WO2023223572A1 - 通信装置、光給電システム及び光給電方法 - Google Patents

通信装置、光給電システム及び光給電方法 Download PDF

Info

Publication number
WO2023223572A1
WO2023223572A1 PCT/JP2022/035670 JP2022035670W WO2023223572A1 WO 2023223572 A1 WO2023223572 A1 WO 2023223572A1 JP 2022035670 W JP2022035670 W JP 2022035670W WO 2023223572 A1 WO2023223572 A1 WO 2023223572A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication device
power supply
light
power
optical
Prior art date
Application number
PCT/JP2022/035670
Other languages
English (en)
French (fr)
Inventor
亮太 喜多
陽一 深田
宏明 桂井
真良 関口
智暁 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Publication of WO2023223572A1 publication Critical patent/WO2023223572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • the present invention relates to a communication device, an optical power supply system, and an optical power supply method.
  • an optical communication system in which a communication device on the power supply side equipped with an optical power supply light source and a communication device on the power reception side equipped with a photoelectric converter are connected to each other by wire to perform optical power supply and communication (for example, (See Non-Patent Document 1).
  • power is supplied to the communication device on the power receiving side using power feeding light transmitted from the optical power feeding light source of the communication device on the power feeding side.
  • the communication device on the power receiving side stores the received power in a secondary power source and is driven by the stored power.
  • the communication device on the power feeding side supplies power at a constant output from the optical power supply light source, regardless of the installation location and the amount of accumulated power of the communication device on the power receiving side. Therefore, in conventional optical communication systems, there has been a problem in that excessive power may be supplied depending on the status of communication equipment.
  • the present invention aims to provide a technology that can reduce the power consumption of an optically-fed light source.
  • One aspect of the present invention includes: a power supply light transmitter that transmits power supply light to an opposing communication device; a measurement unit that measures an optical loss value in transmission of the power supply light from the own device to the opposing communication device;
  • the communication device includes a control unit that controls an output of the power supply light transmitted from the power supply light transmission unit according to the optical loss value measured by the measurement unit.
  • one aspect of the present invention is an optical power supply system including a first communication device and a second communication device, wherein the first communication device supplies power supply light to the second communication device.
  • a power feeding light transmitting section for transmitting
  • a measuring section for measuring an optical loss value during transmission of the power feeding light from the first communication device to the second communication device, and the optical loss value measured by the measuring section.
  • a control unit that controls an output of the power supply light transmitted from the power supply light transmission unit in accordance with the power supply light transmission unit, and the second communication device receives the power supply light transmitted from the first communication device.
  • an optical power supply system comprising: a power supply light receiving section that converts the power supply light received by the power supply light reception section into electric power; a photoelectric conversion section that converts the power supply light received by the power supply light reception section into electric power; and a power storage section that stores the power converted by the photoelectric conversion section.
  • one aspect of the present invention includes a power feeding light transmitting step of transmitting power feeding light to an opposing communication device, and a measuring step of measuring an optical loss value in transmission of the power feeding light from the own device to the opposing communication device. and a control step of controlling the output of the power supply light according to the optical loss value measured in the measurement step.
  • one aspect of the present invention is an optical power supply method in an optical power supply system having a first communication device and a second communication device, wherein the first communication device is connected to the second communication device. a power supply light transmitting step of transmitting power supply light to the second communication device; and a measurement step of the first communication device measuring an optical loss value in transmission of the power supply light from the first communication device to the second communication device.
  • the apparatus is an optical power feeding method including a power storage step of storing power converted by the photoelectric conversion step.
  • FIG. 1 is a block diagram showing the overall configuration of an optical communication system 8.
  • FIG. 1 is a block diagram showing the overall configuration of an optical communication system 1 according to a first embodiment of the present invention. It is a flowchart showing the operation of the optical communication system 1 in the first embodiment of the present invention.
  • FIG. 2 is a block diagram showing the overall configuration of an optical communication system 1a according to a second embodiment of the present invention. It is a flowchart showing the operation of the optical communication system 1a in the second embodiment of the present invention.
  • FIG. 2 is a block diagram showing the overall configuration of an optical communication system 1b according to a third embodiment of the present invention. It is a block diagram showing the whole structure of optical communication system 1c in the 4th embodiment of the present invention.
  • FIG. 1 is a block diagram showing the overall configuration of the optical communication system 8.
  • the optical communication system 8 is an example of an optical power feeding system as a comparative example.
  • the optical communication system 8 includes a communication device 81 and a communication device 82.
  • the communication device 81 and the communication device 82 are connected by wire, and can transmit and receive data by transmitting and receiving communication light to and from each other.
  • the communication device 81 and the communication device 82 are connected by wire, and the power supply light output from the communication device 81 is input to the communication device 82. That is, the communication device 81 is a communication device on the power supply side that is equipped with an optical power supply light source, and the communication device 82 is a communication device on the power reception side that is equipped with a photoelectric converter.
  • the communication device 81 includes a power supply section 811, a power supply optical transmission section 812, a transceiver 813, and a communication circuit 814.
  • the power supply section 811 is a power source for a light source for generating the power supply light sent out from the power supply light transmission section 812.
  • the power supply light transmitter 812 transmits power supply light toward the communication device 82 .
  • the transceiver 813 is a transceiver that transmits and receives communication light between the transceiver 813 and the communication device 82 .
  • the communication circuit 814 controls the transceiver 813 and transmits and receives data between the transceiver 813 and the communication device 82 using communication light.
  • the communication device 82 includes a photoelectric conversion section 821, a secondary power source 822, a transceiver 823, and a communication circuit 824.
  • the photoelectric conversion unit 821 receives power feeding light sent from the communication device 81.
  • the photoelectric conversion unit 821 converts the received power supply light into electric power.
  • the secondary power source 822 stores the power converted by the photoelectric conversion unit 821.
  • Each functional unit of the communication device 82 is driven by power stored in the secondary power source 822.
  • the transceiver 823 is a transceiver that transmits and receives communication light between the transceiver 823 and the communication device 81 .
  • the communication circuit 824 controls the transceiver 823 and transmits and receives data between the transceiver 823 and the communication device 81 using communication light.
  • the conventional optical communication system 8 can drive the communication device 82 by the power supply light transmitted from the communication device 81 to the communication device 82, and can also connect the communication device 81 and the communication device 82. It is possible to realize data communication between the two.
  • the communication device 81 supplies power to the communication device 82 by sending out power supply light at a constant output from the power supply light transmitter 812 . Therefore, depending on the installation location of the communication device 82 on the power receiving side and the amount of accumulated power, for example, excessive power may be supplied.
  • the optical communication system 1 according to the first embodiment of the present invention will be described below.
  • the optical communication system 1 is an example of the optical power supply system of the present invention.
  • the optical communication system 1 is a system in which a communication device on the power supply side equipped with an optical power supply light source and a communication device on the power reception side equipped with a photoelectric converter are connected to each other by wire, and can perform optical power supply and communication. It is.
  • the optical communication system 1 measures the optical loss value of power supply light transmitted from a communication device on the power supply side to a communication device on the power reception side.
  • the optical loss value takes a different value depending on the installation location of the communication device on the power reception side equipped with the photoelectric converter (for example, the distance from the communication device on the power supply side, etc.).
  • the optical communication system 1 is characterized in that it controls the power of the power supply light output from the optical power supply light source of the communication device on the power supply side, based on the measured optical loss value. At this time, the optical communication system 1 controls the strength of the power of the power supply light sent out from the optical power supply light source so that the power of the power supply light input to the photoelectric converter of the communication device on the power receiving side does not exceed a predetermined value. Control. The optical communication system 1 also performs control to turn on and off the output of the power feeding light transmitted from the optical power feeding light source, depending on the charging state of the secondary power source of the communication device on the power receiving side. By having such characteristics, the optical communication system 1 according to the first embodiment can reduce the power consumption of the optically-fed light source.
  • FIG. 2 is a block diagram showing the overall configuration of the optical communication system 1 according to the first embodiment of the present invention.
  • the optical communication system 1 includes a communication device 11 and a communication device 12.
  • the communication device 11 and the communication device 12 are connected by wire, and transmit and receive data by transmitting and receiving communication light to and from each other.
  • the communication device 11 and the communication device 12 are connected, for example, by an optical fiber cable for communication, and communication light is transmitted via the optical fiber cable for communication.
  • the communication cable may be a cable other than an optical fiber cable.
  • the communication device 11 and the communication device 12 may be configured to be wirelessly connected for communication.
  • the communication device 11 and the communication device 12 are connected by wire, and the power feeding light output from the communication device 11 is input to the communication device 12. That is, the communication device 11 is a communication device on the power supply side that is equipped with an optical power supply light source, and the communication device 12 is a communication device on the power reception side that is equipped with a photoelectric converter.
  • the communication device 11 and the communication device 12 are connected by an optical fiber cable for power feeding, which is different from the above optical fiber cable for communication, and power feeding light is transmitted via the optical fiber cable for power feeding.
  • the communication device 11 includes a power supply unit 111, a power supply optical transmitter 112, a transceiver 113, a communication circuit 114, a loss measurement unit 115, and a power supply control unit 116. configured.
  • the communication device 11 is, for example, an optical line termination device (OLT) installed at a central office of a communication company in a PON (Passive Optical Network) subscriber line network (public line network) using optical fibers. Terminal).
  • OLT optical line termination device
  • PON Passive Optical Network
  • subscriber line network public line network
  • the power supply section 111 is a power source for a light source for generating the power supply light sent out from the power supply light transmission section 112.
  • the power supply light transmitter 112 transmits power supply light toward the communication device 12 .
  • the power feeding light transmitter 112 is, for example, a laser diode.
  • the transceiver 113 is a transceiver that transmits and receives communication light between the transceiver 113 and the communication device 12 .
  • the communication circuit 114 controls the transceiver 113 and transmits and receives data between the transceiver 113 and the communication device 12 using communication light.
  • the loss measurement unit 115 measures the optical loss value of the power feeding light transmitted from the communication device 11 to the communication device 12.
  • the loss measurement unit 115 outputs information indicating the measured optical loss value to the feeding optical power control unit 116.
  • the loss measurement unit 115 measures the optical loss value of the power supply light when the communication device 11 and the communication device 12 are connected.
  • the loss measurement unit 115 measures the optical loss value of the power supply light at predetermined intervals (for example, every hour or every day).
  • the loss measurement unit 115 measures the optical loss value using an optical pulse tester (OTDR: Optical Time Domain Reflectometer).
  • OTDR Optical Time Domain Reflectometer
  • the technique described in Non-Patent Document 2 can be used.
  • the loss measurement unit 115 measures the distance from the communication device 11 on the power supply side to the communication device 12 on the power reception side using OTDR. Then, the loss measurement unit 115 calculates an optical loss value by multiplying the measured distance by the optical loss per unit. Alternatively, for example, the loss measuring unit 115 directly measures the optical loss value of the power feeding light between the communication device 11 and the communication device 12 using OTDR.
  • the feeding optical power control unit 116 acquires information indicating the optical loss value output from the loss measurement unit 115.
  • the feeding light power control unit 116 controls the power of the feeding light transmitted from the feeding light transmitting unit 112 by controlling the power supply unit 111 according to the acquired optical loss value.
  • the feeding light power control unit 116 suppresses the power of the feeding light transmitted from the feeding light transmitting unit 112 so that the power of the feeding light input to the communication device 12 on the power receiving side does not exceed a predetermined value.
  • the feeding light power control unit 116 controls the power supply unit 111 so that the larger the acquired optical loss value is, the larger the power of the feeding light transmitted from the feeding light transmitting unit 112 becomes.
  • the feeding light power control unit 116 controls the power supply unit 111 so that the smaller the obtained optical loss value is, the smaller the power of the feeding light transmitted from the feeding light transmitting unit 112 becomes.
  • the value of the power of the power supply light transmitted from the power supply light transmission unit 112 for each optical loss value is determined in advance.
  • a table in which optical loss values are associated with power values of feeding light is stored in advance in a storage medium (not shown) provided in the communication device 11.
  • the feeding light power control unit 116 refers to the table and acquires the value of the power of the feeding light corresponding to the obtained optical loss value. Then, the feeding light power control unit 116 controls the power supply unit 111 so that the power of the feeding light transmitted from the feeding light transmitting unit 112 becomes the above-mentioned acquired value.
  • the communication device 12 includes a photoelectric conversion section 121, a secondary power source 122, a transceiver 123, and a communication circuit 124.
  • the communication device 12 is, for example, an optical network unit (ONU) installed at a subscriber's home in a PON type subscriber network (public network) using optical fibers.
  • ONU optical network unit
  • the photoelectric conversion unit 121 receives power feeding light sent from the communication device 11.
  • the photoelectric conversion unit 121 converts the received power supply light into electric power.
  • the photoelectric conversion unit 121 is, for example, a photodiode.
  • the secondary power source 122 stores the power converted by the photoelectric conversion unit 121.
  • Each functional unit of the communication device 12 is driven by power stored in the secondary power source 122.
  • the secondary power source 122 includes, for example, a battery.
  • the transceiver 123 is a transceiver that transmits and receives communication light between the transceiver 123 and the communication device 11 .
  • the communication circuit 124 controls the transceiver 123 and transmits and receives data between the transceiver 123 and the communication device 11 using communication light.
  • the secondary power source 122 outputs information indicating its own charging state to the communication circuit 124 periodically (for example, every minute or every hour).
  • the communication circuit 124 may be configured to be able to periodically detect the charging state of the secondary power source 122.
  • the secondary power source 122 When the secondary power source 122 is in a fully charged state, it outputs information indicating that the secondary power source 122 is in a fully charged state to the communication circuit 124.
  • the communication circuit 124 then notifies the communication device 11 that the secondary power source 122 is fully charged. Specifically, the communication circuit 124 sends information indicating that the secondary power source 122 is fully charged (hereinafter referred to as "full charge notification") via the transceiver 123 to the communication device 11 using communication light. Send to.
  • the communication circuit 114 of the communication device 11 acquires the full charge notification transmitted from the communication device 12 on the power receiving side via the transceiver 113. Upon acquiring the full charge notification, the communication circuit 114 outputs the full charge notification to the power supply optical power control unit 116 .
  • the feeding optical power control unit 116 acquires the full charge notification output from the communication circuit 114.
  • the feeding light power control unit 116 controls the power supply unit 111 to stop the feeding light transmitting unit 112 from sending out the feeding light to the communication device 12 . As a result, power supply to the communication device 12 is stopped.
  • the secondary power supply 122 outputs information indicating that the remaining charge level is below a predetermined value to the communication circuit 124.
  • the communication circuit 124 notifies the communication device 11 that the remaining charge of the secondary power source 122 has become equal to or less than a predetermined value.
  • the communication circuit 124 sends information via the transceiver 123 indicating that the remaining charge level of the secondary power source 122 has fallen below a predetermined value (hereinafter referred to as "remaining charge level notification"). is transmitted to the communication device 11 using communication light.
  • the communication circuit 114 of the communication device 11 acquires the notification of low charge level transmitted from the communication device 12 on the power receiving side via the transceiver 113.
  • the communication circuit 114 obtains the notification of a decrease in the remaining charge amount
  • the communication circuit 114 outputs the notification of a decrease in the remaining charge amount to the power supply optical power control unit 116 .
  • the feeding optical power control unit 116 acquires the notification of a decrease in the remaining charge output from the communication circuit 114.
  • the feeding light power control unit 116 controls the power supply unit 111 to cause the feeding light transmitting unit 112 to restart sending out the feeding light to the communication device 12 . As a result, power supply to the communication device 12 is restarted.
  • FIG. 3 is a flowchart showing the operation of the optical communication system 1 in the first embodiment of the present invention.
  • the operation of the optical communication system 1 shown in the flowchart of FIG. 3 is started, for example, when the communication device 11 and the communication device 12 are connected.
  • the loss measuring unit 115 of the communication device 11 on the power feeding side measures the optical loss value of the power feeding light transmitted from the communication device 11 to the communication device 12 (step S001).
  • the loss measurement unit 115 outputs information indicating the measured optical loss value to the feeding optical power control unit 116.
  • the feeding light power control unit 116 controls the power supply unit 111 according to the acquired optical loss value so that the feeding light transmitting unit 112 transmits the feeding light with power corresponding to the optical loss value. (Step S002).
  • the photoelectric conversion unit 121 of the communication device 12 on the power receiving side receives the power feeding light sent out from the communication device 11.
  • the photoelectric conversion unit 121 converts the received power supply light into electric power.
  • the secondary power source 122 stores the power converted by the photoelectric conversion unit 121 (step S003).
  • the secondary power source 122 When the secondary power source 122 is in a fully charged state (step S004), it outputs information indicating that the secondary power source 122 is in a fully charged state to the communication circuit 124.
  • the communication circuit 124 transmits a full charge notification to the communication device 11 via the transceiver 123 using communication light (step S005).
  • the communication circuit 114 of the communication device 11 on the power supply side receives the full charge notification transmitted from the communication device 12 on the power reception side via the transceiver 113 (step S006).
  • the communication circuit 114 outputs a full charge notification to the power supply optical power control unit 116.
  • the power supply light power control unit 116 controls the power supply unit 111 to stop the power supply light transmission unit 112 from transmitting the power supply light to the communication device 12 (step S007).
  • the secondary power supply 122 of the communication device 12 on the power receiving side indicates that the remaining charge level has become below a predetermined value.
  • the information is output to the communication circuit 124.
  • the communication circuit 124 transmits a notification of low charge level to the communication device 11 via the transceiver 123 using communication light (step S009).
  • the communication circuit 114 of the communication device 11 on the power supply side receives the notification of low charge level transmitted from the communication device 12 on the power reception side via the transceiver 113 (step S010).
  • the communication circuit 114 outputs a notification of a decrease in the remaining charge to the power supply optical power control unit 116 .
  • the feeding light power control unit 116 acquires the notification of a decrease in the remaining charge level, the feeding light power control unit 116 controls the power supply unit 111 to cause the feeding light transmitting unit 112 to restart sending out the feeding light (step S011).
  • optical communication system 1 ends, for example, when communication between the communication device 11 and the communication device 12 ends.
  • the communication device 11 on the power feeding side equipped with an optically powered light source and the communication device 12 on the power receiving side equipped with a photoelectric converter are wired to each other. connected to perform optical power supply and communication.
  • the optical communication system 1 measures the optical loss value of power feeding light transmitted from the communication device 11 to the communication device 12.
  • the optical communication system 1 controls the power of the power supply light output from the optical power supply light source of the communication device 11 based on the measured optical loss value.
  • the optical communication system 1 controls the strength of the power of the power supply light sent out from the optical power supply light source so that the power of the power supply light input to the photoelectric converter of the communication device on the power receiving side does not exceed a predetermined value. Control.
  • the optical communication system 1 in the first embodiment notifies the communication device 11 from the communication device 12 of the charging state of the secondary power source 122 of the communication device 12 using communication light. Then, the optical communication system 1 performs control to turn on and off the output of the power feeding light transmitted from the optical power feeding light source, depending on the charging state of the secondary power source 122 of the communication device 12.
  • the optical communication system 1 in the first embodiment can reduce the power consumption of the optically powered light source.
  • optical communication system 1a is an example of the optical power supply system of the present invention. Unlike the optical communication system 1 in the first embodiment described above, the optical communication system 1a uses communication light to send notifications regarding the charging state of the secondary power source from the communication device on the power receiving side to the communication device on the power supply side. Instead, it uses reflected light from the power supply light.
  • the optical communication system 1a in the second embodiment uses communication light to send notifications regarding the charging state of the secondary power source, similarly to the optical communication system 1 in the first embodiment described above. conduct. By having such characteristics, the optical communication system 1a in the second embodiment can reduce the power consumption of the optically fed light source.
  • FIG. 4 is a block diagram showing the overall configuration of an optical communication system 1a according to the second embodiment of the present invention.
  • the optical communication system 1a includes a communication device 11a and a communication device 12a.
  • the communication device 11a and the communication device 12a are connected by wire, and transmit and receive data by transmitting and receiving communication light to and from each other.
  • the communication device 11a and the communication device 12a are connected, for example, by an optical fiber cable for communication, and communication light is transmitted via the optical fiber cable for communication.
  • the communication cable may be a cable other than an optical fiber cable.
  • the communication device 11a and the communication device 12a may be configured to be wirelessly connected for communication.
  • the communication device 11a and the communication device 12a are connected by wire, and the power supply light output from the communication device 11a is input to the communication device 12a. That is, the communication device 11a is a communication device on the power supply side that is equipped with an optical power supply light source, and the communication device 12a is a communication device on the power reception side that is equipped with a photoelectric converter.
  • the communication device 11a and the communication device 12a are connected by an optical fiber cable for power feeding, which is different from the above optical fiber cable for communication, and power feeding light is transmitted via the optical fiber cable for power feeding.
  • the communication device 11a includes a power supply section 111, a power supply optical transmitter 112, a transceiver 113, a communication circuit 114a, a loss measurement section 115, a power supply control section 116a, and a reflected light
  • the receiving section 117 is configured to include a receiving section 117.
  • the communication device 11a is, for example, an OLT.
  • the communication device 11a is an example of a communication device of the present invention.
  • the power supply section 111 is a power source for a light source for generating the power supply light sent out from the power supply light transmission section 112.
  • the power supply light transmitter 112 sends power supply light toward the communication device 12a.
  • the transceiver 113 is a transceiver that transmits and receives communication light between the transceiver 113 and the communication device 12a.
  • the communication circuit 114a controls the transceiver 113 and transmits and receives data between the transceiver 113 and the communication device 12a using communication light.
  • the loss measuring unit 115 measures the optical loss value of the power feeding light transmitted from the communication device 11a to the communication device 12a.
  • the loss measurement unit 115 outputs information indicating the measured optical loss value to the feeding optical power control unit 116a.
  • the loss measuring unit 115 measures the optical loss value of the power supply light when the communication device 11a and the communication device 12a are connected.
  • the loss measurement unit 115 measures the optical loss value of the power supply light at predetermined intervals (for example, every hour or every day). Note that any existing technique can be used to measure the optical loss value of the power supply light.
  • the feeding optical power control unit 116a acquires information indicating the optical loss value output from the loss measurement unit 115.
  • the feeding light power control unit 116a controls the power of the feeding light transmitted from the feeding light transmitting unit 112 by controlling the power supply unit 111 according to the obtained optical loss value.
  • the feeding light power control unit 116a suppresses the power of the feeding light transmitted from the feeding light transmitting unit 112 so that the power of the feeding light input to the communication device 12a on the power receiving side does not exceed a predetermined value.
  • the reflected light receiving section 117 receives the reflected light of the power feeding light transmitted from the power feeding light transmitting section 112. As described above, the reflected light is the light reflected from the power supply light transmitted from the power supply light transmitter 112 to the communication device 12a. A notification regarding the charging state of the secondary power source 122 of the communication device 12a is superimposed on the reflected light. The reflected light receiver 117 demodulates the reflected light and obtains notification regarding the charging state of the secondary power source 122a.
  • the reflected light receiving section 117 is configured to include, for example, a demodulator, and is provided alongside the power feeding light transmitting section 112 .
  • the reflected light receiving unit 117 outputs the acquired notification regarding the charging state of the secondary power source 122a to the feeding optical power control unit 116a.
  • the type of notification regarding the charging state of the secondary power source 122a that is superimposed on the reflected light includes, for example, a full charge notification.
  • the full charge notification does not necessarily have to be information indicating that the secondary power source 122 is actually fully charged.
  • the full charge notification may be information that indicates that the secondary power source 122 has a remaining charge level equal to or higher than a predetermined value. It may also be information indicating that the remaining charge level has reached a sufficient level.
  • the type of notification regarding the charging state of the secondary power source 122a that is superimposed on the reflected light may be, for example, a notification of a low remaining charge level.
  • the feeding optical power control unit 116a obtains a notification regarding the charging state of the secondary power source 122a output from the reflected light receiving unit 117.
  • the feeding light power control unit 116a controls the power of the feeding light transmitted from the feeding light transmitting unit 112 by controlling the power supply unit 111 according to the acquired notification regarding the charging state of the secondary power source 122a.
  • the feeding optical power control unit 116a acquires the full charge notification output from the reflected light receiving unit 117.
  • the feeding light power control unit 116a controls the power supply unit 111 to stop the feeding light transmitting unit 112 from sending out the feeding light to the communication device 12a. As a result, power supply to the communication device 12a is stopped.
  • the feeding optical power control unit 116a may obtain a notification of a decrease in the remaining charge level output from the reflected light receiving unit 117.
  • the power supply control unit 116 receives a notification that the remaining charge level is low, the power supply light power control unit 116 controls the power supply unit 111 to increase the power of the power supply light transmitted to the communication device 12a by the power supply light transmission unit 112. You may also do so. Thereby, more appropriate power is supplied to the communication device 12a.
  • the communication device 12a includes a photoelectric conversion section 121, a secondary power source 122a, a transceiver 123, a communication circuit 124a, and a superimposing section 125.
  • the communication device 12a is, for example, an ONU.
  • the photoelectric conversion unit 121 receives power feeding light sent from the communication device 11a.
  • the photoelectric conversion unit 121 converts the received power supply light into electric power.
  • the secondary power source 122a stores the power converted by the photoelectric conversion unit 121.
  • the transceiver 123 is a transceiver that transmits and receives communication light between the transceiver 123 and the communication device 11a.
  • the communication circuit 124 controls the transceiver 123 and transmits and receives data between the transceiver 123 and the communication device 11a using communication light.
  • the secondary power source 122a outputs information indicating its own charging state to the superimposing unit 125 periodically (for example, every minute or every hour).
  • the superimposing unit 125 may be configured to be able to periodically detect the state of charge of the secondary power source 122a.
  • the superimposing unit 125 acquires information indicating the charging state of the secondary power source 122a from the secondary power source 122a.
  • the superimposing unit 125 modulates a notification regarding the state of charge of the secondary power source 122a on a portion of the power supply light received by the photoelectric conversion unit 121, thereby superimposing it on the reflected light of the power supply light.
  • the superimposing section 125 includes, for example, a reflective modulator, and is provided alongside the photoelectric conversion section 121.
  • the superimposing unit 125 sends reflected light on which a notification regarding the charging state of the secondary power source 122a is superimposed to the communication device 11a.
  • the secondary power source 122a when the secondary power source 122a is in a fully charged state, it outputs information indicating that the secondary power source 122a is in a fully charged state to the superimposing unit 125. Then, the superimposing unit 125 modulates a full charge notification indicating that the secondary power source 122a is in a fully charged state, thereby superimposing it on the reflected light of the power supply light. The superimposing unit 125 sends reflected light on which the full charge notification of the secondary power source 122a is superimposed to the communication device 11a.
  • the secondary power supply 122a when the secondary power supply 122a has an empty remaining charge (zero), it outputs information indicating that the remaining charge has become empty to the communication circuit 124a.
  • the communication circuit 124a may be configured to be able to detect that the remaining charge of the secondary power source 122a is empty.
  • the communication circuit 124a notifies the communication device 11a that the remaining charge of the secondary power source 122a is empty. Specifically, the communication circuit 124 transmits, via the transceiver 123, information indicating that the remaining charge level of the secondary power source 122a has become empty (hereinafter referred to as "over-discharge notification") using communication light. It is transmitted to the communication device 11a.
  • the overdischarge notification does not necessarily have to be information indicating that the secondary power source 122 has actually become empty, but may be information that indicates that the remaining charge level of the secondary power source 122 has become less than a predetermined value. (i.e., information indicating that the remaining charge level is insufficient).
  • the communication circuit 114a of the communication device 11a on the power supply side acquires the overdischarge notification transmitted from the communication device 12a on the power reception side via the transceiver 113.
  • the communication circuit 114a outputs an overdischarge notification to the power supply optical power control unit 116a.
  • the feeding light power control unit 116a controls the power supply unit 111 to cause the feeding light transmitting unit 112 to restart sending out the feeding light to the communication device 12a. As a result, power supply to the communication device 12a is restarted.
  • the case where the remaining charge of the secondary power source 122a of the communication device 12a becomes empty is assumed to be the case where power is not being supplied from the communication device 11a to the communication device 12a.
  • the power supply light is not transmitted from the communication device 11a to the communication device 12a, there is no reflected light of the power supply light, so the overdischarge notification cannot be superimposed on the reflected light and transmitted from the communication device 12a to the communication device 11a. Therefore, the overdischarge notification is transmitted from the communication device 12a to the communication device 11a using communication light.
  • FIG. 5 is a flowchart showing the operation of the optical communication system 1a in the second embodiment of the present invention.
  • the operation of the optical communication system 1a illustrated in the flowchart of FIG. 5 is started, for example, when the communication device 11a and the communication device 12a are connected.
  • the loss measurement unit 115 of the communication device 11a on the power feeding side measures the optical loss value of the power feeding light transmitted from the communication device 11a to the communication device 12a (step S101).
  • the loss measurement unit 115 outputs information indicating the measured optical loss value to the feeding optical power control unit 116a.
  • the feeding light power control unit 116a controls the power supply unit 111 according to the acquired optical loss value so that the feeding light with the power corresponding to the optical loss value is transmitted from the feeding light transmitting unit 112. (Step S102).
  • the photoelectric conversion unit 121 of the communication device 12a on the power receiving side receives the power feeding light sent out from the communication device 11a.
  • the photoelectric conversion unit 121 converts the received power supply light into electric power.
  • the secondary power source 122a stores the power converted by the photoelectric conversion unit 121 (step S103).
  • step S104 When the secondary power source 122a is in a fully charged state (step S104, YES), it outputs information indicating that the secondary power source 122a is in a fully charged state to the superimposing unit 125. Then, the superimposing unit 125 modulates the full charge notification to superimpose it on the reflected light of the power supply light. The superimposing unit 125 sends the reflected light on which the full charge notification is superimposed to the communication device 11a (step S105).
  • the reflected light receiving section 117 of the communication device 11a on the power feeding side receives the reflected light of the power feeding light transmitted from the power feeding light transmitting section 112.
  • the reflected light receiving unit 117 demodulates the reflected light and obtains a full charge notification (step S106).
  • the reflected light receiving unit 117 outputs the acquired full charge notification to the power supply optical power control unit 116a.
  • the power supply light power control unit 116a controls the power supply unit 111 to stop the power supply light transmitting unit 112 from transmitting the power supply light to the communication device 12a (step S107).
  • the secondary power supply 122 of the communication device 12a on the power receiving side sends information indicating that the remaining charge becomes empty to the communication circuit. 124a.
  • the communication circuit 124a transmits an overdischarge notification to the communication device 11a via the transceiver 123 using communication light (step S109).
  • the communication circuit 114a of the communication device 11a on the power supply side receives the overdischarge notification transmitted from the communication device 12a on the power reception side via the transceiver 113 (step S110).
  • the communication circuit 114 outputs an overdischarge notification to the power supply optical power control unit 116a.
  • the feeding light power control unit 116a acquires the over-discharge notification, it controls the power supply unit 111 to cause the feeding light transmitting unit 112 to restart sending out the feeding light to the communication device 12a (step S111).
  • optical communication system 1a shown in the flowchart of FIG. 5 ends, for example, when communication between the communication device 11a and the communication device 12a ends.
  • the communication device 11a on the power feeding side equipped with an optically powered light source and the communication device 12a on the power receiving side equipped with a photoelectric converter are wired to each other. connected to perform optical power supply and communication.
  • the optical communication system 1a measures the optical loss value of power feeding light transmitted from the communication device 11a to the communication device 12a.
  • the optical communication system 1a then controls the power of the power supply light output from the optical power supply light source of the communication device 11a based on the measured optical loss value.
  • the optical communication system 1a controls the strength of the power of the power supply light sent out from the optical power supply light source so that the power of the power supply light input to the photoelectric converter of the communication device on the power receiving side does not exceed a predetermined value. Control.
  • the optical communication system 1a in the second embodiment can communicate the charging state of the secondary power source 122a of the communication device 12a from the communication device 12a to the communication device 11a using the reflected light of the power supply light. Notice.
  • the optical communication system 1 then performs control to turn on and off the output of the power feeding light transmitted from the optical power feeding light source, depending on the charging state of the secondary power source 122 of the communication device 12a.
  • the reflected light also ceases to exist, so from now on, the communication device 12a cannot notify the communication device 11a of the charging state of the secondary power source 122a. It disappears.
  • the optical communication system 1a in the second embodiment sends an over-discharge notification indicating that the remaining charge of the secondary power source 122a is empty, using communication light instead of using reflected light. It is transmitted from the communication device 12a to the communication device 11a. Thereby, the communication device 11a can recognize that the remaining charge level of the secondary power source 122a has become empty even if it does not receive the reflected light.
  • the optical communication system 1a in the second embodiment can reduce the power consumption of the optically powered light source.
  • optical communication system 1b is an example of the optical power supply system of the present invention.
  • the optical fiber through which the power supply light is transmitted is different from the optical fiber through which the communication light is transmitted. It was a fiber configuration.
  • the optical communication system 1b in the third embodiment is configured to transmit power supply light and communication light using the same optical fiber cable.
  • WDM Widelength Division Multiplexing
  • WDM Widelength Division Multiplexing
  • the configuration of the optical communication system 1b according to the third embodiment of the present invention is different from the configuration of the optical communication system 1 according to the first embodiment described above, in that the transmission of power supply light and the transmission of communication light are performed using the same optical fiber.
  • This is a modified configuration to be performed using a cable.
  • FIG. 6 is a block diagram showing the overall configuration of an optical communication system 1b according to the third embodiment of the present invention.
  • the optical communication system 1b includes a communication device 11b and a communication device 12b.
  • the communication device 11b and the communication device 12b are connected by wire, and transmit and receive data by transmitting and receiving communication light to and from each other.
  • the communication device 11b and the communication device 12b are connected by an optical fiber cable that serves both communication and power supply, and communication light is transmitted via the optical fiber cable.
  • the power feeding light output from the communication device 11b is transmitted via the above-mentioned optical fiber cable used for both communication and power feeding, and is input to the communication device 12b. That is, the communication device 11b is a communication device on the power supply side that is equipped with an optical power supply light source, and the communication device 12b is a communication device on the power reception side that is equipped with a photoelectric converter.
  • the communication device 11b includes a power supply section 111, a communication circuit 114, a loss measurement section 115, a feeding optical power control section 116, and a feeding optical transmitting section/transceiver 118. Ru.
  • the communication device 11b is, for example, an OLT.
  • the communication device 11b is an example of a communication device of the present invention.
  • the power supply section 111 is a power supply for a light source for generating the power supply light sent out from the power supply light transmission section/transceiver 118.
  • the power supply light transmitter/transceiver 118 sends power supply light toward the communication device 12b.
  • the power feeding optical transmitter/transceiver 118 includes, for example, a laser diode. Further, the power supply light transmitter/transceiver 118 transmits and receives communication light between its own device and the communication device 12b.
  • the communication circuit 114 controls the power feeding optical transmitter and transceiver 118, and transmits and receives data between the own device and the communication device 12b using communication light.
  • the loss measuring unit 115 measures the optical loss value of the power feeding light transmitted from the communication device 11b to the communication device 12b.
  • the loss measurement unit 115 outputs information indicating the measured optical loss value to the feeding optical power control unit 116.
  • the loss measuring unit 115 measures the optical loss value of the power supply light when the communication device 11b and the communication device 12b are connected.
  • the loss measurement unit 115 measures the optical loss value of the power supply light at predetermined intervals (for example, every hour or every day).
  • the feeding optical power control unit 116 acquires information indicating the optical loss value output from the loss measurement unit 115.
  • the feeding light power control unit 116 controls the power of the feeding light transmitted from the feeding light transmitter/transceiver 118 by controlling the power supply unit 111 according to the obtained optical loss value.
  • the power supply light power control unit 116 suppresses the power of the power supply light transmitted from the power supply light transmission unit/transceiver 118 so that the power of the power supply light input to the communication device 12b on the power receiving side does not exceed a predetermined value. do.
  • the communication device 12b includes a secondary power source 122, a communication circuit 124, and a photoelectric conversion unit/transceiver 126.
  • the communication device 12b is, for example, an ONU.
  • the photoelectric conversion unit/transceiver 126 receives the power feeding light sent from the communication device 11b.
  • the photoelectric converter/transceiver 126 converts the received power supply light into electric power.
  • the photoelectric conversion unit and transceiver 126 includes, for example, a photodiode.
  • the secondary power source 122 stores electric power converted by the photoelectric conversion unit/transceiver 126.
  • Each functional unit of the communication device 12b is driven by power stored in the secondary power source 122.
  • the photoelectric conversion unit and transceiver 126 transmits and receives communication light between its own device and the communication device 11b.
  • the communication circuit 124 controls the photoelectric conversion unit and transceiver 126, and transmits and receives data between its own device and the communication device 11b using communication light.
  • the secondary power source 122 outputs information indicating its own charging state to the communication circuit 124 periodically (for example, every minute or every hour).
  • the communication circuit 124 may be configured to be able to periodically detect the charging state of the secondary power source 122.
  • the secondary power source 122 When the secondary power source 122 is in a fully charged state, it outputs information indicating that the secondary power source 122 is in a fully charged state to the communication circuit 124.
  • the communication circuit 124 then notifies the communication device 11b that the secondary power source 122 is fully charged. Specifically, the communication circuit 124 transmits a full charge notification indicating that the secondary power source 122 is in a fully charged state to the communication device 11b via the photoelectric conversion unit/transceiver 126 using communication light.
  • the communication circuit 114 of the communication device 11b acquires the full charge notification transmitted from the power receiving side communication device 12b via the power supply optical transmitter/transceiver 118. Upon acquiring the full charge notification, the communication circuit 114 outputs the full charge notification to the power supply optical power control unit 116 .
  • the feeding optical power control unit 116 acquires the full charge notification output from the communication circuit 114.
  • the feeding light power control unit 116 controls the power supply unit 111 to stop the feeding light transmission unit/transceiver 118 from sending out the feeding light to the communication device 12b. As a result, power supply to the communication device 12b is stopped.
  • the secondary power supply 122 outputs information indicating that the remaining charge level is below a predetermined value to the communication circuit 124.
  • the communication circuit 124 notifies the communication device 11b that the remaining charge of the secondary power source 122 has become equal to or less than a predetermined value.
  • the communication circuit 124 transmits, via the photoelectric conversion unit and transceiver 126, a notification indicating that the remaining charge level of the secondary power source 122 has fallen below a predetermined value using communication light. It is transmitted to the device 11b.
  • the communication circuit 114 of the communication device 11b acquires the low charge level notification transmitted from the communication device 12b on the power receiving side via the power supply optical transmitter/transceiver 118.
  • the communication circuit 114 obtains the notification of a decrease in the remaining charge amount
  • the communication circuit 114 outputs the notification of a decrease in the remaining charge amount to the power supply optical power control unit 116 .
  • the feeding optical power control unit 116 acquires the notification of a decrease in the remaining charge output from the communication circuit 114.
  • the feeding light power control unit 116 controls the power supply unit 111 to cause the feeding light transmitting unit/transceiver 118 to restart sending out the feeding light to the communication device 12b. As a result, power supply to the communication device 12b is restarted.
  • the configuration of the optical communication system 1b in the third embodiment differs from the configuration of the optical communication system 1 in the first embodiment in that the transmission of power supply light and the transmission of communication light are the same.
  • This is a modified configuration to be performed using a fiber optic cable.
  • the optical communication system 1b can, for example, reduce the number of required optical fiber cables, thereby reducing equipment costs, installation costs, installation space, operating costs, etc. be able to.
  • the configuration of the optical communication system 1c according to the fourth embodiment of the present invention is different from the configuration of the optical communication system 1a according to the second embodiment described above, in that the transmission of power supply light and the transmission of communication light are performed using the same optical fiber.
  • This is a modified configuration to be performed using a cable.
  • WDM can be used as a technique for transmitting the power supply light and the communication light using the same optical fiber cable.
  • FIG. 7 is a block diagram showing the overall configuration of an optical communication system 1c according to the fourth embodiment of the present invention.
  • the optical communication system 1c includes a communication device 11c and a communication device 12c.
  • the communication device 11c and the communication device 12c are connected by wire and transmit and receive data by transmitting and receiving communication light to and from each other.
  • the communication device 11c and the communication device 12c are connected by an optical fiber cable that serves both communication and power supply, and communication light is transmitted through the optical fiber cable.
  • the power feeding light output from the communication device 11c is transmitted via the optical fiber cable used for both communication and power feeding, and is input to the communication device 12c. That is, the communication device 11c is a communication device on the power supply side that is equipped with an optical power supply light source, and the communication device 12c is a communication device on the power reception side that is equipped with a photoelectric converter.
  • the communication device 11c includes a communication circuit 114a, a loss measuring section 115, a feeding optical power control section 116a, a reflected light receiving section 117, and a feeding optical transmitting section/transceiver 118. configured.
  • the communication device 11c is, for example, an OLT.
  • the communication device 11c is an example of a communication device of the present invention.
  • the power supply section 111 is a power supply for a light source for generating the power supply light sent out from the power supply light transmission section/transceiver 118.
  • the power supply light transmitter/transceiver 118 sends power supply light toward the communication device 12c.
  • the power supply light transmitter/transceiver 118 is a transmitter/receiver that transmits and receives communication light between the own device and the communication device 12c.
  • the communication circuit 114a controls the power feeding optical transmitter and transceiver 118, and transmits and receives data between the own device and the communication device 12c using communication light.
  • the loss measuring unit 115 measures the optical loss value of the power feeding light transmitted from the communication device 11c to the communication device 12c.
  • the loss measurement unit 115 outputs information indicating the measured optical loss value to the feeding optical power control unit 116a.
  • the loss measuring unit 115 measures the optical loss value of the power supply light when the communication device 11c and the communication device 12c are connected.
  • the loss measurement unit 115 measures the optical loss value of the power supply light at predetermined intervals (for example, every hour or every day). Note that any existing technique can be used to measure the optical loss value of the power supply light.
  • the feeding optical power control unit 116a acquires information indicating the optical loss value output from the loss measurement unit 115.
  • the feeding light power control unit 116a controls the power of the feeding light transmitted from the feeding light transmitter/transceiver 118 by controlling the power supply unit 111 according to the obtained optical loss value.
  • the power supply light power control unit 116a suppresses the power of the power supply light transmitted from the power supply light transmitter/transceiver 118 so that the power of the power supply light input to the communication device 12c on the power receiving side does not exceed a predetermined value.
  • the reflected light receiving section 117 receives the reflected light of the power feeding light transmitted from the power feeding light transmitting section/transceiver 118. As described above, the reflected light is the light reflected from the power supply light transmitted from the power supply light transmitter/transceiver 118 to the communication device 12c. A notification regarding the charging state of the secondary power source 122a of the communication device 12c is superimposed on the reflected light. The reflected light receiver 117 demodulates the reflected light and obtains notification regarding the charging state of the secondary power source 122a. The reflected light receiver 117 includes, for example, a demodulator, and is provided alongside the power feeding light transmitter/transceiver 118 . The reflected light receiving unit 117 outputs the acquired notification regarding the charging state of the secondary power source 122a to the feeding optical power control unit 116a.
  • the type of notification regarding the charging state of the secondary power source 122a that is superimposed on the reflected light includes, for example, a full charge notification.
  • the full charge notification does not necessarily have to be information indicating that the secondary power source 122a is actually fully charged.
  • the full charge notification may be information that indicates that the secondary power source 122a has a remaining charge level equal to or higher than a predetermined value. It may also be information indicating that the remaining charge level has reached a sufficient level.
  • the type of notification regarding the charging state of the secondary power source 122a that is superimposed on the reflected light may be, for example, a notification of a low remaining charge level.
  • the feeding optical power control unit 116a obtains a notification regarding the charging state of the secondary power source 122a output from the reflected light receiving unit 117.
  • the feeding light power control unit 116a controls the power of the feeding light transmitted from the feeding light transmitting unit/transceiver 118 by controlling the power supply unit 111 according to the acquired notification regarding the charging state of the secondary power source 122a. .
  • the feeding optical power control unit 116a acquires the full charge notification output from the reflected light receiving unit 117.
  • the feeding light power control unit 116a controls the power supply unit 111 to stop the feeding light transmission unit/transceiver 118 from sending out the feeding light to the communication device 12c. As a result, power supply to the communication device 12c is stopped.
  • the feeding optical power control unit 116a may obtain a notification of a decrease in the remaining charge level output from the reflected light receiving unit 117.
  • the power supply control unit 116 receives a notification that the remaining charge level is low, the power supply light power control unit 116 controls the power supply unit 111 to control the power of the power supply light transmitted to the communication device 12c by the power supply light transmission unit and transceiver 118. It may be made stronger. Thereby, more appropriate power is supplied to the communication device 12c.
  • the communication device 12c includes a secondary power source 122a, a communication circuit 124a, a superimposing section 125, and a photoelectric conversion section/transceiver 126.
  • the communication device 12c is, for example, an ONU.
  • the photoelectric conversion unit 121 receives power feeding light sent from the communication device 11c.
  • the photoelectric converter/transceiver 126 converts the received power supply light into electric power.
  • the secondary power source 122a stores power converted by the photoelectric conversion unit and transceiver 126. Further, the photoelectric conversion unit and transceiver 126 transmits and receives communication light between its own device and the communication device 11c.
  • the communication circuit 124 controls the photoelectric conversion unit and transceiver 126, and transmits and receives data between the own device and the communication device 11c using communication light.
  • the secondary power source 122a outputs information indicating its own charging state to the superimposing unit 125 periodically (for example, every minute or every hour).
  • the superimposing unit 125 may be configured to be able to periodically detect the state of charge of the secondary power source 122a.
  • the superimposing unit 125 acquires information indicating the charging state of the secondary power source 122a from the secondary power source 122a.
  • the superimposing unit 125 modulates a notification regarding the state of charge of the secondary power source 122a on a portion of the power supply light received by the photoelectric conversion unit 121, thereby superimposing it on the reflected light of the power supply light.
  • the superimposing section 125 includes, for example, a reflective modulator, and is provided alongside the photoelectric conversion section and transceiver 126.
  • the superimposing unit 125 sends reflected light on which a notification regarding the charging state of the secondary power source 122a is superimposed to the communication device 11c.
  • the secondary power source 122a when the secondary power source 122a is in a fully charged state, it outputs information indicating that the secondary power source 122a is in a fully charged state to the superimposing unit 125. Then, the superimposing unit 125 modulates a full charge notification indicating that the secondary power source 122a is in a fully charged state, thereby superimposing it on the reflected light of the power supply light. The superimposing unit 125 sends reflected light on which the full charge notification of the secondary power source 122a is superimposed to the communication device 11c.
  • the secondary power supply 122a when the secondary power supply 122a has an empty remaining charge (zero), it outputs information indicating that the remaining charge has become empty to the communication circuit 124a.
  • the communication circuit 124a may be configured to be able to detect that the remaining charge of the secondary power source 122a is empty.
  • the communication circuit 124a notifies the communication device 11c that the remaining charge of the secondary power source 122a is empty. Specifically, the communication circuit 124 sends an over-discharge notification indicating that the remaining charge level of the secondary power source 122a is empty to the communication device 11c via the photoelectric conversion unit and transceiver 126 using communication light. Send.
  • the overdischarge notification does not necessarily have to be information indicating that the secondary power source 122a has actually become empty, but may be information that indicates that the remaining charge level of the secondary power source 122a has become less than a predetermined value. (i.e., information indicating that the remaining charge level is insufficient).
  • the communication circuit 114a of the communication device 11c on the power supply side acquires the overdischarge notification transmitted from the communication device 12c on the power reception side via the power supply optical transmitter/transceiver 118.
  • the communication circuit 114a outputs an overdischarge notification to the power supply optical power control unit 116a.
  • the feeding light power control unit 116a controls the power supply unit 111 to cause the feeding light transmitting unit/transceiver 118 to restart sending out the feeding light to the communication device 12c. As a result, power supply to the communication device 12c is restarted.
  • the case where the remaining charge of the secondary power source 122a of the communication device 12c is empty is assumed to be the case where power is not being supplied from the communication device 11c to the communication device 12c.
  • the power supply light is not transmitted from the communication device 11c to the communication device 12c, there is no reflected light of the power supply light, so that the overdischarge notification cannot be superimposed on the reflected light and transmitted from the communication device 12c to the communication device 11c. Therefore, the overdischarge notification is transmitted from the communication device 12c to the communication device 11c using communication light.
  • the configuration of the optical communication system 1c in the fourth embodiment is different from the configuration of the optical communication system 1a in the second embodiment described above, in that the transmission of power supply light and the transmission of communication light are the same.
  • This is a modified configuration to be performed using a fiber optic cable.
  • the optical communication system 1c can reduce the number of required optical fiber cables, for example, thereby reducing equipment costs, installation costs, installation space, operating costs, etc. be able to.
  • optical communication system 1d is an example of the optical power supply system of the present invention.
  • the network configuration of the optical communication systems 1, 1a to 1c basically consists of communication devices on the power supply side (communication devices 11, 11a to 11c) and communication devices on the power reception side (communication devices 11, 11a to 11c).
  • This assumes a single star configuration in which the devices 12, 12a to 12c) are connected one-to-one.
  • a communication device on the power feeding side communication device 11d
  • a communication device on the power receiving side communication devices 12-1 to 12-n
  • a communication device on the power feeding side equipped with an optically powered light source and a plurality of communication devices on the power receiving side equipped with photoelectric converters connect a branching section such as an optical splitter. It is a system that is connected to each other by wire through the optical power supply and communication.
  • the optical communication system 1d measures the optical loss value of power feeding light transmitted from a power feeding side communication device to a plurality of power receiving side communication devices.
  • the optical communication system 1d is characterized in that it controls the power of the power supply light output from the optical power supply light source of the communication device on the power supply side, based on the measured optical loss value. At this time, for example, if at least one of the plurality of measured optical loss values is equal to or greater than a predetermined value, the optical communication system 1d controls the power supply light to maximize the output. For example, if all of the plurality of measured optical loss values are less than a predetermined value, the optical communication system 1d may set the maximum of the plurality of measured optical loss values to a preset output value. The output of the power supply light is controlled so that the output value is the sum of the values.
  • the optical communication system 1d performs control to switch on and off the output of the power feeding light transmitted from the optical power feeding light source, depending on the charging state of the secondary power source of the communication device on the power receiving side. For example, the optical communication system 1d controls the output of the power supply light to be turned on when the charging state of the secondary power source of at least one communication device on the power receiving side is not fully charged, and When the charging state of the secondary power source of the communication device is a fully charged state, control is performed to turn off the output of the power supply light.
  • the optical communication system 1d in the fifth embodiment is a network in which communication devices on the power feeding side and communication devices on the power receiving side are connected to each other in a one-to-many manner, such as in a double star configuration, for example. Even with this configuration, the power consumption of the optically-fed light source can be reduced.
  • FIG. 8 is a block diagram showing the overall configuration of an optical communication system 1d in the fifth embodiment of the present invention.
  • the optical communication system 1d includes a communication device 11d and a plurality of communication devices 12 (communication devices 12-1 to 12-n).
  • the communication device 11d and each of the communication devices 12-1 to 12-n are connected by wire, and transmit and receive data by respectively transmitting and receiving communication light to and from each other.
  • the communication device 11d and each of the communication devices 12-1 to 12-n are connected, for example, by optical fiber cables for communication that are branched one-to-many by a branching section such as an optical splitter 20, as shown in FIG. Communication light is transmitted via the optical fiber cable for communication.
  • the communication cable may be a cable other than an optical fiber cable.
  • the communication device 11d and each of the communication devices 12-1 to 12-n may be configured to be wirelessly connected for communication.
  • the communication device 11d and each of the communication devices 12-1 to 12-n are connected by wire, and the power supply light output from the communication device 11d is input to each of the communication devices 12-1 to 12-n. That is, the communication device 11d is a communication device on the power supply side that is equipped with an optical power supply light source, and each of the communication devices 12-1 to 12-n is a communication device on the power reception side that is equipped with a photoelectric converter.
  • the communication device 11d and each of the communication devices 12-1 to 12-n are connected in a one-to-many manner by a branching unit, such as an optical splitter 20, as shown in FIG. 8, for example, as shown in FIG.
  • the power supply light is transmitted through the power supply optical fiber cable that branches into the power supply optical fiber cable.
  • the communication device 11d includes a power supply section 111, a feeding optical power transmitting section 112, a transceiver 113d, a communication circuit 114d, a loss measuring section 115d, and a feeding optical power control section 116d. configured.
  • the communication device 11d is, for example, an optical line termination device (OLT) installed at a central office of a communication company in a PON type subscriber line network (public line network) using optical fibers.
  • OLT optical line termination device
  • the communication device 11d is an example of a communication device of the present invention.
  • the power supply section 111 is a power source for a light source for generating the power supply light sent out from the power supply light transmission section 112.
  • the power supply light transmitter 112 transmits power supply light toward the plurality of communication devices 12 (communication devices 12-1 to 12n).
  • the power feeding light transmitter 112 is, for example, a laser diode.
  • the transceiver 113d is a transceiver that transmits and receives communication light between itself and each of the plurality of communication devices 12 (communication devices 12-1 to 12n).
  • the communication circuit 114d controls the transceiver 113d, and transmits and receives data between itself and each of the plurality of communication devices 12 (communication devices 12-1 to 12n) using communication light.
  • the loss measurement unit 115d measures the optical loss value of the power supply light transmitted from the communication device 11d to each of the plurality of communication devices 12 (communication devices 12-1 to 12n).
  • the loss measurement unit 115d outputs information indicating a plurality of measured optical loss values to the feeding optical power control unit 116d. For example, when the communication device 11d and a new communication device 12 are connected, the loss measurement unit 115d measures the power supply transmitted from the communication device 11d to each of the plurality of communication devices 12 (communication devices 12-1 to 12n). Measure the optical loss value of each light.
  • the loss measurement unit 115d may transmit data from the communication device 11d to each of the plurality of communication devices 12 (communication devices 12-1 to 12n) at predetermined intervals (for example, every hour or every day). The optical loss value of each transmitted power light is measured.
  • the loss measurement unit 115d measures the optical loss value using an optical pulse tester (OTDR).
  • OTDR optical pulse tester
  • the technique described in Non-Patent Document 2 can be used.
  • the loss measuring unit 115d measures the distance from the power feeding side communication device 11d to each of the power receiving side communication devices 12 (communication devices 12-1 to 12n) using OTDR. The loss measurement unit 115d then calculates an optical loss value by multiplying each measured distance by the optical loss per unit. Alternatively, for example, the loss measurement unit 115d directly measures the optical loss value of the power supply light between the communication device 11d and each of the communication devices 12 (communication devices 12-1 to 12n) using the OTDR.
  • the feeding optical power control unit 116d acquires information indicating a plurality of optical loss values output from the loss measuring unit 115d.
  • the feeding light power control unit 116d controls the power of the feeding light transmitted from the feeding light transmitting unit 112 by controlling the power supply unit 111 according to the plurality of acquired optical loss values.
  • the feeding light power control unit 116d maximizes the output of the feeding light transmitted from the feeding light transmitting unit 112.
  • the power supply section 111 is controlled in such a manner.
  • the predetermined value here is, for example, a value that is the maximum width with which the power supply light transmitter 112 can further increase the output of the power supply light.
  • the feeding optical power control unit 116d controls the maximum of the plurality of obtained optical loss values with respect to the preset output value.
  • the power supply unit 111 is controlled so that the power supply light transmission unit 112 transmits power supply light using the output value obtained by adding the values.
  • the value of the power of the power supply light transmitted from the power supply light transmission unit 112 for each optical loss value is determined in advance.
  • a table in which optical loss values are associated with power values of feeding light is stored in advance in a storage medium (not shown) provided in the communication device 11d.
  • the feeding light power control unit 116d refers to the table and acquires the value of the power of the feeding light corresponding to the obtained optical loss value. Then, the feeding light power control unit 116d controls the power supply unit 111 so that the power of the feeding light transmitted from the feeding light transmitting unit 112 becomes the above-mentioned acquired value.
  • each of the communication devices 12-1 to 12-n is configured to include a photoelectric conversion section 121, a secondary power source 122, a transceiver 123, and a communication circuit 124.
  • Each of the communication devices 12-1 to 12-n is, for example, an optical line terminal unit (ONU) installed at a subscriber's home in a PON type subscriber line network (public line network) using optical fibers. be.
  • ONU optical line terminal unit
  • the photoelectric conversion unit 121 receives power feeding light sent from the communication device 11d and transmitted via the optical splitter 20.
  • the photoelectric conversion unit 121 converts the received power supply light into electric power.
  • the photoelectric conversion unit 121 is, for example, a photodiode.
  • the secondary power source 122 stores the power converted by the photoelectric conversion unit 121.
  • Each functional unit of each of the communication devices 12-1 to 12-n is driven by power stored in the secondary power source 122.
  • the secondary power source 122 includes, for example, a battery.
  • the transceiver 123 is a transceiver that transmits and receives communication light between the transceiver 123 and the communication device 11d.
  • the communication circuit 124 controls the transceiver 123 and transmits and receives data between the transceiver 123 and the communication device 11d using communication light.
  • the secondary power source 122 outputs information indicating its own charging state to the communication circuit 124 periodically (for example, every minute or every hour).
  • the communication circuit 124 may be configured to be able to periodically detect the charging state of the secondary power source 122.
  • the secondary power source 122 When the secondary power source 122 is in a fully charged state, it outputs information indicating that the secondary power source 122 is in a fully charged state to the communication circuit 124.
  • the communication circuit 124 then notifies the communication device 11d that the secondary power source 122 is fully charged. Specifically, the communication circuit 124 transmits a full charge notification, which is information indicating that the secondary power source 122 is in a fully charged state, to the communication device 11d via the transceiver 123 using communication light.
  • the communication circuit 114d of the communication device 11d obtains the full charge notification transmitted from each of the communication devices 12 (communication devices 12-1 to 12n) on the power receiving side via the transceiver 113d. Upon acquiring the full charge notification, the communication circuit 114d outputs the full charge notification to the power supply optical power control unit 116d. The feeding optical power control unit 116d acquires the full charge notification output from the communication circuit 114d.
  • the power supply light power control unit 116d controls the power supply light transmitted from the power supply light transmission unit 112 according to the charging state of the secondary power source of each of the communication devices 12 (communication devices 12-1 to 12n) on the power receiving side. Performs control to switch output on and off.
  • the power supply unit 111 is controlled to start, resume, or continue transmitting the power supply light from the power supply light transmission unit 112. Control as follows.
  • the power supply section 111 is controlled to stop sending out the power supply light from the power supply light transmission section 112. As a result, power supply to each of the communication devices 12 (communication devices 12-1 to 12n) is stopped.
  • the secondary power supply 122 outputs information indicating that the remaining charge level is below a predetermined value to the communication circuit 124.
  • the communication circuit 124 notifies the communication device 11d that the remaining charge of the secondary power source 122 has become equal to or less than a predetermined value.
  • the communication circuit 124 transmits, through the transceiver 123, a low charge level notification, which is information indicating that the remaining charge level of the secondary power source 122 has become a predetermined value or less, through communication light. It is transmitted to the device 11d.
  • the communication circuit 114d of the communication device 11d acquires the notification of low charge level transmitted from each of the communication devices 12 (communication devices 12-1 to 12n) on the power receiving side via the transceiver 113d.
  • the communication circuit 114d obtains the notification of a decrease in the remaining charge amount
  • the communication circuit 114d outputs the notification of a decrease in the remaining charge amount to the power supply optical power control unit 116d.
  • the feeding optical power control unit 116d acquires the notification of a decrease in the remaining charge output from the communication circuit 114d.
  • the power feeding optical power control unit 116 acquires a low charge level notification from at least one communication device 12 on the power receiving side, by controlling the power supply unit 111, the power feeding optical power control unit 116 controls the power supplying optical power transmitting unit 112d to control the communication device 12 (the communication device 12 -1 to 12n) is restarted. As a result, power supply to each of the communication devices 12 (communication devices 12-1 to 12n) is restarted.
  • the flowchart in FIG. 9 shows the process of controlling the power supply light output based on the measured value of the optical loss value.
  • the operation of the communication device 11d illustrated in the flowchart of FIG. 9 is started, for example, when the communication device 12 on the power receiving side is newly connected to the communication device 11d on the power feeding side (step S201).
  • the loss measurement unit 115d measures the optical loss value of the power supply light transmitted from the communication device 11d to each of the communication devices 12 (communication devices 12-1 to 12-n) (step S202).
  • the loss measurement unit 115d outputs information indicating a plurality of measured optical loss values to the feeding optical power control unit 116d.
  • the feeding optical power control section 116d controls the power supply section 111 according to the plurality of acquired optical loss values.
  • the feeding optical power control unit 116d determines whether all the acquired optical loss values are less than a predetermined value (step S203).
  • the feeding optical power control unit 116d adjusts the measured optical loss values to the preset output value.
  • the power supply unit 111 is controlled so that the power supply light transmission unit 112 transmits power supply light with the output value obtained by adding the maximum value (step S204).
  • step S203 determines whether at least one optical loss value is greater than or equal to the predetermined value. If it is determined that at least one optical loss value is greater than or equal to the predetermined value (step S203, NO), the power supply unit 111 is activated so that the power supply light transmitting unit 112 outputs the power supply light at the maximum output value. control (step S205).
  • the communication device 11d After waiting until a predetermined time has elapsed, the communication device 11d repeatedly executes the processes from step S202 onwards.
  • the flowchart in FIG. 10 shows the process of controlling the output of power supply light based on the power storage state of the secondary power source 122 of each of the communication devices 12 (communication devices 12-1 to 12-n).
  • the operation of the communication device 11d illustrated in the flowchart of FIG. 10 is started, for example, when optical power supply is started or restarted (step S301).
  • the communication circuit 114d obtains a full charge notification transmitted from any of the plurality of communication devices 12 (communication devices 12-1 to 12n) on the power receiving side via the transceiver 113d (step S302). Upon acquiring the full charge notification, the communication circuit 114d outputs the full charge notification to the power supply optical power control unit 116d. The feeding optical power control unit 116d acquires the full charge notification output from the communication circuit 114d.
  • the feeding optical power control unit 116d determines whether there is any communication device 12 that has not obtained a full charge notification among the plurality of communication devices 12 (communication devices 12-1 to 12n) on the power receiving side (step S303). ). If it is determined that there is a communication device 12 that has not received a full charge notification (step S303, YES), the power supply light control unit 116d causes the power supply light transmission unit 112 to continue transmitting the power supply light. (Step S304). The communication device 11d then repeatedly executes the processes from step S302 onwards.
  • the power supply optical power control section 116d controls the power supply section 111 to transmit the power from the power supply optical transmission section 112. Control is performed to stop sending out the power supply light (step S305).
  • the communication circuit 114d obtains a low charge level notification transmitted from any of the plurality of communication devices 12 (communication devices 12-1 to 12n) on the power receiving side via the transceiver 113d (step S306).
  • the communication circuit 114d obtains the notification of a decrease in the remaining charge amount
  • the communication circuit 114d outputs the notification of a decrease in the remaining charge amount to the power supply optical power control unit 116d.
  • the feeding optical power control unit 116d acquires the notification of a decrease in the remaining charge output from the communication circuit 114d.
  • the power supply optical power control unit 116 controls the power supply unit 111 so that the power supply optical power transmission unit 112d supplies power to each of the communication devices 12 (communication devices 12-1 to 12n). Light transmission is restarted (step S301). The communication device 11d then repeatedly executes the processes from step S302 onwards.
  • the optical communication system 1d in the fifth embodiment includes a communication device 11d on the power feeding side equipped with an optically powered light source and a plurality of communication devices 12 (communication devices) on the power receiving side equipped with photoelectric converters. 12-1 to 12-n) are connected to each other by wire, and perform optical power supply and communication, respectively.
  • the optical communication system 1d measures the optical loss value of the power supply light transmitted from the communication device 11d to each of the communication devices 12 (communication devices 12-1 to 12-n).
  • the optical communication system 1d controls the power of the power supply light output from the optical power supply light source of the communication device 11d based on the measured optical loss value.
  • the optical communication system 1d controls the power supply light to maximize the output. For example, if all of the plurality of measured optical loss values are less than a predetermined value, the optical communication system 1d may set the maximum of the plurality of measured optical loss values to a preset output value. The output of the power supply light is controlled so that the output value is the sum of the values.
  • the optical communication system 1d performs control to switch on and off the output of the power feeding light transmitted from the optical power feeding light source, depending on the charging state of the secondary power source of the communication device on the power receiving side.
  • the optical communication system 1d controls the output of the power supply light to be turned on when the charging state of the secondary power source of at least one communication device on the power receiving side is not fully charged, and When the charging state of the secondary power source of the communication device is fully charged, the output of the power supply light is controlled to be turned off.
  • the optical communication system 1d in the fifth embodiment can perform photoelectric conversion in various network configurations, such as a network configuration in which communication devices are connected to each other in a one-to-many manner, such as a double star configuration.
  • the power of the feeding light input to the photoelectric converter is determined based on the optical loss value according to the installation location of each of the plurality of communication devices 12 (communication devices 12-1 to 12-n) on the power receiving side equipped with the device.
  • the power of the power supply light output from the optical power supply light source can be adjusted so as not to become excessive. Thereby, the optical communication system 1d can reduce the power consumption of the optically powered light source.
  • the optical communication system 1d in the fifth embodiment can provide two Optical power supply can be stopped when the next power source is fully charged. Thereby, the optical communication system 1d can reduce the power consumption of the optically powered light source.
  • the optical communication system 1d in the fifth embodiment is based on the configuration of the optical communication system 1 in the first embodiment described above, and a communication device on the power feeding side and a communication device on the power receiving side are connected in a one-to-many manner.
  • This configuration further includes additional control processing for appropriate power supply light output when the That is, the optical communication system 1d in the fifth embodiment uses communication light to notify the charging state of the secondary power source from the communication device on the power receiving side to the communication device on the power feeding side, and uses an optical fiber that transmits the power feeding light.
  • the optical fiber and the optical fiber for transmitting the communication light are separate optical fibers.
  • the optical communication system according to the present invention is not limited to such a configuration, and the optical communication system according to the present invention may be the optical communication system 1a according to the second embodiment, the optical communication system 1b according to the third embodiment, or the optical communication system 1b according to the fourth embodiment.
  • an appropriate control process for outputting power supply light is further added when a communication device on the power supply side and a communication device on the power reception side are connected in a one-to-many manner. It may also have a different configuration.
  • the optical communication system according to the present invention may be configured to notify the charging state of the secondary power source from the communication device on the power receiving side to the communication device on the power feeding side using reflected light of the power feeding light, or
  • the optical fiber for transmitting light and the optical fiber for transmitting communication light may be the same optical fiber.
  • the communication device includes a power feeding light transmitting section, a measuring section, and a control section.
  • the communication device is the communication device 11 in the embodiment
  • the power supply optical transmitter is the power supply light transmitter 112 in the embodiment
  • the measurement unit is the loss measurement unit 115 in the embodiment
  • the control unit is This is the feeding optical power control unit 116 in the embodiment.
  • the above-mentioned power supply light transmitter transmits power supply light to the opposing communication device.
  • the opposing communication device is the communication device 12 in the embodiment.
  • the measurement unit measures the optical loss value during transmission of power supply light from the own device to the opposing communication device.
  • the above-mentioned control section controls the output of the power feeding light transmitted from the power feeding light transmitting section according to the optical loss value measured by the measuring section.
  • the measurement unit may measure the optical loss value using an optical pulse tester.
  • the control unit may control the output of the power feeding light to be larger as the optical loss value is larger.
  • the power feeding light transmitted from the power feeding light transmitting section may be respectively transmitted to a plurality of opposing communication devices via a branching section.
  • the measurement unit may measure the optical loss value in the transmission of the power supply light from the own device to the plurality of opposing communication devices.
  • the control section may control the output of the power feeding light according to the plurality of optical loss values measured by the measurement section.
  • the communication device is the communication device 11d in the embodiment
  • the branching section is the optical splitter 20 in the embodiment
  • the plurality of opposing communication devices are the communication devices 12-1 to 12-n in the embodiment.
  • the measurement unit is the loss measurement unit 115d in the embodiment
  • the control unit is the feeding optical power control unit 116d in the embodiment.
  • the control unit controls the power supply light to maximize the output when at least one of the plurality of optical loss values measured by the measurement unit is equal to or higher than a predetermined value. You may also do so.
  • the control section outputs the sum of the maximum value of the plurality of optical loss values with respect to the preset output value. The output of the power feeding light may be controlled so as to maintain the same value.
  • the optical power feeding system includes the first communication device and the second communication device.
  • the optical power feeding system is the optical communication system 1 in the embodiment
  • the first communication device is the communication device 11 in the embodiment
  • the second communication device is the communication device 12 in the embodiment.
  • the first communication device includes a power feeding light transmitting section, a measuring section, and a control section.
  • the power supply light transmission section is the power supply light transmission section 112 in the embodiment
  • the measurement section is the loss measurement section 115 in the embodiment
  • the control section is the power supply control section 116 in the embodiment.
  • the power supply light transmitter transmits power supply light to the second communication device.
  • the measurement unit measures an optical loss value during transmission of power supply light from the first communication device to the second communication device.
  • the control unit controls the output of the power supply light transmitted from the power supply light transmission unit according to the optical loss value measured by the measurement unit.
  • the second communication device includes a power feeding light receiving section, a photoelectric conversion section, and a power storage section.
  • the power feeding light receiving section and the photoelectric conversion section are the photoelectric conversion section 121 in the embodiment, and the power storage section is the secondary power source 122 in the embodiment.
  • the power supply light receiving section receives power supply light transmitted from the first communication device.
  • the photoelectric conversion unit converts the power supply light received by the power supply light reception unit into electric power.
  • the power storage unit stores power converted by the photoelectric conversion unit.
  • the second communication device may further include a power storage state information transmitter.
  • the power storage state information transmitter is the communication circuit 124 and the transceiver 123 in the embodiment.
  • the power storage state information transmitting unit may transmit first power storage state information indicating the power storage state of the power storage unit to the first communication device.
  • the first communication device may further include a power storage state information acquisition unit.
  • the power storage state information acquisition unit is the communication circuit 114 and the transceiver 113 in the embodiment.
  • the power storage state information acquisition section may acquire the first power storage state information transmitted from the power storage state information transmission section.
  • the control unit may control the output of the power supply light transmitted from the power supply light transmission unit according to the first power storage state information acquired by the power storage state information acquisition unit.
  • the power storage state information transmitter may transmit the first power storage state information in a manner that it is superimposed on the reflected light of the power supply light.
  • the optical power supply system is the optical communication system 1a in the embodiment
  • the power storage state information transmitter is the superimposition unit 125 in the embodiment.
  • the second communication device may further include a communication optical transmitter.
  • the optical power supply system is the optical communication system 1a in the embodiment
  • the communication optical transmitter is the communication circuit 124 and the transceiver 123 in the embodiment.
  • the communication light transmitter may transmit the second power storage state information to the first communication device using communication light.
  • the first communication device may further include a communication optical receiver.
  • the communication optical receiver is the transceiver 113 and the communication circuit 114 in the embodiment.
  • the communication optical receiver may receive the second power storage state information transmitted from the second communication device.
  • the power storage state information transmitting section may transmit the first power storage state information to the first communication device.
  • the communication light transmitting section may transmit the second power storage state information to the first communication.
  • the control unit may control the output of the power supply light according to the power storage state information acquired by the power storage state information acquisition unit or the communication light reception unit.
  • the power supply light transmitted from the power supply light transmission section may be transmitted to each of the plurality of second communication devices via a branching section.
  • the measurement unit may measure each optical loss value during transmission of power feeding light from the first communication device to the plurality of second communication devices.
  • the control section may control the output of the power feeding light according to the plurality of optical loss values measured by the measurement section.
  • the optical power feeding system is the optical communication system 1d in the embodiment
  • the first communication device is the communication device 11d in the embodiment
  • the branching part is the optical splitter 20 in the embodiment
  • the plurality of second The communication devices are the communication devices 12-1 to 12-n in the embodiment
  • the measurement unit is the loss measurement unit 115d in the embodiment
  • the control unit is the feeding optical power control unit 116d in the embodiment.
  • control unit controls the output of the power supply light to be maximized when the maximum value of the plurality of optical loss values measured by the measurement unit is greater than or equal to a predetermined value. You may also do so. Further, the control unit may control the output of the power feeding light to a value obtained by adding the maximum value to a predetermined output value when the maximum value is less than a predetermined value.
  • the communication devices 11, 11a to 11c and the communication devices 12, 12a to 12c in the embodiments described above may be realized by a computer.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
  • the "computer system” herein includes hardware such as an OS and peripheral devices.
  • the term "computer-readable recording medium” refers to portable media such as flexible disks, magneto-optical disks, ROMs, and CD-ROMs, and storage devices such as hard disks built into computer systems.
  • a "computer-readable recording medium” refers to a storage medium that dynamically stores a program for a short period of time, such as a communication line when transmitting a program via a network such as the Internet or a communication line such as a telephone line. It may also include a device that retains a program for a certain period of time, such as a volatile memory inside a computer system that is a server or client in that case. Further, the above-mentioned program may be one for realizing a part of the above-mentioned functions, or may be one that can realize the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized using a programmable logic device such as an FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

通信装置は、対向する通信装置に給電光を送信する給電光送信部と、自装置から前記対向する通信装置への前記給電光の伝送における光損失値を測定する測定部と、前記測定部によって測定された前記光損失値に応じて前記給電光送信部から送信される前記給電光の出力を制御する制御部とを備える。

Description

通信装置、光給電システム及び光給電方法
 本発明は、通信装置、光給電システム及び光給電方法に関する。
 本願は、2022年5月17日に、日本に出願されたPCT/JP2022/020497号に基づき優先権を主張し、その内容をここに援用する。
 従来、光給電光源が搭載された給電側の通信機器と光電変換器が搭載された受電側の通信機器とが互いに有線で接続され、光給電と通信とを行う光通信システムがある(例えば、非特許文献1参照)。このような光通信システムでは、給電側の通信機器の光給電光源から送出された給電光によって、受電側の通信機器に対する電力供給が行われる。受電側の通信機器は、受電した電力を2次電源に蓄積しておき、蓄積された電力によって駆動する。
"2.有線給電アクセスシステムの構成", ANSL R&D Times, 第105号, NTTアクセスサービスシステム研究所ホームページ, 2018年12月, [令和4年9月13日検索], インターネット (URL: https://www.rd.ntt/as/times/105/02/02.html) "OTDR 測定のための基礎知識", NTTレンタル・エンジニアリング株式会社ホームページ, 2015年, [令和4年9月13日検索], インターネット (URL: https://www.nttrec.co.jp/faq/faq-product/faq-hikarisokutei/faq-hikarisokutei05)
 しかしながら、従来の光通信システムでは、受電側の通信機器の設置場所及び蓄積電力量等の状況に関わらず、給電側の通信機器が光給電光源により一定の出力で電力供給を行う。そのため、従来の光通信システムでは、通信機器の状況によっては過剰な電力供給を行ってしまう場合があるという課題があった。
 上記事情に鑑み、本発明は、光給電光源の消費電力を削減することができる技術の提供を目的としている。
 本発明の一態様は、対向する通信装置に給電光を送信する給電光送信部と、自装置から前記対向する通信装置への前記給電光の伝送における光損失値を測定する測定部と、前記測定部によって測定された前記光損失値に応じて前記給電光送信部から送信される前記給電光の出力を制御する制御部と、を備える通信装置である。
 また、本発明の一態様は、第1の通信装置と、第2の通信装置と、を有する光給電システムであって、前記第1の通信装置は、前記第2の通信装置に給電光を送信する給電光送信部と、前記第1の通信装置から前記第2の通信装置への前記給電光の伝送における光損失値を測定する測定部と、前記測定部によって測定された前記光損失値に応じて前記給電光送信部から送信される前記給電光の出力を制御する制御部と、を備え、前記第2の通信装置は、前記第1の通信装置から送信された前記給電光を受信する給電光受信部と、前記給電光受信部によって受信された前記給電光を電力に変換する光電変換部と、前記光電変換部によって変換された電力を蓄電する蓄電部と、を備える光給電システムである。
 また、本発明の一態様は、対向する通信装置に給電光を送信する給電光送信ステップと、自装置から前記対向する通信装置への前記給電光の伝送における光損失値を測定する測定ステップと、前記測定ステップによって測定された前記光損失値に応じて前記給電光の出力を制御する制御ステップと、を有する光給電方法である。
 また、本発明の一態様は、第1の通信装置と、第2の通信装置と、を有する光給電システムにおける光給電方法であって、前記第1の通信装置が、前記第2の通信装置に給電光を送信する給電光送信ステップと、前記第1の通信装置が、前記第1の通信装置から前記第2の通信装置への前記給電光の伝送における光損失値を測定する測定ステップと、前記第1の通信装置が、前記測定ステップによって測定された前記光損失値に応じて前記給電光の出力を制御する制御ステップと、前記第2の通信装置が、前記第1の通信装置から送信された前記給電光を受信する給電光受信ステップと、前記第2の通信装置が、前記給電光受信ステップによって受信された前記給電光を電力に変換する光電変換ステップと、前記第2の通信装置が、前記光電変換ステップによって変換された電力を蓄電する蓄電ステップと、を有する光給電方法である。
 本発明により、光給電光源の消費電力を削減することが可能となる。
光通信システム8の全体構成を示すブロック図である。 本発明の第1の実施形態における光通信システム1の全体構成を示すブロック図である。 本発明の第1の実施形態における光通信システム1の動作を示すフローチャートである。 本発明の第2の実施形態における光通信システム1aの全体構成を示すブロック図である。 本発明の第2の実施形態における光通信システム1aの動作を示すフローチャートである。 本発明の第3の実施形態における光通信システム1bの全体構成を示すブロック図である。 本発明の第4の実施形態における光通信システム1cの全体構成を示すブロック図である。 本発明の第5の実施形態における光通信システム1dの全体構成を示すブロック図である。 本発明の第5の実施形態における通信装置11dの動作を示すフローチャートである。 本発明の第5の実施形態における通信装置11dの動作を示すフローチャートである。
 以下、本発明の通信装置、光給電システム及び光給電方法を、図面を参照しながら説明する。
 本発明の光給電システム及び光給電方法の特徴をより分かり易くするため、まず先に、比較例としての一般的な光給電システムの構成について説明する。図1は、光通信システム8の全体構成を示すブロック図である。光通信システム8は、比較例としての光給電システムの一例である。図1に示されるように、光通信システム8は、通信装置81と、通信装置82とを含んで構成される。通信装置81と通信装置82とは有線で接続され、互いに通信光を送受信することによってデータの送受信を行うことができる。
 また、通信装置81と通信装置82とは有線で接続され、通信装置81から出力された給電光が通信装置82に入力される。すなわち、通信装置81は、光給電光源が搭載された給電側の通信機器であり、通信装置82は、光電変換器が搭載された受電側の通信機器である。
 図1に示されるように、通信装置81は、電源部811と、給電光送信部812と、トランシーバ813と、通信回路814とを含んで構成される。
 電源部811は、給電光送信部812から送出される給電光を生成するための光源用電源である。給電光送信部812は、通信装置82へ向けて給電光を送出する。トランシーバ813は、自装置と通信装置82との間で通信光の送受信を行う送受信器である。通信回路814は、トランシーバ813を制御し、自装置と通信装置82との間で通信光を用いてデータの送受信を行う。
 また、図1に示されるように、通信装置82は、光電変換部821と、2次電源822と、トランシーバ823と、通信回路824とを含んで構成される。
 光電変換部821は、通信装置81から送出された給電光を受光する。光電変換部821は、受光した給電光を電力に変換する。2次電源822は、光電変換部821によって変換された電力を蓄電する。通信装置82の各機能部は、2次電源822に蓄電された電力によって駆動する。トランシーバ823は、自装置と通信装置81との間で通信光の送受信を行う送受信器である。通信回路824は、トランシーバ823を制御し、自装置と通信装置81との間で通信光を用いてデータの送受信を行う。
 このような構成を備えることで、従来の光通信システム8は、通信装置81から通信装置82へ伝送される給電光によって通信装置82を駆動させることができるとともに、通信装置81と通信装置82との間におけるデータ通信を実現することができる。しかしながら、従来の光通信システム8では、通信装置81が、給電光送信部812から一定の出力で給電光を送出して、通信装置82に電力供給を行う。そのため、例えば受電側の通信装置82の設置場所及び蓄積電力量等の状況によっては、過剰な電力供給を行ってしまうことがある。
<第1の実施形態>
 以下、本発明の第1の実施形態における光通信システム1について説明する。光通信システム1は、本発明の光給電システムの一例である。
 光通信システム1は、光給電光源が搭載された給電側の通信機器と光電変換器が搭載された受電側の通信機器とが互いに有線で接続され、光給電と通信とを行うことができるシステムである。光通信システム1は、給電側の通信機器から受電側の通信機器へ伝送される給電光の光損失値を測定する。一般的に、光損失値は、光電変換器を搭載した受電側の通信機器の設置場所等の状況(例えば、給電側の通信機器からの距離等)に応じて異なる値となる。
 そして、光通信システム1は、測定された光損失値に基づいて、給電側の通信機器の光給電光源から出力される給電光の電力を制御することに特徴がある。このとき、光通信システム1は、受電側の通信機器の光電変換器へ入力される給電光の電力が所定値以上にならないように、光給電光源から送出される給電光の電力の強さを制御する。また、光通信システム1は、受電側の通信機器の2次電源の充電状態に応じて、光給電光源から送出される給電光の出力のオンとオフとを切り替える制御を行う。このような特徴を有することで、第1の実施形態における光通信システム1は、光給電光源の消費電力を削減することができる。
[光通信システムの構成]
 以下、光通信システム1の構成についてさらに詳しく説明する。図2は、本発明の第1の実施形態における光通信システム1の全体構成を示すブロック図である。図2に示されるように、光通信システム1は、通信装置11と、通信装置12とを含んで構成される。通信装置11と通信装置12とは有線で接続され、互いに通信光を送受信することによってデータの送受信を行う。通信装置11と通信装置12とは、例えば通信用の光ファイバケーブルによって接続され、当該通信用の光ファイバケーブルを介して通信光が伝送される。
 なお、通信用のケーブルは、光ファイバケーブル以外のケーブルであってもよい。また、通信装置11と通信装置12とは無線で通信接続される構成であっても構わない。
 また、通信装置11と通信装置12とは有線で接続され、通信装置11から出力された給電光が通信装置12に入力される。すなわち、通信装置11は、光給電光源が搭載された給電側の通信機器であり、通信装置12は、光電変換器が搭載された受電側の通信機器である。通信装置11と通信装置12とは、上記の通信用の光ファイバケーブルとは別の、給電用の光ファイバケーブルによって接続され、当該給電用の光ファイバケーブルを介して給電光が伝送される。
 図2に示されるように、通信装置11は、電源部111と、給電光送信部112と、トランシーバ113と、通信回路114と、損失測定部115と、給電光電力制御部116とを含んで構成される。通信装置11は、例えば、光ファイバを用いたPON(Passive Optical Network)方式の加入者回線網(公衆回線網)において、通信会社の局側に設置される光回線の終端装置(OLT:Optical Line Terminal)である。通信装置11は、本発明の通信装置の一例である。
 電源部111は、給電光送信部112から送出される給電光を生成するための光源用電源である。給電光送信部112は、通信装置12へ向けて給電光を送出する。給電光送信部112は、例えばレーザダイオードである。トランシーバ113は、自装置と通信装置12との間で通信光の送受信を行う送受信器である。通信回路114は、トランシーバ113を制御し、自装置と通信装置12との間で通信光を用いてデータの送受信を行う。
 損失測定部115は、通信装置11から通信装置12へ伝送される給電光の光損失値を測定する。損失測定部115は、測定された光損失値を示す情報を給電光電力制御部116へ出力する。例えば、損失測定部115は、通信装置11と通信装置12とが接続された際に、給電光の光損失値を測定する。あるいは、例えば、損失測定部115は、所定の間隔で(例えば、1時間ごとに、又は1日ごとに)給電光の光損失値を測定する。
 なお、給電光の光損失値の測定方法は任意の既存技術を用いることができる。例えば、損失測定部115は、光パルス試験器(OTDR:Optical Time Domain Reflectometer)を用いて光損失値を測定する。OTDRを用いた光損失値の測定方法として、例えば非特許文献2に記載の技術を用いることができる。
 例えば、損失測定部115は、給電側の通信装置11から受電側の通信装置12に対してOTDRにより距離を測定する。そして、損失測定部115は、測定された距離に対して単位当たりの光損失を乗じることによって光損失値を算出する。あるいは、例えば、損失測定部115は、OTDRにより直接、通信装置11と通信装置12との間における給電光の光損失値を測定する。
 給電光電力制御部116は、損失測定部115から出力された光損失値を示す情報を取得する。給電光電力制御部116は、取得された光損失値に応じて電源部111を制御することにより、給電光送信部112から送出される給電光の電力を制御する。このとき、給電光電力制御部116は、受電側の通信装置12へ入力される給電光の電力が所定値以上にならないように、給電光送信部112から送出させる給電光の電力を抑制する。
 例えば、通信装置11と通信装置12との間における給電光の光損失値が大きいほど、受電側の通信装置12の設置場所が、給電側の通信装置11の場所からより遠く離れているということが考えられる。そのため、給電光電力制御部116は、取得された光損失値が大きいほど、給電光送信部112から送出される給電光の電力をより大きくさせるように電源部111を制御する。その逆に、給電光電力制御部116は、取得された光損失値が小さいほど、給電光送信部112から送出される給電光の電力をより小さくさせるように電源部111を制御する。
 なお、光損失値ごとの、給電光送信部112から送出される給電光の電力の値は予め定められている。例えば、光損失値と給電光の電力の値とが対応付けられたテーブルが、予め通信装置11に備えられた記憶媒体(不図示)に記憶されている。給電光電力制御部116は、当該テーブルを参照し、取得された光損失値に対応する給電光の電力の値を取得する。そして、給電光電力制御部116は、給電光送信部112から送出される給電光の電力が上記の取得された値となるように、電源部111を制御する。
 また、図2に示されるように、通信装置12は、光電変換部121と、2次電源122と、トランシーバ123と、通信回路124とを含んで構成される。通信装置12は、例えば、光ファイバを用いたPON方式の加入者回線網(公衆回線網)において、加入者宅に設置される光回線の終端装置(ONU:Optical Network Unit)である。
 光電変換部121は、通信装置11から送出された給電光を受光する。光電変換部121は、受光した給電光を電力に変換する。光電変換部121は、例えばフォトダイオードである。2次電源122は、光電変換部121によって変換された電力を蓄電する。通信装置12の各機能部は、2次電源122に蓄電された電力によって駆動する。2次電源122は、例えばバッテリーを含んで構成される。トランシーバ123は、自装置と通信装置11との間で通信光の送受信を行う送受信器である。通信回路124は、トランシーバ123を制御し、自装置と通信装置11との間で通信光を用いてデータの送受信を行う。
 また、2次電源122は、自己の充電状態を示す情報を、定期的に(例えば、1分ごとに、又は1時間ごとに)、通信回路124へ出力する。なお、通信回路124が、定期的に2次電源122の充電状態を検出することができるような構成であってもよい。
 2次電源122は、満充電の状態になった場合、満充電の状態になったことを示す情報を通信回路124へ出力する。そして、通信回路124は、2次電源122が満充電の状態になったことを通信装置11へ通知する。具体的には、通信回路124は、トランシーバ123を介して、2次電源122が満充電の状態になったことを示す情報(以下、「満充電通知」という。)を通信光により通信装置11へ送信する。
 通信装置11の通信回路114は、トランシーバ113を介して、受電側の通信装置12から送信された満充電通知を取得する。通信回路114は、満充電通知を取得すると、当該満充電通知を給電光電力制御部116へ出力する。給電光電力制御部116は、通信回路114から出力された満充電通知を取得する。給電光電力制御部116は、満充電通知を取得した場合、電源部111を制御することにより、給電光送信部112による通信装置12への給電光の送出を停止させる。これにより、通信装置12への給電が停止される。
 また、2次電源122は、充電残量が所定値以下の状態になった場合、充電残量が所定値以下の状態になったことを示す情報を通信回路124へ出力する。通信回路124は、2次電源122の充電残量が所定値以下の状態になったことを通信装置11へ通知する。具体的には、通信回路124は、トランシーバ123を介して、2次電源122の充電残量が所定値以下の状態になったことを示す情報(以下、「充電残量低下通知」という。)を通信光により通信装置11へ送信する。
 通信装置11の通信回路114は、トランシーバ113を介して、受電側の通信装置12から送信された充電残量低下通知を取得する。通信回路114は、充電残量低下通知を取得すると、当該充電残量低下通知を給電光電力制御部116へ出力する。給電光電力制御部116は、通信回路114から出力された充電残量低下通知を取得する。給電光電力制御部116は、充電残量低下通知を取得した場合、電源部111を制御することにより、給電光送信部112による通信装置12への給電光の送出を再開させる。これにより、通信装置12への給電が再開される。
[光通信システムの動作]
 以下、光通信システム1の動作の一例について説明する。図3は、本発明の第1の実施形態における光通信システム1の動作を示すフローチャートである。図3のフローチャートが示す光通信システム1の動作は、例えば、通信装置11と通信装置12とが接続された際に開始される。
 給電側の通信装置11の損失測定部115は、通信装置11から通信装置12へ伝送される給電光の光損失値を測定する(ステップS001)。損失測定部115は、測定された光損失値を示す情報を給電光電力制御部116へ出力する。給電光電力制御部116は、取得された光損失値に応じて電源部111を制御することにより、光損失値に応じた電力の給電光が給電光送信部112から送出されるように制御を行う(ステップS002)。
 受電側の通信装置12の光電変換部121は、通信装置11から送出された給電光を受光する。光電変換部121は、受光した給電光を電力に変換する。2次電源122は、光電変換部121によって変換された電力を蓄電する(ステップS003)。
 2次電源122は、満充電の状態になった場合(ステップS004)、満充電の状態になったことを示す情報を通信回路124へ出力する。通信回路124は、トランシーバ123を介して満充電通知を通信光により通信装置11へ送信する(ステップS005)。
 給電側の通信装置11の通信回路114は、トランシーバ113を介して、受電側の通信装置12から送信された満充電通知を受信する(ステップS006)。通信回路114は、満充電通知を給電光電力制御部116へ出力する。給電光電力制御部116は、満充電通知を取得すると、電源部111を制御することにより、給電光送信部112による通信装置12への給電光の送出を停止させる(ステップS007)。
 また、受電側の通信装置12の2次電源122は、充電残量が所定値以下の状態になった場合(ステップS008・YES)、充電残量が所定値以下の状態になったことを示す情報を通信回路124へ出力する。通信回路124は、トランシーバ123を介して充電残量低下通知を通信光により通信装置11へ送信する(ステップS009)。
 給電側の通信装置11の通信回路114は、トランシーバ113を介して、受電側の通信装置12から送信された充電残量低下通知を受信する(ステップS010)。通信回路114は、充電残量低下通知を給電光電力制御部116へ出力する。給電光電力制御部116は、充電残量低下通知を取得すると、電源部111を制御することにより、給電光送信部112による給電光の送出を再開させる(ステップS011)。
 図3のフローチャートが示す光通信システム1の動作は、例えば、通信装置11と通信装置12との間の通信が終了した場合に終了する。
 以上説明したように、第1の実施形態における光通信システム1は、光給電光源が搭載された給電側の通信装置11と光電変換器が搭載された受電側の通信装置12とが互いに有線で接続され、光給電と通信とを行う。光通信システム1は、通信装置11から通信装置12へ伝送される給電光の光損失値を測定する。そして、光通信システム1は、測定された光損失値に基づいて、通信装置11の光給電光源から出力される給電光の電力を制御する。このとき、光通信システム1は、受電側の通信機器の光電変換器へ入力される給電光の電力が所定値以上にならないように、光給電光源から送出される給電光の電力の強さを制御する。
 また、以上説明したように、第1の実施形態における光通信システム1は、通信装置12の2次電源122の充電状態を、通信光を用いて、通信装置12から通信装置11へ通知する。そして、光通信システム1は、通信装置12の2次電源122の充電状態に応じて、光給電光源から送出される給電光の出力のオンとオフとを切り替える制御を行う。
 このような特徴を有することで、第1の実施形態における光通信システム1は、光給電光源の消費電力を削減することができる。
<第2の実施形態>
 以下、本発明の第2の実施形態における光通信システム1aについて説明する。光通信システム1aは、本発明の光給電システムの一例である。光通信システム1aは、前述の第1の実施形態における光通信システム1とは異なり、受電側の通信機器から給電側の通信機器への2次電源の充電状態に関する通知を、通信光を用いるのではなく、給電光の反射光を用いて行う。
 但し、給電側の通信機器から受電側の通信機器へ給電光が伝送されていないときには、当該給電光の反射光も存在しないことになる。これにより、受電側の通信機器が給電側の通信機器への2次電源の充電状態に関する通知を、反射光を用いて行うことはできなくなる。そのため、この場合には、第2の実施形態における光通信システム1aは、前述の第1の実施形態における光通信システム1と同様に、2次電源の充電状態に関する通知を、通信光を用いて行う。このような特徴を有することで、第2の実施形態における光通信システム1aは、光給電光源の消費電力を削減することができる。
[光通信システムの構成]
 以下、光通信システム1の構成についてさらに詳しく説明する。図4は、本発明の第2の実施形態における光通信システム1aの全体構成を示すブロック図である。図4に示されるように、光通信システム1aは、通信装置11aと、通信装置12aとを含んで構成される。通信装置11aと通信装置12aとは有線で接続され、互いに通信光を送受信することによってデータの送受信を行う。通信装置11aと通信装置12aとは、例えば通信用の光ファイバケーブルによって接続され、当該通信用の光ファイバケーブルを介して通信光が伝送される。
 なお、通信用のケーブルは、光ファイバケーブル以外のケーブルであってもよい。また、通信装置11aと通信装置12aとは無線で通信接続される構成であっても構わない。
 また、通信装置11aと通信装置12aとは有線で接続され、通信装置11aから出力された給電光が通信装置12aに入力される。すなわち、通信装置11aは、光給電光源が搭載された給電側の通信機器であり、通信装置12aは、光電変換器が搭載された受電側の通信機器である。通信装置11aと通信装置12aとは、上記の通信用の光ファイバケーブルとは別の、給電用の光ファイバケーブルによって接続され、当該給電用の光ファイバケーブルを介して給電光が伝送される。
 なお、以下の説明において、第2の実施形態における光通信システム1aが有する機能部のうち、前述の第1の実施形態における光通信システム1が有する機能部と同様の機能を持つ機能部については同一の符号を付し、説明を省略することがある。
 図4に示されるように、通信装置11aは、電源部111と、給電光送信部112と、トランシーバ113と、通信回路114aと、損失測定部115と、給電光電力制御部116aと、反射光受信部117とを含んで構成される。通信装置11aは、例えばOLTである。通信装置11aは、本発明の通信装置の一例である。
 電源部111は、給電光送信部112から送出される給電光を生成するための光源用電源である。給電光送信部112は、通信装置12aへ向けて給電光を送出する。トランシーバ113は、自装置と通信装置12aとの間で通信光の送受信を行う送受信器である。通信回路114aは、トランシーバ113を制御し、自装置と通信装置12aとの間で通信光を用いてデータの送受信を行う。
 損失測定部115は、通信装置11aから通信装置12aへ伝送される給電光の光損失値を測定する。損失測定部115は、測定された光損失値を示す情報を給電光電力制御部116aへ出力する。例えば、損失測定部115は、通信装置11aと通信装置12aとが接続された際に、給電光の光損失値を測定する。あるいは、例えば、損失測定部115は、所定の間隔で(例えば、1時間ごとに、又は1日ごとに)給電光の光損失値を測定する。なお、給電光の光損失値の測定方法は任意の既存技術を用いることができる。
 給電光電力制御部116aは、損失測定部115から出力された光損失値を示す情報を取得する。給電光電力制御部116aは、取得された光損失値に応じて電源部111を制御することにより、給電光送信部112から送出される給電光の電力を制御する。給電光電力制御部116aは、受電側の通信装置12aへ入力される給電光の電力が所定値以上にならないように、給電光送信部112から送出される給電光の電力を抑制する。
 反射光受信部117は、給電光送信部112から送出された給電光の反射光を受信する。前述の通り、反射光は、給電光送信部112から通信装置12aへ送出された給電光に対する反射光である。反射光には、通信装置12aの2次電源122の充電状態に関する通知が重畳されている。反射光受信部117は、反射光を復調し、2次電源122aの充電状態に関する通知を取得する。反射光受信部117は、例えば復調器を含んで構成され、給電光送信部112に併設される。反射光受信部117は、取得された2次電源122aの充電状態に関する通知を、給電光電力制御部116aへ出力する。
 反射光に重畳された、2次電源122aの充電状態に関する通知の種類として、例えば満充電通知がある。なお、満充電通知は、必ずしも2次電源122が実際に満充電の状態になったことを示す情報ではなくてもよく、例えば、2次電源122が充電残量が所定値以上の状態になったことを示す情報(すなわち、十分な充電残量になったことを示す情報)であってもよい。なお、反射光に重畳された、2次電源122aの充電状態に関する通知の種類として、例えば充電残量低下通知があってもよい。
 給電光電力制御部116aは、反射光受信部117から出力された2次電源122aの充電状態に関する通知を取得する。給電光電力制御部116aは、取得された2次電源122aの充電状態に関する通知に応じて電源部111を制御することにより、給電光送信部112から送出される給電光の電力を制御する。
 給電光電力制御部116aは、反射光受信部117から出力された満充電通知を取得する。給電光電力制御部116aは、満充電通知を取得した場合、電源部111を制御することにより、給電光送信部112による通信装置12aへの給電光の送出を停止させる。これにより、通信装置12aへの給電が停止される。
 なお、給電光電力制御部116aは、反射光受信部117から出力された充電残量低下通知を取得してもよい。そして、こ給電光電力制御部116は、充電残量低下通知を取得した場合、電源部111を制御することにより、給電光送信部112により通信装置12aへ送出される給電光の電力をより強くさせるようにしてもよい。これにより、通信装置12aへのより適切な給電が行われる。
 また、図4に示されるように、通信装置12aは、光電変換部121と、2次電源122aと、トランシーバ123と、通信回路124aと、重畳部125とを含んで構成される。通信装置12aは、例えばONUである。
 光電変換部121は、通信装置11aから送出された給電光を受光する。光電変換部121は、受光した給電光を電力に変換する。2次電源122aは、光電変換部121によって変換された電力を蓄電する。トランシーバ123は、自装置と通信装置11aとの間で通信光の送受信を行う送受信器である。通信回路124は、トランシーバ123を制御し、自装置と通信装置11aとの間で通信光によって行われるデータの送受信を行う。
 また、2次電源122aは、自己の充電状態を示す情報を、定期的に(例えば、1分ごとに、又は1時間ごとに)、重畳部125へ出力する。なお、重畳部125が、定期的に2次電源122aの充電状態を検出することができるような構成であってもよい。
 重畳部125は、2次電源122aの充電状態を示す情報を当該2次電源122aから取得する。重畳部125は、光電変換部121によって受光された給電光の一部に対し、2次電源122aの充電状態に関する通知を変調させることにより給電光の反射光に重畳させる。重畳部125は、例えば、反射型変調器を含んで構成され、光電変換部121に併設される。重畳部125は、2次電源122aの充電状態に関する通知が重畳された反射光を、通信装置11aへ送出する。
 例えば、2次電源122aは、満充電の状態になった場合、満充電の状態になったことを示す情報を重畳部125へ出力する。そして、重畳部125は、2次電源122aが満充電の状態になったことを示す満充電通知を変調させることにより給電光の反射光に重畳させる。重畳部125は、2次電源122aの満充電通知が重畳された反射光を通信装置11aへ送出する。
 また、2次電源122aは、自己の充電残量が空の(ゼロの)状態になった場合、充電残量が空の状態になったことを示す情報を通信回路124aへ出力する。なお、通信回路124aが、2次電源122aの充電残量が空の状態になったことを検出することができるような構成であってもよい。
 通信回路124aは、2次電源122aの充電残量が空の状態になったことを通信装置11aへ通知する。具体的には、通信回路124は、トランシーバ123を介して、2次電源122aの充電残量が空の状態になったことを示す情報(以下、「過放電通知」という。)を通信光により通信装置11aへ送信する。
 なお、過放電通知は、必ずしも2次電源122が実際に空の状態になったことを示す情報ではなくてもよく、2次電源122が充電残量が所定値以下の状態になったことを示す情報(すなわち、十分でない充電残量になったことを示す情報)であってもよい。
 給電側の通信装置11aの通信回路114aは、トランシーバ113を介して、受電側の通信装置12aから送信された過放電通知を取得する。通信回路114aは、過放電通知を給電光電力制御部116aへ出力する。給電光電力制御部116aは、過放電通知を取得した場合、電源部111を制御することにより、給電光送信部112による通信装置12aへの給電光の送出を再開させる。これにより、通信装置12aへの給電が再開される。
 なお、通信装置12aの2次電源122aの充電残量が空の状態になる場合とは、通信装置11aから通信装置12aに対して給電が行われていない場合であることが想定される。通信装置11aから通信装置12aへ給電光が送出されない場合、当該給電光の反射光も存在しないため、過放電通知を反射光に重畳させて通信装置12aから通信装置11aへ送信することはできない。そのため、過放電通知は、通信光を用いて通信装置12aから通信装置11aへ伝送される。
[光通信システムの動作]
 以下、光通信システム1aの動作の一例について説明する。図5は、本発明の第2の実施形態における光通信システム1aの動作を示すフローチャートである。図5のフローチャートが示す光通信システム1aの動作は、例えば、通信装置11aと通信装置12aとが接続された際に開始される。
 給電側の通信装置11aの損失測定部115は、通信装置11aから通信装置12aへ伝送される給電光の光損失値を測定する(ステップS101)。損失測定部115は、測定された光損失値を示す情報を給電光電力制御部116aへ出力する。給電光電力制御部116aは、取得された光損失値に応じて電源部111を制御することにより、光損失値に応じた電力の給電光が給電光送信部112から送出されるように制御を行う(ステップS102)。
 受電側の通信装置12aの光電変換部121は、通信装置11aから送出された給電光を受光する。光電変換部121は、受光した給電光を電力に変換する。2次電源122aは、光電変換部121によって変換された電力を蓄電する(ステップS103)。
 2次電源122aは、満充電の状態になった場合(ステップS104・YES)、満充電の状態になったことを示す情報を重畳部125へ出力する。そして、重畳部125は、満充電通知を変調させることにより給電光の反射光に重畳させる。重畳部125は、満充電通知が重畳された反射光を通信装置11aへ送出する(ステップS105)。
 給電側の通信装置11aの反射光受信部117は、給電光送信部112から送出された給電光の反射光を受信する。反射光受信部117は、反射光を復調し、満充電通知を取得する(ステップS106)。反射光受信部117は、取得された満充電通知を、給電光電力制御部116aへ出力する。給電光電力制御部116aは、満充電通知を取得すると、電源部111を制御することにより、給電光送信部112による通信装置12aへの給電光の送出を停止させる(ステップS107)。
 また、受電側の通信装置12aの2次電源122は、充電残量が空の状態になった場合(ステップS108・YES)、充電残量が空の状態になったことを示す情報を通信回路124aへ出力する。通信回路124aは、トランシーバ123を介して過放電通知を通信光により通信装置11aへ送信する(ステップS109)。
 給電側の通信装置11aの通信回路114aは、トランシーバ113を介して、受電側の通信装置12aから送信された過放電通知を受信する(ステップS110)。通信回路114は、過放電通知を給電光電力制御部116aへ出力する。給電光電力制御部116aは、過放電通知を取得すると、電源部111を制御することにより、給電光送信部112による通信装置12aへの給電光の送出を再開させる(ステップS111)。
 図5のフローチャートが示す光通信システム1aの動作は、例えば、通信装置11aと通信装置12aとの間の通信が終了した場合に終了する。
 以上説明したように、第2の実施形態における光通信システム1aは、光給電光源が搭載された給電側の通信装置11aと光電変換器が搭載された受電側の通信装置12aとが互いに有線で接続され、光給電と通信とを行う。光通信システム1aは、通信装置11aから通信装置12aへ伝送される給電光の光損失値を測定する。そして、光通信システム1aは、測定された光損失値に基づいて、通信装置11aの光給電光源から出力される給電光の電力を制御する。このとき、光通信システム1aは、受電側の通信機器の光電変換器へ入力される給電光の電力が所定値以上にならないように、光給電光源から送出される給電光の電力の強さを制御する。
 また、以上説明したように、第2の実施形態における光通信システム1aは、通信装置12aの2次電源122aの充電状態を、給電光の反射光を用いて、通信装置12aから通信装置11aへ通知する。そして、光通信システム1は、通信装置12aの2次電源122の充電状態に応じて、光給電光源から送出される給電光の出力のオンとオフとを切り替える制御を行う。但し、前述の通り、給電光の出力がオフになった場合には反射光も存在しなくなるため、これ以降、通信装置12aから通信装置11aへ2次電源122aの充電状態を通知することができなくなる。そのため、第2の実施形態における光通信システム1aは、2次電源122aの充電残量が空の状態になったことを示す過放電通知を、反射光を用いるのではなく、通信光を用いて通信装置12aから通信装置11aへ伝送する。これにより、通信装置11aは、反射光を受信しなくても、2次電源122aの充電残量が空の状態になったことを認識することができる。
 このような特徴を有することで、第2の実施形態における光通信システム1aは、光給電光源の消費電力を削減することができる。
<第3の実施形態>
 以下、本発明の第3の実施形態における光通信システム1bについて説明する。光通信システム1bは、本発明の光給電システムの一例である。
 前述の第1の実施形態における光通信システム1及び前述の第2の実施形態における光通信システム1aでは、給電光が伝送される光ファイバは、通信光が伝送される光ファイバとは別の光ファイバとする構成であった。これに対し、第3の実施形態における光通信システム1bは、給電光の伝送と通信光の伝送とを同一の光ファイバケーブルを用いて行う構成である。上記の給電光の伝送と通信光の伝送とを同一の光ファイバケーブルを用いて行う技術として、例えば、WDM(Wavelength Division Multiplexing)を用いることができる。
 本発明の第3の実施形態における光通信システム1bの構成は、前述の第1の実施形態における光通信システム1の構成に対して、給電光の伝送と通信光の伝送とが同一の光ファイバケーブルを用いて行われるように変形された構成である。
[光通信システムの構成]
 以下、光通信システム1bの構成についてさらに詳しく説明する。図6は、本発明の第3の実施形態における光通信システム1bの全体構成を示すブロック図である。図6に示されるように、光通信システム1bは、通信装置11bと、通信装置12bとを含んで構成される。通信装置11bと通信装置12bとは有線で接続され、互いに通信光を送受信することによってデータの送受信を行う。通信装置11bと通信装置12bとは、通信と給電との兼用の光ファイバケーブルによって接続され、当該光ファイバケーブルを介して通信光が伝送される。
 また、通信装置11bから出力された給電光が、上記の通信と給電との兼用の光ファイバケーブルを介して伝送され、通信装置12bに入力される。すなわち、通信装置11bは、光給電光源が搭載された給電側の通信機器であり、通信装置12bは、光電変換器が搭載された受電側の通信機器である。
 なお、以下の説明において、第3の実施形態における光通信システム1bが有する機能部のうち、前述の第1の実施形態における光通信システム1が有する機能部と同様の機能を持つ機能部については同一の符号を付し、説明を省略することがある。
 図6に示されるように、通信装置11bは、電源部111と、通信回路114と、損失測定部115と、給電光電力制御部116と、給電光送信部兼トランシーバ118とを含んで構成される。通信装置11bは、例えばOLTである。通信装置11bは、本発明の通信装置の一例である。
 電源部111は、給電光送信部兼トランシーバ118から送出される給電光を生成するための光源用電源である。給電光送信部兼トランシーバ118は、通信装置12bへ向けて給電光を送出する。給電光送信部兼トランシーバ118は、例えばレーザダイオードを含んで構成される。また、給電光送信部兼トランシーバ118は、自装置と通信装置12bとの間で通信光の送受信を行う。通信回路114は、給電光送信部兼トランシーバ118を制御し、自装置と通信装置12bとの間で通信光を用いてデータの送受信を行う。
 損失測定部115は、通信装置11bから通信装置12bへ伝送される給電光の光損失値を測定する。損失測定部115は、測定された光損失値を示す情報を給電光電力制御部116へ出力する。例えば、損失測定部115は、通信装置11bと通信装置12bとが接続された際に、給電光の光損失値を測定する。あるいは、例えば、損失測定部115は、所定の間隔で(例えば、1時間ごとに、又は1日ごとに)給電光の光損失値を測定する。
 給電光電力制御部116は、損失測定部115から出力された光損失値を示す情報を取得する。給電光電力制御部116は、取得された光損失値に応じて電源部111を制御することにより、給電光送信部兼トランシーバ118から送出される給電光の電力を制御する。このとき、給電光電力制御部116は、受電側の通信装置12bへ入力される給電光の電力が所定値以上にならないように、給電光送信部兼トランシーバ118から送出させる給電光の電力を抑制する。
 また、図6に示されるように、通信装置12bは、2次電源122と、通信回路124と、光電変換部兼トランシーバ126とを含んで構成される。通信装置12bは、例えばONUである。
 光電変換部兼トランシーバ126は、通信装置11bから送出された給電光を受光する。光電変換部兼トランシーバ126は、受光した給電光を電力に変換する。光電変換部兼トランシーバ126は、例えばフォトダイオードを含んで構成される。2次電源122は、光電変換部兼トランシーバ126によって変換された電力を蓄電する。通信装置12bの各機能部は、2次電源122に蓄電された電力によって駆動する。光電変換部兼トランシーバ126は、自装置と通信装置11bとの間で通信光の送受信を行う。通信回路124は、光電変換部兼トランシーバ126を制御し、自装置と通信装置11bとの間で通信光を用いてデータの送受信を行う。
 また、2次電源122は、自己の充電状態を示す情報を、定期的に(例えば、1分ごとに、又は1時間ごとに)、通信回路124へ出力する。なお、通信回路124が、定期的に2次電源122の充電状態を検出することができるような構成であってもよい。
 2次電源122は、満充電の状態になった場合、満充電の状態になったことを示す情報を通信回路124へ出力する。そして、通信回路124は、2次電源122が満充電の状態になったことを通信装置11bへ通知する。具体的には、通信回路124は、光電変換部兼トランシーバ126を介して、2次電源122が満充電の状態になったことを示す満充電通知を通信光により通信装置11bへ送信する。
 通信装置11bの通信回路114は、給電光送信部兼トランシーバ118を介して、受電側の通信装置12bから送信された満充電通知を取得する。通信回路114は、満充電通知を取得すると、当該満充電通知を給電光電力制御部116へ出力する。給電光電力制御部116は、通信回路114から出力された満充電通知を取得する。給電光電力制御部116は、満充電通知を取得した場合、電源部111を制御することにより、給電光送信部兼トランシーバ118による通信装置12bへの給電光の送出を停止させる。これにより、通信装置12bへの給電が停止される。
 また、2次電源122は、充電残量が所定値以下の状態になった場合、充電残量が所定値以下の状態になったことを示す情報を通信回路124へ出力する。通信回路124は、2次電源122の充電残量が所定値以下の状態になったことを通信装置11bへ通知する。具体的には、通信回路124は、光電変換部兼トランシーバ126を介して、2次電源122の充電残量が所定値以下の状態になったことを示す充電残量低下通知を通信光により通信装置11bへ送信する。
 通信装置11bの通信回路114は、給電光送信部兼トランシーバ118を介して、受電側の通信装置12bから送信された充電残量低下通知を取得する。通信回路114は、充電残量低下通知を取得すると、当該充電残量低下通知を給電光電力制御部116へ出力する。給電光電力制御部116は、通信回路114から出力された充電残量低下通知を取得する。給電光電力制御部116は、充電残量低下通知を取得した場合、電源部111を制御することにより、給電光送信部兼トランシーバ118による通信装置12bへの給電光の送出を再開させる。これにより、通信装置12bへの給電が再開される。
 以上説明したように、第3の実施形態における光通信システム1bの構成は、前述の第1の実施形態における光通信システム1の構成に対して、給電光の伝送と通信光の伝送とが同一の光ファイバケーブルを用いて行われるように変形された構成である。
 このような構成を備えることで、光通信システム1bは、例えば、必要とされる光ファイバケーブルの本数を削減することができるため、装置コスト、設置コスト、設置スペース、及び運用コスト等を削減することができる。
<第4の実施形態>
 以下、本発明の第4の実施形態における光通信システム1cについて説明する。
 本発明の第4の実施形態における光通信システム1cの構成は、前述の第2の実施形態における光通信システム1aの構成に対して、給電光の伝送と通信光の伝送とが同一の光ファイバケーブルを用いて行われるように変形された構成である。上記の給電光の伝送と通信光の伝送とを同一の光ファイバケーブルを用いて行う技術として、例えばWDMを用いることができる。
[光通信システムの構成]
 以下、光通信システム1cの構成についてさらに詳しく説明する。図7は、本発明の第4の実施形態における光通信システム1cの全体構成を示すブロック図である。図7に示されるように、光通信システム1cは、通信装置11cと、通信装置12cとを含んで構成される。通信装置11cと通信装置12cとは有線で接続され、互いに通信光を送受信することによってデータの送受信を行う。通信装置11cと通信装置12cとは、通信と給電との兼用の光ファイバケーブルによって接続され、当該光ファイバケーブルを介して通信光が伝送される。
 また、通信装置11cから出力された給電光が、上記の通信と給電との兼用の光ファイバケーブルを介して伝送され、通信装置12cに入力される。すなわち、通信装置11cは、光給電光源が搭載された給電側の通信機器であり、通信装置12cは、光電変換器が搭載された受電側の通信機器である。
 なお、以下の説明において、第4の実施形態における光通信システム1cが有する機能部のうち、前述の第2の実施形態における光通信システム1aが有する機能部と同様の機能を持つ機能部については同一の符号を付し、説明を省略することがある。
 図7に示されるように、通信装置11cは、通信回路114aと、損失測定部115と、給電光電力制御部116aと、反射光受信部117と、給電光送信部兼トランシーバ118とを含んで構成される。通信装置11cは、例えばOLTである。通信装置11cは、本発明の通信装置の一例である。
 電源部111は、給電光送信部兼トランシーバ118から送出される給電光を生成するための光源用電源である。給電光送信部兼トランシーバ118は、通信装置12cへ向けて給電光を送出する。給電光送信部兼トランシーバ118は、自装置と通信装置12cとの間で通信光の送受信を行う送受信器である。通信回路114aは、給電光送信部兼トランシーバ118を制御し、自装置と通信装置12cとの間で通信光を用いてデータの送受信を行う。
 損失測定部115は、通信装置11cから通信装置12cへ伝送される給電光の光損失値を測定する。損失測定部115は、測定された光損失値を示す情報を給電光電力制御部116aへ出力する。例えば、損失測定部115は、通信装置11cと通信装置12cとが接続された際に、給電光の光損失値を測定する。あるいは、例えば、損失測定部115は、所定の間隔で(例えば、1時間ごとに、又は1日ごとに)給電光の光損失値を測定する。なお、給電光の光損失値の測定方法は任意の既存技術を用いることができる。
 給電光電力制御部116aは、損失測定部115から出力された光損失値を示す情報を取得する。給電光電力制御部116aは、取得された光損失値に応じて電源部111を制御することにより、給電光送信部兼トランシーバ118から送出される給電光の電力を制御する。給電光電力制御部116aは、受電側の通信装置12cへ入力される給電光の電力が所定値以上にならないように、給電光送信部兼トランシーバ118から送出される給電光の電力を抑制する。
 反射光受信部117は、給電光送信部兼トランシーバ118から送出された給電光の反射光を受信する。前述の通り、反射光は、給電光送信部兼トランシーバ118から通信装置12cへ送出された給電光に対する反射光である。反射光には、通信装置12cの2次電源122aの充電状態に関する通知が重畳されている。反射光受信部117は、反射光を復調し、2次電源122aの充電状態に関する通知を取得する。反射光受信部117は、例えば復調器を含んで構成され、給電光送信部兼トランシーバ118に併設される。反射光受信部117は、取得された2次電源122aの充電状態に関する通知を、給電光電力制御部116aへ出力する。
 反射光に重畳された、2次電源122aの充電状態に関する通知の種類として、例えば満充電通知がある。なお、満充電通知は、必ずしも2次電源122aが実際に満充電の状態になったことを示す情報ではなくてもよく、例えば、2次電源122aが充電残量が所定値以上の状態になったことを示す情報(すなわち、十分な充電残量になったことを示す情報)であってもよい。なお、反射光に重畳された、2次電源122aの充電状態に関する通知の種類として、例えば充電残量低下通知があってもよい。
 給電光電力制御部116aは、反射光受信部117から出力された2次電源122aの充電状態に関する通知を取得する。給電光電力制御部116aは、取得された2次電源122aの充電状態に関する通知に応じて電源部111を制御することにより、給電光送信部兼トランシーバ118から送出される給電光の電力を制御する。
 給電光電力制御部116aは、反射光受信部117から出力された満充電通知を取得する。給電光電力制御部116aは、満充電通知を取得した場合、電源部111を制御することにより、給電光送信部兼トランシーバ118による通信装置12cへの給電光の送出を停止させる。これにより、通信装置12cへの給電が停止される。
 なお、給電光電力制御部116aは、反射光受信部117から出力された充電残量低下通知を取得してもよい。そして、こ給電光電力制御部116は、充電残量低下通知を取得した場合、電源部111を制御することにより、給電光送信部兼トランシーバ118により通信装置12cへ送出される給電光の電力をより強くさせるようにしてもよい。これにより、通信装置12cへのより適切な給電が行われる。
 また、図7に示されるように、通信装置12cは、2次電源122aと、通信回路124aと、重畳部125と、光電変換部兼トランシーバ126を含んで構成される。通信装置12cは、例えばONUである。
 光電変換部121は、通信装置11cから送出された給電光を受光する。光電変換部兼トランシーバ126は、受光した給電光を電力に変換する。2次電源122aは、光電変換部兼トランシーバ126によって変換された電力を蓄電する。また、光電変換部兼トランシーバ126は、自装置と通信装置11cとの間で通信光の送受信を行う。通信回路124は、光電変換部兼トランシーバ126を制御し、自装置と通信装置11cとの間で通信光によって行われるデータの送受信を行う。
 また、2次電源122aは、自己の充電状態を示す情報を、定期的に(例えば、1分ごとに、又は1時間ごとに)、重畳部125へ出力する。なお、重畳部125が、定期的に2次電源122aの充電状態を検出することができるような構成であってもよい。
 重畳部125は、2次電源122aの充電状態を示す情報を当該2次電源122aから取得する。重畳部125は、光電変換部121によって受光された給電光の一部に対し、2次電源122aの充電状態に関する通知を変調させることにより給電光の反射光に重畳させる。重畳部125は、例えば、反射型変調器を含んで構成され、光電変換部兼トランシーバ126に併設される。重畳部125は、2次電源122aの充電状態に関する通知が重畳された反射光を、通信装置11cへ送出する。
 例えば、2次電源122aは、満充電の状態になった場合、満充電の状態になったことを示す情報を重畳部125へ出力する。そして、重畳部125は、2次電源122aが満充電の状態になったことを示す満充電通知を変調させることにより給電光の反射光に重畳させる。重畳部125は、2次電源122aの満充電通知が重畳された反射光を通信装置11cへ送出する。
 また、2次電源122aは、自己の充電残量が空の(ゼロの)状態になった場合、充電残量が空の状態になったことを示す情報を通信回路124aへ出力する。なお、通信回路124aが、2次電源122aの充電残量が空の状態になったことを検出することができるような構成であってもよい。
 通信回路124aは、2次電源122aの充電残量が空の状態になったことを通信装置11cへ通知する。具体的には、通信回路124は、光電変換部兼トランシーバ126を介して、2次電源122aの充電残量が空の状態になったことを示す過放電通知を、通信光により通信装置11cへ送信する。
 なお、過放電通知は、必ずしも2次電源122aが実際に空の状態になったことを示す情報ではなくてもよく、2次電源122aが充電残量が所定値以下の状態になったことを示す情報(すなわち、十分でない充電残量になったことを示す情報)であってもよい。
 給電側の通信装置11cの通信回路114aは、給電光送信部兼トランシーバ118を介して、受電側の通信装置12cから送信された過放電通知を取得する。通信回路114aは、過放電通知を給電光電力制御部116aへ出力する。給電光電力制御部116aは、過放電通知を取得した場合、電源部111を制御することにより、給電光送信部兼トランシーバ118による通信装置12cへの給電光の送出を再開させる。これにより、通信装置12cへの給電が再開される。
 なお、通信装置12cの2次電源122aの充電残量が空の状態になる場合とは、通信装置11cから通信装置12cに対して給電が行われていない場合であることが想定される。通信装置11cから通信装置12cへ給電光が送出されない場合、当該給電光の反射光も存在しないため、過放電通知を反射光に重畳させて通信装置12cから通信装置11cへ送信することはできない。そのため、過放電通知は、通信光を用いて通信装置12cから通信装置11cへ伝送される。
 以上説明したように、第4の実施形態における光通信システム1cの構成は、前述の第2の実施形態における光通信システム1aの構成に対して、給電光の伝送と通信光の伝送とが同一の光ファイバケーブルを用いて行われるように変形された構成である。
 このような構成を備えることで、光通信システム1cは、例えば、必要とされる光ファイバケーブルの本数を削減することができるため、装置コスト、設置コスト、設置スペース、及び運用コスト等を削減することができる。
<第5の実施形態>
 以下、本発明の第5の実施形態における光通信システム1dについて説明する。光通信システム1dは、本発明の光給電システムの一例である。
 前述の第1~4の実施形態では、基本的に、光通信システム1,1a~1cのネットワーク構成は、給電側の通信装置(通信装置11,11a~11c)と受電側の通信装置(通信装置12,12a~12c)とが1対1で接続されたシングルスター構成であることを想定したものである。1対1の構成とすることによって、例えば、光ファイバの分岐によって生じる光損失を防ぐことができるため、効率の良い光給電を実現することができる。これに対し、以下に説明する第5の実施形態における光通信システム1dは、給電側の通信装置(通信装置11d)と受電側の通信装置(通信装置12-1~12-n)とが1対多で接続されたダブルスター構成であることを想定したものである。1対多の構成とすることによって、例えば、給電側の通信装置(通信装置11d)及び光ファイバ等の数を削減することができるため、装置コスト、設置コスト、及び運用コスト等を削減することができる。
 第5の実施形態における光通信システム1dは、光給電光源が搭載された給電側の通信機器と光電変換器が搭載された複数の受電側の通信機器とが、例えば光スプリッタ等の分岐部を介して互いに有線でそれぞれ接続され、光給電と通信とを行うことができるシステムである。光通信システム1dは、給電側の通信機器から複数の受電側の通信機器へ伝送される給電光の光損失値をそれぞれ測定する。
 そして、光通信システム1dは、測定された光損失値に基づいて、給電側の通信機器の光給電光源から出力される給電光の電力を制御することに特徴がある。このとき、例えば、光通信システム1dは、測定された複数の光損失値のうち少なくとも1つが所定値以上である場合には、給電光の出力を最大にするように制御する。また、例えば、光通信システム1dは、測定された複数の光損失値の全てが所定値未満である場合には、予め設定された出力値に対して、測定された複数の光損失値の最大値を加算した出力値とするように、給電光の出力を制御する。
 また、光通信システム1dは、受電側の通信機器の2次電源の充電状態に応じて、光給電光源から送出される給電光の出力のオンとオフとを切り替える制御を行う。例えば、光通信システム1dは、少なくとも1つの受電側の通信機器の2次電源の充電状態が満充電の状態ではない場合には給電光の出力をオンにするように制御し、全ての受電側の通信機器の2次電源の充電状態が満充電の状態である場合には給電光の出力をオフにするように制御を行う。このような特徴を有することで、第5の実施形態における光通信システム1dは、例えばダブルスター構成のように1対多で給電側の通信装置と受電側の通信装置とが互いに接続されるネットワーク構成であっても、光給電光源の消費電力を削減することができる。
[光通信システムの構成]
 以下、光通信システム1dの構成についてさらに詳しく説明する。図8は、本発明の第5の実施形態における光通信システム1dの全体構成を示すブロック図である。図8に示されるように、光通信システム1dは、通信装置11dと、複数の通信装置12(通信装置12-1~12-n)とを含んで構成される。通信装置11dと通信装置12-1~12-nの各々とは有線で接続され、互いに通信光をそれぞれ送受信することによってデータの送受信を行う。通信装置11dと通信装置12-1~12-nの各々とは、例えば図8に示されるように光スプリッタ20等の分岐部によって1対多に分岐する通信用の光ファイバケーブルによって接続され、当該通信用の光ファイバケーブルを介して通信光が伝送される。
 なお、通信用のケーブルは、光ファイバケーブル以外のケーブルであってもよい。また、通信装置11dと通信装置12-1~12-nの各々とは無線で通信接続される構成であっても構わない。
 また、通信装置11dと通信装置12-1~12-nの各々とは有線で接続され、通信装置11dから出力された給電光が通信装置12-1~12-nの各々に入力される。すなわち、通信装置11dは、光給電光源が搭載された給電側の通信機器であり、通信装置12-1~12-nの各々は、光電変換器が搭載された受電側の通信機器である。通信装置11dと通信装置12-1~12-nの各々とは、上記の通信用の光ファイバケーブルとは別の、例えば図8に示されるように光スプリッタ20等の分岐部によって1対多に分岐する給電用の光ファイバケーブルによって接続され、当該給電用の光ファイバケーブルを介して給電光が伝送される。
 図8に示されるように、通信装置11dは、電源部111と、給電光送信部112と、トランシーバ113dと、通信回路114dと、損失測定部115dと、給電光電力制御部116dとを含んで構成される。通信装置11dは、例えば、光ファイバを用いたPON方式の加入者回線網(公衆回線網)において、通信会社の局側に設置される光回線の終端装置(OLT)である。通信装置11dは、本発明の通信装置の一例である。
 電源部111は、給電光送信部112から送出される給電光を生成するための光源用電源である。給電光送信部112は、複数の通信装置12(通信装置12-1~12n)へ向けて給電光を送出する。給電光送信部112は、例えばレーザダイオードである。トランシーバ113dは、自装置と複数の通信装置12(通信装置12-1~12n)の各々との間で通信光の送受信をそれぞれ行う送受信器である。通信回路114dは、トランシーバ113dを制御し、自装置と複数の通信装置12(通信装置12-1~12n)の各々との間で通信光を用いてデータの送受信をそれぞれ行う。
 損失測定部115dは、通信装置11dから複数の通信装置12(通信装置12-1~12n)の各々へ伝送される給電光の光損失値をそれぞれ測定する。損失測定部115dは、測定された複数の光損失値を示す情報を給電光電力制御部116dへ出力する。例えば、損失測定部115dは、通信装置11dと新たな通信装置12とが接続された際に、通信装置11dから複数の通信装置12(通信装置12-1~12n)の各々へ伝送される給電光の光損失値をそれぞれ測定する。あるいは、例えば、損失測定部115dは、所定の間隔で(例えば、1時間ごとに、又は1日ごとに)、通信装置11dから複数の通信装置12(通信装置12-1~12n)の各々へ伝送される給電光の光損失値をそれぞれ測定する。
 なお、給電光の光損失値の測定方法は任意の既存技術を用いることができる。例えば、損失測定部115dは、光パルス試験器(OTDR)を用いて光損失値を測定する。OTDRを用いた光損失値の測定方法として、例えば非特許文献2に記載の技術を用いることができる。
 例えば、損失測定部115dは、給電側の通信装置11dから受電側の通信装置12(通信装置12-1~12n)の各々に対してOTDRにより距離をそれぞれ測定する。そして、損失測定部115dは、測定されたそれぞれの距離に対して単位当たりの光損失を乗じることによって光損失値をそれぞれ算出する。あるいは、例えば、損失測定部115dは、OTDRにより直接、通信装置11dと通信装置12(通信装置12-1~12n)の各々との間における給電光の光損失値をそれぞれ測定する。
 給電光電力制御部116dは、損失測定部115dから出力された複数の光損失値を示す情報を取得する。給電光電力制御部116dは、取得された複数の光損失値に応じて電源部111を制御することにより、給電光送信部112から送出される給電光の電力を制御する。
 このとき、給電光電力制御部116dは、取得された複数の光損失値のうち少なくとも1つが所定値以上である場合には、給電光送信部112から送出される給電光の出力を最大にするように電源部111を制御する。ここでいう所定値とは、例えば、給電光送信部112が給電光の出力をさらに上げることが可能な最大幅となる値である。
 また、給電光電力制御部116dは、取得された複数の光損失値の全てが所定値未満である場合には、予め設定された出力値に対して、取得された複数の光損失値の最大値が加算された出力値で給電光送信部112から給電光が送出されるように、電源部111を制御する。
 なお、光損失値ごとの、給電光送信部112から送出される給電光の電力の値は予め定められている。例えば、光損失値と給電光の電力の値とが対応付けられたテーブルが、予め通信装置11dに備えられた記憶媒体(不図示)に記憶されている。給電光電力制御部116dは、当該テーブルを参照し、取得された光損失値に対応する給電光の電力の値を取得する。そして、給電光電力制御部116dは、給電光送信部112から送出される給電光の電力が上記の取得された値となるように、電源部111を制御する。
 また、図8に示されるように、通信装置12-1~12-nの各々は、光電変換部121と、2次電源122と、トランシーバ123と、通信回路124とを含んで構成される。通信装置12-1~12-nの各々は、例えば、光ファイバを用いたPON方式の加入者回線網(公衆回線網)において、加入者宅に設置される光回線の終端装置(ONU)である。
 光電変換部121は、通信装置11dから送出され、光スプリッタ20を介して伝送された給電光を受光する。光電変換部121は、受光した給電光を電力に変換する。光電変換部121は、例えばフォトダイオードである。2次電源122は、光電変換部121によって変換された電力を蓄電する。通信装置12-1~12-nの各々の各機能部は、2次電源122に蓄電された電力によって駆動する。2次電源122は、例えばバッテリーを含んで構成される。トランシーバ123は、自装置と通信装置11dとの間で通信光の送受信を行う送受信器である。通信回路124は、トランシーバ123を制御し、自装置と通信装置11dとの間で通信光を用いてデータの送受信を行う。
 また、2次電源122は、自己の充電状態を示す情報を、定期的に(例えば、1分ごとに、又は1時間ごとに)、通信回路124へ出力する。なお、通信回路124が、定期的に2次電源122の充電状態を検出することができるような構成であってもよい。
 2次電源122は、満充電の状態になった場合、満充電の状態になったことを示す情報を通信回路124へ出力する。そして、通信回路124は、2次電源122が満充電の状態になったことを通信装置11dへ通知する。具体的には、通信回路124は、トランシーバ123を介して、2次電源122が満充電の状態になったことを示す情報である満充電通知を、通信光により通信装置11dへ送信する。
 通信装置11dの通信回路114dは、トランシーバ113dを介して、受電側の通信装置12(通信装置12-1~12n)の各々からそれぞれ送信された満充電通知を取得する。通信回路114dは、満充電通知を取得すると、当該満充電通知を給電光電力制御部116dへ出力する。給電光電力制御部116dは、通信回路114dから出力された満充電通知を取得する。
 また、給電光電力制御部116dは、受電側の通信装置12(通信装置12-1~12n)の各々の2次電源の充電状態に応じて、給電光送信部112から送出される給電光の出力のオンとオフとを切り替える制御を行う。
 例えば、給電光電力制御部116dは、少なくとも1つの受電側の通信装置12(通信装置12-1~12nのいずれか)の2次電源の充電状態が満充電の状態ではない場合(すなわち、少なくとも1つの受電側の通信装置12から満充電通知を取得していない場合)には、電源部111を制御することにより、給電光送信部112からの給電光の送出を開始、再開、又は継続させるように制御する。また、例えば、給電光電力制御部116dは、全ての受電側の通信装置12(通信装置12-1~12n)の2次電源の充電状態が満充電の状態である場合(すなわち、全ての受電側の通信装置12から満充電通知を取得した場合)には、電源部111を制御することにより、給電光送信部112からの給電光の送出を停止させるように制御する。これにより、通信装置12(通信装置12-1~12n)の各々への給電が停止される。
 また、2次電源122は、充電残量が所定値以下の状態になった場合、充電残量が所定値以下の状態になったことを示す情報を通信回路124へ出力する。通信回路124は、2次電源122の充電残量が所定値以下の状態になったことを通信装置11dへ通知する。具体的には、通信回路124は、トランシーバ123を介して、2次電源122の充電残量が所定値以下の状態になったことを示す情報である充電残量低下通知を、通信光により通信装置11dへ送信する。
 通信装置11dの通信回路114dは、トランシーバ113dを介して、受電側の通信装置12(通信装置12-1~12n)の各々から送信された充電残量低下通知を取得する。通信回路114dは、充電残量低下通知を取得すると、当該充電残量低下通知を給電光電力制御部116dへ出力する。給電光電力制御部116dは、通信回路114dから出力された充電残量低下通知を取得する。
 給電光電力制御部116は、少なくとも1つの受電側の通信装置12から充電残量低下通知を取得した場合、電源部111を制御することにより、給電光送信部112dによる通信装置12(通信装置12-1~12n)の各々への給電光の送出を再開させる。これにより、通信装置12(通信装置12-1~12n)の各々への給電が再開される。
[光通信システムの動作]
 以下、通信装置11dの動作の一例について説明する。図9及び図10は、本発明の第5の実施形態における通信装置11dの動作を示すフローチャートである。
 図9のフローチャートは、光損失値の測定値に基づく給電光の出力制御の処理を示している。図9のフローチャートが示す通信装置11dの動作は、例えば、給電側の通信装置11dに対して受電側の通信装置12が新たに接続された際に開始される(ステップS201)。損失測定部115dは、通信装置11dから通信装置12(通信装置12-1~12-n)の各々へ伝送される給電光の光損失値をそれぞれ測定する(ステップS202)。
 損失測定部115dは、測定された複数の光損失値を示す情報を給電光電力制御部116dへ出力する。給電光電力制御部116dは、取得された複数の光損失値に応じて電源部111を制御する。給電光電力制御部116dは、取得された全ての光損失値が所定値未満であるか否かを判定する(ステップS203)。
 全ての光損失値が所定値未満であると判定された場合(ステップS203・Yes)、給電光電力制御部116dは、予め設定された出力値に対して、測定された複数の光損失値の最大値を加算した出力値で給電光送信部112から給電光が送出されるように、電源部111を制御する(ステップS204)。
 一方、少なくとも1つの光損失値が所定値以上であると判定された場合(ステップS203・NO)、最大の出力値で給電光送信部112から給電光が出力されるように、電源部111を制御する(ステップS205)。
 通信装置11dは、所定の時間が経過するまで待機した後、上記のステップS202以降の処理を繰り返し実行する。
 図10のフローチャートは、通信装置12(通信装置12-1~12-n)の各々の2次電源122の蓄電状態に基づく給電光の出力制御の処理を示している。図10のフローチャートが示す通信装置11dの動作は、例えば、光給電が開始された場合あるいは再開された場合に開始される(ステップS301)。
 通信回路114dは、トランシーバ113dを介して、受電側の複数の通信装置12(通信装置12-1~12n)のいずれかから送信された満充電通知を取得する(ステップS302)。通信回路114dは、満充電通知を取得すると、当該満充電通知を給電光電力制御部116dへ出力する。給電光電力制御部116dは、通信回路114dから出力された満充電通知を取得する。
 給電光電力制御部116dは、受電側の複数の通信装置12(通信装置12-1~12n)のうち、満充電通知を取得していない通信装置12があるか否かを判定する(ステップS303)。満充電通知を取得していない通信装置12があると判定された場合(ステップS303・YES)、給電光電力制御部116dは、給電光送信部112からの給電光の送出を継続して実行させるように制御する(ステップS304)。そして、通信装置11dは、上記のステップS302以降の処理を繰り返し実行する。
 一方、満充電通知を取得していない通信装置12はないと判定された場合(ステップS303・NO)、給電光電力制御部116dは、電源部111を制御することにより、給電光送信部112からの給電光の送出を停止させるように制御する(ステップS305)。
 その後、通信回路114dが、トランシーバ113dを介して、受電側の複数の通信装置12(通信装置12-1~12n)のいずれかから送信された充電残量低下通知を取得する(ステップS306)。通信回路114dは、充電残量低下通知を取得すると、当該充電残量低下通知を給電光電力制御部116dへ出力する。給電光電力制御部116dは、通信回路114dから出力された充電残量低下通知を取得する。
 給電光電力制御部116は、充電残量低下通知を取得した場合、電源部111を制御することにより、給電光送信部112dによる通信装置12(通信装置12-1~12n)の各々への給電光の送出を再開させる(ステップS301)。そして、通信装置11dは、上記のステップS302以降の処理を繰り返し実行する。
 以上説明したように、第5の実施形態における光通信システム1dは、光給電光源が搭載された給電側の通信装置11dと光電変換器が搭載された受電側の複数の通信装置12(通信装置12-1~12-n)の各々とが互いに有線でそれぞれ接続され、光給電と通信とをそれぞれ行う。光通信システム1dは、通信装置11dから通信装置12(通信装置12-1~12-n)の各々へ伝送される給電光の光損失値をそれぞれ測定する。そして、光通信システム1dは、測定された光損失値に基づいて、通信装置11dの光給電光源から出力される給電光の電力を制御する。
 このとき、例えば、光通信システム1dは、測定された複数の光損失値のうち少なくとも1つが所定値以上である場合には、給電光の出力を最大にするように制御する。また、例えば、光通信システム1dは、測定された複数の光損失値の全てが所定値未満である場合には、予め設定された出力値に対して、測定された複数の光損失値の最大値を加算した出力値とするように、給電光の出力を制御する。
 また、光通信システム1dは、受電側の通信機器の2次電源の充電状態に応じて、光給電光源から送出される給電光の出力のオンとオフとを切り替える制御を行う。例えば、光通信システム1dは、少なくとも1つの受電側の通信機器の2次電源の充電状態が満充電の状態ではない場合には給電光の出力をオンにするように制御し、全ての受電側の通信機器の2次電源の充電状態が満充電の状態である場合には給電光の出力をオフにするように制御する。
 このような特徴を有することで、第5の実施形態における光通信システム1dは、例えばダブルスター構成のように1対多で通信装置が互いに接続するネットワーク構成等、多様なネットワーク構成において、光電変換器を搭載した受電側の複数の通信装置12(通信装置12-1~12-n)の各々の設置場所に応じた光損失値に基づいて、光電変換器へ入力される給電光の電力が過剰とならないように光給電光源から出力される給電光の電力を調整することができる。これにより、光通信システム1dは、光給電光源の消費電力を低減させることができる。
 また、このような特徴を有することで、第5の実施形態における光通信システム1dは、光電変換器を搭載した受電側の通信装置12(通信装置12-1~12-n)の各々の2次電源が満充電状態である場合に、光給電を停止させることができる。これにより、光通信システム1dは、光給電光源の消費電力を低減させることができる。
 なお、第5の実施形態における光通信システム1dは、前述の第1の実施形態における光通信システム1の構成を基本として、給電側の通信装置と受電側の通信装置とが1対多で接続された場合に適切な給電光の出力の制御処理がさらに追加された構成である。すなわち、第5の実施形態における光通信システム1dは、受電側の通信機器から給電側の通信機器への2次電源の充電状態に関する通知を通信光を用いて行い、給電光を伝送する光ファイバと通信光を伝送する光ファイバとは別々の光ファイバとする構成である。但し、このような構成に限られるものではなく、本発明における光通信システムは、前述の第2の実施形態における光通信システム1a、第3の実施形態における光通信システム1b、又は第4の実施形態における光通信システム1cのいずれかの構成を基本として、給電側の通信装置と受電側の通信装置とが1対多で接続された場合に適切な給電光の出力の制御処理がさらに追加された構成であってもよい。すなわち、本発明における光通信システムは、受電側の通信機器から給電側の通信機器への2次電源の充電状態に関する通知を給電光の反射光を用いて行う構成であってもよいし、給電光を伝送する光ファイバと通信光を伝送する光ファイバとを同一の光ファイバとする構成であってもよい。
 上述した実施形態によれば、通信装置は、給電光送信部と、測定部と、制御部とを備える。例えば、通信装置は、実施形態における通信装置11であり、給電光送信部は、実施形態における給電光送信部112であり、測定部は、実施形態における損失測定部115であり、制御部は、実施形態における給電光電力制御部116である。上記の給電光送信部は、対向する通信装置に給電光を送信する。例えば、対向する通信装置は、実施形態における通信装置12である。上記の測定部は、自装置から対向する通信装置への給電光の伝送における光損失値を測定する。上記の制御部は、測定部によって測定された光損失値に応じて給電光送信部から送信される給電光の出力を制御する。
 なお、上記の通信装置において、測定部は、光パルス試験器を用いて光損失値を測定するようにしてもよい。この場合、制御部は、光損失値が大きいほど、給電光の出力をより大きくするように制御するようにしてもよい。
 なお、上記の通信装置において、給電光送信部から送信された前記給電光は、分岐部を介して複数の対向する通信装置にそれぞれ送信されるようにしてもよい。この場合、測定部は、自装置から複数の対向する通信装置への給電光の伝送における光損失値をそれぞれ測定するようにしてもよい。この場合、制御部は、測定部によって測定された複数の光損失値に応じて給電光の出力を制御するようにしてもよい。例えば、通信装置は、実施形態における通信装置11dであり、分岐部は、実施形態における光スプリッタ20であり、複数の対向する通信装置は、実施形態における通信装置12-1~12-nであり、測定部は、実施形態における損失測定部115dであり、制御部は、実施形態における給電光電力制御部116dである。
 なお、上記の通信装置において、制御部は、測定部によって測定された複数の光損失値のうち少なくとも1つが所定値以上である場合には、給電光の出力を最大にするように制御するようにしてもよい。また、制御部は、測定部によって測定された複数の光損失値の全てが所定値未満である場合には、複数の光損失値の最大値を予め設定された出力値に対して加算した出力値とするように給電光の出力を制御するようにしてもよい。
 また、上述した実施形態によれば、光給電システムは、第1の通信装置と、第2の通信装置とを有する。例えば、光給電システムは、実施形態における光通信システム1であり、第1の通信装置は、実施形態における通信装置11であり、第2の通信装置は、実施形態における通信装置12である。第1の通信装置は、給電光送信部と、測定部と、制御部とを備える。例えば、給電光送信部は、実施形態における給電光送信部112であり、測定部は、実施形態における損失測定部115であり、制御部は、実施形態における給電光電力制御部116である。給電光送信部は、第2の通信装置に給電光を送信する。測定部は、第1の通信装置から第2の通信装置への給電光の伝送における光損失値を測定する。制御部は、測定部によって測定された光損失値に応じて給電光送信部から送信される給電光の出力を制御する。第2の通信装置は、給電光受信部と、光電変換部と、蓄電部とを備える。例えば、給電光受信部及び光電変換部は、実施形態における光電変換部121であり、蓄電部は、実施形態における2次電源122である。給電光受信部は、第1の通信装置から送信された給電光を受信する。光電変換部は、給電光受信部によって受信された給電光を電力に変換する。蓄電部は、光電変換部によって変換された電力を蓄電する。
 なお、上記の光給電システムにおいて、第2の通信装置は、蓄電状態情報送信部をさらに備えていてもよい。例えば、蓄電状態情報送信部は、実施形態における通信回路124及びトランシーバ123である。蓄電状態情報送信部は、蓄電部の蓄電状態を示す第1の蓄電状態情報を第1の通信装置へ送信するようにしてもよい。この場合、第1の通信装置は、蓄電状態情報取得部をさらに備えていてもよい。例えば、蓄電状態情報取得部は、実施形態における通信回路114及びトランシーバ113である。蓄電状態情報取得部は、蓄電状態情報送信部から送信された第1の蓄電状態情報を取得するようにしてもよい。この場合、制御部は、蓄電状態情報取得部によって取得された第1の蓄電状態情報に応じて給電光送信部から送信される給電光の出力を制御するようにしてもよい。
 なお、上記の光給電システムにおいて、蓄電状態情報送信部は、第1の蓄電状態情報を、給電光の反射光に重畳させて送信するようにしてもよい。例えば、光給電システムは、実施形態における光通信システム1aであり、蓄電状態情報送信部は、実施形態における重畳部125である。
 なお、上記の光給電システムにおいて、第2の通信装置は、通信光送信部をさらに備えていてもよい。例えば、光給電システムは、実施形態における光通信システム1aであり、通信光送信部は、実施形態における通信回路124及びトランシーバ123である。通信光送信部は、第1の通信装置へ第2の蓄電状態情報を通信光によって送信するようにしてもよい。この場合、第1の通信装置は、通信光受信部をさらに備えていてもよい。例えば、通信光受信部は、実施形態におけるトランシーバ113及び通信回路114である。通信光受信部は、第2の通信装置から送信された第2の蓄電状態情報を受信するようにしてもよい。給電光受信部が給電光を受信している場合、蓄電状態情報送信部は、第1の通信装置へ第1の蓄電状態情報を送信するようにしてもよい。給電光受信部が給電光を受信していない場合、通信光送信部は、第1の通信へ第2の蓄電状態情報を送信するようにしてもよい。この場合、制御部は、蓄電状態情報取得部又は通信光受信部によって取得された蓄電状態情報に応じて給電光の出力を制御するようにしてもよい。
 なお、上記の光給電システムにおいて、給電光送信部から送信された給電光は、分岐部を介して複数の第2の通信装置にそれぞれ送信されるようにしてもよい。この場合、測定部は、第1の通信装置から複数の第2の通信装置への給電光の伝送における光損失値をそれぞれ測定するようにしてもよい。この場合、制御部は、測定部によって測定された複数の光損失値に応じて給電光の出力を制御するようにしてもよい。例えば、光給電システムは、実施形態における光通信システム1dであり、第1の通信装置は、実施形態における通信装置11dであり、分岐部は、実施形態における光スプリッタ20であり、複数の第2の通信装置は、実施形態における通信装置12-1~12-nであり、測定部は、実施形態における損失測定部115dであり、制御部は、実施形態における給電光電力制御部116dである。
 なお、上記の光給電システムにおいて、制御部は、測定部によって測定された複数の光損失値の最大値が所定値以上である場合には、給電光の出力を最大にするように制御するようにしてもよい。また、制御部は、最大値が所定値未満である場合には、給電光の出力を所定の出力値に最大値を加算した値とするように制御するようにしてもよい。
 上述した実施形態における通信装置11,11a~11c及び通信装置12,12a~12cをコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1,1a,1b,1c,1d,8…光通信システム,11,11a,11b,11c,11d,12,12a,12b,12c,12-1~12-n,81,82…通信装置,111…電源部,112…給電光送信部,113…トランシーバ,114,114a…通信回路,115,115d…損失測定部,116,116a,116d…給電光電力制御部,117…反射光受信部,118…給電光送信部兼トランシーバ,121…光電変換部,122,122a…2次電源,123…トランシーバ,124,124a…通信回路,125…重畳部,126…光電変換部兼トランシーバ,811…電源部,812…給電光送信部,813…トランシーバ,814…通信回路,821…光電変換部,822…2次電源,823…トランシーバ,824…通信回路

Claims (10)

  1.  対向する通信装置に給電光を送信する給電光送信部と、
     自装置から前記対向する通信装置への前記給電光の伝送における光損失値を測定する測定部と、
     前記測定部によって測定された前記光損失値に応じて前記給電光送信部から送信される前記給電光の出力を制御する制御部と、
     を備える通信装置。
  2.  前記測定部は、光パルス試験器を用いて前記光損失値を測定し、
     前記制御部は、前記光損失値が大きいほど、前記給電光の出力をより大きくするように制御する
     請求項1に記載の通信装置。
  3.  前記給電光送信部から送信された前記給電光は、分岐部を介して複数の前記対向する通信装置にそれぞれ送信され、
     前記測定部は、前記自装置から複数の前記対向する通信装置への前記給電光の伝送における前記光損失値をそれぞれ測定し、
     前記制御部は、前記測定部によって測定された複数の前記光損失値に応じて前記給電光の出力を制御する
     請求項1又は2に記載の通信装置。
  4.  前記制御部は、前記測定部によって測定された複数の前記光損失値のうち少なくとも1つが所定値以上である場合には、前記給電光の出力を最大にするように制御し、前記測定部によって測定された複数の前記光損失値の全てが所定値未満である場合には、複数の前記光損失値の最大値を予め設定された出力値に対して加算した出力値とするように前記給電光の出力を制御する
     請求項3に記載の通信装置。
  5.  第1の通信装置と、第2の通信装置と、を有する光給電システムであって、
     前記第1の通信装置は、
     前記第2の通信装置に給電光を送信する給電光送信部と、
     前記第1の通信装置から前記第2の通信装置への前記給電光の伝送における光損失値を測定する測定部と、
     前記測定部によって測定された前記光損失値に応じて前記給電光送信部から送信される前記給電光の出力を制御する制御部と、
     を備え、
     前記第2の通信装置は、
     前記第1の通信装置から送信された前記給電光を受信する給電光受信部と、
     前記給電光受信部によって受信された前記給電光を電力に変換する光電変換部と、
     前記光電変換部によって変換された電力を蓄電する蓄電部と、
     を備える
     光給電システム。
  6.  前記第2の通信装置は、
     前記蓄電部の蓄電状態を示す第1の蓄電状態情報を前記第1の通信装置へ送信する蓄電状態情報送信部
     をさらに備え、
     前記第1の通信装置は、
     前記蓄電状態情報送信部から送信された前記第1の蓄電状態情報を取得する蓄電状態情報取得部
     をさらに備え、
     前記制御部は、前記蓄電状態情報取得部によって取得された前記第1の蓄電状態情報に応じて前記給電光送信部から送信される前記給電光の出力を制御する
     請求項5に記載の光給電システム。
  7.  前記蓄電状態情報送信部は、前記第1の蓄電状態情報を、前記給電光の反射光に重畳させて送信する
     請求項6に記載の光給電システム。
  8.  前記第2の通信装置は、
     前記第1の通信装置へ第2の蓄電状態情報を通信光によって送信する通信光送信部
     をさらに備え、
     前記第1の通信装置は、
     前記第2の通信装置から送信された前記第2の蓄電状態情報を受信する通信光受信部
     をさらに備え、
     前記給電光受信部が前記給電光を受信している場合、前記蓄電状態情報送信部は、前記第1の通信装置へ前記第1の蓄電状態情報を送信し、
     前記給電光受信部が前記給電光を受信していない場合、前記通信光送信部は、前記第1の通信装置へ前記第2の蓄電状態情報を送信し、
     前記制御部は、前記蓄電状態情報取得部又は前記通信光受信部によって取得された前記蓄電状態情報に応じて前記給電光の出力を制御する
     請求項7に記載の光給電システム。
  9.  対向する通信装置に給電光を送信する給電光送信ステップと、
     自装置から前記対向する通信装置への前記給電光の伝送における光損失値を測定する測定ステップと、
     前記測定ステップによって測定された前記光損失値に応じて前記給電光の出力を制御する制御ステップと、
     を有する光給電方法。
  10.  第1の通信装置と、第2の通信装置と、を有する光給電システムにおける光給電方法であって、
     前記第1の通信装置が、前記第2の通信装置に給電光を送信する給電光送信ステップと、
     前記第1の通信装置が、前記第1の通信装置から前記第2の通信装置への前記給電光の伝送における光損失値を測定する測定ステップと、
     前記第1の通信装置が、前記測定ステップによって測定された前記光損失値に応じて前記給電光の出力を制御する制御ステップと、
     前記第2の通信装置が、前記第1の通信装置から送信された前記給電光を受信する給電光受信ステップと、
     前記第2の通信装置が、前記給電光受信ステップによって受信された前記給電光を電力に変換する光電変換ステップと、
     前記第2の通信装置が、前記光電変換ステップによって変換された電力を蓄電する蓄電ステップと、
     を有する光給電方法。
PCT/JP2022/035670 2022-05-17 2022-09-26 通信装置、光給電システム及び光給電方法 WO2023223572A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2022/020497 2022-05-17
PCT/JP2022/020497 WO2023223417A1 (ja) 2022-05-17 2022-05-17 通信装置、光給電システム及び光給電方法

Publications (1)

Publication Number Publication Date
WO2023223572A1 true WO2023223572A1 (ja) 2023-11-23

Family

ID=88834865

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2022/020497 WO2023223417A1 (ja) 2022-05-17 2022-05-17 通信装置、光給電システム及び光給電方法
PCT/JP2022/035670 WO2023223572A1 (ja) 2022-05-17 2022-09-26 通信装置、光給電システム及び光給電方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020497 WO2023223417A1 (ja) 2022-05-17 2022-05-17 通信装置、光給電システム及び光給電方法

Country Status (1)

Country Link
WO (2) WO2023223417A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019591A (ja) * 2008-07-08 2010-01-28 Anritsu Corp 光パルス試験器
JP2014175754A (ja) * 2013-03-07 2014-09-22 Fujitsu Telecom Networks Ltd Ponシステム
JP2015001925A (ja) * 2013-06-18 2015-01-05 富士機械製造株式会社 光給電型センシングシステム
JP2017098643A (ja) * 2015-11-19 2017-06-01 株式会社日立製作所 光給電システム及び光給電装置及び光給電方法
JP2019054423A (ja) * 2017-09-15 2019-04-04 株式会社日立製作所 光給電システム
JP2021019441A (ja) * 2019-07-22 2021-02-15 京セラ株式会社 光ファイバー給電システム
JP2021068964A (ja) * 2019-10-21 2021-04-30 京セラ株式会社 光ファイバー給電システム
WO2022024270A1 (ja) * 2020-07-29 2022-02-03 日本電信電話株式会社 光給電システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010019591A (ja) * 2008-07-08 2010-01-28 Anritsu Corp 光パルス試験器
JP2014175754A (ja) * 2013-03-07 2014-09-22 Fujitsu Telecom Networks Ltd Ponシステム
JP2015001925A (ja) * 2013-06-18 2015-01-05 富士機械製造株式会社 光給電型センシングシステム
JP2017098643A (ja) * 2015-11-19 2017-06-01 株式会社日立製作所 光給電システム及び光給電装置及び光給電方法
JP2019054423A (ja) * 2017-09-15 2019-04-04 株式会社日立製作所 光給電システム
JP2021019441A (ja) * 2019-07-22 2021-02-15 京セラ株式会社 光ファイバー給電システム
JP2021068964A (ja) * 2019-10-21 2021-04-30 京セラ株式会社 光ファイバー給電システム
WO2022024270A1 (ja) * 2020-07-29 2022-02-03 日本電信電話株式会社 光給電システム

Also Published As

Publication number Publication date
WO2023223417A1 (ja) 2023-11-23

Similar Documents

Publication Publication Date Title
EP1211825B1 (en) Configurable safety shutdown for an optical amplifier using non-volatile storage
US20120288273A1 (en) Intelligent splitter monitor
EP3134986B1 (en) Apparatus and system for managing wavelengths in optical networks
US8249452B2 (en) ONT-based micronode management
KR101825688B1 (ko) 로그 onu를 검출하는 방법, olt 및 pon 시스템
EP1986350B1 (en) Monitoring unit, optical network, and operating method for the optical network
US7787767B2 (en) Eye safety in electro-optical transceivers
US6580530B1 (en) Optical communication system
US20080166133A1 (en) Optical network remote power supply system for remote switching unit
JPH088836A (ja) 低電力光網ユニット
WO2008030319A2 (en) Method and apparatus for enabling an optical network terminal
WO2008104759A1 (en) Testing an optical network
EP3829085B1 (en) Optical fiber power supply system and data communication device
WO2022107327A1 (ja) 光給電システム、スリープ解除方法及び受電側光通信装置
US9209896B2 (en) Active network monitoring system and method thereof
WO2023223572A1 (ja) 通信装置、光給電システム及び光給電方法
WO2005006576B1 (en) Controlling the extinction ratio in optical networks
WO2022130483A1 (ja) 光給電システム、光給電方法及び受電光通信装置
US20210359759A1 (en) Power over fiber system
AU672631B2 (en) Optical communication system
KR100915317B1 (ko) 광망 종단장치 및 이의 광송수신부 전원제어방법
KR100952875B1 (ko) 광망 종단장치와 그 장치에서의 광 송신단 제어방법
US20050135735A1 (en) Architectures for optical networks
US20080166122A1 (en) Optical network backup channel switching control device
WO2024201558A1 (ja) 光通信装置、制御方法、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942775

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024521538

Country of ref document: JP

Kind code of ref document: A