WO2023221806A1 - 一种空气能源动力源 - Google Patents

一种空气能源动力源 Download PDF

Info

Publication number
WO2023221806A1
WO2023221806A1 PCT/CN2023/092871 CN2023092871W WO2023221806A1 WO 2023221806 A1 WO2023221806 A1 WO 2023221806A1 CN 2023092871 W CN2023092871 W CN 2023092871W WO 2023221806 A1 WO2023221806 A1 WO 2023221806A1
Authority
WO
WIPO (PCT)
Prior art keywords
air energy
air
gas
steam turbine
power source
Prior art date
Application number
PCT/CN2023/092871
Other languages
English (en)
French (fr)
Inventor
张近
Original Assignee
张近
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张近 filed Critical 张近
Publication of WO2023221806A1 publication Critical patent/WO2023221806A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/08Adaptations for driving, or combinations with, pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D15/00Adaptations of machines or engines for special use; Combinations of engines with devices driven thereby
    • F01D15/10Adaptations for driving, or combinations with, electric generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K19/00Regenerating or otherwise treating steam exhausted from steam engine plant
    • F01K19/02Regenerating by compression
    • F01K19/04Regenerating by compression in combination with cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/06Air heaters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the invention belongs to the field of energy conversion technology, and in particular relates to a power source based on air energy.
  • a generator refers to a mechanical device that converts other forms of energy into electrical energy. It was invented by the Frenchman Bixy in 1832.
  • a general generator converts the energy contained in various primary energy sources into mechanical energy through a prime mover, and then converts it into electrical energy by the generator, which is then sent to various power consumption places through power transmission and distribution networks.
  • Generators are divided into DC generators and AC generators. Their working principles are based on the law of electromagnetic induction and the law of electromagnetic force. They are widely used in industrial and agricultural production, national defense, science and technology, and daily life. Generators in the prior art are divided into thermal generators, hydraulic generators, nuclear generators, etc.
  • Steam cycle (boiler + steam turbine unit) is the most common way of generating electricity.
  • Water steam
  • steam is used as the working fluid in this system. After the water is boosted by the feed water pump, it enters the boiler to absorb heat, generates high-temperature and high-pressure steam, and then enters the steam turbine to expand and perform work, and drives the generator to run.
  • the critical point temperature of water is 374°C (647 K) and the pressure is 22MPa (220 bar).
  • the mainstream technologies of thermal power units are supercritical and ultra-supercritical parameters.
  • the operating temperature of the most advanced ultra-supercritical thermal power units is higher than 620°C and the pressure is higher than 31MPa. Similar to water, CO2 is also an excellent natural working fluid and is often used as a refrigerant.
  • CO2 is chemically inactive, colorless, odorless, non-toxic, safe, cheap and easy to obtain.
  • S-CO2 cycle power generation has the characteristics of environmental friendliness, high thermal efficiency, and good economy.
  • the Brayton cycle is a typical thermodynamic cycle, which uses gas as the working fluid and achieves efficient energy conversion through four processes: adiabatic compression, isobaric heat absorption, adiabatic expansion and isobaric cooling.
  • the Brayton cycle has higher cycle efficiency, and when the working fluid is in a supercritical state, it avoids changes in the phase state of the working fluid and reduces the consumption of compression work. Its cycle Efficiency can be greatly improved.
  • the S-CO2 circulation system is mainly composed of a compressor, turbine, generator, heater, regenerator, precooler, etc.
  • the basic working process is: the low-temperature and low-pressure working fluid first enters the compressor and rises to high pressure, and then is reheated.
  • the device absorbs the heat of the working fluid discharged from the turbine, and then absorbs heat from the heat source through the heater to reach the maximum temperature, and then enters the turbine to do work to drive the generator.
  • the working fluid discharged from the turbine releases part of the heat through the recuperator, and is finally preheated. After the device cools down, it enters the next cycle.
  • the present invention overcomes the shortcomings of the existing technology, and the technical problem to be solved is: providing an air energy power source to improve energy utilization efficiency.
  • an air energy power source including: an air energy boiler, a starting motor, a gas storage tank, a cooler, a regenerator, a compressor, and a steam turbine;
  • the starter motor is used to start the air energy boiler.
  • the air in the air energy boiler is compressed.
  • the heat of the high-temperature and high-pressure air generated by the compression heats the medium gas in the air energy boiler.
  • the heated high-temperature and high-pressure medium gas is input into the steam turbine.
  • the kinetic energy of the high-temperature and high-pressure medium gas acts on the terminal through the steam turbine to drive the terminal; the medium gas discharged from the steam turbine is discharged into the regenerator, and the heat is recovered through the regenerator and discharged from the cold end, and then enters the compressor after being cooled by the cooler; After being compressed by the compressor, it enters the regenerator and is heated by heat exchange with the medium gas discharged from the steam turbine into the regenerator, and then enters the air energy boiler to replenish the medium gas to the air energy boiler.
  • the air energy power source also includes a gas storage tank.
  • the gas storage tank is provided at the input port of the compressor and is used to replenish medium gas to the compressor when the air energy boiler is started.
  • the air energy power source also includes a gearbox, the input end of the gearbox is connected to the steam turbine, and the output end is connected to the air energy boiler and the compressor, and is used to drive the air energy boiler under the action of the steam turbine. and compressor.
  • the medium gas is: carbon dioxide or helium
  • the terminal is an engine or generator.
  • the air energy boiler includes: a rotating unit, a rotating shaft, a furnace body and at least one conversion component.
  • the rotating shaft is fixedly installed on the output end of the rotating unit.
  • the rotating shaft has at least one section of protrusion.
  • the protrusions are arranged in one-to-one correspondence with the conversion components; each of the conversion components includes a transmission rod, an air cavity, a driving piston, a connecting rod and a plurality of heating tubes, and the driving piston is slidably arranged in the air cavity.
  • the driving piston divides the air cavity into a first cavity and a second cavity
  • the connecting rod is arranged in the second cavity
  • the connecting rod is fixedly connected to the driving piston
  • Both ends of the transmission rod are rotatably connected to the connecting rod and the corresponding protrusion respectively
  • the first cavity is provided with an inflation port.
  • One end of the plurality of heating tubes is connected to the first cavity, and the other end of the plurality of heating tubes extends into the furnace body.
  • the furnace body is sealed and a medium gas is stored in the furnace body.
  • the furnace body is provided with a gas outlet, and the gas outlet of the furnace body is connected to the steam turbine through a pipeline;
  • the rotation speed of the rotation unit is adjustable, so as to adjust the gas temperature in the first cavity by adjusting the rotation speed of the rotation unit; wherein, a flywheel is provided at one end of the rotation shaft away from the rotation unit; wherein, the furnace
  • the furnace body is equipped with a safety valve that can discharge the medium when the pressure rises beyond a specified value.
  • the furnace body is also equipped with a pressure controller. The pressure controller is used to display the pressure value in the furnace body and can monitor the pressure in the furnace body. The pressure inside the furnace is adjusted to control the discharge temperature of the gas.
  • the air energy boiler also includes a gas tank.
  • a one-way valve is installed in the charging port.
  • the gas tank is connected to the one-way valve of the charging port in the air cavity in each of the conversion components.
  • the gas tank is connected to each gas filling port.
  • a pressure reducing valve is installed on the pipeline connected to the one-way valve.
  • the protrusions are formed by bending corresponding parts of the transmission rod.
  • Two first limiting plates are fixedly provided on each of the protrusions, and the two first limiting plates are located on both sides of the transmission rod.
  • the connecting rod is arranged parallel to the driving piston, and both ends of the connecting rod are fixedly mounted on the driving piston through two opposite connecting plates.
  • Two second limiting plates are fixedly provided on the connecting rod, and the two second limiting plates are fixedly provided on both sides of the transmission rod.
  • the present invention has the following beneficial effects:
  • the invention provides an air energy power source, which is mainly based on aerodynamic energy. It uses the heat of high-temperature and high-pressure air generated by compression to heat the input gas. The heated high-temperature and high-pressure gas is input to the steam turbine, and then performs work to provide power energy to the terminal.
  • the steam turbine is used to drive the air energy boiler to compress the gas to improve the energy conversion efficiency; at the same time, the steam turbine is used to drive the compressor to supplement the compressed gas in the air energy boiler, thereby providing a continuous stream of compressed gas to the air energy boiler, further improving the energy conversion efficiency.
  • Conversion efficiency, through a series of energy recycling, this invention can increase the energy conversion efficiency by more than 7 times compared with the original air energy boiler. It not only saves energy, has high energy utilization rate, but also can replace wind energy, solar energy, coal, Petroleum and other energy sources, and the power generated by the electric energy is large, and it is expected to be applied in the automobile and energy industries.
  • Figure 1 is a schematic structural diagram of a generator based on an aerodynamic source provided in Embodiment 1 of the present invention
  • Figure 2 is a schematic structural diagram of an air energy boiler in an embodiment of the present invention.
  • Figure 3 is a schematic structural diagram of a conversion component in an embodiment of the present invention.
  • Embodiment 1 of the present invention provides an air energy power source, including: air energy boiler 1, starting motor 8, gas storage tank 2, cooler 3, regenerator 4, compressor 5, steam turbine 7;
  • the starter motor 8 is used to compress the air in the air energy boiler 1, and uses the heat of the high-temperature and high-pressure air generated by compression to heat the input gas.
  • the heated high-temperature and high-pressure gas is input into the steam turbine 7, and the high-temperature and high-pressure medium is transferred through the steam turbine 7.
  • the kinetic energy of the gas acts on the generator 9, driving the generator 9 to generate electrical energy; the medium gas discharged from the steam turbine 7 is discharged into the regenerator 4, and the heat is recovered through the regenerator 4 and discharged from the cold end, and then cooled by the cooler 3 Enters the compressor 5; after being compressed by the compressor 5, it enters the regenerator 4 for heat exchange and heating with the medium gas discharged from the steam turbine 7 into the regenerator 4, and then enters the air energy boiler 1 to replenish the medium to the air energy boiler 1 gas.
  • an air energy power source in this embodiment also includes a gas storage tank 2.
  • the gas storage tank 2 is provided at the input port of the compressor 5 and is used to start the air energy boiler 1. When, the medium gas is replenished to the compressor 5.
  • the medium gas is preferably carbon dioxide, which may also be helium or other inert gases.
  • an air energy power source in this embodiment also includes a gearbox 6.
  • the input end of the gearbox 6 is connected to the steam turbine 7, and the output end is connected to the air energy boiler 1 and the compressor 5. , used to drive the air energy boiler 1 and the compressor 5 under the action of the steam turbine 7 .
  • the generator 9 can also be other energy-using terminals, such as an engine.
  • the starting motor 8 only needs to perform work on the air energy boiler 1 when it is started, compress the gas inside the air energy boiler, and then start the entire air energy power source; in addition, the gas storage tank 2 only needs to It is necessary to deliver medium gas to the system when the air energy boiler 8 is started. After the air energy power source of this embodiment is started, the starting motor 8 can be shut down, and the gas storage tank 2 does not need to continue to transport medium gas. At this time, the air energy boiler 1 is driven by the steam turbine 7 and the transmission 6 to continuously compress and generate high-temperature and high-pressure medium gas.
  • the high-temperature and high-pressure medium gas heats the medium gas in the air energy boiler 1, and the heated medium gas continues to Ground is transported to the steam turbine, drives the steam turbine to perform work, and provides energy to the terminal and transmission 6.
  • This cycle improves the energy utilization rate of the system.
  • the medium gas discharged from the steam turbine undergoes heat exchange through the regenerator and then passes through the cooler.
  • the compressor re-enters the regenerator to perform heat exchange and neutralize the heat, and then replenishes gas to the air energy boiler 1, further improving the energy utilization rate of the system.
  • the air energy power source in this embodiment needs to be shut down, the working state of the transmission 6 can be changed to shut down the power drive and medium gas supply of the air energy power source.
  • the air energy boiler 1 may be decompressed and stopped.
  • the air energy boiler 1 includes: a rotating unit 101, a rotating shaft 102, a furnace body 103 and at least one conversion component.
  • the rotating shaft 102 is fixedly installed on the rotating unit 101.
  • the rotating shaft 102 has at least a section of protrusion 106, and the protrusion 106 is arranged in one-to-one correspondence with the conversion component; each of the conversion components includes a transmission rod 107, an air cavity 108, a drive The piston 109, the connecting rod 110 and a plurality of heating tubes 105.
  • the driving piston 109 is slidably arranged in the air cavity 108.
  • the driving piston 109 divides the air cavity 108 into a first cavity 108a and a third cavity.
  • the connecting rod 110 is disposed in the second cavity 108b, and the connecting rod is fixedly connected to the driving piston, and the two ends of the transmission rod are respectively connected to the connecting rod and the corresponding
  • the protrusions are rotatably connected
  • the first cavity 108a is provided with an inflation port
  • one end of the plurality of heating tubes 105 is connected with the first cavity 108a
  • the other end of the plurality of heating tubes 105 Extending into the furnace body 103, the furnace body 103 is sealed, and medium gas is stored in the furnace body 103.
  • the furnace body 103 is provided with a gas outlet 111, and the gas outlet 111 of the furnace body 103 passes through a pipeline. connected to the steam turbine 7.
  • the rotating unit 101 of the air energy boiler can be driven to rotate by the starter motor 1, or can be driven to rotate by the steam turbine 7 and the transmission 7.
  • the output end of the rotating unit 101 drives the protrusion on the rotating shaft to rotate, and the protrusion is connected through the connection
  • the rod drives the driving piston to slide in the cavity, and then delivers gas to the first cavity.
  • the sliding of the driving piston in the cavity causes the gas in the first cavity of the cavity to compress and generate heat, and the heated gas enters the heating tube. , the gas is heated in the furnace body and discharged to the steam turbine through the gas outlet.
  • the furnace body 103 is also provided with a medium gas inlet, and a one-way valve is provided on the medium gas inlet. After being compressed by the compressor, the medium gas entering the regenerator is discharged from the regenerator. After the gas is discharged, it enters the furnace body 103 through the one-way valve and the medium gas inlet, and replenishes the furnace body with gas.
  • the air energy boiler preferably uses carbon dioxide as the heating energy source, it can quickly reach the required operating temperature. There are no restrictions on installation, and since no electrical components are in direct contact with water, there is no risk of leakage. Safe, with shorter time, faster response time and higher temperature.
  • the rotating unit in the embodiment of the present invention may be a rotating cylinder or a motor with high power transmission. The specific structure of the rotating unit is not limited in the embodiment of the present invention.
  • the rotation speed of the rotation unit 101 is adjustable. In this way, by adjusting the rotation speed of the rotation unit, the temperature and corresponding time of heating the air in the first cavity can be adjusted, and then the temperature of the compressed gas discharged to the steam turbine 7 can be adjusted. and pressure.
  • the protrusion 106 of the air energy boiler is in the shape of a triangle, which can be formed by bending the corresponding part of the transmission rod 107.
  • the protrusion 106 and the transmission rod 107 in the embodiment of the present invention can also be two separate components.
  • the protrusion 106 is fixed on the corresponding part of the transmission rod 107 by welding or other methods.
  • the embodiment of the present invention does not limit this. .
  • each protrusion 106 in the embodiment of the present invention can be fixedly provided with two first limiting plates 112, and the two first limiting plates 112 are located on both sides of the transmission rod 107 to limit Displacement of transmission rod 107.
  • the first limiting plate 112 in the embodiment of the present invention can be installed on the protrusion 106 by welding or threaded connection.
  • the end of the rotating shaft 102 away from the rotating unit in the embodiment of the present invention can be provided with a flywheel 113 .
  • the flywheel 113 can store a certain amount of energy so that the rotating shaft 102 has a larger moment of inertia.
  • the rotating shaft 102 can also be supported by multiple support seats.
  • a bearing can be provided in the middle of the support seat, and the rotating shaft 102 is arranged in the bearing to ensure that the rotating shaft 102 rotates smoothly.
  • the connecting rod 110 in the embodiment of the present invention can be arranged parallel to the driving piston 109 , and both ends of the connecting rod 110 are fixedly mounted on the driving piston 109 through two opposite connecting plates 114 .
  • two second limiting plates 115 can be fixedly provided on the connecting rod 110 of the embodiment of the present invention.
  • the two second limiting plates 115 are fixedly provided on both sides of the transmission rod 102 to limit the transmission. Displacement of rod 107.
  • the second cavity 108b may be unclosed or closed. If the second cavity 108b is closed, a space for the transmission rod 107 to rotate needs to be provided on the second cavity 108b. .
  • a one-way valve 116 can be installed in the inflation port.
  • the one-way valve opens. After the inflation is completed, the one-way valve 116 is closed to prevent gas leakage.
  • the boiler also includes a gas tank 119, which is connected to the one-way valve 116 of the charging port in the air cavity in each conversion assembly.
  • the gas tank 119 can be used to complete the supply to all air cavities. of inflatable work.
  • each gas tank 119 in the embodiment of the present invention can also be arranged in one-to-one correspondence with the one-way valves 116, that is, each gas tank 119 delivers gas to an air cavity, which is not limited in the embodiment of the present invention.
  • the pipeline connecting the gas tank 119 and each one-way valve 116 in the embodiment of the present invention can be provided with a pressure reducing valve 118.
  • the pressure reducing valve 118 can be adjusted to make the pipeline leading to the one-way valve
  • the pressure of 116 is adjusted to the preset range.
  • a flange connection 120 may be provided between the air cavity 108 and the furnace body 03 in the embodiment of the present invention to ensure stable installation of the heating pipe.
  • a safety valve 117 can be installed on the furnace body 103. During normal use, the safety valve 117 is in a normally closed state. When the pressure in the furnace body 103 rises above a prescribed value, The medium can be discharged outward through the safety valve 117 to ensure safety.
  • a pressure controller 104 can also be installed on the furnace body 103.
  • the pressure controller 104 can display the pressure value in the furnace body 103 and can control the pressure in the furnace body 103. Adjustments are made to control the discharge temperature of the media gas.

Abstract

一种空气能源动力源,包括空气能源锅炉(1)、起动马达(8)、储气罐(2)、冷却器(3)、回热器(4)、压缩机(5)、汽轮机(7);起动马达(8)用于压缩空气能源锅炉(1)中的介质气体,利用压缩产生的高温高压气体的热量对介质气体加热,加热后的高温高压介质气体输入汽轮机(7),经汽轮机将高温高压介质气体的动能作用于发电机,驱动发电机产生电能;从汽轮机中排出的介质气体排入回热器(4),经回热器热量中和后从冷端排出后,经冷却器(3)冷却后进入压缩机(5);经压缩机(5)压缩后,进入回热器(4)进行热交换加热,然后进入空气能源锅炉(1)中向空气能源锅炉补充介质气体。

Description

一种空气能源动力源 技术领域
本发明属于能量转换技术领域,尤其涉及一种基于空气能源动力源。
背景技术
发电机是指将其他形式的能源转换成电能的机械设备,由法国人毕克西于1832年发明。一般的发电机是通过原动机将各类一次能源蕴藏的能量转换为机械能,再由发电机转换为电能,经输电、配电网络送往各种用电场所。
发电机分为直流发电机和交流发电机,工作原理都基于电磁感应定律和电磁力定律,广泛用于工农业生产、国防、科技及日常生活中。现有技术中的发电机分为热力发电机,水利发电机,核能发电机等等。
蒸汽循环(锅炉+汽轮机组)是最常见的发电方式,该系统中采用水(蒸汽)作为工质。水经给水泵升压后进入锅炉吸热,生成高温高压蒸汽,然后进入汽轮机膨胀做功,并推动发电机运行。水的临界点温度为374℃(647 K)、压力为22MPa(220 bar)。目前火电机组的主流技术为超临界和超超临界参数,最先进的超超临界火电机组的运行温度高于620℃,压力高于31MPa。与水相似,CO₂也是一种优良的天然工质,常用作制冷剂。CO₂化学性质不活泼,无色无味无毒,安全,价格便宜,易获得。S-CO₂是指温度和压力均在临界值(T= 30.98℃、P=7.38MPa)以上的CO₂流体,将其用来做动力循环的工质,它能在很小的体积内传递很大的能量,且在工程实现上比水更容易达到超临界状态。S-CO₂循环发电具有环境友好、热效率高、经济性好等特点。
布雷顿循环是一种典型热力学循环,它以气体为工质,先后经过绝热压缩、等压吸热、绝热膨胀及等压冷却四个过程实现能量的高效转化。和传统的蒸汽朗肯循环相比,布雷顿循环具有更高的循环效率,并且当工质处于超临界状态时,由于避免了工质相态的改变,减少了压缩功的消耗,它的循环效率能得到很大的提升。S-CO₂循环系统主要由压缩机、透平、发电机、加热器、回热器、预冷器等组成,基本的工作流程为:低温低压工质首先进入压缩机升至高压,经回热器吸收透平排出工质的热量,再经加热器从热源吸收热量达到最高温度,然后进入透平做功推动发电机工作,透平排出的工质经回热器释放部分热量,最后经预热器冷却后进入下一个循环过程。
但是,现有技术中的动力源的能量循环都是单循环利用,导致能量利用效率低。
发明内容
为适应能量转换技术领域的实际需求,本发明克服现有技术存在的不足,所要解决的技术问题为:提供一种空气能源动力源,以提高能量的利用效率。
为了解决上述技术问题,本发明采用的技术方案为:一种空气能源动力源,包括:空气能源锅炉、起动马达、储气罐、冷却器、回热器、压缩机、汽轮机;
所述起动马达用于启动空气能源锅炉,压缩中的空气能源锅炉中的空气,压缩产生的高温高压空气的热量对空气能源锅炉中的介质气体加热,加热后的高温高压介质气体输入汽轮机中,经汽轮机将高温高压介质气体的动能作用于终端,驱动终端;从汽轮机中排出的介质气体排入回热器,经回热器回收热量从冷端排出后,经冷却器冷却后进入压缩机;经压缩机压缩后,进入回热器与从汽轮机中排入回热器的介质气体进行热交换加热,然后进入空气能源锅炉中,向空气能源锅炉补充介质气体。
所述的一种空气能源动力源,还包括储气罐,所述储气罐设置在压缩机的输入端口,用于在空气能源锅炉启动时,向压缩机补充介质气体。
所述的一种空气能源动力源,还包括变速箱,所述变速箱输入端与汽轮机连接,输出端与空气能源锅炉和压缩机连接,用于在汽轮机的作用下,驱动所述空气能源锅炉和压缩机。
所述介质气体为:二氧化碳或者氦气,所述终端为发动机或发电机。
所述空气能源锅炉包括:转动单元、转动轴、炉体及至少一个转换组件,所述转动轴固定安装在所述转动单元的输出端上,所述转动轴上至少具有一段凸起,所述凸起与所述转换组件一一对应设置;每个所述转换组件均包括传动杆、空气腔体、驱动活塞、连接杆及多个加热管,所述驱动活塞滑动设置在所述空气腔体中,所述驱动活塞将所述空气腔体分为第一腔体及第二腔体,所述连接杆设置在所述第二腔体内,且所述连接杆与所述驱动活塞固定连接,所述传动杆的两端分别与所述连接杆及对应的所述凸起可转动连接,所述第一腔体设置有充气口,
所述多个加热管的一端与所述第一腔体相连通,所述多个加热管的另一端伸入到所述炉体中,所述炉体为密封设置,炉体内存储有介质气体,所述炉体设置有出气口,所述炉体的出气口通过管道连接到所述汽轮机上;
 其中,转动单元的转动速度可调,以通过调整转动单元的转动速度,调整第一腔体内的气体温度; 其中,所述转动轴远离所述转动单元的一端设置有飞轮; 其中,所述炉体上安装有在压力升高超过规定值时能向外排放介质的安全阀,所述炉体上还安装有装压力控制器,压力控制器用以显示所述炉体内的压力值,并能对所述炉体内的压力进行调整以控制气体的排放温度。
 空气能源锅炉还包括气罐,所述充气口内安装有单向阀,所述气罐与每个所述转换组件中的空气腔体内的充气口的单向阀连通,所述气罐和每个所述单向阀连通的管路上均设置有减压阀。
所述凸起为所述传动杆上相应部位折弯形成。
每个所述凸起上均固定设置有两个第一限位板,所述两个第一限位板位于所述传动杆的两侧。
所述连接杆平行于所述驱动活塞设置,所述连接杆的两端通过两个相对设置的连接板固定安装在所述驱动活塞上。
所述连接杆上固定设置有两个第二限位板,所述两个第二限位板固定设置在所述传动杆的两侧。
本发明与现有技术相比具有以下有益效果:
本发明提供了一种空气能源动力源,其以空气动力能源为主,利用压缩产生的高温高压空气的热量对输入气体加热,加热后的高温高压气体输入汽轮机,进而做功向终端提供动力能源,此外还利用汽轮机驱动空气能源锅炉压缩气体,提高能量的转换效率;同时利用汽轮机驱动压缩机向空气能源锅炉中补充压缩气体,进而向空气能源锅炉中提供源源不断的压缩气体,进一步提高了能量的转换效率,本发明通过一系列能源循环利用,相对于原有的空气能锅炉,能源转化效率可以提高7倍以上,其不仅节省能源,能源利用率高,还可代替风能、太阳能、煤碳、石油等能源,而且,产生电能功率大,有望在汽车及能源工业上应用。
附图说明
图1为本发明实施例一提供的一种基于空气动力源的发电机结构示意图;
图2为本发明实施例中空气能源锅炉的结构示意图;
图3为本发明实施例中转换组件的结构示意图。
具体实施例方式
为使本发明的技术方案和优点更加清楚,下面将结合具体实施例和附图,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例;基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
如图1所示,本发明实施例一提供了一种空气能源动力源,包括:空气能源锅炉1、起动马达8、储气罐2、冷却器3、回热器4、压缩机5、汽轮机7;所述起动马达8用于压缩空气能源锅炉1中的空气,利用压缩产生的高温高压空气的热量对输入气体加热,加热后的高温高压气体输入汽轮机7中,经汽轮机7将高温高压介质气体的动能作用于发电机9,驱动发电机9产生电能;从汽轮机7中排出的介质气体排入回热器4,经回热器4回收热量从冷端排出后,经冷却器3冷却后进入压缩机5;经压缩机5压缩后,进入回热器4与从汽轮机7中排入回热器4的介质气体进行热交换加热,然后进入空气能源锅炉1中向空气能源锅炉1补充介质气体。
进一步地,如图1所示,本实施例的一种空气能源动力源,还包括储气罐2,所述储气罐2设置在压缩机5的输入端口,用于在空气能源锅炉1启动时,向压缩机5补充介质气体。
进一步地,本实施例中,所述介质气体优选为二氧化碳,其也可以为:氦气或其它惰性气体。
进一步地,如图1所示,本实施例的一种空气能源动力源,还包括变速箱6,所述变速箱6输入端与汽轮机7连接,输出端与空气能源锅炉1和压缩机5连接,用于在汽轮机7的作用下,驱动所述空气能源锅炉1和压缩机5。
进一步地,所述发电机9也可以为其它用能终端,例如发动机。
具体地,本实施例中,启动马达8仅需要在空气能源锅炉1启动时,对其进行做功,压缩空气能源锅炉内部的气体,进而启动整个空气能源动力源;此外,储气罐2也仅需要在空气能源锅炉8启动时启动时,向系统输送介质气体。当本实施例的空气能源动力源启动后,启动马达8可以关停,储气罐2无需继续输送介质气体。此时,空气能源锅炉1在汽轮机7和变速器6的驱动下,不断地进行压缩产生高温高压介质气体,高温高压介质气体对空气能源锅炉1内的介质气体进行加热,加热后的介质气体不停地输送至汽轮机,驱动汽轮机进行做功,向终端和变速器6提供能量,该循环提高了系统的能量利用率,此外,从汽轮机排出的介质气体,经回热器进行热交换后,再经冷却器、压缩机重新进入回热器进行热交换中和热量,然后向空气能源锅炉1中补充气体,进一步提高了系统的能量利用率。当本实施例的空气能源动力源需要关闭时,可以通过改变变速器6的工作状态,进而关闭空气能源动力源的动力驱动和介质气体补给。此外,也可以对空气能源锅炉1进行泄压使其停止。
如图2所示,本实施例中,所述空气能源锅炉1包括:转动单元101、转动轴102、炉体103及至少一个转换组件,所述转动轴102固定安装在所述转动单元101的输出端上,所述转动轴102上至少具有一段凸起106,所述凸起106与所述转换组件一一对应设置;每个所述转换组件均包括传动杆107、空气腔体108、驱动活塞109、连接杆110及多个加热管105,所述驱动活塞109滑动设置在所述空气腔体108中,所述驱动活塞109将所述空气腔体108分为第一腔体108a及第二腔体108b,所述连接杆110设置在所述第二腔体108b内,且所述连接杆与所述驱动活塞固定连接,所述传动杆的两端分别与所述连接杆及对应的所述凸起可转动连接,所述第一腔体108a设置有充气口,所述多个加热管105的一端与所述第一腔体108a相连通,所述多个加热管105的另一端伸入到所述炉体103中,所述炉体103为密封设置,炉体103内存储有介质气体,所述炉体103设置有出气口111,所述炉体103的出气口111通过管道连接到所述汽轮机7上。
本发明实施例中,空气能源锅炉的转动单元101可以通过启动马达1驱动转动,也可以汽轮机7和变速器7驱动转动,转动单元101的输出端带动转动轴上的凸起转动,凸起通过连接杆带动驱动活塞在腔体内滑动,随后,向第一腔体内输送气体,驱动活塞在腔体内的滑动使腔体的第一腔体内的气体压缩生热,生热后的气体进入到加热管中,在炉体内气体进行加热,并通过出气口排放至汽轮机。
具体第,本实施例中,所述炉体103还设置有介质气体进气口,介质气体进气口上设置有单向阀,经压缩机压缩后,进入回热器的介质气体,从回热器排出后,经过单向阀和介质气体进气口进入炉体103中,对炉体进行补充气体。
本发明中,由于空气能源锅炉优选采用二氧化碳为加热能源,能迅速达到所要求的使用温度,在安装上没有条件的限制,且由于没有电元件直接与水接触,因此不会有漏电危险,使用安全,具有时间更短、响应时间更迅速及温度更高的特点。本发明实施例中的转动单元可以为旋转气缸,或具有高功率输送的电机,本发明实施例对旋转单元的具体结构在此不做限制。
本发明实施例中,转动单元101的转动速度可调,这样可以通过调整转动单元的转动速度,调整第一腔体内的空气加热的温度及相应时间,进而调整排放到汽轮机7的压缩气体的温度和压力。
结合图2,本发明实施例中,空气能源锅炉的凸起106呈几字形,可以为传动杆107上相应部位折弯形成。
当然,本发明实施例的凸起106与传动杆107也可以为两个分体式构件,凸起106采用焊接等方式固定设置在传动杆107上相应部位上,本发明实施例对此不做限制。
进一步地,结合图2,本发明实施例的每个凸起106上均可以固定设置有两个第一限位板112,两个第一限位板112位于传动杆107的两侧,以限制传动杆107的位移。
本发明实施例的第一限位板112可以采用焊接或螺纹连接安装在凸起106上。结合图2,本发明实施例的转动轴102远离转动单元的一端可以设置有飞轮113,飞轮113可以存储一定的能量,使转动轴102具有较大的转动惯量。
本发明实施例中,转动轴102上也可以有多个支撑座支撑,支撑座的中部可以设置有一个轴承,转动轴102设置在该轴承中,以保证转动轴102的转动平稳。
结合图3,本发明实施例的连接杆110可以平行于驱动活塞109设置,连接杆110的两端通过两个相对设置的连接板114固定安装在驱动活塞109上。
进一步地,结合图3,本发明实施例的连接杆110上可以固定设置有两个第二限位板115,两个第二限位板115固定设置在传动杆102的两侧,以限制传动杆107的位移。
本发明实施例中,第二腔体108b可以为不封闭设置,也可以为封闭设置,若第二腔体108b为封闭设置,需要在第二腔体108b上设置有供传动杆107转动的空间。
结合图3,本发明实施例中,在充气口内可以安装单向阀116,当向密封腔体内充气时,单向阀打开,充气完毕后,单向阀116处于关闭,防止气体外漏。
结合图2,该锅炉还包括气罐119,该气罐119与每个转换组件中的空气腔体内的充气口的单向阀116连通,可以通过一个气罐119,完成向所有的空气腔体的充气工作。
当然,本发明实施例中的气罐119还可以与单向阀116一一对应设置,即每个气罐119向一个空气腔体输气,本发明实施例对此不做限制。
结合图2及图3,本发明实施例的气罐119和每个单向阀116相连通的管路上均可以设置有减压阀118,可以通过调节减压阀118,使通向单向阀116的压力调整到预设范围。
结合图1,本发明实施例中的空气腔体108和炉体03之间可以设置有法兰连接120,以保证加热管的安装稳定。
另外,结合图2,本发明实施例中,可以在炉体103上安装安全阀117,在正常使用时,安全阀117处于常闭状态,当炉体103内的压力升高超过规定值时,可以通过安全阀117向外排放介质,来保障安全。
还有,结合图1,本发明实施例中,还可以在炉体103上安装压力控制器104,该压力控制器104可以显示炉体103内的压力值,并可以对炉体103内的压力进行调整,以控制介质气体的排放温度。
 最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例例技术方案的范围。

Claims (10)

  1. 一种空气能源动力源,其特征在于,包括:空气能源锅炉(1)、起动马达(8)、储气罐(2)、冷却器(3)、回热器(4)、压缩机(5)、汽轮机(7);
    所述起动马达(8)用于启动空气能源锅炉(1),压缩中的空气能源锅炉(1)中的空气,压缩产生的高温高压空气的热量对空气能源锅炉中的介质气体加热,加热后的高温高压介质气体输入汽轮机(7)中,经汽轮机(7)将高温高压介质气体的动能作用于终端,驱动终端;从汽轮机(7)中排出的介质气体排入回热器(4),经回热器(4)回收热量从冷端排出后,经冷却器(3)冷却后进入压缩机(5);经压缩机(5)压缩后,进入回热器(4)与从汽轮机(7)中排入回热器(4)的介质气体进行热交换加热,然后进入空气能源锅炉(1)中,向空气能源锅炉(1)补充介质气体。
  2. 根据权利要求1所述的一种空气能源动力源,其特征在于,还包括储气罐(2),所述储气罐(2)设置在压缩机(5)的输入端口,用于在空气能源锅炉(1)启动时,向压缩机(5)补充介质气体。
  3. 根据权利要求1所述的一种空气能源动力源,其特征在于,还包括变速箱(6),所述变速箱(6)输入端与汽轮机(7)连接,输出端与空气能源锅炉(1)和压缩机(5)连接,用于在汽轮机(7)的作用下,驱动所述空气能源锅炉(1)和压缩机(5)。
  4. 根据权利要求1所述的一种空气能源动力源,其特征在于,所述介质气体为:二氧化碳或者氦气,所述终端为发动机或发电机。
  5. 根据权利要求1所述的一种空气能源动力源,其特征在于,所述空气能源锅炉(1)包括:转动单元(101)、转动轴(102)、炉体(103)及至少一个转换组件,所述转动轴(102)固定安装在所述转动单元(101)的输出端上,所述转动轴(102)上至少具有一段凸起(106),所述凸起(106)与所述转换组件一一对应设置;每个所述转换组件均包括传动杆(107)、空气腔体(108)、驱动活塞(109)、连接杆(110)及多个加热管(105),所述驱动活塞(109)滑动设置在所述空气腔体(108)中,所述驱动活塞(109)将所述空气腔体(108)分为第一腔体(108a)及第二腔体(108b),所述连接杆(110)设置在所述第二腔体(108b)内,且所述连接杆与所述驱动活塞固定连接,所述传动杆的两端分别与所述连接杆及对应的所述凸起(106)可转动连接,所述第一腔体(108a)设置有充气口,
    所述多个加热管(105)的一端与所述第一腔体(108a)相连通,所述多个加热管(105)的另一端伸入到所述炉体(103)中,所述炉体(103)为密封设置,炉体(103)内存储有介质气体,所述炉体(103)设置有出气口(111),所述炉体(103)的出气口(111)通过管道连接到所述汽轮机(7)上;
     其中,转动单元的(101)转动速度可调,以通过调整转动单元(101)的转动速度,调整第一腔体(108a)内的气体温度; 其中,所述转动轴(102)远离所述转动单元(101)的一端设置有飞轮(113); 其中,所述炉体(103)上安装有在压力升高超过规定值时能向外排放介质的安全阀(117),所述炉体(103)上还安装有装压力控制器(104),压力控制器(104)用以显示所述炉体(103)内的压力值,并能对所述炉体(103)内的压力进行调整以控制气体的排放温度。
  6. 根据权利要求5所述的一种空气能源动力源,其特征在于, 空气能源锅炉(1)还包括气罐(119),所述充气口内安装有单向阀(116),所述气罐(119)与每个所述转换组件中的空气腔体内的充气口的单向阀(116)连通,所述气罐(19)和每个所述单向阀(116)连通的管路上均设置有减压阀(118)。
  7. 根据权利要求5所述的一种空气能源动力源,其特征在于,所述凸起(106)为所述传动杆(107)上相应部位折弯形成。
  8. 根据权利要求5所述的一种空气能源动力源,其特征在于,每个所述凸起(106)上均固定设置有两个第一限位板(112),所述两个第一限位板(112)位于所述传动杆(107)的两侧。
  9. 根据权利要求5所述的一种空气能源动力源,其特征在于,所述连接杆(110)平行于所述驱动活塞(109)设置,所述连接杆(110)的两端通过两个相对设置的连接板(114)固定安装在所述驱动活塞(109)上。
  10. 根据权利要求5所述的一种空气能源动力源,其特征在于,所述连接杆(110)上固定设置有两个第二限位板(115),所述两个第二限位板(115)固定设置在所述传动杆(107)的两侧。
PCT/CN2023/092871 2022-05-16 2023-05-09 一种空气能源动力源 WO2023221806A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210528035.7A CN114922703A (zh) 2022-05-16 2022-05-16 一种空气能源动力源
CN202210528035.7 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221806A1 true WO2023221806A1 (zh) 2023-11-23

Family

ID=82809429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092871 WO2023221806A1 (zh) 2022-05-16 2023-05-09 一种空气能源动力源

Country Status (2)

Country Link
CN (1) CN114922703A (zh)
WO (1) WO2023221806A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114922703A (zh) * 2022-05-16 2022-08-19 张近 一种空气能源动力源

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094807A (ja) * 1995-06-15 1997-01-10 Pado:Kk 廃熱で給水加熱する蒸気タービン発電装置
CN106949447A (zh) * 2017-05-10 2017-07-14 张近 一种空气能锅炉
CN108071430A (zh) * 2017-11-29 2018-05-25 华北电力大学 超临界co2布雷顿循环燃煤发电系统工质及烟气的工作流程
CN109826685A (zh) * 2019-03-12 2019-05-31 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳循环燃煤发电系统及方法
CN111794818A (zh) * 2019-04-08 2020-10-20 北京宏远佰思德科技有限公司 一种低温工质发电系统和动力系统及设备
CN114922703A (zh) * 2022-05-16 2022-08-19 张近 一种空气能源动力源

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012220188B4 (de) * 2012-11-06 2015-05-13 Siemens Aktiengesellschaft Integrierter ORC-Prozess an zwischengekühlten Kompressoren zur Erhöhung des Wirkungsgrades und Verringerung der erforderlichen Antriebsleistung durch Nutzung der Abwärme
CN110778485B (zh) * 2019-10-10 2021-06-08 东方电气集团东方汽轮机有限公司 耦合超临界二氧化碳循环的压缩空气储能发电系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH094807A (ja) * 1995-06-15 1997-01-10 Pado:Kk 廃熱で給水加熱する蒸気タービン発電装置
CN106949447A (zh) * 2017-05-10 2017-07-14 张近 一种空气能锅炉
CN108071430A (zh) * 2017-11-29 2018-05-25 华北电力大学 超临界co2布雷顿循环燃煤发电系统工质及烟气的工作流程
CN109826685A (zh) * 2019-03-12 2019-05-31 上海发电设备成套设计研究院有限责任公司 一种超临界二氧化碳循环燃煤发电系统及方法
CN111794818A (zh) * 2019-04-08 2020-10-20 北京宏远佰思德科技有限公司 一种低温工质发电系统和动力系统及设备
CN114922703A (zh) * 2022-05-16 2022-08-19 张近 一种空气能源动力源

Also Published As

Publication number Publication date
CN114922703A (zh) 2022-08-19

Similar Documents

Publication Publication Date Title
CN105863751B (zh) 一种闭式低温压缩空气储能系统和方法
CN112325497A (zh) 一种液化二氧化碳储能系统及其应用
WO2022166384A1 (zh) 基于二氧化碳气液相变的热能转化机械能储能装置
CN102549239A (zh) 发动机废热回收发电涡轮系统及具备该涡轮系统的往复移动式发动机系统
WO2023221806A1 (zh) 一种空气能源动力源
CN111305920B (zh) 一种汽驱空气储能调峰系统及方法
CN214660403U (zh) 一种超临界二氧化碳发电同轴一体设备及置换式储能系统
CN109026243A (zh) 能量转换系统
CN113187573A (zh) 一种超临界二氧化碳发电同轴一体设备及置换式储能方法
CN109084498A (zh) 一种绝热压缩空气-高温差热泵耦合系统
CN112412561B (zh) 压缩空气储能系统和火力发电厂控制系统耦合控制方法
CN113309589A (zh) 结合液态空气储能的深度调峰电站及深度调峰方法
CN107044307A (zh) 热能利用动力系统及新能源机动设备
CN114709934A (zh) 一种常温液态压缩二氧化碳混合工质储能系统及方法
CN201943904U (zh) 太阳能回热再热中冷燃气轮机循环的热力发电系统
CN206942822U (zh) 利用环境热能对外做功的装置
CN111219216B (zh) 一种可利用外界热源和冷源的热泵蓄能系统及方法
CN111535886B (zh) 一种多能联合的压力恒定的发电系统
CN112303960A (zh) 冷力发动机
CN106948878A (zh) 闭式燃气螺管转子发动机装置
CN113315152A (zh) 结合液态空气储能的燃气轮机调峰电站及调峰方法
JP2023514812A (ja) エネルギー貯蔵プラント及びエネルギー貯蔵方法
CN215633190U (zh) 结合液态空气储能的深度调峰电站
CN111472889A (zh) 一种将热能转化为机械能的新装置
CN114183739B (zh) 一种基于超高温热泵的阶梯式蒸汽发生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806758

Country of ref document: EP

Kind code of ref document: A1