WO2023223766A1 - 複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法 - Google Patents

複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法 Download PDF

Info

Publication number
WO2023223766A1
WO2023223766A1 PCT/JP2023/015830 JP2023015830W WO2023223766A1 WO 2023223766 A1 WO2023223766 A1 WO 2023223766A1 JP 2023015830 W JP2023015830 W JP 2023015830W WO 2023223766 A1 WO2023223766 A1 WO 2023223766A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
block copolymer
hydrogenated block
parts
mol
Prior art date
Application number
PCT/JP2023/015830
Other languages
English (en)
French (fr)
Inventor
隆寛 久末
美香子 土橋
美花 堀内
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Publication of WO2023223766A1 publication Critical patent/WO2023223766A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers

Definitions

  • the present invention relates to a thermoplastic elastomer composition for multilayer molding, a multilayer molded product, and a method for producing a multilayer molded product.
  • Thermoplastic resins containing polar groups have been used in many fields due to their excellent heat resistance and mechanical properties.
  • the polar group-containing thermoplastic resin is used as a base material, and a soft material is often adhered to the surface or part of the base material to form a multilayer molded product.
  • sealing members such as the skin of automobile interiors, grips, cushioning materials, and packing.
  • Examples of methods for adhering the soft material to the base material of the polar group-containing thermoplastic resin include a method of adhering with an adhesive and a method of adhering by heat fusion during molding.
  • a method of adhering with an adhesive it is possible to firmly bond the soft material and the base material through the adhesive, but the problem is that a curing process is required in addition to the process of applying the adhesive, which slows down the production speed. It has points.
  • bonding methods using heat fusion include bonding methods using injection molding such as insert molding and two-color molding. These bonding methods using injection molding make it possible to carry out heat fusion at the same time as molding, making it possible to significantly improve production speed, and in recent years, bonding methods using heat fusion during injection molding have been increasing. .
  • Patent Document 1 discloses a thermoplastic elastomer composition containing a hydrogenated thermoplastic styrenic elastomer, a softener for hydrocarbon rubber, polypropylene, a thermoplastic polyurethane elastomer, and an acid-modified hydrogenated styrenic elastomer.
  • Patent Document 2 also relates to a thermoplastic polymer composition containing a thermoplastic elastomer, a polyvinyl acetal resin, and/or a polar group-containing polypropylene resin, and an adhesive body comprising the thermoplastic polymer composition and an insert member. The technology has been disclosed.
  • thermoplastic elastomer composition disclosed in Patent Document 1 contains a maleic anhydride-modified styrenic elastomer as the acid-modified hydrogenated styrenic elastomer. It also produces a pungent odor. Therefore, it has the problem of being unsuitable for applications in spaces where people stay for long periods of time, such as medical applications, automobile interior materials, and housing materials. Furthermore, when acid modification is performed, there are problems in that the number of modification steps increases, unreacted free maleic acid remains as an impurity, and coloring due to maleic acid oligomers occurs. .
  • thermoplastic polymer composition disclosed in Patent Document 2 contains a polyvinyl acetal resin and/or a polar group-containing polypropylene resin, and the polyvinyl acetal resin easily detaches side chains during heat processing.
  • the problem is that the decomposition reaction generates a strong odor, which is extremely harmful to the working environment.
  • the polar group-containing polypropylene resin is acid-modified with maleic anhydride, and, like the thermoplastic elastomer composition disclosed in Patent Document 1, has the problem of generating an irritating odor.
  • conventionally proposed thermal adhesive compositions made of thermoplastic elastomer compositions and thermoplastic polymer compositions have problems such as odor and coloring, which leaves room for improvement. have.
  • the present invention provides a thermoplastic elastomer composition and a multilayer molded article that have practically good odor and color, and are excellent in moldability, thermal adhesive strength, and mechanical strength.
  • the purpose is to
  • thermoplastic elastomer composition containing the above can solve the problems of the prior art described above, and have completed the present invention. That is, the present invention is as follows.
  • a thermoplastic elastomer composition for multi-layer molding which is heat-sealed by injection molding and is a hydrogenated block copolymer, The content of the hydrogenated block copolymer (a-2) is 5 to 70% by mass with respect to the total amount of the components (a-1), (a-2), (b), and (c).
  • the hydrogenated block copolymer (a-1) satisfies the following requirements (1-1) to (1-4),
  • the hydrogenated block copolymer (a-2) satisfies the following requirements (2-1) to (2-6),
  • Thermoplastic elastomer composition for multilayer molding (1-1): Contains a polymer block A1 mainly composed of one or more vinyl aromatic monomer units and a polymer block B1 mainly composed of one or more conjugated diene monomer units. .
  • the hydrogenated block copolymer (a-2) is It has a polymer block A2 mainly composed of at least two vinyl aromatic monomer units, and a polymer block B2 mainly composed of at least two conjugated diene monomer units, At least one of the polymer blocks B2 is located at the end of the hydrogenated block copolymer (a-2), and the content of the polymer block B2 at the end is greater than the content of the polymer block B2 at the end of the hydrogenated block copolymer (a-2).
  • thermoplastic elastomer composition for multilayer molding according to [1] above.
  • Thermoplastic elastomer composition for molding [4] Any one of [1] to [3] above, wherein the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is more than 40% by mass and not more than 70% by mass.
  • thermoplastic elastomer for multilayer molding according to any one of [1] to [4] above, wherein the amount of vinyl bonds before hydrogenation in the conjugated diene monomer unit is 30 mol% to 50 mol%.
  • Composition [6] A multilayer molded article comprising the thermoplastic elastomer composition layer for multilayer molding according to any one of [1] to [5] above, and a polar group-containing thermoplastic resin layer.
  • thermoplastic elastomer composition layer containing a hydrogenated block copolymer (a), a polypropylene resin (b), and a non-aromatic softener (c);
  • a multilayer molded body having the following: The thermoplastic elastomer composition layer is provided in contact with the polar group-containing thermoplastic resin layer, The hydrogenated block copolymer (a) does not contain a modifying group, The hydrogenated block copolymer (a) is A hydrogenated block copolymer which is a hydrogenated product of a block copolymer having a vinyl aromatic monomer unit and a conjugated diene monomer unit, Having one or more molecular weight peaks by GPC in the range of 30,000 to less than 150,000 and in the range of 150,000 to 550,000, The content of all vinyl aromatic monomer units of the hydrogenated block copolymer having a molecular weight peak of 30,000 to less than 150,000 by GPC is 35% by mass to 70% by
  • the amount of vinyl bonds before hydrogenation in the body unit is 60 mol% to 95 mol%
  • the content of all vinyl aromatic monomer units of the hydrogenated block copolymer having a molecular weight peak of 150,000 to 550,000 by GPC is 15% by mass to less than 35% by mass
  • the hydrogenation rate of the double bond of the conjugated diene monomer unit is 50 mol% or more, Multilayer molded body.
  • the hydrogenated block copolymer (a) consists of a hydrogenated block copolymer (a-1) and a hydrogenated block copolymer (a-2),
  • the above (a-1) satisfies the requirements (1-1) to (1-4) below
  • the above (a-2) satisfies the requirements (2-1) to (2-6) below
  • the thermoplastic elastomer composition layer contains 100 parts by mass of (a-1), 10 to 100 parts by mass of (b), and 50 to 300 parts by mass of (c)
  • the content of (a-2) in the thermoplastic elastomer composition layer is 5 to 70% of the total amount of components (a-1), (a-2), (b), and (c).
  • (1-1) Contains a polymer block A1 mainly composed of one or more vinyl aromatic monomer units and a polymer block B1 mainly composed of one or more conjugated diene monomer units. .
  • the hydrogenated block copolymer (a-2) is It has a polymer block A2 mainly composed of at least two vinyl aromatic monomer units, and a polymer block B2 mainly composed of at least two conjugated diene monomer units, and at least one of the above-mentioned
  • the polymer block B2 is located at the end of the hydrogenated block copolymer (a-2), and the content of the polymer block B2 at the end is 1 in the hydrogenated block copolymer (a-2). ⁇ 10% by mass, The content of all vinyl aromatic monomer units is more than 40% by mass and not more than 70% by mass, Does not have a peak with a weight average molecular weight of 250,000 or more,
  • thermoplastic elastomer composition for use in the multilayer molded article according to any one of [6] to [12] above, In the multilayer molded body, the polar group-containing thermoplastic resin layer and the thermoplastic elastomer composition layer are thermally fused by injection molding. Thermoplastic elastomer composition.
  • a method for producing a multilayer molded body is
  • thermoplastic elastomer composition and a multilayer laminate can be obtained which have practically good odor and color and are excellent in moldability, thermal adhesive strength, and mechanical strength.
  • this embodiment a mode for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. Note that the present embodiment below is an illustration for explaining the present invention, and the present invention is not limited to the following content. The present invention can be implemented with various modifications within the scope of its gist.
  • the thermoplastic elastomer composition of the present embodiment is a thermoplastic elastomer composition for multilayer molding that is heat-sealed to other members by injection molding, 100 parts by mass of hydrogenated block copolymer (a-1), 10 to 100 parts by mass of polypropylene resin (b), 50 to 300 parts by mass of a non-aromatic softener (c), Contains, Furthermore, it contains a hydrogenated block copolymer (a-2), and the hydrogenated block copolymer (a-1) and the hydrogenated block copolymer (a-2) are both unmodified. It is a hydrogenated block copolymer.
  • the content of the hydrogenated block copolymer (a-2) is 5 to 70% by mass based on the total amount of the components (a-1), (a-2), (b), and (c). be.
  • the hydrogenated block copolymer (a-1) satisfies the following requirements (1-1) to (1-4), and the hydrogenated block copolymer (a-2) satisfies the following requirements (2-1). ) to (2-6) are satisfied.
  • (1-1) Contains a polymer block A1 mainly composed of one or more vinyl aromatic monomer units and a polymer block B1 mainly composed of one or more conjugated diene monomer units. .
  • thermoplastic elastomer composition which has practically good odor and color and is excellent in moldability, thermal adhesive strength, and mechanical strength. Each component will be explained in detail below.
  • the thermoplastic elastomer composition of this embodiment contains a hydrogenated block copolymer (a-1).
  • the hydrogenated block copolymer (a-1) is a polymer block A1 mainly composed of one or more vinyl aromatic monomer units, and a polymer block A1 mainly composed of one or more conjugated diene monomer units. This is a hydrogenated block copolymer obtained by hydrogenating a block copolymer containing block B1 (requirement (1-1) above).
  • the hydrogenated block copolymer (a-1) is a so-called "unmodified" copolymer having no functional groups not derived from a vinyl aromatic compound or a conjugated diene compound.
  • unmodified refers to the case where the hydrogenated block copolymer (a-1) contains a modifying group formed by a predetermined modifying agent, and the hydrogenated block copolymer (a-1) If (a-1) is obtained through a coupling reaction using a coupling agent and has Si atoms and O atoms derived from the coupling agent, it is considered “unmodified”. The requirements shall be met. In this way, in this embodiment, a distinction is made between whether the atomic group having a heteroatom exists as a coupling agent residue or whether it is introduced by a modifier.
  • the polymer block A1 mainly composed of vinyl aromatic monomer units means that the content of vinyl aromatic monomer units in the polymer block A1 exceeds 50% by mass, and the mechanical strength and heat resistance are From the viewpoint of deformability, the content is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the polymer block B1 mainly composed of conjugated diene monomer units means that the content of conjugated diene monomer units in the polymer block B1 exceeds 50% by mass, flexibility, From the viewpoint of softener retention, the content is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • each monomer unit constituting the block copolymer is named according to the name of the monomer from which the monomer unit is derived.
  • "vinyl aromatic monomer unit” means a structural unit of a polymer produced as a result of polymerizing a vinyl aromatic monomer, and its structure is derived from a substituted ethylene group derived from a substituted vinyl group. This is a molecular structure in which the two carbon atoms of the group serve as bonding sites.
  • conjugated diene monomer unit refers to a structural unit of a polymer produced as a result of polymerizing a conjugated diene compound as a monomer, and its structure consists of two olefins derived from the conjugated diene compound. This is a molecular structure in which carbon is the bonding site.
  • the vinyl aromatic compound that can be used to form the vinyl aromatic monomer unit in the polymer block A1 refers to a compound having a vinyl group and an aromatic ring.
  • vinyl aromatic compounds include, but are not limited to, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N,N-dimethyl-p-aminoethylstyrene, N,N-dimethyl-p-aminoethylstyrene, , N-diethyl-p-aminoethylstyrene and the like.
  • styrene, ⁇ -methylstyrene, and divinylbenzene are preferably used from the viewpoint of polymerizability.
  • These vinyl aromatic compounds may be used alone or in combination of two or more.
  • the conjugated diene compound that can be used to form the conjugated diene monomer unit in the polymer block B1 is a diene compound having a pair of conjugated double bonds (two double bonds bonded in a conjugated manner). It is an olefin.
  • Conjugated diene compounds include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. , 2-methyl-1,3-pentadiene, 1,3-hexadiene and the like. Among these, 1,3-butadiene and 2-methyl-1,3-butadiene (isoprene) are preferably used from the viewpoint of polymerizability. These conjugated diene compounds may be used alone or in combination of two or more.
  • the hydrogenated block copolymer (a-1) is not limited to, but has, for example, a structure represented by the following general formulas (1) to (7). Furthermore, the hydrogenated block copolymer (a-1) is a mixture containing multiple types of copolymers having structures represented by the following general formulas (1) to (7) in arbitrary proportions. Good too.
  • A1 is a polymer block mainly composed of vinyl aromatic monomer units
  • B1 is a polymer block mainly composed of conjugated diene monomer units.
  • the boundary line between polymer block A1 and polymer block B1 does not necessarily need to be clearly distinguished.
  • n is an integer of 1 or more, preferably an integer of 1 to 5.
  • m is an integer of 2 or more, preferably 2 to 11, more preferably 2 to 8.
  • Z represents a coupling agent residue.
  • the coupling residue refers to a plurality of copolymers of a conjugated diene monomer unit and a vinyl aromatic monomer unit, between polymer block A1 and polymer block A1, and between polymer block B1 and polymer block B1. It means the residue after binding of a coupling agent used for binding between combined blocks B1 or between polymer block A1 and polymer block B1.
  • the coupling agent include, but are not limited to, the halogenated silicon compounds and acid esters described below.
  • the vinyl aromatic monomer units in the polymer block A1 and the polymer block B1 may be distributed uniformly or in a tapered manner.
  • the vinyl aromatic monomer in the copolymer block There may be a plurality of uniformly distributed units and a plurality of tapered units.
  • a plurality of portions having different contents of vinyl aromatic monomer units may coexist in the copolymer block portion.
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-1) is 15% by mass or more and less than 35% by mass (requirement (1-2) above).
  • the content is preferably 17% by mass or more, more preferably 19% by mass or more, and Preferably it is 21% by mass or more, and even more preferably 23% by mass or more. Moreover, it is preferably 34% by mass or less, more preferably 33% by mass or less.
  • Mechanical strength and recovery properties are properties necessary for material strength and deformation prevention, and flexibility and rebound properties are properties related to tactility.
  • thermoplastic elastomer composition of this embodiment can be used for grips, skin materials, etc.
  • sealing materials it is preferable to design the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-1) within a range suitable for these uses.
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-1) is 15% by mass or more, the mechanical strength and heat deformation resistance of the thermoplastic elastomer composition of this embodiment are reduced.
  • the content of all vinyl aromatic monomer units is less than 35% by mass, the flexibility, recovery properties, and rebound properties of the thermoplastic elastomer composition of this embodiment tend to improve.
  • the content of all vinyl aromatic monomer units can be controlled within the above numerical range by adjusting the amount of monomer added in the polymerization step of the hydrogenated block copolymer (a-1). It can be calculated from the absorption intensity at 262 nm using an ultraviolet spectrophotometer according to the method described in the Examples below.
  • the weight average molecular weight of the hydrogenated block copolymer (a-1) is 150,000 to 550,000 (requirement (1-3) above). From the viewpoint of heat deformation resistance, it is 150,000 or more, preferably 170,000 or more, more preferably 190,000 or more, and still more preferably 210,000 or more. Further, it is preferably 500,000 or less, more preferably 450,000 or less, even more preferably 400,000 or less, even more preferably 350,000 or less, even more preferably 300,000 or less.
  • the thermoplastic elastomer composition of this embodiment tends to have good heat deformation resistance and recovery properties.
  • the weight average molecular weight of the hydrogenated block copolymer (a-1) is 550,000 or less, the thermoplastic elastomer composition of this embodiment exhibits good fluidity and sufficient moldability is obtained.
  • the molecular weight distribution (Mw/Mn) of the hydrogenated block copolymer (a-1) is preferably 1.01 to 5.0, more preferably 1.01 to 4.0, even more preferably 1.01 to 3. .0. If the hydrogenated block copolymer (a-1) has a molecular weight distribution of 1.01 to 5.0, better mechanical strength tends to be obtained.
  • the shape of the molecular weight distribution curve of the hydrogenated block copolymer (a-1) measured by gel permeation chromatography (hereinafter sometimes referred to as GPC) is not particularly limited, and there are two or more peaks. It may have a polymodal molecular weight distribution or a monomodal molecular weight distribution with one peak.
  • weight average molecular weight (Mw) and molecular weight distribution [Mw/Mn; ratio of weight average molecular weight (Mw) to number average molecular weight (Mn)] of the hydrogenated block copolymer (a-1) are determined in Examples described below. Based on the molecular weight of the peak in the chromatogram measured by gel permeation chromatography (GPC) using the method described in , a calibration curve (created using the peak molecular weight of standard polystyrene) obtained from the measurement of commercially available standard polystyrene was created. You can use it to find out.
  • GPC gel permeation chromatography
  • the microstructure (cis, trans, vinyl bond content) of the polymer block B1 in the hydrogenated block copolymer (a-1) is determined by the presence of polar compounds, etc. in the polymerization process of the hydrogenated block copolymer (a-1). It can be arbitrarily controlled by using a regulator. The regulator will be described later.
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units in the hydrogenated block copolymer (a-1) is preferably 30 mol% or more, more preferably 31 mol% or more, and even more preferably is 31 mol% or more, and even more preferably 32 mol% or more.
  • a preferable upper limit is 50 mol% or less, more preferably 47 mol% or less, and even more preferably 44 mol% or less.
  • the hydrogenated block copolymer (a-1) If the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units in the hydrogenated block copolymer (a-1) is 30 mol% or more, the hydrogenated block copolymer (a-1) and the below-mentioned
  • the thermoplastic elastomer composition of this embodiment tends to have better compatibility with the polypropylene resin (b), and the amount of vinyl bonds before hydrogenation in the conjugated diene monomer unit is 50 mol% or less.
  • the mechanical strength of objects tends to improve.
  • the amount of vinyl bonds is referred to as "before hydrogenation”, but this is because after hydrogenation, it can no longer be called “vinyl bonds”, and the amount of vinyl bonds in the copolymer before hydrogenation is This does not mean that it must be measured. Since the bonding mode of a conjugated diene can be determined from the structure after hydrogenation, it is also possible to calculate the amount of vinyl bonds "before hydrogenation” by examining the structure after hydrogenation.
  • the amount of vinyl bonds refers to the amount of conjugated diene monomers incorporated in the bonding modes of 1,2-bonds, 3,4-bonds, and 1,4-bonds before hydrogenation, for example, in butadiene. It is the ratio of the total molar amount of conjugated diene monomer units incorporated by 1,2-bonds and 3,4-bonds to the total molar amount of body units. In addition, after hydrogenation, 1,2-bond without hydrogenation, 1,2-bond after hydrogenation, 3,4-bond without hydrogenation, 3,4-bond after hydrogenation, and no hydrogenation.
  • the amount of vinyl bonds in the conjugated diene monomer unit before hydrogenation can be measured by nuclear magnetic resonance spectroscopy (NMR) using the block copolymer after hydrogenation. It can be measured by the method described.
  • NMR nuclear magnetic resonance spectroscopy
  • the hydrogenation rate of the aliphatic double bonds derived from the conjugated diene compound in the hydrogenated block copolymer (a-1), that is, the double bonds of the conjugated diene monomer units, is 50% or more (the above requirements (1-4), preferably 60% or more, more preferably 70% or more. If the hydrogenation rate is 50% or more, the thermoplastic elastomer composition of the present embodiment will not undergo thermal deterioration (oxidative deterioration). ) tends to be able to more effectively suppress the deterioration of mechanical properties due to
  • the upper limit of the hydrogenation rate is not particularly limited, but is preferably 100% or less, more preferably 99% or less.
  • the hydrogenation rate of the double bonds of the conjugated diene monomer units of the hydrogenated block copolymer (a-1) can be adjusted to the above numerical range by adjusting the type of hydrogenation catalyst, the amount used, and the hydrogenation conditions. It can be controlled and measured by the method described in the Examples below.
  • thermoplastic elastomer composition of this embodiment By blending the organic peroxide (e) described below into the thermoplastic elastomer composition of this embodiment, it is possible to partially crosslink the thermoplastic elastomer composition in the step of melt-kneading it with an extruder.
  • the thermoplastic elastomer composition layer constituting the multilayer molded article of this embodiment described below does not necessarily need to be crosslinked, but may be crosslinked in applications where there is a high demand for suppressing permanent strain.
  • the organic peroxide (e) derived from the conjugated diene compound in the hydrogenated block copolymer (a-1)
  • the hydrogenation rate of aliphatic double bonds needs to be 50% or more, preferably 60% or more, and from the viewpoint of processability and crosslinking reactivity, it is preferably 90% or less, and 85% or less. is more preferable.
  • the hydrogenation rate of aromatic double bonds based on vinyl aromatic monomer units in the hydrogenated block copolymer (a-1) is not particularly limited, but is preferably 50% or less, more preferably 30% or less. % or less, more preferably 20% or less.
  • thermoplastic elastomer composition of this embodiment contains a hydrogenated block copolymer (a-2).
  • Hydrogenated block copolymer (a-2) consists of a polymer block A2 mainly composed of one or more vinyl aromatic monomer units and a polymer block A2 mainly composed of one or more conjugated diene compound monomer units. It is a hydrogenated block copolymer obtained by hydrogenating a block copolymer containing the combined block B2 (requirement (2-1) above).
  • the hydrogenated block copolymer (a-2) has a total vinyl aromatic monomer unit content of 35% by mass to 70% by mass (requirement (2-3) above). Further, the weight average molecular weight of the hydrogenated block copolymer (a-2) is 30,000 or more and less than 150,000 (requirement (2-4) above). Further, the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units in polymer block B2 is 60 mol% to 95 mol% (requirement (2-5) above).
  • the hydrogenated block copolymer (a-2) is an unmodified block copolymer having no functional groups not derived from vinyl aromatic compounds and conjugated diene compounds. Since the hydrogenated block copolymer (a-2) is unmodified, it is possible to obtain a thermoplastic elastomer composition free from odor, color, and impurities from unreacted substances. Note that "unmodified” refers to the case where the hydrogenated block copolymer (a-2) contains a modifying group formed by a predetermined modifying agent, and the hydrogenated block copolymer (a-2) If (a-2) is obtained through a coupling reaction using a coupling agent and has Si atoms and O atoms derived from the coupling agent, it is considered "unmodified". The requirements shall be met.
  • thermoplastic elastomer composition of this embodiment contains a hydrogenated block copolymer (a-2) having a specific structure that satisfies requirements (2-1) to (2-6). It becomes possible to thermally bond to a polar group-containing thermoplastic resin, which will be described later, without using a polymer.
  • thermoplastic elastomer composition of this embodiment contains a polypropylene resin (b) in order to adjust moldability and hardness. ) has low affinity with polar group-containing thermoplastic resin compositions and exhibits almost no adhesive strength.
  • the thermal adhesiveness of the thermoplastic elastomer composition of this embodiment can be controlled by the amount of vinyl aromatic monomer units and the amount of vinyl bonds in the hydrogenated block copolymers (a-1) and (a-2). There is a tendency.
  • the content of the vinyl aromatic monomer in the hydrogenated block copolymer (a-2) is 35% by mass to 70% by mass (requirement (2-3) above).
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units in polymer block B2 is 60 mol% to 95 mol% (the above requirements (2-5)), the higher the amount of vinyl bonds within this range, and the higher the ratio of component (a-2) for the same amount of vinyl bonds, the better the compatibility with polypropylene resin (b).
  • thermoplastic elastomer composition of the present embodiment combines the hydrogenated block copolymer (a-1) described above and hydrogenated In addition to the block copolymer (a-2), it contains one or more of each of a polypropylene resin (b) and a non-aromatic softener (c);
  • the content of a-2) shall be 5 to 70% by mass based on the total amount of components (a-1), (a-2), (b), and (c).
  • a preferable lower limit is 10% by mass or more, more preferably 15% by mass or more.
  • the upper limit is preferably 65% by mass or less, more preferably 60% by mass or less.
  • the polymer block A2 mainly composed of vinyl aromatic monomer units has a content of vinyl aromatic monomer units of 50% by mass in the polymer block A2. or more (requirement (2-2) above), and preferably 60% by mass or more from the viewpoint of thermal fusion properties of the thermoplastic elastomer composition of this embodiment to the polar group-containing thermoplastic resin described below. , more preferably 70% by mass or more, still more preferably 80% by mass or more, even more preferably 90% by mass or more.
  • polymer block B2 mainly composed of conjugated diene monomer units means that the content of conjugated diene monomer units in polymer block B2 is 50% by mass. It is preferably 60% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and even more preferably 90% by mass or more.
  • the vinyl aromatic compound used to form the vinyl aromatic monomer unit in the polymer block A2 refers to a compound having a vinyl group and an aromatic ring.
  • vinyl aromatic compounds include, but are not limited to, styrene, ⁇ -methylstyrene, p-methylstyrene, divinylbenzene, 1,1-diphenylethylene, N,N-dimethyl-p-aminoethylstyrene, N,N-dimethyl-p-aminoethylstyrene, , N-diethyl-p-aminoethylstyrene and the like.
  • styrene, ⁇ -methylstyrene, and divinylbenzene are preferably used from the viewpoint of polymerizability.
  • These vinyl aromatic compounds may be used alone or in combination of two or more.
  • the conjugated diene compound used to form the conjugated diene monomer unit in polymer block B2 is a diolefin having a pair of conjugated double bonds (two double bonds bonded in a conjugated manner).
  • Conjugated diene compounds include, but are not limited to, 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. , 2-methyl-1,3-pentadiene, 1,3-hexadiene and the like. Among these, 1,3-butadiene and 2-methyl-1,3-butadiene (isoprene) are preferably used from the viewpoint of polymerizability. These conjugated diene compounds may be used alone or in combination of two or more.
  • the hydrogenated block copolymer (a-2) is not limited to, but has, for example, a structure represented by the following general formulas (85) to (14). Further, the hydrogenated block copolymer (a-2) may be a mixture containing multiple types of structures represented by the following general formulas (8) to (14) in any proportion.
  • A2 is a polymer block mainly composed of vinyl aromatic monomer units
  • B2 is a polymer block mainly composed of conjugated diene monomer units.
  • the boundary line between polymer block A2 and polymer block B2 does not necessarily need to be clearly distinguished.
  • n is an integer of 1 or more, preferably an integer of 1 to 5.
  • m is an integer of 2 or more, preferably 2 to 11, more preferably 2 to 8.
  • Z represents a coupling agent residue.
  • the coupling residue refers to a plurality of copolymers of a conjugated diene monomer unit and a vinyl aromatic monomer unit, between polymer block A2 and polymer block A2, and between polymer block B2 and polymer block B2.
  • the structural formula of the hydrogenated block copolymer (a-2) is preferably the formula (8), (9) or (10), more preferably the formula (8) or (10), and even more preferably is the above formula (8).
  • the vinyl aromatic monomer units in polymer block A2 and polymer block B2 may be distributed uniformly or in a tapered manner.
  • the vinyl aromatic monomer in the copolymer block The unit may include a plurality of uniformly distributed portions and/or a plurality of tapered portions. Furthermore, a plurality of portions having different contents of vinyl aromatic monomer units may coexist in the copolymer block portion.
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is 35% by mass to 70% by mass (requirement (2-3) above).
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is 35% by mass or more, the mechanical strength of the thermoplastic elastomer composition of this embodiment and the polar group described below The affinity with the thermoplastic resin contained tends to improve, and sufficient thermal adhesive strength can be obtained.
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is 70% by mass or less, the flexibility and recovery properties of the thermoplastic elastomer composition of this embodiment are improved. There is a tendency to improve.
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is calculated based on the amount of monomer added in the polymerization process of the hydrogenated block copolymer (a-2). It can be controlled within the above numerical range by adjustment, and can be calculated from the absorption intensity at a wavelength of 262 nm using an ultraviolet spectrophotometer by the method described in the Examples described later.
  • the weight average molecular weight of the hydrogenated block copolymer (a-2) is 30,000 or more and less than 150,000 (requirement (2-4) above).
  • the weight average molecular weight of the hydrogenated block copolymer (a-2) is 30,000 or more, the heat deformation resistance and recovery properties of the thermoplastic elastomer composition of this embodiment tend to improve.
  • the weight average molecular weight of the hydrogenated block copolymer (a-2) is less than 150,000, the fluidity of the thermoplastic elastomer composition of this embodiment improves, and the thermoplastic elastomer composition of this embodiment improves. There is a tendency for moldability and thermal adhesion to improve.
  • the weight average molecular weight of the hydrogenated block copolymer (a-2) is preferably 40,000 to 130,000, more preferably 50,000 to 110,000.
  • the molecular weight distribution (Mw/Mn) of the hydrogenated block copolymer (a-2) is preferably 1.01 to 8.0, more preferably 1.01 to 6.0, even more preferably 1 It is between .01 and 5.0. If the molecular weight distribution of the hydrogenated block copolymer (a-2) is within the above range, the thermoplastic elastomer composition of this embodiment tends to have better recovery properties. Note that Mw and Mn of the hydrogenated block copolymer (a-2) can be measured by GPC, and specifically by the method described in the Examples described later.
  • the shape of the molecular weight distribution curve of the hydrogenated block copolymer (a-2) is not particularly limited; it may have a polymodal molecular weight distribution with two or more peaks, or it may have a polymodal molecular weight distribution with one peak. It may also have a modal molecular weight distribution.
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units in polymer block B2 is 60 mol% to 95 mol% (the above requirements (2- 5)). It is preferably 63 mol% to 90 mol%, more preferably 65 mol% to 85 mol%.
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units in the polymer block B2 in the hydrogenated block copolymer (a-2) is 60 mol% or more, the polypropylene resin (b) described below
  • the thermoplastic elastomer composition of this embodiment tends to have good thermal adhesion.
  • the hydrogenated block copolymer (a-2) has a relatively small molecular weight and has a high vinyl bond content of 60 mol% or more, the fluidity of the thermoplastic elastomer composition of this embodiment is improved.
  • the wettability that follows the fine irregularities on the surface of the adherend becomes good, and the thermoplastic elastomer composition of this embodiment tends to have good thermal adhesion.
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer unit is 95 mol % or less, the mechanical strength of the thermoplastic elastomer composition of this embodiment tends to be ensured.
  • the amount of vinyl bonds in the conjugated diene monomer unit can be measured by nuclear magnetic resonance spectroscopy (NMR) using a block copolymer, and specifically by the method described in the Examples below.
  • the amount of vinyl bonds can be controlled within the numerical range mentioned above by adjusting the type and amount of a regulator such as a tertiary amine which will be described later.
  • the hydrogenated block copolymer (a-2) is entirely
  • the content of the vinyl aromatic monomer unit is 35% by mass to 70% by mass (requirement (2-3) above), and from the viewpoint of thermal adhesiveness and mechanical strength of the thermoplastic elastomer composition of this embodiment. Therefore, the amount of vinyl bonds before hydrogenation in the conjugated diene monomer unit is 60 mol% to 95 mol% (requirement (2-5) above).
  • the hydrogenation rate of the double bonds of the conjugated diene monomer units in the hydrogenated block copolymer (a-2) shall be 50 mol% or more (requirement (2-6) above), preferably 80% by mole or more (requirement (2-6) above). % or more, more preferably 90% or more. If the hydrogenation rate of the double bond of the conjugated diene monomer unit in the hydrogenated block copolymer (a-2) is 50 mol% or more, thermal deterioration of the thermoplastic elastomer composition of the present embodiment, i.e. Decrease in mechanical properties due to oxidative deterioration can be suppressed.
  • the hydrogenation rate of the double bonds of the conjugated diene monomer units of the hydrogenated block copolymer (a-2) can be adjusted to the above numerical range by adjusting the type of hydrogenation catalyst, the amount used, and the hydrogenation conditions. It can be controlled and measured by the method described in the Examples below.
  • the hydrogenation rate of aromatic double bonds based on vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is not particularly limited, and is preferably 50% or less, more preferably 30% or less. , more preferably 20% or less.
  • the hydrogenated block copolymer (a-2) has at least two polymer blocks A2 and at least two of the polymer blocks B2, at least one polymer block B2 has the hydrogenated
  • the content of the polymer block B2 located at the end of the block copolymer (a-2) is preferably 1% by mass or more in the hydrogenated block copolymer (a-2). , more preferably 2% by mass or more, and still more preferably 3% by mass or more.
  • the upper limit is preferably 10% by mass or less, more preferably 9% by mass or less, even more preferably 8% by mass or less.
  • the hydrogenated block copolymer (a-2) preferably does not have a peak with a weight average molecular weight of 250,000 or more.
  • the hydrogenated block copolymer (a-2) preferably has a total vinyl aromatic monomer unit content of more than 40% by mass and not more than 70% by mass.
  • At least one polymer block B2 is at the end of the hydrogenated block copolymer (a-2), and the content of the polymer block B2 at the end is within the above numerical range, so that this embodiment Thermoplastic elastomer compositions tend to have better flexibility and fluidity.
  • the content of the polymer block B2 at the terminal can be calculated by dividing the mass of the conjugated diene polymerized at the terminal from the mass of all monomers used in the polymerization reaction.
  • the hydrogenated block copolymer (a-2) does not have a peak with a weight average molecular weight of 250,000 or more, so that the fluidity of the thermoplastic elastomer composition of the present embodiment is improved, The wettability to the surface of the adherend is improved, and the thermal adhesion of the thermoplastic elastomer composition of this embodiment tends to be improved. Furthermore, in such a configuration, the content of all vinyl aromatic monomer units in the hydrogenated block copolymer (a-2) is more than 40% by mass and 70% by mass or less, so that the thermoplastic properties of the present embodiment are The elastomer composition tends to have a good balance between mechanical strength, thermal adhesive strength with the polar group-containing thermoplastic resin, and flexibility and recovery properties.
  • At least one polymer block B2 is located at the end, the content of the polymer block B2 at the end is within the above numerical range, and the weight average is 250,000 or more. Hydrogenated In the polymerization step of block copolymer (a-2), it is effective to adjust the timing and amount of monomer addition.
  • the method for producing hydrogenated block copolymers (a-1) and (a-2) is not limited to the following, but examples include, but are not limited to, Japanese Patent Publication No. 36-19286, Japanese Patent Publication No. 43-17979, Japanese Patent Publication No. 46 -32415, Japanese Patent Publication No. 49-36957, Japanese Patent Publication No. 48-2423, Japanese Patent Publication No. 48-4106, Japanese Patent Publication No. 51-49567, Japanese Patent Publication No. 59-166518, etc. There are several methods that can be mentioned.
  • Hydrogenated block copolymers (a-1) and (a-2) containing conjugated diene monomer units and vinyl aromatic monomer units before hydrogenation are not limited to the following: can be obtained, for example, by a method of carrying out anionic living polymerization using a polymerization initiator such as an organic alkali metal compound in a hydrocarbon solvent.
  • the hydrocarbon solvent is not particularly limited, and includes, for example, aliphatic hydrocarbons such as n-butane, isobutane, n-pentane, n-hexane, n-heptane, and n-octane, cyclohexane, cycloheptane, and methylcycloheptane. and aromatic hydrocarbons such as benzene, toluene, xylene, and ethylbenzene.
  • the polymerization initiator is not particularly limited, but organic alkali metal compounds that are generally known to have anionic polymerization activity toward conjugated diene compounds and vinyl aromatic compounds can be used.
  • the organic alkali metal compound is not limited to the following, but includes, for example, an aliphatic hydrocarbon alkali metal compound having 1 to 20 carbon atoms, an aromatic hydrocarbon alkali metal compound having 1 to 20 carbon atoms, and an organic alkali metal compound having 1 to 20 carbon atoms. Examples include amino alkali metal compounds.
  • Examples of the alkali metal contained in the polymerization initiator include, but are not limited to, lithium, sodium, potassium, and the like. In addition, one type, or two or more types of alkali metals may be contained in one molecule.
  • polymerization initiator examples include n-propyllithium, n-butyllithium, sec-butyllithium, tert-butyllithium, n-pentyllithium, n-hexyllithium, benzyllithium, phenyllithium, tolyllithium, Examples include a reaction product of diisopropenylbenzene and sec-butyllithium, and a reaction product of divinylbenzene, sec-butyllithium, and a small amount of 1,3-butadiene. Furthermore, 1-(t-butoxy)propyllithium disclosed in U.S. Pat.
  • Siloxy group-containing alkyl lithium such as 1-(t-butyldimethylsiloxy)hexyllithium disclosed in US Pat. No. 2,241,239, amino group-containing as disclosed in US Pat. No. 5,527,753
  • Aminolithiums such as alkyllithium, diisopropylamide lithium and hexamethyldisilazide lithium can also be used as polymerization initiators.
  • R1R2R3N a compound represented by the general formula R1R2R3N
  • R1, R2, and R3 represent a hydrocarbon group having 1 to 20 carbon atoms or a hydrocarbon group having a tertiary amino group.
  • tertiary amine compounds include, but are not limited to, trimethylamine, triethylamine, tributylamine, N,N-dimethylaniline, N-ethylpiperidine, N-methylpyrrolidine, N,N,N',N'- Tetramethylethylenediamine, N,N,N',N'-tetraethylethylenediamine, 1,2-dipiperidinoethane, trimethylaminoethylpiperazine, N,N,N',N",N"-pentamethylethylenetriamine, Examples include N,N'-dioctyl-p-phenylenediamine.
  • linear ether compounds examples include, but are not limited to, ethylene glycol dialkyl ether compounds such as dimethyl ether, diethyl ether, diphenyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, and diethylene glycol.
  • linear ether compounds include, but are not limited to, ethylene glycol dialkyl ether compounds such as dimethyl ether, diethyl ether, diphenyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, and ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, and diethylene glycol.
  • dialkyl ether compounds of diethylene glycol such as diethyl ether and diethylene glycol dibutyl ether.
  • cyclic ether compound examples include, but are not limited to, tetrahydrofuran, dioxane, 2,5-dimethyloxolane, 2,2,5,5-tetramethyloxolane, and 2,2-bis(2-oxolanyl)propane. , alkyl ethers of furfuryl alcohol, and the like.
  • metal alcoholate compound as a regulator examples include, but are not limited to, sodium t-pentoxide, sodium t-butoxide, potassium t-pentoxide, potassium t-butoxide, and the like.
  • the method of copolymerizing a conjugated diene compound and a vinyl aromatic compound using an organic alkali metal compound as a polymerization initiator is not particularly limited, and may be batch polymerization, continuous polymerization, or a combination thereof. good. From the viewpoint of adjusting the molecular weight distribution to a preferable appropriate range, a batch polymerization method is preferable.
  • the polymerization temperature is not particularly limited, but is usually 0 to 180°C, preferably 30 to 150°C.
  • the time required for polymerization varies depending on the conditions, but is usually within 48 hours, preferably 0.1 to 10 hours.
  • the polymerization pressure is not particularly limited as long as it is within a pressure range sufficient to maintain the monomer and solvent in a liquid phase within the above polymerization temperature range.
  • a necessary amount of a coupling agent having two or more functional groups may be added to carry out the coupling reaction.
  • the coupling agent having two or more functional groups is not particularly limited, and any known one can be used.
  • the bifunctional group coupling agent include, but are not limited to, alkyl alkoxysilanes such as dimethyldimethoxysilane and dimethyldiethoxysilane; halogenated silicon compounds such as dimethyldichlorosilane and dimethyldibromosilane; benzoin; Examples include acid esters such as methyl acid, ethyl benzoate, phenyl benzoate, and phthalate esters.
  • the hydrogenated block copolymers (a-1) and (a-2) are those subjected to a coupling reaction with these coupling agents, the requirement of non-denaturation is not violated.
  • polyfunctional coupling agents having three or more functional groups include, but are not limited to, polyalcohols having three or more valences, epoxidized soybean oil, polyvalent epoxy compounds such as diglycidyl bisphenol A, methyltrimethoxysilane, Examples include alkylalkoxysilanes such as tetramethoxysilane, methyltriethoxysilane, and tetraethoxysilane, and halogenated silicon compounds represented by the general formula R 1 (4-n) SiX n .
  • R 1 represents a hydrocarbon group having 1 to 20 carbon atoms
  • X represents a halogen
  • n represents an integer of 3 or 4.
  • silicon halide compound examples include, but are not limited to, methylsilyl trichloride, t-butylsilyl trichloride, silicon tetrachloride, and brominated products thereof.
  • the hydrogenation catalyst used to produce the hydrogenated block copolymer is not particularly limited, and examples thereof include those disclosed in Japanese Patent Publication No. 42-8704, Japanese Patent Publication No. 43-6636, Japanese Patent Publication No. 63-4841, Hydrogenation catalysts described in Japanese Patent Publication No. 1-37970, Japanese Patent Publication No. 1-53851, Japanese Patent Publication No. 2-9041, etc. can be used.
  • Preferred hydrogenation catalysts include titanocene compounds and mixtures of the titanocene compounds and reducing organometallic compounds.
  • the titanocene compound is not particularly limited, but includes, for example, the compounds described in JP-A-8-109219.
  • At least a ligand having a substituted or unsubstituted cyclopentadienyl structure, indenyl structure, or fluorenyl structure such as biscyclopentadienyl titanium dichloride, monopentamethylcyclopentadienyl titanium trichloride, etc.
  • Examples include compounds having one or more.
  • Examples of the reducing organometallic compound include, but are not limited to, organic alkali metal compounds such as organolithium, organomagnesium compounds, organoaluminum compounds, organoboron compounds, organozinc compounds, and the like.
  • the reaction temperature for the hydrogenation reaction is usually 0 to 200°C, preferably 30 to 150°C.
  • the pressure of hydrogen used in the hydrogenation reaction is preferably 0.1 to 15 MPa, more preferably 0.2 to 10 MPa, and still more preferably 0.3 to 5 MPa.
  • the reaction time for the hydrogenation reaction is usually 3 minutes to 10 hours, preferably 10 minutes to 5 hours. Note that the hydrogenation reaction can be performed using a batch process, a continuous process, or a combination thereof.
  • catalyst residues may be removed from the reaction solution after the hydrogenation reaction is completed.
  • Methods for separating the hydrogenated block copolymer and the solvent include, but are not limited to, the following methods: For example, adding a poor solvent to the hydrogenated block copolymer such as acetone or alcohol to the solution of the hydrogenated block copolymer
  • the hydrogenated block copolymer can be collected by adding a polar solvent to precipitate the hydrogenated block copolymer, or the hydrogenated block copolymer solution can be poured into boiling water with stirring, and the solvent can be removed by steam stripping to collect the hydrogenated block copolymer. Examples include a method in which the solvent is distilled off by directly heating a solution of the hydrogenated block copolymer.
  • An antioxidant may be added to the reaction solution when producing the hydrogenated block copolymer (a).
  • the antioxidant include, but are not limited to, phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, amine antioxidants, and the like. Specifically, 2,6-di-t-butyl-4-methylphenol, n-octadecyl-3-(4'-hydroxy-3',5'-di-t-butylphenyl)propionate, tetrakis-[ methylene-3-(3',5'-di-t-butyl-4'-hydroxyphenyl)propionate]methane], tris-(3,5-di-t-butyl-4-hydroxybenzyl)isocyanurate, 4 , 4'-butylidene-bis-(3-methyl-6-t-butylphenol), 3,9-bis[2- ⁇ 3-(3-t-butyl-4-hydroxy-5-methylphenyl)propionyloxy ⁇ -1,1
  • the thermoplastic elastomer composition of this embodiment contains a polypropylene resin (b).
  • the polypropylene resin (b) is not limited to the following, but includes, for example, a propylene homopolymer, or a block copolymer of propylene and an olefin other than propylene, preferably an ⁇ -olefin having 2 to 20 carbon atoms. or a random copolymer, or a blend thereof.
  • ⁇ -olefins having 2 to 20 carbon atoms include, but are not limited to, ethylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, etc.
  • polypropylene resin (b) preferably ⁇ -olefin having 2 to 8 carbon atoms, more preferably ethylene, 1-butene, 1-hexene, and 4-methyl-1-pentene.
  • the polypropylene resin (b) may be used alone or in combination of two or more.
  • the polypropylene resin (b) has a melt flow rate value (MFR) of 0.1 to 50 g/10 minutes, determined at a temperature of 230° C. and a load of 2.16 kg.
  • MFR melt flow rate value
  • the lower limit is more preferably 0.5 g/10 minutes or more, still more preferably 1.0 g/10 minutes or more.
  • the upper limit is more preferably 45 g/10 minutes or less, and even more preferably 40 g/10 minutes or less. If the MFR of the polypropylene resin (b) is within the above range, the moldability of the thermoplastic elastomer composition of this embodiment tends to be further improved.
  • the method for producing the polypropylene resin (b) is not limited to the following, but for example, the above-mentioned monomers are polymerized using a Ziegler-Natta type catalyst that combines a titanium-containing solid transition metal component and an organic metal component.
  • a Ziegler-Natta type catalyst that combines a titanium-containing solid transition metal component and an organic metal component.
  • Examples include manufacturing methods.
  • the transition metal component used in the Ziegler-Natta type catalyst include, but are not limited to, a solid component containing titanium, magnesium, and halogen as essential components and an electron-donating compound as an optional component, or titanium trichloride.
  • the organometallic component include, but are not limited to, aluminum compounds.
  • the polymerization method for producing the polypropylene resin (b) is not limited to the following, but includes, for example, a slurry polymerization method, a gas phase polymerization method, a bulk polymerization method, a solution polymerization method, or a multistage polymerization method that combines these methods. Examples include legality. In these polymerization methods, only propylene is polymerized to obtain a propylene homopolymer, and propylene and a monomer other than propylene are polymerized to obtain a copolymer.
  • the content of the polypropylene resin (b) is 10 parts by mass or more, preferably 20 parts by mass, based on 100 parts by mass of the hydrogenated block copolymer (a-1). It is at least 30 parts by mass, more preferably at least 30 parts by mass. The upper limit is 100 parts by mass, preferably 90 parts by mass or less, and more preferably 80 parts by mass or less.
  • the thermoplastic elastomer composition of this embodiment has good fluidity and excellent moldability.
  • the content of the polypropylene resin (b) is 100 parts by mass or less, good impact resilience and flexibility can be obtained in the thermoplastic elastomer composition of this embodiment.
  • Non-aromatic softener (c) The thermoplastic elastomer composition of this embodiment contains a non-aromatic softener (c).
  • the non-aromatic softener (c) is not particularly limited as long as it does not exhibit aromaticity and can soften the thermoplastic elastomer composition of the present embodiment, and known non-aromatic softeners may be used. Can be used.
  • Examples of the non-aromatic softener (c) include, but are not limited to, paraffin oil, naphthenic oil, paraffin wax, liquid paraffin, white mineral oil, vegetable softeners, and the like. Among these, paraffin oil, liquid paraffin, and white mineral oil are preferred from the viewpoint of low-temperature properties, elution resistance, hygiene, etc. of a molded article containing the thermoplastic elastomer composition of the present embodiment.
  • the kinematic viscosity at 40° C. of the non-aromatic softener (c) is preferably 10 to 500 mm 2 /sec. If the kinematic viscosity at 40° C. of the non-aromatic softener (c) is 10 mm 2 /sec or more, the heat deformation resistance and softener retention of the thermoplastic elastomer composition of this embodiment tend to be further improved. . If the kinematic viscosity at 40° C. of the non-aromatic softener (c) is 500 mm 2 /sec or less, the flowability of the thermoplastic elastomer composition of the present embodiment tends to be further improved, and the moldability is further improved. It is in.
  • the kinematic viscosity of the non-aromatic softener (c) can be measured using a glass capillary viscometer.
  • the content of the non-aromatic softener (c) is 50 to 300 parts by mass based on 100 parts by mass of the hydrogenated block copolymer (a-1), Preferably it is 60 parts by mass or more, more preferably 70 parts by mass or more.
  • the upper limit is 300 parts by mass or less, preferably 250 parts by mass or less, and more preferably 200 parts by mass or less. If the content of the non-aromatic softener (d) is within the above range, the retention of the non-aromatic softener (c), that is, the effect of suppressing bleed-out, can be further improved, and moldability, flexibility, Thermoplastic elastomer compositions with better recovery properties tend to be obtained.
  • thermoplastic elastomer composition of this embodiment may contain an inorganic filler (d) from the viewpoint of molded appearance, surface texture/texture, and gloss adjustment.
  • Examples of the inorganic filler (d) include, but are not limited to, talc, calcium carbonate, calcium oxide, zinc carbonate, wollastonite, zeolite, wollastonite, silica, alumina, clay, titanium oxide, magnesium hydroxide, Magnesium oxide, sodium silicate, calcium silicate, magnesium silicate, sodium aluminate, calcium aluminate, sodium aluminosilicate, zinc oxide, potassium titanate, hydrotalcite, barium sulfate, titanium black, etc., furnace black, thermal Examples include carbon black such as black and acetylene black. These inorganic fillers may be used alone or in combination of two or more.
  • these inorganic fillers may be surface-treated from the viewpoint of improving dispersibility in the thermoplastic elastomer composition of this embodiment.
  • surface treatment agents include fatty acids, resin acids, oils and fats, surfactants, and coupling agents (silane-based, titanium-based, phosphoric acid-based, carboxylic acid-based, etc.), but they do not act on the surface of the inorganic filler. It is not limited to these as long as it is possible.
  • thermoplastic elastomer composition of this embodiment may be partially crosslinked in the presence of the organic peroxide (e) from the viewpoint of heat deformation resistance and recovery properties.
  • organic peroxide (e) include, but are not limited to, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane, dicumyl peroxide, 2,5-dimethyl-2,5 -di(benzoylperoxy)hexane, t-butylperoxybenzoate, t-butylcumyl peroxide, diisopropylbenzene hydroxyperoxide, 1,3-bis(t-butylperoxyisopropyl)benzene, benzoylperoxide, 1,1-di(t -butylperoxy)-3,3,5-trimethylcyclohexane, t-butylhydroperoxide, 1,1,3,3-tetramethylbutylhydro
  • organic peroxides may be used alone or in combination of two or more types.
  • the amount of organic peroxide (e) used is preferably 0.05 to 5 parts by mass, more preferably 0.1 to 4 parts by mass, per 100 parts by mass of hydrogenated block copolymer (a-1). More preferably, it is 0.3 to 3 parts by mass. If the amount of organic peroxide (e) used is within the above range, a thermoplastic elastomer composition with better heat deformation resistance and recovery properties tends to be obtained without deteriorating processability.
  • Crosslinking aid (f) when partially crosslinking the thermoplastic elastomer composition of this embodiment, a crosslinking aid may be used as necessary to adjust the degree of crosslinking.
  • the crosslinking aid (f) include, but are not limited to, trimethylolpropane triacrylate, triallyl isocyanurate, triallyl cyanurate, triallyl formal, triallyl trimellitate, N,N'-m- Phenylene bismaleimide, dipropargyl terephthalate, diallyl phthalate, tetraallyl terephthalamide, triallyl phosphate, divinylbenzene, ethylene dimethacrylate, diallyl phthalate, quinone dioxime, ethylene glycol dimethacrylate, polyfunctional methacrylate monomer, polyhydric alcohol methacrylate and acrylates, unsaturated silane compounds (eg, vinyltrimethoxysilane, vinyltriethoxysilane, etc.).
  • the amount of the crosslinking aid (f) to be used is preferably 0.1 parts by mass or more, more preferably 0.2 parts by mass or more, even more preferably It is 0.5 part by mass or more.
  • the upper limit is preferably 10 parts by mass or less, more preferably 8 parts by mass or less, and even more preferably 7 parts by mass or less.
  • thermoplastic elastomer composition of the present embodiment may further contain other additives in addition to the components (a) to (f) described above, as long as the object of the present embodiment is not impaired.
  • additives include heat stabilizers, antioxidants, ultraviolet absorbers, anti-aging agents, plasticizers, light stabilizers, crystal nucleating agents, impact modifiers, pigments, lubricants, antistatic agents, flame retardants, Examples include flame retardant aids, compatibilizers, and tackifiers.
  • adding silicone oil as a lubricant improves sliding properties and is effective in reducing needle stick resistance and improving coring.
  • Types of silicone oil include general dimethylpolysiloxane, phenyl-methylpolysiloxane, etc., with dimethylpolysiloxane being particularly preferred.
  • the amount of silicone oil added is preferably 0.5 parts by mass or more, more preferably 0.7 parts by mass or more, even more preferably 1 part by mass, per 100 parts by mass of the hydrogenated block copolymer (a-1). .0 part by mass or more.
  • the upper limit is preferably 10 parts by mass or less, more preferably 7 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the kinematic viscosity of the silicone oil is not particularly limited, but is preferably 10 to 10,000 mm 2 /sec, more preferably 50 to 7,000 mm 2 /sec, and even more preferably 100 to 5,000 mm 2 /sec.
  • the other additives may be used alone or in combination of two or more.
  • thermoplastic elastomer composition The method for producing the thermoplastic elastomer composition of this embodiment or a molded article (for example, pellets) made of the thermoplastic elastomer composition is not particularly limited, and conventionally known methods can be applied. For example, melting using a general mixing machine such as a pressure kneader, Banbury mixer, internal mixer, Labo Plastomill, Mix Lab, single screw extruder, twin screw extruder, co-kneader, multi-screw extruder, etc. Examples include a kneading method, a method of dissolving or dispersing and mixing each component, and then heating and removing the solvent.
  • a general mixing machine such as a pressure kneader, Banbury mixer, internal mixer, Labo Plastomill, Mix Lab, single screw extruder, twin screw extruder, co-kneader, multi-screw extruder, etc. Examples include a kneading method, a method of
  • thermoplastic elastomer composition of this embodiment is partially crosslinked with the above-mentioned organic peroxide (e)
  • each component (a) to (d) is combined, and the organic peroxide (e) and Partial crosslinking using a crosslinking aid (f) added as necessary may be carried out simultaneously, or after compounding components (a) to (d), organic peroxide (e) and as necessary Partial crosslinking may be performed by adding a crosslinking aid (f).
  • some of the components (a) to (d) may be mixed with the organic peroxide (e) and, if necessary, the crosslinking aid (f), and after crosslinking, other components may be mixed.
  • Partial crosslinking can be carried out at a temperature at which decomposition of the organic peroxide (e) used occurs, generally from 150 to 250°C.
  • a temperature at which decomposition of the organic peroxide (e) used occurs generally from 150 to 250°C.
  • the organic peroxide used should be Compositeization can be achieved by using the melt kneader described above at a temperature at which oxide (e) decomposes.
  • the multilayer molded article of this embodiment has the thermoplastic elastomer composition layer of this embodiment and a polar group-containing thermoplastic resin layer.
  • the multilayer molded article of this embodiment includes a polar group-containing thermoplastic resin layer, a thermoplastic resin layer containing a hydrogenated block copolymer (a), a polypropylene resin (b), and a non-aromatic softener (c).
  • the thermoplastic elastomer composition layer is provided in contact with the polar group-containing thermoplastic resin layer.
  • the hydrogenated block copolymer (a) is an unmodified block copolymer containing no modifying group. Since the hydrogenated block copolymer (a) is unmodified, it is possible to obtain a thermoplastic elastomer composition free from odor, color, and impurities from unreacted substances. In addition, "unmodified” excludes the case where the hydrogenated block copolymer (a) contains a modifying group formed by a predetermined modifying agent. Modifying groups include, for example, amino groups containing N atoms, nitro groups, amide bonds, azo bonds, ketone groups in which an O atom is bonded solely to a C atom via a double bond, carbonyl groups, carboxy groups, and aldehyde groups.
  • the hydrogenated block copolymer (a) is a hydrogenated block copolymer having a vinyl aromatic monomer unit and a conjugated diene monomer unit; has one or more molecular weight peaks (weight-based molecular weight; PMw) between 30,000 and less than 150,000. It preferably has one or more molecular weight peaks between 40,000 and 130,000, more preferably between 50,000 and 110,000.
  • the molecular weight peak of the hydrogenated block copolymer (a) is 30,000 or more, the heat deformation resistance and recovery properties of the thermoplastic elastomer composition of this embodiment tend to improve.
  • the fluidity of the thermoplastic elastomer composition of this embodiment tends to improve, and the moldability and thermal adhesiveness of the thermoplastic elastomer composition of this embodiment tend to improve. It is in.
  • the PMw of the hydrogenated block copolymer can be measured by GPC, and specifically by the method described in the Examples described later.
  • the hydrogenated block copolymer having a molecular weight peak of 30,000 to less than 150,000 by GPC has a total vinyl aromatic monomer unit content of 35% by mass or more, preferably 37% by mass or more. It is more preferably 40% by mass or more, and still more preferably more than 40% by mass and 66% by mass or less.
  • the upper limit is 70% by mass or less, preferably 68% by mass or less, and more preferably 66% by mass or less.
  • the thermal The mechanical strength of the plastic elastomer composition and the affinity with the polar group-containing thermoplastic resin tend to improve, sufficient thermal adhesive strength is obtained, and the total vinyl aromatic monomer unit content is 70% by mass or less.
  • the flexibility and recovery properties of the thermoplastic elastomer composition of this embodiment tend to be further improved.
  • the content of all vinyl aromatic monomer units can be controlled within the above numerical range by adjusting the amount of monomer added in the polymerization process of the hydrogenated block copolymer. It can be calculated from the absorption intensity at 262 nm using an ultraviolet spectrophotometer according to the method described in .
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer unit of the hydrogenated block copolymer having a molecular weight peak of 30,000 to less than 150,000 by GPC is 60 mol% or more, preferably 63 It is mol% or more, more preferably 65 mol% or more.
  • the upper limit is 95 mol% or less, preferably 90 mol% or less, and more preferably 85 mol% or less.
  • thermoplastic elastomer composition of this embodiment tends to improve. Furthermore, the fluidity is improved, the wettability that follows the fine irregularities on the surface of the adherend becomes good, and the thermoplastic elastomer composition of this embodiment tends to have good thermal adhesion.
  • the amount of vinyl bonds before hydrogenation in the conjugated diene monomer units of the hydrogenated block copolymer having a molecular weight peak of 30,000 to less than 150,000 by GPC is 95 mol% or less
  • the thermoplastic elastomer composition of this embodiment tends to ensure sufficient mechanical strength.
  • the amount of vinyl bonds in the conjugated diene monomer unit can be measured by nuclear magnetic resonance spectroscopy (NMR) using a block copolymer, and specifically by the method described in the Examples below. Further, the amount of vinyl bonds can be controlled within the numerical range mentioned above by adjusting the type and amount of a regulator such as a tertiary amine which will be described later.
  • the hydrogenated block copolymer (a) constituting the thermoplastic elastomer composition is a hydrogenated block copolymer having a vinyl aromatic monomer unit and a conjugated diene monomer unit. It is a combination.
  • the hydrogenated block copolymer (a) has one or more molecular weight peaks (weight-based molecular weight; PMw) of 150,000 to 550,000 as determined by the GPC.
  • the molecular weight at which the peak occurs is preferably 170,000 or more, more preferably 190,000 or more, and still more preferably 210,000 or more.
  • thermoplastic elastomer composition of this embodiment tends to have good heat deformation resistance and recovery properties.
  • the peak molecular weight of the hydrogenated block copolymer is 550,000 or less, the thermoplastic elastomer composition exhibits good fluidity, and therefore sufficient moldability tends to be obtained.
  • the PMw of the hydrogenated block copolymer can be measured by GPC, and specifically by the method described in the Examples described later.
  • the content of all vinyl aromatic monomer units in the hydrogenated block copolymer having a molecular weight peak of 150,000 to 550,000 by GPC is 15% by mass to less than 35% by mass, preferably 17% by mass.
  • the content is more preferably 19% by mass or more, still more preferably 21% by mass or more, and even more preferably 23% by mass or more. Moreover, it is preferably 34% by mass or less, more preferably 33% by mass or less.
  • thermoplastic elastomer of this embodiment When the content of all vinyl aromatic monomer units in the hydrogenated block copolymer having a molecular weight peak of 150,000 to 550,000 by GPC is 15% by mass or more, the thermoplastic elastomer of this embodiment The content of all vinyl aromatic monomer units in the hydrogenated block copolymer tends to improve the mechanical strength and heat deformation resistance of the composition, and has a molecular weight peak of 150,000 to 550,000 by GPC. When the amount is less than 35% by mass, the flexibility, recovery properties, and rebound properties of the thermoplastic elastomer composition of this embodiment tend to improve.
  • the content of all vinyl aromatic monomer units can be controlled within the above numerical range by adjusting the amount of monomer added in the polymerization process of the hydrogenated block copolymer. It can be calculated from the absorption intensity at a wavelength of 262 nm using an ultraviolet spectrophotometer according to the method described in .
  • Hydrogenation rate of aliphatic double bonds derived from the conjugated diene compound in the hydrogenated block copolymer having a molecular weight peak of 150,000 to 550,000 by GPC, that is, the double bond of the conjugated diene monomer unit. is 50 mol% or more, preferably 60 mol% or more, and more preferably 70 mol% or more.
  • the hydrogenation rate is 50 mol % or more, it tends to be possible to more effectively suppress deterioration of mechanical properties due to thermal deterioration (oxidative deterioration).
  • the hydrogenation rate is 70 mol% or more, better weather resistance tends to be obtained.
  • the upper limit of the hydrogenation rate is not particularly limited, but is preferably 100% or less, more preferably 99% or less.
  • the hydrogenation rate of the double bonds of the conjugated diene monomer units of the hydrogenated block copolymer having a molecular weight peak of 150,000 to 550,000 by GPC is determined by the type of hydrogenation catalyst, the amount used, and the hydrogenation conditions. By adjusting , it is possible to control the value within the above numerical range, and it can be measured by the method described in the Examples described later.
  • the multilayer molded article of the present embodiment preferably has a structure in which the thermoplastic elastomer composition layer and the polar group-containing thermoplastic resin composition layer are thermally fused. That is, the thermoplastic elastomer composition of the present embodiment constitutes a thermoplastic elastomer composition layer that is thermally fused to the polar group-containing thermoplastic resin composition layer that constitutes the multilayer molded body.
  • the hydrogenated block copolymer (a) consists of a hydrogenated block copolymer (a-1) and a hydrogenated block copolymer (a-2),
  • the above (a-1) satisfies the requirements (1-1) to (1-4) below
  • the above (a-2) satisfies the requirements (2-1) to (2-6) below
  • the thermoplastic elastomer composition layer contains 100 parts by mass of the above (a-1), 10 to 100 parts by mass of the above (b), and 50 to 300 parts by mass of the above (c), and the thermoplastic elastomer composition
  • the content of (a-2) in the material layer is 5 to 70% by mass with respect to the total amount of components (a-1), (a-2), (b), and (c).
  • the styrene resin is a multilayer molded body.
  • (1-1) Contains a polymer block A1 mainly composed of one or more vinyl aromatic monomer units and a polymer block B1 mainly composed of one or more conjugated diene monomer units.
  • the preferred forms of the hydrogenated block copolymers (a-1) and (a-2) are the same as in the thermoplastic elastomer composition of this embodiment.
  • the multilayer laminate of this embodiment has a polar group-containing thermoplastic resin layer.
  • the polar group-containing thermoplastic resin constituting the polar group-containing thermoplastic resin layer contains one or more polar groups in the molecule.
  • polar group-containing thermoplastic resins include, but are not limited to, polyamide resins, polyphenylene sulfide resins, polyester resins, polycarbonate resins, and acrylonitrile-butadiene-styrene copolymer (ABS) resins (hereinafter simply referred to as "ABS"). ), acrylic resin, polyacetal resin, etc. These may be used alone or in a mixture of two or more.
  • Polyamide resin has an amino group, a carboxyl group, and an amide group in the main chain.
  • Polyphenylene sulfide resin has carboxylic acid at the end of the polymer chain.
  • Polyester resin has an ester structure in its main chain and a hydroxyl group or carboxyl group at the end.
  • Polycarbonate resin has a carbonate ester in the main chain and a hydroxyl group at the end.
  • ABS resin has nitrile groups.
  • Acrylic resin is a general term for polyacrylic acid, polyacrylic ester, polymethacrylic acid, and polymethacrylic ester, and has a carboxyl group and/or an ester group.
  • Polyacetal resin has an ether structure.
  • the multilayer molded product of this embodiment is a seal that requires flexibility and recovery properties in home appliance parts, industrial products, automobile parts/interior materials, medical instruments/tools, building materials, tools, toys, miscellaneous goods, etc. It can be suitably used for parts, grips that require a good fit and feel when held by a person, and applications that require impact protection when coming into contact with or colliding with the human body or other objects.
  • the method for producing a multilayer molded body according to the present embodiment includes a step of molding the polar group-containing thermoplastic resin to obtain a molded body, and a step of molding the molded body with the obtained molded body placed in a mold. and a step of injecting the thermoplastic elastomer composition of the present embodiment into the gap portion of the molded body and heat-sealing the thermoplastic elastomer composition.
  • a molded body of a thermoplastic resin containing a polar group is produced, the molded body is inserted into a mold, and pellets of a thermoplastic elastomer composition are filled into the gap of the mold and thermally fused. preferable.
  • the method for manufacturing a multilayer molded article involves first molding a molded article of a thermoplastic resin containing a polar group, fitting it into another mold, injecting a thermoplastic elastomer composition into the gap, and heat-sealing it.
  • An insert molding method having steps is also mentioned as a preferred method.
  • the polar group-containing thermoplastic resin is first molded, and then a part of the mold is changed to mold the polar group-containing thermoplastic resin and the mold.
  • a two-color molding method is also preferred, in which a gap is created between the mold and the mold, and the thermoplastic elastomer composition is injected into this gap from a separate cylinder.
  • the multilayer molded article of this embodiment having a thermoplastic elastomer composition layer and a polar group-containing thermoplastic resin layer can be manufactured by any molding method.
  • the molding temperature is not particularly limited, but is preferably 150°C to 280°C.
  • HLC-8320ECOSEC collection was used as the measurement software, and HLC-8320ECOSEC analysis was used as the analysis software.
  • Measurement condition GPC; HLC-8320GPC (manufactured by Tosoh Corporation) Detector; RI Detection sensitivity: 3MV/min Sampling pitch: 600MSEC Column; TSKGEL SUPERHZM-N (6MMI.D x 15CM) 4 pieces (manufactured by Tosoh Corporation) Solvent: THF Flow rate: 0.6ML/min Concentration: 0.5MG/ML Column temperature: 40°C Injection volume: 20ML
  • Total vinyl aromatic monomer unit content (total styrene content))
  • a certain amount of the hydrogenated block copolymer was dissolved in chloroform and measured using an ultraviolet spectrophotometer (manufactured by Shimadzu Corporation, UV-2450), and a calibration curve was used based on the peak intensity of the absorption wavelength (262 nm) caused by styrene. The styrene content was calculated.
  • the styrene content in polystyrene block A in the hydrogenated block copolymer is determined by oxidatively decomposing the hydrogenated block copolymer described below with t-butyl hydroperoxide using osmium tetroxide as a catalyst, and then precipitating it with methanol. The value was calculated using a calibration curve from the peak intensity of the absorption wavelength (262 nm) caused by styrene. The styrene content in the polystyrene block A was calculated from the weight ratio of the amount added during production.
  • Styrene content in polystyrene block A' in hydrogenated block copolymer (a-2) was calculated using the following formula.
  • Styrene content in polystyrene block A' ((total styrene content - styrene content in polystyrene block A) / amount of styrene and butadiene added during production of block A') x 100
  • the content of the terminal polybutadiene block in the block copolymer was determined by checking the amount of monomer added during production and the polymerization reaction rate of each block by gas chromatography (hereinafter referred to as GC).
  • GC gas chromatography
  • This sample was measured using a gas chromatography system (GC-14B manufactured by Shimadzu Corporation) equipped with a backed column carrying Apiezon grease, and from the calibration curves of butadiene monomer and styrene monomer obtained in advance, the The amount of residual monomer was determined, and it was confirmed that the polymerization rate of butadiene monomer and styrene monomer was 100%. Note that the polymerization rate of butadiene was measured at a constant temperature of 90°C, and the polymerization rate of styrene was measured under the conditions of increasing the temperature from 90°C (hold for 10 minutes) to 150°C (10°C/min).
  • the amount of acid anhydride groups added was defined as the amount (% by mass) of acid anhydride groups added in the fully hydrogenated block copolymer.
  • a block copolymer was boiled in acetone for 60 minutes, vacuum dried, and then dissolved in toluene.
  • a phenolphthalein indicator was added, titration was performed with a methanol solution of sodium methylate (CH 3 ONa), and the amount of acid anhydride groups added was calculated from the amount of sodium methylate added to the acid anhydride groups.
  • thermoplastic elastomer composition (Examples 1 to 25), (Comparative Examples 1 to 15) Based on the blending ratio (parts by mass) shown in the table below, the pellets of the thermoplastic elastomer composition were melted and kneaded at a set temperature of 230°C using a twin-screw extruder ("TEX-30 ⁇ II" manufactured by Japan Steel Works, cylinder diameter 30 mm). I got it.
  • TEX-30 ⁇ II manufactured by Japan Steel Works, cylinder diameter 30 mm
  • thermoplastic elastomer composition obtained in the above [manufacture of thermoplastic elastomer] was pressed using a color difference meter [color meter ZE6000 (product name) manufactured by Nippon Denshoku Kogyo Co., Ltd.].
  • the b* value (yellowness) of the sheet was measured.
  • the measurement method was a reflection method, and the sheet was placed on a 30 mm ⁇ sample stand, and a white sample holder was placed on top of the sheet. Judgment was made using the following criteria. ⁇ : b* value less than 10, ⁇ : b* value 10 or more, and ⁇ was evaluated as being good for practical use.
  • thermoplastic elastomer composition obtained in the above [manufacture of thermoplastic elastomer] to a thickness of 2 mm using a haze meter [manufactured by Suga Test Instruments Co., Ltd., HZ-V3 (product name)].
  • the haze value of the sheet was measured and the transparency was evaluated. A haze value exceeding 85% was determined to have no transparency, and a haze value of 85% or less was determined to be transparent.
  • thermoplastic elastomer composition obtained in the above [manufacture of thermoplastic elastomer]
  • the pellets were pre-molded to a size of 95 mm x 145 mm x 2 mm thick using an injection molding machine FNX110III-18A (manufactured by Nissei Jushi Kogyo Co., Ltd.).
  • a polar group-containing thermoplastic resin molded article was inserted into a mold cavity, and a thermoplastic elastomer composition measuring 100 mm x 150 mm x 2 mm thick was injection molded on the surface layer.
  • the injection molding conditions were resin temperature: 240°C, injection speed: 40 mm/sec, injection time: 10 seconds, mold temperature: 40°C, and cooling time: 30 seconds.
  • the two layers were separated by pulling the layer made of the thermoplastic elastomer composition and the layer made of the polar group-containing thermoplastic resin at 300 mm/min in the 90° C. direction.
  • the tensile force applied during peeling was taken as the thermal fusion strength (N/cm) of the multilayer molded product of the thermoplastic elastomer composition and the polar group-containing thermoplastic resin, and evaluated according to the following evaluation criteria.
  • the evaluation was given as 1 to 5 below, with 5 being extremely excellent and 4 being practically good.
  • ⁇ Heat fusion strength evaluation criteria 5: 20N/cm or more 4: 10N/cm or more and less than 20N/cm 3: 5N/cm or more and less than 10N/cm 2: 1N/cm or more and less than 5N/cm 1: Less than 1N/cm
  • thermoplastic elastomer composition Each component used in the production of thermoplastic elastomer composition will be explained below.
  • a hydrogenation catalyst used in producing the hydrogenated block copolymer described below was prepared by the following method.
  • a reaction vessel equipped with a stirring device was purged with nitrogen, and 1 L of dried and purified cyclohexane was charged therein.
  • 100 mmol of bis( ⁇ 5-cyclopentadienyl)titanium dichloride was added.
  • an n-hexane solution containing 200 mmol of trimethylaluminum was added, and the mixture was reacted at room temperature for about 3 days to obtain a hydrogenation catalyst.
  • the hydrogenation catalyst was added to the obtained block copolymer in an amount of 100 ppm of titanium per 100 parts by mass of the block copolymer, and a hydrogenation reaction was carried out at a hydrogen pressure of 0.8 MPa and a temperature of 85°C. After the hydrogenation reaction was completed, 0.3 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate was added as a stabilizer to 100 parts by mass of the block copolymer, and water A block copolymer (1) was obtained.
  • the obtained hydrogenated block copolymer (1) had a total styrene content of 31.8% by mass, a styrene content in polystyrene block A of 98.7% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 35%.
  • the weight average molecular weight of the entire polymer was 296,000, and the molecular weight distribution was 1.21. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.5%.
  • the hydrogenation catalyst was added to the obtained block copolymer in an amount of 100 ppm of titanium per 100 parts by mass of the block copolymer, and a hydrogenation reaction was carried out at a hydrogen pressure of 0.8 MPa and a temperature of 85°C. After the hydrogenation reaction was completed, 0.3 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate was added as a stabilizer to 100 parts by mass of the block copolymer, and water A block copolymer (2) was obtained.
  • the obtained hydrogenated block copolymer (2) had a total styrene content of 32.3% by mass, a styrene content of 99.2% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 34% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 176,000, and the molecular weight distribution was 1.23. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.2%.
  • the hydrogenation catalyst was added to the obtained block copolymer in an amount of 70 ppm of titanium per 100 parts by mass of the block copolymer, and a hydrogenation reaction was carried out at a hydrogen pressure of 0.8 MPa and a temperature of 85°C. After the hydrogenation reaction was completed, 0.3 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate was added as a stabilizer to 100 parts by mass of the block copolymer, and water A block copolymer (3) was obtained.
  • the obtained hydrogenated block copolymer (3) had a total styrene content of 32.1% by mass, a styrene content in polystyrene block A of 99.1% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 35%.
  • the weight average molecular weight of the entire polymer was 293,000, and the molecular weight distribution was 1.19.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 70.8%.
  • the hydrogenation catalyst was added to the obtained block copolymer in an amount of 100 ppm of titanium per 100 parts by mass of the block copolymer, and a hydrogenation reaction was carried out at a hydrogen pressure of 0.8 MPa and a temperature of 85°C. After the hydrogenation reaction is completed, 0.3 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added as a stabilizer to 100 parts by mass of the polymer, and the hydrogenation block is A copolymer (4) was obtained.
  • the obtained hydrogenated block copolymer (4) had a total styrene content of 31.9% by mass, a styrene content in polystyrene block A of 98.9% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 28%.
  • the weight average molecular weight of the entire polymer was 289,000, and the molecular weight distribution was 1.21.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.3%.
  • the hydrogenation catalyst was added to the obtained block copolymer in an amount of 100 ppm of titanium per 100 parts by mass of the block copolymer, and a hydrogenation reaction was carried out at a hydrogen pressure of 0.8 MPa and a temperature of 85°C. After the hydrogenation reaction is completed, 0.3 parts by mass of octadecyl-3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate is added as a stabilizer to 100 parts by mass of the polymer, and the hydrogenation block is A copolymer (5) was obtained.
  • the obtained hydrogenated block copolymer (5) had a total styrene content of 32.2% by mass, a styrene content in the polystyrene block A of 98.8% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 48%.
  • the weight average molecular weight of the entire polymer was 302,000, and the molecular weight distribution was 1.24. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.4%.
  • TMS tetramethoxysilane
  • the obtained hydrogenated block copolymer (6) had a total styrene content of 20.3% by mass, a styrene content in polystyrene block A of 98.5% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 58%.
  • the weight average molecular weight of the entire polymer was 453,000, and the molecular weight distribution was 1.28.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.3%.
  • a cyclohexane solution containing 18 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 59 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 18 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (7) had a total styrene content of 36.2% by mass, a styrene content of 99.1% by mass in the polystyrene block A, and a vinyl bond content of 76 before hydrogenation in the polybutadiene block. .2 mol%, the weight average molecular weight of the entire polymer was 137,000, and the molecular weight distribution was 1.18. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.4%.
  • a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 52 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 21 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (8) had a total styrene content of 43.2% by mass, a styrene content in polystyrene block A of 99.2% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 77%.
  • the weight average molecular weight of the entire polymer was 108,000, and the molecular weight distribution was 1.19. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.5%.
  • a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 52 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 21 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (9) had a total styrene content of 42.6% by mass, a styrene content of 98.9% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 73% in the polybutadiene block. .2 mol%, the weight average molecular weight of the entire polymer was 113,000, and the molecular weight distribution was 1.20. Furthermore, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 75.7%.
  • a cyclohexane solution containing 28 parts by mass of styrene monomer was added and polymerized at 70°C for 30 minutes, and further a cyclohexane solution containing 40 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 27 parts by mass of styrene monomer was added and polymerized at 70°C for 30 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (10) had a total styrene content of 54.7% by mass, a styrene content of 99.4% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 77% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 41,000, and the molecular weight distribution was 1.15.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.3%.
  • the obtained hydrogenated block copolymer (11) had a total styrene content of 43.1% by mass, a styrene content of 99.1% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 76% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 103,000, and the molecular weight distribution was 1.14.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.6%.
  • a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 52 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 40 minutes. Finally, a cyclohexane solution containing 21 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (12) had a total styrene content of 43.1% by mass, a styrene content of 99.0% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 62% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 102,000, and the molecular weight distribution was 1.13. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.4%.
  • the obtained hydrogenated block copolymer (13) had a total styrene content of 43.1% by mass, a styrene content of 99.5% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 76% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 103,000, and the molecular weight distribution was 1.13. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.1%.
  • a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 44 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 21 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (14) had a total styrene content of 43.4% by mass, a styrene content in the polystyrene block A of 99.3% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 78%. .1 mol%, the weight average molecular weight of the entire polymer was 104,000, and the molecular weight distribution was 1.15. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.4%.
  • a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 52 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 21 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (15) had a total styrene content of 43.2% by mass, a styrene content of 98.9% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 83% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 107,000, and the molecular weight distribution was 1.18. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.2%.
  • a cyclohexane solution containing 7 parts by mass of 1,3-butadiene monomer was added and polymerized for 15 minutes at 70°C, and further a cyclohexane solution containing 33 parts by mass of styrene monomer and 20 parts by mass of 1,3-butadiene monomer was added. Polymerization was carried out at 70°C for 1 hour. Next, a cyclohexane solution containing 15 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. Finally, a cyclohexane solution containing 9 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 15 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (16) had a total styrene content of 64.1% by mass, a styrene content of 98.8% by mass in polystyrene block A, and a styrene content of 60.6% in polystyrene block A'. % by mass, the amount of vinyl bonds before hydrogenation in the polybutadiene block was 65.3 mol %, the weight average molecular weight of the entire polymer was 94,000, and the molecular weight distribution was 1.21. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.4%.
  • a cyclohexane solution containing 7 parts by mass of 1,3-butadiene monomer was added and polymerized for 15 minutes at 70°C, and further a cyclohexane solution containing 29 parts by mass of styrene monomer and 24 parts by mass of 1,3-butadiene monomer was added. Polymerization was carried out at 70°C for 1 hour. Next, a cyclohexane solution containing 15 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. Finally, a cyclohexane solution containing 9 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 15 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (17) had a total styrene content of 60.2% by mass, a styrene content of 98.6% by mass in polystyrene block A, and a styrene content of 52.1% in polystyrene block A'.
  • the amount of vinyl bonds in the polybutadiene block before hydrogenation was 64.8 mol %, the weight average molecular weight of the entire polymer was 106,000, and the molecular weight distribution was 1.25. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 98.6%.
  • a cyclohexane solution containing 7 parts by mass of styrene monomer was added and polymerized at 70°C for 20 minutes, and further a cyclohexane solution containing 82 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1.5 hours. Finally, a cyclohexane solution containing 6 parts by mass of styrene monomer was added and polymerized at 70°C for 20 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (18) had a total styrene content of 13.4% by mass, a styrene content of 99.3% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 76% in the polybutadiene block.
  • the weight average molecular weight of the entire polymer was 183,000, and the molecular weight distribution was 1.22.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.6%.
  • a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 51 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 40 minutes. Finally, a cyclohexane solution containing 22 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (19) had a total styrene content of 44.1% by mass, a styrene content in polystyrene block A of 99.5% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 39%.
  • the weight average molecular weight of the entire polymer was 102,000, and the molecular weight distribution was 1.13. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.2%.
  • a cyclohexane solution containing 38 parts by mass of styrene monomer was added and polymerized at 70°C for 35 minutes, and further a cyclohexane solution containing 19 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 40 minutes. Finally, a cyclohexane solution containing 38 parts by mass of styrene monomer was added and polymerized at 70°C for 35 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (20) had a total styrene content of 75.6% by mass, a styrene content in polystyrene block A of 99.3% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 75%. .1 mol%, the weight average molecular weight of the entire polymer was 104,000, and the molecular weight distribution was 1.19. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.5%.
  • the obtained hydrogenated block copolymer (21) had a total styrene content of 65.7% by mass, a polystyrene block content of 98.9% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 40.6% by mole.
  • the weight average molecular weight of the entire polymer was 57,000, and the molecular weight distribution was 1.16. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.5%.
  • a cyclohexane solution containing 47 parts by mass of styrene monomer and 34 parts by mass of 1,3-butadiene monomer was added and polymerized at 70° C. for 50 minutes.
  • a cyclohexane solution containing 9 parts by mass of styrene monomer was added and polymerized at 70°C for 20 minutes.
  • 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (22) had a total styrene content of 66.2% by mass, a styrene content of 99.1% by mass in polystyrene block A, and a styrene content of 58.2% in polystyrene block A'.
  • the weight average molecular weight of the entire polymer was 95,000, and the molecular weight distribution was 1.22. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.0%.
  • the hydrogenated block copolymer (22) was desolventized, dried, and pelletized using a single-screw extruder, and then 2.1 parts by mass of maleic anhydride was added to 100 parts by mass of the hydrogenated block copolymer (22). 0.12 parts by mass of 2,5-dimethyl-2,5-di(t-butylperoxy)hexane was added, and an addition reaction was carried out in a twin-screw extruder at a set temperature of 200°C. A polymer (25) was obtained. In the obtained hydrogenated block copolymer (25), the amount of acid anhydride groups added by maleic anhydride was 1.1% by mass.
  • a cyclohexane solution containing 10 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 15 minutes, and a cyclohexane solution containing 46 parts by mass of styrene monomer and 19 parts by mass of 1,3-butadiene monomer was then added. Polymerization was carried out at 70°C for 1 hour. Next, a cyclohexane solution containing 9 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. Finally, a cyclohexane solution containing 5 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 15 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (26) had a total styrene content of 66.4% by mass, a styrene content of 99.4% by mass in polystyrene block A, and a styrene content of 69.2% in polystyrene block A'.
  • the amount of vinyl bonds before hydrogenation in the polybutadiene block was 65.8 mol%, the weight average molecular weight of the entire polymer was 136,000, and the molecular weight distribution was 1.19.
  • the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.3%.
  • a cyclohexane solution containing 19 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 57 parts by mass of 1,3-butadiene monomer was added and polymerized at 60°C for 1 hour. Finally, a cyclohexane solution containing 19 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (27) had a total styrene content of 37.6% by mass, a styrene content in polystyrene block A of 99.1% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 77%.
  • the weight average molecular weight of the entire polymer was 54,000, and the molecular weight distribution was 1.16. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.5%.
  • a cyclohexane solution containing 34 parts by mass of styrene monomer was added, and polymerization was carried out at 70° C. for 30 minutes.
  • a cyclohexane solution containing 28 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 30 minutes, and finally, a cyclohexane solution containing 33 parts by mass of styrene monomer was added and polymerized at 70°C for 30 minutes.
  • 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (28) had a total styrene content of 66.7% by mass, a polystyrene block content of 99.3% by mass, and a vinyl bond content before hydrogenation in the polybutadiene block of 40.3% by mole.
  • the weight average molecular weight of the entire polymer was 195,000, and the molecular weight distribution was 1.14. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.2%.
  • a cyclohexane solution containing 15 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes, and further a cyclohexane solution containing 65 parts by mass of 1,3-butadiene monomer was added and polymerized at 70°C for 40 minutes. Finally, a cyclohexane solution containing 15 parts by mass of styrene monomer was added and polymerized at 70°C for 25 minutes. After the polymerization reaction was completed, 0.95 mol of methanol was added per 1 mol of n-butyllithium to deactivate the reaction catalyst and obtain a block copolymer.
  • the obtained hydrogenated block copolymer (29) had a total styrene content of 30.3% by mass, a styrene content of 99.5% by mass in the polystyrene block A, and a vinyl bond content before hydrogenation of 41% in the polybutadiene block. .2 mol%, the weight average molecular weight of the entire polymer was 103,000, and the molecular weight distribution was 1.16. Further, the hydrogenation rate of aliphatic double bonds derived from 1,3-butadiene was 99.5%.
  • Polypropylene resin (b) The following commercially available polypropylene resin (b) was used.
  • Non-aromatic softener (c) As the non-aromatic softener (c), the following commercially available product was used.
  • Non-aromatic softener (c): Diana Process Oil PW90 manufactured by Idemitsu Kosan Co., Ltd., paraffin oil, weight average molecular weight 530, kinematic viscosity (40°C) 90.5 mm 2 /sec
  • PC molded plate Takiron C.I. Co., Ltd. PC1600, 95 mm x 145 mm x 2 mm thickness flat plate ABS molded plate: Sumitomo Bakelite Co., Ltd. EAR003, 95 mm x 145 mm x 2 mm thickness flat plate PC/ABS molded plate: Sumitomo Bakelite Co., Ltd. Lower EFN800-04, 95 mm ⁇ 145 mm ⁇ thickness 2 mm flat plate PMMA molded plate: Mitsubishi Chemical Corporation Acrylite L-100, 95 mm ⁇ 145 mm ⁇ thickness 2 mm flat plate PET molded plate: Takiron C.I. Co., Ltd. PET-6010, 95 mm ⁇ 145 mm ⁇ thickness 2 mm flat plate
  • Tables 1 to 3 below show the species, types, and physical properties of hydrogenated block copolymers (1) to (29).
  • a and A' are polymer blocks mainly composed of vinyl aromatic monomer units
  • B is a polymer block mainly composed of conjugated diene monomer units
  • X is the remainder of the coupling agent. It is the basis.
  • Tables 4 to 7 below show the blending ratio and properties of the thermoplastic elastomer compositions of Examples 1 to 25 and Comparative Examples 1 to 15. In addition, in the table below, there are places where the numbers of Examples and Comparative Examples and the order of description do not necessarily match.
  • thermoplastic elastomer composition and multilayer molded article of the present invention have no problems such as odor or color, and have excellent moldability and thermal adhesive strength, so they can be used as skin materials for polar resins and various sealing materials. It has industrial applicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

水添ブロック共重合体(a-1)100質量部と、ポリプロピレン系樹脂(b)10~100質量部と、非芳香族系軟化剤(c)50~300質量部を含有し、 さらに、水添ブロック共重合体(a-2)を含有し、水添ブロック共重合体(a-1)、及び(a-2)が、いずれも非変性の水添ブロック共重合体である、射出成形で熱融着させる複層成形用の熱可塑性エラストマー組成物であり、前記水添ブロック共重合体(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し5~70質量%であり、水添ブロック共重合体(a-1)、(a-2)が、それぞれ特定の構造を有する、複層成形用の熱可塑性エラストマー組成物。

Description

複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法
 本発明は、複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法に関する。
 従来から、エンジニア・プラスチックと呼ばれる極性基含有熱可塑性樹脂は、耐熱性、機械物性に優れていることから多くの分野で使用されている。例えば基材として前記極性基含有熱可塑性樹脂を用い、その表層面や一部に軟質材料を接着させた複層成形体として使用されることも多い。例えば、自動車内装の表皮、グリップ類、クッション材、パッキン等のシール部材等が挙げられる。
 極性基含有熱可塑性樹脂の基材に対する軟質材料の接着方法としては、例えば、接着剤によって接着させる方法や、成形時の熱融着で接着させる方法がある。
 接着剤を用いる方法では、接着剤を介して軟質材料と基材とをしっかり接着させることができるが、接着剤を塗布する工程に加えて硬化させる工程が必要となり、生産スピードが遅くなるという問題点を有している。
 一方、熱融着での接着方法としては、インサート成形や二色成形等といった射出成形での接着方法が挙げられる。これらの射出成形による接着方法では、成形と同時に熱融着させることが可能となるため、生産スピードの大幅な向上が可能であり、近年、射出成形での熱融着による接着方法が増えている。
 しかしながら、熱接着による接着方法では、極性基含有熱可塑性樹脂の基材に対して接着させる軟質材料の親和性が重要な因子となり、軟質材料として非極性の組成物を用いた場合においては、接着強度が弱くなる、という問題点を有している。そのため、接着強度を向上させる目的で、軟質材料として、官能基を有する変性成分を含む熱接着用の組成物や、当該組成物を用いた接着体に関する技術が提案されている。
 例えば、特許文献1には、水添熱可塑性スチレン系エラストマー、炭化水素系ゴム用軟化剤、ポリプロピレン、熱可塑性ポリウレタンエラストマー、及び酸変性水添スチレン系エラストマーを含有する熱可塑性エラストマー組成物が開示されている。
 また、特許文献2には、熱可塑性エラストマー、ポリビニルアセタール樹脂及び/又は極性基含有ポリプロピレン系樹脂を含有する熱可塑性重合体組成物、及び当該熱可塑性重合体組成物とインサート部材からなる接着体に関する技術が開示されている。
特開2009-209273号公報 特開2014-168940号公報
 しかしながら、特許文献1に開示されている熱可塑性エラストマー組成物は、前記酸変性水添スチレン系エラストマーとして無水マレイン酸変性のスチレン系エラストマーを含有しているが、熱加工時やその後の成形体においても刺激臭が発生する。そのため、医療用途や自動車内装材、住宅用材料等、人が長時間滞在する空間で利用する用途には不向きであるという問題点を有している。また、酸変性を行う際、変性工程が増えてしまうことや未反応の遊離マレイン酸が不純物として残ること、さらには、マレイン酸のオリゴマーによる着色等が発生する、という問題点を有している。
 また、特許文献2に開示されている熱可塑性重合体組成物においては、ポリビニルアセタール樹脂及び/又は極性基含有ポリプロピレン系樹脂を含有しており、前記ポリビニルアセタール樹脂は熱加工時に側鎖が外れやすく、その分解反応により強い臭気を発生するため、作業環境上極めて悪いという問題点を有している。また、極性基含有ポリプロピレン系樹脂は無水マレイン酸により酸変性されたものであり、特許文献1に開示されている熱可塑性エラストマー組成物と同様に、刺激臭が発生するという問題点を有している。
 上述したように、従来提案されている熱可塑性エラストマー組成物や熱可塑性重合体組成物からなる熱接着用の組成物は、臭気、着色等の観点から、改善の余地がある、という問題点を有している。
 そこで本発明においては、上述した従来技術の問題に鑑み、臭気、色味が実用上良好であり、成形性、熱接着強度、機械強度に優れる熱可塑性エラストマー組成物、複層成形体を提供することを目的とする。
 本発明者らは、上述した従来技術の課題を解決するべく鋭意検討した結果、所定の構造を有する水添ブロック共重合体と、ポリプロピレン系樹脂と、非芳香族系軟化剤を、所定の比率で含有する熱可塑性エラストマー組成物が上述した従来技術の課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下のとおりである。
〔1〕
 水添ブロック共重合体(a-1)100質量部と、
 ポリプロピレン系樹脂(b)10~100質量部と、
 非芳香族系軟化剤(c)50~300質量部と、
を、含有し、
 さらに、水添ブロック共重合体(a-2)を含有し、前記水添ブロック共重合体(a-1)、及び水添ブロック共重合体(a-2)が、いずれも、非変性の水添ブロック共重合体である、射出成形で熱融着させる複層成形用の熱可塑性エラストマー組成物であって、
 前記水添ブロック共重合体(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し5~70質量%であり、
 前記水添ブロック共重合体(a-1)が、下記(1-1)~(1-4)の要件を満たし、
 前記水添ブロック共重合体(a-2)が、下記(2-1)~(2-6)の要件を満たす、
複層成形用の熱可塑性エラストマー組成物。
 (1-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含有する。
 (1-2):全ビニル芳香族単量体単位の含有量が15質量%以上35質量%未満である。
 (1-3):重量平均分子量が150,000~550,000である。
 (1-4):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
 (2-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB2と、を含有する。
 (2-2):重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上である。
 (2-3):全ビニル芳香族単量体単位の含有量が35質量%~70質量%である。
 (2-4):重量平均分子量が30,000以上150,000未満である。
 (2-5):重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である。
 (2-6):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
〔2〕
 前記水添ブロック共重合体(a-2)が、
 少なくとも2個のビニル芳香族単量体単位を主体とする重合体ブロックA2と、少なくとも2個の共役ジエン単量体単位を主体とする重合体ブロックB2と、を有し、
 少なくとも1個の前記重合体ブロックB2は、前記水添ブロック共重合体(a-2)の末端にあり、当該末端にある重合体ブロックB2の含有量が、前記水添ブロック共重合体(a-2)中1~10質量%であり、
 25万以上の重量平均分子量のピークを有しない、
 前記〔1〕に記載の複層成形用の熱可塑性エラストマー組成物。
〔3〕
 前記水添ブロック共重合体(a-2)の重合体ブロックA2中のビニル芳香族単量体単位の含有量が90質量%以上である、前記〔1〕又は〔2〕に記載の複層成形用の熱可塑性エラストマー組成物。
〔4〕
 前記水添ブロック共重合体(a-2)の全ビニル芳香族単量体単位の含有量が、40質量%を超え70質量%以下である、前記〔1〕乃至〔3〕のいずれか一に記載の複層成形用の熱可塑性エラストマー組成物。
〔5〕
 前記水添ブロック共重合体(a-1)において、
 前記共役ジエン単量体単位中の水素添加前のビニル結合量が30モル%~50モル%である、前記〔1〕乃至〔4〕のいずれか一に記載の複層成形用の熱可塑性エラストマー組成物。
〔6〕
 前記〔1〕乃至〔5〕のいずれか一に記載の複層成形用の熱可塑性エラストマー組成物層と、極性基含有熱可塑性樹脂層と、を有する複層成形体。
〔7〕
 極性基含有熱可塑性樹脂層と、
 水添ブロック共重合体(a)、ポリプロピレン系樹脂(b)、及び非芳香族系軟化剤(c)を含む熱可塑性エラストマー組成物層と、
を、有する複層成形体であって、
 前記熱可塑性エラストマー組成物層は、前記極性基含有熱可塑性樹脂層に接触して設けられており、
 前記水添ブロック共重合体(a)は、変性基を含有せず、
 前記水添ブロック共重合体(a)は、
 ビニル芳香族単量体単位と共役ジエン単量体単位とを有するブロック共重合体の水添物である水添ブロック共重合体であって、
 GPCによる分子量のピークが30,000~150,000未満と、150,000~550,000に、それぞれ1つ以上有し、
 前記GPCによる分子量のピークが30,000~150,000未満の水添ブロック共重合体の全ビニル芳香族単量体単位の含有量が35質量%~70質量%であり、かつ共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%であり、
 前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体の全ビニル芳香族単量体単位の含有量が15質量%~35質量%未満であり、
 共役ジエン単量体単位の二重結合の水添率が50モル%以上である、
複層成形体。
〔8〕
 前記水添ブロック共重合体(a)が、水添ブロック共重合体(a-1)及び水添ブロック共重合体(a-2)からなり、
 前記(a-1)が、下記(1-1)~(1-4)の要件を満たし、
 前記(a-2)が、下記(2-1)~(2-6)の要件を満たし、
 前記熱可塑性エラストマー組成物層が、前記(a-1)100質量部と、前記(b)10~100質量部と、前記(c)50~300質量部とを含有し、
 前記熱可塑性エラストマー組成物層中の前記(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し、5~70質量%である、前記〔7〕に記載の複層成形体。
 (1-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含有する。
 (1-2):全ビニル芳香族単量体単位の含有量が15質量%以上35質量%未満である。
 (1-3):重量平均分子量が150,000~550,000である。
 (1-4):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
 (2-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB2と、を含有する。
 (2-2):重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上である。
 (2-3):全ビニル芳香族単量体単位の含有量が35質量%~70質量%である。
 (2-4):重量平均分子量が30,000以上150,000未満である。
 (2-5):重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である。
 (2-6):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
〔9〕
 前記水添ブロック共重合体(a-2)が、
少なくとも2個のビニル芳香族単量体単位を主体とする重合体ブロックA2と、少なくとも2個の共役ジエン単量体単位を主体とする重合体ブロックB2と、を有し、少なくとも1個の前記重合体ブロックB2は、前記水添ブロック共重合体(a-2)の末端にあり、当該末端にある重合体ブロックB2の含有量が、前記水添ブロック共重合体(a-2)中1~10質量%であり、
 全ビニル芳香族単量体単位の含有量が、40質量%を超え70質量%以下であり、
 25万以上の重量平均分子量のピークを有しない、
 前記〔8〕に記載の複層成形体。
〔10〕
 前記水添ブロック共重合体(a-2)の重合体ブロックA2中のビニル芳香族単量体単位の含有量が90質量%以上である、前記〔8〕又は〔9〕に記載の複層成形体。
〔11〕
 前記極性基含有熱可塑性樹脂が、ポリカーボネート樹脂、ABS樹脂、ポリエステル系樹脂、アクリル系樹脂、及びこれらの混合物からなる群より選ばれる少なくとも1種である、前記〔6〕乃至〔10〕のいずれか一に記載の複層成形体。
〔12〕
 前記水添ブロック共重合体(a-1)は、
 前記共役ジエン単量体単位中の水素添加前のビニル結合量が30モル%~50モル%である、前記〔8〕乃至〔11〕のいずれか一に記載の複層成形体。
〔13〕
 前記〔6〕乃至〔12〕のいずれか一に記載の複層成形体に用いる熱可塑性エラストマー組成物であって、
 前記複層成形体は、前記極性基含有熱可塑性樹脂層と、前記熱可塑性エラストマー組成物層とが、射出成形により熱融着している、
 熱可塑性エラストマー組成物。
〔14〕
 前記〔6〕乃至〔13〕のいずれか一に記載の複層成形体の製造方法であって、
 前記極性基含有熱可塑性樹脂を成形し、成形体を得る工程と、
 前記成形体が前記金型に入れられた状態で、前記金型と前記成形体の隙間部分に、請求項13に記載の熱可塑性エラストマー組成物を射出し、熱融着させる工程を有する、
 複層成形体の製造方法。
 本発明によれば、臭気、色味が実用上良好であり、成形性、熱接着強度、機械強度に優れる熱可塑性エラストマー組成物、複層積層体が得られる。
 以下、本発明を実施するための形態(以下、「本実施形態」と記載する。)について、詳細に説明する。
 なお、以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定するものではない。本発明は、その要旨の範囲内で種々変形して実施できる。
〔熱可塑性エラストマー組成物〕
 本実施形態の熱可塑性エラストマー組成物は、射出成形で他部材と熱融着させる複層成形用の熱可塑性エラストマー組成物であり、
 水添ブロック共重合体(a-1)100質量部と、
 ポリプロピレン系樹脂(b)10~100質量部と、
 非芳香族系軟化剤(c)50~300質量部と、
を、含有し、
 さらに、水添ブロック共重合体(a-2)を含有し、前記水添ブロック共重合体(a-1)、及び水添ブロック共重合体(a-2)が、いずれも、非変性の水添ブロック共重合体である。
 前記水添ブロック共重合体(a-2)の含有量は、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し、5~70質量%である。
 前記水添ブロック共重合体(a-1)が、下記(1-1)~(1-4)の要件を満たし、前記水添ブロック共重合体(a-2)が、下記(2-1)~(2-6)の要件を満たす。
 (1-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含有する。
 (1-2):全ビニル芳香族単量体単位の含有量が15質量%以上35質量%未満である。
 (1-3):重量平均分子量が150,000~550,000である。
 (1-4):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
 (2-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB2と、を含有する。
 (2-2):重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上である。
 (2-3):全ビニル芳香族単量体単位の含有量が35質量%~70質量%である。
 (2-4):重量平均分子量が30,000以上150,000未満である。
 (2-5):重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である。
 (2-6):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
 上記構成を有することにより、臭気、色味が実用上良好であり、成形性、熱接着強度、機械強度に優れる熱可塑性エラストマー組成物が得られる。
 以下、各成分について詳細に説明する。
(水添ブロック共重合体(a-1))
 本実施形態の熱可塑性エラストマー組成物は、水添ブロック共重合体(a-1)を含有する。
 水添ブロック共重合体(a-1)は、1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含むブロック共重合体を水素添加(水添)して得られる水添ブロック共重合体である(上記要件(1-1))。
 水添ブロック共重合体(a-1)は、ビニル芳香族化合物や、共役ジエン化合物に由来しない官能基を有しないいわゆる「非変性」の共重合体である。非変性であることにより、未反応物からくる不純物の混入がなくなり、臭気が少ない共重合体が得られる。
 なお、「非変性である」とは、水添ブロック共重合体(a-1)が、所定の変性剤によって形成された変性基を含有する場合を除くものであり、水添ブロック共重合体(a-1)が、カップリング剤によるカップリング反応を経て得られたものである場合に、当該カップリング剤に由来するSi原子、O原子を有するものである場合は「非変性である」の要件を満たすものとする。
 このように、本実施形態においては、ヘテロ原子を有する原子団がカップリング剤残基として存在するか、変性剤によって導入されるかを区別しているが、この背景には、カップリング剤残基は、共重合体の中心部に位置しやすい一方で、変性剤の場合は共重合体の末端や側鎖に導入されやすい傾向が影響していると考えられる。臭気、色味が実用上良好な熱可塑性エラストマー組成物を提供するためには、官能基の遊離が少ない方が望ましいが、カップリング剤として中央に導入された残基の場合は、カップリング反応によって重合体鎖末端が官能基に結合しているため、及び/又は共重合体鎖による立体障害のため、官能基の遊離が起こりにくい傾向にある。これに対し、共重合体の末端や側鎖に変性剤を反応させる場合は、官能基の遊離が起こりやすく、これが臭気や色味の原因となりやすい傾向にある。特に、共重合体と変性剤を押し出し機で混合して反応させるいわゆる二次変性品の場合は、無水マレイン酸やエポキシ等で変性基を導入することが多く、この場合、カルボキシル基含有化合物やエポキシ基含有化合物が脱離しやすく、臭気や色味の原因となる傾向にある。また重合終了末端のカップリング反応の場合、未反応物はその後の脱溶剤等の共重合体の仕上げ工程においてほぼ除去され得るのに対し、二次変性品の場合は完全除去が困難で未反応の残存物が多い傾向にある点でも臭気や色味の影響を与えやすい。
 従来、変性の目的は他の成分との接着性を向上させることにあるが、本発明者は非変性であっても良好な接着性を担保できるように、水添ブロック共重合体の構造を設計することに着想した。主に、後述する水添ブロック共重合体(a-2)の構造によって、複層成形において他部材と熱融着しやすくなるという効果を奏する。
 水添ブロック共重合体の変性基については、NMR解析、IR解析により確認できる。
 前記ビニル芳香族単量体単位を主体とする重合体ブロックA1とは、重合体ブロックA1中のビニル芳香族単量体単位の含有量が50質量%を超えることを意味し、機械強度、耐熱変形性の観点から、好ましくは60質量%以上、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、さらにより好ましくは90質量%以上である。
 同様に、前記共役ジエン単量体単位を主体とする重合体ブロックB1とは、重合体ブロックB1中の共役ジエン単量体単位の含有量が50質量%を超えることを意味し、柔軟性、軟化剤保持性の観点から、好ましくは60質量%以上、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、さらにより好ましくは90質量%以上である。
 なお、本実施形態において、ブロック共重合体を構成する各単量体単位の命名は、当該単量体単位が由来する単量体の命名に従っているものとする。例えば、「ビニル芳香族単量体単位」とは、単量体であるビニル芳香族化合物を重合した結果生ずる、重合体の構成単位を意味し、その構造は、置換ビニル基に由来する置換エチレン基の二つの炭素が結合部位となっている分子構造である。
 また、「共役ジエン単量体単位」とは、単量体である共役ジエン化合物を重合した結果生ずる、重合体の構成単位を意味し、その構造は、共役ジエン化合物に由来するオレフィンの二つの炭素が結合部位となっている分子構造である。
 本実施形態において、重合体ブロックA1中のビニル芳香族単量体単位を形成するために用いることができるビニル芳香族化合物とは、ビニル基と芳香環とを有する化合物をいう。
 ビニル芳香族化合物としては、以下に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等が挙げられる。これらの中でも、重合性の観点から、スチレン、α-メチルスチレン、ジビニルベンゼンが好適に用いられる。これらビニル芳香族化合物は、1種のみを単独で用いてもよく、2種以上を用いてもよい。
 重合体ブロックB1中の共役ジエン単量体単位を形成するために用いることができる共役ジエン化合物とは、1対の共役二重結合(共役するように結合した2つの二重結合)を有するジオレフィンである。
 共役ジエン化合物としては、以下に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。これらの中でも、重合性の観点から、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)が好適に用いられる。これら共役ジエン化合物は、1種のみを単独で用いてもよく、2種以上を用いてもよい。
 水添ブロック共重合体(a-1)は、以下に限定されないが、例えば、下記一般式(1)~(7)で表されるような構造を有する。さらに、水添ブロック共重合体(a-1)は、下記一般式(1)~(7)で表されるような構造の共重合体を、複数種類、任意の割合で含む混合物であってもよい。
(A1-B1)         (1)
A1-(B1-A1)      (2)
B1-(A1-B1)      (3)
[(B1-A1)-Z    (4)
[(A1-B1)-Z    (5)
[(B1-A1)-B1]-Z (6)
[(A1-B1)-A1]-Z (7)
 一般式(1)~(7)において、A1はビニル芳香族単量体単位を主体とする重合体ブロックであり、B1は共役ジエン単量体単位を主体とする重合体ブロックである。重合体ブロックA1と重合体ブロックB1との境界線は必ずしも明瞭に区別される必要はない。
 また、nは1以上の整数、好ましくは1~5の整数である。
 mは2以上の整数、好ましくは2~11、より好ましくは2~8の整数である。
 Zはカップリング剤残基を表す。ここで、カップリング残基とは、共役ジエン単量体単位とビニル芳香族単量体単位との共重合体の複数を、重合体ブロックA1-重合体ブロックA1間、重合体ブロックB1-重合体ブロックB1間、又は重合体ブロックA1-重合体ブロックB1間において結合させるために用いられるカップリング剤の結合後の残基を意味する。カップリング剤としては、以下に限定されないが、例えば、後述するハロゲン化ケイ素化合物や酸エステル類等が挙げられる。
 一般式(1)~(7)において、重合体ブロックA1及び重合体ブロックB1中のビニル芳香族単量体単位は均一に分布していても、テーパー状に分布していてもよい。
 また、重合体ブロックA1及び重合体ブロックB1がビニル芳香族単量体単位と共役ジエン単量体単位の共重合体ブロックである場合には、当該共重合体ブロック中のビニル芳香族単量体単位は均一に分布している部分、及びテーパー状に分布している部分がそれぞれ複数個存在していてもよい。さらに、前記共重合体ブロック部分には、ビニル芳香族単量体単位の含有量が異なる部分が複数個共存していてもよい。
 水添ブロック共重合体(a-1)中の全ビニル芳香族単量体単位の含有量は、15質量%以上35質量%未満である(上記要件(1-2))。
 本実施形態の熱可塑性エラストマー組成物の機械強度、柔軟性、回復性、反撥弾性の観点から、前記含有量は、好ましくは17質量%以上であり、より好ましくは19質量%以上であり、さらに好ましくは21質量%以上であり、さらにより好ましくは23質量%以上である。
 また、好ましくは34質量%以下であり、より好ましくは33質量%以下である。
 機械強度、回復性は、材料強度や変形防止として必要な特性であり、柔軟性、反撥弾性は触感に関わる特性であるため、本実施形態の熱可塑性エラストマー組成物が、グリップ類、表皮材やシール材に使用される際に、水添ブロック共重合体(a-1)中の全ビニル芳香族単量体単位の含有量をこれらの用途に適した範囲に設計することが好ましい。
 水添ブロック共重合体(a-1)中の全ビニル芳香族単量体単位の含有量が15質量%以上であると、本実施形態の熱可塑性エラストマー組成物の機械強度、耐熱変形性が向上する傾向にあり、全ビニル芳香族単量体単位の含有量が35質量%未満であると、本実施形態の熱可塑性エラストマー組成物の柔軟性、回復性、反撥弾性が向上する傾向にある。なお、全ビニル芳香族単量体単位の含有量は、水添ブロック共重合体(a-1)の重合工程において単量体の添加量を調整することにより前記数値範囲に制御することができ、後述する実施例に記載の方法で紫外線分光光度計を用いて262nmの吸収強度により算出することができる。
 水添ブロック共重合体(a-1)の重量平均分子量は、150,000~550,000である(上記要件(1-3))。耐熱変形性の観点から、150,000以上とし、好ましくは170,000以上、より好ましくは190,000以上、さらに好ましくは210,000以上である。また500,000以下が好ましく、より好ましくは450,000以下であり、さらに好ましくは400,000以下であり、さらにより好ましくは350,000以下であり、よりさらに好ましくは300,000以下である。
 水添ブロック共重合体(a-1)の重量平均分子量が150,000以上であると、本実施形態の熱可塑性エラストマー組成物の耐熱変形性、回復性が良好なものとなる傾向にある。水添ブロック共重合体(a-1)の重量平均分子量が550,000以下であると、本実施形態の熱可塑性エラストマー組成物が良好な流動性を示し、十分な成形加工性が得られる。
 水添ブロック共重合体(a-1)の分子量分布(Mw/Mn)は、好ましくは1.01~5.0、より好ましくは1.01~4.0、さらに好ましくは1.01~3.0である。
 水添ブロック共重合体(a-1)の分子量分布が1.01~5.0にあれば、より良好な機械強度が得られる傾向にある。
 ゲルパーミエーションクロマトグラフィー(以下、GPCと記載する場合がある。)により測定した水添ブロック共重合体(a-1)の分子量分布曲線の形状は特に限定されず、ピークが二ヶ所以上存在するポリモーダルの分子量分布を持つものでもよいし、ピークが一つであるモノモーダルの分子量分布を持つものでもよい。
 なお、水添ブロック共重合体(a-1)の重量平均分子量(Mw)及び分子量分布〔Mw/Mn;重量平均分子量(Mw)の数平均分子量(Mn)に対する比〕は、後述する実施例に記載の方法でゲルパーミエーションクロマトグラフィー(GPC)によって測定したクロマトグラムのピークの分子量に基づいて、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して求めることができる。
 水添ブロック共重合体(a-1)中の重合体ブロックB1のミクロ構造(シス、トランス、ビニル結合量)は、水添ブロック共重合体(a-1)の重合工程において極性化合物等の調整剤の使用により任意に制御することができる。
 調整剤については、後述する。
 水添ブロック共重合体(a-1)中の共役ジエン単量体単位中の水素添加前のビニル結合量は、好ましくは30モル%以上あり、より好ましくは31モル%以上であり、さらに好ましくは31モル%以上であり、さらにより好ましくは32モル%以上である。好ましい上限は50モル%以下であり、47モル%以下がより好ましく、44モル%以下がさらに好ましい。
 水添ブロック共重合体(a-1)中の共役ジエン単量体単位中の水素添加前のビニル結合量が30モル%以上であると水添ブロック共重合体(a-1)と後述のポリプロピレン系樹脂(b)との相溶性がより向上する傾向にあり、共役ジエン単量体単位中の水素添加前のビニル結合量が50モル%以下であると、本実施形態の熱可塑性エラストマー組成物の機械強度がより向上する傾向にある。
 なお、本明細書中、「水素添加前の」ビニル結合量と呼んでいるが、これは、水素添加した後は「ビニル結合」と呼べなくなるためであって、水素添加前の共重合体で測定しなければならないという趣旨ではない。共役ジエンの結合様式は、水素添加後の構造からも分かるので、水素添加後の構造を調べることでも「水素添加前の」ビニル結合量を計算することが可能である。
 なお、本実施形態において、ビニル結合量とは、例えばブタジエンでは水素添加前において、1,2-結合、3,4-結合及び1,4-結合の結合様式で組み込まれている共役ジエン単量体単位の総モル量に対する、1,2-結合及び3,4-結合で組み込まれている共役ジエン単量体単位の総モル量の割合である。
 なお、水素添加後において、水素未添加の1,2-結合、水素添加後の1,2-結合、水素未添加の3,4-結合、水素添加後の3,4-結合、水素未添加の1,4-結合及び水素添加後の1,4-結合の結合様式で組み込まれている共役ジエン単量体単位の総モル量に対する、水素未添加の1,2-結合、水素添加後の1,2-結合、水素未添加の3,4-結合及び水素添加後の3,4-結合で組み込まれている共役ジエン単量体単位の総モル量の割合は、水素添加前の共役ジエン単量体単位のビニル結合量と等しい。したがって、水素添加前の共役ジエン単量体単位のビニル結合量は、水素添加後のブロック共重合体を用いて核磁気共鳴スペクトル解析(NMR)により測定でき、具体的には後述する実施例に記載の方法により測定できる。
 水添ブロック共重合体(a-1)中の共役ジエン化合物に由来する脂肪族二重結合、すなわち共役ジエン単量体単位の二重結合の水素添加率は、50%以上であり(上記要件(1-4)、好ましくは60%以上であり、より好ましくは70%以上である。水素添加率が50%以上であれば、本実施形態の熱可塑性エラストマー組成物は、熱劣化(酸化劣化)による機械物性の低下をより効果的に抑制できる傾向にある。また、水素添加率が70%以上であれば、本実施形態の熱可塑性エラストマー組成物は、より優れた耐候性が得られる傾向にある。水素添加率の上限値は特に限定されないが、100%以下であることが好ましく、99%以下であることがより好ましい。
 水添ブロック共重合体(a-1)の共役ジエン単量体単位の二重結合の水素添加率は、水添触媒の種類、使用量、水添条件を調整することにより、上記数値範囲に制御することが可能であり、後述する実施例に記載する方法により測定することができる。
 本実施形態の熱可塑性エラストマー組成物に、後述する有機過酸化物(e)を配合することで、熱可塑性エラストマー組成物を押し出し機で溶融混練する工程において、部分架橋することが可能である。後述する本実施形態の複層成形体を構成する熱可塑性エラストマー組成物層は、必ずしも架橋されていることを要しないが、永久ひずみを抑制する要求が高い用途において、架橋する場合がある。有機過酸化物(e)を用いて本実施形態の熱可塑性エラストマー組成物を部分架橋する場合は、耐熱性の観点から前記水添ブロック共重合体(a-1)中の共役ジエン化合物に由来する脂肪族二重結合の水素添加率は、50%以上であることが必要であり、60%以上が好ましく、また、加工性、架橋反応性という観点から、90%以下が好ましく、85%以下がより好ましい。
 水添ブロック共重合体(a-1)中のビニル芳香族単量体単位に基づく芳香族二重結合の水素添加率については特に限定されないが、好ましくは50%以下であり、より好ましくは30%以下であり、さらに好ましくは20%以下である。
(水添ブロック共重合体(a-2))
 本実施形態の熱可塑性エラストマー組成物は、水添ブロック共重合体(a-2)を含有する。
 水添ブロック共重合体(a-2)は、1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン化合物単量体単位を主体とする重合体ブロックB2と、を含むブロック共重合体を水素添加して得られる水添ブロック共重合体である(上記要件(2-1))。
 水添ブロック共重合体(a-2)は、全ビニル芳香族単量体単位の含有量が、35質量%~70質量%である(前記要件(2-3))。また、水添ブロック共重合体(a-2)の重量平均分子量は30,000以上150,000未満である(上記要件(2-4))。また、重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である(上記要件(2-5))。
 水添ブロック共重合体(a-2)は、ビニル芳香族化合物及び共役ジエン化合物に由来しない官能基を有しない非変性のブロック共重合体である。水添ブロック共重合体(a-2)が非変性であることにより、臭気や色味、未反応物からくる不純物の混入のない熱可塑性エラストマー組成物が得られる。
 なお、「非変性である」とは、水添ブロック共重合体(a-2)が、所定の変性剤によって形成された変性基を含有する場合を除くものであり、水添ブロック共重合体(a-2)が、カップリング剤によるカップリング反応を経て得られたものである場合に、当該カップリング剤に由来するSi原子、O原子を有するものである場合は「非変性である」の要件を満たすものとする。
 本実施形態の熱可塑性エラストマー組成物は、要件(2-1)~(2-6)を満たす特定の構造の水添ブロック共重合体(a-2)を含有することにより、変性された共重合体を使用せずに、後述する極性基含有熱可塑性樹脂に熱接着させることが可能となる。
 本実施形態の熱可塑性エラストマー組成物は、成形性、硬度調整のため、ポリプロピレン系樹脂(b)を含有するが、後述する極性基含有熱可塑性樹脂との熱接着の際、ポリプロピレン系樹脂(b)は、極性基含有熱可塑性樹脂組成物との親和性が低く、接着強度がほぼ発現しない。
 本実施形態の熱可塑性エラストマー組成物の熱接着性は、水添ブロック共重合体(a-1)及び(a-2)中のビニル芳香族単量体単位の量やビニル結合量によって制御できる傾向にある。水添ブロック共重合体(a-2)のビニル芳香族単量体の含有量は35質量%~70質量%であるが(上記要件(2-3))、例えば、水添ブロック共重合体中のスチレンの量が高いほど、本実施形態の熱可塑性エラストマー組成物中の(a-2)成分の含有量が多いほど、後述する極性基含有熱可塑性樹脂との親和性が向上し接着強度が高くなる傾向にある。
 さらに、水添ブロック共重合体(a-2)は、重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%であるが(上記要件(2-5))、この範囲の中でビニル結合量が高いものほど、また同じビニル結合量であれば(a-2)成分の比率が高いほど、ポリプロピレン系樹脂(b)への相溶性が向上し微分散することで、ポリプロピレン系樹脂(b)の欠点である極性基含有熱可塑性樹脂への親和性の低さを補うことができる。すなわち、これらの相乗効果により極性基含有熱可塑性樹脂と、本実施形態の熱可塑性エラストマー組成物との熱接着性が向上する。
 本実施形態の熱可塑性エラストマー組成物は、機械強度、柔軟性、回復性、成形性と熱接着性のバランス向上の観点から、上述した水添ブロック共重合体(a-1)と、水添ブロック共重合体(a-2)に加えて、ポリプロピレン系樹脂(b)と、非芳香族系軟化剤(c)と、をそれぞれ1種以上含むものとし、さらに、前記水添ブロック共重合体(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し5~70質量%であるものとする。好ましい下限値は10質量%以上であり、より好ましくは15質量%以上である。好ましい上限値は65質量%以下であり、より好ましくは60質量%以下である。
 水添ブロック共重合体(a-2)において、ビニル芳香族単量体単位を主体とする重合体ブロックA2は、重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上であるものとし(上記要件(2-2))、本実施形態の熱可塑性エラストマー組成物の、後述する極性基含有熱可塑性樹脂への熱融着性の観点から、好ましくは60質量%以上、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、さらにより好ましくは90質量%以上である。
 水添ブロック共重合体(a-2)において、共役ジエン単量体単位を主体とする重合体ブロックB2とは、重合体ブロックB2中の共役ジエン単量体単位の含有量が50質量%を超えることを意味し、好ましくは60質量%以上、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、さらにより好ましくは90質量%以上である。
 重合体ブロックA2中のビニル芳香族単量体単位を形成するために用いるビニル芳香族化合物とは、ビニル基と芳香環とを有する化合物をいう。ビニル芳香族化合物としては、以下に限定されないが、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ジビニルベンゼン、1,1-ジフェニルエチレン、N,N-ジメチル-p-アミノエチルスチレン、N,N-ジエチル-p-アミノエチルスチレン等が挙げられる。これらの中でも、重合性の観点から、スチレン、α-メチルスチレン、ジビニルベンゼンが好適に用いられる。これらビニル芳香族化合物は、1種のみを単独で用いてもよく、2種以上を用いてもよい。
 重合体ブロックB2中の共役ジエン単量体単位を形成するために用いる共役ジエン化合物とは、1対の共役二重結合(共役するように結合した2つの二重結合)を有するジオレフィンである。共役ジエン化合物としては、以下に限定されないが、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、1,3-ヘキサジエン等が挙げられる。これらの中でも、重合性の観点から、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)が好適に用いられる。これら共役ジエン化合物は、1種のみを単独で用いてもよく、2種以上を用いてもよい。
 水添ブロック共重合体(a-2)は、以下に限定されないが、例えば、下記一般式(85)~(14)で表されるような構造を有する。さらに、水添ブロック共重合体(a-2)は、下記一般式(8)~(14)で表されるような構造を複数種類、任意の割合で含む混合物でもよい。
(A2-B2)        (8)
A2-(B2-A2)     (9)
B2-(A2-B2)     (10)
[(B2-A2)-Z    (11)
[(A2-B2)-Z    (12)
[(B2-A2)-B2]-Z (13)
[(A2-B2)-A2]-Z (14)
 一般式(8)~(14)において、A2はビニル芳香族単量体単位を主体とする重合体ブロックであり、B2は共役ジエン単量体単位を主体とする重合体ブロックである。重合体ブロックA2と重合体ブロックB2との境界線は必ずしも明瞭に区別される必要はない。
 また、nは1以上の整数、好ましくは1~5の整数である。
 mは2以上の整数、好ましくは2~11、より好ましくは2~8の整数である。
 Zはカップリング剤残基を表す。ここで、カップリング残基とは、共役ジエン単量体単位とビニル芳香族単量体単位との共重合体の複数を、重合体ブロックA2-重合体ブロックA2間、重合体ブロックB2-重合体ブロックB2間、又は重合体ブロックA2-重合体ブロックB2間において結合させるために用いられるカップリング剤の結合後の残基を意味する。カップリング剤としては、以下に限定されないが、例えば、後述するハロゲン化ケイ素化合物や酸エステル類等が挙げられる。
 水添ブロック共重合体(a-2)の構造式としては、前記式(8)、(9)、(10)が好ましく、より好ましくは前記式(8)、(10)であり、さらに好ましくは前記式(8)である。
 一般式(8)~(14)において、重合体ブロックA2及び重合体ブロックB2中のビニル芳香族単量体単位は均一に分布していても、テーパー状に分布していてもよい。また、重合体ブロックA2及び重合体ブロックB2がビニル芳香族単量体単位と共役ジエン単量体単位の共重合体ブロックである場合には、当該共重合体ブロック中のビニル芳香族単量体単位は均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数個存在していてもよい。さらに、前記共重合体ブロック部分には、ビニル芳香族単量体単位の含有量が異なる部分が複数個共存していてもよい。
 上述したように、水添ブロック共重合体(a-2)中の全ビニル芳香族単量体単位の含有量は35質量%~70質量%である(上記要件(2-3))。好ましくは37~70質量%であり、より好ましくは40~70質量%であり、さらに好ましくは、40質量%を超え70質量%であり、さらに好ましくは40質量%を超え68質量%であり、さらに好ましくは40質量%を超え66質量%である。
 水添ブロック共重合体(a-2)中の全ビニル芳香族単量体単位の含有量が35質量%以上であると、本実施形態の熱可塑性エラストマー組成物の機械強度や後述する極性基含有熱可塑性樹脂との親和性が向上し、十分な熱接着強度が得られる傾向にある。水添ブロック共重合体(a-2)中の全ビニル芳香族単量体単位の含有量が70質量%以下であると、本実施形態の熱可塑性エラストマー組成物の柔軟性、回復性がより向上する傾向にある。
 なお、水添ブロック共重合体(a-2)中の全ビニル芳香族単量体単位の含有量は、水添ブロック共重合体(a-2)の重合工程において単量体の添加量を調整することにより前記数値範囲に制御することができ、後述する実施例に記載の方法で紫外線分光光度計を用いて波長262nmの吸収強度により算出することができる。
 水添ブロック共重合体(a-2)の重量平均分子量は、30,000以上150,000未満である(上記要件(2-4))。
 水添ブロック共重合体(a-2)の重量平均分子量が30,000以上であると、本実施形態の熱可塑性エラストマー組成物の耐熱変形性、回復性が向上する傾向にある。水添ブロック共重合体(a-2)の重量平均分子量が150,000未満であると、本実施形態の熱可塑性エラストマー組成物の流動性が向上し、本実施形態の熱可塑性エラストマー組成物の成形性及び熱接着性が改善する傾向にある。同様の観点から、水添ブロック共重合体(a-2)の重量平均分子量は、好ましくは40,000~130,000であり、より好ましくは50,000~110,000である。
 水添ブロック共重合体(a-2)の分子量分布(Mw/Mn)は、好ましくは1.01~8.0であり、より好ましくは1.01~6.0であり、さらに好ましくは1.01~5.0である。水添ブロック共重合体(a-2)の分子量分布が前記範囲内にあれば、本実施形態の熱可塑性エラストマー組成物は、より良好な回復性が得られる傾向にある。なお、水添ブロック共重合体(a-2)のMw、Mnは、GPCにより測定することができ、具体的には後述する実施例に記載する方法により測定できる。
 水添ブロック共重合体(a-2)の分子量分布曲線の形状は、特に限定されず、ピークが二ヶ所以上存在するポリモーダルの分子量分布を持つものでもよいし、ピークが一つであるモノモーダルの分子量分布を持つものでもよい。
 水添ブロック共重合体(a-2)は、重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量は60モル%~95モル%である(上記要件(2-5))。好ましくは63モル%~90モル%であり、より好ましくは65モル%~85モル%である。
 水添ブロック共重合体(a-2)における重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%以上であると、後述するポリプロピレン系樹脂(b)との相溶性が向上する傾向にあり、本実施形態の熱可塑性エラストマー組成物の熱接着性が良好になる傾向にある。また、水添ブロック共重合体(a-2)が、比較的分子量が小さく、さらに前記ビニル結合量が60モル%以上と高いことにより、本実施形態の熱可塑性エラストマー組成物の流動性が向上し、被着体表面の微細な凹凸に追従する濡れ性が良好となり、本実施形態の熱可塑性エラストマー組成物の熱接着性が良好になる傾向にある。
 また、前記共役ジエン単量体単位中の水素添加前のビニル結合量が95モル%以下であることで、本実施形態の熱可塑性エラストマー組成物の機械強度を担保できる傾向にある。
 共役ジエン単量体単位のビニル結合量は、ブロック共重合体を用いて核磁気共鳴スペクトル解析(NMR)により測定でき、具体的には後述する実施例に記載の方法により測定できる。
 ビニル結合量は、後述する第3級アミン等の調整剤の種類、添加量を調整することにより、上述した数値範囲に制御することができる。
 上述したように、本実施形態の熱可塑性エラストマー組成物の熱接着強度、及び熱可塑性エラストマー組成物の柔軟性、回復性の観点から、前記水添ブロック共重合体(a-2)は、全ビニル芳香族単量体単位の含有量が35質量%~70質量%であるものとし(上記要件(2-3))、本実施形態の熱可塑性エラストマー組成物の熱接着性、機械強度の観点から、共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%であるものとする(上記要件(2-5))。
 水添ブロック共重合体(a-2)中の共役ジエン単量体単位の二重結合の水素添加率は、50モル%以上であるものとし(上記要件(2-6))、好ましくは80%以上、より好ましくは90%以上である。水添ブロック共重合体(a-2)中の共役ジエン単量体単位の二重結合の水素添加率が50モル%以上であれば、本実施形態の熱可塑性エラストマー組成物の熱劣化、すなわち酸化劣化による機械物性の低下を抑制することができる。上記水素添加率の上限値は特にないが、100%以下であることが好ましく、99%以下であることが好ましい。
 水添ブロック共重合体(a-2)の共役ジエン単量体単位の二重結合の水素添加率は、水添触媒の種類、使用量、水添条件を調整することにより、上記数値範囲に制御することが可能であり、後述する実施例に記載する方法により測定することができる。
 水添ブロック共重合体(a-2)中のビニル芳香族単量体単位に基づく芳香族二重結合の水素添加率については特に限定されず、好ましくは50%以下、より好ましくは30%以下、さらに好ましくは20%以下である。
 水添ブロック共重合体(a-2)が、少なくとも2個の重合体ブロックA2と、少なくとも2個の前記重合体ブロックB2とを有する場合、少なくとも1個の重合体ブロックB2が、前記水添ブロック共重合体(a-2)の末端にあり、当該末端にある重合体ブロックB2の含有量は、前記水添ブロック共重合体(a-2)中、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、3質量%以上であることがさらに好ましい。上限値は10質量%以下が好ましく、9質量%以下がより好ましく、8質量%以下がさらに好ましい。
 また、かかる場合、水添ブロック共重合体(a-2)は、25万以上の重量平均分子量のピークを有しないことが好ましい。
 さらに、かかる構成においては、水添ブロック共重合体(a-2)は、全ビニル芳香族単量体単位の含有量が40質量%を超え70質量%以下であることが好ましい。
 少なくとも1個の重合体ブロックB2が、前記水添ブロック共重合体(a-2)の末端にあり、末端にある重合体ブロックB2の含有量が、上記数値範囲であることにより、本実施形態の熱可塑性エラストマー組成物は、より柔軟性と流動性に優れる傾向にある。末端にある重合体ブロックB2の含有量については、重合反応に用いた全モノマーの質量から、末端で重合させた共役ジエンの質量を、除することにより、算出することができる。
 上記構成において水添ブロック共重合体(a-2)が、25万以上の重量平均分子量のピークを有しないものであることにより、本実施形態の熱可塑性エラストマー組成物の流動性が向上し、被着体表面への濡れ性が良好となり、本実施形態の熱可塑性エラストマー組成物の熱接着性が良好になる傾向にある。
 さらに、かかる構成において、水添ブロック共重合体(a-2)の全ビニル芳香族単量体単位の含有量が40質量%を超え70質量%以下であることにより、本実施形態の熱可塑性エラストマー組成物の機械強度や極性基含有熱可塑性樹脂との熱接着強度と、柔軟性や回復性のバランスが良好となる傾向にある。
 水添ブロック共重合体(a-2)において、少なくとも1個の重合体ブロックB2が末端にあり、当該末端にある重合体ブロックB2の含有量が上記数値範囲であり、25万以上の重量平均分子量のピークを有しないものとし、さらには、水添ブロック共重合体(a-2)の全ビニル芳香族単量体単位の含有量が上記数値範囲であるものとするためには、水添ブロック共重合体(a-2)の重合工程において、単量体の添加時期や添加量を調整する方法が有効である。
(水添ブロック共重合体の製造方法)
 水添ブロック共重合体(a-1)、(a-2)の製造方法としては、以下に限定されないが、例えば、特公昭36-19286号公報、特公昭43-17979号公報、特公昭46-32415号公報、特公昭49-36957号公報、特公昭48-2423号公報、特公昭48-4106号公報、特公昭51-49567号公報、特開昭59-166518号公報等、に記載された方法が挙げられる。
 水添ブロック共重合体(a-1)、(a-2)の、水素添加前の共役ジエン単量体単位とビニル芳香族単量体単位とを含むブロック共重合体は、以下に限定されないが、例えば、炭化水素溶媒中で有機アルカリ金属化合物等の重合開始剤を用いてアニオンリビング重合を行う方法等により得られる。
 炭化水素溶媒としては、特に限定されず、例えば、n-ブタン、イソブタン、n-ペンタン、n-ヘキサン、n-ヘプタン、n-オクタン等の脂肪族炭化水素類、シクロヘキサン、シクロヘプタン、メチルシクロヘプタン等の脂環式炭化水素類、ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類等が挙げられる。
 重合開始剤としては、特に限定はないが、一般的に、共役ジエン化合物及びビニル芳香族化合物に対し、アニオン重合活性があることが知られている有機アルカリ金属化合物を用いることができる。前記有機アルカリ金属化合物としては、以下限定されないが、例えば、炭素数1~20の脂肪族炭化水素アルカリ金属化合物、炭素数1~20の芳香族炭化水素アルカリ金属化合物、炭素数1~20の有機アミノアルカリ金属化合物等が挙げられる。
 重合開始剤に含まれるアルカリ金属としては、以下に限定されないが、例えば、リチウム、ナトリウム、カリウム等が挙げられる。なお、アルカリ金属は、1分子中に1種、又は2種以上含まれていてもよい。
 重合開始剤としては、具体的には、n-プロピルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、n-ペンチルリチウム、n-ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、トリルリチウム、ジイソプロペニルベンゼンとsec-ブチルリチウムの反応生成物、さらにジビニルベンゼンとsec-ブチルリチウムと少量の1,3-ブタジエンの反応生成物等が挙げられる。
 さらにまた、米国特許5,708,092号明細書に開示されている1-(t-ブトキシ)プロピルリチウム及びその溶解性改善のために1~数分子のイソプレンモノマーを挿入したリチウム化合物、英国特許2,241,239号明細書に開示されている1-(t-ブチルジメチルシロキシ)ヘキシルリチウム等のシロキシ基含有アルキルリチウム、米国特許5,527,753号明細書に開示されているアミノ基含有アルキルリチウム、ジイソプロピルアミドリチウム及びヘキサメチルジシラジドリチウム等のアミノリチウム類も、重合開始剤として使用することができる。
 有機アルカリ金属化合物を重合開始剤として、共役ジエン化合物とビニル芳香族化合物を共重合する際に、共重合体に組み込まれる共役ジエン化合物に起因するビニル結合(1,2-結合又は3,4-結合)の含有量の調整や共役ジエン化合物とビニル芳香族化合物とのランダム共重合性を調整するために、調整剤として第3級アミン化合物、エーテル化合物、金属アルコラート化合物を添加することができる。
 調整剤は1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 調整剤の第3級アミン化合物としては、一般式R1R2R3Nで表される化合物を用いることができる。
 ここで、一般式中、R1、R2、R3は、炭素数1~20の炭化水素基又は第3級アミノ基を有する炭化水素基を示す。
 第3級アミン化合物としては、以下に限定されないが、例えば、トリメチルアミン、トリエチルアミン、トリブチルアミン、N,N-ジメチルアニリン、N-エチルピペリジン、N-メチルピロリジン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラエチルエチレンジアミン、1,2-ジピペリジノエタン、トリメチルアミノエチルピペラジン、N,N,N’,N”,N”-ペンタメチルエチレントリアミン、N,N’-ジオクチル-p-フェニレンジアミン等が挙げられる。
 調整剤のエーテル化合物としては、直鎖状エーテル化合物及び環状エーテル化合物等を用いることができる。
 直鎖状エーテル化合物としては、以下に限定されないが、例えば、ジメチルエーテル、ジエチルエーテル、ジフェニルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル等のエチレングリコールのジアルキルエーテル化合物類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジブチルエーテル等のジエチレングリコールのジアルキルエーテル化合物類が挙げられる。
 環状エーテル化合物としては、以下に限定されないが、例えば、テトラヒドロフラン、ジオキサン、2,5-ジメチルオキソラン、2,2,5,5-テトラメチルオキソラン、2,2-ビス(2-オキソラニル)プロパン、フルフリルアルコールのアルキルエーテル等が挙げられる。
 調整剤の金属アルコラート化合物としては、以下に限定されないが、例えば、ナトリウム-t-ペントキシド、ナトリウム-t-ブトキシド、カリウム-t-ペントキシド、カリウム-t-ブトキシド等が挙げられる。
 有機アルカリ金属化合物を重合開始剤として共役ジエン化合物とビニル芳香族化合物を共重合する方法は、特に限定されず、バッチ重合であっても連続重合であっても、あるいはそれらの組み合わせであってもよい。
 分子量分布を好ましい適正範囲に調整する観点から、バッチ重合方法が好ましい。
 重合温度は、特に限定されないが、通常は0~180℃であり、好ましくは30~150℃である。
 重合に要する時間は条件によって異なるが、通常は48時間以内であり、好ましくは0.1~10時間である。
 また、窒素ガス等の不活性ガス雰囲気下で重合することが好ましい。重合圧力は、上記重合温度範囲でモノマー及び溶媒を液相に維持するに充分な圧力の範囲で行えばよく、特に限定されるものではない。
 さらに、重合終了時に2官能基以上のカップリング剤を必要量添加してカップリング反応を行ってもよい。
 2官能基以上のカップリング剤としては、特に限定されず、公知のものを用いることができる。2官能基カップリング剤としては、以下に限定されるものではないが、例えば、ジメチルジメトキシシラン、ジメチルジエトキシシラン等のアルキルアルコキシシラン、ジメチルジクロロシラン、ジメチルジブロモシラン等のハロゲン化珪素化合物;安息香酸メチル、安息香酸エチル、安息香酸フェニル、フタル酸エステル類等の酸エステル類等が挙げられる。
 なお、水添ブロック共重合体(a-1)、(a-2)がこれらのカップリング剤によりカップリング反応を行ったものである場合には、非変性の要件に反するものではない。
 3官能基以上の多官能カップリング剤としては、以下に限定されないが、例えば、3価以上のポリアルコール類、エポキシ化大豆油、ジグリシジルビスフェノールA等の多価エポキシ化合物、メチルトリメトキシシラン、テトラメトキシシラン、メチルトリエトキシシラン、テトラエトキシシラン等のアルキルアルコキシシラン、一般式R (4-n)SiXで表されるハロゲン化珪素化合物が挙げられる。
 ここで、一般式中、Rは炭素数1から20の炭化水素基、Xはハロゲン、nは3又は4の整数を表す。
 ハロゲン化珪素化合物としては、以下に限定されないが、例えば、メチルシリルトリクロリド、t-ブチルシリルトリクロリド、四塩化珪素、及びこれらの臭素化物等が挙げられる。
 水添ブロック共重合体を製造するために用いられる水添触媒としては、特に限定されず、例えば、特公昭42-8704号公報、特公昭43-6636号公報、特公昭63-4841号公報、特公平1-37970号公報、特公平1-53851号公報、特公平2-9041号公報等に記載された水添触媒を使用することができる。
 好ましい水添触媒としては、チタノセン化合物、及び当該チタノセン化合物と還元性有機金属化合物との混合物が挙げられる。
 チタノセン化合物としては、特に限定されないが、例えば、特開平8-109219号公報に記載された化合物等が挙げられる。具体的には、ビスシクロペンタジエニルチタンジクロライド、モノペンタメチルシクロペンタジエニルチタントリクロライド等の、置換又は非置換のシクロペンタジエニル構造、インデニル構造、及びフルオレニル構造を有する配位子を少なくとも1つ以上有する化合物等が挙げられる。
 還元性有機金属化合物としては、以下に限定されないが、例えば、有機リチウム等の有機アルカリ金属化合物、有機マグネシウム化合物、有機アルミニウム化合物、有機ホウ素化合物、有機亜鉛化合物等が挙げられる。
 水添反応の反応温度は、通常0~200℃、好ましくは30~150℃である。
 水添反応に使用される水素の圧力は、好ましくは0.1~15MPa、より好ましくは0.2~10MPa、さらに好ましくは0.3~5MPaである。
 水添反応の反応時間は、通常3分~10時間、好ましくは10分~5時間である。
 なお、水添反応は、バッチプロセス、連続プロセス、あるいはそれらの組み合わせのいずれも用いることができる。
 水添反応終了後の反応溶液から、必要に応じて触媒残査を除去してもよい。
 水添ブロック共重合体と溶媒を分離する方法としては、以下に限定されないが、例えば、水添ブロック共重合体の溶液に、アセトン又はアルコール等の水添ブロック共重合体に対して貧溶媒となる極性溶媒を加えて、水添ブロック共重合体を沈澱させて回収する方法、あるいは、水添ブロック共重合体の溶液を撹拌下熱湯中に投入し、スチームストリッピングにより溶媒を除去して回収する方法、水添ブロック共重合体の溶液を直接加熱することによって溶媒を留去する方法等が挙げられる。
 水添ブロック共重合体(a)を製造する際の反応溶液には、酸化防止剤を添加してもよい。
 酸化防止剤としては、以下に限定されないが、例えば、フェノール系酸化防止剤、リン系酸化防止剤、イオウ系酸化防止剤、アミン系酸化防止剤等が挙げられる。
 具体的には、2,6-ジ-t-ブチル-4-メチルフェノール、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-t-ブチルフェニル)プロピオネート、テトラキス-〔メチレン-3-(3’,5’-ジ-t-ブチル-4’-ヒドロキシフェニル)プロピオネート〕メタン]、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、4,4’-ブチリデン-ビス-(3-メチル-6-t-ブチルフェノール)、3,9-ビス[2-{3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ}-1,1-ジメチルエチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス-〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)1,3,5-トリアジン、ペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス〔3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート〕、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウムとポリエチレンワックス(50%)の混合物、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-o-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、ブチル酸,3,3-ビス(3-t-ブチル-4-ヒドロキシフェニル)エチレンエステル、1,1,3-トリス-(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリス(4-t-ブチル-3-ヒドロキシ-2,6-ジメチルベンジル)イソシアヌレート、2-t-ブチル-6-(3’-t-ブチル-5’-メチル-2’-ヒドロキシベンジル)-4-メチルフェニル・アクリレート、及び2-〔1-(2-ヒドロキシ-3,5-ジ-t-ペンチルフェニル)-エチル〕-4,6-ジ-t-ペンチルフェニルアクリレート等が挙げられる。
(ポリプロピレン系樹脂(b))
 本実施形態の熱可塑性エラストマー組成物は、ポリプロピレン系樹脂(b)を含有する。
 ポリプロピレン系樹脂(b)としては、以下に限定されないが、例えば、プロピレン単独重合体、又は、プロピレンとプロピレン以外のオレフィン、好ましくは炭素数が2~20のα-オレフィン、とのブロック共重合体もしくはランダム共重合体、あるいはそれらのブレンド物が挙げられる。
 炭素数が2~20のα-オレフィンとしては、以下に限定されないが、例えば、エチレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテン、1-オクテン、1-デセン等が挙げられ、好ましくは炭素数2~8のα-オレフィンであり、より好ましくはエチレン、1-ブテン、1-ヘキセン、4-メチル-1-ペンテンである。
 前記ポリプロピレン系樹脂(b)は、1種のみを単独で用いてもよく、2種以上を併用してもよい。
 ポリプロピレン系樹脂(b)は、温度230℃、荷重2.16kgの条件で求めたメルトフローレート値(MFR)が0.1~50g/10分であることが好ましい。下限値は、より好ましくは0.5g/10分以上、さらに好ましくは1.0g/10分以上である。上限値は45g/10分以下がより好ましく、40g/10分以下がさらに好ましい。ポリプロピレン系樹脂(b)のMFRが前記範囲内であれば、本実施形態の熱可塑性エラストマー組成物の成形加工性がより向上する傾向にある。
 ポリプロピレン系樹脂(b)を製造する方法としては、以下に限定されないが、例えば、チタン含有固体状遷移金属成分と有機金属成分を組み合わせたチーグラー・ナッタ型触媒を用いて上述した単量体を重合する製造方法が挙げられる。
 チーグラー・ナッタ型触媒に用いられる遷移金属成分としては、以下に限定されないが、例えば、チタン、マグネシウム及びハロゲンを必須成分とし、電子供与性化合物を任意成分とする固体成分、又は三塩化チタンが挙げられ、有機金属成分としては、以下に限定されないが、例えば、アルミニウム化合物が挙げられる。
 また、ポリプロピレン系樹脂(b)を製造する際の重合方法としては、以下に限定されないが、例えば、スラリー重合法、気相重合法、バルク重合法、溶液重合法、又はこれらを組み合わせた多段重合法等が挙げられる。
 これらの重合方法において、プロピレン単独重合体を得る場合にはプロピレンのみを重合し、共重合体を得る場合にはプロピレンとプロピレン以外の単量体を重合する。
 本実施形態の熱可塑性エラストマー組成物において、ポリプロピレン系樹脂(b)の含有量は、前記水添ブロック共重合体(a-1)100質量部に対し、10質量部以上であり、好ましくは20質量部以上であり、より好ましくは30質量部以上である。上限値は100質量部であり、90質量部以下が好ましく、80質量部以下がより好ましい。
 ポリプロピレン系樹脂(b)の含有量が10質量部以上であると、本実施形態の熱可塑性エラストマー組成物において良好な流動性が得られ、優れた成形加工性が得られる。
 ポリプロピレン系樹脂(b)の含有量が100質量部以下であると、本実施形態の熱可塑性エラストマー組成物において、良好な反発弾性、柔軟性が得られる。
(非芳香族系軟化剤(c))
 本実施形態の熱可塑性エラストマー組成物は、非芳香族系軟化剤(c)を含有する。
 非芳香族系軟化剤(c)としては、芳香族性を示さず、本実施形態の熱可塑性エラストマー組成物を軟化しうるものであれば特に限定されず、公知の非芳香族系軟化剤を用いることができる。
 非芳香族系軟化剤(c)は、以下に限定されないが、例えば、パラフィン系オイル、ナフテン系オイル、パラフィンワックス、流動パラフィン、ホワイトミネラルオイル、植物系軟化剤等が挙げられる。これらの中でも、本実施形態の熱可塑性エラストマー組成物を含む成形体の低温特性や耐溶出性、衛生性等の観点から、パラフィン系オイル、流動パラフィン、ホワイトミネラルオイルが好ましい。
 非芳香族系軟化剤(c)の40℃における動粘度は、好ましくは10~500mm/秒である。
 非芳香族系軟化剤(c)の40℃における動粘度が10mm/秒以上であれば、本実施形態の熱可塑性エラストマー組成物の耐熱変形性、軟化剤保持性がより向上する傾向にある。
 非芳香族系軟化剤(c)の40℃における動粘度が500mm/秒以下であれば、本実施形態の熱可塑性エラストマー組成物の流動性がより向上し、成形加工性がより向上する傾向にある。
 非芳香族系軟化剤(c)の動粘度は、ガラス製毛管式粘度計を用いて測定することができる。
 本実施形態の熱可塑性エラストマー組成物において、非芳香族系軟化剤(c)の含有量は、水添ブロック共重合体(a-1)100質量部に対し、50~300質量部であり、好ましくは60質量部以上、より好ましくは70質量部以上である。上限値は300質量部以下であり、好ましくは250質量部以下であり、より好ましくは200質量部以下である。
 非芳香族系軟化剤(d)の含有量が前記範囲内であれば、非芳香族軟化剤(c)の保持性すなわちブリードアウトの抑制効果をより向上でき、かつ成形加工性、柔軟性、回復性により優れた熱可塑性エラストマー組成物が得られる傾向にある。
(無機充填剤(d))
 本実施形態の熱可塑性エラストマー組成物は、成形外観や表面の質感・風合い、光沢度調整の観点から、無機充填剤(d)を含有していてもよい。
 無機充填剤(d)としては、以下に限定されないが、例えば、タルク、炭酸カルシウム、酸化カルシウム、炭酸亜鉛、ウォラスナイト、ゼオライト、ワラストナイト、シリカ、アルミナ、クレー、酸化チタン、水酸化マグネシウム、酸化マグネシウム、ケイ酸ナトリウム、ケイ酸カルシウム、ケイ酸マグネシウム、アルミン酸ナトリウム、アルミン酸カルシウム、アルミノケイ酸ナトリウム、酸化亜鉛、チタン酸カリウム、ハイドロタルサイト、硫酸バリウム、チタンブラック等や、ファーネスブラック、サーマルブラック、アセチレンブラック等のカーボンブラックが挙げられる。
 これらの無機充填剤は1種のみを単独で用いても、2種以上を組み合わせて用いてもよい。
 また、これらの無機充填剤は、本実施形態の熱可塑性エラストマー組成物中の分散性の向上の観点から、表面処理されていてもよい。
 表面処理剤としては、例えば、脂肪酸、樹脂酸、油脂、界面活性剤、カップリング剤(シラン系、チタン系、リン酸系、カルボン酸系等)が挙げられるが、無機充填剤の表面に作用できるものであればこれらに限定されない。
(有機過酸化物(e))
 本実施形態の熱可塑性エラストマー組成物は、耐熱変形性、回復性の観点から、有機過酸化物(e)存在下で部分架橋されていてもよい。
 有機過酸化物(e)としては、以下に限定されないが、例えば、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキサン、ジクミルペルオキシド、2,5-ジメチル-2,5-ジ(ベンゾイルペルオキシ)ヘキサン、t-ブチルペルオキシベンゾエート、t-ブチルクミルペルオキシド、ジイソプロピルベンゼンヒドロキシペルオキシド、1,3-ビス(t-ブチルペルオキシイソプロピル)ベンゼン、ベンゾイルペルオキシド、1,1-ジ(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサン、t-ブチルヒドロペルオキシド、1,1,3,3-テトラメチルブチルヒドロペルオキシド、クメンヒドロペルオキシド、ジ-t-ブチルペルオキシド、1,1-ジ-t-ブチルペルオキシ・シクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルペルオキシ)ヘキシン-3、n-ブチル-4,4-ビス(t-ブチルペルオキシ)バレレート、t-ブチルペルオキシイソブチレート、t-ブチルペルオキシ-2-エチルヘキサノエート、t-ブチルペルオキシイソプロピルカルボナート等が挙げられる。
 これらは、1種のみを単独で用いてもよく、2種以上の有機過酸化物を組み合わせて使用してもよい。
 有機過酸化物(e)の使用量は、水添ブロック共重合体(a-1)100質量部に対し、好ましくは0.05~5質量部、より好ましくは0.1~4質量部、さらに好ましくは0.3~3質量部である。
 有機過酸化物(e)の使用量が前記範囲内であれば、加工性を低下させることなく、耐熱変形性、回復性により優れた熱可塑性エラストマー組成物が得られる傾向にある。
(架橋助剤(f))
 また、本実施形態の熱可塑性エラストマー組成物を部分架橋する場合、架橋度を調整するために、必要に応じて架橋助剤を使用することができる。
 架橋助剤(f)としては、以下に限定されないが、例えば、トリメチロールプロパントリアクリレート、トリアリルイソシアヌレート、トリアリルシアヌレート、トリアリルホルマール、トリアリルトリメリテート、N,N’-m-フェニレンビスマレイミド、ジプロパギルテレフタレート、ジアリルフタレート、テトラアリルテレフタルアミド、トリアリルホスフェート、ジビニルベンゼン、エチレンジメタクリレート、ジアリルフタレート、キノンジオキシム、エチレングリコールジメタクリレート、多官能性メタクリレートモノマー、多価アルコールメタクリレート及びアクリレート、不飽和シラン化合物(例えばビニルトリメトキシシラン、ビニルトリエトキシシラン等)等が挙げられる。
 これらは、1種のみを単独で用いてもよく、必要に応じて2種以上を併用してもよい。
 架橋助剤(f)の使用量は、水添ブロック共重合体(a-1)100質量部に対し、好ましくは0.1質量部以上、より好ましくは0.2質量部以上、さらに好ましくは0.5質量部以上である。好ましい上限値は10質量部以下であり、8質量部以下がより好ましく、7質量部以下がさらに好ましい。
(その他の成分)
 本実施形態の熱可塑性エラストマー組成物は、本実施形態の目的を損わない範囲で、上述した(a)~(f)の成分以外に、さらにその他の添加剤を含んでいてもよい。
 かかるその他の添加剤としては、熱安定剤、酸化防止剤、紫外線吸収剤、老化防止剤、可塑剤、光安定剤、結晶核剤、衝撃改良剤、顔料、滑剤、帯電防止剤、難燃剤、難燃助剤、相溶化剤、及び粘着性付与剤等が挙げられる。
 特に滑剤としてシリコンオイルを添加すると摺動性が向上し、針刺し抵抗の低下、コアリングの改善に効果的である。
 シリコンオイルの種類としては、一般的なジメチルポリシロキサン、フェニル-メチルポリシロキサン等が挙げられ、特にジメチルポリシロキサンが好ましい。
 シリコンオイルの添加量としては、水添ブロック共重合体(a-1)100質量部に対し、好ましくは0.5質量部以上であり、より好ましくは0.7質量部以上、さらに好ましくは1.0質量部以上である。上限値は10質量部以下が好ましく、7質量部以下がより好ましく、5質量部以下がさらに好ましい。
 シリコンオイルの動粘度としては特に制限はないが、10~10000mm/秒が好ましく、50~7000mm/秒がより好ましく、100~5000mm/秒がさらに好ましい。
 前記その他の添加剤は1種のみを単独で用いてもよく、2種以上を組み合わせて用いてもよい。
(熱可塑性エラストマー組成物の製造方法)
 本実施形態の熱可塑性エラストマー組成物や、前記熱可塑性エラストマー組成物からなる成形体(例えば、ペレット)の製造方法としては、特に限定されず、従来公知の方法を適用できる。
 例えば、加圧ニーダー、バンバリーミキサー、インターナルミキサー、ラボプラストミル、ミックスラボ、単軸スクリュー押出機、2軸スクリュー押出機、コニーダ、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解又は分散混合後、溶剤を加熱除去する方法等が挙げられる。
 本実施形態の熱可塑性エラストマー組成物を、上述した有機過酸化物(e)により部分架橋する場合には、各成分(a)~(d)の複合化と、有機過酸化物(e)及び必要に応じて添加する架橋助剤(f)による部分架橋を同時に行ってもよいし、成分(a)~成分(d)を複合化した後に、有機過酸化物(e)及び必要に応じて架橋助剤(f)を添加して部分架橋を行ってもよい。
 また、成分(a)~(d)の一部と有機過酸化物(e)及び必要に応じて架橋助剤(f)を混合し、架橋した後に、他の成分を混合してもよい。
 部分架橋は、使用する有機過酸化物(e)の分解が起こる温度、一般には150~250℃の温度条件下で行うことができる。
 (a)~(d)成分の一部又は全部の複合化と有機過酸化物(e)及び必要に応じて添加する架橋助剤(f)による架橋を同時に行う場合には、使用する有機過酸化物(e)の分解が起こる温度で、前記溶融混練機を用いることにより複合化することができる。
〔複層成形体〕
 本実施形態の複層成形体は、本実施形態の熱可塑性エラストマー組成物層と極性基含有熱可塑性樹脂層とを有する。
 本実施形態の複層成形体は、極性基含有熱可塑性樹脂層と、水添ブロック共重合体(a)、ポリプロピレン系樹脂(b)、及び非芳香族系軟化剤(c)を含む熱可塑性エラストマー組成物層とを有する複層成形体であり、前記熱可塑性エラストマー組成物層は、前記極性基含有熱可塑性樹脂層に接触して設けられている。
 前記水添ブロック共重合体(a)は、変性基を含有していない非変性のブロック共重合体である。水添ブロック共重合体(a)が非変性であることにより、臭気や色味、未反応物からくる不純物の混入のない熱可塑性エラストマー組成物が得られる。
 なお、「非変性である」とは、水添ブロック共重合体(a)が、所定の変性剤によって形成された変性基を含有する場合を除くものである。
 変性基としては、例えば、N原子を含むアミノ基、ニトロ基やアミド結合、アゾ結合、O原子が二重結合により単独でC原子と結合しているケトン基、カルボニル基、カルボキシ基、アルデヒド基、O原子とH原子が結合しているヒドロキシ基、S原子を含むスルホ基、他F原子、Cl原子、Br原子、等のハロゲン元素が結合している化合物基等が挙げられる。
 水添ブロック共重合体(a)が、重合反応終了時にカップリング剤によるカップリング反応を経て得られたものである場合に、残基として当該カップリング剤に由来するSi原子及びそれと隣接し、直鎖上に結合しているO原子を有するものである場合は「非変性である」の要件を満たすものとする。
 前記水添ブロック共重合体(a)は、ビニル芳香族単量体単位と共役ジエン単量体単位とを有するブロック共重合体の水添物である水添ブロック共重合体であって、GPCによる分子量のピーク(重量換算分子量;PMw)を、30,000~150,000未満に1つ以上有する。好ましくは40,000~130,000、より好ましくは50,000~110,000に分子量のピークを1つ以上有する。
 前記水添ブロック共重合体(a)の分子量のピークが30,000以上であると、本実施形態の熱可塑性エラストマー組成物の耐熱変形性、回復性が向上する傾向にある。また、分子量のピークが150,000未満であると、本実施形態の熱可塑性エラストマー組成物の流動性が向上し、本実施形態の熱可塑性エラストマー組成物の成形性及び熱接着性が改善する傾向にある。
 なお、水添ブロック共重合体のPMwは、GPCにより測定することができ、具体的には後述する実施例に記載する方法により測定できる。
 前記GPCによる分子量のピークが30,000~150,000未満の前記水添ブロック共重合体は、全ビニル芳香族単量体単位の含有量が35質量%以上であり、好ましくは37質量%以上であり、より好ましくは40質量%以上であり、さらに好ましくは、40質量%を超え66質量%以下である。上限値は70質量%以下であり、68質量%以下が好ましく、66質量%以下がより好ましい。
 前記GPCによる分子量のピークが30,000~150,000未満の前記水添ブロック共重合体中の全ビニル芳香族単量体単位の含有量が35質量%以上であると、本実施形態の熱可塑性エラストマー組成物の機械強度や極性基含有熱可塑性樹脂との親和性が向上し、十分な熱接着強度が得られる傾向にあり、全ビニル芳香族単量体単位の含有量が70質量%以下であると、本実施形態の熱可塑性エラストマー組成物の柔軟性、回復性がより向上する傾向にある。
 なお、全ビニル芳香族単量体単位の含有量は、水添ブロック共重合体の重合工程において単量体の添加量を調整することにより前記数値範囲に制御することができ、後述する実施例に記載の方法で紫外線分光光度計を用いて262nmの吸収強度により算出することができる。
 前記GPCによる分子量のピークが30,000~150,000未満の前記水添ブロック共重合体の共役ジエン単量体単位中の水素添加前のビニル結合量は60モル%以上であり、好ましくは63モル%以上であり、より好ましくは65モル%以上である。上限値は95モル%以下であり、90モル%以下が好ましく、85モル%以下がより好ましい。
 前記GPCによる分子量のピークが30,000~150,000未満の前記水添ブロック共重合体の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%以上であると、ポリプロピレン系樹脂(b)との相溶性が向上する傾向にあり、本実施形態の熱可塑性エラストマー組成物の熱接着性が良好になる傾向にある。さらに流動性も向上し、被着体表面の微細な凹凸に追従する濡れ性が良好となり、本実施形態の熱可塑性エラストマー組成物の熱接着性が良好になる傾向にある。
 また、前記GPCによる分子量のピークが30,000~150,000未満の前記水添ブロック共重合体の共役ジエン単量体単位中の水素添加前のビニル結合量が95モル%以下であると、本実施形態の熱可塑性エラストマー組成物において、十分な機械強度を担保できる傾向にある。
 共役ジエン単量体単位のビニル結合量は、ブロック共重合体を用いて核磁気共鳴スペクトル解析(NMR)により測定でき、具体的には後述する実施例に記載の方法により測定できる。また、ビニル結合量は、後述する第3級アミン等の調整剤の種類、添加量を調整することにより、上述した数値範囲に制御することができる。
 前記熱可塑性エラストマー組成物を構成する水添ブロック共重合体(a)は、上述したように、ビニル芳香族単量体単位と共役ジエン単量体単位とを有するブロック共重合体の水添重合体である。前記水添ブロック共重合体(a)は、前記GPCによる分子量のピーク(重量換算分子量;PMw)を150,000~550,000に、さらに一つ以上有する。前記ピークがある分子量は、好ましくは170,000以上、より好ましくは190,000以上、さらに好ましくは210,000以上である。また、好ましくは500,000以下、より好ましくは450,000以下、さらに好ましくは400,000以下、さらにより好ましくは350,000以下であり、よりさらに好ましくは300,000以下である。
 水添ブロック共重合体のピーク分子量が150,000以上であると、本実施形態の熱可塑性エラストマー組成物の耐熱変形性、回復性が良好なものとなる傾向にある。水添ブロック共重合体のピーク分子量が550,000以下であると、熱可塑性エラストマー組成物が良好な流動性を示すので、十分な成形加工性が得られる傾向にある。
 なお、水添ブロック共重合体のPMwは、GPCにより測定することができ、具体的には後述する実施例に記載する方法により測定できる。
 前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体の全ビニル芳香族単量体単位の含有量は15質量%~35質量%未満であり、好ましくは17質量%以上であり、より好ましくは19質量%以上であり、さらに好ましくは21質量%以上であり、さらにより好ましくは23質量%以上である。
 また、好ましくは34質量%以下であり、より好ましくは33質量%以下である。
 前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体中の全ビニル芳香族単量体単位の含有量が15質量%以上であると、本実施形態の熱可塑性エラストマー組成物の機械強度、耐熱変形性が向上する傾向にあり、前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体中の全ビニル芳香族単量体単位の含有量が35質量%未満であると、本実施形態の熱可塑性エラストマー組成物の柔軟性、回復性、反撥弾性が向上する傾向にある。
 なお、全ビニル芳香族単量体単位の含有量は、水添ブロック共重合体の重合工程において単量体の添加量を調整することにより前記数値範囲に制御することができ、後述する実施例に記載の方法で紫外線分光光度計を用いて波長262nmの吸収強度により算出することができる。
 前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体中の共役ジエン化合物に由来する脂肪族二重結合、すなわち共役ジエン単量体単位の二重結合の水素添加率は、50モル%以上であり、好ましくは60モル%以上であり、より好ましくは70モル%以上である。水素添加率が50モル%以上であれば、熱劣化(酸化劣化)による機械物性の低下をより効果的に抑制できる傾向にある。また、水素添加率が70モル%以上であれば、より優れた耐候性が得られる傾向にある。水素添加率の上限値は特に限定されないが、100%以下であることが好ましく、99%以下であることがより好ましい。
 前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体の共役ジエン単量体単位の二重結合の水素添加率は、水添触媒の種類、使用量、水添条件を調整することにより、上記数値範囲に制御することが可能であり、後述する実施例に記載する方法により測定することができる。
 本実施形態の複層成形体は、前記熱可塑性エラストマー組成物層と極性基含有熱可塑性樹脂組成物層とが熱融着している構成を有することが好ましい。
 すなわち、本実施形態の熱可塑性エラストマー組成物は、前記複層成形体を構成する前記極性基含有熱可塑性樹脂組成物層と熱融着している熱可塑性エラストマー組成物層を構成する。
 上述した本実施形態の複層成形体は、以下の構成が好適な形態である。
 すなわち、本実施形態の複層成形体は、前記水添ブロック共重合体(a)が、水添ブロック共重合体(a-1)及び水添ブロック共重合体(a-2)からなり、
 前記(a-1)が、下記(1-1)~(1-4)の要件を満たし、
 前記(a-2)が、下記(2-1)~(2-6)の要件を満たし、
 前記熱可塑性エラストマー組成物層が、前記(a-1)100質量部と、前記(b)10~100質量部と、前記(c)50~300質量部とを含有し、前記熱可塑性エラストマー組成物層中の前記(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し、5~70質量%である、複層成形体であることが好ましい。
 (1-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含有する。
 (1-2):全ビニル芳香族単量体単位の含有量が15質量%以上35質量%未満である。
 (1-3):重量平均分子量が150,000~550,000である。
 (1-4):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
 (2-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB2と、を含有する。
 (2-2):重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上である。
 (2-3):全ビニル芳香族単量体単位の含有量が35質量%~70質量%である。
 (2-4):重量平均分子量が30,000以上150,000未満である。
 (2-5):重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である。
 (2-6):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
 上記構成を有することにより、臭気、色味が実用上良好であり、成形性、熱接着強度、回復性、機械強度に優れる複層成形体が得られる。
 なお、本実施形態の複層積層体において、前記水添ブロック共重合体(a-1)、(a-2)の好適な形態は、本実施形態の熱可塑性エラストマー組成物と共通する。
(極性基含有熱可塑性樹脂)
 本実際形態の複層積層体は、上述したように、極性基含有熱可塑性樹脂層を有する。
 極性基含有熱可塑性樹脂層を構成する極性基含有熱可塑性樹脂は、分子内に極性基を1つ以上含有する。
 極性基含有熱可塑性樹脂としては、以下に限定されないが、例えば、ポリアミド樹脂、ポリフェニレンスルフィド樹脂、ポリエステル系樹脂、ポリカーボネート樹脂、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂(以下、単に「ABS」ともいう。)、アクリル系樹脂、ポリアセタール樹脂等が挙げられる。
 これらは1種単独で用いてもよく、2種以上の混合物であってもよい。
 ポリアミド樹脂は主鎖にアミノ基、カルボキシル基、及びアミド基を有する。
 ポリフェニレンスルフィド樹脂はポリマー鎖末端にカルボン酸を有する。
 ポリエステル系樹脂は、主鎖にエステル構造を有し末端に水酸基又はカルボキシル基を有する。
 ポリカーボネート樹脂は、主鎖に炭酸エステルを有し、末端にヒドロキシル基を有する。
 ABS樹脂はニトリル基を有する。
 アクリル系樹脂は、ポリアクリル酸、ポリアクリル酸エステル、ポリメタクリル酸、及びポリメタクリル酸エステルの総称であり、カルボキシル基及び/又はエステル基を有する。
 ポリアセタール樹脂はエーテル構造を有する。
(用途)
 本実施形態の複層成形体は、家電部品、工業用品、自動車部品・内装材、医療器具・用具、建材、工具類、玩具類、雑貨類等において柔軟性・回復性等を要求されるシール部材や、人が持った際にフィット感・触感を求められるグリップ類や、人体その他に接触・衝突した際、衝撃保護性を必要とする用途に好適に使用することができる。
(複層成形体の製造方法)
 本実施形態の複層成形体の製造方法は、前記極性基含有熱可塑性樹脂を成形し、成形体を得る工程と、前記得られた成形体が金型に入れられた状態で、前記金型と前記成形体の隙間部分に、本実施形態の熱可塑性エラストマー組成物を射出し、熱融着させる工程とを有する。
 一般的には、極性基含有熱可塑性樹脂の成形体を作製し、前記成形体を金型に挿入し、金型の隙間部分に熱可塑性エラストマー組成物のペレットを詰めて熱融着させる方法が好ましい。
 また、複層成形体の製造方法には、先に極性基含有熱可塑性樹脂の成形体を成形し、改めて別の金型にはめ込み、隙間に熱可塑性エラストマー組成物を射出し、熱融着させる工程を有するインサート成形法も好ましい方法として挙げられる。
 さらに、一つの射出成形機にシリンダーが2つ以上ある構成のものを用い、先に極性基含有熱可塑性樹脂を成形し、その後、金型の一部を変えて極性基含有熱可塑性樹脂と金型との隙間部分を生じさせ、この隙間部分に別のシリンダーから熱可塑性エラストマー組成物を射出する二色成形法も好ましい方法である。
 熱可塑性エラストマー組成物層と極性基含有熱可塑性樹脂層を有する本実施形態の複層成形体は、いずれの成形方法によっても、製造できる。
 成形温度は特に限定されないが、150℃~280℃が好ましい。
 以下、具体的な実施例と比較例を挙げて、本実施形態について具体的に説明するが、本発明は以下の実施例及び比較例により何ら限定されるものではない。
 先ず、実施例及び比較例に適用した、評価方法及び物性の測定方法について下記に示す。
〔水添ブロック共重合体(a-1)、(a-2)の評価方法〕
((1)重量平均分子量、数平均分子量、ピーク分子量、分子量分布)
 水添ブロック共重合体(a-1)、(a-2)の重量平均分子量(Mw)、数平均分子量(Mn)、ピーク分子量(ピーク位置の重量換算分子量;PMw)、分子量分布(Mw/Mn)は、市販の標準ポリスチレンの測定から求めた検量線(標準ポリスチレンのピーク分子量を使用して作成)を使用して、クロマトグラムのピークの分子量に基づいて求めた。
 測定ソフトとしては、HLC-8320ECOSEC収集を用い、解析ソフトとしてはHLC-8320ECOSEC解析を用いた。
(測定条件)
 GPC      ;HLC-8320GPC(東ソー株式会社製)
 検出器      ;RI
 検出感度     ;3MV/分
 サンプリングピッチ;600MSEC
 カラム      ;TSKGEL SUPERHZM-N(6MMI.D×15CM)4本(東ソー株式会社製)
 溶媒       ;THF
 流量       ;0.6ML/分
 濃度       ;0.5MG/ML
 カラム温度    ;40℃
 注入量      ;20ML
((2)全ビニル芳香族単量体単位の含有量(全スチレン含有量))
 一定量の水添ブロック共重合体をクロロホルムに溶解し、紫外分光光度計(島津製作所製、UV-2450)にて測定し、スチレンに起因する吸収波長(262nm)のピーク強度から検量線を用いてスチレンの含有量を算出した。
((3)水添ブロック共重合体(a-1)、(a-2)中のポリスチレンブロックA中のスチレン含有量)
 水添ブロック共重合体中のポリスチレンブロックA中のスチレン含有量は、後述する水添ブロック共重合体を、四酸化オスミウムを触媒として、t-ブチルハイドロパーオキサイドにより酸化分解し、その後メタノールで沈殿させ、固液分離して沈殿物を紫外分光光度計(島津製作所製、UV-2450)を用いて測定し、スチレンに起因する吸収波長(262nm)のピーク強度から検量線を用いて算出した値と、製造時の添加量との重量比率からポリスチレンブロックA中のスチレン含有量を算出することにより求めた。
((4)水添ブロック共重合体(a-2)中のポリスチレンブロックA’中のスチレン含有量)
 水添ブロック共重合体(a-2)中のポリスチレンブロックA’中のスチレン含有量は、下記計算式より算出した。
(計算式)
ポリスチレンブロックA’中のスチレン含有量=((全スチレン含有量-ポリスチレンブロックA中のスチレン含有量)/ブロックA’製造時のスチレンとブタジエンの添加量)×100
((5)ビニル結合量)
 ブロック共重合体中のポリブタジエンブロック中のビニル結合量は、核磁気共鳴装置(NMR)を用いて、下記の条件で測定した。
 下記表中、Bはポリブタジエンブロックを示す。
 重合反応終了後の反応液に、大量のメタノールを添加することで、ブロック共重合体を沈殿させて回収した。次いで、ブロック共重合体をアセトンで抽出し、抽出液を真空乾燥し、H-NMR測定のサンプルとして用いたH-NMR測定の条件を以下に記す。
(測定条件)
 測定機器   :JNM-LA400(JEOL製)
 溶媒     :重水素化クロロホルム
 サンプル濃度 :50MG/ML
 観測周波数  :400MHZ
 化学シフト基準:TMS(テトラメチルシラン)
 パルスディレイ:2.904秒
 スキャン回数 :64回
 パルス幅   :45°
 測定温度   :26℃ 
 ビニル結合量は、得られたピーク中の共役ジエン単量体単位に関わる全てのピーク(1,2-結合、3,4-結合、1,4-結合)合計面積に対する1,2-結合及び3,4-結合のピーク合計面積の比率により求めた。
((6)水素添加率(水添率))
 ブロック共重合体中の共役ジエン単量体単位の二重結合の水素添加率は、核磁気共鳴装置(NMR)を用いて、前記((5)ビニル結合量)と同様の条件で測定した。
 水素添加率は、得られたピーク中の共役ジエン単量体単位中の二重結合に関わる全てのピーク(1,2-結合、3,4-結合、1,4-結合)合計面積に対する、水添された1,2-結合、水添された3,4-結合、及び水添された1,4-結合のピーク合計面積の比率を算出することにより求めた。
((7)末端ポリブタジエンブロックの含有量)
 ブロック共重合体の末端ポリブタジエンブロックの含有量は製造時のモノマー添加量と、ガスクロマトグラフィー(以下GC)による各ブロックの重合反応率の確認によって求めた。
 <ブロック共重合体における各重合体ブロックの重合反応率の確認>
 水素化前のブロック共重合体の重合過程のステップ毎にサンプリングしたポリマー溶液を、内部標準としてn-プロビルベンゼン0.50mLと、約20mLのトルエンとを密封した100mLのボトルに、約20mL注入して、サンプルを作製した。
 アピエゾングリースを担持させたバックドカラムを装着したガスクロマトグラフィー(島津製作所製:GC-14B)でこのサンプルを測定し、事前に得ていたブタジエンモノマーとスチレンモノマーの検量線からポリマー溶液中の残留モノマー量を求め、ブタジエンモノマー及びスチレンモノマーの重合率が100%であることを確認した。
 尚、ブタジエンの重合率は90℃一定で測定、スチレンの重合率は90℃(10分ホールド)~150℃昇温(10℃/分)の条件にて行った。
((8)酸無水物基付加量)
 酸無水物基付加量は、全水添ブロック共重合体中に付加反応している酸無水物基の付加量(質量%)とした。
 測定方法としては、まず、ブロック共重合体をアセトンにて60分間煮沸させた後、真空乾燥させたものを、トルエンに溶解させた。次いでフェノールフタレイン指示薬を入れ、ナトリウムメチラート(CHONa)のメタノール溶液で滴定を行い、ナトリウムメチラートの酸無水物基への付加量から酸無水物基の付加量を算出した。
〔熱可塑性エラストマー組成物の製造〕
(実施例1~25)、(比較例1~15)
 下記表に示す配合割合(質量部)に基づき、二軸押出機(日本製鋼所製「TEX-30αII」、シリンダー口径30mm)によって、設定温度230℃で溶融混練し、熱可塑性エラストマー組成物のペレットを得た。
〔熱可塑性エラストマー組成物の評価方法〕
((9)メルトフローレート(MFR))
 上述のようにして得られた熱可塑性エラストマー組成物のペレットのメルトフローレート(MFR)を、ASTM D1238に準拠し、温度230℃、荷重2.16kgの条件下で測定した。
((10)臭気官能試験)
 熱可塑性エラストマー組成物のペレット100gを、500mLの耐圧ガラス瓶に入れて密封し、70℃で1時間加熱した後、室温にて48時間放置した。
 その後、10名の被験者がガラス瓶の口部から臭気を確認した。
 判定は下記の臭気強度指数の平均値で行った。
 ○:臭気強度指数3未満、×:臭気強度指数3以上とし、○が実用上良好であると評価した。
<臭気強度指数>
 0;無臭、1;やっと感知できる臭い、2;何の臭いかわかる弱い臭い、2.5;2と3の中間、3;楽に感知できる臭い、3.5;3と4の中間、4;強い臭い、5強烈な臭い
〔プレスシートの作製〕
 上述のようにして得られた熱可塑性エラストマー組成物のペレットを用いて、東邦プレス製作所製50t電熱プレスにて、金型(サイズ:110mm×220mm×2mm厚)を使用し、200℃、0.5kgf/cm2の加圧条件で予熱5分間、200℃、100kgf/cm2の加圧条件で2分間プレスし、2mm厚のプレスシートを作製した。
 得られたプレスシートを用いて、下記の測定方法に従い物性を測定した。
〔プレスシートの評価方法〕
((11)硬度)
 JIS K6253に準拠し、タイプAデュロメーターを用いて測定した。
 ショアーA硬度は90以下であれば、使用上問題ない柔軟性を有しており、80以下であれば、十分な柔軟性を有しているものと判断した。
((12)引張応力、引張応力、引張破断伸び、引張破断伸び)
 JIS K6251に準拠し、3号ダンベルを用い、クロスヘッドスピード500mm/分で、下記のように引張試験を実施した。
 引張応力(M300)・・・300%伸張時の応力を測定した。
 引張破断強度(Tb)・・・破断の際の応力を測定した。Tbが2MPa以上あれば、使用上問題ない機械強度を有しており、4MPa以上あれば十分な機械強度を有しているものと判断した。
 引張破断伸び(Eb)・・・破断の際の伸びを測定した。Ebが500%以上であれば十分な柔軟性を有しているものと判断した。
((13)ダンロップ反発弾性)
 BS903に準拠して、ダンロップ反発弾性試験機を用い、23℃でダンロップ反発弾性を測定した。
 30%以上であれば、実用上良好な触感であると判断した。
((14)40℃圧縮永久歪み)
 JIS K6301圧縮永久歪み試験に準拠して、2mm厚プレスシートを直径29mmの円形に打ち抜いたものを6枚重ね、重ねた初期の厚みを23℃で測定後、25%圧縮した状態で40℃のオーブン中に22hr放置、その後取り出し、圧縮を解放後、23℃で30分放置した後の歪残率を求めた。歪残率が70%以下であれば、実用上十分な変形回復力を有しているものと判断した。
((15)色差)
 JIS Z8781-4に準拠し、色差計〔日本電飾工業(株)製、color meter ZE6000(製品名)〕を用い、前記〔熱可塑性エラストマーの製造〕で得られた熱可塑性エラストマー組成物のプレスシートのb*値(黄味)を測定した。
 測定方法は反射法で、30mmΦの試料台にシートを載せ、その上に白色の試料抑えを載せて測定した。
 判定は下記の判定基準で行った。
 ○:b*値10未満、×:b*値10以上とし、○が実用上良好であると評価した。
((16)透明性)
 JIS K7136に準拠し、ヘーズメーター〔スガ試験機(株)製、HZ-V3(製品名)〕を用い、前記〔熱可塑性エラストマーの製造〕で得られた熱可塑性エラストマー組成物の2mm厚のプレスシートのヘーズ値を測定し、透明性の評価を行った。
 ヘーズ値85%を超すものを透明性なし、85%以下は透明性あり、と判定した。
〔複層成形体の製造〕
 前記〔熱可塑性エラストマーの製造〕で得られた熱可塑性エラストマー組成物のペレットを用い、射出成形機FNX110III-18A(日精樹脂工業株式会社製)で、95mm×145mm×厚み2mmの、あらかじめ成形した、極性基含有熱可塑性樹脂成形品を、金型キャビティー内にインサートし、その表層部に100mm×150mm×厚み2mmの熱可塑性エラストマー組成物を射出成形した。
 なお、射出成形の条件は、樹脂温度:240℃、射出速度:40mm/秒、射出時間:10秒、金型温度:40℃、冷却時間:30秒とした。
〔複層成形体の評価方法〕
((16)熱融着強度)
 熱可塑性エラストマー組成物と極性基含有熱可塑性樹脂との熱融着強度は、前述した複層成形体を用いて、90度剥離試験により測定した。複層成形体の熱可塑性エラストマー組成物側の面に10mm幅の切れ込みを入れ、その端をあらかじめ数cm剥離した。剥離部分において、熱可塑性エラストマー組成物からなる層、及び極性基含有熱可塑性樹脂からなる層を引張試験機〔ミネベアミツミ(株)製、TGE-500N(製品名)〕のチャックにそれぞれ別々に固定した。熱可塑性エラストマー組成物からなる層、及び極性基含有熱可塑性樹脂からなる層を、90℃方向に300mm/minで引っ張ることにより、2つの層を剥離した。剥離の際に印加した引張力を、熱可塑性エラストマー組成物と極性基含有熱可塑性樹脂との複層成形体の熱融着強度(N/cm)とし、下記評価基準により評価した。
 判定は、下記1~5とし、5が極めて優れるもの、4が実用上良好であると評価した。
<熱融着強度評価基準>
 5:20N/cm以上
 4:10N/cm以上20N/cm未満
 3:5N/cm以上10N/cm未満
 2:1N/cm以上5N/cm未満
 1:1N/cm未満
〔熱可塑性エラストマー組成物の製造に用いた各成分〕
 以下、熱可塑性エラストマー組成物の製造に使用した各成分を説明する。
(水添触媒の調製)
 後述する水添ブロック共重合体を作製する際に用いる水添触媒を、下記の方法により調製した。
 攪拌装置を具備する反応容器を窒素置換しておき、これに、乾燥及び精製したシクロヘキサンを1L仕込んだ。
 次に、ビス(η5-シクロペンタジエニル)チタニウムジクロリド100mmolを添加した。
 これを十分に攪拌しながら、トリメチルアルミニウム200mmolを含むn-ヘキサン溶液を添加して、室温にて約3日間反応させ、水添触媒を得た。
(水添ブロック共重合体(1))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.062質量部と、テトラメチルエチレンジアミン(以下、TMEDA)をn-ブチルリチウム1モルに対して0.34モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー68質量部を含むシクロヘキサン溶液を加えて70℃で40分間重合した。
 最後に、スチレンモノマー16質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。
 水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートをブロック共重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(1)を得た。
 得られた水添ブロック共重合体(1)は、全スチレン含有量31.8質量%、ポリスチレンブロックA中のスチレン含有量98.7質量%、ポリブタジエンブロック中の水素添加前のビニル結合量35.5モル%、ポリマー全体の重量平均分子量29.6万、分子量分布1.21であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.5%であった。
(水添ブロック共重合体(2))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.088質量部と、テトラメチルエチレンジアミン(以下、TMEDA)をn-ブチルリチウム1モルに対して0.34モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー68質量部を含むシクロヘキサン溶液を加えて70℃で40分間重合した。
 最後に、スチレンモノマー16質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。
 水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートをブロック共重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(2)を得た。
 得られた水添ブロック共重合体(2)は、全スチレン含有量32.3質量%、ポリスチレンブロックA中のスチレン含有量99.2質量%、ポリブタジエンブロック中の水素添加前のビニル結合量34.6モル%、ポリマー全体の重量平均分子量17.6万、分子量分布1.23であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.2%であった。
(水添ブロック共重合体(3))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.062質量部と、テトラメチルエチレンジアミン(以下、TMEDA)をn-ブチルリチウム1モルに対して0.34モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー68質量部を含むシクロヘキサン溶液を加えて70℃で40分間重合した。
 最後に、スチレンモノマー16質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして70ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。
 水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートをブロック共重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(3)を得た。
 得られた水添ブロック共重合体(3)は、全スチレン含有量32.1質量%、ポリスチレンブロックA中のスチレン含有量99.1質量%、ポリブタジエンブロック中の水素添加前のビニル結合量35.1モル%、ポリマー全体の重量平均分子量29.3万、分子量分布1.19であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は70.8%であった。
(水添ブロック共重合体(4))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.062質量部と、テトラメチルエチレンジアミン(以下、TMEDA)をn-ブチルリチウム1モルに対して0.25モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー68質量部を含むシクロヘキサン溶液を加えて70℃で40分間重合した。
 最後に、スチレンモノマー16質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。
 水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(4)を得た。
 得られた水添ブロック共重合体(4)は、全スチレン含有量31.9質量%、ポリスチレンブロックA中のスチレン含有量98.9質量%、ポリブタジエンブロック中の水素添加前のビニル結合量28.2モル%、ポリマー全体の重量平均分子量28.9万、分子量分布1.21であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.3%であった。
(水添ブロック共重合体(5))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.060質量部と、テトラメチルエチレンジアミン(以下、TMEDA)をn-ブチルリチウム1モルに対して0.55モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー68質量部を含むシクロヘキサン溶液を加えて70℃で40分間重合した。
 最後に、スチレンモノマー16質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。
 水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(5)を得た。
 得られた水添ブロック共重合体(5)は、全スチレン含有量32.2質量%、ポリスチレンブロックA中のスチレン含有量98.8質量%、ポリブタジエンブロック中の水素添加前のビニル結合量48.7モル%、ポリマー全体の重量平均分子量30.2万、分子量分布1.24であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.4%であった。
(水添ブロック共重合体(6))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー20質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.080質量部とTMEDAをn-ブチルリチウム1モルに対して1.2モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー80質量部を含むシクロヘキサン溶液を加えて70℃で40分間重合した。
 重合反応終了後にテトラメトキシシラン(以下「TMS」ともいう。)をSi対Liのモル比(Si/Li)が0.24モルになるよう添加し、20分攪拌した後、メタノールを、n-ブチルリチウム1モルに対して0.1モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(6)を得た。
 得られた水添ブロック共重合体(6)は、全スチレン含有量20.3質量%、ポリスチレンブロックA中のスチレン含有量98.5質量%、ポリブタジエンブロック中の水素添加前のビニル結合量58.6モル%、ポリマー全体の重量平均分子量45.3万、分子量分布1.28であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.3%であった。
(水添ブロック共重合体(7))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.109質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー18質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー59質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー18質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(7)を得た。
 得られた水添ブロック共重合体(7)は、全スチレン含有量36.2質量%、ポリスチレンブロックA中のスチレン含有量99.1質量%、ポリブタジエンブロック中の水素添加前のビニル結合量76.2モル%、ポリマー全体の重量平均分子量13.7万、分子量分布1.18であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.4%であった。
(水添ブロック共重合体(8))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー52質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(8)を得た。
 得られた水添ブロック共重合体(8)は、全スチレン含有量43.2質量%、ポリスチレンブロックA中のスチレン含有量99.2質量%、ポリブタジエンブロック中の水素添加前のビニル結合量77.8モル%、ポリマー全体の重量平均分子量10.8万、分子量分布1.19であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.5%であった。
(水添ブロック共重合体(9))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.4モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー52質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたポリマーに、前記水添触媒をポリマー100質量部当たりチタンとして70ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(9)を得た。
 得られた水添ブロック共重合体(9)は、全スチレン含有量42.6質量%、ポリスチレンブロックA中のスチレン含有量98.9質量%、ポリブタジエンブロック中の水素添加前のビニル結合量73.2モル%、ポリマー全体の重量平均分子量11.3万、分子量分布1.20であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は75.7%であった。
(水添ブロック共重合体(10))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.25質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー28質量部を含むシクロヘキサン溶液を加えて70℃で30分間重合し、さらに、1,3-ブタジエンモノマー40質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー27質量部を含むシクロヘキサン溶液を加えて70℃で30分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(10)を得た。
 得られた水添ブロック共重合体(10)は、全スチレン含有量54.7質量%、ポリスチレンブロックA中のスチレン含有量99.4質量%、ポリブタジエンブロック中の水素添加前のビニル結合量77.3モル%、ポリマー全体の重量平均分子量4.1万、分子量分布1.15であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.3%であった。
(水添ブロック共重合体(11))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー22質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー57質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(11)を得た。
 得られた水添ブロック共重合体(11)は、全スチレン含有量43.1質量%、ポリスチレンブロックA中のスチレン含有量99.1質量%、ポリブタジエンブロック中の水素添加前のビニル結合量76.8モル%、ポリマー全体の重量平均分子量10.3万、分子量分布1.14であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.6%であった。
(水添ブロック共重合体(12))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して0.8モル添加し、70℃で20分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー52質量部を含むシクロヘキサン溶液を加えて70℃で40分重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(12)を得た。
 得られた水添ブロック共重合体(12)は、全スチレン含有量43.1質量%、ポリスチレンブロックA中のスチレン含有量99.0質量%、ポリブタジエンブロック中の水素添加前のビニル結合量62.5モル%、ポリマー全体の重量平均分子量10.2万、分子量分布1.13であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.4%であった。
(水添ブロック共重合体(13))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー0.5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で10分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー56.5質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(13)を得た。
 得られた水添ブロック共重合体(13)は、全スチレン含有量43.1質量%、ポリスチレンブロックA中のスチレン含有量99.5質量%、ポリブタジエンブロック中の水素添加前のビニル結合量76.8モル%、ポリマー全体の重量平均分子量10.3万、分子量分布1.13であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.1%であった。
(水添ブロック共重合体(14))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー13質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で30分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー44質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(14)を得た。
 得られた水添ブロック共重合体(14)は、全スチレン含有量43.4質量%、ポリスチレンブロックA中のスチレン含有量99.3質量%、ポリブタジエンブロック中の水素添加前のビニル結合量78.1モル%、ポリマー全体の重量平均分子量10.4万、分子量分布1.15であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.4%であった。
(水添ブロック共重合体(15))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.9モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー52質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー21質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(15)を得た。
 得られた水添ブロック共重合体(15)は、全スチレン含有量43.2質量%、ポリスチレンブロックA中のスチレン含有量98.9質量%、ポリブタジエンブロック中の水素添加前のビニル結合量83.6モル%、ポリマー全体の重量平均分子量10.7万、分子量分布1.18であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.2%であった。
(水添ブロック共重合体(16))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.140質量部とTMEDAをn-ブチルリチウム1モルに対して0.7モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー7質量部を含むシクロヘキサン溶液を加えて70℃で15分間重合し、さらに、スチレンモノマー33質量部と1,3-ブタジエンモノマー20質量部を含むシクロヘキサン溶液を加えて70℃で1時間重合した。
 次いで、スチレンモノマー15質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 最後に、1,3-ブタジエンモノマー9質量部を含むシクロヘキサン溶液を加えて70℃で15分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(16)を得た。
 得られた水添ブロック共重合体(16)は、全スチレン含有量64.1質量%、ポリスチレンブロックA中のスチレン含有量98.8質量%、ポリスチレンブロックA’中のスチレン含有量60.6質量%、ポリブタジエンブロック中の水素添加前のビニル結合量65.3モル%、ポリマー全体の重量平均分子量9.4万、分子量分布1.21であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.4%であった。
(水添ブロック共重合体(17))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー16質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.130質量部とTMEDAをn-ブチルリチウム1モルに対して0.7モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー7質量部を含むシクロヘキサン溶液を加えて70℃で15分間重合し、さらに、スチレンモノマー29質量部と1,3-ブタジエンモノマー24質量部を含むシクロヘキサン溶液を加えて70℃で1時間重合した。
 次いで、スチレンモノマー15質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 最後に、1,3-ブタジエンモノマー9質量部を含むシクロヘキサン溶液を加えて70℃で15分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(17)を得た。
 得られた水添ブロック共重合体(17)は、全スチレン含有量60.2質量%、ポリスチレンブロックA中のスチレン含有量98.6質量%、ポリスチレンブロックA’中のスチレン含有量52.1質量%、ポリブタジエンブロック中の水素添加前のビニル結合量64.8モル%、ポリマー全体の重量平均分子量10.6万、分子量分布1.25であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は98.6%であった。
(水添ブロック共重合体(18))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.086質量部とTMEDAをn-ブチルリチウム1モルに対して1.5モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー7質量部を含むシクロヘキサン溶液を加えて70℃で20分間重合し、さらに、1,3-ブタジエンモノマー82質量部を含むシクロヘキサン溶液を加えて60℃で1.5時間重合した。
 最後に、スチレンモノマー6質量部を含むシクロヘキサン溶液を加えて70℃で20分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、上記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(18)を得た。
 得られた水添ブロック共重合体(18)は、全スチレン含有量13.4質量%、ポリスチレンブロックA中のスチレン含有量99.3質量%、ポリブタジエンブロック中の水素添加前のビニル結合量76.3モル%、ポリマー全体の重量平均分子量18.3万、分子量分布1.22であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.6%であった。
(水添ブロック共重合体(19))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して0.4モル添加し、70℃で15分間重合した。
 次いで、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー51質量部を含むシクロヘキサン溶液を加えて70℃で40分重合した。
 最後に、スチレンモノマー22質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(19)を得た。
 得られた水添ブロック共重合体(19)は、全スチレン含有量44.1質量%、ポリスチレンブロックA中のスチレン含有量99.5質量%、ポリブタジエンブロック中の水素添加前のビニル結合量39.6モル%、ポリマー全体の重量平均分子量10.2万、分子量分布1.13であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.2%であった。
(水添ブロック共重合体(20))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して1.4モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー38質量部を含むシクロヘキサン溶液を加えて70℃で35分間重合し、さらに、1,3-ブタジエンモノマー19質量部を含むシクロヘキサン溶液を加えて60℃で40分重合した。
 最後に、スチレンモノマー38質量部を含むシクロヘキサン溶液を加えて70℃で35分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(20)を得た。
 得られた水添ブロック共重合体(20)は、全スチレン含有量75.6質量%、ポリスチレンブロックA中のスチレン含有量99.3質量%、ポリブタジエンブロック中の水素添加前のビニル結合量75.1モル%、ポリマー全体の重量平均分子量10.4万、分子量分布1.19であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.5%であった。
(水添ブロック共重合体(21))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー33質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.198質量部とTMEDAをn-ブチルリチウム1モルに対して0.4モル添加し、70℃で30分間重合した。
 次いで、1,3-ブタジエンモノマー34質量部を含むシクロヘキサン溶液を加えて70℃で30分間重合し、最後に、スチレンモノマー33質量部を含むシクロヘキサン溶液を加えて70℃で30分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、上記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(21)を得た。
 得られた水添ブロック共重合体(21)は、全スチレン含有量65.7質量%、ポリスチレンブロック含有量98.9質量%、ポリブタジエンブロック中の水素添加前のビニル結合量40.6モル%、ポリマー全体の重量平均分子量5.7万、分子量分布1.16であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.5%であった。
(水添ブロック共重合体(22))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー10質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.138質量部とTMEDAをn-ブチルリチウム1モルに対して0.8モル添加し、70℃で20分間重合した。
 次いで、スチレンモノマー47質量部と1,3-ブタジエンモノマー34質量部を含むシクロヘキサン溶液を加えて70℃で50分間重合した。
 最後に、スチレンモノマー9質量部を含むシクロヘキサン溶液を加えて70℃で20分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、上記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(22)を得た。
 得られた水添ブロック共重合体(22)は、全スチレン含有量66.2質量%、ポリスチレンブロックA中のスチレン含有量99.1質量%、ポリスチレンブロックA’中のスチレン含有量58.2質量%、ポリマー全体の重量平均分子量9.5万、分子量分布1.22であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.0%であった。
(水添ブロック共重合体(23))
 前記水添ブロック共重合体(8)を、脱溶剤、乾燥し、単軸押出機にてペレタイズ後、水添ブロック共重合体(8)100質量部に対し、無水マレイン酸を2.1質量部、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを0.12質量部添加し、二軸押出機にて設定温度200℃で付加反応を行い、水添ブロック共重合体(23)を得た。
 得られた水添ブロック共重合体(23)は、無水マレイン酸による酸無水物基の付加量は1.8質量%であった。
(水添ブロック共重合体(24))
 前記水添ブロック共重合体(18)を、脱溶剤、乾燥し、単軸押出機にてペレタイズ後、水添ブロック共重合体(18)100質量部に対し、無水マレイン酸を2.1質量部、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを0.12質量部添加し、二軸押出機にて設定温度200℃で付加反応を行い、水添ブロック共重合体(24)を得た。
 得られた水添ブロック共重合体(24)は、無水マレイン酸による酸無水物基の付加量は1.5質量%であった。
(水添ブロック共重合体(25))
 前記水添ブロック共重合体(22)を、脱溶剤、乾燥し、単軸押出機にてペレタイズ後、水添ブロック共重合体(22)100質量部に対し、無水マレイン酸を2.1質量部、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサンを0.12質量部添加し、二軸押出機にて設定温度200℃で付加反応を行い、水添ブロック共重合体(25)を得た。
 得られた水添ブロック共重合体(25)は、無水マレイン酸による酸無水物基の付加量は1.1質量%であった。
(水添ブロック共重合体(26))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、スチレンモノマー11質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.10質量部とTMEDAをn-ブチルリチウム1モルに対して0.8モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、70℃で25分間重合した。
 次いで、1,3-ブタジエンモノマー10質量部を含むシクロヘキサン溶液を加えて70℃で15分間重合し、さらに、スチレンモノマー46質量部と1,3-ブタジエンモノマー19質量部を含むシクロヘキサン溶液を加えて70℃で1時間重合した。
 次いで、スチレンモノマー9質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。
 最後に、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を加えて70℃で15分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(26)を得た。
 得られた水添ブロック共重合体(26)は、全スチレン含有量66.4質量%、ポリスチレンブロックA中のスチレン含有量99.4質量%、ポリスチレンブロックA’中のスチレン含有量69.2質量%、ポリブタジエンブロック中の水素添加前のビニル結合量65.8モル%、ポリマー全体の重量平均分子量13.6万、分子量分布1.19であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.3%であった。
(水添ブロック共重合体(27))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.215質量部とTMEDAをn-ブチルリチウム1モルに対して1.6モル、更にナトリウム-t-ペントキシドをn-ブチルリチウム1モルに対して0.04モル添加し、60℃で20分間重合した。
 次いで、スチレンモノマー19質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー57質量部を含むシクロヘキサン溶液を加えて60℃で1時間重合した。
 最後に、スチレンモノマー19質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(27)を得た。
 得られた水添ブロック共重合体(27)は、全スチレン含有量37.6質量%、ポリスチレンブロックA中のスチレン含有量99.1質量%、ポリブタジエンブロック中の水素添加前のビニル結合量77.5モル%、ポリマー全体の重量平均分子量5.4万、分子量分布1.16であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.5%であった。
(水添ブロック共重合体(28))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.078質量部とTMEDAをn-ブチルリチウム1モルに対して0.4モル添加し、70℃で15分間重合した。
次いで、スチレンモノマー34質量部を含むシクロヘキサン溶液を加えて、70℃で30分間重合した。
 次いで、1,3-ブタジエンモノマー28質量部を含むシクロヘキサン溶液を加えて70℃で30分間重合し、最後に、スチレンモノマー33質量部を含むシクロヘキサン溶液を加えて70℃で30分間重合した。
 重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、上記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(28)を得た。
 得られた水添ブロック共重合体(28)は、全スチレン含有量66.7質量%、ポリスチレンブロック含有量99.3質量%、ポリブタジエンブロック中の水素添加前のビニル結合量40.3モル%、ポリマー全体の重量平均分子量19.5万、分子量分布1.14であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.2%であった。
(水添ブロック共重合体(29))
 内容積が100Lの攪拌装置及びジャケット付き槽型反応器を洗浄、乾燥、窒素置換してバッチ重合を行った。
 先ず、1,3-ブタジエンモノマー5質量部を含むシクロヘキサン溶液を投入後、n-ブチルリチウムを全モノマー100質量部に対して0.125質量部とTMEDAをn-ブチルリチウム1モルに対して0.4モル添加し、70℃で15分間重合した。
 次いで、スチレンモノマー15質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合し、さらに、1,3-ブタジエンモノマー65質量部を含むシクロヘキサン溶液を加えて70℃で40分重合した。
 最後に、スチレンモノマー15質量部を含むシクロヘキサン溶液を加えて70℃で25分間重合した。重合反応終了後にメタノールを、n-ブチルリチウム1モルに対して0.95モル添加し、反応触媒を失活させ、ブロック共重合体を得た。
 次に、得られたブロック共重合体に、前記水添触媒をブロック共重合体100質量部当たりチタンとして100ppm添加し、水素圧0.8MPa、温度85℃で水添反応を行った。水添反応終了後、安定剤としてオクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートを重合体100質量部に対して0.3質量部添加し、水添ブロック共重合体(29)を得た。
 得られた水添ブロック共重合体(29)は、全スチレン含有量30.3質量%、ポリスチレンブロックA中のスチレン含有量99.5質量%、ポリブタジエンブロック中の水素添加前のビニル結合量41.2モル%、ポリマー全体の重量平均分子量10.3万、分子量分布1.16であった。また、1,3-ブタジエンに由来する脂肪族二重結合の水素添加率は99.5%であった。
(ポリプロピレン系樹脂(b))
 ポリプロピレン系樹脂(b)は下記の市販品を使用した。
 ポリプロピレン系樹脂(b):サンアロマー株式会社PM801A、プロピレン単独9重合体、MFR(230℃、2.16kg)13g/10分
(非芳香族系軟化剤(c))
 非芳香族系軟化剤(c)は下記の市販品を使用した。
 非芳香族系軟化剤(c):出光興産社製ダイアナプロセスオイルPW90、パラフィン系オイル、重量平均分子量530、動粘度(40℃)=90.5mm/秒
〔複層成形体に用いた成分〕
(極性基含有熱可塑性樹脂)
 PC成形プレート:タキロンシーアイ株式会社PC1600、95mm×145mm×厚み2mm平板
 ABS成形プレート:住友ベークライト株式会社EAR003、95mm×145mm×厚み2mm平板
 PC/ABS成形プレート:住友ベークライト株式会社ロアEFN800-04、95mm×145mm×厚み2mm平板
 PMMA成形プレート:三菱ケミカル株式会社アクリライトL-100、95mm×145mm×厚み2mm平板
 PET成形プレート:タキロンシーアイ株式会社PET-6010、95mm×145mm×厚み2mm平板
 下記表1~表3に、水添ブロック共重合体(1)~(29)の種、型、及び物性を示す。
 表中、A、A’はビニル芳香族単量体単位を主体とする重合体ブロックであり、Bは共役ジエン単量体単位を主体とする重合体ブロックであり、Xはカップリング剤の残基である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 下記表4~表7に、実施例1~25、比較例1~15の熱可塑性エラストマー組成物の配合比、特性を示す。
 なお、下記表においては、実施例及び比較例の番号と、記載順序とが必ずしも一致していない箇所がある。
Figure JPOXMLDOC01-appb-T000004
 
Figure JPOXMLDOC01-appb-T000005
 
Figure JPOXMLDOC01-appb-T000006
 
Figure JPOXMLDOC01-appb-T000007
 
 本出願は、2022年5月18日に日本国特許庁へ出願された日本特許出願(特願2022-081255)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明の熱可塑性エラストマー組成物、及び複層成形体は、臭気や色味等の問題がなく、成形性、熱接着強度に優れていることから、極性樹脂の表皮材や各種シール材として、産業上の利用可能性がある。
 
 
 
 
 
 
 
 
 
 
 

Claims (14)

  1.  水添ブロック共重合体(a-1)100質量部と、
     ポリプロピレン系樹脂(b)10~100質量部と、
     非芳香族系軟化剤(c)50~300質量部と、
    を、含有し、
     さらに、水添ブロック共重合体(a-2)を含有し、前記水添ブロック共重合体(a-1)、及び水添ブロック共重合体(a-2)が、いずれも、非変性の水添ブロック共重合体である、射出成形で熱融着させる複層成形用の熱可塑性エラストマー組成物であって、
     前記水添ブロック共重合体(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し5~70質量%であり、
     前記水添ブロック共重合体(a-1)が、下記(1-1)~(1-4)の要件を満たし、
     前記水添ブロック共重合体(a-2)が、下記(2-1)~(2-6)の要件を満たす、
    複層成形用の熱可塑性エラストマー組成物。
     (1-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含有する。
     (1-2):全ビニル芳香族単量体単位の含有量が15質量%以上35質量%未満である。
     (1-3):重量平均分子量が150,000~550,000である。
     (1-4):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
     (2-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB2と、を含有する。
     (2-2):重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上である。
     (2-3):全ビニル芳香族単量体単位の含有量が35質量%~70質量%である。
     (2-4):重量平均分子量が30,000以上150,000未満である。
     (2-5):重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である。
     (2-6):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
  2.  前記水添ブロック共重合体(a-2)が、
     少なくとも2個のビニル芳香族単量体単位を主体とする重合体ブロックA2と、少なくとも2個の共役ジエン単量体単位を主体とする重合体ブロックB2と、を有し、
     少なくとも1個の前記重合体ブロックB2は、前記水添ブロック共重合体(a-2)の末端にあり、当該末端にある重合体ブロックB2の含有量が、前記水添ブロック共重合体(a-2)中1~10質量%であり、
     25万以上の重量平均分子量のピークを有しない、
     請求項1に記載の複層成形用の熱可塑性エラストマー組成物。
  3.  前記水添ブロック共重合体(a-2)の重合体ブロックA2中のビニル芳香族単量体単位の含有量が90質量%以上である、
     請求項2に記載の複層成形用の熱可塑性エラストマー組成物。
  4.  前記水添ブロック共重合体(a-2)の全ビニル芳香族単量体単位の含有量が、40質量%を超え70質量%以下である、
     請求項2又は3に記載の複層成形用の熱可塑性エラストマー組成物。
  5.  前記水添ブロック共重合体(a-1)において、
     前記共役ジエン単量体単位中の水素添加前のビニル結合量が30モル%~50モル%である、
     請求項2又は3に記載の複層成形用の熱可塑性エラストマー組成物。
  6.  請求項1又は2に記載の複層成形用の熱可塑性エラストマー組成物層と、
     極性基含有熱可塑性樹脂層と、
    を有する複層成形体。
  7.  極性基含有熱可塑性樹脂層と、
     水添ブロック共重合体(a)、ポリプロピレン系樹脂(b)、及び非芳香族系軟化剤(c)を含む熱可塑性エラストマー組成物層と、
    を、有する複層成形体であって、
     前記熱可塑性エラストマー組成物層は、前記極性基含有熱可塑性樹脂層に接触して設けられており、
     前記水添ブロック共重合体(a)は、変性基を含有せず、
     前記水添ブロック共重合体(a)は、
     ビニル芳香族単量体単位と共役ジエン単量体単位とを有するブロック共重合体の水添物である水添ブロック共重合体であって、
     GPCによる分子量のピークが30,000~150,000未満と、150,000~550,000に、それぞれ1つ以上有し、
     前記GPCによる分子量のピークが30,000~150,000未満の水添ブロック共重合体の全ビニル芳香族単量体単位の含有量が35質量%~70質量%であり、かつ共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%であり、
     前記GPCによる分子量のピークが150,000~550,000の水添ブロック共重合体の全ビニル芳香族単量体単位の含有量が15質量%~35質量%未満であり、
     共役ジエン単量体単位の二重結合の水添率が50モル%以上である、
    複層成形体。
  8.  前記水添ブロック共重合体(a)が、水添ブロック共重合体(a-1)及び水添ブロック共重合体(a-2)からなり、
     前記(a-1)が、下記(1-1)~(1-4)の要件を満たし、
     前記(a-2)が、下記(2-1)~(2-6)の要件を満たし、
     前記熱可塑性エラストマー組成物層が、前記(a-1)100質量部と、前記(b)10~100質量部と、前記(c)50~300質量部とを含有し、
     前記熱可塑性エラストマー組成物層中の前記(a-2)の含有量が、前記成分(a-1)、(a-2)、(b)、(c)の合計量に対し、5~70質量%である、
     請求項7に記載の複層成形体。
     (1-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA1と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB1と、を含有する。
     (1-2):全ビニル芳香族単量体単位の含有量が15質量%以上35質量%未満である。
     (1-3):重量平均分子量が150,000~550,000である。
     (1-4):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
     (2-1):1個以上のビニル芳香族単量体単位を主体とする重合体ブロックA2と、1個以上の共役ジエン単量体単位を主体とする重合体ブロックB2と、を含有する。
     (2-2):重合体ブロックA2中のビニル芳香族単量体単位の含有量が50質量%以上である。
     (2-3):全ビニル芳香族単量体単位の含有量が35質量%~70質量%である。
     (2-4):重量平均分子量が30,000以上150,000未満である。
     (2-5):重合体ブロックB2中の共役ジエン単量体単位中の水素添加前のビニル結合量が60モル%~95モル%である。
     (2-6):共役ジエン単量体単位の二重結合の50モル%以上が水添されている。
  9.  前記水添ブロック共重合体(a-2)が、
    少なくとも2個のビニル芳香族単量体単位を主体とする重合体ブロックA2と、少なくとも2個の共役ジエン単量体単位を主体とする重合体ブロックB2と、を有し、少なくとも1個の前記重合体ブロックB2は、前記水添ブロック共重合体(a-2)の末端にあり、当該末端にある重合体ブロックB2の含有量が、前記水添ブロック共重合体(a-2)中1~10質量%であり、
     全ビニル芳香族単量体単位の含有量が、40質量%を超え70質量%以下であり、
     25万以上の重量平均分子量のピークを有しない、
     請求項8に記載の複層成形体。
  10.  前記水添ブロック共重合体(a-2)の重合体ブロックA2中のビニル芳香族単量体単位の含有量が90質量%以上である、
     請求項8又は9に記載の複層成形体。
  11.  前記極性基含有熱可塑性樹脂が、ポリカーボネート樹脂、ABS樹脂、ポリエステル系樹脂、アクリル系樹脂、及びこれらの混合物からなる群より選ばれる少なくとも1種である、
     請求項7に記載の複層成形体。
  12.  前記水添ブロック共重合体(a-1)は、
     前記共役ジエン単量体単位中の水素添加前のビニル結合量が30モル%~50モル%である、
     請求項8に記載の複層成形体。
  13.  請求項8又は9に記載の複層成形体に用いる熱可塑性エラストマー組成物であって、
     前記複層成形体は、前記極性基含有熱可塑性樹脂層と、前記熱可塑性エラストマー組成物層とが、射出成形により熱融着している、
     熱可塑性エラストマー組成物。
  14.  請求項8又は9に記載の複層成形体の製造方法であって、
     前記極性基含有熱可塑性樹脂を成形し、成形体を得る工程と、
     前記成形体が前記金型に入れられた状態で、前記金型と前記成形体の隙間部分に、請求項13に記載の熱可塑性エラストマー組成物を射出し、熱融着させる工程を有する、
     複層成形体の製造方法。
PCT/JP2023/015830 2022-05-18 2023-04-20 複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法 WO2023223766A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022081255 2022-05-18
JP2022-081255 2022-05-18

Publications (1)

Publication Number Publication Date
WO2023223766A1 true WO2023223766A1 (ja) 2023-11-23

Family

ID=88834982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/015830 WO2023223766A1 (ja) 2022-05-18 2023-04-20 複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法

Country Status (2)

Country Link
TW (1) TW202402930A (ja)
WO (1) WO2023223766A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272527A (ja) * 2004-03-23 2005-10-06 Kuraray Co Ltd 熱可塑性重合体組成物
JP2010126636A (ja) * 2008-11-27 2010-06-10 Kuraray Co Ltd 熱可塑性重合体組成物
WO2012014757A1 (ja) * 2010-07-29 2012-02-02 株式会社クラレ 熱可塑性重合体組成物および成形品
JP2012036299A (ja) * 2010-08-06 2012-02-23 Asahi Kasei Chemicals Corp 変性水添ブロック共重合体組成物及びこれを用いた成形体
JP2014168940A (ja) * 2013-03-05 2014-09-18 Kuraray Co Ltd 接着体の製造方法
WO2015137355A1 (ja) * 2014-03-12 2015-09-17 旭化成ケミカルズ株式会社 樹脂組成物及び、そのシート状成型体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005272527A (ja) * 2004-03-23 2005-10-06 Kuraray Co Ltd 熱可塑性重合体組成物
JP2010126636A (ja) * 2008-11-27 2010-06-10 Kuraray Co Ltd 熱可塑性重合体組成物
WO2012014757A1 (ja) * 2010-07-29 2012-02-02 株式会社クラレ 熱可塑性重合体組成物および成形品
JP2012036299A (ja) * 2010-08-06 2012-02-23 Asahi Kasei Chemicals Corp 変性水添ブロック共重合体組成物及びこれを用いた成形体
JP2014168940A (ja) * 2013-03-05 2014-09-18 Kuraray Co Ltd 接着体の製造方法
WO2015137355A1 (ja) * 2014-03-12 2015-09-17 旭化成ケミカルズ株式会社 樹脂組成物及び、そのシート状成型体

Also Published As

Publication number Publication date
TW202402930A (zh) 2024-01-16

Similar Documents

Publication Publication Date Title
JP6266762B2 (ja) 熱可塑性エラストマー組成物、医療容器用栓体及び医療容器
JP6899401B2 (ja) 熱可塑性エラストマー組成物、栓体及び容器
JP6375417B2 (ja) 熱可塑性エラストマー組成物
JP5815239B2 (ja) 水添ブロック共重合体およびそれを含む組成物
US9340667B2 (en) Hydrogenated block copolymer pellet, polyolefin resin composition, and molded product thereof
KR100501986B1 (ko) 블록 공중합체 및 이 공중합체를 함유하는 조성물
KR101730669B1 (ko) 수소 첨가 블록 공중합체의 제조 방법, 그 제조 방법에 의해 얻어진 수소 첨가 블록 공중합체 및 그 조성물
JP7267864B2 (ja) 熱可塑性エラストマー組成物、栓体及び容器
JP6423276B2 (ja) 熱可塑性重合体組成物、シューズおよびアウターソール
JP7064909B2 (ja) 熱可塑性樹脂組成物及び成形品
JP5116644B2 (ja) 熱可塑性重合体組成物
JPWO2007119390A1 (ja) 熱可塑性エラストマー組成物
KR101747449B1 (ko) 수소 첨가 블록 공중합체의 제조 방법, 그 제조 방법에 의해 얻어진 수소 첨가 블록 공중합체 및 그 조성물
WO2023223766A1 (ja) 複層成形用の熱可塑エラストマー組成物、複層成形体、及び複層成形体の製造方法
JP4566505B2 (ja) 熱可塑性重合体組成物
JP4248185B2 (ja) 動架橋水添共重合体
JP3057818B2 (ja) 熱可塑性エラストマー組成物
JP7166433B2 (ja) 水添ブロック共重合体
JP2022099664A (ja) 熱可塑性エラストマー組成物及び成形体
JPH10182925A (ja) (変性)水添ジエン系共重合体組成物
JP2022099453A (ja) 水添共重合体、熱可塑性エラストマー組成物、及び成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23807378

Country of ref document: EP

Kind code of ref document: A1