the first optical compensation layer 140
  • n y1 is the refractive index in the Y 1 axis direction perpendicular to the X 1 axis in the first optical compensation layer 140.
  • n z1 is the refractive index in the thickness direction (Z 1 axis direction) of the first optical compensation layer 140
  • d 1 is the thickness of the first optical compensation layer 140 .
  • the X 1 axis has a small inclination angle with the first optical compensation layer 140 (for example, an inclination angle within 5°)
  • the X 1 axis can also be considered to be disposed in the plane of the first optical compensation layer 140 .
  • the inclination angle between the X 1 axis and the first optical compensation layer 140 is within 2°, which improves the compensation effect of the first optical compensation layer 140 .
  • the refractive index n z1 in the thickness direction (Z 1 axis direction) of the first optical compensation layer 140 and the thickness d 1 of the first optical compensation layer 140 can play a role in the thickness direction retardation R th1 of the first optical compensation layer 140
  • the adjustment function enables the range of R th to be -130nm ⁇ -90nm.
  • the thickness direction retardation R th1 of the first optical compensation layer 140 may range from -130 nm to -90 nm, -105 nm to -75 nm, -100 nm to -80 nm, -95 nm to -85 nm, or -92 nm to -88 nm. .
  • the value of the thickness direction retardation R th1 of the first optical compensation layer 140 may be -110 ⁇ 15 nm, -110 ⁇ 10 nm, -110 ⁇ 5 nm, or -110 ⁇ 2 nm. It can be understood that in some examples, the smaller the difference between the thickness direction retardation R th1 of the first optical compensation layer 140 and -110 nm, the better the compensation effect of the first optical compensation layer 140 .
  • the value of the thickness direction retardation R th1 of the first optical compensation layer 140 may be -128 nm, -113 nm, -110 nm or -98 nm, etc.
  • the thickness direction retardation R th1 of the first optical compensation layer 140 ranges from -130 nm to -90 nm, that is, the first optical compensation layer 140 can perform reverse phase compensation on the light in the thickness direction, so that the light passes through The phase of the polarized light after passing through the first optical compensation layer 140 can be advanced compared to the phase of the polarized light before passing through the first optical compensation layer 140 .
  • the first optical compensation layer 140 By setting the in-plane retardation R O1 of the first optical compensation layer 140 to a range of 95 nm to 135 nm, and setting the thickness direction retardation R th1 of the first optical compensation layer 140 to a range of -130 nm to -90 nm, the first optical compensation layer 140 It can meet different compensation requirements and improve the applicability of the first optical compensation layer 140 .
  • the thickness direction retardation R th2 of the second optical compensation layer 150 and the in-plane retardation R OLC of the liquid crystal layer 130 satisfy the following formula:
  • R th2 n 3 ⁇ R OLC +m 3 ⁇ 3 ;
  • n 3 is an integer
  • n 3 is The range of ⁇ 3 is 390nm ⁇ 780nm.
  • R th2 is the phase retardation in the thickness direction of the second optical compensation layer 150 , that is, when light passes through the second optical compensation layer 150 in the normal direction (vertical direction), when the second optical compensation layer 150 Phase retardation in the thickness direction.
  • n x2 is the refractive index in the X 2- axis direction in the second optical compensation layer 150
  • n y2 is the refractive index in the Y 2 -axis direction perpendicular to the X 2 -axis in the second optical compensation layer 150.
  • n z2 is the refractive index in the thickness direction (Z 2 -axis direction) of the second optical compensation layer 150
  • d 2 is the thickness of the second optical compensation layer 150 .
  • n 3 is an integer, and understandably, m 3 can be a positive integer, a negative integer or 0.
  • n 3 is For example, the value of n 2 can be or wait.
  • n 3 is the same as The smaller the difference, the better the compensation effect of the second light compensation layer 150.
  • ⁇ 3 ranges from 390 nm to 780 nm.
  • ⁇ 3 is the wavelength of light emitted by the backlight module 210 .
  • the light emitted by the backlight module 210 may be natural light.
  • ⁇ 3 may range from 400 nm to 700 nm, or from 500 nm to 600 nm, etc.
  • the value of ⁇ 3 can be 450nm, 550nm, 650nm or 750nm.
  • Such arrangement improves the compensation effect of the second optical compensation layer 150 for linearly polarized light, improves the light leakage phenomenon of the liquid crystal display panel 100 at side viewing angles under dark display, and improves the display effect of the liquid crystal display panel 100 .
  • n 3 is
  • n 3 is That is to say In some examples, the value of m is 0, which is the in-plane retardation of the second optical compensation layer 150
  • Such arrangement improves the compensation effect of the second optical compensation layer 150 on the phase delay of the polarized light passing through the first polarizing plate 110, changes the polarization state of the polarized light, and rotates the polarization direction of the linearly polarized light to be consistent with the first polarizing plate 110.
  • the transmission axes 121 of the two polarizing plates 120 are perpendicular or approximately perpendicular, thereby improving the light leakage phenomenon of the liquid crystal display panel 100 in the dark state at side viewing angles and improving the display effect of the liquid crystal display panel 100 .
  • the value of m 3 is set to 0, as shown in FIG. 6C , so that the second optical compensation layer 150 can directly convert the elliptically polarized light into linearly polarized light, and the polarization direction of the linearly polarized light is consistent with the second polarizer 120
  • the absorption axis direction is parallel or approximately parallel (as shown from point Q3 to point A2 in Figure 6C), which shortens the path of the conversion process on the Poincaré sphere and simplifies the process of converting linearly polarized light into elliptically polarized light.
  • Such an arrangement can simplify the preparation process of the second optical compensation layer 150 and reduce production costs.
  • the in-plane retardation R OLC of the liquid crystal layer 130 has a value of Based on this, the in-plane retardation of the second optical compensation layer 150
  • the thickness direction retardation R th2 of the second optical compensation layer 150 ranges from 90 nm to 130 nm.
  • the adjustment function enables the thickness direction retardation R th2 of the second optical compensation layer 150 to range from 90 nm to 130 nm.
  • the thickness direction retardation R th2 of the second optical compensation layer 150 may range from 90 nm to 130 nm, 95 nm to 125 nm, 100 nm to 120 nm, 105 nm to 115 nm, or 108 nm to 112 nm, etc.
  • the value of the thickness direction retardation R th2 of the second optical compensation layer 150 is 110 ⁇ 15 nm, 110 ⁇ 10 nm, 110 ⁇ 5 nm, or 110 ⁇ 2 nm. It can be understood that in some examples, the smaller the difference between the thickness direction retardation R th2 of the second optical compensation layer 150 and 110 nm, the better the compensation effect of the second optical compensation layer 150 .
  • the value of the thickness direction retardation R th2 of the second optical compensation layer 150 may be 98 nm, 110 nm, 118 nm, 128 nm or 132 nm, etc.
  • the thickness direction retardation R th2 of the second optical compensation layer 150 ranges from 90 nm to 130 nm, that is, the second optical compensation layer 150 can perform forward phase compensation on the light in the thickness direction, so that the light passing through the second optical compensation layer 150 can perform forward phase compensation.
  • the phase of the polarized light behind the second optical compensation layer 150 can be delayed compared to the phase of the polarized light before passing through the second optical compensation layer 150 .
  • the second optical compensation layer 150 can meet different compensation requirements and improve the applicability of the second optical compensation layer 150 .
  • the in-plane retardation R O2 of the second optical compensation layer 150 has a value of 0 nm. It can be understood that R O2 is the in-plane phase retardation of the second optical compensation layer 150 , that is, when light passes through the second optical compensation layer 150 in the normal direction (vertical direction), the surface of the second optical compensation layer 150 the phase delay generated within.
  • the first optical compensation layer 140 is a +B compensation film layer
  • the second optical compensation layer 150 is a -C compensation film layer.
  • the first optical compensation layer 140 is a +B compensation film layer (English full name: +B Plate, Chinese name: +B Plate). It can be understood that the +B compensation film layer satisfies n z1 ⁇ n y1 ⁇ n x1 , where n x1 is the refractive index in the X 1 axis direction in the +B compensation film layer, n y1 is the refractive index in the Y 1 axis direction perpendicular to the X 1 axis in the +B compensation film layer, n z1 is the refractive index in the +B compensates for the refractive index in the thickness direction of the film layer (Z 1- axis direction).
  • the X 1 axis has a small inclination angle with the +B compensation film layer (for example, an inclination angle within 5°)
  • the X 1 axis can also be considered to be disposed in the plane of the +B compensation film layer.
  • n x2 is the refractive index in the X 2 axis direction within the -C compensation film layer
  • n y2 is the refractive index in the Y 2 axis direction perpendicular to the X 2 axis in the -C compensation film layer
  • n z2 is The -C compensates for the refractive index in the thickness direction of the film layer (Z 2- axis direction).
  • the X 2 axis when the X 2 axis has a small inclination angle with the -C compensation film layer (for example, an inclination angle within 5°), the X 2 axis can also be considered to be disposed in the plane of the -C compensation film layer. It can be understood that when there is a small inclination angle between the X 2 axis and the -C compensation film layer, there will be a certain difference between n y2 and n X2 . Considering the above situation, n y2 and n X2 are equal or approximately equal.
  • the second optical compensation layer 150 is disposed on the side of the first optical compensation layer 140 close to the first polarizer 110 , that is, the -C compensation film layer is disposed on the +B compensation film layer. The side close to the first polarizing plate 110 .
  • FIG. 6E is a full-viewing contrast distribution diagram according to further embodiments.
  • FIG. 6E is a full viewing angle contrast distribution diagram of the liquid crystal display panel 100 when the first optical compensation layer 140 is a +B compensation film layer and the second optical compensation layer 150 is a -C compensation film layer.
  • multiple concentric circles distributed along the direction away from the center of the circle represent different polar angles, and different points on each concentric circle represent different azimuthal angles.
  • curve a indicates that there is no optical compensation film (including the first optical compensation film 140 and the second optical compensation film 150 ).
  • the light leakage brightness will be lower when viewed from the side.
  • curve c is the curve of setting the +B compensation film layer and the -C compensation film layer.
  • the light leakage brightness (unit nits, English abbreviation: nit) changes with the polar angle at the side viewing angle. curve.
  • the display device 200 provided by the embodiment of the present disclosure includes the above-mentioned liquid crystal display panel 100 and therefore has all the above-mentioned beneficial effects, which will not be described again here.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板,包括第一偏振片、第二偏振片、液晶层、第一光学补偿层和第二光学补偿层。第一偏振片和第二偏振片相对设置,且二者的透过轴垂直,液晶层设置于二者之间。第一偏振片相对于第二偏振片靠近液晶显示面板的入光侧。液晶层中包括液晶分子,液晶分子的光轴与第一偏振片的透过轴或第二偏振片的透过轴平行。第一光学补偿层和第二光学补偿层层叠设置于第一偏振片与液晶层之间或液晶层与第二偏振片之间。第一光学补偿层的光轴在第一偏振片上的正投影与第一偏振片的透过轴平行。第二光学补偿层的光轴与第二光学补偿层所在平面垂直。第一光学补偿层的面内延迟RO1和液晶层的面内延迟ROLC满足公式RO1=n1×ROLC+m1λ1。其中,m1为整数,n1的范围为 1/4~3/4,λ1的范围为390nm~780nm。

Description

液晶显示面板和显示装置 技术领域
本公开涉及显示技术领域,尤其涉及一种液晶显示面板和显示装置。
背景技术
液晶显示器(英文全称:Liquid Crystal Display,英文简称:LCD)具有体积小、功耗低、无辐射等特点,是目前应用较为广泛的显示器类型。
发明内容
一方面,提供了一种液晶显示面板。液晶显示面板包括第一偏振片、第二偏振片、液晶层、第一光学补偿层和第二光学补偿层。第二偏振片与第一偏振片相对设置。第一偏振片的透过轴与第二偏振片的透过轴垂直。第一偏振片相对于第二偏振片靠近液晶显示面板的入光侧。液晶层设置于第一偏振片和第二偏振片之间。液晶层中包括液晶分子,液晶分子的光轴在第一偏振片上的正投影与第一偏振片的透过轴或第二偏振片的透过轴平行。第一光学补偿层和第二光学补偿层层叠设置于第一偏振片与液晶层之间或液晶层与第二偏振片之间。第一光学补偿层的光轴在第一偏振片上的正投影与第一偏振片的透过轴平行。第二光学补偿层的光轴与第二光学补偿层所在平面垂直。第一光学补偿层的面内延迟R O1和液晶层的面内延迟R OLC满足以下公式R O1=n 1×R OLC+m 1λ 1。其中,m 1为整数,n 1的范围为
Figure PCTCN2022095683-appb-000001
λ 1的范围为390nm~780nm。
在一些实施例中,n 1的取值为
Figure PCTCN2022095683-appb-000002
在一些实施例中,第一光学补偿层为单光轴光学补偿层,第二光学补偿层设置于第一光学补偿层远离第一偏振片的一侧。
在一些实施例中,第一光学补偿层的面内延迟R O1的范围为105nm~145nm。第一光学补偿层的厚度方向延迟R th1的范围为42.5nm~82.5nm。
在一些实施例中,第二光学补偿层的厚度方向延迟R th2和液晶层的面内延迟R OLC满足以下公式R th2=n 2×R OLC+m 2λ 2。其中,m 2为整数,n 2的范围为
Figure PCTCN2022095683-appb-000003
λ 2的范围为390nm~780nm。
在一些实施例中,n 2的取值为
Figure PCTCN2022095683-appb-000004
在一些实施例中,第二光学补偿层的厚度方向延迟R th2的范围为 -100nm~-60nm。
在一些实施例中,第一光学补偿层为+A补偿膜层,第二光学补偿层为+C补偿膜层。
在一些实施例中,第二光学补偿层设置于第一光学补偿层靠近第一偏振片的一侧。第一光学补偿层为双光轴光学补偿层。第一光学补偿层包括第一光轴和第二光轴,第一光轴的长度大于第二光轴的长度。第一光轴在第一偏振片上的正投影与第一偏振片的透过轴平行。
在一些实施例中,第一光学补偿层的面内延迟R O1的范围为95nm~135nm。第一光学补偿层的厚度方向延迟R th1的范围为-130nm~-90nm。
在一些实施例中,第二光学补偿层的厚度方向延迟R th2和液晶层的面内延迟R OLC满足以下公式R th2=n 3×R OLC+m 3λ 3。其中,m 3为整数,n 3的范围为
Figure PCTCN2022095683-appb-000005
λ3的范围为390nm~780nm。
在一些实施例中,n 3的取值为
Figure PCTCN2022095683-appb-000006
在一些实施例中,第二光学补偿层的厚度方向延迟R th2的范围为90nm~130nm。
在一些实施例中,第一光学补偿层为+B补偿膜层,第二光学补偿层为-C补偿膜层。
又一方面,提供了一种显示装置。显示装置包括背光模组和如上述的液晶显示面板。液晶显示面板设置于背光模组的出光侧。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1A为根据一些实施例的显示装置的结构图;
图1B为根据一些实施例的液晶显示面板的结构图;
图1C为根据一些实施例的第一偏振片和第二偏振片的相对位置关系图;
图1D为根据另一些实施例的液晶显示面板的结构图;
图1E为根据又一些实施例的液晶显示面板的结构图;
图1F为根据一些实施例的液晶分子层的结构图;
图2A为根据又一些实施例的液晶显示面板的结构图;
图2B为根据又一些实施例的液晶显示面板的结构图;
图2C为根据一些实施例的第一偏振片和第二偏振片的透过轴在侧视角下的相对位置关系图;
图2D为根据一些实施例的全视角对比度分布图;
图2E为根据一些实施例的侧视角光线在庞加莱球图中的位置图;
图3A为根据又一些实施例的液晶显示面板的结构图;
图3B为根据又一些实施例的液晶显示面板的结构图;
图3C为根据另一些实施例的侧视角光线在庞加莱球图中的位置图;
图3D为根据又一些实施例的侧视角光线在庞加莱球图中的位置图;
图3E为根据一些实施例的第二光学补偿层的结构图;
图4A为根据又一些实施例的液晶显示面板的结构图;
图4B为根据又一些实施例的液晶显示面板的结构图;
图4C为根据又一些实施例的液晶显示面板的结构图;
图4D为根据又一些实施例的液晶显示面板的结构图;
图4E为根据又一些实施例的液晶显示面板的结构图;
图4F为根据又一些实施例的液晶显示面板的结构图;
图5A为根据另一些实施例的全视角对比度分布图;
图5B为根据一些实施例的侧视角漏光亮度曲线图;
图6A为根据又一些实施例的液晶显示面板的结构图;
图6B为根据又一些实施例的液晶显示面板的结构图;
图6C为根据又一些实施例的侧视角光线在庞加莱球图中的位置图;
图6D为根据又一些实施例的侧视角光线在庞加莱球图中的位置图;
图6E为根据又一些实施例的全视角对比度分布图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但 不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
应当理解的是,当层或元件被称为在另一层或基板上时,可以是该层或元件直接在另一层或基板上,或者也可以是该层或元件与另一层或基板之间存在中间层。
本文参照作为理想化示例性附图的剖视图和/或平面图描述了示例性实施方式。在附图中,为了清楚,放大了层和区域的厚度。因此,可设想到由于 例如制造技术和/或公差引起的相对于附图的形状的变动。因此,示例性实施方式不应解释为局限于本文示出的区域的形状,而是包括因例如制造而引起的形状偏差。例如,示为矩形的蚀刻区域通常将具有弯曲的特征。因此,附图中所示的区域本质上是示意性的,且它们的形状并非旨在示出设备的区域的实际形状,并且并非旨在限制示例性实施方式的范围。
图1A为根据一些实施例的显示装置的结构图。
如图1A所示,本公开的实施例提供了一种显示装置200。示例性的,该显示装置200可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图画的图像的任何装置。该显示装置200可以是多种显示装置200,多种显示装置200包括但不限于移动电话、无线装置、个人数据助理(英文全称:Portable Android Device,英文简称:PAD)、手持式或便携式计算机、GPS(英文全称:Global Positioning System,中文名称:全球定位系统)接收器/导航器、相机、MP4(英文全称:MPEG-4 Part 14)视频播放器、摄像机、游戏控制台、平板显示器、计算机监视器、汽车显示器(例如,汽车的行车记录仪或倒车影像等)等。
在一些实施例中,如图1A所示,显示装置200包括背光模组210和液晶显示面板100。液晶显示面板100设置于背光模组210的出光侧。
可以理解地,背光模组210用于为液晶显示面板100提供用于显示的光源,从而使得显示装置200能够实现图像显示功能。
在一些示例中,背光模组210可以为直下式背光模组或者侧入式背光模组。本公开的实施例对背光模组210不做进一步限定,下面对液晶显示面板100进行举例说明。
在一些实施例中,如图1A所示,液晶显示面板100包括第一偏振片110、第二偏振片120和液晶层130。第二偏振片120和第一偏振片110相对设置。第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直。液晶层130设置于第一偏振片110和第二偏振片120之间。
可以理解地,偏振片(例如第一偏振片110和第二偏振片120)具有吸收轴和透过轴,吸收轴和透过轴垂直或者近似垂直。当光线照射至偏振片时,光线在平行或者近似平行透过轴方向上的分量能够穿过偏振片,而在平行或者近似平行吸收轴方向上的分量不能够穿过偏振片。也即是,偏振片能够将光线转换为偏振方向与透过轴方向平行或者近似平行的线性偏振光。
可以理解地,当照射至偏振片的光线,在平行或者近似平行透过轴的方向上不存在分量时,也即是当照射至偏振片的光线的偏振方向,与吸收轴平 行或者近似平行时,则光线无法穿过偏振片。
图1B为根据一些实施例的液晶显示面板的结构图。图1C为根据一些实施例的第一偏振片和第二偏振片的相对位置关系图。
第一偏振片110和第二偏振片120相对设置,也即是,第一偏振片110和第二偏振片120间隔设置,并且第一偏振片110在液晶层130上的正投影,与第二偏振片120在液晶层130上的正投影的至少部分交叠。在一些示例中,第一偏振片110在液晶层130上的正投影,与第二偏振片120在液晶层130上的正投影重合或者近似重合。
由上述可知,液晶显示面板100设置于背光模组210的出光侧。在一些示例中,如图1A所示,第一偏振片110相对于第二偏振片120靠近背光模组210的出光侧,也即是背光模组210发出的光线沿第一偏振片110至第二偏振片120的方向照射液晶显示面板100,使得第一偏振片110能够相对于第二偏振片120靠近液晶显示面板100的入光侧。
在另一些示例中,第一偏振片110相对于第二偏振片120远离背光模组210的出光侧,也即是背光模组210发出的光线沿第二偏振片120至第一偏振片110的方向照射液晶显示面板100,使得第一偏振片110能够相对于第二偏振片120远离液晶显示面板100的入光侧。
为了便于说明,本公开的实施例中,以第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧为例,进行举例说明。
可以理解地,背光模组210发出光线的照射方向,为液晶显示面板100的显示侧。也即是,当第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧时,第一偏振片110相对于第二偏振片120远离液晶显示面板100的显示侧。
如图1C所示,第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直,也即是,第二偏振片120的透过轴121在第一偏振片110上的正投影,与第一偏振片110的透过轴111垂直或者近似垂直。
可以理解地,当背光模组210发出的光线照射至第一偏振片110时,穿过第一偏振片110的光线的偏振方向,与第一偏振片110的透过轴111平行或者近似平行。而第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直,使得穿过第一偏振片110的线性偏振光,在平行或者近似平行第二偏振片120的透过轴121的方向上不存在分量,也即是使得穿过第一偏振片110的线性偏振光,无法穿过第二偏振片120。
如图1A和图1B所示,液晶层130设置于第一偏振片110和第二偏振片 120之间。如图1B所示,液晶层130中包括液晶分子131。可以理解地,通过改变液晶分子131的偏转角度,就够改变穿过第一偏振片110的线性偏振光的偏振方向,使得穿过第一偏振片110的线性偏振光,能够在平行或者近似平行第二偏振片120的透过轴121的方向上,存在至少部分的分量,也即是使得穿过第一偏振片110的至少部分线性偏振光,能够穿过第二偏振片120。
可以理解地,通过控制液晶分子131的偏转角度,能够对穿过第二偏振片120的光线强度起到控制作用,使得液晶显示面板100能够实现图像显示功能。
图1D为根据另一些实施例的液晶显示面板的结构图。图1E为根据又一些实施例的液晶显示面板的结构图。下面参照图1B~图1E,继续对液晶显示面板100进行举例说明。
在一些示例中,如图1B所示,液晶显示面板100包括阵列基板160和对置基板170。阵列基板160和对置基板170相对设置,且设置于第一偏振片110和第二偏振片120之间。
示例的,当第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧时,阵列基板160相对于对置基板170靠近第一偏振片110。液晶层130设置于阵列基板160和对置基板170之间。
在一些示例中,如图1D所示,液晶显示面板100具有显示区AA和周边区BB。示例的,周边区BB围设于显示区AA。需要说明的是,图1D中的虚线框仅仅是为了便于示出显示区AA,不对显示区AA做进一步限定。
液晶显示面板100包括多个子像素101,多个子像素101设置于液晶显示面板100的显示区AA内。多个子像素101阵列排布,使得液晶显示面板100能够实现图像显示功能。可以理解地,本公开的实施例对子像素101的数量不做进一步限定。
如图1E所示,子像素101包括像素驱动电路102和像素电极V2,像素驱动电路102和像素电极V2电连接。示例的,液晶显示面板100还包括多条栅线G和多条数据线D。一条栅线G与一行子像素101内的各个像素驱动电路102电连接,一条数据线D与一列子像素101内的各个像素驱动电路102电连接。
示例的,如图1E所示,像素驱动电路102包括一个薄膜晶体管(英文全称:Thin Film Transistor,英文简称:TFT)T和一个存储电容C。栅线G与薄膜晶体管T的栅极电连接,数据线D与薄膜晶体管T的源极电连接。
在一些示例中,如图1B所示,阵列基板160包括第一衬底162,多条栅 线G、多条数据线D、像素驱动电路102和像素电极V2均设置于第一衬底162的一侧。示例的,第一衬底162的材料包括玻璃。
如图1B所示,液晶显示面板100还包括公共电极V1。公共电极V1和各个像素电极V2之间能够形成电场。通过控制各个像素电极V2的电压值,就能够对公共电极V1和各个像素电极V2之间形成的电场的强度起到控制作用,从而对液晶层130中液晶分子131的偏转角度起到控制作用。
在一些示例中,如图1B所示,公共电极V1同样设置于第一衬底162的一侧。示例的,公共电极V1可以相对于像素电极V2更靠近第一衬底162。
在一些示例中,公共电极V1为板状电极,像素电极V2为条状电极。在另一些示例中,像素电极V2也可以为梳齿状电极。
在一些示例中,液晶显示面板100可以为高级超维场开关(英文全称:Advanced Super Dimension Switch,英文简称:ADS)显示模式的液晶显示面板。或者,液晶显示面板100也可以为共平面切换型(英文全称:In-plane Switching,英文简称:IPS)显示模式的液晶显示面板。
在一些示例中,如图1B所示,液晶显示面板100还包括对置基板170。对置基板170包括第二衬底172和滤光膜174。滤光膜174设置于第二衬底172的一侧。示例的,如图1B所示,滤光膜174设置于第二衬底172靠近液晶层130的一侧。
示例的,滤光膜174包括红色滤光膜、绿色滤光膜和蓝色滤光膜。穿过第一偏振片110和液晶层130的光线照射至滤光膜174后,能够被滤光膜174过滤为红光、绿光和蓝光,并经由第二偏振片120射出。
可以理解地,通过调节照射至红色滤光膜、绿色滤光膜和蓝色滤光膜的光线强度,就能够对经由第二偏振片120射出的红光、绿光和蓝光的强度起到控制作用,使得液晶显示面板100能够实现全彩化图像显示。
图1F为根据一些实施例的液晶分子层的结构图。下面参照图1F,对液晶层130进行举例说明。
在一些示例中,如图1F所示,液晶层130包括液晶分子层132,液晶分子131设置于液晶分子层132内。
可以理解地,液晶分子131属于单光轴晶体,仅具有一个光轴。对于液晶分子131而言,可根据形状将其分为棒状(英文全称:Rod-Type)液晶分子和盘状(英文全称:Discotic)液晶分子。在棒状液晶分子中,其长轴为光轴;在盘状液晶分子131中,其短轴为光轴。示例的,液晶分子层132中的液晶分子131均为棒状液晶分子。
需要说明的是,本公开的实施例中,光轴(例如液晶分子131的光轴)又称光学轴。光在晶体中传播时,正交的两个波前进速度相等的方向为光轴的延伸方向,在这个方向上的光没有光学特性的变化。例如,各向异性晶体对在其中传播的光具有双折射效应,但是,当光在沿各向异性晶体的光轴在其中传播时,光不发生双折射。因此,各向异性晶体的光轴也可以定义为,光可以传播而不发生双折射的方向。
在一些示例中,如图1F所示,液晶层130还包括第一配向膜133和第二配向膜134。第一配向膜133和第二配向膜134分别设置于液晶分子层132的两侧。示例的,配向膜(例如第一配向膜133和第二配向膜134)是由聚合物材料制成,该聚合物材料例如为聚酰亚胺(英文全称:Polyamic,英文简称:PI)。
第一配向膜133被配置为锚定液晶分子层132中与其靠近的液晶分子131,使与第一配向膜133靠近的液晶分子131产生第一预倾角。第二配向膜134被配置为锚定液晶分子层132中与其靠近的液晶分子131,使与第二配向膜134靠近的液晶分子131产生第二预倾角。在一些示例中,第一配向膜133的配向方向与第二配向膜134的配向方向相同。
可以理解地,预倾角可使得液晶分子131处于预倾斜状态,预倾斜状态意味着配向膜(包括第一配向膜133和第二配向膜134)附近的液晶分子131相对于配向膜(包括第一配向膜133和第二配向膜134)所在的平面倾斜在特定方向上。
在一些示例中,棒状液晶分子的长轴与配向膜所在的平面相交,预倾角指的是棒状液晶分子的长轴与配向膜的配向方向之间所成的夹角。液晶分子131呈现的预倾角为,在液晶显示面板100未通电时,或像素电极V2与公共电极V1之间电压为0时,液晶分子131所呈现的状态中,靠近第一配向膜133的液晶分子的长轴与第一配向膜133的配向方向之间的夹角(即第一预倾角),靠近第二配向膜134的液晶分子131的长轴与第二配向膜134的配向方向之间的夹角(即第二预倾角)。
图2A为根据又一些实施例的液晶显示面板的结构图。图2B为根据又一些实施例的液晶显示面板的结构图。
在一些示例中,如图2A和图2B所示,液晶分子131的光轴在第一偏振片110上的正投影与第一偏振片110的透过轴111或第二偏振片120的透过轴121平行。
可以理解地,液晶分子131的光轴在第一偏振片110上的正投影与第一 偏振片110的透过轴111平行或者近似平行,或者,液晶分子131的光轴在第一偏振片110上的正投影与第二偏振片120的透过轴121在第一偏振片110上的正投影平行或者近似平行。
由上述可知,第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直。
因此,在一些示例中,如图2A所示,液晶分子131的光轴在第一偏振片110上的正投影,与第二偏振片120的透过轴121平行(也即是与第二偏振片120的透过轴121在第一偏振片110上的正投影平行)。相应的,液晶分子131的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111垂直。
而在另一些示例中,如图2B所示,液晶分子131的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行。相应的,液晶分子131的光轴在第一偏振片110上的正投影,与第二偏振片120的透过轴121垂直(也即是与第二偏振片120的透过轴121在第一偏振片110上的正投影垂直)。
由上述可知,第一偏振片110相对于第二偏振片120靠近液晶显示面板100的出光侧。在一些示例中,如图2A所示,可以将液晶分子131的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111垂直的设置方式称为O模式(英文全称:O Mode)。如图2B所示,可以将液晶分子131的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行的设置方式称为E模式(英文全称:E Mode)。
当没有对液晶层130中的液晶分子131施加电压(也即是像素电极V2与公共电极V1之间电压为0)时,可以将液晶层130视为+A补偿膜层(英文全称:+A Plate,中文名称:+A板)。此时,如果背光模组210正常提供光源,则液晶显示面板100处于L0状态,也即是暗态显示(全黑显示)。
由于液晶分子131的光轴与第一偏振片110的透过轴111或第二偏振片120的透过轴121平行,使得穿过第一偏振片110的线性偏振光照射至液晶层130后,能够沿着液晶分子131的厚度方向传播,也即是能够沿着液晶分子131的Z轴方向传播。可以理解地,沿着液晶分子131的Z轴方向传播的光线,不会发生双折射或者仅仅极少量的光线会发生双折射,故而,在液晶显示面板100处于L0状态下时,液晶分子131的双折射导致的漏光现象并不明显。
由上述可知,如图1C所示,第一偏振片110的透过轴111和第二偏振片 120的透过轴121垂直,也即是,从液晶显示面板100显示侧的法向(法线的方向,法线垂直或者近似垂直液晶显示面板100的显示侧)来看,第一偏振片110的透过轴111和第二偏振片120的透过轴121垂直,穿过第一偏振片110的光线不能够穿过第二偏振片120,使得液晶显示面板100能够实现暗态显示。
图2C为根据一些实施例的第一偏振片和第二偏振片的透过轴在侧视角下的相对位置关系图。
如图2C所示,从偏离液晶显示面板100显示侧的法向的方向(也即是侧视角,例如图2C中P方向所示)来看,第一偏振片110的透过轴111和第二偏振片120的透过轴121不是垂直的。这样一来,导致侧视角下,穿过第一偏振片110的线性偏振光,在平行于或者近似平行于第二偏振片120的透过轴121的方向上存在分量。也即是,侧视角下穿过第一偏振片110的一部分线性偏振光,能够穿过第二偏振片120,使得液晶显示面板100在暗态显示时存在侧视角漏光现象,影响了液晶显示面板100的显示效果。
图2D为根据一些实施例的全视角对比度分布图。
示例的,如图2D所示,沿远离圆心方向分布的多个同心圆代表不同的极角角度,各个同心圆上不同的点代表不同的方位角角度。
在一些示例中,如图2D所示,在侧视角下,以方位角角度为45°为例(如图2D中箭头所指),当极角角度逐渐增大时,对比度(英文全称:Contrast Ratio,英文简称:CR)不断减小。也即是,在方位角角度不变的情况下,极角角度越大,对比度越低,液晶显示面板100的漏光现象也就越严重。
图2E为根据一些实施例的侧视角光线在庞加莱球图中的位置图。
在一些示例中,以方位角角度为45°,极角角度为60°为例,在O模式下,液晶显示面板100处于L0状态下时,侧视角光线在庞加莱球图中的位置如图2E所示。
由上述可知,在一些示例中,第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧。也即是,背光模组210发出的光线沿第一偏振片110至第二偏振片120的方向照射液晶显示面板100。
图2E中,点A1位置为偏振方向平行于或者近似平行于第一偏振片110的吸收轴方向的偏振光。点T1位置为偏振方向平行于或者近似平行于第一偏振片110的透过轴111方向的偏振光。点A2位置为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向的偏振光。点T2位置为偏振方向平行于或者近似平行于第二偏振片120的透过轴121方向的偏振光。
由图2E可以看出,点T1与点A2不重合,也即是,穿过第一偏振片110的线性偏振光的偏振方向(图2E中T1位置),没有平行于或者近似平行于第二偏振片120的吸收轴(图2E中A2位置)。从而,使得穿过第一偏振片110的线性偏振光,一部分能够穿过第二偏振片120,导致液晶显示面板100在暗态显示时存在侧视角漏光现象,影响液晶显示面板100的显示效果。
图3A为根据又一些实施例的液晶显示面板的结构图。图3B为根据又一些实施例的液晶显示面板的结构图。
为了改善液晶显示面板100在暗态显示时的侧视角漏光现象,提高液晶显示面板100的显示效果,如图3A和图3B所示,本公开的实施例提供了一种液晶显示面板100。
如图3A所示,液晶显示面板100包括第一偏振片110、第二偏振片120、液晶层130、第一光学补偿层140和第二光学补偿层150。第二偏振片120与第一偏振片110相对设置。第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直。第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧。液晶层130设置于第一偏振片110和第二偏振片120之间。液晶层130中包括液晶分子131,液晶分子131的光轴在第一偏振片110上的正投影与第一偏振片110的透过轴111或第二偏振片120的透过轴121平行。
需要说明的是,本公开的上述实施例中,已经对第一偏振片110、第二偏振片120、液晶层130以及液晶层130中的液晶分子131等进行了举例说明,在此不再赘述。
如图3A和图3B所示,第一光学补偿层140和第二光学补偿层150层叠设置于第一偏振片110与液晶层130之间或液晶层130与第二偏振片120之间。
在一些示例中,如图3A所示,第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130与第二偏振片120之间。在另一些示例中,如图3B所示,第一光学补偿层140和第二光学补偿层150层叠设置于第一偏振片110与液晶层130之间。
如图3A和图3B所示,第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行。由于第一偏振片110的透过轴111与吸收轴垂直,也即是,第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的吸收轴垂直。第二光学补偿层150的光轴与第二光学补偿层150所在平面垂直。
在一些示例中,第一光学补偿层140的光轴在第一偏振片110上的正投 影,与第一偏振片110的透过轴111可以平行或者近似平行。示例性的,当第一光学补偿层140在第一偏振片110上的正投影,与第一偏振片110的透过轴111之间所夹锐角的角度小于或等于5°时,可以认为当第一光学补偿层140在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行。
可以理解地,由于第一偏振片110的透过轴111,与第一光学补偿层140的光轴在第一偏振片110上的正投影平行,使得穿过第一偏振片110的线性偏振光的偏振方向,能够与第一光学补偿层110的光轴方向平行,从而使得第一光学补偿层140能够对穿过第一偏振片110的线性偏振光进行补偿。
可以理解地,如图3A和图3B所示,由于第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直,这样一来,设置第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行,使得第一光学补偿层140的光轴在第一偏振片110上的正投影,能够与第二偏振片120的透过轴121在第一偏振片110上的正投影垂直。
第二光学补偿层150的光轴与第二光学补偿层150所在平面垂直,可以理解地,第二光学补偿层150的光轴与第二光学补偿层150所在平面垂直可以垂直或者近似垂直。
示例的,第二光学补偿层150的光轴与第二光学补偿层150所在平面之间所夹锐角的角度大于或等于88°(也即是第二光学补偿层150的光轴与第二光学补偿层150所在平面之间所夹钝角的角度小于或等于92°)时,可以认为第二光学补偿层150的光轴与第二光学补偿层150所在平面垂直。
可以理解地,通过第一光学补偿层140和第二光学补偿层150,能够对侧视角下,穿过第一偏振片110的线性偏振光的相位延迟进行补偿,改变该偏振光的偏振态,减少液晶显示面板100在暗态显示时,侧视角下穿过第二偏振片120的光线强度,从而能够改善液晶显示面板100在暗态显示时,侧视角的漏光现象,提高液晶显示面板100的显示效果。
可以理解地,光学补偿层(例如第一光学补偿层140和第二光学补偿层150)的光轴,为光线照射至光学补偿层时,折射率最大的方向。光线沿光学补偿层(例如第一光学补偿层140和第二光学补偿层150)的光轴的传播速度最慢。
在一些示例中,第一光学补偿层140包括各向异性晶体层,具有至少一个光轴。示例的,第一光学补偿层140可以为单光轴光学补偿层,也可以为双光轴光学补偿层。第二光学补偿层150也包括各向异性晶体层,具有至少一个光轴。示例的,第二光学补偿层150为单光轴光学补偿层,仅具有一个 光轴。
由上述可知,第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行,使得第一光学补偿层140的光轴,能够与第二偏振片121的透过轴121在第一偏振片110上的正投影垂直。也即是,第一光学补偿层140的光轴,能够与第二偏振片121的吸收轴在第一偏振片110上的正投影平行。
在一些示例中,如图3A所示,第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130和第二偏振片120之间,使得第一光学补偿层140与第二偏振片120之间的距离,小于第一光学补偿层140与第一偏振片110之间的距离。这样一来,第一光学补偿层140的光轴,与第二偏振片121的吸收轴在第一偏振片110上的正投影平行,能够简化液晶显示面板100的制备工艺,降低液晶显示面板100的成本。
在一些示例中,第一光学补偿层140的面内延迟R O1和液晶层130的面内延迟R OLC满足以下公式:
R O1=n 1×R OLC+m 1λ 1
其中,m 1为整数,n 1的范围为
Figure PCTCN2022095683-appb-000007
λ 1的范围为390nm~780nm。
可以理解地,R O1为第一光学补偿层140的面内相位延迟,也即是光线在法线方向(垂直方向)上穿过第一光学补偿层140时,在第一光学补偿层140面内产生的相位延迟。
在一些示例中,第一光学补偿层140的面内相位延迟为光线在法线方向(垂直方向)上穿过第一光学补偿层140时的实际延迟。
示例的,R O1=(n x1-n y1)×d 1。其中,n x1为第一光学补偿层140面内的X 1轴方向上的折射率,n y1为在第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率,d 1为第一光学补偿层140的厚度。
需要说明的是,在X 1轴与第一光学补偿层140存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 1轴设置于第一光学补偿层140的面内。在一些示例中,X 1轴与第一光学补偿层140之间的倾角在2°以内,提高第一光学补偿层140的补偿效果。
可以理解地,R OLC为液晶层130的面内相位延迟,也即是光线在法线方向(垂直方向)上穿过液晶层130时,在液晶层130面内产生的相位延迟。在一些示例中,液晶层130的面内相位延迟为光线在法线方向(垂直方向)上穿过液晶层130时的实际延迟。
示例的,R OLC=(n xLC-n yLC)×d LC。其中,n xLC为液晶层130面内的X轴方向上的折射率,n yLC为在液晶层130面内与X轴垂直的Y轴方向上的折射率,d LC为液晶层130的厚度。其中,X轴为液晶层130中液晶分子131的光轴。
需要说明的是,在X轴与液晶层130存在较小倾角(例如4°以内的倾角)的情况下,也可以认为X轴设置于液晶层130的面内。
m 1为整数,可以理解地,m 1可以为正整数、负整数或者0。
n 1的范围为
Figure PCTCN2022095683-appb-000008
示例的,n 1的取值可以为
Figure PCTCN2022095683-appb-000009
或者
Figure PCTCN2022095683-appb-000010
等。
在一些示例中,n 1的取值与
Figure PCTCN2022095683-appb-000011
之间的差值越小,第一光学补偿层140的补偿效果越好。
λ 1的范围为390nm~780nm,在一些示例中,λ 1为背光模组210发出光线的波长,示例的,背光模组210发出的光线可以为自然光。在一些示例中,λ 1的范围可以为400nm~700nm或者500nm~600nm等。示例的,λ 1的取值可以为450nm、550nm、650nm或者750nm等。
图3C为根据另一些实施例的侧视角光线在庞加莱球图中的位置图。图3D为根据又一些实施例的侧视角光线在庞加莱球图中的位置图。
举例而言,如图3A所示,在O模式下,第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130与第二偏振片120之间,且第一光学补偿层140的光轴与第一偏振片110的透过轴111平行,与第二偏振片120的透过轴121垂直时,侧视角光线在庞加莱球图中的位置如图3C所示。
由上述可知,在一些示例中,第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧。也即是,背光模组210发出的光线沿第一偏振片110至第二偏振片120的方向照射液晶显示面板100。
以方位角角度为45°,极角角度为60°为例,图3C中,点A1位置为偏振方向平行于或者近似平行于第一偏振片110的吸收轴方向的偏振光。点T1位置为偏振方向平行于或者近似平行于第一偏振片110的透过轴111方向的偏振光。点A2位置为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向的偏振光。点T2位置为偏振方向平行于或者近似平行于第二偏振片120的透过轴121方向的偏振光。
由图3C可以看出,点T1位置的线性偏振光,在穿过第一光学补偿层140后,能够被转换为椭圆偏振光(如图3C中点Q1位置所示)。椭圆偏振光在穿过第二光学补偿层150后,能够被再次转换为线性偏振光,并且线性偏振光的偏振方向,与第二偏振片120的吸收轴方向平行或者近似平行(也即是 与第二偏振片120的透过轴121的方向垂直或者近似垂直,如图3C中点A2位置所示)。
再次举例而言,如图3B所示,在E模式下,第一光学补偿层140和第二光学补偿层150层叠设置于第一偏振片110和液晶层130之间,且第一光学补偿层140的光轴与第一偏振片110的透过轴111平行,与第二偏振片120的透过轴121垂直时,侧视角光线在庞加莱球图中的位置如图3D所示。
以方位角角度为45°,极角角度为60°为例,图3D中,点A1位置为偏振方向平行于或者近似平行于第一偏振片110的吸收轴方向的偏振光。点T1位置为偏振方向平行于或者近似平行于第一偏振片110的透过轴111方向的偏振光。点A2位置为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向的偏振光。点T2位置为偏振方向平行于或者近似平行于第二偏振片120的透过轴121方向的偏振光。
由图3D可以看出,点T1位置的线性偏振光,在穿过第一光学补偿层140后,能够被转换为椭圆偏振光(如图3D中点Q2位置所示)。椭圆偏振光在穿过第二光学补偿层150后,能够被再次转换为线性偏振光,并且线性偏振光的偏振方向,与第二偏振片120的吸收轴方向平行或者近似平行(也即是与第二偏振片120的透过轴121的方向垂直或者近似垂直,如图3D中点A2位置所示)。
由图3C和图3D可以看出,在侧视角时,穿过第一偏振片110的线性偏振光,能够在第一光学补偿层140和第二光学补偿层150的补偿作用下,被转换为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向(也即是垂直于或者近似垂直于第二偏振片120的透过轴121方向)的线性偏振光,从而无法穿过第二偏振片120,改善了液晶显示面板100在暗态显示时,侧视角下的漏光现象,提高液晶显示面板100的视觉效果。
由上述可知,本公开的实施例中,通过设置第一光学补偿层140和第二光学补偿层150,对沿侧视角经过其中的偏振光的相位延迟进行补偿,改变该偏振光的偏振态,使该线性偏振光的偏振方向能够旋转至与第二偏振片120的透过轴121垂直或者近似垂直,从而无法穿过第二偏振片120。
也即是,通过设置第一光学补偿层140和第二光学补偿层150,能够减少液晶显示面板100在暗态显示时存在的侧视角漏光现象,提高液晶显示面板100的显示效果。
并且,本公开的实施例中,设置第一光学补偿层140的面内延迟R O1和液晶层130的面内延迟R OLC满足公式R O1=n 1×R OLC+m 1λ 1。其中,m 1为整数,n 1 的范围为
Figure PCTCN2022095683-appb-000012
λ 1的范围为390nm~780nm,提高了第一光学补偿层140对于线性偏振光的补偿效果,改善液晶显示面板100在暗态显示下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
在一些示例中,第一光学补偿层140为基于液晶分子涂布的光学补偿膜层或基于拉伸聚合物薄膜的光学补偿膜层。第二光学补偿层150为基于液晶分子涂布的光学补偿膜层或基于拉伸聚合物薄膜的光学补偿膜层。示例的,第一光学补偿层140和第二光学补偿层150可以相同,也可以不同。
图3E为根据一些实施例的第二光学补偿层的结构图。
在一些示例中,如图3E所示,第二光学补偿层150包括补偿液晶分子层151和补偿配向膜153。可以理解地,补偿液晶分子层151中包括补偿液晶分子152。补偿配向膜153用于锚定补偿液晶分子层151中与其靠近的补偿液晶分子152,使得补偿液晶分子152的光轴,能够与补偿液晶分子层151垂直或者近似垂直。可以理解地,补偿液晶分子152的光轴也即是第二光学补偿层150的光轴。
示例的,补偿液晶分子152的光轴与补偿液晶分子层151之间所夹锐角的角度大于或等于88°(也即是补偿液晶分子152的光轴与补偿液晶分子层151之间所夹钝角的角度小于或等于92°)时,可以认为补偿液晶分子152的光轴与补偿液晶分子层151垂直。
由上述可知,如图1B所示,液晶显示面板100包括阵列基板160和对置基板170。阵列基板160包括第一衬底162,对置基板170包括第二衬底172。第一衬底162和第二衬底172设置于第一偏振片110和第二偏振片120之间。
图4A为根据又一些实施例的液晶显示面板的结构图。图4B为根据又一些实施例的液晶显示面板的结构图。图4C为根据又一些实施例的液晶显示面板的结构图。图4D为根据又一些实施例的液晶显示面板的结构图。图4E为根据又一些实施例的液晶显示面板的结构图。图4F为根据又一些实施例的液晶显示面板的结构图。下面参照图4A~图4F,对第一衬底162、第二衬底172、第一光学补偿层140和第二光学补偿层150之间的位置关系进行举例说明。
在一些示例中,如图4A~图4C所示,第一光学补偿层140和第二光学补偿层150设置于液晶层130与第二偏振片120之间。在一些示例中,如图4A所示,第一光学补偿层140和第二光学补偿层150均设置于第二衬底172远离液晶层130的一侧。在另一些示例中,如图4B所示,第一光学补偿层140和第二光学补偿层150均设置于第二衬底172靠近液晶层130的一侧。在又 一些示例的,如图4C所示,第一光学补偿层140和第二光学补偿层150中的一者设置于第二衬底172靠近液晶层130的一侧,另一者设置于第二衬底172远离液晶层130的一侧。
类似地,在另一些示例中,如图4D~图4F所示,第一光学补偿层140和第二光学补偿层150设置于第一偏振片110与液晶层130之间。在一些示例中,如图4D所示,第一光学补偿层140和第二光学补偿层150均设置于第一衬底162远离液晶层130的一侧。在另一些示例中,如图4E所示,第一光学补偿层140和第二光学补偿层150均设置于第一衬底162靠近液晶层130的一侧。在又一些示例的,如图4F所示,第一光学补偿层140和第二光学补偿层150中的一者设置于第一衬底162靠近液晶层130的一侧,另一者设置于第一衬底162远离液晶层130的一侧。
需要说明的是,本公开的实施例对第一衬底162、第二衬底172、第一光学补偿层140和第二光学补偿层150之间的位置关系不做进一步限定。
在一些实施例中,n 1的取值为
Figure PCTCN2022095683-appb-000013
可以理解地,n 1的取值为
Figure PCTCN2022095683-appb-000014
也即是
Figure PCTCN2022095683-appb-000015
在一些示例中,m 1的取值为0,也即是第一光学补偿层140的面内延迟
Figure PCTCN2022095683-appb-000016
如此设置,提高了第一光学补偿层140,对穿过第一偏振片110的线性偏振光的相位延迟的补偿效果,改变该偏振光的偏振态,使该线性偏振光的偏振方向旋转至与第二偏振片120的透过轴121垂直或者近似垂直(也即是与第二偏振片120的吸收轴平行或者进行平行),从而改善液晶显示面板100在暗态下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
并且,设置m 1的取值为0,如图3C所示,使得第一光学补偿层140能够直接将线性偏振光转换为椭圆偏振光(如图3C中点T1至点Q1所示),缩短了转换过程在庞加莱球图上的路径,简化了将线性偏振光转换为椭圆偏振光的过程。如此设置,能够简化第一光学补偿层140的制备工艺,降低生产成本。
在一些示例中,液晶层130的面内延迟R OLC的取值为
Figure PCTCN2022095683-appb-000017
基于此,第一光学补偿层140的面内延迟
Figure PCTCN2022095683-appb-000018
由上述可知,第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧。在一些实施例中,第一光学补偿层140为单光轴光学补偿层。如图3A和图3B所示,第二光学补偿层150设置于第一光学补偿层140远离 第一偏振片110的一侧。
第一光学补偿层140为单光轴光学补偿层,也即是第一光学补偿层140仅包含一条光轴。
第二光学补偿层150设置于第一光学补偿层140远离第一偏振片110的一侧,在一些示例中,如图3A所示,当第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130和第二偏振片120之间时,第二光学补偿层150设置于第一光学补偿层140和第二偏振片120之间。在另一些示例中,如图3B所示,当第一光学补偿层140和第二光学补偿层150层叠设置于第一偏振片110和液晶层130之间时,第二光学补偿层150设置于第一光学补偿层140和液晶层130之间。
第二光学补偿层150设置于第一光学补偿层140远离第一偏振片110的一侧,使得穿过第一偏振片110的线性偏振光,能够被第一光学补偿层140转换为椭圆偏振光,之后被第二光学补偿层150从椭圆偏振光再次转换为线性偏振光,并且,穿过第二光学补偿层150的线性偏振光的偏振方向,平行于或者近似平行于第二偏振片120的吸收轴(也即是穿过第二光学补偿层150的线性偏振光的偏振方向,垂直于或者近似垂直于第二偏振片120的透过轴121)。
这样一来,减小了液晶显示面板100在暗态显示时,侧视角下穿过第二偏振片120的光线强度,改善液晶显示面板100在暗态显示下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
在一些实施例中,第一光学补偿层140的面内延迟R O1的范围为105nm~145nm。
可以理解地,R O1为第一光学补偿层140的面内相位延迟。由上述可知,第一光学补偿层140的面内延迟R O1=(n x1-n y1)×d 1。这样一来,通过调节第一光学补偿层140面内的X 1轴方向上的折射率n x1、第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率n y1、第一光学补偿层140的厚度d 1,能够对第一光学补偿层140的面内延迟R O1起到调节作用,使得第一光学补偿层140的面内延迟R O1的范围能够为105nm~145nm。
在一些示例中,第一光学补偿层140的面内延迟R O1的范围可以为105nm~145nm、110nm~140nm、115nm~135nm、120nm~130nm或者123nm~127nm等。
在一些示例中,第一光学补偿层140的面内延迟R O1的取值可以为125±15nm、125±10nm、125±5nm或者125±2nm等。可以理解地,在一些示例 中,第一光学补偿层140的面内延迟R O1的取值与125nm之间的差值越小,第一光学补偿层140的补偿效果越好。
在一些示例中,第一光学补偿层140的面内延迟R O1的取值可以为108nm、112nm、118nm、125nm、128nm、132nm、138nm或者142nm等。
可以理解地,第一光学补偿层140的面内延迟R O1的范围105nm~145nm,也即是第一光学补偿层140在面内能够对光线进行正向的相位补偿,使得穿过第一光学补偿层140之后的偏振光的相位,相比于穿过第一光学补偿层140之前的偏振光的相位能够延后。
第一光学补偿层140的厚度方向延迟R th1的范围为42.5nm~82.5nm。
可以理解地,R th1为第一光学补偿层140的厚度方向的相位延迟,也即是光线在法线方向(垂直方向)上穿过第一光学补偿层140时,在第一光学补偿层140厚度方向产生的相位延迟。
示例的,第一光学补偿层140的厚度方向延迟R th1=[(n x1+n y1)/2-n z1]×d 1。其中,其中n x1为第一光学补偿层140面内的X 1轴方向上的折射率,n y1为在第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率,n z1为在第一光学补偿层140的厚度方向(Z 1轴方向)上的折射率,d 1为第一光学补偿层140的厚度。
需要说明的是,在X 1轴与第一光学补偿层140存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 1轴设置于第一光学补偿层140的面内。在一些示例中,X 1轴与第一光学补偿层140之间的倾角在2°以内,提高第一光学补偿层140的补偿效果。
通过调节第一光学补偿层140面内的X 1轴方向上的折射率n x1、第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率n y1、第一光学补偿层140的厚度方向(Z 1轴方向)上的折射率n z1和第一光学补偿层140的厚度d 1,能够对第一光学补偿层140的厚度方向延迟R th1起到调节作用,使得第一光学补偿层140的厚度方向延迟R th的范围能够为42.5nm~82.5nm。
在一些示例中,第一光学补偿层140的厚度方向延迟R th1的范围可以为42.5nm~82.5nm、47.5nm~77.5nm、52.5nm~72.5nm、60.5nm~70.5nm或者60.5nm~64.5nm等。
在一些示例中,第一光学补偿层140的厚度方向延迟R th1的取值可以为62.5±15nm、62.5±10nm、62.5±5nm或者62.5±2nm等。可以理解地,在一些示例中,第一光学补偿层140的厚度方向延迟R th1的取值与62.5nm之间的差值越小,第一光学补偿层140的补偿效果越好。
在一些示例中,第一光学补偿层140的厚度方向延迟R th1的取值可以为43nm、48nm、52nm、58nm、62.5nm、67nm、76nm或者80nm等。
可以理解地,第一光学补偿层140的的厚度方向延迟R th1的范围为42.5nm~82.5nm,也即是第一光学补偿层140在厚度方向能够对光线进行正向的相位补偿,使得穿过第一光学补偿层140之后的偏振光的相位,相比于穿过第一光学补偿层140之前的偏振光的相位能够延后。
通过设置第一光学补偿层140的面内延迟R O1的范围为105nm~145nm,设置第一光学补偿层的厚度方向延迟R th1的范围为42.5nm~82.5nm,使得第一光学补偿层140能够满足不同的补偿需求,提高第一光学补偿层140的适用性。
在一些实施例中,第二光学补偿层150的厚度方向延迟R th2和液晶层130的面内延迟R OLC满足以下公式:
R th2=n 2×R OLC+m 2λ 2
其中,m 2为整数,n 2的范围为
Figure PCTCN2022095683-appb-000019
λ 2的范围为390nm~780nm。
可以理解地,R th2为第二光学补偿层150的厚度方向的相位延迟,也即是光线在法线方向(垂直方向)上穿过第二光学补偿层150时,在第二光学补偿层150厚度方向产生的相位延迟。
示例的,第二光学补偿层150的厚度方向延迟R th2=[(n x2+n y2)/2-n z2]×d 2。其中,其中n x2为第二光学补偿层150面内的X 2轴方向上的折射率,n y2为在第二光学补偿层150面内与X 2轴垂直的Y 2轴方向上的折射率,n z2为在第二光学补偿层150的厚度方向(Z 2轴方向)上的折射率,d 2为第二光学补偿层150的厚度。
m 2为整数,可以理解地,m 2可以为正整数、负整数或者0。
n 2的范围为
Figure PCTCN2022095683-appb-000020
示例的,n 2的取值可以为
Figure PCTCN2022095683-appb-000021
或者
Figure PCTCN2022095683-appb-000022
等。
在一些示例中,n 2的取值与
Figure PCTCN2022095683-appb-000023
之间的差值越小,第二光补偿层150的补偿效果越好。
λ 2的范围为390nm~780nm,在一些示例中,λ 2为背光模组210发出光线的波长,示例的,背光模组210发出的光线可以为自然光。在一些示例中,λ 2的范围可以为400nm~700nm或者500nm~600nm等。示例的,λ 2的取值可以为450nm、550nm、650nm或者750nm等。
如此设置,提高了第二光学补偿层150对于线性偏振光的补偿效果,改 善液晶显示面板100在暗态显示下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
在一些实施例中,n 2的取值为
Figure PCTCN2022095683-appb-000024
可以理解地,n 2的取值为
Figure PCTCN2022095683-appb-000025
也即是
Figure PCTCN2022095683-appb-000026
在一些示例中,m 2的取值为0,也即是第二光学补偿层150的厚度方向延迟
Figure PCTCN2022095683-appb-000027
如此设置,提高了第二光学补偿层150,对穿过第一偏振片110的线性偏振光的相位延迟的补偿效果,改变该偏振光的偏振态,使该线性偏振光的偏振方向旋转至与第二偏振片120的透过轴121垂直或者近似垂直,从而改善液晶显示面板100在暗态下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
并且,设置m 2的取值为0,如图3C所示,使得第二光学补偿层150能够直接将椭圆偏振光转换为线性偏振光,并且线性偏振光的偏振方向,与第二偏振片120的吸收轴方向平行或者近似平行(如图3C中点Q1至点A2所示),缩短了转换过程在庞加莱球图上的路径,简化了将线性偏振光转换为椭圆偏振光的过程。如此设置,能够简化第二光学补偿层150的制备工艺,降低生产成本。
在一些示例中,液晶层130的面内延迟R OLC的取值为
Figure PCTCN2022095683-appb-000028
基于此,第二光学补偿层150的厚度方向延迟
Figure PCTCN2022095683-appb-000029
在一些实施例中,第二光学补偿层150的厚度方向延迟R th2的范围为-100nm~-60nm。
由上述可知,第二光学补偿层150的厚度方向延迟R th2=[(n x2+n y2)/2-n z2]×d 2。可以理解地,通过调节第二光学补偿层150面内的X 2轴方向上的折射率n x2、第二光学补偿层150面内与X 2轴垂直的Y 2轴方向上的折射率n y2、第二光学补偿层150的厚度方向(Z 2轴方向)上的折射率n z2和第二光学补偿层150的厚度d 2,能够对第二光学补偿层150的厚度方向延迟R th2起到调节作用,使得第二光学补偿层150的厚度方向延迟R th2的范围能够为-100nm~-60nm。
在一些示例中,第二光学补偿层150的厚度方向延迟R th2的范围可以为-100nm~-60nm、-95nm~-65nm、-90nm~-70nm、-85nm~-75nm或者-82nm~-78nm等。
在一些示例中,第二光学补偿层150的厚度方向延迟R th2的取值为-80± 15nm、-80±10nm、-80±5nm或者-80±2nm等。可以理解地,在一些示例中,第二光学补偿层150的厚度方向延迟R th2的取值与-80nm之间的差值越小,第二光学补偿层150的补偿效果越好。
在一些示例中,第二光学补偿层150的厚度方向延迟R th2的取值可以为-93nm、-80nm、-76nm或者-63nm等。
可以理解地,第二光学补偿层150的的厚度方向延迟R th2的范围为-100nm~-60nm,也即是第二光学补偿层150在厚度方向能够对光线进行反向的相位补偿,使得穿过第二光学补偿层150之后的偏振光的相位,相比于穿过第二光学补偿层150之前的偏振光的相位能够提前。
通过设置第二光学补偿层150的厚度方向延迟R th2的范围为-100nm~-60nm,使得第二光学补偿层150能够不同的补偿需求,提高第二光学补偿层150的适用性。
在一些示例中,第二光学补偿层150的面内延迟R O2的取值为0nm。可以理解地,R O2为第二光学补偿层150的面内相位延迟,也即是光线在法线方向(垂直方向)上穿过第二光学补偿层150时,在第二光学补偿层150面内产生的相位延迟。
在一些实施例中,第一光学补偿层140为+A补偿膜层,第二光学补偿层150为+C补偿膜层。
第一光学补偿层140为+A补偿膜层(英文全称:+A Plate,中文名称:+A板),可以理解地,+A补偿膜层满足n x1>n y1≈n z1或n x1>n y1=n z1。其中,n x1为该+A补偿膜层面内的X 1轴方向上的折射率,n y1为在该+A补偿膜层面内与X 1轴垂直的Y 1轴方向上的折射率,n z1为在该+A补偿膜层厚度方向(Z 1轴方向)上的折射率。
需要说明的是,在X 1轴与+A补偿膜层存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 1轴设置于+A补偿膜层的面内。可以理解,在X 1轴与+A补偿膜层存在较小倾角的情况下,n y1与n z1会与存在一定差异,考虑到上述情况,所以n y1可以与n z1相等或近似相等。
第二光学补偿层150为+C补偿膜层(英文全称:+C Plate,中文名称:+C板),可以理解地,+C补偿膜层满足n z2>n x2≈n y2或n x2>n y2=n z2。其中,n z2为在该+C补偿膜层厚度方向(Z 2轴方向)上的折射率,n x2为该+C补偿膜层面内的X 2轴方向上的折射率,n y2为该+C补偿膜层面内与X 2轴垂直的Y 2轴方向上的折射率。
需要说明的是,在X 2轴与+C补偿膜层存在较小倾角(例如5°以内的倾 角)的情况下,也可以认为X 2轴设置于+C补偿膜层的面内。可以理解,在X 2轴与+C补偿膜层存在较小倾角的情况下,n x2与n y2会与存在一定差异,考虑到上述情况,所以n x2可以与n y2相等或近似相等。
在一些示例中,X 2轴与第二光学补偿层150之间的倾角在2°以内,提高第二光学补偿层150的补偿效果。
由上述可知,在一些实施例中,第二光学补偿层150设置于第一光学补偿层140远离第一偏振片110的一侧,也即是,+C补偿膜层设置于+A补偿膜层远离第一偏振片110的一侧。
图5A为根据另一些实施例的全视角对比度分布图。
示例的,图5A为当第一光学补偿层140为+A补偿膜层、第二光学补偿层150为+C补偿膜层时,液晶显示面板100的全视角对比度分布图。如图5A所示,沿远离圆心方向分布的多个同心圆代表不同的极角角度,各个同心圆上不同的点代表不同的方位角角度。
在一些示例中,如图5A所示,在侧视角下,以方位角角度为45°为例(如图5A中箭头所指),当极角角度逐渐增大时,对比度缓慢减小。也即是,相比于图2D来说,通过设置+A补偿膜层和+C补偿膜层,在方位角角度不变,在极角角度增大时,使得对比度能够缓慢减小,改善了液晶显示面板100在暗态显示时,侧视角的漏光现象,提高液晶显示面板100的显示效果。
示例的,如图5A所示,在方位角角度为0°、90°、180°和270°时,极角角度增大,对比度同样能够缓慢减小,改善了液晶显示面板100在暗态显示时,侧视角的漏光现象。
图5B为根据一些实施例的侧视角漏光亮度曲线图。
如图5B所示,曲线a为没有设置光学补偿层(例如第一光学补偿层140和第二光学补偿层150),液晶显示面板100在暗态显示时,侧视角下漏光亮度(单位尼特,英文简写:nit)随极角角度变化的曲线。曲线b为设置+A补偿膜层和+C补偿膜层,液晶显示面板100在暗态显示时,侧视角下漏光亮度(单位尼特,英文简写:nit)随极角角度变化的曲线。
由曲线a和曲线b可以看出,通过设置+A补偿膜层和+C补偿膜层,大幅度减小了液晶显示面板100在暗态显示时,侧视角下的漏光亮度,改善了液晶显示面板100在暗态显示时,侧视角下的漏光现象,提高液晶显示面板100的显示效果。
图6A为根据又一些实施例的液晶显示面板的结构图。图6B为根据又一些实施例的液晶显示面板的结构图。
由上述可知,在一些实施例中,第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧,并且,第二光学补偿层150设置于第一光学补偿层140远离第一偏振片110的一侧。在另一些实施例中,如图6A和图6B所示,第二光学补偿层150设置于第一光学补偿层140靠近第一偏振片110的一侧。
在一些示例中,如图6A所示,当第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130和第二偏振片120之间时,第二光学补偿层150设置于第一光学补偿层140和液晶层130之间。在另一些示例中,如图6B所示,当第一光学补偿层140和第二光学补偿层150层叠设置于第一偏振片110和液晶层130之间时,第二光学补偿层150设置于第一光学补偿层140和第一偏振片110之间。
第一光学补偿层140为双光轴光学补偿层。第一光学补偿层140包括第一光轴和第二光轴,第一光轴的长度大于第二光轴的长度。第一光轴在第一偏振片110上的正投影与第一偏振片110的透过轴111平行。也即是,第一光学补偿层140的两条光轴中,较长的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行。
在一些示例中,第一光轴为第一光学补偿层140面内的X 1轴,也即是第一光学补偿层140的光轴为第一光学补偿层140面内的X 1轴。
在一些示例中,如图6A和图6B所示,第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111可以平行或者近似平行。
示例性的,当第一光学补偿层140在第一偏振片110上的正投影,与第一偏振片110的透过轴111之间所夹锐角的角度小于或等于5°时,可以认为当第一光学补偿层140在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行。由于第一偏振片110的透过轴111与吸收轴垂直,也即是,第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的吸收轴垂直。
可以理解地,由于第一偏振片110的透过轴111,与第一光学补偿层140的光轴在第一偏振片110上的正投影平行,使得穿过第一偏振片110的线性偏振光的偏振方向,能够与第一光学补偿层110的光轴方向平行,从而使得第一光学补偿层140能够对穿过第一偏振片110的线性偏振光进行补偿。
可以理解地,如图6A和图6B所示,由于第一偏振片110的透过轴111与第二偏振片120的透过轴121垂直,这样一来,设置第一光学补偿层140 的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行,使得第一光学补偿层140的光轴在第一偏振片110上的正投影,能够与第二偏振片120的透过轴121在第一偏振片110上的正投影垂直。
可以理解地,通过第一光学补偿层140和第二光学补偿层150,能够对侧视角下,穿过第一偏振片110的线性偏振光的相位延迟进行补偿,改变该偏振光的偏振态,减少液晶显示面板100在暗态显示时,侧视角下穿过第二偏振片120的光线强度,从而能够改善液晶显示面板100在暗态显示时,侧视角的漏光现象,提高液晶显示面板100的显示效果。
可以理解地,光学补偿层(例如第一光学补偿层140和第二光学补偿层150)的光轴,为光线照射至光学补偿层时,折射率最大的方向。光线沿光学补偿层(例如第一光学补偿层140和第二光学补偿层150)的光轴的传播速度最慢。
图6C为根据又一些实施例的侧视角光线在庞加莱球图中的位置图。图6D为根据又一些实施例的侧视角光线在庞加莱球图中的位置图。
举例而言,如图6A所示,在O模式下,第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130和第二偏振片120之间,且第一光学补偿层140的光轴与第一偏振片110的透过轴111平行,与第二偏振片120的透过轴121垂直时,侧视角光线在庞加莱球图中的位置如图6C所示。
由上述可知,在一些示例中,第一偏振片110相对于第二偏振片120靠近液晶显示面板100的入光侧。也即是,背光模组210发出的光线沿第一偏振片110至第二偏振片120的方向照射液晶显示面板100。
以方位角角度为45°,极角角度为60°为例,图6C中,点A1位置为偏振方向平行于或者近似平行于第一偏振片110的吸收轴方向的偏振光。点T1位置为偏振方向平行于或者近似平行于第一偏振片110的透过轴111方向的偏振光。点A2位置为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向的偏振光。点T2位置为偏振方向平行于或者近似平行于第二偏振片120的透过轴121方向的偏振光。
由图6C可以看出,点T1位置的线性偏振光,在穿过第二光学补偿层150后,能够被转换为椭圆偏振光(如图6C中点Q3位置所示)。椭圆偏振光在穿过第一光学补偿层140后,能够被再次转换为线性偏振光,并且线性偏振光的偏振方向,与第二偏振片120的吸收轴方向平行或者近似平行(也即是与第二偏振片120的透过轴121垂直或者近似垂直,如图6C中点A2位置所示)。
再次举例而言,如图6B所示,在E模式下,第一光学补偿层140和第二光学补偿层150层叠设置于第一偏振片110和液晶层130之间,且第一光学补偿层140的光轴与第一偏振片110的透过轴111平行,与第二偏振片120的透过轴121垂直时,侧视角光线在庞加莱球图中的位置如图6D所示。
以方位角角度为45°,极角角度为60°为例,图6D中,点A1位置为偏振方向平行于或者近似平行于第一偏振片110的吸收轴方向的偏振光。点T1位置为偏振方向平行于或者近似平行于第一偏振片110的透过轴111方向的偏振光。点A2位置为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向的偏振光。点T2位置为偏振方向平行于或者近似平行于第二偏振片120的透过轴121方向的偏振光。
由图6D可以看出,点T1位置的线性偏振光,在穿过第二光学补偿层150后,能够被转换为椭圆偏振光(如图6D中点Q4位置所示)。椭圆偏振光在穿过第一光学补偿层140后,能够被再次转换为线性偏振光,并且线性偏振光的偏振方向,与第二偏振片120的吸收轴方向平行或者近似平行(也即是与第二偏振片120的透过轴121垂直或者近似垂直,如图6D中点A2位置所示)。
由图6C和图6D可以看出,在侧视角时,穿过第一偏振片110的线性偏振光,能够在第一光学补偿层140和第二光学补偿层150的补偿作用下,被转换为偏振方向平行于或者近似平行于第二偏振片120的吸收轴方向(也即是垂直于或者近似垂直于第二偏振片120的透过轴121方向)的线性偏振光,从而无法穿过第二偏振片120,改善了液晶显示面板100在暗态显示时,侧视角下的漏光现象,提高液晶显示面板100的视觉效果。
由上述可知,本公开的实施例中,第二光学补偿层150即可以设置于第一光学补偿层140远离第一偏振片110的一侧,也可以设置于第一光学补偿层140靠近第一偏振片110的一侧,满足不同的补偿需求,提高液晶显示面板100的适用性。
由上述可知,第一光学补偿层140的光轴在第一偏振片110上的正投影,与第一偏振片110的透过轴111平行,使得第一光学补偿层140的光轴,能够与第二偏振片121的透过轴121在第一偏振片110上的正投影垂直。也即是,使得第一光学补偿层140的光轴,能够与第二偏振片121的吸收轴在第一偏振片110上的正投影平行。
在一些示例中,如图6A所示,第一光学补偿层140和第二光学补偿层150层叠设置于液晶层130和第二偏振片120之间,使得第一光学补偿层140 与第二偏振片120之间的距离,小于第一光学补偿层140与第一偏振片110之间的距离。这样一来,第一光学补偿层140的光轴,与第二偏振片121的吸收轴在第一偏振片110上的正投影平行,能够简化液晶显示面板100的制备工艺,降低液晶显示面板100的成本。
在一些实施例中,第一光学补偿层140的面内延迟R O1的范围为95nm~135nm。
可以理解地,R O1为第一光学补偿层140的面内相位延迟。由上述可知,第一光学补偿层140的面内延迟R O1=(n x1-n y1)×d 1。可以理解地,通过调节第一光学补偿层140面内的X 1轴方向上的折射率n x1、第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率n y1、第一光学补偿层140的厚度d 1,能够对第一光学补偿层140的面内延迟R O1起到调节作用,使得R O1的范围能够为95nm~135nm。
在一些示例中,第一光学补偿层140的面内延迟R O1的范围可以为95nm~135nm、100nm~130nm、105nm~125nm、110nm~120nm或者113nm~117nm等。
在一些示例中,第一光学补偿层140的面内延迟R O1的取值为115±15nm、115±10nm、115±5nm或者115±2nm等。可以理解地,在一些示例中,第一光学补偿层140的面内延迟R O1的取值与115nm之间的差值越小,第一光学部层140的补偿效果越好。
在一些示例中,第一光学补偿层140的面内延迟R O1的取值可以为98nm、102nm、115nm、127nm或者132nm等。
可以理解地,第一光学补偿层140的面内延迟R O1的范围95nm~135nm,也即是第一光学补偿层140在面内能够对光线进行正向的相位补偿,使得穿过第一光学补偿层140之后的偏振光的相位,相比于穿过第一光学补偿层140之前的偏振光的相位能够延后。
第一光学补偿层140的厚度方向延迟R th1的范围为-130nm~-90nm。
可以理解地,R th1为第一光学补偿层140的厚度方向的相位延迟,也即是光线在法线方向(垂直方向)上穿过第一光学补偿层140时,在第一光学补偿层140厚度方向产生的相位延迟。
由上述可知,第一光学补偿层140的厚度方向延迟R th1=[(n x1+n y1)/2-n z1]×d 1。其中,其中n x1为第一光学补偿层140面内的X 1轴方向上的折射率,n y1为在第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率,n z1为在第一光学补偿层140的厚度方向(Z 1轴方向)上的折射 率,d 1为第一光学补偿层140的厚度。
需要说明的是,在X 1轴与第一光学补偿层140存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 1轴设置于第一光学补偿层140的面内。在一些示例中,X 1轴与第一光学补偿层140之间的倾角在2°以内,提高第一光学补偿层140的补偿效果。
可以理解地,通过调节第一光学补偿层140面内的X 1轴方向上的折射率n x1、第一光学补偿层140面内与X 1轴垂直的Y 1轴方向上的折射率n y1、第一光学补偿层140的厚度方向(Z 1轴方向)上的折射率n z1和第一光学补偿层140的厚度d 1,能够对第一光学补偿层140的厚度方向延迟R th1起到调节作用,使得R th的范围能够为-130nm~-90nm。
在一些示例中,第一光学补偿层140的厚度方向延迟R th1的范围可以为-130nm~-90nm、-105nm~-75nm、-100nm~-80nm、-95nm~-85nm或者-92nm~-88nm。
在一些示例中,第一光学补偿层140的厚度方向延迟R th1的取值可以为-110±15nm、-110±10nm、-110±5nm或者-110±2nm等。可以理解地,在一些示例中,第一光学补偿层140的厚度方向延迟R th1的取值与-110nm之间的差值越小,第一光学补偿层140的补偿效果越好。
在一些示例中,第一光学补偿层140的厚度方向延迟R th1的取值可以为-128nm、-113nm、-110nm或者-98nm等。
可以理解地,第一光学补偿层140的的厚度方向延迟R th1的范围为-130nm~-90nm,也即是第一光学补偿层140在厚度方向能够对光线进行反向的相位补偿,使得穿过第一光学补偿层140之后的偏振光的相位,相比于穿过第一光学补偿层140之前的偏振光的相位能够提前。
通过设置第一光学补偿层140的面内延迟R O1的范围为95nm~135nm,设置第一光学补偿层140的厚度方向延迟R th1的范围为-130nm~-90nm,使得第一光学补偿层140能够满足不同的补偿需求,提高第一光学补偿层140的适用性。
在一些实施例中,第二光学补偿层150的厚度方向延迟R th2和液晶层130的面内延迟R OLC满足以下公式:
R th2=n 3×R OLC+m 3λ 3
其中,m 3为整数,n 3的范围为
Figure PCTCN2022095683-appb-000030
λ 3的范围390nm~780nm。
可以理解地,R th2为第二光学补偿层150的厚度方向的相位延迟,也即是 光线在法线方向(垂直方向)上穿过第二光学补偿层150时,在第二光学补偿层150厚度方向产生的相位延迟。
由上述可知,第二光学补偿层150的厚度方向延迟R th2=[(n x2+n y2)/2-n z2]×d 2。其中,其中n x2为第二光学补偿层150面内的X 2轴方向上的折射率,n y2为在第二光学补偿层150面内与X 2轴垂直的Y 2轴方向上的折射率,n z2为在第二光学补偿层150的厚度方向(Z 2轴方向)上的折射率,d 2为第二光学补偿层150的厚度。
m 3为整数,可以理解地,m 3可以为正整数、负整数或者0。
n 3的范围为
Figure PCTCN2022095683-appb-000031
示例的,n 2的取值可以为
Figure PCTCN2022095683-appb-000032
或者
Figure PCTCN2022095683-appb-000033
等。
在一些示例中,n 3的取值与
Figure PCTCN2022095683-appb-000034
之间的差值越小,第二光补偿层150的补偿效果越好。
λ 3的范围为390nm~780nm,在一些示例中,λ 3为背光模组210发出光线的波长,示例的,背光模组210发出的光线可以为自然光。在一些示例中,λ 3的范围可以为400nm~700nm或者500nm~600nm等。示例的,λ 3的取值可以为450nm、550nm、650nm或者750nm等。
如此设置,提高了第二光学补偿层150对于线性偏振光的补偿效果,改善液晶显示面板100在暗态显示下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
在一些实施例中,n 3的取值为
Figure PCTCN2022095683-appb-000035
可以理解地,n 3的取值为
Figure PCTCN2022095683-appb-000036
也即是
Figure PCTCN2022095683-appb-000037
在一些示例中,m的取值为0,也即是第二光学补偿层150的面内延迟
Figure PCTCN2022095683-appb-000038
如此设置,提高了第二光学补偿层150,对穿过第一偏振片110的偏振光的相位延迟的补偿效果,改变该偏振光的偏振态,使该线性偏振光的偏振方向旋转至与第二偏振片120的透过轴121垂直或者近似垂直,从而改善液晶显示面板100在暗态下,侧视角的漏光现象,提高液晶显示面板100的显示效果。
并且,设置m 3的取值为0,如图6C所示,使得第二光学补偿层150能够直接将椭圆偏振光转换为线性偏振光,并且线性偏振光的偏振方向,与第二偏振片120的吸收轴方向平行或者近似平行(如图6C中点Q3至点A2所示),缩短了转换过程在庞加莱球图上的路径,简化了将线性偏振光转换为椭圆偏振光的过程。如此设置,能够简化第二光学补偿层150的制备工艺, 降低生产成本。
在一些示例中,液晶层130的面内延迟R OLC的取值为
Figure PCTCN2022095683-appb-000039
基于此,第二光学补偿层150的面内延迟
Figure PCTCN2022095683-appb-000040
在一些实施例中,第二光学补偿层150的厚度方向延迟R th2的范围为90nm~130nm。
由上述可知,第二光学补偿层150的厚度方向延迟R th2=[(n x2+n y2)/2-n z2]×d 2。可以理解地,通过调节第二光学补偿层150面内的X 2轴方向上的折射率n x2、第二光学补偿层150面内与X 2轴垂直的Y 2轴方向上的折射率n y2、第二光学补偿层150的厚度方向(Z 2轴方向)上的折射率n z2和第二光学补偿层150的厚度d 2,能够对第二光学补偿层150的厚度方向延迟R th2起到调节作用,使得第二光学补偿层150的厚度方向延迟R th2的范围能够为90nm~130nm。
在一些示例中,第二光学补偿层150的厚度方向延迟R th2的范围可以为90nm~130nm、95nm~125nm、100nm~120nm、105nm~115nm或者108nm~112nm等。
在一些示例中,第二光学补偿层150的厚度方向延迟R th2的取值为110±15nm、110±10nm、110±5nm或者110±2nm等。可以理解地,在一些示例中,第二光学补偿层150的厚度方向延迟R th2的取值与110nm之间的差值越小,第二光学补偿层150的补偿效果越好。
在一些示例中,第二光学补偿层150的厚度方向延迟R th2的取值可以为98nm、110nm、118nm、128nm或者132nm等。
可以理解地,第二光学补偿层150的的厚度方向延迟R th2的范围为90nm~130nm,也即是第二光学补偿层150在厚度方向能够对光线进行正向的相位补偿,使得穿过第二光学补偿层150之后的偏振光的相位,相比于穿过第二光学补偿层150之前的偏振光的相位能够延后。
通过设置第二光学补偿层150的厚度方向延迟R th2的范围为90nm~130nm,使得第二光学补偿层150能够满足不同的补偿需求,提高第二光学补偿层150的适用性。
在一些示例中,第二光学补偿层150的面内延迟R O2的取值为0nm。可以理解地,R O2为第二光学补偿层150的面内相位延迟,也即是光线在法线方向(垂直方向)上穿过第二光学补偿层150时,在第二光学补偿层150面内产生的相位延迟。
在一些实施例中,第一光学补偿层140为+B补偿膜层,第二光学补偿层150为-C补偿膜层。
第一光学补偿层140为+B补偿膜层(英文全称:+B Plate,中文名称:+B板),可以理解地,+B补偿膜层满足n z1<n y1<n x1,其中,n x1为该+B补偿膜层面内的X 1轴方向上的折射率,n y1为在该+B补偿膜层面内与X 1轴垂直的Y 1轴方向上的折射率,n z1为在该+B补偿膜层厚度方向(Z 1轴方向)上的折射率。
需要说明的是,在X 1轴与+B补偿膜层存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 1轴设置于+B补偿膜层的面内。
第二光学补偿层150为-C补偿膜层(英文全称:-C Plate),可以理解地,-C补偿膜层满足n z2<n x2≈n y2或n z2<n x2=n y2。其中,n x2为该-C补偿膜层面内的X 2轴方向上的折射率,n y2为该-C补偿膜层面内与X 2轴垂直的Y 2轴方向上的折射率,n z2为在该-C补偿膜层厚度方向(Z 2轴方向)上的折射率。
需要说明的是,在X 2轴与-C补偿膜层存在较小倾角(例如5°以内的倾角)的情况下,也可以认为X 2轴设置于-C补偿膜层的面内。可以理解,在X 2轴与-C补偿膜层存在较小倾角的情况下,n y2与n X2会与存在一定差异,考虑到上述情况,所以n y2与n X2相等或近似相等。
由上述可知,在一些实施例中,第二光学补偿层150设置于第一光学补偿层140靠近第一偏振片110的一侧,也即是,-C补偿膜层设置于+B补偿膜层靠近第一偏振片110的一侧。
图6E为根据又一些实施例的全视角对比度分布图。
示例的,图6E为当第一光学补偿层140为+B补偿膜层、第二光学补偿层150为-C补偿膜层时,液晶显示面板100的全视角对比度分布图。如图6E所示,沿远离圆心方向分布的多个同心圆代表不同的极角角度,各个同心圆上不同的点代表不同的方位角角度。
在一些示例中,如图6E所示,以方位角角度为45°为例(如图6E中箭头所指),当极角角度逐渐增大时,对比度缓慢减小。也即是,相比于图2D来说,通过设置+B补偿膜层和-C补偿膜层,在方位角角度不变的情况下,在极角角度增大时,使得对比度能够缓慢减小,改善了液晶显示面板100的漏光现象,提高液晶显示面板100的显示效果。
并且,由图6E可以看出,在方位角45°、135°、225°和315°时,极角角度增大时,对比度能够缓慢减小,改善了液晶显示面板100在侧视角下的漏光现象。
由上述可知,如图5B所示,曲线a为没有设置光学补偿膜(包括第一光学补偿膜140和第二光学补偿膜150),液晶显示面板100在暗态显示时,侧视角下漏光亮度(单位尼特,英文简写:nit)随极角角度变化的曲线。
示例的,曲线c为设置+B补偿膜层和-C补偿膜层,液晶显示面板100在暗态显示时,侧视角下漏光亮度(单位尼特,英文简写:nit)随极角角度变化的曲线。
由曲线a和曲线c可以看出,通过设置+B补偿膜层和-C补偿膜层,大幅度减小了液晶显示面板100在暗态显示时,侧视角下的漏光亮度,改善了液晶显示面板100在暗态显示时,侧视角下的漏光现象,提高液晶显示面板100的显示效果。
本公开的实施例提供的显示装置200包括如上述的液晶显示面板100,因此具有上述的全部有益效果,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种液晶显示面板,包括:
    第一偏振片;
    与所述第一偏振片相对设置的第二偏振片,所述第一偏振片的透过轴与所述第二偏振片的透过轴垂直;所述第一偏振片相对于所述第二偏振片靠近所述液晶显示面板的入光侧;
    设置于所述第一偏振片和所述第二偏振片之间的液晶层,所述液晶层中包括液晶分子,所述液晶分子的光轴在所述第一偏振片上的正投影与所述第一偏振片的透过轴或所述第二偏振片的透过轴平行;
    第一光学补偿层和第二光学补偿层,层叠设置于所述第一偏振片与所述液晶层之间或所述液晶层与所述第二偏振片之间;
    所述第一光学补偿层的光轴在所述第一偏振片上的正投影与所述第一偏振片的透过轴平行;所述第二光学补偿层的光轴与所述第二光学补偿层所在平面垂直;
    所述第一光学补偿层的面内延迟R O1和所述液晶层的面内延迟R OLC满足以下公式:
    R O1=n 1×R OLC+m 1λ 1
    其中,m 1为整数,n 1的范围为
    Figure PCTCN2022095683-appb-100001
    λ 1的范围为390nm~780nm。
  2. 根据权利要求1所述的液晶显示面板,其中,n 1的取值为
    Figure PCTCN2022095683-appb-100002
  3. 根据权利要求1或2所述的液晶显示面板,其中,所述第一光学补偿层为单光轴光学补偿层,所述第二光学补偿层设置于所述第一光学补偿层远离所述第一偏振片的一侧。
  4. 根据权利要求3所述的液晶显示面板,其中,所述第一光学补偿层的面内延迟R O1的范围为105nm~145nm;所述第一光学补偿层的厚度方向延迟R th1的范围为42.5nm~82.5nm。
  5. 根据权利要求3或4所述的液晶显示面板,其中,所述第二光学补偿层的厚度方向延迟R th2和所述液晶层的面内延迟R OLC满足以下公式:
    R th2=n 2×R OLC+m 2λ 2
    其中,m 2为整数,n 2的范围为
    Figure PCTCN2022095683-appb-100003
    λ 2的范围为390nm~780nm。
  6. 根据权利要求5所述的液晶显示面板,其中,n 2的取值为
    Figure PCTCN2022095683-appb-100004
  7. 根据权利要求3~6中任一项所述的液晶显示面板,其中,所述第二光学补偿层的厚度方向延迟R th2的范围为-100nm~-60nm。
  8. 根据权利要求3~7中任一项所述的液晶显示面板,其中,所述第一光学补偿层为+A补偿膜层,所述第二光学补偿层为+C补偿膜层。
  9. 根据权利要求1或2所述的液晶显示面板,所述第二光学补偿层设置于所述第一光学补偿层靠近所述第一偏振片的一侧;所述第一光学补偿层为双光轴光学补偿层;所述第一光学补偿层包括第一光轴和第二光轴,所述第一光轴的长度大于所述第二光轴的长度;所述第一光轴在所述第一偏振片上的正投影与所述第一偏振片的透过轴平行。
  10. 根据权利要求9所述的液晶显示面板,其中,所述第一光学补偿层的面内延迟R O1的范围为95nm~135nm;所述第一光学补偿层的厚度方向延迟R th1的范围为-130nm~-90nm。
  11. 根据权利要求9或10所述的液晶显示面板,其中,所述第二光学补偿层的厚度方向延迟R th2和所述液晶层的面内延迟R OLC满足以下公式:
    R th2=n 3×R OLC+m 3λ 3
    其中,m 3为整数,n 3的范围为
    Figure PCTCN2022095683-appb-100005
    λ 3的范围为390nm~780nm。
  12. 根据权利要求11所述的液晶显示面板,其中,n 3的取值为
    Figure PCTCN2022095683-appb-100006
  13. 根据权利要求9~12中任一项所述的液晶显示面板,其中,所述第二光学补偿层的厚度方向延迟R th2的范围为90nm~130nm。
  14. 根据权利要求9~13中任一项所述的液晶显示面板,其中,所述第一光学补偿层为+B补偿膜层,所述第二光学补偿层为-C补偿膜层。
  15. 一种显示装置,包括:
    背光模组;
    如权利要求1~14中任一项所述的液晶显示面板;设置于所述背光模组的出光侧。
PCT/CN2022/095683 2022-05-27 2022-05-27 液晶显示面板和显示装置 WO2023226014A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/095683 WO2023226014A1 (zh) 2022-05-27 2022-05-27 液晶显示面板和显示装置
CN202280001511.8A CN117480443A (zh) 2022-05-27 2022-05-27 液晶显示面板和显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095683 WO2023226014A1 (zh) 2022-05-27 2022-05-27 液晶显示面板和显示装置

Publications (1)

Publication Number Publication Date
WO2023226014A1 true WO2023226014A1 (zh) 2023-11-30

Family

ID=88918164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095683 WO2023226014A1 (zh) 2022-05-27 2022-05-27 液晶显示面板和显示装置

Country Status (2)

Country Link
CN (1) CN117480443A (zh)
WO (1) WO2023226014A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431546A (zh) * 2001-12-27 2003-07-23 日本电气株式会社 有源矩阵类型液晶显示器
CN1487340A (zh) * 2002-03-08 2004-04-07 ���չ�˾ 液晶显示器件
JP2005221532A (ja) * 2004-02-03 2005-08-18 Sumitomo Chemical Co Ltd 液晶表示装置
CN1745329A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 具有正补偿膜的垂直排列型液晶显示器
JP2012177907A (ja) * 2011-02-01 2012-09-13 Fujifilm Corp 液晶表示装置
CN102866537A (zh) * 2012-09-03 2013-01-09 深圳市华星光电技术有限公司 液晶显示器
CN103293758A (zh) * 2013-05-14 2013-09-11 友达光电股份有限公司 显示器
CN109445193A (zh) * 2018-02-13 2019-03-08 京东方科技集团股份有限公司 一种水平电场型的显示面板、其制作方法及显示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1431546A (zh) * 2001-12-27 2003-07-23 日本电气株式会社 有源矩阵类型液晶显示器
CN1487340A (zh) * 2002-03-08 2004-04-07 ���չ�˾ 液晶显示器件
CN1745329A (zh) * 2003-01-28 2006-03-08 Lg化学株式会社 具有正补偿膜的垂直排列型液晶显示器
JP2005221532A (ja) * 2004-02-03 2005-08-18 Sumitomo Chemical Co Ltd 液晶表示装置
JP2012177907A (ja) * 2011-02-01 2012-09-13 Fujifilm Corp 液晶表示装置
CN102866537A (zh) * 2012-09-03 2013-01-09 深圳市华星光电技术有限公司 液晶显示器
CN103293758A (zh) * 2013-05-14 2013-09-11 友达光电股份有限公司 显示器
CN109445193A (zh) * 2018-02-13 2019-03-08 京东方科技集团股份有限公司 一种水平电场型的显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
CN117480443A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
US7397525B2 (en) Liquid crystal display device
US20070076152A1 (en) Liquid crystal display device
US8582061B2 (en) Optical film assembly and display device having the same
US9664945B2 (en) Display apparatus
KR20060125516A (ko) 액정 표시 소자
JP2008107687A (ja) 液晶表示装置、光学フィルムおよび端末装置
WO2006030512A1 (ja) 液晶表示素子
US20240176190A1 (en) Liquid Crystal Display Panel and Method of Manufacturing the Same, and Display Device
JP2006146088A (ja) 液晶表示装置
JP2004317714A (ja) 液晶表示装置および積層位相差板
US11868009B2 (en) Liquid crystal display panel and method for manufacturing the same, and display apparatus
WO2023226014A1 (zh) 液晶显示面板和显示装置
JP6818643B2 (ja) 液晶表示装置
JP2005084593A (ja) 液晶表示素子およびその製造方法
JP2006337676A (ja) 液晶表示素子
TWI279628B (en) Liquid crystal display device
US20240241408A1 (en) Liquid crystal display panel and display apparatus
JP2006337675A (ja) 液晶表示素子
US11275272B2 (en) Liquid crystal display device
JP6882225B2 (ja) 液晶表示装置
JP6882132B2 (ja) 液晶表示装置
JP2006011414A (ja) 液晶表示素子
JP2005338504A (ja) 液晶表示素子
JP2019120715A (ja) 液晶表示装置
CN110908169A (zh) 液晶显示面板

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001511.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18044492

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22943212

Country of ref document: EP

Kind code of ref document: A1