WO2023225948A1 - 振动器件、触摸显示面板和电子产品 - Google Patents

振动器件、触摸显示面板和电子产品 Download PDF

Info

Publication number
WO2023225948A1
WO2023225948A1 PCT/CN2022/095255 CN2022095255W WO2023225948A1 WO 2023225948 A1 WO2023225948 A1 WO 2023225948A1 CN 2022095255 W CN2022095255 W CN 2022095255W WO 2023225948 A1 WO2023225948 A1 WO 2023225948A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
diffusion layer
vibration device
piezoelectric material
conductive anti
Prior art date
Application number
PCT/CN2022/095255
Other languages
English (en)
French (fr)
Inventor
陈右儒
花慧
Original Assignee
京东方科技集团股份有限公司
北京京东方技术开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方技术开发有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/095255 priority Critical patent/WO2023225948A1/zh
Priority to CN202280001463.2A priority patent/CN117480884A/zh
Publication of WO2023225948A1 publication Critical patent/WO2023225948A1/zh

Links

Images

Definitions

  • Embodiments of the present disclosure relate to a vibration device, a touch display panel and electronic products.
  • tactile feedback is the focus of today's technology development.
  • the concept is that with the help of haptic technology, electronic device manufacturers can create unique and personalized tactile feedback on their devices for specific interactive experiences, thereby providing consumers with A unique experience that is more valuable and more realistic.
  • Tactile feedback can be divided into two categories, one is vibration feedback and the other is tactile reproduction technology.
  • Vibration feedback provides users with tactile feedback and vibration reminders by adding linear motors to the display device.
  • Surface tactile reproduction technology can perceive the characteristics of objects by touching the screen with the skin (fingertips), and can achieve efficient and realistic interaction on multimedia terminals. It has great research value and has therefore received widespread attention from domestic and foreign researchers.
  • surface tactile sensation is the interaction between the surface of an object and the surface of the skin (fingertips). Different friction forces are formed due to different surface structures. Therefore, by controlling surface friction, the simulation of different tactile or tactile sensations can be achieved.
  • Embodiments of the present disclosure provide a vibration device, a touch display panel and an electronic product.
  • the vibration device can prevent its own oxygen from entering the piezoelectric material layer, thereby not reducing the conductivity of the first transparent conductive anti-diffusion layer, thereby not affecting the display efficiency, and the first transparent
  • the conductive anti-diffusion layer itself is conductive and can be used as a driving electrode for piezoelectric materials.
  • At least one embodiment of the present disclosure provides a vibration device, which includes a base substrate, a first transparent conductive anti-diffusion layer, and a piezoelectric material layer.
  • the first transparent conductive anti-diffusion layer is located on the base substrate, and the piezoelectric material layer is located on the side of the first transparent conductive anti-diffusion layer away from the base substrate.
  • the first transparent conductive anti-diffusion layer is configured to prevent oxygen from entering the piezoelectric material layer.
  • the first transparent conductive anti-diffusion layer is a doped transparent conductive oxide.
  • the first transparent conductive anti-diffusion layer is fluorine-doped indium tin oxide.
  • the piezoelectric material layer is a transparent piezoelectric film.
  • the piezoelectric material layer is one or more of lead zirconate titanate, aluminum nitride, and potassium sodium niobate.
  • the thickness of the first transparent conductive anti-diffusion layer is 25 nm to 1000 nm.
  • the thickness of the piezoelectric material layer is 1 ⁇ m to 10 ⁇ m.
  • a vibration device provided in an embodiment of the present disclosure further includes a first transparent electrode located on a side of the base substrate close to the first transparent conductive anti-diffusion layer.
  • the material of the first transparent electrode is a transparent conductive oxide.
  • the material of the first transparent electrode is indium tin oxide.
  • the thickness of the first transparent electrode is 100 nm to 500 nm.
  • the conductivity of the first transparent conductive anti-diffusion layer is less than the conductivity of the first transparent electrode.
  • a vibration device provided in an embodiment of the present disclosure further includes a second transparent electrode located on a side of the piezoelectric material layer away from the base substrate.
  • a vibration device provided in an embodiment of the present disclosure further includes a second transparent conductive anti-diffusion layer located between the piezoelectric material layer and the second transparent electrode layer.
  • the material of the second transparent electrode is a transparent conductive oxide.
  • the piezoelectric material layer is formed by magnetron sputtering or vapor deposition.
  • At least one embodiment of the present disclosure provides a touch display panel, which includes the vibration device described in any one of the above.
  • At least one embodiment of the present disclosure provides an electronic product, which includes the touch display panel described in any one of the above.
  • Figure 1 is a schematic diagram of the sheet resistance of ITO films of different thicknesses changing with the heat treatment process
  • Figure 2a is a schematic structural diagram of adding a metal mesh between the ITO film and the PZT film
  • Figure 2b is a graph of the light transmittance of ITO films on different substrates
  • Figure 3 is a schematic structural diagram of a vibration device provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic plan view of another vibration device provided by an embodiment of the present disclosure.
  • Figure 5 is a graph showing the change in resistivity with temperature of the FTO/ITO stack provided by an embodiment of the present disclosure
  • Figure 6 is a schematic plan view of another vibration device provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic plan view of a touch display panel provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic plan view of another touch display panel according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic plan view of an electronic product according to an embodiment of the present disclosure.
  • PZT lead zirconate titanate
  • Figure 1 is a schematic diagram of the sheet resistance of ITO films of different thicknesses changing with the heat treatment process.
  • the sheet resistance of ITO decreases significantly, but under the high-temperature annealing process (for example, between 550°C and 650°C) to form PZT, the sheet resistance of ITO decreases.
  • the sheet resistance of ITO after the low-temperature annealing process is approximately doubled. Therefore, the high-temperature annealing process of PZT will cause the conductive properties of ITO to decrease.
  • the charge distribution is uneven, which may also cause the problem of charge accumulation, breakdown or burnout.
  • FIG. 2a is a schematic structural diagram of adding a metal mesh between the ITO film and the PZT film. As shown in Figure 2a, by arranging a metal grid 10 between the ITO film and the PZT film, the problem of the decrease in the conductive performance of ITO caused by the high-temperature annealing process of PZT can be solved. However, adding the metal mesh 10 may cause the problem of reduced light transmittance.
  • Figure 2b is a graph of the light transmittance of ITO films on different substrates.
  • curve 20 is the light transmittance of the ITO film on the substrate without adding a metal grid 10 between the ITO film and the PZT film
  • curve 30 is after adding a metal grid 10 between the ITO film and the PZT film.
  • the light transmittance of the ITO film on the substrate After adding a metal grid 10, the light transmittance of the ITO film on the substrate dropped from 80% to 50%, reducing the display efficiency.
  • the material of the added metal grid 10 needs to be resistant to oxidation under the high-temperature annealing process of PZT, and since PZT easily loses oxygen during the high-temperature annealing process, the material of the metal grid 10 also needs to be incapable of being used when in contact with PZT. Oxygen diffusion characteristics of PZT.
  • the best material for the metal mesh layer 10 is the precious metal platinum (Pt). Therefore, the use of the metal mesh 10 will also cause an increase in manufacturing costs.
  • inventions of the present disclosure provide a vibration device, a touch display panel and an electronic product.
  • the vibration device includes a base substrate, a first transparent conductive anti-diffusion layer and a piezoelectric material layer.
  • the first transparent conductive anti-diffusion layer is located on the base substrate, and the piezoelectric material layer is located on the side of the first transparent conductive anti-diffusion layer away from the base substrate.
  • the first transparent conductive anti-diffusion layer is configured to prevent oxygen from entering the piezoelectric material layer.
  • the first transparent conductive anti-diffusion layer By providing the first transparent conductive anti-diffusion layer, it is possible to prevent its own oxygen from entering the piezoelectric material layer, thereby not reducing the conductive performance of the first conductive anti-diffusion layer, and the first transparent conductive anti-diffusion layer itself has conductivity and can be used as a piezoelectric material layer. Driving electrodes of electrical materials. For example, during the high-temperature annealing process of the piezoelectric material layer 140 (for example, the temperature is between 550°C and 650°C), the first transparent conductive anti-diffusion layer 130 can prevent its own oxygen from entering the piezoelectric material layer 140, thereby not reducing the The conductive performance of the first transparent conductive anti-diffusion layer 130 will not reduce the display efficiency.
  • FIG. 3 is a schematic plan view of a vibration device according to an embodiment of the present disclosure.
  • the vibration device 100 includes a base substrate 110 , a first transparent conductive anti-diffusion layer 130 and a piezoelectric material layer 140 .
  • the first transparent conductive anti-diffusion layer 130 is located on the base substrate 110
  • the piezoelectric material layer 140 is located on the side of the first transparent conductive anti-diffusion layer 130 away from the base substrate 110 .
  • the first transparent conductive anti-diffusion layer 130 is configured to prevent oxygen from entering the piezoelectric material layer 140 .
  • the vibration device 100 provided by the embodiment of the present disclosure, by providing the first transparent conductive anti-diffusion layer 130, it is possible to prevent its own oxygen from entering the piezoelectric material layer 140, thereby not reducing the conductive performance of the first transparent conductive anti-diffusion layer 130. , and the first transparent conductive anti-diffusion layer 130 itself has conductivity and can be used as a driving electrode of piezoelectric material.
  • the first transparent conductive anti-diffusion layer 130 can prevent its own oxygen from entering the piezoelectric material layer 140, thereby not reducing the The conductive performance of the first transparent conductive anti-diffusion layer 130 will not reduce the display efficiency.
  • the material of the first transparent conductive anti-diffusion layer 130 may be a doped transparent conductive oxide.
  • the material of the first transparent conductive anti-diffusion layer 130 may be a fluorine-doped transparent conductive oxide.
  • the material of the first transparent conductive anti-diffusion layer 130 may be fluorine-doped indium tin oxide (FTO).
  • FTO fluorine-doped indium tin oxide
  • the piezoelectric material layer can be a transparent piezoelectric film, which can provide the touch display panel with better light transmittance and improve display efficiency.
  • the piezoelectric material layer can be lead zirconate titanate (PZT), aluminum nitride (AlN), and potassium sodium niobate ((K0.5Na0.5)NbO3, KNN). one or more.
  • Lead zirconate titanate has excellent piezoelectric properties and dielectric properties, good stability, and high precision, and is widely used in the field of vibration devices.
  • Aluminum nitride is a covalently bonded compound with a hexagonal wurtzite structure. It is usually gray or off-white. It has the advantages of high thermal conductivity, high temperature insulation, good dielectric properties, high material strength at high temperatures, and low thermal expansion coefficient. .
  • Potassium sodium niobate has the characteristics of high Curie temperature (around 420°C), low dielectric constant, small mechanical quality factor, high frequency constant, and is lead-free, which can reduce environmental pollution.
  • embodiments of the present disclosure include but are not limited to this.
  • lead zirconate titanate when the piezoelectric material layer is lead zirconate titanate, lead zirconate titanate easily loses oxygen during the annealing process at high temperatures (for example, between 550°C and 650°C). Adding a first transparent conductive anti-diffusion layer between the first transparent electrodes can also prevent the lead zirconate titanate from losing oxygen.
  • the thickness of the first transparent conductive anti-diffusion layer 130 may be any value from 25 nm to 1000 nm.
  • the thickness of the first transparent conductive anti-diffusion layer 130 may be 50 nm, 100 nm, 200 nm, 400 nm, 600 nm, or 800 nm.
  • the thickness of piezoelectric material layer 140 is anywhere from 1 ⁇ m to 10 ⁇ m.
  • the thickness of the piezoelectric material layer 140 may be 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, or 9 ⁇ m.
  • the vibration device 100 further includes a second transparent electrode 150 , and the second transparent electrode 150 is located on a side of the piezoelectric material layer 140 away from the substrate substrate 110 .
  • the material of the second transparent electrode 150 may be a transparent conductive oxide.
  • the second transparent electrode 150 may be ITO.
  • piezoelectric material layer 140 may be formed by magnetron sputtering or vapor deposition. Magnetron sputtering or vapor deposition is a common and mature process for forming thin films on substrate surfaces.
  • the first transparent conductive anti-diffusion layer can also be formed by magnetron sputtering or vapor deposition.
  • FIG. 4 is a schematic plan view of another vibration device provided by an embodiment of the present disclosure.
  • the vibration device 100 includes a base substrate 110 , a first transparent electrode 120 , a first transparent conductive anti-diffusion layer 130 and a piezoelectric material layer 140 .
  • the first transparent electrode 120 is located on the base substrate 110
  • the first transparent conductive anti-diffusion layer 130 is located on the side of the first transparent electrode 120 away from the base substrate 110
  • the piezoelectric material layer 140 is located on the side of the first transparent conductive anti-diffusion layer 130.
  • One side of the base substrate 110 .
  • the first transparent conductive anti-diffusion layer 130 can prevent oxygen in the first transparent electrode 120 from entering the piezoelectric material layer 140 .
  • the first transparent conductive anti-diffusion layer 130 by disposing the first transparent conductive anti-diffusion layer 130 between the first transparent electrode 120 and the piezoelectric material layer 140, oxygen in the first transparent electrode 120 can be prevented from entering the piezoelectric material layer 140.
  • the first transparent conductive anti-diffusion layer 130 can prevent oxygen in the first transparent electrode 120 from entering the piezoelectric material layer 140 .
  • the electrical material layer 140 will not reduce the conductivity of the first transparent electrode 120 and thus will not reduce the display efficiency.
  • the first transparent conductive anti-diffusion layer 130 itself has electrical conductivity and can be used as a piezoelectric material together with the first transparent electrode 120.
  • Driving electrode of material layer 140 Therefore, there is no need to add an additional metal mesh 10 between the first transparent electrode 120 and the piezoelectric material layer 140 in order to solve the problem of reduced conductivity of the first transparent electrode 120 , which will lead to a reduction in light transmittance and manufacturing cost. problems such as the increase and the reduction of display efficiency.
  • the material of the first transparent electrode 120 may be a transparent conductive oxide.
  • the material of the first transparent electrode 120 may be a transparent conductive oxide
  • the material of the first transparent conductive anti-diffusion layer 130 may be a doped transparent conductive oxide.
  • the material of the first transparent conductive anti-diffusion layer 130 is doped with the material of the first transparent electrode 120 , which can effectively prevent oxygen in the first transparent electrode 120 from entering the piezoelectric material layer 140 .
  • the first transparent conductive anti-diffusion layer 130 itself also has conductive properties and can form a conductive laminate structure with the first transparent electrode 120; therefore, the vibration device 100 has the first transparent conductive anti-diffusion layer 130 when the first transparent conductive anti-diffusion layer 130 is added. , while ensuring that the conductive performance of the above-mentioned conductive laminated structure meets the requirements, it can avoid increasing the thickness of the vibrating device and realize the thinning and lightness of the vibrating device.
  • the material of the first transparent electrode 120 may be a transparent conductive oxide
  • the material of the first transparent conductive anti-diffusion layer 130 may be a doped transparent conductive oxide
  • the material of the first transparent conductive anti-diffusion layer 130 may be a fluorine-doped transparent conductive oxide.
  • the material of the first transparent electrode 120 may be indium tin oxide (ITO).
  • the material of the first transparent electrode 120 may be indium tin oxide (ITO), and the material of the transparent conductive layer 130 may be fluorine-doped indium tin oxide (FTO).
  • ITO indium tin oxide
  • FTO fluorine-doped indium tin oxide
  • the electrical conductivity of FTO is slightly worse than that of ITO, FTO can isolate the oxygen of ITO from entering the piezoelectric material layer 140, thereby not affecting the electrical conductivity of ITO.
  • FTO has the advantages of relatively low cost, easy laser etching, and suitable optical properties.
  • Figure 5 is a graph showing the change in resistivity with temperature of an FTO/ITO stack provided by an embodiment of the present disclosure.
  • the resistivity of simple ITO will increase when the temperature exceeds 300°C, and the conductive performance will become worse; while the resistivity of simple FTO is relatively large, and the conductive performance is relatively poor, but its resistivity is basically the same.
  • Characteristics affected by temperature; the laminated structure formed by FTO and ITO has a small resistivity that is basically the same as that of pure ITO.
  • the laminated structure also has the characteristic that the resistivity is not affected by temperature. For example, in When the temperature exceeds 300°C, its resistivity does not increase with the increase of temperature, and the laminated structure still has good electrical conductivity.
  • FTO can be added between the ITO and piezoelectric material layers of the vibration device.
  • the piezoelectric material undergoes a high-temperature (for example, between 550°C and 650°C) annealing process, the conductive performance of the FTO/ITO stacked structure will not be affected. Affected by high temperatures (for example, between 550°C and 650°C), it can still maintain good conductivity. Therefore, there is no need to add an additional metal mesh layer between the first transparent electrode and the piezoelectric material layer in order to solve the problem of reduced conductivity of the first transparent electrode, which will lead to a reduction in light transmittance, an increase in manufacturing costs, and an increase in display Problems such as reduced efficiency.
  • the piezoelectric material layer can be a transparent piezoelectric film, which can provide the touch display panel with better light transmittance and improve display efficiency.
  • the piezoelectric material layer may be lead zirconate titanate.
  • Lead zirconate titanate has excellent piezoelectric properties and dielectric properties, good stability, and high precision, and is widely used in the field of vibration devices.
  • lead zirconate titanate when the piezoelectric material layer is lead zirconate titanate, lead zirconate titanate easily loses oxygen during the annealing process at high temperatures (for example, between 550°C and 650°C). Adding a first transparent conductive anti-diffusion layer between the first transparent electrodes can also prevent the lead zirconate titanate from losing oxygen.
  • the thickness of the first transparent conductive anti-diffusion layer 130 may be any value from 25 nm to 1000 nm.
  • the thickness of the first transparent conductive anti-diffusion layer 130 may be 50 nm, 100 nm, 200 nm, 400 nm, 600 nm, or 800 nm.
  • the thickness of the piezoelectric material layer 140 is anywhere from 1 ⁇ m to 10 ⁇ m.
  • the thickness of the piezoelectric material layer 140 may be 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, or 9 ⁇ m.
  • the thickness of the first transparent electrode 120 is any value from 100 nm to 500 nm.
  • the thickness of the first transparent electrode 120 may be 150 nm, 200 nm, 250 nm, 350 nm, 400 nm, or 450 nm.
  • the conductivity of the first transparent conductive anti-diffusion layer 130 may be less than the conductivity of the first transparent electrode 120 .
  • the vibration device 100 further includes a second transparent electrode 150 , and the second transparent electrode 150 is located on a side of the piezoelectric material layer 140 away from the base substrate 110 .
  • the material of the second transparent electrode 150 may be a transparent conductive oxide.
  • the second transparent electrode 150 may be ITO.
  • the thickness of the second transparent electrode 150 is any value from 100 nm to 500 nm.
  • the thickness of the second transparent electrode 150 may be 150 nm, 200 nm, 250 nm, 350 nm, 400 nm, or 450 nm.
  • the piezoelectric material layer 140 may be formed by magnetron sputtering or vapor deposition. Magnetron sputtering or vapor deposition is a common and mature process for forming thin films on substrate surfaces.
  • the first transparent electrode can also be formed by magnetron sputtering or vapor deposition.
  • the first transparent conductive anti-diffusion layer can also be formed by magnetron sputtering or vapor deposition.
  • the second transparent electrode can also be formed by magnetron sputtering or vapor deposition.
  • FIG. 6 is a schematic plan view of another vibration device provided by an embodiment of the present disclosure.
  • the vibration device 100 includes a base substrate 110 , a first transparent electrode 120 , a first transparent conductive anti-diffusion layer 130 , a piezoelectric material layer 140 , a second transparent conductive anti-diffusion layer 160 and a second transparent electrode. 150.
  • the first transparent electrode 120 is located on the base substrate 110
  • the first transparent conductive anti-diffusion layer 130 is located on the side of the first transparent electrode 120 away from the base substrate 110
  • the piezoelectric material layer 140 is located on the side of the first transparent conductive anti-diffusion layer 130
  • One side of the base substrate 110 is a schematic plan view of another vibration device provided by an embodiment of the present disclosure.
  • the vibration device 100 includes a base substrate 110 , a first transparent electrode 120 , a first transparent conductive anti-diffusion layer 130 , a piezoelectric material layer 140 , a second transparent conductive anti-diffusion layer 160
  • the second transparent conductive anti-diffusion layer 160 is located on the side of the piezoelectric material layer 140 away from the base substrate 110 .
  • the second transparent electrode 150 is located on the side of the second transparent conductive anti-diffusion layer 160 away from the base substrate 110 .
  • the first transparent conductive anti-diffusion layer 130 is configured to prevent oxygen in the first transparent electrode 120 from entering the piezoelectric material layer 140 .
  • the second transparent conductive anti-diffusion layer 160 is configured to prevent oxygen in the second transparent electrode 150 from entering the piezoelectric material layer 140 .
  • first transparent conductive anti-diffusion layer 130 By disposing the first transparent conductive anti-diffusion layer 130 between the first transparent electrode 120 and the piezoelectric material layer 140 , oxygen in the first transparent electrode 120 can be prevented from entering the piezoelectric material layer 140 , and by disposing the first transparent conductive anti-diffusion layer 130 in the second transparent electrode 150
  • the second transparent conductive anti-diffusion layer 160 is disposed between the second transparent electrode 150 and the piezoelectric material layer 140 to prevent oxygen in the second transparent electrode 150 from entering the piezoelectric material layer 140, thereby not reducing the conductivity of the second transparent electrode 150 and thereby preventing Will reduce display efficiency.
  • first transparent conductive anti-diffusion layer 130 itself has conductivity and can be used as the driving electrode of the piezoelectric material layer 140 together with the first transparent electrode 120.
  • the second transparent conductive anti-diffusion layer 160 itself has conductivity and can work with the second transparent electrode 120. Electrodes 150 together serve as drive electrodes for layer 140 of piezoelectric material.
  • the first transparent conductive anti-diffusion layer 130 by disposing the first transparent conductive anti-diffusion layer 130 between the first transparent electrode 120 and the piezoelectric material layer 140, oxygen in the first transparent electrode 120 can be prevented from entering the piezoelectric material layer 140.
  • the first transparent conductive anti-diffusion layer 130 can prevent oxygen in the first transparent electrode 120 from entering the piezoelectric material layer 140 .
  • the electrical material layer 140 will not reduce the conductivity of the first transparent electrode 120 and thus will not reduce the display efficiency.
  • the first transparent conductive anti-diffusion layer 130 is simultaneously disposed between the first transparent electrode 120 and the piezoelectric material layer 140 and between the second transparent electrode 150 and the piezoelectric material layer 140 Providing the second transparent conductive anti-diffusion layer 160 can simultaneously solve the problem of reduced conductivity of the first transparent electrode 120 and the second transparent electrode 150 of the vibration device 100 .
  • the material of the first transparent electrode 120 and the second transparent electrode 150 may be a transparent conductive oxide
  • the material of the first transparent conductive anti-diffusion layer 130 and the second transparent conductive anti-diffusion layer 160 may be a doped material.
  • the first transparent conductive anti-diffusion layer 130 itself also has conductive properties and can form a conductive laminate structure with the first transparent electrode 120; therefore, when the first transparent conductive anti-diffusion layer 130 is added to the vibration device 100, While ensuring that the resistivity of the above-mentioned conductive laminated structure meets the requirements, it is possible to avoid increasing the thickness of the vibrating device and achieve a lighter and thinner vibrating device.
  • the second transparent conductive anti-diffusion layer 160 itself also has conductive properties and can form a conductive laminate structure with the second transparent electrode 150; therefore, the vibration device 100 can be improved when the second transparent conductive anti-diffusion layer 160 is added. Under this condition, it is possible to avoid increasing the thickness of the vibrating device while ensuring that the resistivity of the above-mentioned conductive stacked structure meets the requirements, thereby achieving a lighter and thinner vibrating device.
  • the material of the first transparent conductive anti-diffusion layer 130 may be the material of the doped first transparent electrode 120, the contact resistance between the first transparent electrode 120 and the first transparent conductive anti-diffusion layer 130 is small.
  • the material of the second transparent conductive anti-diffusion layer 160 may be the material of the doped second transparent electrode 150, so the contact resistance between the second transparent electrode 150 and the second transparent conductive anti-diffusion layer 160 is smaller.
  • the first transparent electrode 120 , the first transparent conductive anti-diffusion layer 130 , the piezoelectric material layer 140 , the second transparent conductive anti-diffusion layer 160 and the second transparent electrode 150 may be in direct contact in sequence. set up.
  • the first transparent electrode 120 and the second transparent electrode 150 may be indium tin oxide (ITO); for example, the first transparent conductive anti-diffusion layer 130 and the second transparent conductive anti-diffusion layer 160 may be doped Fluorinated indium tin oxide (FTO).
  • ITO indium tin oxide
  • FTO Fluorinated indium tin oxide
  • the first transparent electrode 120 and the first transparent conductive anti-diffusion layer 130 can form an FTO/ITO stacked structure.
  • the FTO/ITO stacked structure has a small resistivity that is basically the same as that of pure ITO, and at the same time , the laminated structure also has the characteristic that the resistivity is not affected by temperature.
  • the second transparent electrode 150 and the second transparent conductive anti-diffusion layer 160 can also form an FTO/ITO stacked structure.
  • the FTO/ITO stacked structure also has a small resistivity that is basically the same as that of pure ITO.
  • the stacked structure also has It has the characteristic that the resistivity is not affected by temperature. Therefore, the electrical conductivity of the vibrator 100 will not be affected by the high temperature (for example, between 550° C. and 650° C.) annealing process, and can still maintain good electrical conductivity.
  • the piezoelectric material layer 140 of the vibrator 100 can be a transparent piezoelectric film, so that the touch display panel can have better light transmittance and improve display efficiency.
  • the piezoelectric material layer 140 may be lead zirconate titanate.
  • the lead zirconate titanate when the piezoelectric material layer 140 is lead zirconate titanate, the lead zirconate titanate easily loses oxygen during the annealing process at a high temperature (for example, between 550°C and 650°C). Adding the first transparent conductive anti-diffusion layer 130 between the piezoelectric material layer 140 and the first transparent electrode 120 and adding the second transparent conductive anti-diffusion layer 160 between the piezoelectric material layer 140 and the second transparent electrode 150 can also prevent zirconate titanate. The role of lead in oxygen loss.
  • the thickness of the first transparent conductive anti-diffusion layer 130 and the second transparent conductive anti-diffusion layer 160 may be any value from 25 nm to 1000 nm.
  • the thickness of the first transparent conductive anti-diffusion layer 130 and the second transparent conductive anti-diffusion layer 160 may be 50 nm, 100 nm, 200 nm, 400 nm, 600 nm, or 800 nm.
  • the thickness of the first transparent electrode 120 and the second transparent electrode 150 is any value from 100 nm to 500 nm.
  • the thickness of the first transparent electrode 120 and the second transparent electrode 150 may be 150 nm, 200 nm, 250 nm, 350 nm, 400 nm, or 450 nm.
  • the thickness of the piezoelectric material layer 140 is anywhere from 1 ⁇ m to 10 ⁇ m.
  • the thickness of the piezoelectric material layer 140 may be 2 ⁇ m, 4 ⁇ m, 6 ⁇ m, 8 ⁇ m, or 9 ⁇ m.
  • the conductivity of the first transparent conductive anti-diffusion layer 130 may be less than the conductivity of the first transparent electrode 120 .
  • the piezoelectric material layer 140 may be formed by magnetron sputtering or vapor deposition. Magnetron sputtering or vapor deposition is a common and mature process for forming thin films on substrate surfaces.
  • the first transparent electrode can also be formed by magnetron sputtering or vapor deposition.
  • the first transparent conductive anti-diffusion layer can also be formed by magnetron sputtering or vapor deposition.
  • the second transparent electrode can also be formed by magnetron sputtering or vapor deposition.
  • the second transparent conductive anti-diffusion layer can also be formed by magnetron sputtering or vapor deposition.
  • FIG. 7 is a schematic plan view of a touch display panel according to an embodiment of the present disclosure.
  • the touch display panel 200 includes any one of the vibration devices 100 described above. Therefore, the touch display panel 200 has beneficial effects corresponding to the beneficial effects of the vibration device 100. For details, please refer to the related description of the above display substrate.
  • the touch display panel 200 includes a display panel 210 , a vibrating device 100 and a cover plate 220 .
  • the vibrating device 100 is located on the display panel 210 .
  • the cover plate 220 is located on the side of the vibrating device 100 away from the display panel 210 .
  • the display panel 210 includes a display area 210A and a peripheral area 210B surrounding the display area 210A.
  • the vibration device 100 is located in the peripheral area 210B of the touch display panel 200 .
  • the display panel 210 may be a liquid crystal display (LCD) panel or an organic light emitting diode (OLED) display panel.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • the cover 220 may be a touch panel.
  • FIG. 8 is a schematic plan view of another touch display panel according to an embodiment of the present disclosure.
  • the touch display panel 200 includes any one of the vibration devices 100 described above. Therefore, the touch display panel 200 has beneficial effects corresponding to the beneficial effects of the vibration device 100.
  • the touch display panel 200 has beneficial effects corresponding to the beneficial effects of the vibration device 100.
  • the touch display panel 200 includes a display panel 210 , a vibrating device 100 and a cover plate 220 .
  • the vibrating device 100 is located on the display panel 210 .
  • the cover plate 220 is located on the side of the vibrating device 100 away from the display panel 210 .
  • the display panel 210 includes a display area 210A and a peripheral area 210B surrounding the display area 210A.
  • the vibration device 100 is located in the display area 210A of the touch display panel 200 .
  • the piezoelectric material layer 140 of the vibration device 100 can be a transparent piezoelectric film, so that the touch display panel 200 has better light transmittance and better display effect.
  • the display panel 210 may be a liquid crystal display (LCD) panel or an organic light emitting diode (OLED) display panel.
  • LCD liquid crystal display
  • OLED organic light emitting diode
  • the cover 220 may be a touch panel.
  • FIG. 9 is a schematic plan view of an electronic product according to an embodiment of the present disclosure.
  • the electronic product 300 includes any of the above touch display panels 200 . Therefore, the electronic product 300 has beneficial effects corresponding to the beneficial effects of the touch display panel 200. For details, please refer to the related description of the above display substrate.
  • the electronic product 300 can be a liquid crystal display, a smart phone, a tablet, a television, a monitor, a smart watch, a laptop, a digital photo frame, a navigator, or any other product with a touch display function.

Landscapes

  • Position Input By Displaying (AREA)

Abstract

一种振动器件、触摸显示面板和电子产品。该振动器件包括衬底基板、第一透明导电防扩散层以及压电材料层。第一透明导电防扩散层位于衬底基板上,压电材料层位于第一透明导电防扩散层远离衬底基板的一侧。第一透明导电防扩散层被配置为防止氧进入压电材料层。通过设置第一透明导电防扩散层,可以防止自身的氧进入压电材料层,从而不会降低第一透明导电防扩散层的导电性能,进而不会影响显示效率,并且第一透明导电防扩散层本身具有导电性,可以作为压电材料的驱动电极。

Description

振动器件、触摸显示面板和电子产品 技术领域
本公开的实施例涉及一种振动器件、触摸显示面板和电子产品。
背景技术
目前,触觉反馈(Haptics)为现今科技开发的重点,其概念为借助触觉技术,电子设备制造商可以在其设备上为特定的互动体验创造与众不同的个性化触觉反馈,从而为消费者提供更具价值且更加逼真的独特体验。
触觉反馈又可分为两类,一类为振动反馈,一类为触觉再现技术。振动反馈是通过在显示装置中增加线性马达,为用户提供触觉反馈和振动提醒。表面触觉再现技术可通过皮肤(指尖)触摸屏幕来感知物体特性,可以在多媒体终端实现高效逼真的交互,具有巨大的研究价值,因而得到国内外研究学者的广泛关注。表面触觉物理意义上为物体表面与皮肤(指尖)的表面产生作用,因表面结构不同从而形成不同的摩擦力。因此,通过控制表面摩擦力,可以实现不同触觉或触感的模拟。
发明内容
本公开实施例提供一种振动器件、触摸显示面板和电子产品。该振动器件通过设置第一透明导电防扩散层,可以防止自身的氧进入压电材料层,从而不会降低第一透明导电防扩散层的导电率,进而不会影响显示效率,并且第一透明导电防扩散层本身具有导电性,可以作为压电材料的驱动电极。
本公开至少一个实施例提供一种振动器件,其包括衬底基板、第一透明导电防扩散层以及压电材料层。第一透明导电防扩散层位于衬底基板上,压电材料层位于第一透明导电防扩散层远离衬底基板的一侧。第一透明导电防扩散层被配置为防止氧进入压电材料层。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明导电防扩散层为掺杂透明导电氧化物。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明导电防扩散层为掺杂氟的氧化铟锡。
例如,在本公开一实施例提供的一种振动器件中,所述压电材料层为透明 压电薄膜。
例如,在本公开一实施例提供的一种振动器件中,所述压电材料层为锆钛酸铅、氮化铝和铌酸钾钠中的一种或多种。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明导电防扩散层的厚度为25nm至1000nm。
例如,在本公开一实施例提供的一种振动器件中,所述压电材料层的厚度为1μm至10μm。
例如,在本公开一实施例提供的一种振动器件还包括第一透明电极,位于所述衬底基板靠近所述第一透明导电防扩散层的一侧。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明电极的材料为透明导电氧化物。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明电极的材料为氧化铟锡。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明电极的厚度为100nm至500nm。
例如,在本公开一实施例提供的一种振动器件中,所述第一透明导电防扩散层的导电率小于所述第一透明电极的导电率。
例如,在本公开一实施例提供的一种振动器件还包括第二透明电极,位于所述压电材料层远离所述衬底基板的一侧。
例如,在本公开一实施例提供的一种振动器件还包括第二透明导电防扩散层,位于所述压电材料层和所述第二透明电极层之间。
例如,在本公开一实施例提供的一种振动器件中,所述第二透明电极的材料为透明导电氧化物。
例如,在本公开一实施例提供的一种振动器件中,所述压电材料层通过磁控溅射或气相沉积形成。
本公开至少一个实施例提供一种触摸显示面板,其包括上述任一项所述的振动器件。
本公开至少一个实施例提供一种电子产品,其包括上述任一项所述的触摸显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为不同厚度的ITO薄膜的方阻随热处理工艺的变化示意图;
图2a为ITO薄膜与PZT薄膜之间增加金属网格的结构示意图;
图2b为ITO薄膜在不同衬底的透光率的曲线图;
图3为本公开一实施例提供的一种振动器件的结构示意图;
图4为本公开一实施例提供的另一种振动器件的平面示意图;
图5为本公开一实施例提供的FTO/ITO叠层的电阻率随温度的变化图;
图6为本公开一实施例提供的另一种振动器件的平面示意图;
图7为本公开一实施例提供的一种触摸显示面板的平面示意图;
图8为本公开一实施例提供的另一种触摸显示面板的平面示意图;以及
图9为本公开一实施例提供的一种电子产品的平面示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
附图中各个部件或结构并非严格按照比例绘制,为了清楚起见,可能夸大或缩小各个部件或结构的尺寸,但是这些不应用于限制本公开的范围。为了保 持本公开实施例的以下说明清楚且简明,可省略已知功能和已知部件的详细说明。
在表面触觉再现技术领域中,使用振动器件作为振源使得屏幕产生振动,从而使得屏幕的表面形成不同的摩擦力,从而可以实现不同触觉或触感的模拟;另一方面,由于锆钛酸铅(PZT)压电材料具有高介电常数与透明的特性,非常适合用于集成在屏幕上的振动器件。
锆钛酸铅(PZT)压电材料的形成方法有很多,包含干法镀膜与湿法,但如果要实现良好压电常数特性,则需要经过高温退火工艺;此高温退火工艺需要在高温(例如550℃~650℃)的空气环境下进行PZT晶粒生长,以形成良好的固溶相。另一方面,氧化铟锡(ITO)具有高可见光透过率和高导电率,为触摸显示屏常用的透明电极材料,ITO若经过高温(例如大于350℃)退火工艺,将产生氧空位不足,从而使ITO整体导电率大幅下降。
图1为不同厚度的ITO薄膜的方阻随热处理工艺的变化示意图。如图1所示,在250℃的低温退火工艺下,ITO的方阻有明显的下降,但在形成PZT的高温(例如在550℃-650℃之间)退火工艺下,ITO的方阻相比低温退火工艺后的ITO的方阻上升大约一倍,因此,PZT的高温退火工艺会造成ITO的导电性能下降。同时,因ITO薄膜的方阻上升,电荷分布不均匀,还会带来电荷累积击穿或烧毁的问题。
为解决PZT高温退火工艺导致的ITO的方阻上升,从而造成ITO导电性能下降的问题,可以在ITO薄膜和PZT薄膜之间额外增加金属网格,以提升整体导电性能。图2a为ITO薄膜与PZT薄膜之间增加金属网格的结构示意图。如图2a所示,通过在ITO薄膜与PZT薄膜之间设置金属网格10,可以解决PZT高温退火工艺导致的ITO的导电性能下降的问题。然而,增加金属网格10可能会带来透光率下降的问题。图2b为ITO薄膜在不同衬底的透光率的曲线图。如图2b所示,曲线20为ITO薄膜和PZT薄膜之间没有增加金属网格10的ITO薄膜在衬底的透光率,曲线30为ITO薄膜和PZT薄膜之间增加有金属网格10后ITO薄膜在衬底上的透光率。增加金属网格10后,ITO薄膜在衬底的透光率从80%下降到50%,降低了显示效率。同时,增加的金属网格10的材料需要在PZT的高温退火工艺下不易发生氧化,并且由于PZT在高温退火工艺下容易失氧,该金属网格10的材料还需要具备与PZT接触时不能使PZT氧扩散的特性。目前,该金属网格层10的最佳材料是贵金属铂 (Pt),因此,使用该金属网格10还将带来制造成本的上升的问题。
对此,本公开实施例提供一种振动器件、触摸显示面板和电子产品。该振动器件包括衬底基板、第一透明导电防扩散层以及压电材料层。第一透明导电防扩散层位于衬底基板上,压电材料层位于第一透明导电防扩散层远离衬底基板的一侧。第一透明导电防扩散层被配置为防止氧进入压电材料层。通过设置第一透明导电防扩散层可以防止自身的氧进入压电材料层,从而不会降低第一导电防扩散层的导电性能,并且第一透明导电防扩散层本身具有导电性,可以作为压电材料的驱动电极。例如在压电材料层140的高温(例如温度在550℃-650℃之间)退火工艺过程中,第一透明导电防扩散层130可以防止自身的氧进入压电材料层140,从而不会降低第一透明导电防扩散层130的导电性能,进而不会降低显示效率。
下面,结合附图对本公开实施例提供的振动器件、触摸显示面板和电子产品进行详细的说明。
本公开一实施例提供一种振动器件。图3为本公开一实施例提供的一种振动器件的平面示意图。如图3所示,该振动器件100包括衬底基板110、第一透明导电防扩散层130以及压电材料层140。第一透明导电防扩散层130位于衬底基板110上,压电材料层140位于第一透明导电防扩散层130远离衬底基板110的一侧。第一透明导电防扩散层130被配置为防止氧进入压电材料层140。
在本公开实施例提供的振动器件100中,通过设置第一透明导电防扩散层130,可以防止自身的氧进入压电材料层140,从而不会降低第一透明导电防扩散层130的导电性能,并且第一透明导电防扩散层130本身具有导电性,可以作为压电材料的驱动电极。例如在压电材料层140的高温(例如温度在550℃-650℃之间)退火工艺过程中,第一透明导电防扩散层130可以防止自身的氧进入压电材料层140,从而不会降低第一透明导电防扩散层130的导电性能,进而不会降低显示效率。
在一些示例中,如图3所示,第一透明导电防扩散层130的材料可以为掺杂透明导电氧化物。
在一些示例中,如图3所示,第一透明导电防扩散层130的材料可以为掺杂氟的透明导电氧化物。
例如,如图3所示,第一透明导电防扩散层130的材料可以为掺杂氟的 氧化铟锡(FTO)。
在一些示例中,如图3所示,压电材料层可以为透明压电薄膜,从而可以使触摸显示面板有更好的透光率,提升显示效率。
在一些示例中,如图3所示,压电材料层可以为锆钛酸铅(PZT)、氮化铝(AlN)和铌酸钾钠((K0.5Na0.5)NbO3,KNN)中的一种或多种。锆钛酸铅具有优良的压电性能和介电性能,稳定性好,精度高,广泛应用于振动器件领域。氮化铝是一种六方纤锌矿结构的共价键化合物,通常状态下为灰色或灰白色,具有高热导率、高温绝缘性、介电性能好、高温下材料强度大以及热膨胀系数低等优点。铌酸钾钠具有居里温度高(420℃左右)、介电常数低、机械品质因素小、频率常数高等特性,并且无铅,可减少对环境的污染。当然,本公开实施例包括但不限于此。
例如,如图3所示,在压电材料层为锆钛酸铅时,锆钛酸铅在高温(例如在550℃-650℃之间)退火工艺下容易失氧,在压电材料层和第一透明电极之间增加第一透明导电防扩散层还可以起到防止锆钛酸铅失氧的作用。
在一些示例中,如图3所示,第一透明导电防扩散层130的厚度可以为25nm至1000nm中的任何一个数值。例如,第一透明导电防扩散层130的厚度可以是50nm、100nm、200nm、400nm、600nm、800nm。
在一些示例中,如图3所示,压电材料层140的厚度为1μm至10μm中的任何一个数值。例如,压电材料层140的厚度可以是2μm、4μm、6μm、8μm、9μm。
在一些示例中,如图3所示,该振动器件100还包括第二透明电极150,第二透明电极150位于压电材料层140远离衬底基板110的一侧。
在一些示例中,如图3所示,第二透明电极150的材料可以为透明导电氧化物。例如,第二透明电极150可以是ITO。
在一些示例中,压电材料层140可以通过磁控溅射或气相沉积形成。磁控溅射或气相沉积是在衬底表面形成薄膜的常见的、成熟的工艺方法。
例如,第一透明导电防扩散层也可以通过磁控溅射或气相沉积形成。
图4为本公开一实施例提供的另一种振动器件的平面示意图。如图4所示,该振动器件100包括衬底基板110、第一透明电极120、第一透明导电防扩散层130以及压电材料层140。第一透明电极120位于衬底基板110上,第一透明导电防扩散层130位于第一透明电极120远离衬底基板110的一侧, 压电材料层140位于第一透明导电防扩散层130远离衬底基板110的一侧。第一透明导电防扩散层130可以防止第一透明电极120中的氧进入压电材料层140。
在本公开实施例提供的振动器件100中,通过在第一透明电极120和压电材料层140之间设置第一透明导电防扩散层130,可以防止第一透明电极120中的氧进入压电材料层140,例如在压电材料层140的高温(例如温度在550℃-650℃之间)退火工艺过程中,第一透明导电防扩散层130可以防止第一透明电极120中的氧进入压电材料层140,从而不会降低第一透明电极120的导电率,进而不会降低显示效率,并且第一透明导电防扩散层130本身具有导电性,可以和第一透明电极120一起作为压电材料层140的驱动电极。由此不需要为解决第一透明电极120的导电性降低问题,在第一透明电极120和压电材料层140之间额外增加金属网格10,并因此带来透光率的降低、制造成本的增加以及显示效率的降低等问题。
在一些示例中,如图4所示,第一透明电极120的材料可以为透明导电氧化物。
例如,如图4所示,第一透明电极120的材料可以为透明导电氧化物,第一透明导电防扩散层130的材料可以为掺杂透明导电氧化物。第一透明导电防扩散层130的材料使用掺杂的第一透明电极120的材料,可以有效防止第一透明电极120中的氧进入压电材料层140。并且,第一透明导电防扩散层130本身还具有导电特性,可与第一透明电极120形成导电的叠层结构;因此,该振动器件100在增加了第一透明导电防扩散层130的情况下,在保证上述导电的叠层结构的导电性能满足要求的同时可避免增加振动器件的厚度,实现振动器件的轻薄化。
另外,由于第一透明电极120的材料可以为透明导电氧化物,第一透明导电防扩散层130的材料可以为掺杂透明导电氧化物,因此第一透明电极120与第一透明导电防扩散层130之间的接触电阻较小。
在一些示例中,如图3所示,第一透明导电防扩散层130的材料可以为掺杂氟的透明导电氧化物。
在一些示例中,如图4所示,第一透明电极120的材料可以为氧化铟锡(ITO)。
例如,如图4所示,第一透明电极120的材料可以为氧化铟锡(ITO), 透明导电层130的材料可以为掺杂氟的氧化铟锡(FTO)。FTO虽然导电性比ITO略差,但是FTO可以隔离ITO的氧进入压电材料层140,从而不会影响ITO的导电性能。同时FTO具有成本相对较低,激光蚀刻容易,光学性能适宜等优点。
图5为本公开一实施例提供的FTO/ITO叠层的电阻率随温度的变化图。如图5所示,单纯ITO的电阻率在温度超过300℃,电阻率会变大,进而导电性能会变差;而单纯FTO的电阻率比较大,导电性能比较差,但是其电阻率基本不受温度影响的特性;FTO和ITO形成的叠层结构,该叠层结构具有和单纯ITO基本一致的小电阻率,同时,该叠层结构还具有电阻率不受温度影响的特性.例如,在温度超过300℃时,其电阻率不会随着温度的升高而增大,进而该叠层结构仍然具有很好的导电率。由此,可以在振动器件的ITO和压电材料层之间增加FTO,在压电材料进行高温(例如550℃-650℃之间)退火工艺时,FTO/ITO叠层结构的导电性能不会受高温(例如550℃-650℃之间)的影响,仍能保持很好的导电性。从而不需要为解决第一透明电极的导电性降低问题,在第一透明电极和压电材料层之间额外增加金属网格层,并因此带来透光率的降低、制造成本的增加以及显示效率的降低等问题。
在一些示例中,如图4所示,压电材料层可以为透明压电薄膜,从而可以使触摸显示面板有更好的透光率,提升显示效率。
在一些示例中,如图4所示,压电材料层可以为锆钛酸铅。锆钛酸铅具有优良的压电性能和介电性能,稳定性好,精度高,广泛应用于振动器件领域。
例如,如图4所示,在压电材料层为锆钛酸铅时,锆钛酸铅在高温(例如在550℃-650℃之间)退火工艺下容易失氧,在压电材料层和第一透明电极之间增加第一透明导电防扩散层还可以起到防止锆钛酸铅失氧的作用。
在一些示例中,如图4所示,第一透明导电防扩散层130的厚度可以为25nm至1000nm中的任何一个数值。例如,第一透明导电防扩散层130的厚度可以是50nm、100nm、200nm、400nm、600nm、800nm。
在一些示例中,如图4所示,压电材料层140的厚度为1μm至10μm中的任何一个数值。例如,压电材料层140的厚度可以是2μm、4μm、6μm、8μm、9μm。
在一些示例中,如图4所示,第一透明电极120的厚度为100nm至500nm中的任何一个数值。例如,第一透明电极120的厚度可以是150nm、200nm、 250nm、350nm、400nm、450nm。
在一些示例中,如图4所示,第一透明导电防扩散层130的导电率可以小于第一透明电极120的导电率。
在一些示例中,如图4所示,该振动器件100还包括第二透明电极150,第二透明电极150位于压电材料层140远离衬底基板110的一侧。
在一些示例中,如图4所示,第二透明电极150的材料可以为透明导电氧化物。例如,第二透明电极150可以是ITO。
在一些示例中,如图4所示,第二透明电极150的厚度为100nm至500nm中的任何一个数值。例如,第二透明电极150的厚度可以是150nm、200nm、250nm、350nm、400nm、450nm。
在一些示例中,如图4所示,压电材料层140可以通过磁控溅射或气相沉积形成。磁控溅射或气相沉积是在衬底表面形成薄膜的常见的、成熟的工艺方法。
例如,如图4所示,第一透明电极也可以通过磁控溅射或气相沉积形成。例如,第一透明导电防扩散层也可以通过磁控溅射或气相沉积形成。例如,第二透明电极也可以通过磁控溅射或气相沉积形成。
图6为本公开一实施例提供的另一种振动器件的平面示意图。如图6所示,该振动器件100包括衬底基板110、第一透明电极120、第一透明导电防扩散层130、压电材料层140、第二透明导电防扩散层160和第二透明电极150。第一透明电极120位于衬底基板110上,第一透明导电防扩散层130位于第一透明电极120远离衬底基板110的一侧,压电材料层140位于第一透明导电防扩散层130远离衬底基板110的一侧。第二透明导电防扩散层160位于压电材料层140远离衬底基板110的一侧。第二透明电极150位于第二透明导电防扩散层160远离衬底基板110的一侧。第一透明导电防扩散层130被配置为防止第一透明电极120中的氧进入压电材料层140。第二透明导电防扩散层160被配置为防止第二透明电极150中的氧进入压电材料层140。通过在第一透明电极120和压电材料层140之间设置第一透明导电防扩散层130,可以防止第一透明电极120中的氧进入压电材料层140,并且通过在第二透明电极150和压电材料层140之间设置第二透明导电防扩散层160,可以防止第二透明电极150中的氧进入压电材料层140,从而不会降低第二透明电极150的导电率,进而不会降低显示效率。并且第一透明导电防扩散层130本身具 有导电性,可以和第一透明电极120一起作为压电材料层140的驱动电极,第二透明导电防扩散层160本身具有导电性,可以和第二透明电极150一起作为压电材料层140的驱动电极。
在本公开实施例提供的振动器件100中,通过在第一透明电极120和压电材料层140之间设置第一透明导电防扩散层130,可以防止第一透明电极120中的氧进入压电材料层140,例如在压电材料层140的高温(例如温度在550℃-650℃之间)退火工艺过程中,第一透明导电防扩散层130可以防止第一透明电极120中的氧进入压电材料层140,从而不会降低第一透明电极120的导电率,进而不会降低显示效率。由此不需要为解决第一透明电极120的导电性降低问题,在第一透明电极120和压电材料层140之间额外增加金属网格层10,并因此带来透光率的降低、制造成本的增加以及显示效率的降低等问题。通过在第二透明电极150和压电材料层140之间设置第二透明导电防扩散层160,可以防止第二透明电极150中的氧进入压电材料层,从而不会降低第二透明电极150的导电率,进而不会降低显示效率。
在一些示例中,如图6所示,同时在第一透明电极120和压电材料层140之间设置第一透明导电防扩散层130以及在第二透明电极150和压电材料层140之间设置第二透明导电防扩散层160,可同时解决该振动器件100的第一透明电极120和第二透明电极150的导电性降低问题。
例如,如图6所示,第一透明电极120和第二透明电极150的材料可以为透明导电氧化物,第一透明导电防扩散层130和第二透明导电防扩散层160的材料可以为掺杂透明导电氧化物。第一透明导电防扩散层130本身还具有导电特性,可与第一透明电极120形成导电的叠层结构;因此,该振动器件100在增加了第一透明导电防扩散层130的情况下,在保证上述导电的叠层结构的电阻率满足要求的同时可避免增加振动器件的厚度,实现振动器件的轻薄化。同样地,第二透明导电防扩散层160本身还具有导电特性,可与第二透明电极150形成导电的叠层结构;因此,该振动器件100在增加了第二透明导电防扩散层160的情况下,在保证上述导电的叠层结构的电阻率满足要求的同时可避免增加振动器件的厚度,实现振动器件的轻薄化。
另外,由于第一透明导电防扩散层130的材料可以为掺杂的第一透明电极120的材料,因此第一透明电极120与第一透明导电防扩散层130之间的接触电阻较小。同样地,第二透明导电防扩散层160的材料可以为掺杂的第 二透明电极150的材料,因此第二透明电极150与第二透明导电防扩散层160之间的接触电阻较小。
在一些示例中,如图6所示,第一透明电极120、第一透明导电防扩散层130、压电材料层140、第二透明导电防扩散层160和第二透明电极150可以依次直接接触设置。
例如,如图6所示,第一透明电极120和第二透明电极150可以是氧化铟锡(ITO);例如,第一透明导电防扩散层130和第二透明导电防扩散层160可以是掺杂氟的氧化铟锡(FTO)。
例如,如图6所示,第一透明电极120和第一透明导电防扩散层130可以形成FTO/ITO叠层结构,该FTO/ITO叠层结构具有和单纯ITO基本一致的小电阻率,同时,该叠层结构还具有电阻率不受温度影响的特性。第二透明电极150与第二透明导电防扩散层160也可以形成FTO/ITO叠层结构,该FTO/ITO叠层结构也具有和单纯ITO基本一致的小电阻率,同时,该叠层结构还具有电阻率不受温度影响的特性。由此,该振动器100的导电性能不会受到高温(例如550℃-650℃之间)退火工艺的影响,仍能保持很好的导电性。
例如,如图6所示,该振动器100的压电材料层140可以为透明压电薄膜,从而可以使触摸显示面板有更好的透光率,提升显示效率。
例如,如图6所示,压电材料层140可以为锆钛酸铅。
例如,如图6所示,在压电材料层140为锆钛酸铅时,锆钛酸铅在高温(例如在550℃-650℃之间)退火工艺下容易失氧,在压电材料层140和第一透明电极120之间增加第一透明导电防扩散层130以及在压电材料层140和第二透明电极150之间增加第二透明导电防扩散层160还可以起到防止锆钛酸铅失氧的作用。
在一些示例中,如图6所示,第一透明导电防扩散层130和第二透明导电防扩散层160的厚度可以为25nm至1000nm中的任何一个数值。例如,第一透明导电防扩散层130和第二透明导电防扩散层160的厚度可以是50nm、100nm、200nm、400nm、600nm、800nm。
在一些示例中,如图6所示,第一透明电极120和第二透明电极150的厚度为100nm至500nm中的任何一个数值。例如,第一透明电极120第二透明电极150的厚度可以是150nm、200nm、250nm、350nm、400nm、450nm。
在一些示例中,如图6所示,压电材料层140的厚度为1μm至10μm中 的任何一个数值。例如,压电材料层140的厚度可以是2μm、4μm、6μm、8μm、9μm。
在一些示例中,如图6所示,第一透明导电防扩散层130的导电率可以小于第一透明电极120的导电率。
在一些示例中,如图6所示,压电材料层140可以通过磁控溅射或气相沉积形成。磁控溅射或气相沉积是在衬底表面形成薄膜的常见的、成熟的工艺方法。
例如,如图6所示,第一透明电极也可以通过磁控溅射或气相沉积形成。例如,第一透明导电防扩散层也可以通过磁控溅射或气相沉积形成。例如,第二透明电极也可以通过磁控溅射或气相沉积形成。例如,第二透明导电防扩散层也可以通过磁控溅射或气相沉积形成。
本公开一实施例提供一种触摸显示面板。图7为本公开一实施例提供的一种触摸显示面板的平面示意图。如图7所示,该触摸显示面板200包括上述任一项的振动器件100。由此,该触摸显示面板200具有与振动器件100的有益效果对应的有益效果,具体可参见上述显示基板的相关描述。
例如,如图7所示,该触摸显示面板200包括显示面板210、振动器件100和盖板220,振动器件100位于显示面板210上,盖板220位于振动器件100远离显示面板210的一侧。显示面板210包括显示区210A和围绕显示区210A的周边区210B,振动器件100位于该触摸显示面板200的周边区210B。
例如,如图7所示,显示面板210可以是液晶显示(LCD)面板或者有机发光二极管(OLED)显示面板。
例如,如图7所示,盖板220可以是触控面板。
图8为本公开一实施例提供的另一种触摸显示面板的平面示意图。如图8所示,该触摸显示面板200包括上述任一项的振动器件100。由此,该触摸显示面板200具有与振动器件100的有益效果对应的有益效果,具体可参见上述显示基板的相关描述。
例如,如图8所示,该触摸显示面板200包括显示面板210、振动器件100和盖板220,振动器件100位于显示面板210上,盖板220位于振动器件100远离显示面板210的一侧。显示面板210包括显示区210A和围绕显示区210A的周边区210B,振动器件100位于该触摸显示面板200的显示区210A。振动器件100的压电材料层140可以为透明压电薄膜,以使该触摸显示面板 200具有更好透光率和的显示效果。
例如,如图8所示,显示面板210可以是液晶显示(LCD)面板或者有机发光二极管(OLED)显示面板。
例如,如图8所示,盖板220可以是触控面板。
本公开一实施例提供一种电子产品。图9为本公开一实施例提供的一种电子产品的平面示意图。如图9所示,该电子产品300包括上述任一项的触摸显示面板200。由此,该电子产品300具有与触摸显示面板200的有益效果对应的有益效果,具体可参见上述显示基板的相关描述。
例如,该电子产品300可以为液晶显示器、智能手机、平板电脑、电视机、显示器、智能手表、笔记本电脑、数码相框、导航仪等任何具有触摸显示功能的产品。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种振动器件,包括:
    衬底基板;
    第一透明导电防扩散层,位于所述衬底基板上;以及
    压电材料层,位于所述第一透明导电防扩散层远离所述衬底基板的一侧,
    其中,所述第一透明导电防扩散层被配置为防止氧进入所述压电材料层。
  2. 根据权利要求1所述的振动器件,其中,所述第一透明导电防扩散层为掺杂透明导电氧化物。
  3. 根据权利要求2所述的振动器件,其中,所述第一透明导电防扩散层为掺杂氟的氧化铟锡。
  4. 根据权利要求1-3任一项所述的振动器件,其中,所述压电材料层为透明压电薄膜。
  5. 根据权利要求4所述振动器件,其中,所述压电材料层为锆钛酸铅、氮化铝和铌酸钾钠中的一种或多种。
  6. 根据权利要求1-5任一项所述振动器件,其中,所述第一透明导电防扩散层的厚度为25nm至1000nm。
  7. 根据权利要求1-6任一项所述的振动器件,其中,所述压电材料层的厚度为1μm至10μm。
  8. 根据权利要求1-7任一项所述的振动器件,还包括:
    第一透明电极,位于所述衬底基板靠近所述第一透明导电防扩散层的一侧。
  9. 根据权利要求8所述的振动器件,其中,所述第一透明电极的材料为透明导电氧化物。
  10. 根据权利要求9所述的振动器件,其中,所述第一透明电极的材料为氧化铟锡。
  11. 根据权利要求8-10任一项所述的振动器件,其中,所述第一透明电极的厚度为100nm至500nm。
  12. 根据权利要求8-11任一项所述的振动器件,其中,所述第一透明导电防扩散层的导电率小于所述第一透明电极的导电率。
  13. 根据权利要求1-12任一项所述的振动器件,还包括:
    第二透明电极,位于所述压电材料层远离所述衬底基板的一侧。
  14. 根据权利要求13所述的振动器件,还包括:
    第二透明导电防扩散层,位于所述压电材料层和所述第二透明电极层之间。
  15. 根据权利要求13-14任一项所述的振动器件,其中,所述第二透明电极的材料为透明导电氧化物。
  16. 根据权利要求1-15任一项所述的振动器件,其中,所述压电材料层通过磁控溅射或气相沉积形成。
  17. 一种触摸显示面板,包括根据权利要求1-16任一项所述的振动器件。
  18. 一种电子产品,包括根据权利要求17所述的触摸显示面板。
PCT/CN2022/095255 2022-05-26 2022-05-26 振动器件、触摸显示面板和电子产品 WO2023225948A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/095255 WO2023225948A1 (zh) 2022-05-26 2022-05-26 振动器件、触摸显示面板和电子产品
CN202280001463.2A CN117480884A (zh) 2022-05-26 2022-05-26 振动器件、触摸显示面板和电子产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/095255 WO2023225948A1 (zh) 2022-05-26 2022-05-26 振动器件、触摸显示面板和电子产品

Publications (1)

Publication Number Publication Date
WO2023225948A1 true WO2023225948A1 (zh) 2023-11-30

Family

ID=88918136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/095255 WO2023225948A1 (zh) 2022-05-26 2022-05-26 振动器件、触摸显示面板和电子产品

Country Status (2)

Country Link
CN (1) CN117480884A (zh)
WO (1) WO2023225948A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077740A (ja) * 1998-09-03 2000-03-14 Seiko Epson Corp 圧電体薄膜素子およびその製造方法
CN103795369A (zh) * 2012-10-26 2014-05-14 安华高科技通用Ip(新加坡)公司 具有低微调敏感度的温度补偿谐振器装置及制造所述装置的方法
US20160087198A1 (en) * 2014-09-19 2016-03-24 Winbond Electronics Corp. Resistive random access memory
CN110868171A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 谐振器、晶片及谐振器制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077740A (ja) * 1998-09-03 2000-03-14 Seiko Epson Corp 圧電体薄膜素子およびその製造方法
CN103795369A (zh) * 2012-10-26 2014-05-14 安华高科技通用Ip(新加坡)公司 具有低微调敏感度的温度补偿谐振器装置及制造所述装置的方法
US20160087198A1 (en) * 2014-09-19 2016-03-24 Winbond Electronics Corp. Resistive random access memory
CN110868171A (zh) * 2019-04-23 2020-03-06 中国电子科技集团公司第十三研究所 谐振器、晶片及谐振器制造方法

Also Published As

Publication number Publication date
CN117480884A (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
WO2016202060A1 (zh) 阵列基板及其制造方法、显示装置
TWI227031B (en) A capacitor structure
TWI289708B (en) Optical interference type color display
US11637134B2 (en) Array substrate, method for manufacturing the same, and display device
TWI502429B (zh) 觸控式顯示裝置及其製作方法
WO2018152907A1 (zh) 微发光二极管阵列基板及显示面板
KR20010094773A (ko) 편광판 일체형 터치 패널 및 터치 패널 일체형 평판디스플레이 그리고 적층 방법
TW201216376A (en) Manufacturing method of thin film transistor and liquid crystal display device
WO2016029612A1 (zh) 薄膜晶体管及其制备方法、显示基板及显示装置
CN106449666B (zh) 阵列基板和显示装置
WO2017121009A1 (zh) Ips型tft-lcd阵列基板的制作方法及ips型tft-lcd阵列基板
WO2018171268A1 (zh) 基板及其制备方法、显示面板和显示装置
WO2016173012A1 (zh) 薄膜晶体管阵列基板及其制作方法
WO2015000260A1 (zh) 一种像素结构、阵列基板及显示装置
CN103890646B (zh) 液晶元件和液晶元件用晶胞
CN104166257A (zh) 一种显示面板及显示装置
WO2023225948A1 (zh) 振动器件、触摸显示面板和电子产品
WO2021184438A1 (zh) 显示基板
US20220157901A1 (en) Display module and fabrication method thereof, and display device
WO2015188476A1 (zh) 薄膜晶体管及其制作方法、oled背板和显示装置
US20150022730A1 (en) Touch display panel
CN113745289A (zh) 显示器
WO2017197940A1 (zh) 显示装置及其制造方法
WO2023184298A1 (zh) 压电传感器、其驱动方法及触觉反馈装置
CN101819480B (zh) 显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280001463.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18033622

Country of ref document: US