WO2022130483A1 - 光給電システム、光給電方法及び受電光通信装置 - Google Patents

光給電システム、光給電方法及び受電光通信装置 Download PDF

Info

Publication number
WO2022130483A1
WO2022130483A1 PCT/JP2020/046676 JP2020046676W WO2022130483A1 WO 2022130483 A1 WO2022130483 A1 WO 2022130483A1 JP 2020046676 W JP2020046676 W JP 2020046676W WO 2022130483 A1 WO2022130483 A1 WO 2022130483A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
communication device
power
power supply
unit
Prior art date
Application number
PCT/JP2020/046676
Other languages
English (en)
French (fr)
Inventor
遼 宮武
宏明 桂井
智暁 吉田
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022569354A priority Critical patent/JP7473848B2/ja
Priority to US18/265,333 priority patent/US20240039642A1/en
Priority to PCT/JP2020/046676 priority patent/WO2022130483A1/ja
Publication of WO2022130483A1 publication Critical patent/WO2022130483A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/30Circuit arrangements or systems for wireless supply or distribution of electric power using light, e.g. lasers

Definitions

  • the present invention relates to an optical power supply system, an optical power supply method, and a power receiving optical communication device.
  • the optical power supply system shown in Patent Document 1 has been proposed.
  • the optical signal for power supply (hereinafter referred to as “power supply light”) transmitted from the OLT (Optical Line Terminal: subscriber line terminal device) is ONU (Optical Network Unit: subscriber). Power is supplied from the OLT upon reception by the line termination device).
  • OLT Optical Line Terminal: subscriber line terminal device
  • ONU Optical Network Unit: subscriber
  • Power is supplied from the OLT upon reception by the line termination device).
  • an expensive optical combination used to separate the wavelengths for power supply and communication is used. It eliminates the need for a wave device and a light demultiplexer. As a result, the construction cost of the optical power supply system can be suppressed.
  • the operation is controlled by periodically generating an operation trigger using a timer.
  • the electric power stored by optical power supply communication cannot be performed until sufficient charging is possible. Therefore, the convenience as a communication device may be impaired. Therefore, it is desired to increase the communicable time by improving the charging efficiency.
  • an object of the present invention is to provide a technique capable of improving the charging efficiency by optical power supply.
  • One aspect of the present invention is a power supply optical communication device that supplies power using an optical signal for power supply, and a power receiving optical communication device that is driven by power obtained from the power supply optical signal transmitted from the power supply optical communication device.
  • the power supply optical communication device has an optical power supply unit that transmits an optical signal for power supply to the power receiving optical communication device, and there is no data to be transmitted to the power reception optical communication device.
  • the power receiving optical communication device includes a data transmitting / receiving unit for transmitting the power feeding optical signal to the power receiving optical communication device, and the power receiving optical communication device includes the power feeding optical signal transmitted by the optical power feeding unit and the data transmitting / receiving unit.
  • One aspect of the present invention is a power supply optical communication device that supplies power using an optical signal for power supply, and a power receiving optical communication device that is driven by power obtained from the power supply optical signal transmitted from the power supply optical communication device.
  • the power feeding optical communication device transmits an optical signal for power feeding to the power receiving optical communication device and there is no data to be transmitted to the power receiving optical communication device
  • the power feeding method is performed.
  • the optical power supply is transmitted to the power receiving optical communication device, and the power receiving optical communication device stores the power obtained based on the power feeding optical signal transmitted from the power feeding optical communication device by a plurality of routes. The method.
  • One aspect of the present invention is a power supply optical communication device that supplies power using an optical signal for power supply, and a power receiving optical communication device that is driven by power obtained from the optical signal for power supply transmitted from the power supply optical communication device.
  • the receiver including the power receiving optical communication device in the optical power supply system including the above, and a storage unit for storing power obtained based on the power feeding optical signal transmitted from the power feeding optical communication device by a plurality of paths. It is an optical communication device.
  • the power receiving optical communication device charges based on the feeding light transmitted from the feeding optical communication device on each of the plurality of lines.
  • the number of charging lines is increased from one line to a plurality of lines, so that it is possible to improve the charging efficiency per unit time.
  • a specific configuration will be described by exemplifying a plurality of embodiments.
  • FIG. 1 is a diagram showing a configuration example of the optical power supply system 100 according to the first embodiment.
  • the optical power supply system 100 includes a power supply optical communication device 10 and a power receiving optical communication device 20.
  • the power feeding optical communication device 10 and the power receiving optical communication device 20 are connected via an optical transmission line 30.
  • the power feeding optical communication device 10 and the power receiving optical communication device 20 are connected via a power feeding line and a communication line, respectively.
  • the power supply line and the communication line may be physically provided in the same fiber, or may be provided in different independent fibers. That is, the physically same fiber may be shared by the optical signal for communication and the optical signal for feeding, or different independent fibers may be used. When the same fiber is shared between the optical signal for communication and the optical signal for power supply, a method of wavelength-multiplexing the light for communication and the light for power supply using different frequency bands can be considered.
  • the power feeding optical communication device 10 and the power receiving optical communication device 20 have a single-star type topology configuration.
  • the direction from the power feeding optical communication device 10 toward the power receiving optical communication device 20 is referred to as a downward direction
  • the direction from the power receiving optical communication device 20 toward the power receiving optical communication device 10 is referred to as an upward direction.
  • FIG. 1 shows one power receiving and optical communication device 20, the optical power supply system 100 may include a plurality of power receiving and optical communication devices 20.
  • an optical splitter is provided between the power supply optical communication device 10 and the plurality of received and received optical communication devices 20.
  • the optical splitter branches the optical signal transmitted from the power feeding optical communication device 10 and transmits it to each received optical communication device 20.
  • the optical splitter multiplexes the optical signals transmitted from each received optical communication device 20 and transmits them to the power feeding optical communication device 10.
  • the power feeding optical communication device 10 is, for example, an OLT.
  • the power feeding optical communication device 10 includes a data transmission / reception unit 11, an optical power feeding unit 12, and a control unit 13.
  • the data transmission / reception unit 11 transmits / receives data or transmits power feeding light to / from the received optical communication device 20.
  • the data transmission / reception unit 11 is, for example, an optical transceiver, and includes a light source that emits light having a specific wavelength inside.
  • the data transmission / reception unit 11 modulates the light emitted by the internal light source based on the electrical signal of the transmission data given from the control unit 13 to obtain an optical signal of the transmission data (hereinafter referred to as “the optical signal”). It is converted into "communication light”), and the converted communication light is transmitted to the optical transmission path 30.
  • the data transmission / reception unit 11 When there is no transmission data, the data transmission / reception unit 11 generates feeding light by a light source provided inside and transmits it to the optical transmission line 30.
  • the feeding light for example, an optical signal that has a constant voltage and does not change with time is used.
  • the data transmission / reception unit 11 in the present embodiment transmits the communication light to the power receiving optical communication device 20 via the optical transmission path 30 when there is transmission data.
  • the data transmission / reception unit 11 transmits the feeding light to the power receiving optical communication device 20 via the optical transmission path 30.
  • the data transmission / reception unit 11 is provided with an O / E (Optical / Electrical) converter such as a photodetector inside, for example.
  • O / E Optical / Electrical
  • the data transmission / reception unit 11 receives an optical signal of data received via the optical transmission line 30, converts the optical signal of the received data into an electric signal by an O / E converter, and outputs the optical signal to the control unit 13.
  • the optical power feeding unit 12 is provided with a light source that emits the feeding light inside, and the light source generates the feeding light and sends it to the optical transmission line 30. As a result, the optical feeding unit 12 transmits the feeding light to the received optical communication device 20.
  • the control unit 13 controls the operations of the data transmission / reception unit 11 and the optical power supply unit 12. For example, the control unit 13 takes in transmission data from the outside. The control unit 13 generates electrical signal data from the captured transmission data, and outputs the generated electrical signal data to the data transmission / reception unit 11. The control unit 13 captures the data of the electric signal output by the data transmission / reception unit 11, and outputs the captured data to the outside. When there is no transmission data, the control unit 13 outputs the feeding light from the data transmission / reception unit 11. The control unit 13 outputs the feeding light from the optical feeding unit 12.
  • the power receiving optical communication device 20 is driven by the electric power supplied from the power feeding optical communication device 10.
  • the power receiving optical communication device 20 is, for example, an ONU.
  • the power receiving / optical communication device 20 includes a photoelectric conversion unit 21, a photoelectric conversion unit 22, an adder 23, a storage unit 24, a signal identification unit 25, a route switching unit 26, and an external transmission / reception unit 27.
  • the photoelectric conversion unit 21 receives an optical signal (for example, feed light or communication light) transmitted from the data transmission / reception unit 11 via the optical transmission path 30, converts the received optical signal into an electric signal, and identifies the signal. Output to unit 25 and route switching unit 26.
  • the photoelectric conversion unit 21 is an O / E converter such as a photodetector.
  • the photoelectric conversion unit 22 receives an optical signal (for example, power supply light) transmitted from the optical power supply unit 12 via the optical transmission path 30, converts the received optical signal into an electric signal, and outputs the light signal to the adder 23. do.
  • the photoelectric conversion unit 22 is an O / E converter such as a photodetector.
  • the adder 23 adds the electric signal output from the photoelectric conversion unit 22 and the electric signal input via the path switching unit 26.
  • the adder 23 outputs the added electric signal to the power storage unit 24.
  • the adder 23 outputs the electric signal output from the photoelectric conversion unit 22 to the power storage unit 24 as it is.
  • the power storage unit 24 has a battery inside.
  • the power storage unit 24 stores the electric power of the electric signal in the battery by performing a charging process based on the electric signal. In this way, the power storage unit 24 stores power obtained based on the power supply light transmitted by the optical power supply unit 12 and the power supply light transmitted by the data transmission / reception unit 11.
  • the power storage unit 24 supplies the power supply voltage generated by using the stored electric power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25. As a result, the external transmission / reception unit 27 goes into an operable state from the sleep state.
  • the signal identification unit 25 constantly monitors the electric signal converted by the photoelectric conversion unit 21 and identifies whether the optical signal transmitted from the data transmission / reception unit 11 is the feeding light or the communication light. Specifically, the signal identification unit 25 identifies that the optical signal transmitted from the data transmission / reception unit 11 is communication light when a temporal change in the waveform of the electric signal is detected. On the other hand, the signal identification unit 25 identifies that the optical signal transmitted from the data transmission / reception unit 11 is the feeding light when the temporal change in the waveform of the electric signal is not detected.
  • the feeding light As described above, an optical signal that has a constant voltage and does not change over time is used as the feeding light. Therefore, when the temporal change is not detected, the optical signal transmitted from the data transmission / reception unit 11 can be identified as the feeding light.
  • the communication light is an optical signal having a temporal change because it is modulated by the transmission data. Therefore, when a change over time is detected, the optical signal transmitted from the data transmission / reception unit 11 can be distinguished from the communication light.
  • the signal identification unit 25 switches the output route of the route switching unit 26 according to the identification result. Specifically, the signal identification unit 25 controls the output path of the route switching unit 26 to be the first path when the optical signal transmitted from the data transmission / reception unit 11 is communication light, and stores electricity. Power is supplied from the unit 24 to the external transmission / reception unit 27. The signal identification unit 25 controls the output path of the route switching unit 26 to be the second path when the optical signal transmitted from the data transmission / reception unit 11 is the feeding light, and also stores the power storage unit as necessary. The power supply from the 24 to the external transmission / reception unit 27 is stopped.
  • the first route is a route in which the signal output from the route switching unit 26 is output to the external transmission / reception unit 27.
  • the second path is a path in which the signal output from the route switching unit 26 is output to the adder 23.
  • the route switching unit 26 is a switch capable of switching the output route according to the control of the signal identification unit 25.
  • the route switching unit 26 may be an electrical switch as long as it can output the input signal to either the first route or the second route under the control of the signal identification unit 25. It may be a mechanical switch, or it may be a combination of an electrical switch and a mechanical switch. In the following description, as an example, the route switching unit 26 will be described as a mechanical switch.
  • the external transmission / reception unit 27 is a functional unit that can operate with the electric power supplied from the power storage unit 24. Therefore, the external transmission / reception unit 27 goes into a sleep state when power is not supplied from the power storage unit 24. When the power is supplied from the power storage unit 24, the external transmission / reception unit 27 goes from the sleep state to the activation state and enables communication.
  • the external transmission / reception unit 27 wirelessly communicates with an external device.
  • the external transmission / reception unit 27 When the external transmission / reception unit 27 is connected to an external device by wireless communication means, for example, a Wi-Fi module (Wi-Fi is a registered trademark) or the like is applied as the external transmission / reception unit 27.
  • the external transmission / reception unit 27 receives data to be transmitted by an external device at a predetermined periodic cycle, and writes the received data in a storage unit (not shown) to store the received data.
  • the external transmission / reception unit 27 captures the data output from the route switching unit 26, and transmits the captured data to the external device.
  • the storage unit (not shown) stores data to be transmitted to the external device
  • the external transmission / reception unit 27 reads the data from the storage unit and transmits the read data to the external device.
  • the external device is a sensor node such as an IoT (Internet of Things) sensor.
  • the external device is wirelessly connected to the power receiving optical communication device 20.
  • the external device for example, transmits the data measured by the sensor provided inside to the power receiving optical communication device 20 at a predetermined fixed cycle.
  • the external device receives the data transmitted by the power receiving optical communication device 20.
  • the external transmission / reception unit 27 includes a modulation / demodulation unit 271, an oscillator 272, a mixer 273, and an antenna 274.
  • the modulation / demodulation unit 271 and the oscillator 272 included in the external transmission / reception unit 27 are functional units that operate with the electric power supplied from the power storage unit 24.
  • the modulation / demodulation unit 271 modulates or demodulates the input signal. For example, the modulation / demodulation unit 271 modulates the data output from the path switching unit 26.
  • the oscillator 272 generates a CW (Continuous Wave) wave and outputs it to the mixer 273.
  • the mixer 273 up-converts the modulated signal by multiplying the CW wave output from the oscillator 272 and the modulated signal output from the modulation / demodulation unit 271.
  • the antenna 274 wirelessly transmits the modulated signal up-converted by the mixer 273 to the external device.
  • FIG. 2 is a sequence diagram showing a flow of the first process of the optical power supply system 100 in the first embodiment. In the process shown in FIG. 2, the flow of the process when the power feeding optical communication device 10 has transmission data will be described.
  • the optical feeding unit 12 of the feeding optical communication device 10 generates feeding light by a light source provided inside and sends it to the optical transmission line 30 (step S101).
  • the feeding light transmitted from the feeding optical communication device 10 is received by the power receiving optical communication device 20 connected via the optical transmission line 30.
  • the feeding light transmitted from the optical feeding unit 12 is received by the photoelectric conversion unit 22 of the power receiving optical communication device 20 via the power feeding line.
  • the photoelectric conversion unit 22 converts the received optical signal into an electric signal and outputs it to the adder 23 (step S102).
  • step S103 The processing from step S101 to step S103 is continued while the processing after step S104 is being executed.
  • the control unit 13 of the power feeding optical communication device 10 determines the presence / absence of transmission data (step S104). For example, the control unit 13 determines that there is transmission data when the transmission data is taken in from the outside or when the transmission data is stored in the internal storage unit. On the other hand, the control unit 13 determines that there is no transmission data when the transmission data is not fetched from the outside or when there is no transmission data in the internal storage unit. Here, it is assumed that there is transmission data. In this case, the control unit 13 generates electrical signal data from the transmission data, and outputs the generated electrical signal data to the data transmission / reception unit 11.
  • the data transmission / reception unit 11 generates communication light based on the electrical signal of the transmission data output from the control unit 13.
  • the data transmission / reception unit 11 sends the generated communication light to the optical transmission line 30 (step S105).
  • the communication light transmitted from the power feeding optical communication device 10 is received by the power receiving optical communication device 20 connected via the optical transmission line 30.
  • the communication light transmitted from the data transmission / reception unit 11 is received by the photoelectric conversion unit 21 of the power receiving optical communication device 20 via the communication line.
  • the photoelectric conversion unit 21 converts the received optical signal into an electric signal and outputs it to the signal identification unit 25 and the path switching unit 26 (step S106).
  • the signal identification unit 25 inputs the electric signal output from the photoelectric conversion unit 21.
  • the signal identification unit 25 constantly monitors the input electric signal and identifies the signal (step S107). It is assumed that the signal identification unit 25 has detected a change over time in the waveform of the electric signal. In this case, the signal identification unit 25 controls the output path of the route switching unit 26 to be the first path, and causes the power storage unit 24 to supply electric power to the external transmission / reception unit 27 (step S108).
  • the signal identification unit 25 switches the route so that the output route of the route switching unit 26 becomes the first route.
  • the signal identification unit 25 does not switch the output route of the route switching unit 26 when the output route of the route switching unit 26 is the first route.
  • the signal identification unit 25 instructs the external transmission / reception unit 27 to supply electric power from the power storage unit 24.
  • the power storage unit 24 supplies electric power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25. More specifically, the power storage unit 24 supplies electric power to the modulation / demodulation unit 271 and the oscillator 272 of the external transmission / reception unit 27. As a result, the modulation / demodulation unit 271 and the oscillator 272 go from the sleep state to the wake-up state.
  • the external transmission / reception unit 27 up-converts the input electric signal and transmits it as a wireless signal to the external device (step S109).
  • FIG. 3 is a sequence diagram showing a second processing flow of the optical power supply system 100 in the first embodiment.
  • the flow of the process when there is no transmission data in the power feeding optical communication device 10 will be described.
  • the same processing as in FIG. 2 is designated by the same reference numerals as those in FIG. 2, and the description thereof will be omitted.
  • the control unit 13 of the power feeding optical communication device 10 determines the presence / absence of transmission data (step S201). Here, it is assumed that there is no transmission data. In this case, the control unit 13 outputs the feeding light from the data transmission / reception unit 11. The data transmission / reception unit 11 transmits the feed light to the power receiving optical communication device 20 via the optical transmission line 30 (step S202). In this way, the data transmission / reception unit 11 transmits the feeding light to the power receiving / optical communication device 20 via the optical transmission path 30 while there is no transmission data.
  • the power feeding light transmitted from the power feeding optical communication device 10 is received by the power receiving optical communication device 20 connected via the optical transmission line 30.
  • the feeding light transmitted from the data transmission / reception unit 11 is received by the photoelectric conversion unit 21 of the power receiving / optical communication device 20 via the communication line.
  • the photoelectric conversion unit 21 converts the received optical signal into an electric signal and outputs it to the signal identification unit 25 and the path switching unit 26 (step S203).
  • the signal identification unit 25 inputs the electric signal output from the photoelectric conversion unit 21.
  • the signal identification unit 25 constantly monitors the input electric signal and identifies the signal (step S204). It is assumed that the signal identification unit 25 has not detected a change over time in the waveform of the electric signal. In this case, the signal identification unit 25 controls the output path of the route switching unit 26 to be the second path, and stops the supply of electric power from the power storage unit 24 to the external transmission / reception unit 27 (step S205).
  • the signal identification unit 25 switches the route so that the output route of the route switching unit 26 becomes the second route.
  • the signal identification unit 25 does not switch the output route of the route switching unit 26 when the output route of the route switching unit 26 is the second route.
  • the signal identification unit 25 instructs the power storage unit 24 to stop the supply of electric power to the external transmission / reception unit 27.
  • the power storage unit 24 stops the supply of electric power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25.
  • the modulation / demodulation unit 271 and the oscillator 272 go from the activated state to the sleep state.
  • the electric signal output from the photoelectric conversion unit 22 and the electric signal output from the path switching unit 26 are input to the adder 23.
  • Each electric signal input to the adder 23 is added by the adder 23 and output to the power storage unit 24.
  • the power storage unit 24 stores the electric power of the electric signal in the battery by performing a charging process based on the electric signal after addition (step S206).
  • FIG. 4 is a flowchart showing a processing flow of the power receiving optical communication device 20 in the first embodiment.
  • the photoelectric conversion unit 21 converts the received optical signal into an electric signal and outputs it to the signal identification unit 25 and the path switching unit 26 (step S301).
  • the signal identification unit 25 constantly monitors the input electric signal and determines whether or not a temporal change in the electric signal has been detected (step S302). When the temporal change of the electric signal is detected (step S302-YES), the signal identification unit 25 controls the output path of the route switching unit 26 to be the first path (step S303).
  • the signal identification unit 25 instructs the power storage unit 24 to supply electric power to the external transmission / reception unit 27.
  • the power storage unit 24 supplies electric power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25 (step S304).
  • the external transmission / reception unit 27 up-converts the input electric signal and transmits it as a wireless signal to the external device (step S305). After that, the process returns to the process of step S301.
  • step S302-NO When the time change of the electric signal is not detected in the process of step S302 (step S302-NO), the signal identification unit 25 controls the output path of the route switching unit 26 to be the second path (step S302-NO). Step S306). Further, the signal identification unit 25 instructs the power storage unit 24 to stop the supply of electric power to the external transmission / reception unit 27. Upon receiving the instruction from the signal identification unit 25, the power storage unit 24 determines whether or not power is being supplied to the external transmission / reception unit 27 at the time of receiving the instruction (step S307).
  • step S307-YES When power is being supplied to the external transmission / reception unit 27 (step S307-YES), the power storage unit 24 stops supplying power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25 (step S308). On the other hand, when the power is not supplied to the external transmission / reception unit 27 (step S307-NO), the power storage unit 24 discards the instruction from the signal identification unit 25.
  • the power storage unit 24 After the processing of step S308, or when the power is not supplied to the external transmission / reception unit 27, the power storage unit 24 performs the charging process based on the electric signal added by the adder 23 to transfer the electric power of the electric signal to the battery. It stores electricity (step S309).
  • the data transmission / reception unit when the power supply optical communication device 10 has no transmission data for the power reception optical communication device 20, the data transmission / reception unit also transmits the power supply light to the power reception optical communication device 20. do. As a result, the power feeding light is transmitted from the two lines to the power receiving optical communication device 20.
  • the power receiving optical communication device 20 stores electric power obtained based on the feeding light transmitted from the feeding optical communication device 10 via two lines. As described above, in the conventional case, the electric power obtained based on the feeding light obtained by one line is stored, whereas in the present embodiment, it is obtained based on the feeding light obtained from each of a plurality of lines. It stores the electric power to be generated. Therefore, charging can be performed with a plurality of lines. Therefore, it is possible to improve the charging efficiency per unit time.
  • the power receiving optical communication device 20 whether the optical signal input via the communication line is the feeding light or the communication light is identified according to the time change of the waveform of the electric signal. As a result, the sleep state can be released at the timing required by the power receiving optical communication device 20 without the need for additional transmission of a control signal from the power feeding optical communication device 10. Therefore, it is possible to suppress unnecessary power consumption.
  • the power receiving optical communication device 20 directs the electric signal based on the optical signal input via the communication line to the power storage unit 24.
  • a route switching unit 26 for outputting to a route is provided.
  • the electric signal based on the optical signal input via the communication line can be output to the power storage unit 24 with a simple configuration.
  • the electric power obtained from the electric signal based on the optical signal input via the communication line can also be stored in the power storage unit 24.
  • the signal identification unit shows a configuration for identifying whether or not there is a temporal change by using an electric signal.
  • the configuration in which the signal identification unit discriminates whether or not there is a temporal change by using an optical signal will be described.
  • FIG. 5 is a diagram showing a configuration example of the optical power supply system 100a according to the second embodiment.
  • the optical power supply system 100a includes a power supply optical communication device 10 and a power receiving optical communication device 20a.
  • the power feeding optical communication device 10 and the power receiving optical communication device 20a are connected via an optical transmission line 30.
  • the power feeding optical communication device 10 and the power receiving optical communication device 20a are connected via a power feeding line and a communication line, respectively.
  • the power feeding optical communication device 10 and the power receiving optical communication device 20a have a single-star type topology configuration.
  • the optical power supply system 100a may include a plurality of receiving optical communication devices 20a.
  • an optical splitter is provided between the feeding optical communication device 10 and the plurality of received optical communication devices 20a.
  • the optical splitter branches the optical signal transmitted from the power feeding optical communication device 10 and transmits it to each received optical communication device 20a.
  • the optical splitter multiplexes the optical signals transmitted from the received optical communication devices 20a and transmits them to the power feeding optical communication device 10.
  • the power receiving optical communication device 20a is driven by the electric power supplied from the power feeding optical communication device 10.
  • the power receiving / optical communication device 20a includes a photoelectric conversion unit 21a, a photoelectric conversion unit 22a, an adder 23a, a power storage unit 24, a signal identification unit 25a, a route switching unit 26, and an external transmission / reception unit 27.
  • the power receiving optical communication device 20a includes a photoelectric conversion unit 21a, a photoelectric conversion unit 22a, an adder 23a, and a signal identification unit 25a in place of the photoelectric conversion unit 21, the photoelectric conversion unit 22, the adder 23, and the signal identification unit 25.
  • the configuration is different from that of the power receiving optical communication device 20.
  • the received optical communication device 20a is the same as the received optical communication device 20 in other configurations. Therefore, the description of the entire power receiving and optical communication device 20a will be omitted, and the photoelectric conversion unit 21a, the photoelectric conversion unit 22a, the adder 23a, and the signal identification unit 25a will be described.
  • the photoelectric conversion unit 21a is provided between the route switching unit 26 and the external transmission / reception unit 27.
  • the photoelectric conversion unit 21a converts the optical signal output from the path switching unit 26 into an electric signal and outputs it to the external transmission / reception unit 27.
  • the photoelectric conversion unit 21a is an O / E converter such as a photodetector.
  • the photoelectric conversion unit 22a is provided between the adder 23a and the power storage unit 24.
  • the photoelectric conversion unit 22a converts the optical signal output via the adder 23a into an electric signal and outputs it to the power storage unit 24.
  • the photoelectric conversion unit 22a is an O / E converter such as a photodetector.
  • the adder 23a adds the optical signal transmitted from the optical feeding unit 12 and the optical signal input via the route switching unit 26. As described above, in the adder 23a in the second embodiment, an optical signal is added instead of an electric signal. The adder 23a outputs the added optical signal to the photoelectric conversion unit 22a. When there is no optical signal input via the path switching unit 26, the adder 23a outputs the optical signal transmitted from the optical feeding unit 12 to the photoelectric conversion unit 22a as it is.
  • the signal identification unit 25a constantly monitors the optical signal transmitted from the data transmission / reception unit 11 to identify whether the optical signal transmitted from the data transmission / reception unit 11 is feed light or communication light. Specifically, the signal identification unit 25a identifies that the optical signal transmitted from the data transmission / reception unit 11 is communication light when a temporal change in the waveform of the optical signal is detected. On the other hand, the signal identification unit 25a identifies that the optical signal transmitted from the data transmission / reception unit 11 is the feeding light when the temporal change in the waveform of the optical signal is not detected. The signal identification unit 25a switches the output path of the route switching unit 26 according to the identification result.
  • FIG. 6 is a sequence diagram showing the flow of the first process of the optical power supply system 100a in the second embodiment.
  • the flow of the process when the power feeding optical communication device 10 has transmission data will be described.
  • the same processing as in FIG. 2 is designated by the same reference numerals as those in FIG. 2, and the description thereof will be omitted.
  • the power feeding light transmitted from the power feeding optical communication device 10 by the process of step S101 is received by the power receiving optical communication device 20a connected via the optical transmission line 30.
  • the feeding light transmitted from the optical feeding unit 12 is input to the adder 23a of the power receiving optical communication device 20a via the feeding line.
  • the optical signal of the feeding light transmitted from the optical feeding unit 12 is input to the photoelectric conversion unit 22a via the adder 23a.
  • the photoelectric conversion unit 22a converts the input optical signal into an electric signal and outputs it to the power storage unit 24 (step S401).
  • the power storage unit 24 stores the electric power of the electric signal in the battery by performing a charging process based on the electric signal output from the photoelectric conversion unit 22a (step S402).
  • the processing up to step S101, step S401 and step S402 is continued while the processing after step S104 is being executed.
  • the communication light transmitted from the power feeding optical communication device 10 by the processing of step S104 and step S105 is received by the received optical communication device 20a connected via the optical transmission line 30.
  • the communication light transmitted from the data transmission / reception unit 11 is received by the signal identification unit 25a and the route switching unit 26 of the power receiving optical communication device 20a via the communication line.
  • the signal identification unit 25a constantly monitors the received optical signal and identifies the signal (step S403). It is assumed that the signal identification unit 25a has detected a temporal change in the waveform of the optical signal. In this case, the signal identification unit 25a controls the output path of the path switching unit 26 to be the first path, and causes the power storage unit 24 to supply electric power to the external transmission / reception unit 27 (step S404).
  • the power storage unit 24 supplies electric power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25a. More specifically, the power storage unit 24 supplies electric power to the modulation / demodulation unit 271 and the oscillator 272 of the external transmission / reception unit 27. As a result, the modulation / demodulation unit 271 and the oscillator 272 go from the sleep state to the wake-up state.
  • the optical signal input to the path switching unit 26 is output to the photoelectric conversion unit 21a.
  • the photoelectric conversion unit 21a converts the input optical signal into an electric signal and outputs it to the external transmission / reception unit 27 (step S405).
  • the external transmission / reception unit 27 up-converts the input electric signal and transmits it as a wireless signal to the external device (step S109).
  • FIG. 7 is a sequence diagram showing the flow of the second process of the optical power supply system 100a in the second embodiment.
  • the flow of the process when there is no transmission data in the power feeding optical communication device 10 will be described.
  • the same processing as in FIG. 2 is designated by the same reference numerals as in FIG. 2, and the description thereof will be omitted.
  • the power feeding light transmitted from the power feeding optical communication device 10 by the process of step S101 is received by the power receiving optical communication device 20a connected via the optical transmission line 30.
  • the feeding light transmitted from the optical feeding unit 12 is input to the adder 23a of the power receiving optical communication device 20a via the feeding line.
  • the optical signal of the feeding light transmitted from the optical feeding unit 12 is input to the photoelectric conversion unit 22a via the adder 23a.
  • the photoelectric conversion unit 22a converts the input optical signal into an electric signal and outputs it to the power storage unit 24 (step S501).
  • the power storage unit 24 stores the electric power of the electric signal in the battery by performing a charging process based on the electric signal output from the photoelectric conversion unit 22a (step S502).
  • the processing up to step S101, step S501 and step S502 is continued while the processing after step S201 is being executed.
  • the communication light transmitted from the power feeding optical communication device 10 by the processing of step S201 and step S202 is received by the received optical communication device 20a connected via the optical transmission line 30.
  • the communication light transmitted from the data transmission / reception unit 11 is received by the signal identification unit 25a and the route switching unit 26 of the power receiving optical communication device 20a via the communication line.
  • the signal identification unit 25a constantly monitors the received optical signal and identifies the signal (step S503). It is assumed that the signal identification unit 25a has not detected a change over time in the waveform of the optical signal.
  • the signal identification unit 25a controls the output path of the path switching unit 26 to be the second path, and stops the supply of electric power from the power storage unit 24 to the external transmission / reception unit 27 (step S504).
  • the optical signal input to the route switching unit 26 is output to the adder 23a.
  • the optical signal of the feeding light transmitted from the optical feeding unit 12 and the optical signal output from the path switching unit 26 are input to the adder 23a.
  • Each optical signal input to the adder 23a is added by the adder 23a and output to the photoelectric conversion unit 22a.
  • the photoelectric conversion unit 22a converts the added optical signal into an electric signal and outputs it to the power storage unit 24 (step S505).
  • the power storage unit 24 stores the electric power of the electric signal in the battery by performing a charging process based on the electric signal (step S206).
  • FIG. 8 is a flowchart showing a processing flow of the power receiving optical communication device 20a according to the second embodiment.
  • the signal identification unit 25a constantly monitors the received optical signal and determines whether or not a temporal change in the optical signal has been detected (step S601).
  • step S601-YES the signal identification unit 25a controls the output path of the path switching unit 26 to be the first path (step S602).
  • the signal identification unit 25a instructs the power storage unit 24 to supply electric power to the external transmission / reception unit 27.
  • the power storage unit 24 supplies electric power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25a (step S603).
  • the optical signal input to the path switching unit 26 is input to the photoelectric conversion unit 21a via the first path.
  • the photoelectric conversion unit 21a converts the input optical signal into an electric signal and outputs it to the external transmission / reception unit 27 (step S604).
  • the external transmission / reception unit 27 up-converts the input electric signal and transmits it as a wireless signal to the external device (step S605). After that, the process returns to the process of step S601.
  • the signal identification unit 25a controls the output path of the path switching unit 26 to be the second path (step S601-NO). Step S606). Further, the signal identification unit 25a instructs the power storage unit 24 to stop the supply of electric power to the external transmission / reception unit 27. Upon receiving the instruction from the signal identification unit 25a, the power storage unit 24 determines whether or not power is being supplied to the external transmission / reception unit 27 at the time of receiving the instruction (step S607).
  • step S607-YES When power is being supplied to the external transmission / reception unit 27 (step S607-YES), the power storage unit 24 stops supplying power to the external transmission / reception unit 27 in response to an instruction from the signal identification unit 25a (step S608). On the other hand, when the power is not supplied to the external transmission / reception unit 27 (step S607-NO), the power storage unit 24 discards the instruction from the signal identification unit 25a.
  • the photoelectric conversion unit 22a converts the optical signal added by the adder 23 into an electric signal and outputs it to the power storage unit 24.
  • the power storage unit 24 stores the electric power of the electric signal in the battery by performing a charging process based on the electric signal (step S609).
  • the power supply optical communication device 10 also receives the power supply light from the data transmission / reception unit when there is no transmission data for the power reception optical communication device 20a. It is transmitted to the lightning communication device 20a. As a result, the power feeding light is transmitted from the two lines to the power receiving optical communication device 20a.
  • the power receiving optical communication device 20a stores electric power obtained based on the power feeding light transmitted from the power feeding optical communication device 10 via two lines. As described above, in the conventional case, the electric power obtained based on the feeding light obtained by one line is stored, whereas in the present embodiment, it is obtained based on the feeding light obtained from each of a plurality of lines. It stores the electric power to be generated. Therefore, charging can be performed with a plurality of lines. Therefore, it is possible to improve the charging efficiency per unit time.
  • the sleep state can be released at the timing required by the power receiving optical communication device 20a without the need for additional transmission of a control signal from the power feeding optical communication device 10. Therefore, it is possible to suppress unnecessary power consumption.
  • the power receiving optical communication device 20a when the optical signal input via the communication line is the feeding light, the power receiving optical communication device 20a outputs the optical signal input via the communication line to the path toward the power storage unit 24.
  • a route switching unit 26 is provided.
  • the optical signal input via the communication line can be output to the power storage unit 24 with a simple configuration.
  • the optical signal is converted into an electric signal before being input to the power storage unit 24.
  • the electric power obtained from the electric signal based on the optical signal input via the communication line can also be stored in the power storage unit 24.
  • the optical power supply systems 100 and 100a in the first embodiment and the second embodiment are not limited to PON (Passive Optical Network), and may be applied to any system as long as it is an optical communication system that performs optical power supply. ..
  • PON Passive Optical Network
  • the communication light and the feeding light signals are discriminated according to the presence or absence of detection of a temporal change in the optical signal.
  • the method of signal identification in the optical power feeding systems 100 and 100a does not need to be limited as described above.
  • the method of signal identification in the optical power feeding system 100, 100a may be performed by a method of confirming the characteristics of the frequency domain.
  • Communication light has a bandwidth in the frequency domain because it is modulated.
  • Bs be the bandwidth of the communication light.
  • the signal identification units 25 and 25a in the optical power feeding systems 100 and 100a utilize the difference in the frequency domain between the communication light and the feeding light, and the bandwidth of the signal received via the communication line is equal to or larger than the predetermined width Bx. It identifies whether the received signal is the feeding light or the communication light depending on whether or not the signal is. Since it is assumed that the feed light also has a slight bandwidth Bq due to an external factor such as the transmission line 30, Bx is set in the range of Bq ⁇ Bx ⁇ Bs.
  • the specific processing is as follows.
  • the optical signal transmitted from the data transmission / reception unit 11 when the bandwidth of the electric signal based on the optical signal received via the communication line is equal to or larger than a predetermined width Bx, the optical signal transmitted from the data transmission / reception unit 11 is the communication light.
  • the bandwidth of the electric signal based on the received optical signal is less than the predetermined width Bx, the optical signal transmitted from the data transmission / reception unit 11 is identified as the feeding light.
  • the signal identification unit 25a when the bandwidth of the optical signal received via the communication line is equal to or larger than a predetermined width Bx, the optical signal transmitted from the data transmission / reception unit 11 is the communication light.
  • the optical signal transmitted from the data transmission / reception unit 11 is identified as the feeding light.
  • the type of the incoming wave can be determined depending on whether the incoming signal has a wider band or a narrower band than Bx.
  • a computer may be used to realize some of the functional units included in the power receiving optical communication devices 20 and 20a in the above-described embodiment.
  • a program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed.
  • the term "computer system” as used herein includes hardware such as an OS and peripheral devices.
  • the "computer-readable recording medium” refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system.
  • a "computer-readable recording medium” is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).
  • FPGA Field Programmable Gate Array
  • the present invention can be applied to an optical communication system that performs optical power supply.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Optical Communication System (AREA)

Abstract

給電用の光信号を用いて給電を行う給電光通信装置と、給電光通信装置から送信される給電用の光信号より得られる電力で駆動する受電光通信装置とを備える光給電システムであって、給電光通信装置は、給電用の光信号を受電光通信装置に送信する光給電部と、受電光通信装置に送信すべきデータが無い場合に給電用の光信号を受電光通信装置に送信するデータ送受信部と、を備え、受電光通信装置は、光給電部が送信する給電用の光信号及びデータ送受信部が送信する給電用の光信号に基づいて得られる電力を蓄電する蓄電部と、を備える光給電システム。

Description

光給電システム、光給電方法及び受電光通信装置
 本発明は、光給電システム、光給電方法及び受電光通信装置に関する。
 従来、特許文献1に示す光給電システムが提案されている。特許文献1に示す光給電システムでは、OLT(Optical Line Terminal:加入者線端局装置)から送信される給電用の光信号(以下「給電光」という。)をONU(Optical Network Unit:加入者線終端装置)が受信することでOLTから電力の供給がなされる。特許文献1に示す光給電システムでは、給電に用いる光信号と、通信用の光信号とで同じ波長を用いることで、給電用と通信用とで波長を分離するために用いていた高価な光合波器及び光分波器を不要としている。これにより、光給電システムの構築コストを抑制することができる。
特開2010-193374号公報
 上記のようなONUでは、供給された電力の消費量を低減するために、一部の機能をスリープ状態にしている。特許文献1に示す構成では、タイマーを用いて周期的に動作トリガーを生成することで動作を制御している。しかしながら、光給電により蓄えた電力では、十分な充電ができるまで通信が行えない。そのため、通信機器としての利便性を損なってしまう可能性がある。そこで、充電効率の向上による通信可能時間の増大が望まれている。
 上記事情に鑑み、本発明は、光給電による充電効率を向上させることができる技術の提供を目的としている。
 本発明の一態様は、給電用の光信号を用いて給電を行う給電光通信装置と、前記給電光通信装置から送信される前記給電用の光信号より得られる電力で駆動する受電光通信装置とを備える光給電システムであって、前記給電光通信装置は、前記給電用の光信号を前記受電光通信装置に送信する光給電部と、前記受電光通信装置に送信すべきデータが無い場合に前記給電用の光信号を前記受電光通信装置に送信するデータ送受信部と、を備え、前記受電光通信装置は、前記光給電部が送信する前記給電用の光信号及び前記データ送受信部が送信する前記給電用の光信号に基づいて得られる電力を蓄電する蓄電部と、を備える光給電システムである。
 本発明の一態様は、給電用の光信号を用いて給電を行う給電光通信装置と、前記給電光通信装置から送信される前記給電用の光信号より得られる電力で駆動する受電光通信装置とが行う光給電方法であって、前記給電光通信装置が、前記給電用の光信号を前記受電光通信装置に送信し、前記受電光通信装置に送信すべきデータが無い場合に前記給電用の光信号を前記受電光通信装置に送信し、前記受電光通信装置が、前記給電光通信装置から複数の経路で送信される前記給電用の光信号に基づいて得られる電力を蓄電する光給電方法である。
 本発明の一態様は、給電用の光信号を用いて給電を行う給電光通信装置と、前記給電光通信装置から送信される前記給電用の光信号より得られる電力で駆動する受電光通信装置とを備える光給電システムにおける前記受電光通信装置であって、前記給電光通信装置から複数の経路で送信される前記給電用の光信号に基づいて得られる電力を蓄電する蓄電部、を備える受電光通信装置である。
 本発明により、光給電による充電効率を向上させることが可能となる。
第1の実施形態における光給電システムの構成例を示す図である。 第1の実施形態における光給電システムの第1の処理の流れを示すシーケンス図である。 第1の実施形態における光給電システムの第2の処理の流れを示すシーケンス図である。 第1の実施形態における受電光通信装置の処理の流れを示すフローチャートである。 第2の実施形態における光給電システムの構成例を示す図である。 第2の実施形態における光給電システムの第1の処理の流れを示すシーケンス図である。 第2の実施形態における光給電システムの第2の処理の流れを示すシーケンス図である。 第2の実施形態における受電光通信装置の処理の流れを示すフローチャートである。
 以下、本発明の一実施形態を、図面を参照しながら説明する。
(概略)
 まず本発明における光給電システムの概略について説明する。
 光給電を行う光通信システムにおいて、給電光通信装置が、受電光通信装置に対して送信すべきデータ(以下「送信データ」という。)が無い場合に、給電光を送信する回線(以下「給電用回線」という。)を介して給電光を受電光通信装置に送信するとともに、受電光通信装置との間でデータの送受信を行う回線(以下「通信用回線」という。)を介して給電光を受電光通信装置に送信する。受電光通信装置は、複数の回線それぞれで給電光通信装置から送信された給電光に基づいて充電する。
 上記のような構成により、充電用の回線が1回線から複数の回線に増えるため、単位時間当たりの充電効率を向上させることが可能となる。
 以下、具体的な構成について複数の実施形態を例に説明する。
(第1の実施形態)
 図1は、第1の実施形態における光給電システム100の構成例を示す図である。
 光給電システム100は、給電光通信装置10と、受電光通信装置20とを備える。給電光通信装置10と、受電光通信装置20とは、光伝送路30を介して接続される。給電光通信装置10と、受電光通信装置20とが光伝送路30を介して接続されることにより、給電光通信装置10と受電光通信装置20との間で通信が可能になる。例えば、給電光通信装置10と、受電光通信装置20とは、給電用回線及び通信用回線それぞれを介して接続される。
 給電用回線及び通信用回線は、物理的に同じファイバ内に設けられてもよいし、独立した別のファイバ内にそれぞれ設けられてもよい。すなわち、通信用の光信号と給電用の光信号で物理的に同じファイバを共用してもよいし、独立した別のファイバを使用してもよい。通信用の光信号と給電用の光信号で同じファイバを共用する場合、通信用の光と給電用の光は異なる周波数帯を使用して波長多重する方法などが考えられる。図1では、給電光通信装置10と、受電光通信装置20とは、single-star型のトポロジー構成をとる。以下、給電光通信装置10から受電光通信装置20に向かう方向を下り方向、受電光通信装置20から給電光通信装置10に向かう方向を上り方向とする。
 なお、図1では、受電光通信装置20を1台示しているが、光給電システム100は複数の受電光通信装置20を備えてもよい。光給電システム100に複数台の受電光通信装置20が備えられる場合、給電光通信装置10と、複数の受電光通信装置20との間には、光スプリッタが備えられる。光スプリッタは、給電光通信装置10から送信された光信号を分岐して各受電光通信装置20に送信する。光スプリッタは、各受電光通信装置20から送信された光信号を多重して給電光通信装置10に送信する。
 給電光通信装置10は、例えばOLTである。給電光通信装置10は、データ送受信部11と、光給電部12と、制御部13とを備える。
 データ送受信部11は、受電光通信装置20との間でデータの送受信又は給電光の送信を行う。データ送受信部11は、例えば光トランシーバであり、内部に特定の波長の光を出射する光源を備える。データ送受信部11は、送信データがある場合には、内部に備える光源が出射する光を制御部13から与えられる送信データの電気信号に基づいて変調することにより、送信データの光信号(以下「通信光」という。)に変換し、変換した通信光を光伝送路30に送出する。データ送受信部11は、送信データがない場合には、内部に備える光源により給電光を生成して光伝送路30に送出する。給電光としては、例えば一定電圧で時間的な変化がない光信号が用いられる。
 上記のように、本実施形態におけるデータ送受信部11は、送信データがある場合には通信光を、光伝送路30を介して受電光通信装置20に送信する。データ送受信部11は、送信データがない場合には給電光を、光伝送路30を介して受電光通信装置20に送信する。
 データ送受信部11は、例えば、内部にフォトディテクタ等のO/E(Optical/Electrical)変換器を備える。データ送受信部11は、光伝送路30を介して受信するデータの光信号を受信し、受信したデータの光信号をO/E変換器により電気信号に変換して制御部13に出力する。
 光給電部12は、内部に給電光を出射する光源を備えており、光源により給電光を生成して光伝送路30に送出する。これにより、光給電部12は、給電光を受電光通信装置20に送信する。
 制御部13は、データ送受信部11及び光給電部12の動作を制御する。例えば、制御部13は、送信データを外部から取り込む。制御部13は、取り込んだ送信データから電気信号のデータを生成し、生成した電気信号のデータをデータ送受信部11に出力する。制御部13は、データ送受信部11が出力する電気信号のデータを取り込み、取り込んだデータを外部に出力する。制御部13は、送信データが無い場合には、データ送受信部11から給電光を出力させる。制御部13は、光給電部12から給電光を出力させる。
 受電光通信装置20は、給電光通信装置10から給電される電力で駆動する。受電光通信装置20は、例えばONUである。受電光通信装置20は、光電変換部21と、光電変換部22と、加算器23と、蓄電部24と、信号識別部25と、経路切替部26と、外部送受信部27とを備える。
 光電変換部21は、データ送受信部11から送信された光信号(例えば、給電光又は通信光)を、光伝送路30を介して受信し、受信した光信号を電気信号に変換して信号識別部25及び経路切替部26に出力する。光電変換部21は、例えばフォトディテクタ等のO/E変換器である。
 光電変換部22は、光給電部12から送信された光信号(例えば、給電光)を、光伝送路30を介して受信し、受信した光信号を電気信号に変換して加算器23に出力する。光電変換部22は、例えばフォトディテクタ等のO/E変換器である。
 加算器23は、光電変換部22から出力される電気信号と、経路切替部26を介して入力される電気信号とを加算する。加算器23は、加算後の電気信号を蓄電部24に出力する。なお、経路切替部26を介して入力される電気信号が無い場合には、加算器23は、光電変換部22から出力される電気信号をそのまま蓄電部24に出力することになる。
 蓄電部24は、内部にバッテリーを備える。蓄電部24は、電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する。このように、蓄電部24は、光給電部12が送信する給電光及びデータ送受信部11が送信する給電光に基づいて得られる電力を蓄電する。蓄電部24は、信号識別部25からの指示に応じて、蓄電している電力を用いて発生させた電源電圧を外部送受信部27に対して供給する。これにより、外部送受信部27は、スリープ状態から動作可能な状態になる。
 信号識別部25は、光電変換部21によって変換された電気信号を常時モニタリングして、データ送受信部11から送信された光信号が給電光であるか通信光であるかを識別する。具体的には、信号識別部25は、電気信号の波形において時間的な変化を検出した場合にデータ送受信部11から送信された光信号が通信光であると識別する。一方で、信号識別部25は、電気信号の波形において時間的な変化を検出していない場合にデータ送受信部11から送信された光信号が給電光であると識別する。
 上記のように、給電光としては一定電圧で時間的な変化がない光信号が用いられている。そのため、時間的な変化を検出していない場合には、データ送受信部11から送信された光信号が給電光と識別できる。一方で、通信光は、送信データで変調されているため時間的な変化を有する光信号となる。そのため、時間的な変化を検出した場合には、データ送受信部11から送信された光信号が通信光と識別できる。
 信号識別部25は、識別結果に応じて、経路切替部26の出力経路を切り替える。具体的には、信号識別部25は、データ送受信部11から送信された光信号が通信光である場合には経路切替部26の出力経路を第1の経路となるように制御するとともに、蓄電部24から外部送受信部27に対して電力を供給させる。信号識別部25は、データ送受信部11から送信された光信号が給電光である場合には経路切替部26の出力経路を第2の経路となるように制御するとともに、必要に応じて蓄電部24から外部送受信部27に対する電力の供給を停止させる。第1の経路は、経路切替部26から出力される信号が外部送受信部27に出力される経路である。第2の経路は、経路切替部26から出力される信号が加算器23に出力される経路である。
 経路切替部26は、信号識別部25の制御に従って、出力経路を切り替え可能なスイッチである。経路切替部26は、入力された信号を、信号識別部25の制御に従って第1の経路又は第2の経路のいずれかに出力可能であればよく、電気的なスイッチであってもよいし、機械的なスイッチであってもよいし、電気的なスイッチと機械的なスイッチの組み合わせであってもよい。以下の説明では、一例として、経路切替部26を機械的なスイッチとして説明する。
 外部送受信部27は、蓄電部24から供給される電力で動作可能な機能部である。そのため、外部送受信部27は、蓄電部24から電力の供給がなされていない場合にはスリープ状態となる。外部送受信部27は、蓄電部24から電力の供給がなされた場合にはスリープ状態から起動状態となり通信可能になる。外部送受信部27は、無線により外部装置との間で通信を行う。
 外部送受信部27が無線の通信手段により外部装置に接続する場合、例えば、外部送受信部27としてWi-Fiモジュール(Wi-Fiは登録商標)などが適用される。外部送受信部27は、外部装置が予め定められる一定の周期で送信するデータを受信し、受信したデータを不図示の記憶部に書き込んで記憶させる。外部送受信部27は、経路切替部26から出力されたデータを取り込み、取り込んだデータを外部装置に送信する。外部送受信部27は、不図示の記憶部が外部装置に送信するデータを記憶している場合、当該データを記憶部から読み出し、読み出したデータを外部装置に送信する。
 外部装置は、例えばIoT(Internet of Things)センサなどのセンサノードである。外部装置は、無線により受電光通信装置20に接続する。外部装置は、例えば、内部に備えるセンサによって計測したデータを予め定められる一定の周期で受電光通信装置20に送信する。外部装置は、受電光通信装置20が送信するデータを受信する。なお、外部装置は、複数台存在していてもよく、この場合、複数の外部装置が、無線により受電光通信装置20に接続する。
 外部送受信部27は、変復調部271と、発振器272と、ミキサ273と、アンテナ274とを備える。外部送受信部27が備える変復調部271及び発振器272が、蓄電部24から供給される電力で動作する機能部である。
 変復調部271は、入力された信号に対して変調又は復調を行う。例えば、変復調部271は、経路切替部26から出力されたデータを変調する。
 発振器272は、CW(Continuous Wave)波を生成してミキサ273に出力する。
 ミキサ273は、発振器272から出力されるCW波と、変復調部271から出力された変調信号とを乗算して変調信号をアップコンバートする。
 アンテナ274は、ミキサ273によってアップコンバートされた変調信号を無線により外部装置に送信する。
 図2は、第1の実施形態における光給電システム100の第1の処理の流れを示すシーケンス図である。なお、図2に示す処理では、給電光通信装置10に送信データがある場合の処理の流れについて説明する。
 給電光通信装置10の光給電部12は、内部に備える光源により給電光を生成して光伝送路30に送出する(ステップS101)。給電光通信装置10から送出された給電光は、光伝送路30を介して接続される受電光通信装置20で受信される。具体的には、光給電部12から送出された給電光は、給電用回線を介して受電光通信装置20の光電変換部22で受信される。光電変換部22は、受信した光信号を電気信号に変換して加算器23に出力する(ステップS102)。
 この時点では、加算器23には、光電変換部22から出力された電気信号のみが入力される。そのため、光電変換部22から出力された電気信号が、加算器23を介して蓄電部24に入力される。蓄電部24は、加算器23から出力される電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS103)。なお、ステップS101からステップS103までの処理は、ステップS104以降の処理が実行されている間も継続される。
 給電光通信装置10の制御部13は、送信データの有無を判定する(ステップS104)。例えば、制御部13は、送信データを外部から取り込んだ場合又は内部の記憶部に送信データがある場合に送信データがあると判定する。一方、制御部13は、送信データを外部から取り込んでいない場合及び内部の記憶部に送信データがない場合に送信データがないと判定する。ここでは、送信データがあるとする。この場合、制御部13は、送信データから電気信号のデータを生成し、生成した電気信号のデータをデータ送受信部11に出力する。
 データ送受信部11は、制御部13から出力された送信データの電気信号に基づいて通信光を生成する。データ送受信部11は、生成した通信光を光伝送路30に送出する(ステップS105)。給電光通信装置10から送出された通信光は、光伝送路30を介して接続される受電光通信装置20で受信される。具体的には、データ送受信部11から送出された通信光は、通信用回線を介して受電光通信装置20の光電変換部21で受信される。光電変換部21は、受信した光信号を電気信号に変換して信号識別部25及び経路切替部26に出力する(ステップS106)。
 信号識別部25は、光電変換部21から出力された電気信号を入力する。信号識別部25は、入力した電気信号を常時モニタリングして信号を識別する(ステップS107)。信号識別部25は、電気信号の波形において時間的な変化を検出したとする。この場合、信号識別部25は、経路切替部26の出力経路を第1の経路とするように制御するとともに、蓄電部24から外部送受信部27に電力を供給させる(ステップS108)。
 例えば、信号識別部25は、経路切替部26の出力経路が第2の経路となっている場合には、経路切替部26の出力経路が第1の経路となるように経路を切り替える。一方で、信号識別部25は、経路切替部26の出力経路が第1の経路となっている場合には、経路切替部26の出力経路の切り替えを行わない。経路切替部26の出力経路が第1の経路となるように制御されることによって、経路切替部26に入力された光信号が外部送受信部27に出力される。
 さらに、信号識別部25は、蓄電部24から外部送受信部27に電力を供給させるように指示する。蓄電部24は、信号識別部25からの指示に応じて外部送受信部27に電力を供給する。より具体的には、蓄電部24は、外部送受信部27の変復調部271及び発振器272に電力を供給する。これにより、変復調部271及び発振器272がスリープ状態から起動状態となる。外部送受信部27は、入力された電気信号をアップコンバートして無線信号として外部装置に送信する(ステップS109)。
 図3は、第1の実施形態における光給電システム100の第2の処理の流れを示すシーケンス図である。なお、図3に示す処理では、給電光通信装置10に送信データがない場合の処理の流れについて説明する。図3において、図2と同様の処理については図2と同様の符号を付して説明を省略する。
 ステップS101からステップS103までの処理と同時又は後に、給電光通信装置10の制御部13は、送信データの有無を判定する(ステップS201)。ここでは、送信データがないとする。この場合、制御部13は、データ送受信部11から給電光を出力させる。データ送受信部11は、給電光を、光伝送路30を介して受電光通信装置20に送信する(ステップS202)。このように、データ送受信部11は、送信データがない間、給電光を、光伝送路30を介して受電光通信装置20に送出する。
 給電光通信装置10から送出された給電光は、光伝送路30を介して接続される受電光通信装置20で受信される。具体的には、データ送受信部11から送出された給電光は、通信用回線を介して受電光通信装置20の光電変換部21で受信される。光電変換部21は、受信した光信号を電気信号に変換して信号識別部25及び経路切替部26に出力する(ステップS203)。
 信号識別部25は、光電変換部21から出力された電気信号を入力する。信号識別部25は、入力した電気信号を常時モニタリングして信号を識別する(ステップS204)。信号識別部25は、電気信号の波形において時間的な変化を検出していないとする。この場合、信号識別部25は、経路切替部26の出力経路を第2の経路とするように制御するとともに、蓄電部24から外部送受信部27への電力の供給を停止させる(ステップS205)。
 例えば、信号識別部25は、経路切替部26の出力経路が第1の経路となっている場合には、経路切替部26の出力経路が第2の経路となるように経路を切り替える。一方で、信号識別部25は、経路切替部26の出力経路が第2の経路となっている場合には、経路切替部26の出力経路の切り替えを行わない。経路切替部26の出力経路が第2の経路となるように制御されることによって、経路切替部26に入力された電気信号が加算器23に出力される。
 さらに、信号識別部25は、蓄電部24から外部送受信部27への電力の供給を停止するように指示する。蓄電部24は、信号識別部25からの指示に応じて外部送受信部27への電力の供給を停止する。これにより、変復調部271及び発振器272が起動状態からスリープ状態となる。
 加算器23には、光電変換部22から出力された電気信号と、経路切替部26から出力された電気信号とが入力される。加算器23に入力された各電気信号は、加算器23で加算されて蓄電部24に出力される。蓄電部24は、加算後の電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS206)。
 図4は、第1の実施形態における受電光通信装置20の処理の流れを示すフローチャートである。図4に示すフローチャートでは、光電変換部21で受信した光信号の処理をメインに説明する。
 光電変換部21は、受信した光信号を電気信号に変換して信号識別部25及び経路切替部26に出力する(ステップS301)。信号識別部25は、入力した電気信号を常時モニタリングして、電気信号の時間的な変化を検出したか否かを判定する(ステップS302)。電気信号の時間的な変化を検出した場合(ステップS302-YES)、信号識別部25は経路切替部26の出力経路を第1の経路とするように制御する(ステップS303)。
 さらに、信号識別部25は、蓄電部24に対して、外部送受信部27に電力を供給させるように指示する。蓄電部24は、信号識別部25からの指示に応じて外部送受信部27に電力を供給する(ステップS304)。外部送受信部27は、入力された電気信号をアップコンバートして無線信号として外部装置に送信する(ステップS305)。その後、ステップS301の処理に戻る。
 ステップS302の処理において、電気信号の時間的な変化を検出していない場合(ステップS302-NO)、信号識別部25は経路切替部26の出力経路を第2の経路とするように制御する(ステップS306)。さらに、信号識別部25は、蓄電部24に対して、外部送受信部27への電力の供給を停止させるように指示する。蓄電部24は、信号識別部25からの指示を受け取ると、指示を受け取った時点で外部送受信部27に電力を供給しているか否かを判定する(ステップS307)。
 外部送受信部27に電力を供給している場合(ステップS307-YES)、蓄電部24は信号識別部25からの指示に応じて外部送受信部27への電力の供給を停止する(ステップS308)。
 一方、外部送受信部27に電力を供給していない場合(ステップS307-NO)、蓄電部24は信号識別部25からの指示を破棄する。
 ステップS308の処理後、又は、外部送受信部27に電力を供給していない場合、蓄電部24は加算器23により加算された電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS309)。
 以上のように構成された光給電システム100によれば、給電光通信装置10が、受電光通信装置20に対する送信データが無い場合に、データ送受信部からも給電光を受電光通信装置20に送信する。これにより、受電光通信装置20には、2回線から給電光が送信される。受電光通信装置20は、給電光通信装置10から2回線で送信された給電光に基づいて得られる電力を蓄電する。このように、従来では、1回線で得られた給電光に基づいて得られる電力を蓄電していたのに対して、本実施形態では、複数の回線それぞれから得られた給電光に基づいて得られる電力を蓄電する。したがって、複数の回線で充電を行うことができる。そのため、単位時間当たりの充電効率を向上させることが可能となる。
 さらに、受電光通信装置20では、通信用回線を介して入力された光信号が、給電光であるか通信光であるかを電気信号の波形の時間変化に応じて識別している。これにより、給電光通信装置10から追加で制御信号の伝送を必要とせず、受電光通信装置20において必要なタイミングで、スリープ状態を解除することができる。そのため、無駄な電力消費を抑制することが可能になる。
 さらに、受電光通信装置20は、通信用回線を介して入力された光信号が、給電光である場合に、通信用回線を介して入力された光信号に基づく電気信号を蓄電部24に向かう経路へ出力させる経路切替部26を備える。これにより、簡易な構成で、通信用回線を介して入力された光信号に基づく電気信号を蓄電部24に出力させることができる。その結果、通信用回線を介して入力された光信号に基づく電気信号から得られる電力も蓄電部24に蓄電することが可能になる。
(第2の実施形態)
 第1の実施形態では、信号識別部が、電気信号を用いて、時間的な変化があるか否かを識別する構成を示した。第2の実施形態では、信号識別部が、光信号を用いて、時間的な変化があるか否かを識別する構成について説明する。
 図5は、第2の実施形態における光給電システム100aの構成例を示す図である。
 光給電システム100aは、給電光通信装置10と、受電光通信装置20aとを備える。給電光通信装置10と、受電光通信装置20aとは、光伝送路30を介して接続される。給電光通信装置10と、受電光通信装置20aとが光伝送路30を介して接続されることにより、給電光通信装置10と受電光通信装置20aとの間で通信が可能になる。例えば、給電光通信装置10と、受電光通信装置20aとは、給電用回線及び通信用回線それぞれを介して接続される。図5では、給電光通信装置10と、受電光通信装置20aとは、single-star型のトポロジー構成をとる。
 なお、図5では、受電光通信装置20aを1台示しているが、光給電システム100aは複数の受電光通信装置20aを備えてもよい。光給電システム100aに複数台の受電光通信装置20aが備えられる場合、給電光通信装置10と、複数の受電光通信装置20aとの間には、光スプリッタが備えられる。光スプリッタは、給電光通信装置10から送信された光信号を分岐して各受電光通信装置20aに送信する。光スプリッタは、各受電光通信装置20aから送信された光信号を多重して給電光通信装置10に送信する。
 第2の実施形態では、受電光通信装置20aの構成が第1の実施形態と異なる。以下、第1の実施形態との相違点について説明する。
 受電光通信装置20aは、給電光通信装置10から給電される電力で駆動する。受電光通信装置20aは、光電変換部21aと、光電変換部22aと、加算器23aと、蓄電部24と、信号識別部25aと、経路切替部26と、外部送受信部27とを備える。
 受電光通信装置20aは、光電変換部21、光電変換部22、加算器23及び信号識別部25に代えて光電変換部21a、光電変換部22a、加算器23a及び信号識別部25aを備える点で受電光通信装置20と構成が異なる。受電光通信装置20aは、他の構成については受電光通信装置20と同様である。そのため、受電光通信装置20a全体の説明は省略し、光電変換部21a、光電変換部22a、加算器23a及び信号識別部25aについて説明する。
 光電変換部21aは、経路切替部26と外部送受信部27との間に設けられる。光電変換部21aは、経路切替部26から出力された光信号を電気信号に変換して外部送受信部27に出力する。光電変換部21aは、例えばフォトディテクタ等のO/E変換器である。
 光電変換部22aは、加算器23aと蓄電部24との間に設けられる。光電変換部22aは、加算器23aを介して出力された光信号を電気信号に変換して蓄電部24に出力する。光電変換部22aは、例えばフォトディテクタ等のO/E変換器である。
 加算器23aは、光給電部12から送信された光信号と、経路切替部26を介して入力される光信号とを加算する。このように、第2の実施形態における加算器23aでは、電気信号ではなく、光信号を加算する。加算器23aは、加算後の光信号を光電変換部22aに出力する。なお、経路切替部26を介して入力される光信号が無い場合には、加算器23aは、光給電部12から送信された光信号をそのまま光電変換部22aに出力することになる。
 信号識別部25aは、データ送受信部11から送信された光信号を常時モニタリングして、データ送受信部11から送信された光信号が給電光であるか通信光であるかを識別する。具体的には、信号識別部25aは、光信号の波形において時間的な変化を検出した場合にデータ送受信部11から送信された光信号が通信光であると識別する。一方で、信号識別部25aは、光信号の波形において時間的な変化を検出していない場合にデータ送受信部11から送信された光信号が給電光であると識別する。信号識別部25aは、識別結果に応じて、経路切替部26の出力経路を切り替える。
 図6は、第2の実施形態における光給電システム100aの第1の処理の流れを示すシーケンス図である。なお、図6に示す処理では、給電光通信装置10に送信データがある場合の処理の流れについて説明する。図6において、図2と同様の処理については図2と同様の符号を付して説明を省略する。
 ステップS101の処理により給電光通信装置10から送出された給電光は、光伝送路30を介して接続される受電光通信装置20aで受信される。具体的には、光給電部12から送出された給電光は、給電用回線を介して受電光通信装置20aの加算器23aに入力される。この時点では、加算器23aには、光給電部12から送出された給電光の光信号のみが入力される。そのため、光給電部12から送出された給電光の光信号が、加算器23aを介して光電変換部22aに入力される。
 光電変換部22aは、入力された光信号を電気信号に変換して蓄電部24に出力する(ステップS401)。蓄電部24は、光電変換部22aから出力される電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS402)。なお、ステップS101、ステップS401及びステップS402までの処理は、ステップS104以降の処理が実行されている間も継続される。
 ステップS104及びステップS105の処理により給電光通信装置10から送出された通信光は、光伝送路30を介して接続される受電光通信装置20aで受信される。具体的には、データ送受信部11から送出された通信光は、通信用回線を介して受電光通信装置20aの信号識別部25a及び経路切替部26で受信される。信号識別部25aは、受信した光信号を常時モニタリングして信号を識別する(ステップS403)。信号識別部25aは、光信号の波形において時間的な変化を検出したとする。この場合、信号識別部25aは、経路切替部26の出力経路を第1の経路とするように制御するとともに、蓄電部24から外部送受信部27に電力を供給させる(ステップS404)。
 蓄電部24は、信号識別部25aからの指示に応じて外部送受信部27に電力を供給する。より具体的には、蓄電部24は、外部送受信部27の変復調部271及び発振器272に電力を供給する。これにより、変復調部271及び発振器272がスリープ状態から起動状態となる。経路切替部26に入力された光信号は、光電変換部21aに出力される。光電変換部21aは、入力した光信号を電気信号に変換して外部送受信部27に出力する(ステップS405)。外部送受信部27は、入力された電気信号をアップコンバートして無線信号として外部装置に送信する(ステップS109)。
 図7は、第2の実施形態における光給電システム100aの第2の処理の流れを示すシーケンス図である。なお、図7に示す処理では、給電光通信装置10に送信データがない場合の処理の流れについて説明する。図7において、図2と同様の処理については図2と同様の符号を付して説明を省略する。
 ステップS101の処理により給電光通信装置10から送出された給電光は、光伝送路30を介して接続される受電光通信装置20aで受信される。具体的には、光給電部12から送出された給電光は、給電用回線を介して受電光通信装置20aの加算器23aに入力される。この時点では、加算器23aには、光給電部12から送出された給電光の光信号のみが入力される。そのため、光給電部12から送出された給電光の光信号が、加算器23aを介して光電変換部22aに入力される。
 光電変換部22aは、入力された光信号を電気信号に変換して蓄電部24に出力する(ステップS501)。蓄電部24は、光電変換部22aから出力される電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS502)。なお、ステップS101、ステップS501及びステップS502までの処理は、ステップS201以降の処理が実行されている間も継続される。
 ステップS201及びステップS202の処理により給電光通信装置10から送出された通信光は、光伝送路30を介して接続される受電光通信装置20aで受信される。具体的には、データ送受信部11から送出された通信光は、通信用回線を介して受電光通信装置20aの信号識別部25a及び経路切替部26で受信される。信号識別部25aは、受信した光信号を常時モニタリングして信号を識別する(ステップS503)。信号識別部25aは、光信号の波形において時間的な変化を検出していないとする。この場合、信号識別部25aは、経路切替部26の出力経路を第2の経路とするように制御するとともに、蓄電部24から外部送受信部27への電力の供給を停止させる(ステップS504)。経路切替部26の出力経路が第2の経路となるように制御されることによって、経路切替部26に入力された光信号が加算器23aに出力される。
 加算器23aには、光給電部12から送出された給電光の光信号と、経路切替部26から出力された光信号とが入力される。加算器23aに入力された各光信号は、加算器23aで加算されて光電変換部22aに出力される。光電変換部22aは、加算後の光信号を電気信号に変換して蓄電部24に出力する(ステップS505)。蓄電部24は、電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS206)。
 図8は、第2の実施形態における受電光通信装置20aの処理の流れを示すフローチャートである。図8に示すフローチャートでは、信号識別部25aで受信した光信号の処理をメインに説明する。
 信号識別部25aは、受信した光信号を常時モニタリングして、光信号の時間的な変化を検出したか否かを判定する(ステップS601)。光信号の時間的な変化を検出した場合(ステップS601-YES)、信号識別部25aは経路切替部26の出力経路を第1の経路とするように制御する(ステップS602)。
 さらに、信号識別部25aは、蓄電部24に対して、外部送受信部27に電力を供給させるように指示する。蓄電部24は、信号識別部25aからの指示に応じて外部送受信部27に電力を供給する(ステップS603)。経路切替部26に入力された光信号は、第1の経路を介して光電変換部21aに入力される。光電変換部21aは、入力した光信号を電気信号に変換して外部送受信部27に出力する(ステップS604)。外部送受信部27は、入力された電気信号をアップコンバートして無線信号として外部装置に送信する(ステップS605)。その後、ステップS601の処理に戻る。
 ステップS601の処理において、光信号の時間的な変化を検出していない場合(ステップS601-NO)、信号識別部25aは経路切替部26の出力経路を第2の経路とするように制御する(ステップS606)。さらに、信号識別部25aは、蓄電部24に対して、外部送受信部27への電力の供給を停止させるように指示する。蓄電部24は、信号識別部25aからの指示を受け取ると、指示を受け取った時点で外部送受信部27に電力を供給しているか否かを判定する(ステップS607)。
 外部送受信部27に電力を供給している場合(ステップS607-YES)、蓄電部24は信号識別部25aからの指示に応じて外部送受信部27への電力の供給を停止する(ステップS608)。
 一方、外部送受信部27に電力を供給していない場合(ステップS607-NO)、蓄電部24は信号識別部25aからの指示を破棄する。
 ステップS608の処理後、又は、外部送受信部27に電力を供給していない場合、光電変換部22aは加算器23により加算された光信号を電気信号に変換して蓄電部24に出力する。蓄電部24は、電気信号に基づいて充電処理を行うことによって電気信号の電力をバッテリーに蓄電する(ステップS609)。
 以上のように構成された第2の実施形態における光給電システム100aによれば、給電光通信装置10が、受電光通信装置20aに対する送信データが無い場合に、データ送受信部からも給電光を受電光通信装置20aに送信する。これにより、受電光通信装置20aには、2回線から給電光が送信される。受電光通信装置20aは、給電光通信装置10から2回線で送信された給電光に基づいて得られる電力を蓄電する。このように、従来では、1回線で得られた給電光に基づいて得られる電力を蓄電していたのに対して、本実施形態では、複数の回線それぞれから得られた給電光に基づいて得られる電力を蓄電する。したがって、複数の回線で充電を行うことができる。そのため、単位時間当たりの充電効率を向上させることが可能となる。
 さらに、受電光通信装置20aでは、通信用回線を介して入力された光信号が、給電光であるか通信光であるかを光信号の波形の時間変化に応じて識別している。これにより、給電光通信装置10から追加で制御信号の伝送を必要とせず、受電光通信装置20aにおいて必要なタイミングで、スリープ状態を解除することができる。そのため、無駄な電力消費を抑制することが可能になる。
 さらに、受電光通信装置20aは、通信用回線を介して入力された光信号が、給電光である場合に、通信用回線を介して入力された光信号を蓄電部24に向かう経路へ出力させる経路切替部26を備える。これにより、簡易な構成で、通信用回線を介して入力された光信号を蓄電部24に向けて出力することができる。そして、蓄電部24に入力する前に光信号を電気信号に変換する。その結果、通信用回線を介して入力された光信号に基づく電気信号から得られる電力も蓄電部24に蓄電することが可能になる。
 第1の実施形態及び第2の実施形態における光給電システム100,100aは、PON(Passive Optical Network)に限らず、光給電を行う光通信システムであればどのようなシステムに適用されてもよい。
 第1の実施形態及び第2の実施形態における光給電システム100,100aでは、光信号の時間的な変化の検出有無に応じて、通信光と給電光の信号を識別する構成を示した。光給電システム100,100aにおける信号識別の方法は、上記限定される必要はない。例えば、光給電システム100,100aおける信号識別の方法は、周波数領域の特徴を確認する方法で行われてもよい。以下、詳細に説明する。
 通信光は、変調されているため周波数領域では帯域幅を持つ。通信光の帯域幅をBsとする。これに対し、給電光は、常時点灯なため周波数領域で帯域幅を持たないとみなせる(DC成分として見える)。そこで、光給電システム100,100aにおける信号識別部25,25aは、通信光と給電光の周波数領域における違いを利用し、通信用回線を介して受信された信号の帯域幅が所定の幅Bx以上であるか否かに応じて、受信された信号が給電光であるか通信光であるかを識別する。伝送路30等の外的な要因により給電光においてもわずかに帯域幅Bqを持つ場合が想定されるため、Bxは、Bq<Bx≦Bsの範囲で設定するものとする。
 具体的な処理としては以下の通りである。信号識別部25は、通信用回線を介して受信された光信号に基づく電気信号の帯域幅が所定の幅Bx以上である場合に、データ送受信部11から送信された光信号が通信光であると識別し、受信された光信号に基づく電気信号の帯域幅が所定の幅Bx未満である場合に、データ送受信部11から送信された光信号が給電光であると識別する。第2の実施形態における信号識別部25aは、通信用回線を介して受信された光信号の帯域幅が所定の幅Bx以上である場合に、データ送受信部11から送信された光信号が通信光であると識別し、受信された光信号の帯域幅が所定の幅Bx未満である場合に、データ送受信部11から送信された光信号が給電光であると識別する。
 以上のように構成されることで、到来信号がBxよりも帯域が広いか狭いかで到来波の種別を判別できる。
 上述した実施形態における受電光通信装置20,20aが備える一部の機能部をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
 本発明は、光給電を行う光通信システムに適用できる。
10…給電光通信装置, 20、20a…受電光通信装置, 11…データ送受信部, 12…光給電部, 13…制御部, 21、21a…光電変換部, 22、22a…光電変換部, 23、23a…加算器, 24…蓄電部, 25、25a…信号識別部, 26…経路切替部, 27…外部送受信部, 271…変復調部, 272…発振器, 273…ミキサ, 274…アンテナ

Claims (8)

  1.  給電用の光信号を用いて給電を行う給電光通信装置と、前記給電光通信装置から送信される前記給電用の光信号より得られる電力で駆動する受電光通信装置とを備える光給電システムであって、
     前記給電光通信装置は、
     前記給電用の光信号を前記受電光通信装置に送信する光給電部と、
     前記受電光通信装置に送信すべきデータが無い場合に前記給電用の光信号を前記受電光通信装置に送信するデータ送受信部と、
     を備え、
     前記受電光通信装置は、
     前記光給電部が送信する前記給電用の光信号及び前記データ送受信部が送信する前記給電用の光信号に基づいて得られる電力を蓄電する蓄電部と、
     を備える光給電システム。
  2.  前記データ送受信部は、前記受電光通信装置に送信すべきデータがある場合には前記データの光信号を前記受電光通信装置に送信し、
     前記受電光通信装置は、
     前記データ送受信部から送信された光信号に応じて出力経路を切り替え可能な経路切替部をさらに備え、
     前記経路切替部は、
     前記データ送受信部から送信された光信号が前記データの光信号である場合には、前記経路切替部の出力経路が、外部装置と通信を行う外部送受信部に向かう第1の経路となるように制御され、
     前記データ送受信部から送信された光信号が前記給電用の光信号である場合には、前記経路切替部の出力経路が、前記蓄電部に向かう第2の経路となるように制御される、請求項1に記載の光給電システム。
  3.  前記受電光通信装置は、
     前記データ送受信部から送信された光信号に基づいて、前記データ送受信部から送信された光信号が前記給電用の光信号であるか前記データの光信号であるかを識別する信号識別部をさらに備え、
     前記信号識別部は、識別結果に応じて前記経路切替部の出力経路を切り替える、請求項2に記載の光給電システム。
  4.  前記受電光通信装置は、
     前記データ送受信部から送信された光信号を電気信号に変換する光電変換部をさらに備え、
     前記信号識別部は、前記電気信号の波形において時間的な変化を検出した場合に前記データ送受信部から送信された光信号を前記データの光信号と識別し、前記電気信号の波形において時間的な変化を検出していない場合に前記データ送受信部から送信された光信号を前記給電用の光信号と識別する、請求項3に記載の光給電システム。
  5.  前記信号識別部は、前記データ送受信部から送信された光信号の波形において時間的な変化を検出した場合に前記データ送受信部から送信された光信号を前記データの光信号と識別し、前記データ送受信部から送信された光信号の波形において時間的な変化を検出していない場合に前記データ送受信部から送信された光信号を前記給電用の光信号と識別する、請求項3に記載の光給電システム。
  6.  前記信号識別部は、前記データ送受信部から送信された光信号又は前記光信号に基づく電気信号の帯域幅が所定の閾値以上である場合に前記データ送受信部から送信された光信号を前記データの光信号と識別し、前記帯域幅が所定の閾値未満である場合に前記データ送受信部から送信された光信号を前記給電用の光信号と識別する、請求項3に記載の光給電システム。
  7.  給電用の光信号を用いて給電を行う給電光通信装置と、前記給電光通信装置から送信される前記給電用の光信号より得られる電力で駆動する受電光通信装置とが行う光給電方法であって、
     前記給電光通信装置が、
     前記給電用の光信号を前記受電光通信装置に送信し、
     前記受電光通信装置に送信すべきデータが無い場合に前記給電用の光信号を前記受電光通信装置に送信し、
     前記受電光通信装置が、
     前記給電光通信装置から複数の経路で送信される前記給電用の光信号に基づいて得られる電力を蓄電する光給電方法。
  8.  給電用の光信号を用いて給電を行う給電光通信装置と、前記給電光通信装置から送信される前記給電用の光信号より得られる電力で駆動する受電光通信装置とを備える光給電システムにおける前記受電光通信装置であって、
     前記給電光通信装置から複数の経路で送信される前記給電用の光信号に基づいて得られる電力を蓄電する蓄電部、
     を備える受電光通信装置。
PCT/JP2020/046676 2020-12-15 2020-12-15 光給電システム、光給電方法及び受電光通信装置 WO2022130483A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022569354A JP7473848B2 (ja) 2020-12-15 2020-12-15 光給電システム、光給電方法及び受電光通信装置
US18/265,333 US20240039642A1 (en) 2020-12-15 2020-12-15 Optical power supply system, optical power supply method and power receiving optical communication apparatus
PCT/JP2020/046676 WO2022130483A1 (ja) 2020-12-15 2020-12-15 光給電システム、光給電方法及び受電光通信装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/046676 WO2022130483A1 (ja) 2020-12-15 2020-12-15 光給電システム、光給電方法及び受電光通信装置

Publications (1)

Publication Number Publication Date
WO2022130483A1 true WO2022130483A1 (ja) 2022-06-23

Family

ID=82057451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046676 WO2022130483A1 (ja) 2020-12-15 2020-12-15 光給電システム、光給電方法及び受電光通信装置

Country Status (3)

Country Link
US (1) US20240039642A1 (ja)
JP (1) JP7473848B2 (ja)
WO (1) WO2022130483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057393A1 (ja) * 2022-09-13 2024-03-21 日本電信電話株式会社 光給電方法、光給電システム及び光給電装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198396A (ja) * 2004-01-06 2005-07-21 Kansai Electric Power Co Inc:The 光給電システム
WO2011158283A1 (ja) * 2010-06-14 2011-12-22 富士通テレコムネットワークス株式会社 光伝送システム
JP2016111792A (ja) * 2014-12-04 2016-06-20 キヤノン株式会社 受電装置、受電装置の制御方法、プログラム
JP2016123266A (ja) * 2012-04-13 2016-07-07 キヤノン株式会社 無線電力伝送システム、無線電力伝送装置、無線電力伝送方法、無線電力伝送装置の制御方法、プログラム。
JP2019170144A (ja) * 2018-03-23 2019-10-03 悠 小澤 無線給電システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019047693A (ja) 2017-09-06 2019-03-22 キヤノン株式会社 受電装置、受電装置の制御方法、プログラム
JP2019080391A (ja) 2017-10-20 2019-05-23 キヤノン株式会社 受電装置、受電装置の制御方法、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198396A (ja) * 2004-01-06 2005-07-21 Kansai Electric Power Co Inc:The 光給電システム
WO2011158283A1 (ja) * 2010-06-14 2011-12-22 富士通テレコムネットワークス株式会社 光伝送システム
JP2016123266A (ja) * 2012-04-13 2016-07-07 キヤノン株式会社 無線電力伝送システム、無線電力伝送装置、無線電力伝送方法、無線電力伝送装置の制御方法、プログラム。
JP2016111792A (ja) * 2014-12-04 2016-06-20 キヤノン株式会社 受電装置、受電装置の制御方法、プログラム
JP2019170144A (ja) * 2018-03-23 2019-10-03 悠 小澤 無線給電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057393A1 (ja) * 2022-09-13 2024-03-21 日本電信電話株式会社 光給電方法、光給電システム及び光給電装置
WO2024057651A1 (ja) * 2022-09-13 2024-03-21 日本電信電話株式会社 光給電方法、光給電システム及び光給電装置

Also Published As

Publication number Publication date
JPWO2022130483A1 (ja) 2022-06-23
US20240039642A1 (en) 2024-02-01
JP7473848B2 (ja) 2024-04-24

Similar Documents

Publication Publication Date Title
TWI574519B (zh) 光學組合器之能量收穫
US9432755B2 (en) Downstream burst transmission in passive optical networks
US8374501B2 (en) Optical line terminal and optical line transmission and reception system
JPH088836A (ja) 低電力光網ユニット
WO2022130505A1 (ja) 光給電システム、光給電方法及び受電光通信装置
WO2022130483A1 (ja) 光給電システム、光給電方法及び受電光通信装置
EP3742631B1 (en) Pse device and powered device of optical power supply system, and optical power supply system
US11381321B2 (en) Optical power supply system
JP5067610B2 (ja) Ponシステムにおける局側端局装置
WO2022107339A1 (ja) 光給電システム、受電側光通信装置及びデータ転送方法
JP2021019444A (ja) 光給電システム
JP2021019442A (ja) 光ファイバー給電システム
US20240031037A1 (en) Optical power supply system, sleep control method and power receiving optical communication apparatus
EP2493209B1 (en) Method of remote optical powering and communication in an optical communication network
WO2024062627A1 (ja) 光通信装置、および制御方法
WO2022107333A1 (ja) 光給電システム、受電側光通信装置及び電力供給方法
JP2021019443A (ja) 光給電システム
JP2021068934A (ja) 光ファイバー給電システム
EP3424159B1 (en) Agrregator-based cost-optimized communications topology for a point-to-multipoint network
JP2021019445A (ja) 光給電システム
WO2023175801A1 (ja) 光トランシーバ、通信装置及び電源制御方法
Wen et al. Ultra-reliable communication over unreliable optical networks via lightpath diversity: system characterization and optimization
CN116961766A (zh) 一种发射电路、光模块和通信设备
JP2015076760A (ja) 救済装置及び終端装置
KR20040026516A (ko) 광전송시스템의 피엘오에이엠셀 생성장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20965871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569354

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18265333

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20965871

Country of ref document: EP

Kind code of ref document: A1