WO2023223490A1 - Elevator - Google Patents

Elevator Download PDF

Info

Publication number
WO2023223490A1
WO2023223490A1 PCT/JP2022/020797 JP2022020797W WO2023223490A1 WO 2023223490 A1 WO2023223490 A1 WO 2023223490A1 JP 2022020797 W JP2022020797 W JP 2022020797W WO 2023223490 A1 WO2023223490 A1 WO 2023223490A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
elevator
car
analysis unit
unit
Prior art date
Application number
PCT/JP2022/020797
Other languages
French (fr)
Japanese (ja)
Inventor
龍亮 谷生
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/020797 priority Critical patent/WO2023223490A1/en
Priority to JP2022558556A priority patent/JP7207625B1/en
Publication of WO2023223490A1 publication Critical patent/WO2023223490A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B3/00Applications of devices for indicating or signalling operating conditions of elevators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators

Definitions

  • the present disclosure relates to an elevator.
  • Patent Document 1 discloses an example of an elevator.
  • elevators efforts are being made to early detect defects in ride comfort caused by vibration.
  • an acceleration calculated from a measured value of a load sensor provided between a car and a support frame is compared with a preset threshold value to determine whether the operating condition is good or bad.
  • the ride comfort of an elevator car can be worsened by vibrations generated in the car.
  • vibrations generated in the car One type of vibration that worsens ride comfort is vertical vibration when the car is stopped. Such vibrations are excited by input from passengers getting on and off the train. If an abnormality occurs in the elevator itself, such as a decrease in damping characteristics or a decrease in rigidity due to deterioration of the ropes that suspend the car, severe vibrations will continue for a long time, leading to a worsening of ride comfort.
  • the elevator disclosed in Patent Document 1 it is not possible to detect the deterioration in ride comfort caused by sustained vibration when the car is stopped.
  • the present disclosure relates to solving such problems.
  • the present disclosure provides an elevator that can detect deterioration in riding comfort caused by sustained vibration when the car is stopped.
  • An elevator includes a vibration measuring unit that measures vibrations generated in the elevator car when the elevator car is stopped; the vibration measured by the vibration measuring unit; a preset first threshold of amplitude; A vibration analysis unit that determines whether or not there is an abnormality in the elevator using a second threshold value of the vibration duration.
  • the elevator according to the present disclosure includes a vibration measurement unit that measures vibrations generated in the elevator car when the elevator car stops, a monitoring unit that acquires passenger behavior data when the elevator car stops, and the vibration measurement unit that measures vibrations generated in the elevator car.
  • a vibration analysis unit that calculates a period of time during which the vibration continues to vibrate at a magnitude exceeding a preset first vibration amplitude threshold value as a vibration duration; and a behavior analysis unit that analyzes passenger behavior data acquired by the monitoring unit.
  • a learning device that generates a trained model for inferring the state of the elevator using the vibration duration calculated by the vibration analysis unit and the passenger behavior data analyzed by the behavior analysis unit; and an inference device that diagnoses the state of the elevator using the vibration duration calculated by the vibration duration section, the passenger behavior data analyzed by the behavior analysis section, and the learned model generated by the learning device.
  • FIG. 1 is an overall view of an elevator in Embodiment 1.
  • FIG. It is a graph schematically showing acceleration time changes of vibration data measured by a vibration measurement unit. It is a graph showing a profile in which the peak of a vibration waveform is connected to the absolute value of acceleration change.
  • 12 is a graph schematically showing an example of vibration when the vibration damping characteristic is weakened due to abnormality of the elevator and vibration when the vibration is normal, as a time change in acceleration.
  • the threshold value of the vibration duration time As a method of setting the threshold value of the vibration duration time, the relationship between the vibration duration time when the elevator is normal, the vibration duration time when an abnormality occurs, and the threshold value is shown. It is a graph showing an example of a vibration waveform when a plurality of passengers board the vehicle.
  • FIG. 1 is an example of a flowchart summarizing a specific process of diagnosis in the first embodiment. This is a modification of the flowchart shown in FIG. 7.
  • 1 is a hardware configuration diagram of main parts of an elevator according to Embodiment 1.
  • FIG. FIG. 3 is an overall view of an elevator in Embodiment 2.
  • FIG. It is a graph showing a profile created by performing a process of connecting a plurality of peaks in chronological order with respect to vibration waveforms for individual boarding. It is a graph showing a profile created by performing a process of connecting a plurality of peaks in chronological order for the entire vibration waveform.
  • 7 is an example of a flowchart summarizing the specific process of diagnosis in Embodiment 2.
  • FIG. 7 is an overall view of an elevator in Embodiment 3.
  • 7 is an example of a flowchart summarizing the specific process of diagnosis in Embodiment 3.
  • FIG. 1 is an overall view of the elevator in the first embodiment.
  • the elevator in this example is a traction type elevator. Elevators are applied to buildings with multiple floors. In a building, an elevator hoistway 1 is provided. The hoistway 1 is a vertically long space spanning multiple floors. Elevator landings will be provided on each floor of the building. The landing is located adjacent to the hoistway. In this example, a machine room 2 is provided above the hoistway 1.
  • a pulley 3 is provided in the machine room 2.
  • the pulley 3 is connected to a hoist 4.
  • a suspension body 5 is suspended over the pulley 3.
  • the suspension body 5 for example, a plurality of ropes or a plurality of belts are used.
  • a cage 6 and a weight 7 are connected to both ends of the suspension body 5, respectively. That is, FIG. 1 illustrates a case where the suspension body 5 is suspended by a 1:1 roping system.
  • a suspension body 5 suspends a car 6 and a weight 7 in the hoistway 1.
  • the elevator When the pulley 3 is rotated by the drive of the hoist 4, the car 6 moves up and down in the hoistway 1 due to the frictional force between the suspension body 5 and the pulley 3.
  • the elevator is provided with a control device 8.
  • the elevator operates as the control device 8 controls the rotation of the hoist 4. After the car 6 arrives at any floor, passengers board and alight between the landing and the car 6.
  • a diagnostic device 9 is connected to the control device 8 .
  • the car 6 is provided with a vibration measurement section 10.
  • the vibration measurement unit 10 is configured by, for example, an acceleration sensor, a speed sensor, a displacement sensor, or a weighing device attached to the car 6, or a combination of a plurality of these.
  • the diagnostic device 9 includes a vibration analysis section 11 and a recording section 12.
  • the vibration analysis unit 11 of the diagnostic device 9 analyzes vibration data obtained by the vibration measurement unit 10 measuring vibrations generated in the car 6 when passengers board or exit the car.
  • the vibration analysis unit 11 determines whether there is an abnormality in the elevator based on the analysis result of the vibration data.
  • the recording unit 12 has a storage medium.
  • the recording unit 12 records whether or not there is an abnormality in the elevator determined by the vibration analysis unit 11.
  • the vibration measurement unit 10 measures vibrations generated in the elevator car 6 when the elevator car 6 is stopped.
  • the vibration measuring unit 10 detects that the elevator car 6 has stopped using a signal from the control device 8, it starts measuring vibrations generated in the elevator car 6.
  • the vibration measuring unit 10 detects that the elevator car 6 starts running based on a signal from the control device 8, the vibration measuring unit 10 ends the measurement.
  • vibrations measured by the vibration measurement unit 10 will be explained using vertical vibrations of the car 6 as an example.
  • the vibration analysis section 11 analyzes the vibrations measured by the vibration measurement section 10.
  • the vibration analysis section 11 receives from the vibration measurement section 10 vibration data measured by the vibration measurement section 10 when the elevator car 6 is stopped.
  • the vibration analysis unit 11 performs an analysis including at least one of differentiation of the received vibration data and smoothing processing using a filter, and calculates, for example, a temporal change in acceleration. Thereafter, the vibration analysis unit 11 performs a process of calculating the duration of the vibration based on the calculated change in acceleration over time.
  • the vibration analysis unit 11 uses the average value of each analysis result instead of the time change of acceleration to determine whether the vibration continues. You may also calculate the time required to do so.
  • FIG. 2 schematically shows the change in acceleration over time based on vibration data measured by the vibration measurement unit 10 using a solid line on a graph.
  • the vibration analysis unit 11 performs a process of connecting multiple peaks of the vibration waveform in chronological order, and creates a profile as shown by the dotted line in FIG. 2.
  • Each peak of the vibration waveform is, for example, the maximum value of the vibration waveform. Values between peaks in the profile are connected by an interpolation process, such as linear interpolation or spline interpolation.
  • an acceleration threshold A1 is set in advance. Threshold A1 is an example of a first threshold.
  • the threshold value A1 is indicated by a dashed line in FIG.
  • the length of time from the time when the original vibration waveform first exceeds the threshold value A1 to the time when the profile first falls below the threshold value A1 is defined as the vibration duration time T.
  • the starting point of the vibration duration may be the starting point of the profile, that is, the time of the first peak of the vibration waveform.
  • FIG. 3 schematically shows the absolute value of the temporal change in acceleration based on the vibration data measured by the vibration measurement unit 10 as a solid line on the graph.
  • the vibration analysis unit 11 may create a profile shown by a dotted line in FIG. 3 in which each peak is connected for the absolute value of such a time change in acceleration.
  • the vibration analysis unit 11 may define the vibration duration T as the time length from the time when the original vibration waveform first exceeds the threshold value A1 to the time when the profile first falls below the threshold value A1.
  • the vibration analysis unit 11 determines whether there is an abnormality in the elevator based on the magnitude of the vibration duration T determined in this way. Specifically, when the vibration duration T exceeds the time threshold Ta, the vibration analysis unit 11 determines that the ride comfort of the elevator has deteriorated, that is, that there is an abnormality in the elevator.
  • the time threshold Ta is set in the vibration analysis section 11 in advance.
  • the threshold Ta is an example of a second threshold.
  • FIG. 4 schematically shows an example of a case where the damping characteristic of vibration acceleration is weakened due to an abnormality in the elevator and a case where it is normal, as a time change in acceleration.
  • the vibration waveform in a normal case is shown by a solid line.
  • the vibration waveform when the vibration damping characteristics are weakened due to an abnormality in the elevator is shown by a broken line.
  • a profile in which vibration peaks in each case are connected in chronological order with a straight line is shown by a dotted line.
  • the vibration duration T' during which the abnormal vibration profile exceeds the threshold value A1 is longer than the vibration duration T calculated from the normal vibration profile.
  • FIG. 5 shows the relationship between the vibration duration when the elevator is normal, the vibration duration when an abnormality occurs, and the threshold Ta, as a method of setting the threshold Ta. Since the way passengers board the car 6 varies from person to person and from time to time, the vibration duration T also varies due to these influences. Therefore, by setting the threshold value Ta so as to take these variations into account, it is possible to improve the accuracy of one-time diagnosis. For example, vibration data when the elevator is normal, such as immediately after the elevator is installed, is acquired a predetermined number of times, and the maximum value of the vibration duration is set to Ta.
  • the vibration duration may be defined as follows.
  • FIG. 6 shows an example of a vibration waveform when a plurality of passengers board the car.
  • T becomes a larger value than when one passenger gets on the vehicle, and there is a possibility of misdiagnosis. Therefore, a plurality of acceleration thresholds are set such as Aa1, Aa2, . . . , Aam-2, Aam-1, Aam.
  • the vibration analysis unit 11 defines the time from the time when the vibration falls below a threshold value that is smaller than and closest to the last local maximum value of the profile to the time when the vibration falls below the minimum threshold value as a vibration duration T''. .
  • the vibration analysis unit 11 calculates the time from the time when the profile falls below the threshold value Aam-1 after the last local maximum value to the time when the profile falls below the minimum threshold value Aa1 as the vibration duration T''.
  • the vibration analysis unit 11 can diagnose abnormalities in the elevator regardless of the number of floors where the car 6 is located.
  • a group of threshold values (Aam1, Aam2, ..., Aamn; Ta1, Ta2, ..., Tan) corresponding to each floor is preset in the vibration analysis section 11.
  • Ru a group of threshold values (Aam1, Aam2, ..., Aamn; Ta1, Ta2, ..., Tan) corresponding to each floor is preset in the vibration analysis section 11.
  • the vibration analysis unit 11 receives information on the position of the car 6 from the control device 8, and selects an appropriate threshold value from the threshold group according to the floor number, thereby detecting an abnormality in the elevator at any floor. be able to diagnose.
  • the recording unit 12 records the determination result by the vibration analysis unit 11.
  • the diagnostic device 9 may transmit the determination result to the outside of the elevator using a network line or the like. By doing so, the determination result can be quickly sent to the maintenance staff who maintains the elevator, for example, and the maintenance staff can take early action.
  • FIG. 7 is a flowchart summarizing the specific process of diagnosing elevator abnormalities.
  • the vibration measuring unit 10 starts measuring vertical vibrations generated in the car 6 in STEPa2.
  • the vibration measuring section 10 finishes the measurement and then sends the measured data to the vibration analyzing section 11.
  • the vibration analysis unit 11 calculates the vibration duration T. If the vibration duration T exceeds the predetermined vibration duration threshold Ta in STEPa5, the vibration analysis unit 11 diagnoses that there is an abnormality in the elevator in STEPa6.
  • the vibration analysis unit 11 diagnoses in STEPa7 that there is no abnormality in the elevator.
  • the determination result is recorded in the recording unit 12 in STEPa8, and one diagnosis is completed.
  • the diagnostic device 9 adds STEPa9 and STEPa10 to the recording unit 12, as shown in the flowchart shown in FIG. Good too.
  • the vibration analysis unit 11 calculates the frequency X at which it is determined that there is an abnormality from the diagnosis history for the preset number of diagnoses.
  • a frequency threshold Xa is set in advance.
  • the diagnostic device 9 reports the situation to the outside at a timing when the frequency X becomes equal to or higher than the threshold value Xa. In this case, by appropriately setting the threshold value Xa, maintenance personnel can take prompt action.
  • Specific examples of the destination include a display or alarm device, or a maintenance terminal owned by a maintenance worker in a remote location.
  • the diagnostic device 9 sets a threshold value for the total number of times it is determined to be “abnormal” or the number of consecutive times it is determined that "abnormality exists” instead of the frequency for determining "abnormality present". The situation may be reported externally.
  • Such a diagnostic device 9 can be applied not only to 1:1 roping, but also to all types of roping traction elevators, such as 2:1 roping or machine room-less elevator systems that do not have a machine room 2.
  • an elevator diagnostic device 9 can be applied not only to vibrations caused by passengers getting on the car 6 when the car 6 is stopped, but also to vibrations caused by passengers getting off the car 6.
  • the present invention can be applied not only to vibrations in the vertical direction of the car 6, but also to vibrations in the lateral direction due to the inclination of the car 6.
  • the threshold value for the amplitude of vibration is not limited to the threshold value for the amplitude of acceleration, but may be a threshold value for the amplitude of velocity, displacement, or the like.
  • FIG. 9 is a hardware configuration diagram of the main parts of the elevator according to the first embodiment.
  • the processing circuit includes at least one processor 100a and at least one memory 100b.
  • the processing circuitry may include at least one dedicated hardware 200 along with or in place of the processor 100a and memory 100b.
  • each function of the elevator is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in memory 100b.
  • the processor 100a implements each function of the elevator by reading and executing programs stored in the memory 100b.
  • the processor 100a is also referred to as a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, microcomputer, or DSP.
  • the memory 100b is configured of a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
  • the processing circuit comprises dedicated hardware 200
  • the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each function of the elevator can be realized by a respective processing circuit.
  • each function of the elevator can be realized collectively by a processing circuit.
  • some may be realized by dedicated hardware 200, and other parts may be realized by software or firmware.
  • the processing circuit implements each function of the elevator using dedicated hardware 200, software, firmware, or a combination thereof.
  • Embodiment 2 In Embodiment 2, points that are different from the example disclosed in Embodiment 1 will be explained in particular detail. As for the features not described in the second embodiment, any of the features in the examples disclosed in the first embodiment may be adopted.
  • FIG. 10 is an overall view of the traction type elevator in the second embodiment.
  • the elevator of Embodiment 2 includes a monitoring section 13 and a behavior analysis section 14 that monitor passenger behavior.
  • the monitoring unit 13 includes a camera 13a that photographs the inside of the car 6, a weighing device 13b, a floor reaction force sensor 13c provided on the car floor, an acceleration sensor, a speed sensor, a displacement sensor, or a combination of a plurality of these. It consists of The monitoring unit 13 acquires passenger behavior data while the car 6 is stopped.
  • the behavior analysis section 14 is connected to the monitoring section 13. After acquiring behavioral data of the passengers when the elevator car 6 is stopped, the monitoring unit 13 transmits the acquired behavioral data to the behavior analyzing unit 14 .
  • the monitoring unit 13 when the monitoring unit 13 is the camera 13a, the monitoring unit 13 transmits the image or video data captured inside the car 6 to the behavior analysis unit 14 as the passenger behavior data.
  • the monitoring unit 13 When the monitoring unit 13 is the weighing device 13b, the monitoring unit 13 transmits the change in weight of the car 6 over time to the behavior analysis unit 14 as passenger behavior data.
  • the monitoring unit 13 is the floor reaction force sensor 13c, the monitoring unit 13 transmits temporal changes in the floor reaction force applied to the car floor to the behavior analysis unit 14 as passenger behavior data.
  • the behavior analysis unit 14 analyzes the behavior data of the passengers and calculates the number of passengers n, the timing of boarding ⁇ 1, ⁇ 2, ..., ⁇ n, and the weight M1, M2, ..., Mn of the car 6 after each passenger boarded the car. These are calculated as analysis results and transmitted to the vibration analysis section 11.
  • the behavior analysis unit 14 estimates various quantities of the above analysis results by image analysis.
  • the behavior analysis unit 14 estimates various quantities of the analysis results from the time change.
  • the behavior analysis unit 14 estimates various quantities of the above-mentioned analysis results from temporal changes in the floor reaction force.
  • the behavior analysis unit 14 may obtain various amounts of the analysis results as an average value of the values calculated by each device.
  • a plurality of threshold groups are preset in the vibration analysis section 11.
  • the vibration analysis unit 11 receives from the behavior analysis unit 14 the number of passengers n, boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, the weights M1, M2, ..., Mn of the car 6 after each passenger has boarded, and the control device. According to the combination of the car position information received from 8, the acceleration threshold Aa and the vibration duration threshold Ta are selected from the threshold group and set.
  • the vibration analysis unit 11 uses the vibration data measured by the vibration measurement unit 10 to calculate, for example, changes in acceleration over time. Further, FIG. 11 schematically shows changes in acceleration due to vibration when a plurality of passengers get into the car 6. In FIG. 11, an example is shown in which three passengers of similar weight board the vehicle in succession. The vibration generated in the car 6 at this time differs from the case where only one passenger gets on the car, but when the second and subsequent passengers get on the car, the acceleration increases again from the middle and becomes a damped waveform.
  • the vibration analysis unit 11 performs processing to connect multiple peaks of acceleration changes in chronological order for the vibrations caused by each passenger boarding, which are divided by the boarding timings ⁇ 1, ⁇ 2, and ⁇ 3, as shown by dotted lines in FIG. Create a profile that allows you to Values between peaks in the profile are connected by an interpolation process, such as linear interpolation or spline interpolation.
  • the vibration analysis unit 11 calculates the total time during which this profile exceeds a preset acceleration threshold value Aa as the vibration duration T.
  • the vibration duration T is the sum of T1, T2, and T3.
  • the vibration analysis unit 11 sets the starting point of the range for calculating the vibration duration of each passenger to the point at which the acceleration change induced by each passenger first exceeds the threshold Aa, the boarding timings ⁇ 1, ⁇ 2, ⁇ 3, or the profile. It can also be the first point.
  • the vibration analysis unit 11 may set the end point of the range for calculating the vibration duration of each passenger to the timing when the profile falls below the threshold value Aa, or the final point of each profile if the profile does not fall below the threshold value Aa. .
  • the vibration analysis unit 11 may create a profile by performing a process of connecting a plurality of peaks in chronological order for the entire vibration waveform, as shown in FIG. Values between peaks in the profile are connected by an interpolation process, such as linear interpolation or spline interpolation.
  • the vibration analysis unit 11 vibrates the total length of time during which the profile created in this way exceeds the threshold Aa from the point where the acceleration first exceeds the preset acceleration threshold Aa to the last point where the acceleration falls below the threshold Aa. It may also be calculated as the duration T.
  • the vibration duration T is the sum of T4 and T5.
  • the vibration analysis unit 11 may create a profile by connecting the peak of the waveform to the absolute value of the change in acceleration.
  • the vibration analysis unit 11 may calculate the vibration duration T by performing similar processing on the profile created in this way.
  • the vibration analysis unit 11 can perform a more appropriate diagnosis by setting the acceleration threshold value Aa that takes into account the weight Mn of the car 6 after n people board, which is calculated by the behavior analysis unit 14. For example, when a heavy passenger gets on board, the acceleration increases as the applied load increases, so the threshold value Aa is also set to a value that increases according to the degree of increase in the load.
  • the threshold value Ta of the vibration duration is selected from preset threshold values according to the number of passengers n and the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n. For example, as the number of passengers increases, the vibration duration T of the vibrations generated in the car n becomes longer, and therefore the threshold value Ta is also set to a larger value. On the other hand, if the intervals between the boarding timings ⁇ 1, ⁇ 2, .
  • the vibration analysis unit 11 sets a threshold value ⁇ a for the time interval of boarding, and sets a vibration duration threshold value Ta according to the length of the interval of ⁇ 1, ⁇ 2, ..., ⁇ n, or sets a vibration duration threshold value Ta according to the length of the interval of ⁇ 1, ⁇ 2, ..., ⁇ n. , ⁇ n may be excluded from the diagnostic target depending on the length of the interval.
  • the vibration analysis unit 11 diagnoses whether there is an abnormality in the elevator based on the vibration duration T and the vibration duration threshold Ta calculated in this way.
  • the recording unit 12 records the diagnosis results.
  • vibration analysis unit 11 may diagnose the elevator using the same process as in the first embodiment based on such vibration data.
  • the vibration analysis unit 11 selects an appropriate threshold value Ta from a preset threshold value group, thereby making it possible to appropriately diagnose the elevator. can.
  • the elevator may perform a dedicated operation, such as a robot-only operation mode, for carrying objects such as robots whose weight is known in advance.
  • a dedicated operation such as a robot-only operation mode
  • objects such as robots whose weight is known in advance.
  • the robot-specific threshold is set by, for example, reducing the variation range in FIG. 5.
  • the vibration analysis section 11 may set an appropriate acceleration threshold value Aa for each passenger getting on. .
  • the vibration analysis unit 11 can perform an appropriate diagnosis by selecting an appropriate vibration duration threshold value Ta for the combination.
  • the vibration analysis unit 11 can appropriately diagnose the elevator.
  • the vibration analysis unit 11 can prevent misdiagnosis by excluding vibrations caused by the violent behavior of the passenger from the diagnosis target.
  • FIG. 13 is an example of a flowchart for diagnosing an abnormality in an elevator using such a configuration and operation.
  • the vibration measuring unit 10 and the monitoring unit 13 start acquiring vibration data and passenger behavior data in STEP b2.
  • the vibration measuring section 10 and the monitoring section 13 end data acquisition.
  • the behavior analysis unit 14 analyzes the behavior of the passengers and checks whether there are problems such as unruly passengers or whether passengers are getting on or off the train.
  • the behavior analysis unit 14 continues to analyze the behavior data of the passengers, and calculates the number of passengers n, the timings of boarding ⁇ 1, ⁇ 2, ..., ⁇ n, and the weights M1, M2, and M2 of the cars 6 after each boarding. ..., Mn is calculated.
  • the vibration analysis unit 11 receives from the behavior analysis unit 14 the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and the weights M1, M2, ..., Mn of the car 6 after each boarding.
  • the vibration analysis unit 11 selects the threshold value Aa and the threshold value Ta based on the received information.
  • the vibration analysis unit 11 analyzes the vibration data and calculates a profile for acceleration changes. The vibration analysis unit 11 calculates the vibration duration T from the calculated profile. In STEPb7 to STEPb9, the vibration analysis unit 11 determines whether the vibration duration T exceeds the threshold value Ta and diagnoses whether there is an abnormality in the elevator. In STEPb10, the recording unit 12 records the diagnosis result.
  • the diagnostic device 9 may issue an alarm to the outside based not only on the one-time diagnosis up to STEPb10, but also on a plurality of diagnosis histories, such as from STEPb11 to STEPb13. That is, the vibration analysis unit 11 calculates the frequency X at which it is determined that there is an abnormality from the diagnosis history of N times, which is the number of times of diagnosis set in advance. For this frequency X, a frequency threshold Xa is set in advance. The diagnostic device 9 reports the situation to the outside at a timing when the frequency X exceeds the threshold value Xa. Specific examples of the destination include a display or alarm device, or a maintenance terminal owned by a maintenance worker in a remote location.
  • the diagnostic device 9 sets a threshold value for the total number of times it is determined to be “abnormal” or the number of consecutive times it is determined that "abnormality exists” instead of the frequency for determining "abnormality present". The situation may be reported externally.
  • the diagnostic device 9 can assign an appropriate threshold value to the vibration by comparing the vibration data with the passenger behavior data and analyzing it, so that it can accurately diagnose abnormalities in the elevator. .
  • Such a diagnostic device 9 can be applied not only to 1:1 roping, but also to all types of roping traction elevators, such as 2:1 roping or machine room-less elevator systems that do not have a machine room 2.
  • an elevator diagnostic device 9 can be applied not only to vibrations caused by passengers getting on the car 6 when the car 6 is stopped, but also to vibrations caused by passengers getting off the car 6.
  • the present invention can be applied not only to vibrations in the vertical direction of the car 6, but also to vibrations in the lateral direction due to the inclination of the car 6.
  • the threshold value for the amplitude of vibration is not limited to the threshold value for the amplitude of acceleration, but may be a threshold value for the amplitude of velocity, displacement, or the like.
  • Embodiment 3 In Embodiment 3, points that are different from the examples disclosed in Embodiment 1 or Embodiment 2 will be explained in particular detail. For features not described in Embodiment 3, any of the features disclosed in Embodiment 1 or Embodiment 2 may be adopted.
  • FIG. 14 is an overall view of the traction type elevator in Embodiment 3.
  • FIG. 14 illustrates a case where the suspension body 5 is suspended using a 1:1 roping system.
  • a suspension body 5 suspends a car 6 and a weight 7 in the hoistway 1.
  • the elevator When the pulley 3 is rotated by the drive of the hoist 4, the car 6 moves up and down in the hoistway 1 due to the frictional force between the suspension body 5 and the pulley 3.
  • the elevator is provided with a control device 8.
  • the elevator operates as the control device 8 controls the rotation of the hoist 4. After the car 6 arrives at any floor, passengers board and alight between the landing and the car 6.
  • a diagnostic device 9 is connected to the control device 8 .
  • the diagnostic device 9 includes a vibration analysis section 11, a monitoring section 13, a behavior analysis section 14, a learning device 15, an inference device 16, and a learned model storage section 17.
  • the car 6 is provided with a vibration measurement section 10.
  • the vibration measurement unit 10 is configured by, for example, an acceleration sensor, a speed sensor, a displacement sensor, or a weighing device attached to the car 6, or a combination of a plurality of these.
  • the vibration analysis unit 11 analyzes the vibration data sent from the vibration measurement unit 10, calculates, for example, an acceleration change, and calculates the vibration duration T based on a preset acceleration threshold value Aa.
  • the method for calculating the vibration duration T based on the acceleration threshold value Aa is the same as in the first embodiment or the second embodiment.
  • the monitoring unit 13 acquires behavioral data of passengers while the elevator car 6 is stopped.
  • Specific examples of the monitoring unit 13 include a camera 13a that photographs the inside of the car 6, a weighing device 13b, a floor reaction force sensor 13c provided on the car floor, an acceleration sensor, a speed sensor, a displacement sensor, or any one of these. This includes multiple combinations.
  • the monitoring unit 13 acquires passenger behavior data while the car 6 is stopped.
  • the monitoring unit 13 when the monitoring unit 13 is the camera 13a, the monitoring unit 13 transmits the image or video data captured inside the car 6 to the behavior analysis unit 14 as the passenger behavior data.
  • the monitoring unit 13 When the monitoring unit 13 is the weighing device 13b, the monitoring unit 13 transmits the change in weight of the car 6 over time to the behavior analysis unit 14 as passenger behavior data.
  • the monitoring unit 13 is the floor reaction force sensor 13c, the monitoring unit 13 transmits temporal changes in the floor reaction force applied to the car floor to the behavior analysis unit 14 as passenger behavior data.
  • the behavior analysis unit 14 analyzes the behavior data of the passengers and calculates the number of passengers n, the timing of boarding ⁇ 1, ⁇ 2, ..., ⁇ n, and the weight M1, M2, ..., Mn of the car 6 after each passenger boarded the car. These are calculated as analysis results and transmitted to the vibration analysis section 11.
  • the behavior analysis unit 14 estimates various quantities of the above analysis results by image analysis.
  • the behavior analysis unit 14 estimates various quantities of the analysis results from the time change.
  • the behavior analysis unit 14 estimates various quantities of the above-mentioned analysis results from temporal changes in the floor reaction force.
  • the behavior analysis unit 14 may obtain various amounts of the analysis results as an average value of the values calculated by each device.
  • a learning device 15 is connected to the vibration analysis section 11 and the behavior analysis section 14.
  • the learning device 15 includes a data acquisition section 18 and a model generation section 19.
  • an inference device 16 is connected to the vibration analysis section 11 and the behavior analysis section 14.
  • the inference device 16 includes a data acquisition section 20 and an inference section 21.
  • the data acquisition unit 18 in the learning device 15 and the data acquisition unit 20 in the reasoning device 16 receive the car position information L from the control device 8, the vibration duration T from the vibration analysis unit 11, the number of boarders n, and the boarding timing ⁇ 1. , ⁇ 2, . . . , ⁇ n and the weights M1, M2, .
  • the model generation unit 19 generates the car position information L output from the data acquisition unit 18, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and the weights M1, M2 of the car 6 at each boarding. , ..., Mn, the state of the elevator is learned based on the learning data created according to the combination of ,...,Mn. That is, the model generation unit 19 generates the following information from the car position information L, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and the weights M1, M2, ..., Mn of the car 6 at each boarding time. Generate a trained model that infers the state of the elevator.
  • the learning data includes car position information L, vibration duration T, number of boarders n, boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and weights M1, M2, ..., Mn of the car 6 at each boarding. This is data that is associated with each other.
  • the learning algorithm used by the model generation unit 19 can be a known algorithm such as supervised learning, unsupervised learning, or reinforcement learning.
  • supervised learning a method of learning features in the learning data by giving learning data that does not include results or labels to the learning device 15.
  • the model generation unit 19 learns the state of the elevator by so-called unsupervised learning, for example, according to a grouping method using the k-means method.
  • the k-means method is a non-hierarchical clustering algorithm, and is a method of classifying a given number of clusters into k groups using the average of the clusters.
  • the k-means method is processed as follows. First, clusters are randomly assigned to each data xi. Next, the center Vj of each cluster is calculated based on the allocated data. The distance between each xi and each Vj is then determined and xi is reassigned to the nearest central cluster. Then, if the cluster assignments of all xi do not change in the above process, or if the amount of change falls below a certain threshold set in advance, it is determined that convergence has been achieved and the process ends.
  • the model generation unit 19 generates the car position information L acquired by the data acquisition unit 18, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and the car 6 at each boarding.
  • the state of the elevator is learned by so-called unsupervised learning according to learning data created based on the combinations of weights M1, M2, . . . , Mn.
  • the model generation unit 19 generates and outputs a trained model by performing the learning described above.
  • the trained model storage unit 17 stores the trained model output from the model generation unit 19. By performing such learning on a normal elevator, the car position information L, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2,..., ⁇ n, the weight M1 of the car 6 at each boarding, A learned model that has learned the relationship between M2,...,Mn and the normal state of the elevator is obtained.
  • the inference unit 21 infers the state of the elevator using the learned model stored in the learned model storage unit 17. That is, the reasoning unit 21 uses the car position information L acquired by the data acquisition unit 20, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and the weights M1, M2 of the car 6 at each boarding. , ..., Mn is input into this learned model, it is possible to infer which cluster the data belongs to, and output the inference result as the state of the elevator. If the data input to the learned model does not belong to any of the clusters indicating the normal state of the elevator, the inference unit 21 determines that an abnormality has occurred in the elevator.
  • the recording unit 12 records the determination result by the inference unit 21.
  • the diagnostic device 9 may transmit or report the determination result recorded in the recording unit 12 to the outside of the elevator using a network line or the like. By doing so, the determination result can be quickly communicated or sent to, for example, maintenance personnel, allowing the maintenance personnel to take early action.
  • the inference unit 21 has been described as outputting the state of the elevator using the learned model learned by the model generation unit 19, but the inference unit 21 outputs the state of the elevator based on the learned model acquired from the outside.
  • the status of the elevator may also be output.
  • the configuration of the diagnostic device 9 is not limited to this case.
  • the diagnostic device 9 uses one data acquisition section to acquire necessary information from the control device 8, vibration analysis section 11, and behavior analysis section 14, and transmits the information to the model generation section 19 of the learning device 15 and the inference section 21 of the inference device 16.
  • the configuration may be such that the acquired information is output.
  • the inference unit 21 calculates the car position information L, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, the weights of the car 6 at each boarding time M1, M2, ..., Mn
  • the state of the elevator is determined based on.
  • Elevator diagnosis in the third embodiment consists of two phases: a learning phase and a diagnosis phase.
  • the data acquisition section 18 receives a signal indicating the stop of the elevator car 6 from the control device 8, and then the vibration measurement section 10 and the monitoring section 13 acquire the data. measure.
  • the vibration analysis unit 11 and the behavior analysis unit 14 collect the data measured by the vibration measurement unit 10 and the monitoring unit 13. receive.
  • the vibration analysis unit 11 and the behavior analysis unit 14 analyze the received data and determine the car position information L, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, and the car 6 for each boarding.
  • the weights M1, M2,..., Mn of are calculated.
  • the data acquisition unit 18 acquires the output car position information L, vibration duration T, number of boarders n, boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, weights of the car 6 at each boarding time M1, M2, ... , Mn.
  • the model generation unit 19 generates the car position information L acquired by the data acquisition unit 18, the vibration duration T, the number of boarders n, the timings of boarding ⁇ 1, ⁇ 2, ..., ⁇ n, and the weight of the car 6 at each boarding.
  • the learning data created based on the combinations of M1, M2, . . . , Mn the normal state of the elevator is learned by so-called unsupervised learning, and a learned model is generated.
  • the learned model storage section 17 stores the learned model generated by the model generation section 19. This kind of learning is performed every time the elevator stops at a stop floor, and the learning continues until a predetermined number of times is reached.
  • the vibration measurement section 10 and the monitoring section 13 measure data in STEPc6 in order to diagnose the state of the elevator using the inference device 16.
  • the vibration analysis unit 11 and the behavior analysis unit 14 analyze the data measured by the vibration measurement unit 10 and the monitoring unit 13, and calculate the car position information L, the vibration duration T, the number of people boarding n, the boarding timing ⁇ 1, ⁇ 2,..., ⁇ n, and the weights M1, M2,..., Mn of the car 6 at each boarding are calculated.
  • the data acquisition unit 20 obtains the outputted car position information L, vibration duration T, number of boarders n, boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, weights of the car 6 at each boarding time M1, M2, ... , Mn.
  • the inference unit 21 uses the car position information L acquired by the data acquisition unit 20, the vibration duration T, the number of boarders n, the boarding timings ⁇ 1, ⁇ 2, ..., ⁇ n, the weight M1 of the car 6 at each boarding,
  • the data of M2, . . . , Mn are input to the trained model stored in the trained model storage unit 17.
  • the inference unit 21 outputs the state of the elevator obtained from the learned model.
  • the inference unit 21 diagnoses the condition of the elevator based on the output result of the condition of the elevator.
  • the inference device 16 may issue an alarm based on the diagnosis history for a preset number of diagnoses, rather than just a single diagnosis.
  • the inference device 16 calculates, for example, the frequency X of determining that there is an "abnormality". For this frequency X, a frequency threshold Xa is set in advance.
  • the inference device 16 may notify the outside of the abnormality of the elevator at a timing when the frequency X exceeds the threshold value Xa.
  • Specific examples of the destination include a display or alarm device, or a maintenance terminal owned by a maintenance worker in a remote location.
  • the inference device 16 sets a threshold value for the total number of times it is determined to be “abnormal” or the number of consecutive times it is determined that "abnormality exists” instead of the frequency at which it is determined that "there is an abnormality". The situation may be reported externally.
  • the condition of the elevator can be diagnosed with respect to any vibrations in the vertical direction of the elevator when the car 6 is stopped.
  • model generation unit 19 deep learning that learns to extract the feature amount itself can be used, and other known methods can also be used.
  • non-hierarchical clustering using the k-means method as described above not only non-hierarchical clustering using the k-means method as described above but also other known methods capable of clustering may be used.
  • hierarchical clustering such as the shortest distance method may be used.
  • the learning device 15 and the reasoning device 16 are provided in the diagnostic device 9.
  • some or all of the learning device 15 and the reasoning device 16 may be connected to It may be provided in a separate device from the elevator, which is connected to the elevator via the elevator.
  • part or all of the learning device 15 and the inference device 16 may be built into the control device 8.
  • part or all of the learning device 15 and the inference device 16 may be implemented on a cloud server.
  • model generation unit 19 may be configured to learn the state of the elevator according to learning data created for a plurality of elevators.
  • the model generation unit 19 may acquire learning data from multiple elevators used in the same area, or may utilize learning data collected from multiple elevators operating independently in different areas.
  • the status of the elevator may also be learned.
  • the learning device 15 that has learned the elevator status regarding a certain elevator may be applied to another elevator to relearn and update the elevator status regarding the other elevator.
  • an elevator diagnostic device 9 can be applied not only to 1:1 roping but also to all types of roping type traction elevators, such as 2:1 roping or machine room-less elevator systems that do not have a machine room 2.
  • an elevator diagnostic device 9 can be applied not only to vibrations caused by passengers getting on the car 6 when the car 6 is stopped, but also to vibrations caused by passengers getting off the car 6.
  • the present invention can be applied not only to vibrations in the vertical direction of the car 6, but also to vibrations in the lateral direction due to the inclination of the car 6.
  • the threshold value for the amplitude of vibration is not limited to the threshold value for the amplitude of acceleration, but may be a threshold value for the amplitude of velocity, displacement, or the like.
  • the elevator according to the present disclosure can be applied to buildings having multiple floors.

Landscapes

  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Indicating And Signalling Devices For Elevators (AREA)

Abstract

Provided is an elevator with which it is possible to ascertain worsening ride comfort due to vibrations continuing when the car is stopped. This elevator comprises a vibration measuring unit (10). The vibration measuring unit (10) measures vibrations occurring in the car (6) of the elevator when the car (6) is stopped. The state of the elevator is diagnosed on the basis of the vibrations measured by the vibration measuring unit (10), the vibration amplitude, and the vibration duration.

Description

エレベーターelevator
 本開示は、エレベーターに関する。 The present disclosure relates to an elevator.
 特許文献1は、エレベーターの例を開示する。エレベーターにおいて、振動による乗り心地の不備の早期検出などが図られている。エレベーターにおいて、かご室および支持フレームの間に設けられた荷重センサの計測値から演算される加速度と、予め設定された閾値とが比較され、運転状況の良否が判定される。 Patent Document 1 discloses an example of an elevator. In elevators, efforts are being made to early detect defects in ride comfort caused by vibration. In an elevator, an acceleration calculated from a measured value of a load sensor provided between a car and a support frame is compared with a preset threshold value to determine whether the operating condition is good or bad.
日本特開2006-264853号公報Japanese Patent Publication No. 2006-264853
 エレベーターのかごの乗り心地はかごにおいて発生する振動によって悪化することがある。乗り心地を悪化させる振動の一つに、かご停止時の上下方向の振動がある。このような振動は乗客の乗り降りによる入力で励起される。ここで、エレベーター自体の異常、例えば、かごを懸架するロープなどの劣化による減衰特性の減少または剛性低下などが起きると、程度の大きい振動が長く持続するようになり、乗り心地の悪化につながる。特許文献1のエレベーターにおいては、かごの停止時に振動が持続することによる乗り心地の悪化を捉えることができない。 The ride comfort of an elevator car can be worsened by vibrations generated in the car. One type of vibration that worsens ride comfort is vertical vibration when the car is stopped. Such vibrations are excited by input from passengers getting on and off the train. If an abnormality occurs in the elevator itself, such as a decrease in damping characteristics or a decrease in rigidity due to deterioration of the ropes that suspend the car, severe vibrations will continue for a long time, leading to a worsening of ride comfort. In the elevator disclosed in Patent Document 1, it is not possible to detect the deterioration in ride comfort caused by sustained vibration when the car is stopped.
 本開示は、このような課題の解決に係るものである。本開示は、かごの停止時に振動が持続することによる乗り心地の悪化を捉えられるエレベーターを提供する。 The present disclosure relates to solving such problems. The present disclosure provides an elevator that can detect deterioration in riding comfort caused by sustained vibration when the car is stopped.
 本開示に係るエレベーターは、エレベーターのかごの停止時にかごに発生する振動を計測する振動計測部と、前記振動計測部が計測する振動、予め設定された振幅の第1閾値、および予め設定された振動持続時間の第2閾値を用いて、エレベーターに異常があるか否かを判定する振動分析部と、を備える。
 本開示に係るエレベーターは、エレベーターのかごの停止時にかごに発生する振動を計測する振動計測部と、エレベーターのかごの停止時に乗客の行動データを取得する監視部と、前記振動計測部が計測する振動が予め設定された振動の振幅の第1閾値を上回る大きさで振動し続ける時間を、振動持続時間として算出する振動分析部と、前記監視部が取得した乗客の行動データを分析する行動分析部と、前記振動分析部が算出する前記振動持続時間、および前記行動分析部が分析する乗客の行動データを用いて、エレベーターの状態を推論する学習済モデルを生成する学習装置と、前記振動分析部が算出する前記振動持続時間、および前記行動分析部が分析する乗客の行動データ、ならびに前記学習装置が生成する前記学習済モデルを用いて、エレベーターの状態を診断する推論装置と、を備える。
An elevator according to the present disclosure includes a vibration measuring unit that measures vibrations generated in the elevator car when the elevator car is stopped; the vibration measured by the vibration measuring unit; a preset first threshold of amplitude; A vibration analysis unit that determines whether or not there is an abnormality in the elevator using a second threshold value of the vibration duration.
The elevator according to the present disclosure includes a vibration measurement unit that measures vibrations generated in the elevator car when the elevator car stops, a monitoring unit that acquires passenger behavior data when the elevator car stops, and the vibration measurement unit that measures vibrations generated in the elevator car. a vibration analysis unit that calculates a period of time during which the vibration continues to vibrate at a magnitude exceeding a preset first vibration amplitude threshold value as a vibration duration; and a behavior analysis unit that analyzes passenger behavior data acquired by the monitoring unit. a learning device that generates a trained model for inferring the state of the elevator using the vibration duration calculated by the vibration analysis unit and the passenger behavior data analyzed by the behavior analysis unit; and an inference device that diagnoses the state of the elevator using the vibration duration calculated by the vibration duration section, the passenger behavior data analyzed by the behavior analysis section, and the learned model generated by the learning device.
 本開示に係るエレベーターであれば、かごの停止時に振動が持続することによる乗り心地の悪化を捉えられる。 With the elevator according to the present disclosure, it is possible to detect deterioration in ride comfort due to continued vibration when the car is stopped.
実施の形態1におけるエレベーターの全体図である。1 is an overall view of an elevator in Embodiment 1. FIG. 振動計測部が計測する振動データの加速度時間変化を模式的に示したグラフである。It is a graph schematically showing acceleration time changes of vibration data measured by a vibration measurement unit. 加速度変化の絶対値に対して振動波形のピークをつなげたプロファイルを示したグラフである。It is a graph showing a profile in which the peak of a vibration waveform is connected to the absolute value of acceleration change. エレベーターの異常により振動の減衰特性が弱まった場合の振動および正常な場合の振動の例を、加速度の時間変化として模式的に示したグラフである。12 is a graph schematically showing an example of vibration when the vibration damping characteristic is weakened due to abnormality of the elevator and vibration when the vibration is normal, as a time change in acceleration. 振動持続時間の閾値の設定の仕方として、エレベーターが正常な場合の振動持続時間、異常が発生した場合の振動持続時間、および閾値との関係を示したものである。As a method of setting the threshold value of the vibration duration time, the relationship between the vibration duration time when the elevator is normal, the vibration duration time when an abnormality occurs, and the threshold value is shown. 複数人の乗客が乗り込んだ場合の振動波形の例を示したグラフである。It is a graph showing an example of a vibration waveform when a plurality of passengers board the vehicle. 実施の形態1における診断の具体的な過程をまとめたフローチャートの一例である。1 is an example of a flowchart summarizing a specific process of diagnosis in the first embodiment. 図7に示すフローチャートの変形例である。This is a modification of the flowchart shown in FIG. 7. 実施の形態1に係るエレベーターの主要部のハードウェア構成図である。1 is a hardware configuration diagram of main parts of an elevator according to Embodiment 1. FIG. 実施の形態2におけるエレベーターの全体図である。FIG. 3 is an overall view of an elevator in Embodiment 2. FIG. 個々の乗り込みについての振動波形に対して、複数のピークを時系列順序でつなげる処理を行って作成したプロファイルを示すグラフである。It is a graph showing a profile created by performing a process of connecting a plurality of peaks in chronological order with respect to vibration waveforms for individual boarding. 振動波形全体に対して、複数のピークを時系列順序でつなげる処理を行って作成したプロファイルを示すグラフである。It is a graph showing a profile created by performing a process of connecting a plurality of peaks in chronological order for the entire vibration waveform. 実施の形態2における診断の具体的な過程をまとめたフローチャートの一例である。7 is an example of a flowchart summarizing the specific process of diagnosis in Embodiment 2. 実施の形態3におけるエレベーターの全体図である。FIG. 7 is an overall view of an elevator in Embodiment 3. 実施の形態3における診断の具体的な過程をまとめたフローチャートの一例である。7 is an example of a flowchart summarizing the specific process of diagnosis in Embodiment 3.
 本開示の対象を実施するための形態について添付の図面を参照しながら説明する。各図において、同一または相当する部分には同一の符号を付して、重複する説明は適宜に簡略化または省略する。なお、本開示の対象は以下の実施の形態に限定されることなく、本開示の趣旨を逸脱しない範囲において、実施の形態の任意の構成要素の変形、または実施の形態の任意の構成要素の省略が可能である。 Embodiments for carrying out the subject matter of the present disclosure will be described with reference to the accompanying drawings. In each figure, the same or corresponding parts are given the same reference numerals, and overlapping explanations are simplified or omitted as appropriate. Note that the subject of the present disclosure is not limited to the following embodiments, and modifications of any constituent elements of the embodiments or modifications of any constituent elements of the embodiments may be made without departing from the spirit of the present disclosure. Can be omitted.
 実施の形態1.
 図1は、実施の形態1におけるエレベーターの全体図である。
Embodiment 1.
FIG. 1 is an overall view of the elevator in the first embodiment.
 この例のエレベーターは、トラクション式のエレベーターである。エレベーターは、複数の階床を有する建物に適用される。建物において、エレベーターの昇降路1が設けられる。昇降路1は、複数の階床にわたる上下方向に長い空間である。建物の各々の階床において、エレベーターの乗場が設けられる。乗場は、昇降路に隣接する場所である。この例において、昇降路1の上部に、機械室2が設けられている。 The elevator in this example is a traction type elevator. Elevators are applied to buildings with multiple floors. In a building, an elevator hoistway 1 is provided. The hoistway 1 is a vertically long space spanning multiple floors. Elevator landings will be provided on each floor of the building. The landing is located adjacent to the hoistway. In this example, a machine room 2 is provided above the hoistway 1.
 機械室2には、滑車3が設けられている。滑車3は、巻上機4と連結されている。滑車3には、懸架体5が架けられている。懸架体5には、例えば、複数本のロープまたは複数本のベルトなどが用いられる。この例において、懸架体5の両端部に、かご6および錘7がそれぞれ連結されている。すなわち、図1は、1:1ローピングのシステムで懸架体5が架けられている場合を例示している。懸架体5は、かご6および錘7を昇降路1において懸架している。 A pulley 3 is provided in the machine room 2. The pulley 3 is connected to a hoist 4. A suspension body 5 is suspended over the pulley 3. For the suspension body 5, for example, a plurality of ropes or a plurality of belts are used. In this example, a cage 6 and a weight 7 are connected to both ends of the suspension body 5, respectively. That is, FIG. 1 illustrates a case where the suspension body 5 is suspended by a 1:1 roping system. A suspension body 5 suspends a car 6 and a weight 7 in the hoistway 1.
 巻上機4の駆動により滑車3が回転すると、懸架体5と滑車3との摩擦力によってかご6が昇降路1内を昇降する。エレベーターには制御装置8が設けられている。エレベーターは、制御装置8が巻上機4の回転を制御することで運行する。かご6がいずれかの階床に到着した後に、乗場およびかご6の間で乗客が乗り降りする。制御装置8には、診断装置9が接続されている。 When the pulley 3 is rotated by the drive of the hoist 4, the car 6 moves up and down in the hoistway 1 due to the frictional force between the suspension body 5 and the pulley 3. The elevator is provided with a control device 8. The elevator operates as the control device 8 controls the rotation of the hoist 4. After the car 6 arrives at any floor, passengers board and alight between the landing and the car 6. A diagnostic device 9 is connected to the control device 8 .
 かご6には、振動計測部10が設けられている。振動計測部10は、例えば、かご6に取り付けられる加速度センサ、速度センサ、変位センサ、もしくは秤装置、またはこれらを複数組み合わせて構成されている。診断装置9は、振動分析部11、および記録部12を有している。診断装置9の振動分析部11は、乗客の乗り込み時または降車時にかご6で発生する振動を振動計測部10が計測した振動データを分析する。振動分析部11は、振動データの分析結果に基づいてエレベーターの異常の有無を判定する。記録部12は、記憶媒体を有する。記録部12は、振動分析部11が判定したエレベーターの異常の有無を記録する。 The car 6 is provided with a vibration measurement section 10. The vibration measurement unit 10 is configured by, for example, an acceleration sensor, a speed sensor, a displacement sensor, or a weighing device attached to the car 6, or a combination of a plurality of these. The diagnostic device 9 includes a vibration analysis section 11 and a recording section 12. The vibration analysis unit 11 of the diagnostic device 9 analyzes vibration data obtained by the vibration measurement unit 10 measuring vibrations generated in the car 6 when passengers board or exit the car. The vibration analysis unit 11 determines whether there is an abnormality in the elevator based on the analysis result of the vibration data. The recording unit 12 has a storage medium. The recording unit 12 records whether or not there is an abnormality in the elevator determined by the vibration analysis unit 11.
 続いて、診断装置9を構成する振動計測部10、振動分析部11、および記録部12の動作の詳細を説明する。 Next, details of the operations of the vibration measurement section 10, vibration analysis section 11, and recording section 12 that constitute the diagnostic device 9 will be explained.
 振動計測部10は、エレベーターのかご6の停止時にかご6に発生する振動を計測する。振動計測部10は、エレベーターのかご6の停止を制御装置8からの信号で検知すると、かご6に発生する振動の計測を開始する。そして、振動計測部10は、制御装置8からの信号でエレベーターのかご6が走行を開始することを検知すると計測を終了する。以後、振動計測部10が計測する振動として、かご6の上下方向の振動を例に説明する。 The vibration measurement unit 10 measures vibrations generated in the elevator car 6 when the elevator car 6 is stopped. When the vibration measuring unit 10 detects that the elevator car 6 has stopped using a signal from the control device 8, it starts measuring vibrations generated in the elevator car 6. Then, when the vibration measuring unit 10 detects that the elevator car 6 starts running based on a signal from the control device 8, the vibration measuring unit 10 ends the measurement. Hereinafter, vibrations measured by the vibration measurement unit 10 will be explained using vertical vibrations of the car 6 as an example.
 振動分析部11は、振動計測部10が計測した振動を分析する。振動分析部11は、振動計測部10が計測したエレベーターのかご6の停止時における振動データを振動計測部10から受け取る。振動分析部11は、受け取った振動データの微分またはフィルターによる平滑化処理の少なくとも一方を含む分析をして、例えば加速度の時間変化を算出する。その後、振動分析部11は、算出した加速度の時間変化に基づいて、振動が持続する時間を算出する処理を行う。振動計測部10が加速度センサなどの複数のセンサおよび装置で構成されている場合は、振動分析部11は、加速度の時間変化の代わりに、それぞれの分析結果の平均値などを用いて振動が持続する時間を算出してもよい。 The vibration analysis section 11 analyzes the vibrations measured by the vibration measurement section 10. The vibration analysis section 11 receives from the vibration measurement section 10 vibration data measured by the vibration measurement section 10 when the elevator car 6 is stopped. The vibration analysis unit 11 performs an analysis including at least one of differentiation of the received vibration data and smoothing processing using a filter, and calculates, for example, a temporal change in acceleration. Thereafter, the vibration analysis unit 11 performs a process of calculating the duration of the vibration based on the calculated change in acceleration over time. When the vibration measurement unit 10 is composed of multiple sensors and devices such as acceleration sensors, the vibration analysis unit 11 uses the average value of each analysis result instead of the time change of acceleration to determine whether the vibration continues. You may also calculate the time required to do so.
 図2は、振動計測部10が計測した振動データに基づく加速度の時間変化を、グラフ上に実線で模式的に示している。乗客が一人でエレベーターのかご6に乗り込む場合、発生する振動の波形は、初期の加速度が大きく徐々に減衰していく波形となる。 FIG. 2 schematically shows the change in acceleration over time based on vibration data measured by the vibration measurement unit 10 using a solid line on a graph. When a passenger gets into the elevator car 6 alone, the waveform of the generated vibration is such that the initial acceleration is large and gradually attenuates.
 振動分析部11は、振動波形の複数のピークを時系列順序でつなげる処理を行い、図2に点線で示されるようなプロファイルを作成する。振動波形の各々のピークは、例えば振動波形の極大値などである。プロファイルにおけるピークの間の値は、例えば線形補間またはスプライン補間などの補間処理によってつなげられる。ここで、振動分析部11において、加速度の閾値A1が予め設定されている。閾値A1は、第1閾値の例である。閾値A1は、図2において一点鎖線で示されている。また、元の振動波形が閾値A1を最初に超える時点から、プロファイルが閾値A1を最初に下回る時点までの時間の長さを、振動持続時間Tとする。なお、振動持続時間の開始点は、プロファイルの開始点、すなわち、振動波形の最初のピークの時点であってもよい。 The vibration analysis unit 11 performs a process of connecting multiple peaks of the vibration waveform in chronological order, and creates a profile as shown by the dotted line in FIG. 2. Each peak of the vibration waveform is, for example, the maximum value of the vibration waveform. Values between peaks in the profile are connected by an interpolation process, such as linear interpolation or spline interpolation. Here, in the vibration analysis section 11, an acceleration threshold A1 is set in advance. Threshold A1 is an example of a first threshold. The threshold value A1 is indicated by a dashed line in FIG. Further, the length of time from the time when the original vibration waveform first exceeds the threshold value A1 to the time when the profile first falls below the threshold value A1 is defined as the vibration duration time T. Note that the starting point of the vibration duration may be the starting point of the profile, that is, the time of the first peak of the vibration waveform.
 また、図3は、振動計測部10が計測した振動データに基づく加速度の時間変化の絶対値を、グラフ上に実線で模式的に示している。振動分析部11は、このような加速度の時間変化の絶対値に対して、各々のピークをつなげた図3に点線で示されるプロファイルを作成してもよい。振動分析部11は、元の振動波形が閾値A1を最初に超える時点から、プロファイルが閾値A1を最初に下回る時点までの時間長さを振動持続時間Tと定義してもよい。 Further, FIG. 3 schematically shows the absolute value of the temporal change in acceleration based on the vibration data measured by the vibration measurement unit 10 as a solid line on the graph. The vibration analysis unit 11 may create a profile shown by a dotted line in FIG. 3 in which each peak is connected for the absolute value of such a time change in acceleration. The vibration analysis unit 11 may define the vibration duration T as the time length from the time when the original vibration waveform first exceeds the threshold value A1 to the time when the profile first falls below the threshold value A1.
 振動分析部11は、このように定めた振動持続時間Tの大きさに基づいて、エレベーターの異常の有無を判定する。具体的には、振動持続時間Tが時間の閾値Taを上回る場合に、振動分析部11は、エレベーターの乗り心地が悪化した、すなわち、エレベーターに異常ありと判定する。時間の閾値Taは、振動分析部11に予め設定されている。閾値Taは、第2閾値の例である。 The vibration analysis unit 11 determines whether there is an abnormality in the elevator based on the magnitude of the vibration duration T determined in this way. Specifically, when the vibration duration T exceeds the time threshold Ta, the vibration analysis unit 11 determines that the ride comfort of the elevator has deteriorated, that is, that there is an abnormality in the elevator. The time threshold Ta is set in the vibration analysis section 11 in advance. The threshold Ta is an example of a second threshold.
 図4は、エレベーターの異常により振動の加速度の減衰特性が弱まった場合と正常な場合との例を、加速度の時間変化として模式的に示したものである。図4において、正常な場合の振動波形は実線で示されている。一方、エレベーターの異常により振動の減衰特性が弱まった場合の振動波形は破線で示されている。また、各々の場合の振動のピークを直線で時系列順につなげたプロファイルは、点線で示されている。異常時の振動のプロファイルが閾値A1を上回っている振動持続時間T´は、正常時の振動のプロファイルから算出された振動持続時間Tより大きくなっている。この異常時の振動を「異常あり」と判定するためには、閾値Taを時間Tおよび時間T´の間の値に設定する必要がある。 FIG. 4 schematically shows an example of a case where the damping characteristic of vibration acceleration is weakened due to an abnormality in the elevator and a case where it is normal, as a time change in acceleration. In FIG. 4, the vibration waveform in a normal case is shown by a solid line. On the other hand, the vibration waveform when the vibration damping characteristics are weakened due to an abnormality in the elevator is shown by a broken line. Further, a profile in which vibration peaks in each case are connected in chronological order with a straight line is shown by a dotted line. The vibration duration T' during which the abnormal vibration profile exceeds the threshold value A1 is longer than the vibration duration T calculated from the normal vibration profile. In order to determine that the abnormal vibration is "abnormal", it is necessary to set the threshold value Ta to a value between time T and time T'.
 図5は、閾値Taの設定の仕方として、エレベーターが正常な場合の振動持続時間、異常が発生した場合の振動持続時間、および閾値Taの関係を示したものである。かご6への乗客の乗り込み方には乗客による個人差および都度のばらつきがあるため、振動持続時間Tもそれらの影響を受けてばらつきが生じる。そのため、それらのばらつきを考慮するように閾値Taを設定することで、一度の診断の精度を上げることができる。例えば、エレベーターの据え付け直後などのエレベーターが正常な場合の振動データをあらかじめ定められた回数分取得し、それらの振動持続時間の最大値をTaに設定する。 FIG. 5 shows the relationship between the vibration duration when the elevator is normal, the vibration duration when an abnormality occurs, and the threshold Ta, as a method of setting the threshold Ta. Since the way passengers board the car 6 varies from person to person and from time to time, the vibration duration T also varies due to these influences. Therefore, by setting the threshold value Ta so as to take these variations into account, it is possible to improve the accuracy of one-time diagnosis. For example, vibration data when the elevator is normal, such as immediately after the elevator is installed, is acquired a predetermined number of times, and the maximum value of the vibration duration is set to Ta.
 また、複数人の乗客が乗り込んだ場合を想定し、次のように振動持続時間が定義されてもよい。図6は、複数人の乗客がかごに乗り込んだ場合の振動波形の例を示している。この場合、上述のように振動持続時間Tを算出すると、1人の乗客が乗り込む場合に比べてTが大きい値となり、誤診断の可能性が生じる。そこで、加速度の閾値をAa1,Aa2,…,Aam-2,Aam-1,Aamのように複数設定する。振動分析部11は、プロファイルの最後の極大値よりも小さく、かつ、この極大値に最も近い閾値を下回った時点から、最小の閾値を下回る時点までの時間を振動持続時間T´´と定義する。図6において、プロファイルの最後の極大値よりも小さく、かつ、この極大値に最も近い閾値はAam-1となる。このため、振動分析部11は、プロファイルが最後の極大値の後に閾値Aam-1を下回ったタイミングから、最小の閾値であるAa1を下回る時点までの時間を振動持続時間T´´として算出する。このように算出される振動持続時間T´´を用いてエレベーターの異常を判定することで、1人の乗客が乗り込んだ時と同様の精度の診断が可能となる。 Furthermore, assuming a case where multiple passengers board the vehicle, the vibration duration may be defined as follows. FIG. 6 shows an example of a vibration waveform when a plurality of passengers board the car. In this case, when the vibration duration time T is calculated as described above, T becomes a larger value than when one passenger gets on the vehicle, and there is a possibility of misdiagnosis. Therefore, a plurality of acceleration thresholds are set such as Aa1, Aa2, . . . , Aam-2, Aam-1, Aam. The vibration analysis unit 11 defines the time from the time when the vibration falls below a threshold value that is smaller than and closest to the last local maximum value of the profile to the time when the vibration falls below the minimum threshold value as a vibration duration T''. . In FIG. 6, the threshold value that is smaller than the last maximum value of the profile and closest to this maximum value is Aam-1. Therefore, the vibration analysis unit 11 calculates the time from the time when the profile falls below the threshold value Aam-1 after the last local maximum value to the time when the profile falls below the minimum threshold value Aa1 as the vibration duration T''. By determining whether there is an abnormality in the elevator using the vibration duration time T'' calculated in this way, it becomes possible to diagnose with the same accuracy as when one passenger gets on the elevator.
 また、例えば、かご6の位置が変わってかご6を吊る部分の懸架体5の長さが長くなるとその引張剛性が小さくなるため、乗客の乗り込み時の懸架体5の伸び量が大きくなることでより大きな変位振幅の振動が発生する。この場合、振動の加速度および振動持続時間も元のかご6の位置の場合から変化する。このことを考慮し、エレベーターの階数に応じた閾値を設定することで、振動分析部11は、かご6がどの階数にあってもエレベーターの異常を診断できる。例えば、1階からn階にかご6が停止するエレベーターに対して、各階に応じた閾値群(Aam1,Aam2,…,Aamn;Ta1,Ta2,…,Tan)が振動分析部11に予め設定される。ここで、整数iを1からnまでのいずれかの整数として、加速度の閾値Aamiおよび時間の閾値Taiは、i階にかご6が停止した場合に対応する第1閾値および第2閾値の例である。エレベーターの異常を診断する際に、振動分析部11は制御装置8からかご6の位置の情報を受け取り、階数に応じた適切な閾値を閾値群から選定することで、いずれの階数でもエレベーターの異常を診断できるようになる。 Also, for example, if the position of the car 6 changes and the length of the suspension body 5 at the part where the car 6 is hung becomes longer, its tensile rigidity decreases, so the amount of stretch of the suspension body 5 when a passenger gets on board increases. Vibrations with larger displacement amplitudes occur. In this case, the vibration acceleration and vibration duration also change from the original position of the car 6. By taking this into consideration and setting a threshold value according to the number of floors of the elevator, the vibration analysis unit 11 can diagnose abnormalities in the elevator regardless of the number of floors where the car 6 is located. For example, for an elevator where the car 6 stops from the 1st floor to the nth floor, a group of threshold values (Aam1, Aam2, ..., Aamn; Ta1, Ta2, ..., Tan) corresponding to each floor is preset in the vibration analysis section 11. Ru. Here, when the integer i is any integer from 1 to n, the acceleration threshold Aami and the time threshold Tai are examples of the first threshold and the second threshold corresponding to the case where the car 6 stops on the i floor. be. When diagnosing an abnormality in an elevator, the vibration analysis unit 11 receives information on the position of the car 6 from the control device 8, and selects an appropriate threshold value from the threshold group according to the floor number, thereby detecting an abnormality in the elevator at any floor. be able to diagnose.
 記録部12は、振動分析部11による判定結果を記録する。診断装置9は、ネットワーク回線などを利用して、判定結果をエレベーターの外部に伝達してもよい。このようにすることで、例えばエレベーターの保守などを行う保守員に迅速に判定結果を送付することができ、保守員による早期対応が可能となる。 The recording unit 12 records the determination result by the vibration analysis unit 11. The diagnostic device 9 may transmit the determination result to the outside of the elevator using a network line or the like. By doing so, the determination result can be quickly sent to the maintenance staff who maintains the elevator, for example, and the maintenance staff can take early action.
 以上のような構成により、エレベーターのかご6の停止時の乗り心地の悪化を精度良く診断できる。また、エレベーターの異常による影響を受ける振動持続時間に基づいて診断が行われるので、エレベーター自体の異常で乗り心地が悪化する事象を捉えた診断が可能となる。 With the above configuration, it is possible to accurately diagnose the deterioration of the ride comfort when the elevator car 6 is stopped. Furthermore, since diagnosis is performed based on the vibration duration that is affected by an abnormality in the elevator, it is possible to diagnose a phenomenon in which the ride comfort deteriorates due to an abnormality in the elevator itself.
 図7は、エレベーターの異常の診断の具体的な過程をまとめたフローチャートである。STEPa1で制御装置8がエレベーターのかご6の停止を確認した後、STEPa2で振動計測部10はかご6に発生する上下方向の振動の計測を開始する。その後、STEPa3において、制御装置8がエレベーターのかご6の走行の開始を確認すると、振動計測部10は計測を終了したのち、計測データを振動分析部11に送る。STEPa4で、振動分析部11は振動持続時間Tを算出する。STEPa5で振動持続時間Tがあらかじめ定められた振動持続時間閾値Taを超えている場合、STEPa6で振動分析部11はエレベーターに異常ありと診断する。一方、計測した振動持続時間Tが振動持続時間閾値Taと同じまたは閾値Taを超えていない場合、STEPa7で振動分析部11はエレベーターに異常なしと診断する。STEPa8で記録部12に判定結果が記録され、一度の診断が終了する。 FIG. 7 is a flowchart summarizing the specific process of diagnosing elevator abnormalities. After the control device 8 confirms that the elevator car 6 has stopped in STEPa1, the vibration measuring unit 10 starts measuring vertical vibrations generated in the car 6 in STEPa2. Thereafter, in STEPa3, when the control device 8 confirms that the elevator car 6 has started running, the vibration measuring section 10 finishes the measurement and then sends the measured data to the vibration analyzing section 11. In STEPa4, the vibration analysis unit 11 calculates the vibration duration T. If the vibration duration T exceeds the predetermined vibration duration threshold Ta in STEPa5, the vibration analysis unit 11 diagnoses that there is an abnormality in the elevator in STEPa6. On the other hand, if the measured vibration duration T is the same as the vibration duration threshold Ta or does not exceed the threshold Ta, the vibration analysis unit 11 diagnoses in STEPa7 that there is no abnormality in the elevator. The determination result is recorded in the recording unit 12 in STEPa8, and one diagnosis is completed.
 また、診断装置9は、記録部12に対して、図8に示すフローチャートのように、STEPa9およびSTEPa10を追加して、一度の診断だけではなく、過去の診断履歴を参照した判定動作を加えてもよい。STEPa9において、振動分析部11は、予め設定された診断回数分の診断履歴から「異常あり」と判定した頻度Xを計算する。この頻度Xに対して、頻度閾値Xaが予め設定される。STEPa10において、頻度Xが閾値Xa以上になるタイミングで、診断装置9は外部に状況を発報する。この場合、閾値Xaを適切に設定することで、保守員による迅速な対応ができるようになる。発報先の具体例としては、ディスプレイもしくは警報装置、または遠隔地にいる保守員が所持する保守端末などが挙げられる。 Furthermore, the diagnostic device 9 adds STEPa9 and STEPa10 to the recording unit 12, as shown in the flowchart shown in FIG. Good too. In STEPa9, the vibration analysis unit 11 calculates the frequency X at which it is determined that there is an abnormality from the diagnosis history for the preset number of diagnoses. For this frequency X, a frequency threshold Xa is set in advance. In STEPa10, the diagnostic device 9 reports the situation to the outside at a timing when the frequency X becomes equal to or higher than the threshold value Xa. In this case, by appropriately setting the threshold value Xa, maintenance personnel can take prompt action. Specific examples of the destination include a display or alarm device, or a maintenance terminal owned by a maintenance worker in a remote location.
 また、診断装置9は、「異常あり」と判定する頻度の代わりに、「異常あり」と判定した回数の合計、または連続で「異常あり」と判定した回数に対して閾値を設けて、同様に外部に状況を発報してもよい。 In addition, the diagnostic device 9 sets a threshold value for the total number of times it is determined to be "abnormal" or the number of consecutive times it is determined that "abnormality exists" instead of the frequency for determining "abnormality present". The situation may be reported externally.
 また、このような診断装置9は、1:1ローピングだけでなく、2:1ローピングまたは機械室2がない機械室レスエレベーターのシステムなど、あらゆるローピングのトラクション式エレベーターに対して適用できる。 Furthermore, such a diagnostic device 9 can be applied not only to 1:1 roping, but also to all types of roping traction elevators, such as 2:1 roping or machine room-less elevator systems that do not have a machine room 2.
 さらに、このようなエレベーターの診断装置9は、かご6の停止時に乗り込む乗客による振動だけでなく、かご6から降りる乗客が起こす振動に対しても同様に適用できる。加えてかご6の上下方向の振動だけでなく、かご6の傾きなどによる横方向の振動に対しても適用できる。なお、本実施の形態では、振動分析部11において振動データを加速度の時間変化に変換した例の処理を説明したが、速度または変位に対して同様の処理を実施してもよい。すなわち、振動の振幅の閾値は、加速度の振幅に対する閾値に限定されず、速度または変位などの振幅に対する閾値であってもよい。 Further, such an elevator diagnostic device 9 can be applied not only to vibrations caused by passengers getting on the car 6 when the car 6 is stopped, but also to vibrations caused by passengers getting off the car 6. In addition, the present invention can be applied not only to vibrations in the vertical direction of the car 6, but also to vibrations in the lateral direction due to the inclination of the car 6. Note that in this embodiment, a process has been described in which vibration data is converted into a temporal change in acceleration in the vibration analysis unit 11, but the same process may be performed on velocity or displacement. That is, the threshold value for the amplitude of vibration is not limited to the threshold value for the amplitude of acceleration, but may be a threshold value for the amplitude of velocity, displacement, or the like.
 続いて、図9を用いて、エレベーターのハードウェア構成の例について説明する。
 図9は、実施の形態1に係るエレベーターの主要部のハードウェア構成図である。
Next, an example of the hardware configuration of the elevator will be described using FIG. 9.
FIG. 9 is a hardware configuration diagram of the main parts of the elevator according to the first embodiment.
 エレベーターの各機能は、処理回路により実現し得る。処理回路は、少なくとも1つのプロセッサ100aと少なくとも1つのメモリ100bとを備える。処理回路は、プロセッサ100aおよびメモリ100bと共に、あるいはそれらの代用として、少なくとも1つの専用ハードウェア200を備えてもよい。 Each function of the elevator can be realized by a processing circuit. The processing circuit includes at least one processor 100a and at least one memory 100b. The processing circuitry may include at least one dedicated hardware 200 along with or in place of the processor 100a and memory 100b.
 処理回路がプロセッサ100aとメモリ100bとを備える場合、エレベーターの各機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせで実現される。ソフトウェアおよびファームウェアの少なくとも一方は、プログラムとして記述される。そのプログラムはメモリ100bに格納される。プロセッサ100aは、メモリ100bに記憶されたプログラムを読み出して実行することにより、エレベーターの各機能を実現する。 When the processing circuit includes a processor 100a and a memory 100b, each function of the elevator is realized by software, firmware, or a combination of software and firmware. At least one of the software and firmware is written as a program. The program is stored in memory 100b. The processor 100a implements each function of the elevator by reading and executing programs stored in the memory 100b.
 プロセッサ100aは、CPU(Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSPともいう。メモリ100bは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROMなどの、不揮発性または揮発性の半導体メモリなどにより構成される。 The processor 100a is also referred to as a CPU (Central Processing Unit), processing device, arithmetic device, microprocessor, microcomputer, or DSP. The memory 100b is configured of a nonvolatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, and EEPROM.
 処理回路が専用ハードウェア200を備える場合、処理回路は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC、FPGA、またはこれらの組み合わせで実現される。 When the processing circuit comprises dedicated hardware 200, the processing circuit is implemented, for example, as a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC, an FPGA, or a combination thereof.
 エレベーターの各機能は、それぞれ処理回路で実現することができる。あるいは、エレベーターの各機能は、まとめて処理回路で実現することもできる。エレベーターの各機能について、一部を専用ハードウェア200で実現し、他部をソフトウェアまたはファームウェアで実現してもよい。このように、処理回路は、専用ハードウェア200、ソフトウェア、ファームウェア、またはこれらの組み合わせでエレベーターの各機能を実現する。 Each function of the elevator can be realized by a respective processing circuit. Alternatively, each function of the elevator can be realized collectively by a processing circuit. Regarding each function of the elevator, some may be realized by dedicated hardware 200, and other parts may be realized by software or firmware. In this manner, the processing circuit implements each function of the elevator using dedicated hardware 200, software, firmware, or a combination thereof.
 実施の形態2.
 実施の形態2において、実施の形態1で開示される例と相違する点について特に詳しく説明する。実施の形態2で説明しない特徴については、実施の形態1で開示される例のいずれの特徴が採用されてもよい。
Embodiment 2.
In Embodiment 2, points that are different from the example disclosed in Embodiment 1 will be explained in particular detail. As for the features not described in the second embodiment, any of the features in the examples disclosed in the first embodiment may be adopted.
 図10は実施の形態2におけるトラクション式のエレベーターの全体図である。 FIG. 10 is an overall view of the traction type elevator in the second embodiment.
 実施の形態2のエレベーターは、実施の形態1のエレベーターの構成に加え、乗客の行動を監視する監視部13および行動分析部14を備えている。監視部13は、具体的には、かご6内を撮影するカメラ13a、秤装置13b、かご床に設けられた床反力センサ13c、加速度センサ、速度センサ、または変位センサ、もしくはこれらを複数組み合わせて構成される。監視部13は、かご6が停止している間に乗客の行動データを取得する。 In addition to the configuration of the elevator of Embodiment 1, the elevator of Embodiment 2 includes a monitoring section 13 and a behavior analysis section 14 that monitor passenger behavior. Specifically, the monitoring unit 13 includes a camera 13a that photographs the inside of the car 6, a weighing device 13b, a floor reaction force sensor 13c provided on the car floor, an acceleration sensor, a speed sensor, a displacement sensor, or a combination of a plurality of these. It consists of The monitoring unit 13 acquires passenger behavior data while the car 6 is stopped.
 また、行動分析部14は、監視部13に接続している。監視部13は、エレベーターのかご6の停止時の乗客の行動データを取得したのちに、取得した行動データを行動分析部14に伝達する。 Additionally, the behavior analysis section 14 is connected to the monitoring section 13. After acquiring behavioral data of the passengers when the elevator car 6 is stopped, the monitoring unit 13 transmits the acquired behavioral data to the behavior analyzing unit 14 .
 ここで、監視部13がカメラ13aの場合に、監視部13は、乗客の行動データとして、かご6内を撮影した画像または映像データを行動分析部14に伝達する。監視部13が秤装置13bの場合に、監視部13は、乗客の行動データとして、かご6の重量の時間変化を行動分析部14に伝達する。監視部13が床反力センサ13cの場合に、監視部13は、乗客の行動データとして、かご床に加えられた床反力の時間変化を行動分析部14に伝達する。 Here, when the monitoring unit 13 is the camera 13a, the monitoring unit 13 transmits the image or video data captured inside the car 6 to the behavior analysis unit 14 as the passenger behavior data. When the monitoring unit 13 is the weighing device 13b, the monitoring unit 13 transmits the change in weight of the car 6 over time to the behavior analysis unit 14 as passenger behavior data. When the monitoring unit 13 is the floor reaction force sensor 13c, the monitoring unit 13 transmits temporal changes in the floor reaction force applied to the car floor to the behavior analysis unit 14 as passenger behavior data.
 行動分析部14は、乗客の行動データを分析して、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、およびそれぞれの乗客の乗り込み後のかご6の重量M1,M2,…,Mnを分析結果として算出し、これらを振動分析部11に伝達する。乗客の行動データがカメラ13aによる画像または映像の場合に、行動分析部14は、画像解析で上記分析結果の諸量を推定する。乗客の行動データが秤装置13bによるかご6の重量変化の場合に、行動分析部14は、その時間変化から上記分析結果の諸量を推定する。乗客の行動データが床反力の場合に、行動分析部14は、床反力の時間変化から上記分析結果の諸量を推定する。監視部13が複数種類のセンサ等の装置を用いる場合に、行動分析部14は、それぞれの装置によって算出したものの平均値などとして、上記分析結果の諸量を求めてもよい。 The behavior analysis unit 14 analyzes the behavior data of the passengers and calculates the number of passengers n, the timing of boarding τ1, τ2, ..., τn, and the weight M1, M2, ..., Mn of the car 6 after each passenger boarded the car. These are calculated as analysis results and transmitted to the vibration analysis section 11. When the passenger's behavior data is an image or video taken by the camera 13a, the behavior analysis unit 14 estimates various quantities of the above analysis results by image analysis. When the passenger's behavior data is a change in the weight of the car 6 measured by the weighing device 13b, the behavior analysis unit 14 estimates various quantities of the analysis results from the time change. When the passenger's behavior data is a floor reaction force, the behavior analysis unit 14 estimates various quantities of the above-mentioned analysis results from temporal changes in the floor reaction force. When the monitoring unit 13 uses devices such as a plurality of types of sensors, the behavior analysis unit 14 may obtain various amounts of the analysis results as an average value of the values calculated by each device.
 振動分析部11には、複数の閾値群が予め設定されている。振動分析部11は、行動分析部14から受け取った乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、それぞれの乗客の乗り込み後のかご6の重量M1,M2,…,Mn、および制御装置8から受け取ったかご位置情報の組み合わせに応じて、加速度閾値Aaと振動持続時間閾値Taを閾値群から選出して設定する。 A plurality of threshold groups are preset in the vibration analysis section 11. The vibration analysis unit 11 receives from the behavior analysis unit 14 the number of passengers n, boarding timings τ1, τ2, ..., τn, the weights M1, M2, ..., Mn of the car 6 after each passenger has boarded, and the control device. According to the combination of the car position information received from 8, the acceleration threshold Aa and the vibration duration threshold Ta are selected from the threshold group and set.
 振動分析部11は、振動計測部10が計測する振動データを用いて、例えば加速度の時間変化を算出する。また、図11は、複数の乗客がかご6に乗り込んだ時の振動における加速度変化を模式的に示したものである。図11において、体重が同程度の乗客が3人連続で乗り込んだ時の例が示されている。このときかご6に発生する振動は、乗客が1人だけ乗り込んだ場合と異なり、途中で2人目以降が乗り込むことで、加速度が途中から再び増加して減衰波形となる。 The vibration analysis unit 11 uses the vibration data measured by the vibration measurement unit 10 to calculate, for example, changes in acceleration over time. Further, FIG. 11 schematically shows changes in acceleration due to vibration when a plurality of passengers get into the car 6. In FIG. 11, an example is shown in which three passengers of similar weight board the vehicle in succession. The vibration generated in the car 6 at this time differs from the case where only one passenger gets on the car, but when the second and subsequent passengers get on the car, the acceleration increases again from the middle and becomes a damped waveform.
 振動分析部11は、乗り込みのタイミングτ1,τ2,τ3で分割される各乗客の乗り込みによる振動に対して、加速度変化の複数のピークを時系列順序でつなげる処理を行い、図11に点線で示されるようなプロファイルを作成する。プロファイルにおけるピークの間の値は、例えば線形補間またはスプライン補間などの補間処理によってつなげられる。振動分析部11は、予め設定した加速度の閾値Aaをこのプロファイルが超えている時間の合計を、振動持続時間Tとして算出する。図11において、振動持続時間Tは、T1,T2,T3の合計である。なお、振動分析部11は、各乗客の振動持続時間を算出する範囲の開始点を、各乗客が誘発した加速度変化が最初に閾値Aaを超える点、乗り込みのタイミングτ1,τ2,τ3、またはプロファイルの最初の点としてもよい。振動分析部11は、各乗客の振動持続時間を算出する範囲の終了点を、プロファイルが閾値Aaを下回るタイミング、またはプロファイルが閾値Aaを下回らない場合には各プロファイルの最終の点などとしてもよい。 The vibration analysis unit 11 performs processing to connect multiple peaks of acceleration changes in chronological order for the vibrations caused by each passenger boarding, which are divided by the boarding timings τ1, τ2, and τ3, as shown by dotted lines in FIG. Create a profile that allows you to Values between peaks in the profile are connected by an interpolation process, such as linear interpolation or spline interpolation. The vibration analysis unit 11 calculates the total time during which this profile exceeds a preset acceleration threshold value Aa as the vibration duration T. In FIG. 11, the vibration duration T is the sum of T1, T2, and T3. The vibration analysis unit 11 sets the starting point of the range for calculating the vibration duration of each passenger to the point at which the acceleration change induced by each passenger first exceeds the threshold Aa, the boarding timings τ1, τ2, τ3, or the profile. It can also be the first point. The vibration analysis unit 11 may set the end point of the range for calculating the vibration duration of each passenger to the timing when the profile falls below the threshold value Aa, or the final point of each profile if the profile does not fall below the threshold value Aa. .
 また、振動分析部11は、図12に示すように振動波形全体に対して、複数のピークを時系列順序でつなげる処理を行ってプロファイルを作成してもよい。プロファイルにおけるピークの間の値は、例えば線形補間またはスプライン補間などの補間処理によってつなげられる。振動分析部11は、このように作成したプロファイルが予め設定された加速度の閾値Aaを最初に超える点から閾値Aaを最後に下回る点までの、閾値Aaを上回っている時間長さの合計を振動持続時間Tとして算出してもよい。図12において、振動持続時間Tは、T4,T5の合計である。 Furthermore, the vibration analysis unit 11 may create a profile by performing a process of connecting a plurality of peaks in chronological order for the entire vibration waveform, as shown in FIG. Values between peaks in the profile are connected by an interpolation process, such as linear interpolation or spline interpolation. The vibration analysis unit 11 vibrates the total length of time during which the profile created in this way exceeds the threshold Aa from the point where the acceleration first exceeds the preset acceleration threshold Aa to the last point where the acceleration falls below the threshold Aa. It may also be calculated as the duration T. In FIG. 12, the vibration duration T is the sum of T4 and T5.
 また、振動分析部11は、加速度変化の絶対値に対して波形のピークをつなげてプロファイルを作成してもよい。振動分析部11は、このように作成するプロファイルに対して同様の処理を行い、振動持続時間Tを算出してもよい。 Furthermore, the vibration analysis unit 11 may create a profile by connecting the peak of the waveform to the absolute value of the change in acceleration. The vibration analysis unit 11 may calculate the vibration duration T by performing similar processing on the profile created in this way.
 ここで、体重が大きい乗客、または重量が大きい貨物がエレベーターのかご6に乗り込んだ場合、加わる荷重の大きさによって振動持続時間Tも影響を受ける。このような場合、行動分析部14が算出したn人乗り込み後のかご6の重量Mnを加味した加速度閾値Aaを設定することで、振動分析部11は、より適切な診断ができるようになる。例えば、重量が大きい乗客が乗り込んだ場合は、加わる荷重の増加に伴って加速度が大きくなるため、閾値Aaも荷重の増加の程度に応じて大きくした値に設定される。 Here, when a heavy passenger or heavy cargo gets into the elevator car 6, the vibration duration T is also affected by the magnitude of the applied load. In such a case, the vibration analysis unit 11 can perform a more appropriate diagnosis by setting the acceleration threshold value Aa that takes into account the weight Mn of the car 6 after n people board, which is calculated by the behavior analysis unit 14. For example, when a heavy passenger gets on board, the acceleration increases as the applied load increases, so the threshold value Aa is also set to a value that increases according to the degree of increase in the load.
 また、振動持続時間の閾値Taは、乗り込み人数n、および乗り込みのタイミングτ1,τ2,…,τnに応じて、予め設定された閾値より選出される。例えば、乗り込み人数が増加すると、かごnに生じる振動の振動持続時間Tは長くなるため、閾値Taもより大きい値が設定される。一方、乗り込みのタイミングτ1,τ2,…,τnの間隔が極端に短い場合、すべての乗り込みについての振動持続時間を合計した振動持続時間Tが短くなる。このため、振動分析部11は、乗り込みのタイミングの間隔に閾値τaを設け、τ1,τ2,…,τnの間隔の長さに応じた振動持続時間閾値Taを設定したり、τ1,τ2,…,τnの間隔の長さに応じて診断対象から除外したりしてもよい。 Further, the threshold value Ta of the vibration duration is selected from preset threshold values according to the number of passengers n and the boarding timings τ1, τ2, ..., τn. For example, as the number of passengers increases, the vibration duration T of the vibrations generated in the car n becomes longer, and therefore the threshold value Ta is also set to a larger value. On the other hand, if the intervals between the boarding timings τ1, τ2, . For this reason, the vibration analysis unit 11 sets a threshold value τa for the time interval of boarding, and sets a vibration duration threshold value Ta according to the length of the interval of τ1, τ2, ..., τn, or sets a vibration duration threshold value Ta according to the length of the interval of τ1, τ2, ..., τn. , τn may be excluded from the diagnostic target depending on the length of the interval.
 振動分析部11は、このように算出した振動持続時間Tと振動持続時間閾値Taに基づいて、エレベーターの異常の有無を診断する。記録部12は、その診断結果を記録する。 The vibration analysis unit 11 diagnoses whether there is an abnormality in the elevator based on the vibration duration T and the vibration duration threshold Ta calculated in this way. The recording unit 12 records the diagnosis results.
 また、最後に乗車した乗客による振動データのみ、図11においては時刻τ3以降の振動データのみを抽出することで、一人の乗客の乗り込み時に相当する振動データが得られる。振動分析部11は、このような振動データに基づいて、実施の形態1と同様の処理でエレベーターを診断してもよい。 Furthermore, by extracting only the vibration data from the last passenger who boarded the vehicle, in FIG. 11, only the vibration data after time τ3, vibration data corresponding to the time when one passenger boarded the vehicle can be obtained. The vibration analysis unit 11 may diagnose the elevator using the same process as in the first embodiment based on such vibration data.
 このように、複数人が乗車する場合でも、行動分析部14が算出した乗り込み人数n、各乗り込みのタイミングτ1,τ2,…,τn、各乗り込み後のかご6の重量M1,M2,…,Mn、および制御装置8から伝達されるかご位置情報に基づいて、振動分析部11は、予め設定された閾値群のなかから適切な閾値Taを選択することで、エレベーターの診断を適切に行うことができる。 In this way, even when multiple people board the car, the number of boarders n calculated by the behavior analysis unit 14, the timings τ1, τ2, ..., τn of each boarding, and the weights M1, M2, ..., Mn of the car 6 after each boarding. , and the car position information transmitted from the control device 8, the vibration analysis unit 11 selects an appropriate threshold value Ta from a preset threshold value group, thereby making it possible to appropriately diagnose the elevator. can.
 また、エレベーターは、例えばロボット専用運転モードのように、あらかじめ重量が判明しているロボットなどの運搬物が乗り込むための専用運転を行うことがある。この場合に、運搬物の重量および大きさは明確であるため、発生する振動の大きさにばらつきが生じにくい。このため、ロボット専用の閾値Aaおよび閾値Taなどを設けることで、乗客が人である場合よりも高精度に診断を実施できる。ロボット専用の閾値は、例えば図5におけるばらつき範囲を小さくすることなどによって設定される。 In addition, the elevator may perform a dedicated operation, such as a robot-only operation mode, for carrying objects such as robots whose weight is known in advance. In this case, since the weight and size of the transported object are clear, variations in the magnitude of the generated vibrations are unlikely to occur. Therefore, by providing a threshold value Aa, a threshold value Ta, etc. exclusively for the robot, diagnosis can be performed with higher accuracy than when the passenger is a human passenger. The robot-specific threshold is set by, for example, reducing the variation range in FIG. 5.
 また、体重または重量がそれぞれで大きく異なる複数人の乗客または貨物がかご6に乗り込んだ場合に、振動分析部11は、それぞれの乗客の乗り込みに対して適切な加速度閾値Aaを設定してもよい。振動分析部11は、その組み合わせに対する適切な振動持続時間閾値Taを選定することで、適切な診断ができるようになる。 Further, when a plurality of passengers or cargo having significantly different weights or weights get into the car 6, the vibration analysis section 11 may set an appropriate acceleration threshold value Aa for each passenger getting on. . The vibration analysis unit 11 can perform an appropriate diagnosis by selecting an appropriate vibration duration threshold value Ta for the combination.
 このように、複数人の乗客、または体重が大きい乗客もしくは重量が大きい貨物が乗り込んだ場合においても、振動分析部11は、エレベーターを適切に診断できる。 In this way, even when multiple passengers, heavy passengers, or heavy cargo board the elevator, the vibration analysis unit 11 can appropriately diagnose the elevator.
 また、エレベーターのかご6の停止中にかご6内で乗客が暴れ続けた場合は、大きい加速度で振動が持続するため、振動持続時間も極端に大きくなり、誤診断になる可能性がある。そのため、振動分析部11は、行動分析部14における乗客の行動データの分析で乗客の暴れを検知した場合に、乗客の暴れによる振動を診断対象から外すことで、誤診断を防ぐことができる。 In addition, if a passenger continues to violently move inside the elevator car 6 while the elevator car 6 is stopped, the vibrations will continue with a large acceleration, and the duration of the vibrations will also become extremely long, which may lead to a misdiagnosis. Therefore, when the behavior analysis unit 14 detects a violent behavior of a passenger by analyzing the passenger behavior data, the vibration analysis unit 11 can prevent misdiagnosis by excluding vibrations caused by the violent behavior of the passenger from the diagnosis target.
 図13は、このような構成と動作でエレベーターの異常を診断するフローチャートの一例である。STEPb1で制御装置8がエレベーターのかご6の停止を確認した後、STEPb2で振動計測部10および監視部13は振動データおよび乗客の行動データの取得を開始する。その後、STEPb3において、制御装置8がエレベーターのかご6の走行の開始を確認すると、振動計測部10および監視部13はデータ取得を終了する。STEPb4において、行動分析部14は、乗客の行動を分析し、乗客の暴れなどの問題または乗り降りの有無を確認する。行動分析部14は、問題がない場合に、乗客の行動データの分析を継続し、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、および各乗り込み後のかご6の重量M1,M2,…,Mnを算出する。STEPb5において、振動分析部11は、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込み後のかご6の重量M1,M2,…,Mnを行動分析部14から受け取る。振動分析部11は、受け取った情報に基づいて閾値Aaおよび閾値Taを選出する。STEPb6において、振動分析部11は、振動データを分析して加速度変化に対するプロファイルを算出する。振動分析部11は、算出したプロファイルから振動持続時間Tを算出する。STEPb7からSTEPb9において、振動分析部11は、振動持続時間Tが閾値Taを上回っているかを判定してエレベーターの異常の有無を診断する。STEPb10において、記録部12は、診断結果を記録する。 FIG. 13 is an example of a flowchart for diagnosing an abnormality in an elevator using such a configuration and operation. After the control device 8 confirms that the elevator car 6 has stopped in STEP b1, the vibration measuring unit 10 and the monitoring unit 13 start acquiring vibration data and passenger behavior data in STEP b2. Thereafter, in STEP b3, when the control device 8 confirms that the elevator car 6 has started running, the vibration measuring section 10 and the monitoring section 13 end data acquisition. In STEP b4, the behavior analysis unit 14 analyzes the behavior of the passengers and checks whether there are problems such as unruly passengers or whether passengers are getting on or off the train. If there is no problem, the behavior analysis unit 14 continues to analyze the behavior data of the passengers, and calculates the number of passengers n, the timings of boarding τ1, τ2, ..., τn, and the weights M1, M2, and M2 of the cars 6 after each boarding. ..., Mn is calculated. In STEPb5, the vibration analysis unit 11 receives from the behavior analysis unit 14 the number of boarders n, the boarding timings τ1, τ2, ..., τn, and the weights M1, M2, ..., Mn of the car 6 after each boarding. The vibration analysis unit 11 selects the threshold value Aa and the threshold value Ta based on the received information. In STEPb6, the vibration analysis unit 11 analyzes the vibration data and calculates a profile for acceleration changes. The vibration analysis unit 11 calculates the vibration duration T from the calculated profile. In STEPb7 to STEPb9, the vibration analysis unit 11 determines whether the vibration duration T exceeds the threshold value Ta and diagnoses whether there is an abnormality in the elevator. In STEPb10, the recording unit 12 records the diagnosis result.
 診断装置9は、STEPb10までの一度の診断だけではなく、STEPb11からSTEPb13のように、複数回の診断履歴に基づいて外部への発報を行ってもよい。すなわち、振動分析部11は、予め設定された診断回数であるN回分の診断履歴から「異常あり」と判定した頻度Xを計算する。この頻度Xに対して、頻度閾値Xaが予め設定される。頻度Xが閾値Xaを上回るようなタイミングで、診断装置9は外部に状況を発報する。発報先の具体例としては、ディスプレイもしくは警報装置、または遠隔地にいる保守員が所持する保守端末などが挙げられる。 The diagnostic device 9 may issue an alarm to the outside based not only on the one-time diagnosis up to STEPb10, but also on a plurality of diagnosis histories, such as from STEPb11 to STEPb13. That is, the vibration analysis unit 11 calculates the frequency X at which it is determined that there is an abnormality from the diagnosis history of N times, which is the number of times of diagnosis set in advance. For this frequency X, a frequency threshold Xa is set in advance. The diagnostic device 9 reports the situation to the outside at a timing when the frequency X exceeds the threshold value Xa. Specific examples of the destination include a display or alarm device, or a maintenance terminal owned by a maintenance worker in a remote location.
 また、診断装置9は、「異常あり」と判定する頻度の代わりに、「異常あり」と判定した回数の合計、または連続で「異常あり」と判定した回数に対して閾値を設けて、同様に外部に状況を発報してもよい。 In addition, the diagnostic device 9 sets a threshold value for the total number of times it is determined to be "abnormal" or the number of consecutive times it is determined that "abnormality exists" instead of the frequency for determining "abnormality present". The situation may be reported externally.
 上記のような構成により、診断装置9は、振動データを乗客の行動データと照らし合わせて分析することで、振動に対して適した閾値を割り当てることができるため、精度よくエレベーターの異常を診断できる。 With the above-described configuration, the diagnostic device 9 can assign an appropriate threshold value to the vibration by comparing the vibration data with the passenger behavior data and analyzing it, so that it can accurately diagnose abnormalities in the elevator. .
 また、このような診断装置9は、1:1ローピングだけでなく、2:1ローピングまたは機械室2がない機械室レスエレベーターのシステムなど、あらゆるローピングのトラクション式エレベーターに対して適用できる。 Furthermore, such a diagnostic device 9 can be applied not only to 1:1 roping, but also to all types of roping traction elevators, such as 2:1 roping or machine room-less elevator systems that do not have a machine room 2.
 さらに、このようなエレベーターの診断装置9は、かご6の停止時に乗り込む乗客による振動だけでなく、かご6から降りる乗客が起こす振動に対しても同様に適用できる。加えてかご6の上下方向の振動だけでなく、かご6の傾きなどによる横方向の振動に対しても適用できる。なお、本実施の形態では、振動分析部11において振動データを加速度の時間変化に変換した例の処理を説明したが、速度または変位に対して同様の処理を実施してもよい。すなわち、振動の振幅の閾値は、加速度の振幅に対する閾値に限定されず、速度または変位などの振幅に対する閾値であってもよい。 Further, such an elevator diagnostic device 9 can be applied not only to vibrations caused by passengers getting on the car 6 when the car 6 is stopped, but also to vibrations caused by passengers getting off the car 6. In addition, the present invention can be applied not only to vibrations in the vertical direction of the car 6, but also to vibrations in the lateral direction due to the inclination of the car 6. Note that in this embodiment, a process has been described in which vibration data is converted into a temporal change in acceleration in the vibration analysis unit 11, but the same process may be performed on velocity or displacement. That is, the threshold value for the amplitude of vibration is not limited to the threshold value for the amplitude of acceleration, but may be a threshold value for the amplitude of velocity, displacement, or the like.
 実施の形態3.
 実施の形態3において、実施の形態1または実施の形態2で開示される例と相違する点について特に詳しく説明する。実施の形態3で説明しない特徴については、実施の形態1または実施の形態2で開示される例のいずれの特徴が採用されてもよい。
Embodiment 3.
In Embodiment 3, points that are different from the examples disclosed in Embodiment 1 or Embodiment 2 will be explained in particular detail. For features not described in Embodiment 3, any of the features disclosed in Embodiment 1 or Embodiment 2 may be adopted.
 図14は、実施の形態3におけるトラクション式のエレベーターの全体図である。 FIG. 14 is an overall view of the traction type elevator in Embodiment 3.
 図14に示すトラクション式のエレベーターにおいて、昇降路1の上部には機械室2が設けられている。機械室2には、滑車3が設けられている。滑車3は、巻上機4と連結されている。滑車3には、懸架体5が架けられている。懸架体5には、例えば、複数本のロープまたは複数本のベルトなどが用いられる。この例において、懸架体5の両端部に、かご6および錘7がそれぞれ連結されている。すなわち、図14は、1:1ローピングのシステムで懸架体5が架けられている場合を例示している。懸架体5は、かご6および錘7を昇降路1において懸架している。 In the traction type elevator shown in FIG. 14, a machine room 2 is provided above the hoistway 1. A pulley 3 is provided in the machine room 2. The pulley 3 is connected to a hoist 4. A suspension body 5 is suspended over the pulley 3. For the suspension body 5, for example, a plurality of ropes or a plurality of belts are used. In this example, a cage 6 and a weight 7 are connected to both ends of the suspension body 5, respectively. That is, FIG. 14 illustrates a case where the suspension body 5 is suspended using a 1:1 roping system. A suspension body 5 suspends a car 6 and a weight 7 in the hoistway 1.
 巻上機4の駆動により滑車3が回転すると、懸架体5と滑車3との摩擦力によってかご6が昇降路1内を昇降する。エレベーターには制御装置8が設けられている。エレベーターは、制御装置8が巻上機4の回転を制御することで運行する。かご6がいずれかの階床に到着した後に、乗場およびかご6の間で乗客が乗り降りする。制御装置8には、診断装置9が接続されている。 When the pulley 3 is rotated by the drive of the hoist 4, the car 6 moves up and down in the hoistway 1 due to the frictional force between the suspension body 5 and the pulley 3. The elevator is provided with a control device 8. The elevator operates as the control device 8 controls the rotation of the hoist 4. After the car 6 arrives at any floor, passengers board and alight between the landing and the car 6. A diagnostic device 9 is connected to the control device 8 .
 診断装置9は、振動分析部11、監視部13、行動分析部14、学習装置15、推論装置16、学習済モデル記憶部17を有する。 The diagnostic device 9 includes a vibration analysis section 11, a monitoring section 13, a behavior analysis section 14, a learning device 15, an inference device 16, and a learned model storage section 17.
 かご6には、振動計測部10が設けられている。振動計測部10は、例えば、かご6に取り付けられる加速度センサ、速度センサ、変位センサ、もしくは秤装置、またはこれらを複数組み合わせて構成されている。 The car 6 is provided with a vibration measurement section 10. The vibration measurement unit 10 is configured by, for example, an acceleration sensor, a speed sensor, a displacement sensor, or a weighing device attached to the car 6, or a combination of a plurality of these.
 振動分析部11は、振動計測部10から送られる振動データを分析して、例えば加速度変化を算出し、予め設定された加速度閾値Aaに基づいて、振動持続時間Tを算出する。加速度閾値Aaに基づいた振動持続時間Tの算出方法は、実施の形態1または実施の形態2と同様である。 The vibration analysis unit 11 analyzes the vibration data sent from the vibration measurement unit 10, calculates, for example, an acceleration change, and calculates the vibration duration T based on a preset acceleration threshold value Aa. The method for calculating the vibration duration T based on the acceleration threshold value Aa is the same as in the first embodiment or the second embodiment.
 監視部13は、エレベーターのかご6の停止中の乗客の行動データを取得する。監視部13の具体例は、かご6内を撮影するカメラ13a、秤装置13b、かご床に設けられた床反力センサ13c、加速度センサ、速度センサ、もしくは変位センサ、またはこれらのうちのいずれか複数の組み合わせなどである。監視部13は、かご6が停止している間に乗客の行動データを取得する。 The monitoring unit 13 acquires behavioral data of passengers while the elevator car 6 is stopped. Specific examples of the monitoring unit 13 include a camera 13a that photographs the inside of the car 6, a weighing device 13b, a floor reaction force sensor 13c provided on the car floor, an acceleration sensor, a speed sensor, a displacement sensor, or any one of these. This includes multiple combinations. The monitoring unit 13 acquires passenger behavior data while the car 6 is stopped.
 ここで、監視部13がカメラ13aの場合に、監視部13は、乗客の行動データとして、かご6内を撮影した画像または映像データを行動分析部14に伝達する。監視部13が秤装置13bの場合に、監視部13は、乗客の行動データとして、かご6の重量の時間変化を行動分析部14に伝達する。監視部13が床反力センサ13cの場合に、監視部13は、乗客の行動データとして、かご床に加えられた床反力の時間変化を行動分析部14に伝達する。 Here, when the monitoring unit 13 is the camera 13a, the monitoring unit 13 transmits the image or video data captured inside the car 6 to the behavior analysis unit 14 as the passenger behavior data. When the monitoring unit 13 is the weighing device 13b, the monitoring unit 13 transmits the change in weight of the car 6 over time to the behavior analysis unit 14 as passenger behavior data. When the monitoring unit 13 is the floor reaction force sensor 13c, the monitoring unit 13 transmits temporal changes in the floor reaction force applied to the car floor to the behavior analysis unit 14 as passenger behavior data.
 行動分析部14は、乗客の行動データを分析して、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、およびそれぞれの乗客の乗り込み後のかご6の重量M1,M2,…,Mnを分析結果として算出し、これらを振動分析部11に伝達する。乗客の行動データがカメラ13aによる画像または映像の場合に、行動分析部14は、画像解析で上記分析結果の諸量を推定する。乗客の行動データが秤装置13bによるかご6の重量変化の場合に、行動分析部14は、その時間変化から上記分析結果の諸量を推定する。乗客の行動データが床反力の場合に、行動分析部14は、床反力の時間変化から上記分析結果の諸量を推定する。監視部13が複数種類のセンサ等の装置を用いる場合に、行動分析部14は、それぞれの装置によって算出したものの平均値などとして、上記分析結果の諸量を求めてもよい。 The behavior analysis unit 14 analyzes the behavior data of the passengers and calculates the number of passengers n, the timing of boarding τ1, τ2, ..., τn, and the weight M1, M2, ..., Mn of the car 6 after each passenger boarded the car. These are calculated as analysis results and transmitted to the vibration analysis section 11. When the passenger's behavior data is an image or video taken by the camera 13a, the behavior analysis unit 14 estimates various quantities of the above analysis results by image analysis. When the passenger's behavior data is a change in the weight of the car 6 measured by the weighing device 13b, the behavior analysis unit 14 estimates various quantities of the analysis results from the time change. When the passenger's behavior data is a floor reaction force, the behavior analysis unit 14 estimates various quantities of the above-mentioned analysis results from temporal changes in the floor reaction force. When the monitoring unit 13 uses devices such as a plurality of types of sensors, the behavior analysis unit 14 may obtain various amounts of the analysis results as an average value of the values calculated by each device.
 振動分析部11および行動分析部14には、学習装置15が接続されている。学習装置15は、データ取得部18と、モデル生成部19とを備える。また、振動分析部11および行動分析部14には、推論装置16が接続されている。推論装置16は、データ取得部20と、推論部21とを備える。 A learning device 15 is connected to the vibration analysis section 11 and the behavior analysis section 14. The learning device 15 includes a data acquisition section 18 and a model generation section 19. Further, an inference device 16 is connected to the vibration analysis section 11 and the behavior analysis section 14. The inference device 16 includes a data acquisition section 20 and an inference section 21.
 学習装置15におけるデータ取得部18、および推論装置16のデータ取得部20は、かご位置情報Lを制御装置8から、振動持続時間Tを振動分析部11から、乗り込み人数nと、乗り込みのタイミングτ1,τ2,…,τnと、各乗り込みでのかご6の重量M1,M2,…,Mnとを行動分析部14から、学習用データとして取得する。 The data acquisition unit 18 in the learning device 15 and the data acquisition unit 20 in the reasoning device 16 receive the car position information L from the control device 8, the vibration duration T from the vibration analysis unit 11, the number of boarders n, and the boarding timing τ1. , τ2, . . . , τn and the weights M1, M2, .
 モデル生成部19は、データ取得部18から出力されるかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mn、の組み合わせに応じて作成される学習用データに基づいて、エレベーターの状態を学習する。すなわち、モデル生成部19は、かご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnから、エレベーターの状態を推論する学習済モデルを生成する。この例において、学習用データは、かご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnを互いに関連付けたデータである。 The model generation unit 19 generates the car position information L output from the data acquisition unit 18, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, and the weights M1, M2 of the car 6 at each boarding. , ..., Mn, the state of the elevator is learned based on the learning data created according to the combination of ,...,Mn. That is, the model generation unit 19 generates the following information from the car position information L, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, and the weights M1, M2, ..., Mn of the car 6 at each boarding time. Generate a trained model that infers the state of the elevator. In this example, the learning data includes car position information L, vibration duration T, number of boarders n, boarding timings τ1, τ2, ..., τn, and weights M1, M2, ..., Mn of the car 6 at each boarding. This is data that is associated with each other.
 モデル生成部19が用いる学習アルゴリズムは、教師あり学習、教師なし学習、強化学習等の公知のアルゴリズムを用いることができる。一例として、教師なし学習であるk平均法などのクラスタリングを適用した場合について説明する。教師なし学習とは、結果またはラベルを含まない学習用データを学習装置15に与えることで、それらの学習用データにある特徴を学習する手法をいう。 The learning algorithm used by the model generation unit 19 can be a known algorithm such as supervised learning, unsupervised learning, or reinforcement learning. As an example, a case will be described in which clustering such as k-means method, which is unsupervised learning, is applied. Unsupervised learning refers to a method of learning features in the learning data by giving learning data that does not include results or labels to the learning device 15.
 モデル生成部19は、例えば、k平均法によるグループ分け手法に従って、いわゆる教師なし学習により、エレベーターの状態を学習する。k平均法とは、非階層型クラスタリングのアルゴリズムであり、クラスタの平均を用いて、与えられたクラスタ数をk個に分類する手法である。 The model generation unit 19 learns the state of the elevator by so-called unsupervised learning, for example, according to a grouping method using the k-means method. The k-means method is a non-hierarchical clustering algorithm, and is a method of classifying a given number of clusters into k groups using the average of the clusters.
 より具体的に、k平均法は以下のような流れで処理される。まず、各データxiに対してランダムにクラスタを割り振る。次いで、割り振ったデータをもとに各クラスタの中心Vjを計算する。次いで、各xiと各Vjとの距離を求め、xiを最も近い中心のクラスタに割り当て直す。そして、上記の処理で全てのxiのクラスタの割り当てが変化しなかった場合、あるいは変化量が事前に設定した一定の閾値を下回った場合に、収束したと判断して処理を終了する。 More specifically, the k-means method is processed as follows. First, clusters are randomly assigned to each data xi. Next, the center Vj of each cluster is calculated based on the allocated data. The distance between each xi and each Vj is then determined and xi is reassigned to the nearest central cluster. Then, if the cluster assignments of all xi do not change in the above process, or if the amount of change falls below a certain threshold set in advance, it is determined that convergence has been achieved and the process ends.
 本願においては、モデル生成部19は、データ取得部18によって取得されるかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnの組合せに基づいて作成される学習用データに従って、いわゆる教師なし学習により、エレベーターの状態を学習する。 In the present application, the model generation unit 19 generates the car position information L acquired by the data acquisition unit 18, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, and the car 6 at each boarding. The state of the elevator is learned by so-called unsupervised learning according to learning data created based on the combinations of weights M1, M2, . . . , Mn.
 モデル生成部19は、以上のような学習を実行することで学習済モデルを生成し、出力する。学習済モデル記憶部17は、モデル生成部19から出力された学習済モデルを記憶する。このような学習を、正常なエレベーターで実施することで、かご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnと、エレベーターの正常な状態との関係を学習した学習済モデルが得られる。 The model generation unit 19 generates and outputs a trained model by performing the learning described above. The trained model storage unit 17 stores the trained model output from the model generation unit 19. By performing such learning on a normal elevator, the car position information L, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2,..., τn, the weight M1 of the car 6 at each boarding, A learned model that has learned the relationship between M2,...,Mn and the normal state of the elevator is obtained.
 推論部21は、学習済モデル記憶部17に記憶された学習済モデルを利用して得られるエレベーターの状態を推論する。すなわち、推論部21は、データ取得部20で取得したかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnの組合せに基づいて作成されるデータをこの学習済モデルに入力することで、当該データがいずれのクラスタに属するかを推論し、推論結果をエレベーターの状態として出力することができる。学習済モデルに入力されたデータが、エレベーターの正常な状態を示すクラスタのいずれにも属していない場合に、推論部21は、エレベーターに異常が発生したと判定する。 The inference unit 21 infers the state of the elevator using the learned model stored in the learned model storage unit 17. That is, the reasoning unit 21 uses the car position information L acquired by the data acquisition unit 20, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, and the weights M1, M2 of the car 6 at each boarding. , ..., Mn is input into this learned model, it is possible to infer which cluster the data belongs to, and output the inference result as the state of the elevator. If the data input to the learned model does not belong to any of the clusters indicating the normal state of the elevator, the inference unit 21 determines that an abnormality has occurred in the elevator.
 記録部12は、推論部21による判定結果を記録する。診断装置9は、ネットワーク回線などを利用して、記録部12に記録した判定結果をエレベーターの外部に伝達または発報してもよい。このようにすることで、例えば保守員に迅速に判定結果を伝達または送付することができ、保守員による早期対応が可能となる。 The recording unit 12 records the determination result by the inference unit 21. The diagnostic device 9 may transmit or report the determination result recorded in the recording unit 12 to the outside of the elevator using a network line or the like. By doing so, the determination result can be quickly communicated or sent to, for example, maintenance personnel, allowing the maintenance personnel to take early action.
 なお、本実施の形態では、推論部21はモデル生成部19で学習した学習済モデルを用いてエレベーターの状態を出力するものとして説明したが、推論部21は外部から取得した学習済モデルに基づいてエレベーターの状態を出力するようにしてもよい。 In the present embodiment, the inference unit 21 has been described as outputting the state of the elevator using the learned model learned by the model generation unit 19, but the inference unit 21 outputs the state of the elevator based on the learned model acquired from the outside. The status of the elevator may also be output.
 また、学習装置15および推論装置16のそれぞれにデータ取得部18およびデータ取得部20が設けられる場合について説明したが、診断装置9の構成はこの場合に限定されない。診断装置9は、ひとつのデータ取得部で制御装置8、振動分析部11、および行動分析部14から必要な情報を取得し、学習装置15のモデル生成部19および推論装置16の推論部21に取得した情報を出力するような構成であってもよい。 Furthermore, although a case has been described in which the data acquisition unit 18 and the data acquisition unit 20 are provided in each of the learning device 15 and the inference device 16, the configuration of the diagnostic device 9 is not limited to this case. The diagnostic device 9 uses one data acquisition section to acquire necessary information from the control device 8, vibration analysis section 11, and behavior analysis section 14, and transmits the information to the model generation section 19 of the learning device 15 and the inference section 21 of the inference device 16. The configuration may be such that the acquired information is output.
 このようにして、推論部21は、かご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnに基づいて、エレベーターの状態を判定する。 In this way, the inference unit 21 calculates the car position information L, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, the weights of the car 6 at each boarding time M1, M2, ..., Mn The state of the elevator is determined based on.
 次に、図15を用いて、学習装置15および推論装置16を用いてエレベーターの状態を診断するための処理フローを説明する。実施の形態3におけるエレベーターの診断は、学習フェーズと診断フェーズの2つのフェーズから成る。 Next, a processing flow for diagnosing the state of the elevator using the learning device 15 and the reasoning device 16 will be described using FIG. 15. Elevator diagnosis in the third embodiment consists of two phases: a learning phase and a diagnosis phase.
 学習フェーズでは、まず学習用データを得るために、STEPc1で、エレベーターのかご6の停止を示す信号をデータ取得部18が制御装置8から受け取った後、振動計測部10および監視部13がデータを計測する。 In the learning phase, in STEPc1, in order to obtain learning data, the data acquisition section 18 receives a signal indicating the stop of the elevator car 6 from the control device 8, and then the vibration measurement section 10 and the monitoring section 13 acquire the data. measure.
 STEPc2で、エレベーターのかご6の走行開始を示す信号をデータ取得部18が制御装置8から受け取った後、振動分析部11および行動分析部14は、振動計測部10および監視部13が計測したデータを受け取る。振動分析部11および行動分析部14は、受け取ったデータを分析して、かご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnを算出する。 In STEPc2, after the data acquisition unit 18 receives a signal indicating the start of travel of the elevator car 6 from the control device 8, the vibration analysis unit 11 and the behavior analysis unit 14 collect the data measured by the vibration measurement unit 10 and the monitoring unit 13. receive. The vibration analysis unit 11 and the behavior analysis unit 14 analyze the received data and determine the car position information L, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, and the car 6 for each boarding. The weights M1, M2,..., Mn of are calculated.
 STEPc3において、データ取得部18は、出力されたかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnのデータを取得する。 In STEPc3, the data acquisition unit 18 acquires the output car position information L, vibration duration T, number of boarders n, boarding timings τ1, τ2, ..., τn, weights of the car 6 at each boarding time M1, M2, ... , Mn.
 STEPc4において、モデル生成部19は、データ取得部18によって取得されるかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnの組合せに基づいて作成される学習用データに従って、いわゆる教師なし学習によりエレベーターの正常状態を学習し、学習済モデルを生成する。 In STEPc4, the model generation unit 19 generates the car position information L acquired by the data acquisition unit 18, the vibration duration T, the number of boarders n, the timings of boarding τ1, τ2, ..., τn, and the weight of the car 6 at each boarding. According to the learning data created based on the combinations of M1, M2, . . . , Mn, the normal state of the elevator is learned by so-called unsupervised learning, and a learned model is generated.
 STEPc5において、学習済モデル記憶部17は、モデル生成部19が生成した学習済モデルを記憶する。このような学習をエレベーターが停止階に停止する度に実施し、学習は規定回数に到達するまで継続する。 In STEPc5, the learned model storage section 17 stores the learned model generated by the model generation section 19. This kind of learning is performed every time the elevator stops at a stop floor, and the learning continues until a predetermined number of times is reached.
 診断フェーズでは、推論装置16を使ってエレベーターの状態を診断するために、STEPc6で振動計測部10および監視部13がデータを計測する。 In the diagnosis phase, the vibration measurement section 10 and the monitoring section 13 measure data in STEPc6 in order to diagnose the state of the elevator using the inference device 16.
 STEPc7で、振動分析部11および行動分析部14は、振動計測部10および監視部13が計測したデータを分析して、かご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnを算出する。 In STEPc7, the vibration analysis unit 11 and the behavior analysis unit 14 analyze the data measured by the vibration measurement unit 10 and the monitoring unit 13, and calculate the car position information L, the vibration duration T, the number of people boarding n, the boarding timing τ1, τ2,...,τn, and the weights M1, M2,..., Mn of the car 6 at each boarding are calculated.
 STEPc8において、データ取得部20は、出力されたかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnのデータを取得する。 In STEPc8, the data acquisition unit 20 obtains the outputted car position information L, vibration duration T, number of boarders n, boarding timings τ1, τ2, ..., τn, weights of the car 6 at each boarding time M1, M2, ... , Mn.
 STEPc9において、推論部21は、データ取得部20が取得したかご位置情報L、振動持続時間T、乗り込み人数n、乗り込みのタイミングτ1,τ2,…,τn、各乗り込みでのかご6の重量M1,M2,…,Mnのデータを、学習済モデル記憶部17に記憶された学習済モデルに入力する。 In STEPc9, the inference unit 21 uses the car position information L acquired by the data acquisition unit 20, the vibration duration T, the number of boarders n, the boarding timings τ1, τ2, ..., τn, the weight M1 of the car 6 at each boarding, The data of M2, . . . , Mn are input to the trained model stored in the trained model storage unit 17.
 STEPc10において、推論部21は、学習済みモデルから得られたエレベーターの状態を出力する。 In STEPc10, the inference unit 21 outputs the state of the elevator obtained from the learned model.
 STEPc11において、推論部21は、エレベーターの状態の出力結果に基づいて、エレベーターの状態を診断する。 In STEPc11, the inference unit 21 diagnoses the condition of the elevator based on the output result of the condition of the elevator.
 なお、実施の形態1または実施の形態2の診断装置9のように、推論装置16は、一度の診断だけではなく予め設定された診断回数分の診断履歴から発報を行ってもよい。推論装置16は、例えば、「異常あり」と判定した頻度Xを計算する。この頻度Xに対して、頻度閾値Xaが予め設定される。頻度Xが閾値Xaを上回るようなタイミングで、推論装置16は、エレベーターの異常を外部に発報してもよい。発報先の具体例としては、ディスプレイもしくは警報装置、または遠隔地にいる保守員が所持する保守端末などが挙げられる。 Note that, like the diagnostic device 9 of Embodiment 1 or 2, the inference device 16 may issue an alarm based on the diagnosis history for a preset number of diagnoses, rather than just a single diagnosis. The inference device 16 calculates, for example, the frequency X of determining that there is an "abnormality". For this frequency X, a frequency threshold Xa is set in advance. The inference device 16 may notify the outside of the abnormality of the elevator at a timing when the frequency X exceeds the threshold value Xa. Specific examples of the destination include a display or alarm device, or a maintenance terminal owned by a maintenance worker in a remote location.
 また、推論装置16は、「異常あり」と判定する頻度の代わりに、「異常あり」と判定した回数の合計、または連続で「異常あり」と判定した回数に対して閾値を設けて、同様に外部に状況を発報してもよい。 In addition, the inference device 16 sets a threshold value for the total number of times it is determined to be "abnormal" or the number of consecutive times it is determined that "abnormality exists" instead of the frequency at which it is determined that "there is an abnormality". The situation may be reported externally.
 以上のような構成により、かご6の停止時におけるエレベーターの上下方向のあらゆる振動に対して、エレベーターの状態が診断されるようになる。 With the above configuration, the condition of the elevator can be diagnosed with respect to any vibrations in the vertical direction of the elevator when the car 6 is stopped.
 なお、本実施の形態では、モデル生成部19および推論部21が用いる学習アルゴリズムに教師なし学習を適用した場合について説明したが、学習アルゴリズムはこれに限られない。学習アルゴリズムについては、教師なし学習以外にも、強化学習、教師あり学習、または半教師あり学習などを適用することも可能である。 Note that in this embodiment, a case has been described in which unsupervised learning is applied to the learning algorithm used by the model generation unit 19 and the inference unit 21, but the learning algorithm is not limited to this. As for learning algorithms, in addition to unsupervised learning, reinforcement learning, supervised learning, semi-supervised learning, etc. can also be applied.
 また、モデル生成部19に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する深層学習(Deep Learning)を用いることもでき、他の公知の方法を用いることもできる。 Further, as a learning algorithm used in the model generation unit 19, deep learning that learns to extract the feature amount itself can be used, and other known methods can also be used.
 本実施の形態における教師なし学習を実現する場合、上記のようなk平均法による非階層型クラスタリングに限らず、クラスタリング可能な他の公知の方法が用いられてもよい。例えば、最短距離法などの階層型クラスタリングが用いられてもよい。 When realizing unsupervised learning in this embodiment, not only non-hierarchical clustering using the k-means method as described above but also other known methods capable of clustering may be used. For example, hierarchical clustering such as the shortest distance method may be used.
 本実施の形態において、学習装置15および推論装置16が診断装置9に設けられる場合を説明したが、学習装置15および推論装置16の一部または全部は、診断装置9の代わりに、例えば、ネットワークを介してエレベーターに接続される、このエレベーターとは別個の装置に設けてもよい。また、学習装置15および推論装置16の一部または全部は、制御装置8に内蔵されていてもよい。さらに、学習装置15および推論装置16の一部または全部は、クラウドサーバ上に実装されていてもよい。 In the present embodiment, a case has been described in which the learning device 15 and the reasoning device 16 are provided in the diagnostic device 9. However, some or all of the learning device 15 and the reasoning device 16 may be connected to It may be provided in a separate device from the elevator, which is connected to the elevator via the elevator. Furthermore, part or all of the learning device 15 and the inference device 16 may be built into the control device 8. Furthermore, part or all of the learning device 15 and the inference device 16 may be implemented on a cloud server.
 また、モデル生成部19は、複数のエレベーターに対して作成される学習用データに従ってエレベーターの状態を学習するように構成されていてもよい。 Furthermore, the model generation unit 19 may be configured to learn the state of the elevator according to learning data created for a plurality of elevators.
 モデル生成部19は、同一のエリアで使用される複数のエレベーターから学習用データを取得してもよいし、異なるエリアで独立して動作する複数のエレベーターから収集される学習用データを利用してエレベーターの状態を学習してもよい。また、エレベーターを途中で学習用データを収集する対象に追加したり、当該対象から途中で除去したりすることも可能である。さらに、あるエレベーターに関してエレベーターの状態を学習した学習装置15を、これとは別のエレベーターに適用し、当該別のエレベーターに関してエレベーターの状態を再学習して更新するようにしてもよい。 The model generation unit 19 may acquire learning data from multiple elevators used in the same area, or may utilize learning data collected from multiple elevators operating independently in different areas. The status of the elevator may also be learned. Furthermore, it is also possible to add the elevator to the objects for which learning data is to be collected, or to remove it from the objects in the middle. Furthermore, the learning device 15 that has learned the elevator status regarding a certain elevator may be applied to another elevator to relearn and update the elevator status regarding the other elevator.
 また、このようなエレベーターの診断装置9は、1:1ローピングだけでなく、2:1ローピングまたは機械室2がない機械室レスエレベーターのシステムなど、あらゆるローピングのトラクション式エレベーターに対して適用できる。 Further, such an elevator diagnostic device 9 can be applied not only to 1:1 roping but also to all types of roping type traction elevators, such as 2:1 roping or machine room-less elevator systems that do not have a machine room 2.
 さらに、このようなエレベーターの診断装置9は、かご6の停止時に乗り込む乗客による振動だけでなく、かご6から降りる乗客が起こす振動に対しても同様に適用できる。加えてかご6の上下方向の振動だけでなく、かご6の傾きなどによる横方向の振動に対しても適用できる。なお、本実施の形態では、振動分析部11において振動データを加速度の時間変化に変換した例の処理を説明したが、速度または変位に対して同様の処理を実施してもよい。すなわち、振動の振幅の閾値は、加速度の振幅に対する閾値に限定されず、速度または変位などの振幅に対する閾値であってもよい。 Further, such an elevator diagnostic device 9 can be applied not only to vibrations caused by passengers getting on the car 6 when the car 6 is stopped, but also to vibrations caused by passengers getting off the car 6. In addition, the present invention can be applied not only to vibrations in the vertical direction of the car 6, but also to vibrations in the lateral direction due to the inclination of the car 6. Note that in this embodiment, a process has been described in which vibration data is converted into a temporal change in acceleration in the vibration analysis unit 11, but the same process may be performed on velocity or displacement. That is, the threshold value for the amplitude of vibration is not limited to the threshold value for the amplitude of acceleration, but may be a threshold value for the amplitude of velocity, displacement, or the like.
 本開示に係るエレベーターは、複数の階床を有する建物に適用できる。 The elevator according to the present disclosure can be applied to buildings having multiple floors.
 1 昇降路、 2 機械室、 3 滑車、 4 巻上機、 5 懸架体、 6 かご、 7 錘、 8 制御装置、 9 診断装置、 10 振動計測部、 11 振動分析部、 12 記録部、 13 監視部、 13a カメラ、 13b 秤装置、 13c 床反力センサ、 14 行動分析部、 15 学習装置、 16 推論装置、 17 学習済モデル記憶部、 18 データ取得部、 19 モデル生成部、 20 データ取得部、 21 推論部、 100a プロセッサ、 100b メモリ、 200 専用ハードウェア 1 Hoistway, 2 Machine room, 3 Pulley, 4 Hoisting machine, 5 Suspension body, 6 Car, 7 Weight, 8 Control device, 9 Diagnosis device, 10 Vibration measurement section, 11 Vibration analysis section, 12 Recording Department, 13 Monitoring Section, 13a Camera, 13b Weighing device, 13c Floor reaction force sensor, 14 Behavior analysis section, 15 Learning device, 16 Inference device, 17 Learned model storage section, 18 Data acquisition section, 19 Model generation section, 20 data acquisition section, 21 Inference unit, 100a processor, 100b memory, 200 dedicated hardware

Claims (5)

  1.  エレベーターのかごの停止時にかごに発生する振動を計測する振動計測部と、
     前記振動計測部が計測する振動、予め設定された振幅の第1閾値、および予め設定された振動持続時間の第2閾値を用いて、エレベーターに異常があるか否かを判定する振動分析部と、
     を備える、エレベーター。
    a vibration measurement unit that measures vibrations generated in the elevator car when the elevator car stops;
    a vibration analysis unit that determines whether or not there is an abnormality in the elevator using the vibration measured by the vibration measurement unit, a preset first amplitude threshold, and a preset second vibration duration threshold; ,
    Equipped with an elevator.
  2.  前記振動分析部は、前記振動計測部が計測する振動の振幅が前記第1閾値を上回る大きさで振動し続ける時間が、前記第2閾値を上回る場合に、エレベーターに異常があると判定する、
     請求項1に記載のエレベーター。
    The vibration analysis unit determines that there is an abnormality in the elevator when the time period during which the vibration amplitude measured by the vibration measurement unit continues to vibrate at a magnitude exceeding the first threshold exceeds the second threshold.
    The elevator according to claim 1.
  3.  エレベーターのかごの停止時に乗客の行動データを取得する監視部と、
     前記監視部が取得した乗客の行動データを分析する行動分析部と、
     を備え、
     前記振動分析部は、前記行動分析部が分析する行動データに応じて予め設定された閾値群の中から前記第1閾値および前記第2閾値を選出し、選出した前記第1閾値および前記第2閾値を用いてエレベーターに異常があるか否かを判定する、
     請求項1または請求項2に記載のエレベーター。
    a monitoring unit that acquires passenger behavior data when the elevator car is stopped;
    a behavior analysis unit that analyzes passenger behavior data acquired by the monitoring unit;
    Equipped with
    The vibration analysis unit selects the first threshold and the second threshold from a group of thresholds set in advance according to the behavior data analyzed by the behavior analysis unit, and selects the first threshold and the second threshold. Determine whether there is an abnormality in the elevator using a threshold value,
    The elevator according to claim 1 or claim 2.
  4.  エレベーターがロボットの専用運転を行っているとき、前記振動分析部は、前記第1閾値および前記第2閾値としてロボット専用に設定された値を用いて、エレベーターに異常があるか否かを判定する、
     請求項1から請求項3のいずれか一項に記載のエレベーター。
    When the elevator is operating exclusively for the robot, the vibration analysis unit determines whether or not there is an abnormality in the elevator using values set exclusively for the robot as the first threshold value and the second threshold value. ,
    The elevator according to any one of claims 1 to 3.
  5.  エレベーターのかごの停止時にかごに発生する振動を計測する振動計測部と、
     エレベーターのかごの停止時に乗客の行動データを取得する監視部と、
     前記振動計測部が計測する振動が予め設定された振動の振幅の第1閾値を上回る大きさで振動し続ける時間を、振動持続時間として算出する振動分析部と、
     前記監視部が取得した乗客の行動データを分析する行動分析部と、
     前記振動分析部が算出する前記振動持続時間、および前記行動分析部が分析する乗客の行動データを用いて、エレベーターの状態を推論する学習済モデルを生成する学習装置と、
     前記振動分析部が算出する前記振動持続時間、および前記行動分析部が分析する乗客の行動データ、ならびに前記学習装置が生成する前記学習済モデルを用いて、エレベーターの状態を診断する推論装置と、
     を備える、エレベーター。
    a vibration measurement unit that measures vibrations generated in the elevator car when the elevator car stops;
    a monitoring unit that acquires passenger behavior data when the elevator car is stopped;
    a vibration analysis unit that calculates, as a vibration duration time, a time during which the vibration measured by the vibration measurement unit continues to vibrate at a magnitude exceeding a preset first vibration amplitude threshold;
    a behavior analysis unit that analyzes passenger behavior data acquired by the monitoring unit;
    a learning device that generates a trained model that infers the state of the elevator using the vibration duration calculated by the vibration analysis unit and passenger behavior data analyzed by the behavior analysis unit;
    an inference device that diagnoses the state of the elevator using the vibration duration calculated by the vibration analysis unit, passenger behavior data analyzed by the behavior analysis unit, and the learned model generated by the learning device;
    Equipped with an elevator.
PCT/JP2022/020797 2022-05-19 2022-05-19 Elevator WO2023223490A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/020797 WO2023223490A1 (en) 2022-05-19 2022-05-19 Elevator
JP2022558556A JP7207625B1 (en) 2022-05-19 2022-05-19 elevator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/020797 WO2023223490A1 (en) 2022-05-19 2022-05-19 Elevator

Publications (1)

Publication Number Publication Date
WO2023223490A1 true WO2023223490A1 (en) 2023-11-23

Family

ID=84939302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020797 WO2023223490A1 (en) 2022-05-19 2022-05-19 Elevator

Country Status (2)

Country Link
JP (1) JP7207625B1 (en)
WO (1) WO2023223490A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064961U (en) * 1983-10-13 1985-05-08 三菱電機株式会社 Elevator tampering alarm system
JP2018111581A (en) * 2017-01-12 2018-07-19 フジテック株式会社 Threshold value determination method, threshold value determination device, and elevator control system
JP2021031256A (en) * 2019-08-27 2021-03-01 フジテック株式会社 Abnormality monitoring system for elevator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011011871A (en) * 2009-07-02 2011-01-20 Mitsubishi Electric Building Techno Service Co Ltd Elevator control device
JP5833995B2 (en) * 2012-10-05 2015-12-16 株式会社日立ビルシステム Elevator abnormality monitoring device
JP6064961B2 (en) 2014-09-25 2017-01-25 マツダ株式会社 Vehicle power transmission device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6064961U (en) * 1983-10-13 1985-05-08 三菱電機株式会社 Elevator tampering alarm system
JP2018111581A (en) * 2017-01-12 2018-07-19 フジテック株式会社 Threshold value determination method, threshold value determination device, and elevator control system
JP2021031256A (en) * 2019-08-27 2021-03-01 フジテック株式会社 Abnormality monitoring system for elevator

Also Published As

Publication number Publication date
JPWO2023223490A1 (en) 2023-11-23
JP7207625B1 (en) 2023-01-18

Similar Documents

Publication Publication Date Title
JP6049902B2 (en) Elevator diagnostic equipment
CN1741949B (en) Elevator system
JP6601559B2 (en) Break detection device
JP6987255B2 (en) Elevator diagnostic system
JP2007230731A (en) Abnormality detection device of elevator
JP6429220B2 (en) Elevator equipment
JP6997680B2 (en) Elevator abnormality monitoring system and elevator abnormality monitoring method
JP5418307B2 (en) Elevator rope tension measuring device
CN109153537A (en) Lift appliance
WO2023223490A1 (en) Elevator
JP2010052924A (en) Control device of elevator
EP3640188A1 (en) Continuous quality monitoring of a conveyance system
CN107207198A (en) The diagnostic device of elevator
WO2021144932A1 (en) Elevator determination device
CN110775751B (en) Elevator, elevator maintenance inspection system, and elevator abnormality diagnosis device
JP5535441B2 (en) Elevator control operation device
JP2011051739A (en) Control device of elevator
JP6975108B2 (en) Elevator diagnostic system and elevator diagnostic method
JP2006264853A (en) Operation state detecting device and operation state detecting method for elevator
JP7080326B2 (en) Elevator equipment
JP7261190B2 (en) Elevator diagnostic device, diagnostic method for elevator load detector, and elevator system
JP2015044644A (en) Elevator door inspection device
JP7507122B2 (en) Rope life assessment method and device
JP2023098375A (en) Elevator riding comfort evaluation system and method thereof
WO2021255935A1 (en) Sway estimation system

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022558556

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942695

Country of ref document: EP

Kind code of ref document: A1