WO2023221775A1 - 一种电池预警方法、装置、车辆和存储介质 - Google Patents

一种电池预警方法、装置、车辆和存储介质 Download PDF

Info

Publication number
WO2023221775A1
WO2023221775A1 PCT/CN2023/092095 CN2023092095W WO2023221775A1 WO 2023221775 A1 WO2023221775 A1 WO 2023221775A1 CN 2023092095 W CN2023092095 W CN 2023092095W WO 2023221775 A1 WO2023221775 A1 WO 2023221775A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
ampere
hour
state
charge
Prior art date
Application number
PCT/CN2023/092095
Other languages
English (en)
French (fr)
Inventor
康文蓉
何佳昕
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2023221775A1 publication Critical patent/WO2023221775A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • G01R31/388Determining ampere-hour charge capacity or SoC involving voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery early warning method, a battery early warning device, a vehicle and a computer storage medium.
  • the method of protecting the battery basically uses the battery SOC (State of Charge, state of charge) to judge, and then perform battery early warning protection.
  • SOC State of Charge, state of charge
  • fixed time filtering is often used.
  • the battery SOC is lower than the set SOC threshold, it is continued for a set time to determine whether the battery SOC is too low.
  • embodiments of the present application are proposed to provide a battery warning method, a battery warning device, a vehicle and a computer-readable storage medium that overcome the above problems or at least partially solve the above problems.
  • a battery early warning method which method includes:
  • the reference ampere-hour integral value is an ampere-hour integral value that can be used normally after the battery's state of charge is lower than a preset state-of-charge threshold;
  • obtaining the reference ampere-hour integral value includes:
  • the reference ampere-hour integral value is calculated based on the initial reference ampere-hour integral value and the current battery health level.
  • the initial reference ampere-hour integral value is determined through the following steps:
  • ampere-hour values corresponding to each of the preset periods are accumulated to obtain the initial reference ampere-hour integral value.
  • calculating the ampere-hour value corresponding to each preset period based on the state of charge and the temperature state sampled at each preset period includes:
  • the ampere-hour value corresponding to each of the preset periods is calculated.
  • the method further includes:
  • the method further includes:
  • the battery used to power the vehicle is automatically switched to a backup battery of the vehicle, wherein the backup battery is a battery that can be used normally.
  • an early warning to prevent battery over-discharge is performed according to the accumulated ampere-hour discharge capacity of the battery, including:
  • an early warning message is pushed in at least one of voice, text, and text messages.
  • the embodiment of the present application discloses a battery early warning device, which includes:
  • An acquisition module used to obtain a reference ampere-hour integral value;
  • the reference ampere-hour integral value is an ampere-hour integral value that can be used normally after the battery's state of charge is lower than the preset state-of-charge threshold;
  • a determination module configured to calculate the accumulated ampere-hour discharge capacity from the moment when the battery's state of charge starts to be lower than the preset state of charge threshold to the current moment;
  • An early warning module is used to provide an early warning to prevent battery over-discharge when the accumulated ampere-hour discharge capacity value reaches the reference ampere-hour integral value.
  • the acquisition module includes:
  • the first calculation sub-module is used to calculate the reference ampere-hour integral value according to the initial reference ampere-hour integral value and the current battery health level.
  • the device also includes:
  • a sampling module configured to sample the state of charge and temperature state of the battery according to the preset period within a preset filtering time after the state of charge of the battery is lower than the preset state of charge threshold.
  • a calculation module configured to calculate the ampere-hour value corresponding to each preset period based on the state of charge and the temperature state sampled in each preset period;
  • An accumulation module is used to accumulate the ampere-hour values corresponding to each of the preset periods to obtain the initial reference ampere-hour integral value.
  • the computing module includes:
  • the first determination sub-module is used to determine the internal resistance state of the battery at the current moment and the power state of the battery at the current moment based on the sampled state of charge and the temperature state;
  • the second determination sub-module is used to determine the previous preset according to the sampled state of charge.
  • the second calculation sub-module is used to calculate the ampere-hour value corresponding to each preset period according to the power state, the internal resistance state, and the historical open circuit voltage value of each preset period.
  • the device also includes:
  • An automatic shutdown module is used to automatically shut down functions that consume the battery without affecting normal driving.
  • the device also includes:
  • An automatic switching module is configured to automatically switch the battery used to power the vehicle to a backup battery of the vehicle, wherein the backup battery is a battery that can be used normally.
  • the early warning module includes:
  • a push sub-module is configured to push an early warning message in at least one of voice, text, and text messages when the accumulated ampere-hour discharge capacity value reaches the reference ampere-hour integral value.
  • This application also discloses a vehicle, which includes a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the computer program, the above-mentioned battery warning is implemented.
  • This application also discloses a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, the steps of the above-mentioned battery warning method are implemented.
  • This application also discloses a computing processing device, which is characterized in that it includes:
  • a memory having computer readable code stored therein;
  • One or more processors when the computer readable code is executed by the one or more processors, the computing processing device performs the battery warning method as described above.
  • This application also discloses a computer program, which includes computer-readable code.
  • the computer-readable code When the computer-readable code is run on a computing processing device, it causes the computing processing device to execute the battery warning method as described above.
  • this application does not use a set time to determine the battery state of charge, but determines whether the battery is over-discharged based on the relationship between the battery's cumulative ampere-hour discharge capacity and the pre-detected reference ampere-hour integral value.
  • the time judgment can only determine the time period of battery discharge, and cannot accurately know the actual total ampere-hour value within the set time.
  • This application can accurately calculate the cumulative ampere-hour discharge capacity of the battery from discharge to the current moment, and then calculate the accumulated ampere-hour discharge capacity.
  • Amp-hour discharge capacity and reference ampere-hour for protection batteries Compare the integral values to determine whether the battery is over-discharged, and provide timely warning to the battery to avoid over-discharge problems, prevent damage to the battery due to over-discharge, and effectively protect the battery.
  • Figure 1 is a step flow chart of a battery early warning method provided by an embodiment of the present application.
  • Figure 2 is a flow chart of steps for determining an initial reference ampere-hour integral value provided by an embodiment of the present application
  • FIG. 3 is a structural block diagram of a battery early warning device provided by an embodiment of the present application.
  • Figure 4 schematically illustrates a block diagram of a computing processing device for performing methods according to the present disclosure.
  • Figure 5 schematically shows a storage unit for holding or carrying program code implementing a method according to the present disclosure.
  • the battery SOC is determined through timed filtering, which cannot effectively prevent the battery from being over-discharged and causing damage to the battery.
  • this application adopts a battery early warning method.
  • the core idea is to After the state of charge is lower than the preset state-of-charge threshold, an early warning to prevent battery over-discharge is performed based on the battery's cumulative ampere-hour discharge capacity value and the reference ampere-hour integral value.
  • FIG. 1 a flow chart of a battery warning method provided by an embodiment of the present application is shown.
  • the method may specifically include the following steps:
  • Step 101 Obtain a reference ampere-hour integral value;
  • the reference ampere-hour integral value is an ampere-hour integral value that can be used normally after the battery's state of charge is lower than the preset state-of-charge threshold;
  • the user when using a vehicle or battery, the user first detects the state of charge of the vehicle or battery. When the state of charge of the battery reaches the preset state of charge threshold, the user obtains that the state of charge of the battery is lower than the preset state of charge.
  • the status threshold is a reference ampere-hour integral value that can be used normally. This reference ampere-hour integral value is the amount of electricity that can be discharged normally after the battery state of charge is lower than the preset state-of-charge threshold. That is, discharging this amount of electricity will not cause Cause over-discharge of the battery.
  • the preset state-of-charge threshold and preset filtering time are set according to the data provided by the battery cell manufacturer. This application does not limit the specific value of the preset state-of-charge threshold. For example, it may be 20%, 40%, 60%, 80% or 100%.
  • the initial reference ampere-hour integral value and the current battery health level of the battery are first obtained, and then the initial reference ampere-hour integral value and the current battery health are obtained. degree, calculate the reference ampere-hour integral value.
  • the initial reference ampere-hour integral value of the battery is determined by pre-detecting the relevant parameters of the battery, and then processing and calculating the relevant parameters and relevant data based on the relationship between the relevant parameters and relevant data provided by the battery cell manufacturer.
  • the initial reference The ampere-hour integral value is detected and determined in advance.
  • the initial reference ampere-hour integral value has been pre-stored in the relevant processing equipment of the vehicle and battery.
  • the reference ampere-hour integral value is determined based on the battery's current battery health and the initial reference ampere-hour integral value, thereby ensuring that the reference ampere-hour integral value is not affected by the battery.
  • the impact of aging, battery health can be the percentage of the current actual capacity of the battery and the capacity of the battery when it leaves the factory, which can be expressed as the aging degree of the battery; as the battery is used, the lower the actual capacity of the battery, the higher the aging degree of the battery. , the battery health also becomes low.
  • the health status of the battery can be detected regularly according to a preset time period.
  • the health status of the battery can also be detected every time the user uses the vehicle or battery.
  • the health status of the battery can also be detected when the user uses the vehicle or battery.
  • the battery's state of charge reaches the preset state of charge threshold, the detected health state is detected to obtain the current battery health state of the battery, and then the current battery health is calculated based on the current battery health state, and then The reference ampere-hour integral value is calculated using the corresponding relationship between the current battery health and the initial reference ampere-hour integral value.
  • the health status of the battery can be the current actual capacity of the battery, and the battery health is the current actual capacity of the battery and the capacity of the battery when it leaves the factory.
  • the current battery health, the initial reference ampere-hour integral value and the reference ampere-hour integral value are in a product relationship. Multiply the current battery health by the initial reference ampere-hour integral value to obtain the reference ampere-hour integral value.
  • the specific relationship between the current battery health, the initial reference ampere-hour integral value and the reference ampere-hour integral value is not limited here, and the calculation can be set according to specific circumstances. This ensures that the reference ampere-hour integral value is in its current state and is not affected by battery aging, and avoids the impact of battery aging on the actual reference ampere-hour integral value of the battery.
  • the initial reference ampere-hour integral value is determined as follows:
  • Step 201 Sample the state of charge and temperature state of the battery according to the preset period within a preset filtering time after the state of charge of the battery is lower than the preset state of charge threshold;
  • the initial reference ampere-hour integral value of the battery can be determined when the battery has not left the factory or has not been installed on the vehicle. It can also be determined after the battery is installed on the vehicle. This application does not cover this issue. Make limitations. The initial reference ampere-hour integral values of different battery cell manufacturers of different models may be different.
  • a first-order battery model can be used.
  • the first-order battery model can be implemented using a single battery equivalent circuit and Simscape language, and the preset filtering time is calculated according to the preset cycle time.
  • the state of charge and temperature state of the battery in the battery are sampled.
  • the preset state of charge threshold and the preset filtering time are set according to the data provided by the battery cell manufacturer. The data provided by different battery cell manufacturers may be different.
  • the preset filtering time is the time that the battery can be used normally after the state of charge is lower than the preset state of charge threshold. For example, the preset battery state of charge threshold is 10%, the preset filtering time is 10 minutes, and the preset cycle is 1 second.
  • the battery When the battery state of charge reaches 10%, the battery can be used normally for 10 minutes. Taking 1 second as a cycle, the battery's state of charge and temperature state are sampled every 1 second.
  • the preset cycle can be determined according to the required precision. The higher the calculation precision, the longer the preset cycle time. The smaller it is, there is no specific limit on the time of the preset cycle.
  • Step 202 Calculate the ampere-hour value corresponding to each preset period based on the state of charge and the temperature state sampled in each preset period;
  • the state of charge and temperature state of each cycle After sampling the state of charge and temperature state of the battery according to the preset cycle, the state of charge and temperature state of each cycle are obtained, and then the ampere-hour value corresponding to each preset cycle is calculated based on the state of charge and temperature state of each cycle.
  • the state of charge and the temperature state in each cycle can be the same or different, so the ampere-hour values corresponding to each preset cycle can be in the same state or in different states. For example, if the preset filtering time is 10 minutes and the preset period is 1 second, then the battery's state of charge and temperature state are sampled every 1 second, then there will be 600 groups of sampled state of charge and temperature states. data, and then calculate the ampere-hour values corresponding to these 600 sets of preset cycles based on the sampled state of charge and temperature state.
  • the internal resistance state of the battery at the current moment and the power state received by the battery at the current moment are determined based on the sampled state of charge and temperature state. Sampling the battery according to the preset period According to the current state of charge of the battery and the current temperature state of the battery, according to the corresponding relationship between the current state of charge and the current temperature state and the current internal resistance state, the current state of charge and the current temperature state are related to The corresponding relationship between the power state of the battery at the current moment can determine the internal resistance state of the battery at the current moment and the power state of the battery at the current moment.
  • the corresponding relationship between the current state of charge and the current temperature state and the current internal resistance state, and the corresponding relationship between the current state of charge and the current temperature state and the current power state of the battery are all determined by the battery voltage.
  • Cell manufacturers provide corresponding relationships based on batteries of different specifications.
  • the battery cell manufacturer provides the corresponding relationship between the current state of charge and the current temperature state and the current internal resistance state as shown in the following table (1).
  • the current state of charge and the current temperature state are related to the current state of charge.
  • the corresponding relationship between the power status of the battery at any time is shown in the following table (2):
  • the state of charge of the battery at the current moment is 10%, and the temperature state of the battery at the current moment is 25°C, according to the corresponding relationship, it can be determined that the internal resistance state of the battery at the current moment is 0.615K ⁇ , and the power state of the battery at the current moment is 46KW.
  • the historical open circuit voltage value of the battery's open circuit voltage at the historical moment corresponding to the previous preset period is determined.
  • the battery is sampled according to the preset period to obtain the battery's state of charge.
  • the corresponding relationship between the battery's state of charge and the open circuit voltage value the historical open circuit voltage of the battery's open circuit voltage at the historical moment corresponding to the previous preset period can be determined.
  • the corresponding relationship between the battery's state of charge and the open circuit voltage value is provided by the battery cell manufacturer according to the batteries of different specifications.
  • the battery's state of charge and temperature will be sampled every 1 second.
  • the sampling reaches the 60th second.
  • the battery's charge at the current moment at the 60th preset period will be sampled.
  • the electrical state and temperature state is determined.
  • the internal resistance state and the power state of the battery at the current moment are obtained through the last preset cycle, that is, the battery state of charge at the 59th second sampling, that is, the state of charge at the 59th preset cycle obtained by sampling, according to the battery
  • the corresponding relationship between the state of charge and the open circuit voltage value is determined to determine the open circuit voltage value of the battery's open circuit voltage at the 59th preset cycle, that is, the historical open circuit voltage of the battery's open circuit voltage at the historical moment corresponding to the previous preset cycle. Voltage value.
  • the ampere-hour value corresponding to each preset period is calculated.
  • the current value of the battery at the current moment is determined based on the power state, internal resistance state and historical open circuit voltage value. After sampling the state of charge and temperature state of the battery, the internal resistance state of the battery at the current moment, the power state of the battery at the current moment, and the historical open circuit voltage value of the battery corresponding to the previous preset period are determined.
  • the ampere-hour value corresponding to each preset period is calculated, for example:
  • the power state at the current moment is P t
  • the internal resistance state at the current moment is R t
  • the historical open circuit voltage value of the battery corresponding to the previous preset period is U ocv,t-1 .
  • the current value I t of the battery at the current moment in the current preset period can be calculated through formula (1).
  • the ampere-hour value corresponding to each of the preset periods is calculated.
  • the current value of the battery at the current moment in the current cycle can be calculated respectively, and then corresponding to each preset cycle according to the current value corresponding to each preset cycle.
  • ampere-hour value can be calculated through formula (5), where T is the time interval of the preset period, and Ah t is the ampere-hour value at the current moment.
  • the preset period is 1 second
  • T in formula (5) is 1S.
  • Ah t I t* T Formula (5)
  • Step 203 Accumulate the ampere-hour values corresponding to each of the preset periods to obtain the initial reference ampere-hour integral value.
  • the ampere-hour values corresponding to each preset period are accumulated.
  • the calculation can be performed by formula (6), and the calculated value is the initial reference ampere-hour value.
  • hour integral value where Ah tol is the initial reference ampere hour integral value.
  • Ah tol ⁇ Ah t formula (6)
  • Step 102 Calculate the accumulated ampere-hour discharge capacity from the moment when the battery's state of charge is lower than the preset state of charge threshold to the current moment;
  • the battery's ampere-hour discharge capacity When it is detected that the battery's state of charge reaches the preset state of charge threshold, the battery's ampere-hour discharge capacity will be detected and counted. Based on the detected battery's ampere-hour discharge capacity, the battery will then be calculated from the state of charge. The cumulative ampere-hour discharge capacity from the time it is lower than the preset state-of-charge threshold to the current moment. Among them, when the state of charge of the battery reaches the preset state of charge threshold, the ampere-hour discharge capacity corresponding to each cycle can be counted according to the preset statistical period, and then the ampere-hour discharge capacity corresponding to each cycle is accumulated to obtain the battery. The cumulative ampere-hour discharge capacity from when the state of charge started to fall below the preset state of charge threshold to the current moment.
  • Step 103 When the accumulated ampere-hour discharge capacity value reaches the reference ampere-hour integral value, an early warning to prevent battery over-discharge is performed.
  • an early warning to prevent battery over-discharge is carried out.
  • the early warning message can be pushed in at least one way such as voice, text, SMS, etc.
  • the user lends the car to a friend or the vehicle is not with him or her, at this time
  • the cumulative discharge capacity of the vehicle's battery reaches the reference ampere-hour integral value
  • the user can receive early warning information through SMS push.
  • the user can promptly remind friends or recharge the battery in a timely manner to avoid over-discharge of the battery. Cause damage, protect the battery and extend the battery life.
  • functions that are consuming the battery and do not affect normal driving can also be automatically turned off, thereby Reduce battery over-discharge and automatically protect the battery.
  • functions that do not affect normal driving include the vehicle's air conditioning function, player function, seat heating function, etc., and are not specifically limited in this application.
  • the cumulative ampere-hour discharge capacity value of the battery reaches the obtained reference ampere-hour integral value, while performing an early warning to prevent battery over-discharge, if both vehicles have backup batteries at this time and the backup batteries can be used normally, this It can also automatically switch the battery that powers the vehicle to the backup battery to prevent damage to the battery due to over-discharge and automatically protect the battery.
  • a vehicle carries not only one battery or a set of batteries, but also a backup battery.
  • the backup battery and the battery in use exist in the same system or circuit.
  • the battery being used to power the vehicle is switched to the backup battery, it does not affect the In normal use, the user will not have the feeling of switching batteries when switching. They can only know that the battery has automatically switched through the switching prompt or the battery usage indicator, which will not affect the user's battery usage experience.
  • the present application instead of using a set time to determine the battery's state of charge, it determines whether the battery is over-discharged based on the relationship between the battery's cumulative ampere-hour discharge capacity and the pre-detected reference ampere-hour integral value.
  • the discharge capacity can accurately know the specific discharge ampere-hour value of the battery in each preset cycle.
  • Using the set time judgment can only determine the time period of battery discharge, but cannot accurately know the actual total ampere-hour value within the set time. Therefore, this application can accurately and clearly know the ampere-hour value of battery discharge and the ampere-hour integral value of protecting the battery from over-discharge, and is not affected by the aging of the battery. It can provide early warning to the battery in a timely manner to prevent damage to the battery due to over-discharge, effectively The battery is protected.
  • FIG. 3 a structural block diagram of a battery early warning device provided by an embodiment of the present application is shown, which specifically includes the following modules:
  • the acquisition module 301 is used to obtain a reference ampere-hour integral value;
  • the reference ampere-hour integral value is an ampere-hour integral value that can be used normally after the state of charge of the battery is lower than the preset state of charge threshold;
  • the determination module 302 is used to calculate the cumulative ampere-hour discharge capacity from the time when the state of charge of the battery starts to be lower than the preset state of charge threshold to the current time;
  • the early warning module 303 is configured to provide an early warning to prevent battery over-discharge when the accumulated ampere-hour discharge capacity value reaches the reference ampere-hour integral value.
  • the acquisition module 301 includes:
  • the first calculation sub-module is used to calculate the reference ampere-hour integral value based on the initial reference ampere-hour integral value and the current battery health level.
  • the device further includes:
  • a sampling module configured to sample the state of charge and temperature state of the battery according to the preset period within a preset filtering time after the state of charge of the battery is lower than the preset state of charge threshold.
  • a calculation module configured to calculate the ampere-hour value corresponding to each preset period based on the state of charge and the temperature state sampled in each preset period;
  • An accumulation module is configured to accumulate the ampere-hour values corresponding to each of the preset periods to obtain the initial reference ampere-hour integral value.
  • the computing module includes:
  • the first determination sub-module is used to determine the internal resistance state of the battery at the current moment and the power state of the battery at the current moment based on the sampled state of charge and the temperature state;
  • the second determination sub-module is configured to determine the historical open circuit voltage value of the open circuit voltage of the battery at the historical moment corresponding to the previous preset period based on the sampled state of charge;
  • the second calculation sub-module is used to calculate the ampere-hour value corresponding to each preset period according to the power state, the internal resistance state, and the historical open circuit voltage value of each preset period.
  • the second calculation sub-module includes:
  • a determination unit configured to determine the current value of the battery at the current moment based on the power state, the internal resistance state and the historical open circuit voltage value
  • the calculation unit is configured to calculate the ampere-hour value corresponding to each preset period according to the current value of the battery at the current moment in each preset period.
  • the device further includes:
  • An automatic shutdown module is used to automatically shut down functions that consume the battery without affecting normal driving.
  • the device further includes:
  • An automatic switching module is used to automatically switch the battery used to power the vehicle to the backup battery of the vehicle.
  • the early warning module includes:
  • a push sub-module is configured to push an early warning message in at least one of voice, text, and text messages when the accumulated ampere-hour discharge capacity value reaches the reference ampere-hour integral value.
  • the battery state of charge instead of using a set time to determine the battery state of charge, it is determined based on the relationship between the battery's cumulative ampere-hour discharge capacity and the pre-detected reference ampere-hour integral value to determine whether the battery is over-discharged. Capacity can accurately know the specific discharge ampere-hour value of the battery in each preset cycle. Using the set time judgment can only determine the time period of battery discharge, but cannot accurately know the actual total ampere-hour value within the set time. The application can therefore accurately and clearly know the ampere-hour value of battery discharge and the ampere-hour integral value of protecting the battery from over-discharge, and is not affected by the aging of the battery. It can provide early warning to the battery in a timely manner to prevent damage to the battery due to over-discharge, which is effective Protected the battery.
  • the description is relatively simple. For relevant details, please refer to the partial description of the method embodiment.
  • An embodiment of the present application also provides a vehicle, including:
  • It includes a processor, a memory, and a computer program stored on the memory and capable of running on the processor.
  • the computer program When the computer program is executed by the processor, it implements each process of the above battery warning method embodiment, and can achieve the same technology. The effect will not be described here to avoid repetition.
  • Embodiments of the present application also provide a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer program is executed by a processor, each process of the above battery warning method embodiment is implemented, and the same technical effect can be achieved. , to avoid repetition, will not be repeated here.
  • Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in a computing processing device according to embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure may also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing part or all of the methods described herein.
  • Such a program implementing the present disclosure may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, or provided on a carrier signal, or in any other form.
  • Figure 4 illustrates a computing processing device that may implement methods in accordance with the present disclosure.
  • the calculation A processing device conventionally includes a processor 1010 and a computer program product in the form of a memory 1020 or a computer-readable medium.
  • Memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for program code 1031 for executing any method steps in the above-mentioned methods.
  • the storage space 1030 for program codes may include individual program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 5 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the computing processing device of FIG. 4 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', ie code that can be read by, for example, a processor such as 1010, which code, when executed by a computing processing device, causes the computing processing device to perform the methods described above. various steps.
  • embodiments of the embodiments of the present application may be provided as methods, devices, or computer program products. Therefore, embodiments of the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment that combines software and hardware aspects. Furthermore, embodiments of the present application may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • Embodiments of the present application are described with reference to flowcharts and/or block diagrams of methods, terminal devices (systems), and computer program products according to embodiments of the present application. It will be understood that each process and/or block in the flowchart illustrations and/or block diagrams, and combinations of processes and/or blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general-purpose computer, special-purpose computer, embedded processor, or other programmable data processing terminal device to produce a machine such that the instructions are executed by the processor of the computer or other programmable data processing terminal device. Means are generated for implementing the functions specified in the process or processes of the flowchart diagrams and/or the block or blocks of the block diagrams.
  • These computer program instructions may also be stored in a computer or other programmable data processing terminal that A computer-readable memory of an end device that operates in a specific manner such that instructions stored in the computer-readable memory produce an article of manufacture that includes instruction means that implements a process or processes in a flowchart and/or a block diagram Functions specified in a box or boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing terminal equipment, so that a series of operating steps are performed on the computer or other programmable terminal equipment to produce computer-implemented processing, thereby causing the computer or other programmable terminal equipment to perform a computer-implemented process.
  • the instructions executed on provide steps for implementing the functions specified in a process or processes of the flow diagrams and/or a block or blocks of the block diagrams.
  • a battery early warning method and a battery early warning device provided by this application have been introduced in detail above. Specific examples are used in this article to illustrate the principles and implementation methods of this application. The description of the above embodiments is only for assistance. Understand the methods and core ideas of this application; at the same time, for those of ordinary skill in the field, there will be changes in the specific implementation methods and application scope based on the ideas of this application. In summary, the content of this specification does not should be understood as a limitation on this application.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池预警方法、装置、车辆和存储介质,方法包括:获取参考安时积分值,参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后当前时刻可正常使用的安时积分值(101);计算从电池的荷电状态开始低于预设荷电状态阈值时刻,到当前时刻的累计安时放电容量(102);当累计安时放电容量值达到参考安时积分值时,进行防止电池过放预警(103)。本方法能够准确的计算出电池放电到当前时刻的累计安时放电容量,再将累计安时的放电容量与保护电池的参考安时积分值进行对比,从而判断出电池的放电是否过放,及时对电池进行预警,避免电池出现过放的问题,防止电池造成损伤,影响对电池的使用,进而有效的保护了电池。

Description

一种电池预警方法、装置、车辆和存储介质
相关申请的交叉引用
本公开要求在2022年5月16日提交中国专利局、申请号为202210529442.X、名称为“一种电池预警方法、装置、车辆和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池预警方法、一种电池预警装置、一种车辆和一种计算机存储介质。
背景技术
当前,电池在电动汽车、储能等中的应用日益广泛,而电池的特殊性,属于危险品。因此,如何针对电池进行保护正是当前要解决的技术问题。
现有技术中,在对电池进行保护的方法基本使用电池SOC(State of Charge,荷电状态)进行判断,进而进行电池预警保护。现有技术中进行电池SOC过低故障滤波时,常常采用的是定时间滤波,在电池SOC低于设定的SOC阈值,持续设定的时间来判断电池SOC是否过低。
本申请的发明人发现现有技术还是存在着技术问题:在判断电池SOC是否过低时,只是依照定时间来判定,如果其他用电设备电流较大时,依旧采用同样的滤波时间,则会导致实际放出电量过大,从而严重损伤电池。因此,如何更有效的保护电池,防止电池过放而对电池造成损伤正是本技术领域人员要解决的问题。
发明内容
鉴于上述问题,提出了本申请实施例以便提供一种克服上述问题或者至少部分地解决上述问题的一种电池预警方法、一种电池预警装置、一种车辆和一种计算机可读存储介质。
为了解决上述问题,本申请实施例公开了一种电池预警方法,所述方法包括:
获取参考安时积分值;所述参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后可正常使用的安时积分值;
计算从所述电池的荷电状态开始低于所述预设荷电状态阈值时刻,到当前时刻的累计安时放电容量;
当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警。
可选地,所述获取参考安时积分值,包括:
获取所述电池的初始参考安时积分值和当前的电池健康度;
根据所述初始参考安时积分值和所述当前的电池健康度,计算所述参考安时积分值。
可选地,所述初始参考安时积分值通过如下步骤确定:
在所述电池的荷电状态低于所述预设荷电状态阈值后的预设滤波时间内,按照所述预设周期对所述电池的荷电状态和温度状态进行采样;
根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值;
将各个所述预设周期对应的安时值进行累加,得到所述初始参考安时积分值。
可选地,所述根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值,包括:
根据采样得到的所述荷电状态和所述温度状态,确定当前时刻所述电池的内阻状态和当前时刻所述电池所受的功率状态;
根据采样得到的所述荷电状态,确定上一所述预设周期相对应的历史时刻的所述电池的开路电压的历史开路电压值;
根据各个预设周期的所述功率状态、所述内阻状态、所述历史开路电压值,分别计算各个所述预设周期对应的安时值。
可选地,所述当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警之后,还包括:
自动关闭消耗所述电池且不影响正常驾驶的功能。
可选地,所述当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警之后,还包括:
将为车辆供电使用的所述电池自动切换为车辆的备用电池,其中,所述备用电池为可正常使用的电池。
可选地,所述当所述累计安时放电容量值达到所述参考安时积分值时,根据所述电池的累计安时放电容量进行防止电池过放预警,包括:
当所述累计安时放电容量值达到所述参考安时积分值时,将预警消息以语音、文字、短信中的至少一种方式进行推送。
本申请实施例公开了一种电池预警装置,所述装置包括:
获取模块,用于获取参考安时积分值;所述参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后可正常使用的安时积分值;
确定模块,用于计算从所述电池的荷电状态开始低于所述预设荷电状态阈值时刻,到当前时刻的累计安时放电容量;
预警模块,用于当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警。
可选地,所述获取模块包括:
获取子模块,用于获取所述电池的初始参考安时积分值和当前的电池健康度;
第一计算子模块,用于根据所述初始参考安时积分值和所述当前的电池健康度,计算所述参考安时积分值。
可选地,所述装置还包括:
采样模块,用于在所述电池的荷电状态低于所述预设荷电状态阈值后的预设滤波时间内,按照所述预设周期对所述电池的荷电状态和温度状态进行采样;
计算模块,用于根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值;
累加模块,用于将各个所述预设周期对应的安时值进行累加,得到所述初始参考安时积分值。
可选地,所述计算模块包括:
第一确定子模块,用于根据采样得到的所述荷电状态和所述温度状态,确定当前时刻所述电池的内阻状态和当前时刻所述电池所受的功率状态;
第二确定子模块,用于根据采样得到的所述荷电状态,确定上一所述预设 周期相对应的历史时刻的所述电池的开路电压的历史开路电压值;
第二计算子模块,用于根据各个预设周期的所述功率状态、所述内阻状态、所述历史开路电压值,分别计算各个所述预设周期对应的安时值。
可选地,所述装置还包括:
自动关闭模块,用于自动关闭消耗所述电池且不影响正常驾驶的功能。
可选地,所述装置还包括:
自动切换模块,用于将为车辆供电使用的所述电池自动切换为车辆的备用电池,其中,所述备用电池为可正常使用的电池。
可选地,所述预警模块包括:
推送子模块,用于当所述累计安时放电容量值达到所述参考安时积分值时,将预警消息以语音、文字、短信中的至少一种方式进行推送。
本申请还公开了一种车辆,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述的电池预警方法的步骤。
本申请还公开了一种计算机可读存储介质,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如上述的电池预警方法的步骤。
本申请还公开了一种计算处理设备,其特征在于,包括:
存储器,其中存储有计算机可读代码;以及
一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如上所述的电池预警方法。
本申请还公开了一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行如上所述的电池预警方法。
本申请实施例包括以下优点:
相对现有技术而言本申请不是采用设定的时间判断电池的电量状态,而是根据电池的累计安时放电容量与预先检测的参考安时积分值的关系判断电池是否过放,采用设定的时间判断只能判断出电池放电的时间周期,并不能准确知道设定时间内实际的总安时值,本申请能够准确的计算出电池放电到当前时刻的累计安时放电容量,再将累计安时放电容量与保护电池的参考安时 积分值进行对比,从而判断出电池的放电是否过放,及时对电池进行预警,避免电池出现过放的问题,防止电池因过放对电池造成损伤,有效的保护了电池。
附图说明
图1是本申请实施例提供的一种电池预警方法的步骤流程图;
图2是本申请实施例提供的一种确定初始参考安时积分值的步骤流程图;
图3是本申请实施例提供的一种电池预警装置的结构框图;
图4示意性地示出了用于执行根据本公开的方法的计算处理设备的框图;并且
图5示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
具体实施例
为本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本申请作进一步详细的说明,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
现有技术中通过定时间滤波判断电池SOC,无法有效的防止电池过放而对电池造成损伤,本申请为了解决上述技术问题,通过了一种电池预警方法,其核心构思在于,在电池的荷电状态低于预设荷电状态阈值后,根据电池的累计安时放电容量值与参考安时积分值进行防止电池过放预警。
参照图1,示出了本申请实施例提供的一种电池预警方法的步骤流程图,所述方法具体可以包括如下步骤:
步骤101,获取参考安时积分值;所述参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后可正常使用的安时积分值;
本申请实施例中,用户在使用车辆或电池时,先检测车辆或电池的荷电状态,当电池的荷电状态达到预设荷电状态阈值时,获取电池荷电状态低于预设荷电状态阈值可正常使用的参考安时积分值,该参考安时积分值为在电池荷电状态低于预设荷电状态阈值后,还可正常放出的电量,即放出该电量不会导 致电池的过放。预设荷电状态阈值与预设滤波时间根据电池电芯厂家提供的数据进行设定。本申请对预设荷电状态阈值的具体数值不做限定,例如,可以为20%,40%,60%,80%或100%。
一种示例中,当车辆的荷电状态达到预设荷电状态阈值时,先获取电池的初始参考安时积分值和当前的电池健康度,然后根据初始参考安时积分值和当前的电池健康度,计算参考安时积分值。
电池的初始参考安时积分值通过对电池的相关参数进行预先检测,然后根据电池电芯厂家提供的相关参数与相关数据所对应的关系,对相关参数和相关数据进行处理计算确定得到,初始参考安时积分值是预先检测确定的,在用户使用车辆或电池时,初始参考安时积分值已经预先存储在车辆和电池的相关处理设备中。当电池的电池荷电状态低于预设荷电状态阈值时,根据电池当前的电池健康度和初始参考安时积分值确定出参考安时积分值,从而确保参考安时积分值是不受电池老化的影响,电池健康度可以为电池当前的实际容量与电池出厂时的容量的百分比,可以表示为电池的老化程度;随着电池的使用,电池的实际容量越低,电池的老化程度越高,电池健康度也随之变低。
在本申请实施例中,可以按照预设时间周期对电池的健康状态定期的进行检测,还可以在用户每次使用车辆或电池时对电池的健康状态进检测,也可以在用户使用车辆或电池时,当电池的荷电状态达到预设荷电状态阈值时,对检测的健康状态进行检测,从而获取到电池当前的电池健康状态,再根据电池当前的健康状态计算当前的电池健康度,然后用当前的电池健康度与初始参考安时积分值的对应关系计算参考安时积分值,电池的健康状态可以为电池当前的实际容量,电池健康度为电池当前的实际容量与电池出厂时的容量的百分比,一般情况下,当前的电池健康度、初始参考安时积分值和参考安时积分值属于乘积关系,用当前的电池健康度乘以初始参考安时积分值得到参考安时积分值。当前的电池健康度、初始参考安时积分值和参考安时积分值的具体关系在此不做限定,可以根据具体的情况设定计算。从而保证了参考安时积分值是当前的状态,不受电池老化的影响,避免了因电池老化影响到电池实际的参考安时积分值。
一种示例中,初始参考安时积分值通过如下步骤确定:
如图2,示出了本申请实施例提供的一种确定初始参考安时积分值的步骤 流程图,具体如下:
步骤201,在所述电池的荷电状态低于所述预设荷电状态阈值后的预设滤波时间内,按照所述预设周期对所述电池的荷电状态和温度状态进行采样;
本申请实施例中可以在电池生产出还未出厂或还未安装在车辆上时,确定出电池的初始参考安时积分值,也可以在电池安装到车辆上后进行确定,本申请在此不做限定。不同型号不同电池电芯厂家的初始参考安时积分值可以是不同的。
当电池的荷电状态低于预设荷电状态阈值时,可以采用一阶电池模型,一阶电池模型可以使用单体电池等效电路、Simscape语言实现,按照预设周期时间对预设滤波时间内的电池的荷电状态和温度状态进行采样,其中,预设荷电状态阈值与预设滤波时间根据电池电芯厂家提供的数据进行设定,不同的电池电芯厂家提供的数据可以存在差异,预设滤波时间为电池的荷电状态低于预设荷电状态阈值后可正常使用的时间。如,预设电池荷电状态阈值为10%,预设滤波时间为10分钟,预设周期为1秒钟,当电池的荷电状态达到10%时,电池可以正常使用的时间为10分钟,以1秒钟为周期,则每隔1秒钟对电池的荷电状态和温度状态进行采样,预设周期可以根据所需要的精细度来确定,计算的精细度越高那么预设周期的时间越小,在此对预设周期的时间不做具体限制。
步骤202,根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值;
按照预设周期对电池的荷电状态和温度状态进行采样后,得到各个周期的荷电状态和温度状态,然后根据各个周期的荷电状态与温度状态分别计算各个预设周期对应的安时值,每个周期的荷电状态与温度状态可以相同也可以不同,因此每个预设周期对应的安时值也可以是相同的状态还可以是不同的状态。如,预设滤波时间为10分钟,预设周期为1秒钟,则每隔1秒钟对电池的荷电状态和温度状态进行采样,那么采样到的荷电状态和温度状态会有600组数据,然后根据采样到的荷电状态和温度状态分别计算这600组预设周期相对应的安时值。
一种示例中,根据采样得到的荷电状态和温度状态,确定当前时刻电池的内阻状态和当前时刻电池所受的功率状态。对电池按照预设周期进行采样得 到当前时刻电池的荷电状态和当前时刻电池的温度状态,根据当前时刻荷电状态和当前时刻的温度状态与当前时刻内阻状态的对应关系,当前时刻荷电状态和当前时刻的温度状态与当前时刻电池所受的功率状态的对应关系,可以确定出当前时刻的电池的内阻状态和当前时刻电池所受的功率状态。其中,当前时刻荷电状态和当前时刻的温度状态与当前时刻内阻状态的对应关系,当前时刻荷电状态和当前时刻的温度状态与当前时刻电池所受的功率状态的对应关系均由电池电芯厂家根据不同规格的电池提供相对应的关系。例如,电池电芯厂家给出当前时刻荷电状态和当前时刻的温度状态与当前时刻内阻状态的对应关系如下表(1)的所示,当前时刻荷电状态和当前时刻的温度状态与当前时刻电池所受的功率状态的对应关系如下表(2)的所示:
表(1)
表(2)
若当前时刻电池的荷电状态为10%,当前时刻电池的温度状态为25℃,根据对应关系可以确定出当前时刻电池的内阻状态为0.615KΩ,当前时刻电池所受的功率状态为46KW。
根据采样得到的荷电状态,确定上一预设周期相对应的历史时刻的电池的开路电压的历史开路电压值。对电池按照预设周期进行采样得到电池的荷电状态,根据电池的荷电状态与开路电压值的对应关系可知确定出上一预设周期相对应的历史时刻的电池的开路电压的历史开路电压,其中,电池的荷电状态与开路电压值的对应关系由电池电芯厂家根据不同规格的电池提供相对应的关系。
例如:预设周期为1秒钟,则每隔1秒钟对电池的荷电状态和温度状态进行采样,采样到第60秒时,即采样得到第60次预设周期时当前时刻电池的荷电状态和温度状态,此时通过第60次预设周期当前时刻电池的荷电状态和温度状态与当前时刻内阻状态和当前时刻电池所受的功率状态的对应关系,确定出当前时刻电池的内阻状态和当前时刻电池所受的功率状态,通过上一预设周期,即第59秒采样得到电池荷电状态,也即采样得到的第59次预设周期时的荷电状态,根据电池的荷电状态与开路电压值的对应关系,确定出第59次预设周期时的电池的开路电压的开路电压值,即上一预设周期相对应的历史时刻的电池的开路电压的历史开路电压值。
根据各个预设周期的功率状态、预设周期的内阻状态、上一预设周期相对应的历史时刻的电池的开路电压的历史开路电压值,分别计算各个预设周期对应的安时值。
一种示例中,根据功率状态、内阻状态以及历史开路电压值,确定当前时刻电池的电流值。在根据对电池的荷电状态和温度状态进行采样,确定出电池当前时刻的内阻状态和当前时刻的电池所受的功率状态以及上一预设周期相对应的电池的历史开路电压值后,根据预设周期的当前时刻的功率状态、当前时刻的内阻状态、上一预设周期相对应的电池的历史开路电压值,分别计算出各个预设周期相对应的安时值,例如:在当前周期中确定出当前时刻的功率状态为Pt,当前时刻的内阻状态为Rt,上一预设周期相对应的电池的历史开路电压值为Uocv,t-1,在本实施例中可以通过公式(1)进行计算得出当前预设周期中当前时刻电池的电流值It
将公式(1)进行化简,可以得到公式(2):
Rt*It 2-Uocv,t-1*It+Pt=0     公式(2)
将公式(2)进行求解,可以得到公式(3):
因为电池的电流值为正值,因此上述公式(3)解为公式(4):
根据各个预设周期的所述当前时刻电池的电流值,分别计算各个所述预设周期对应的安时值。通过上述公式(4)计算出当前周期中当前时刻电池的电流值后,可以分别计算各个预设周期的当前时刻电池的电流值,然后根据各个预设周期对应的电流值分别各个预设周期对应的安时值。在本实施例中,可以通过公式(5)计算出预设周期对应的安时值,其中T为预设周期的时间间隔,Aht为当前时刻的安时值。如:预设周期为1秒钟,那么公式(5)中的T为1S。
Aht=It*T     公式(5)
步骤203,将各个所述预设周期对应的安时值进行累加,得到所述初始参考安时积分值。
分别计算各个预设周期对应的安时值后,再将各个预设周期对应的安时值进行累加,本实施例中可以通过公式(6)进行计算,计算得出的值即为初始参考安时积分值,其中,Ahtol为初始参考安时积分值。
Ahtol=∑Aht     公式(6)
步骤102,计算从所述电池的荷电状态开始低于所述预设荷电状态阈值时刻,到当前时刻的累计安时放电容量;
当检测到电池的荷电状态到达预设荷电状态阈值时,开始检测并统计电池的安时放电容量,根据检测统计出的电池的安时放电容量,然后计算出电池在从荷电状态开始低于预设荷电状态阈值时到当前时刻的累计安时放电容量。其中,可以在电池的荷电状态到达预设荷电状态阈值时,按照预设统计周期,分别统计各个周期相对应的安时放电容量,然后将各个周期相对应的安时放电容量累加得到电池在从荷电状态开始低于预设荷电状态阈值时到当前时刻的累计安时放电容量。
步骤103,当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警。
在检测到电池的累计安时放电容量达到获取的参考安时积分值时,进行防止电池过放预警,其中,预警的消息可以以语音、文字、短信等中的至少一种方式进行推送。当用户把车借用给朋友使用或者车辆不在自己身边时,此时 车辆的电池的累计放电容量达到了参考安时积分值时,用户可以通过短信推送的方式获知预警信息,此时用户可以及时提醒朋友或者及时的对电池进行充电,从而避免电池因过放对电池造成损伤,保护电池延长电池的使用时间。
一种示例中,当电池的累计安时放电容量值达到获取的参考安时积分值时,在进行防止电池过放预警的同时,还可以自动关闭正在消耗电池且不影响正常驾驶的功能,从而减少电池的过放进而对电池进行自动保护。其中,不影响正常驾驶的功能包括车辆的空调功能、播放器功能、座椅加热功能等,本申请在此不做具体的限定。
一种示例中,当电池的累计安时放电容量值达到获取的参考安时积分值时,在进行防止电池过放预警的同时,若车俩此时有备用电池且备用电池可以正常使用,此时还可以将为车辆供电的电池自动切换到备用电池上,以免电池因过放对电池造成损伤,对电池进行自动保护。比如车辆携带不仅仅只有一块或一组电池,还携带了备用电池,备用电池和正在使用的电池存在同一系统或同一电路中,在将车辆正在供电使用的电池切换到备用电池上时,不影响用户的正常使用,具体而言,在切换的时候用户是不会有切换电池的感觉,只能通过切换提示,或者电池使用指示知道电池已自动切换,不会影响到用户对电池的使用体验。
本申请上述实施例中,不是采用设定的时间判断电池的电量状态,而是根据电池的累计安时放电容量与预先检测的参考安时积分值的关系判断电池是否过放,通过累计安时放电容量能够准确知道每一个预设周期内电池的具体放电安时值,采用设定的时间判断只能判断出电池放电的时间周期,并不能准确知道设定时间内实际的总安时值,本申请因此能够准确清楚的知道电池放电的安时值和保护电池过放的安时积分值,且不受电池的老化影响,及时对电池进行预警,防止电池因过放对电池造成损伤,有效的保护了电池。
参照图3,示出了本申请实施例提供的一种电池预警装置的结构框图,具体包括如下模块:
获取模块301,用于获取参考安时积分值;所述参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后可正常使用的安时积分值;
确定模块302,用于计算从所述电池的荷电状态开始低于所述预设荷电状态阈值时刻,到当前时刻的累计安时放电容量;
预警模块303,用于当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警。
在本申请一种实施例中,所述获取模块301包括:
获取子模块,用于获取所述电池的初始参考安时积分值;
第一计算子模块,用于根据所述初始参考安时积分值与当前的电池健康度,计算所述参考安时积分值。
在本申请一种实施例中,所述装置还包括:
采样模块,用于在所述电池的荷电状态低于所述预设荷电状态阈值后的预设滤波时间内,按照所述预设周期对所述电池的荷电状态和温度状态进行采样;
计算模块,用于根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值;
累加模块,用于,将各个所述预设周期对应的安时值进行累加,得到所述初始参考安时积分值。
在本申请一种实施例中,所述计算模块包括:
第一确定子模块,用于根据采样得到的所述荷电状态和所述温度状态,确定当前时刻所述电池的内阻状态和当前时刻所述电池所受的功率状态;
第二确定子模块,用于根据采样得到的所述荷电状态,确定上一所述预设周期相对应的历史时刻的所述电池的开路电压的历史开路电压值;
第二计算子模块,用于根据各个预设周期的所述功率状态、所述内阻状态、所述历史开路电压值,分别计算各个所述预设周期对应的安时值。
在本申请一种实施例中,所述第二计算子模块包括:
确定单元,用于根据所述功率状态、所述内阻状态以及所述历史开路电压值,确定所述当前时刻电池的电流值;
计算单元,用于根据各个预设周期的所述当前时刻电池的电流值,分别计算各个所述预设周期对应的安时值。
在本申请一种实施例中,所述装置还包括:
自动关闭模块,用于自动关闭消耗所述电池且不影响正常驾驶的功能。
在本申请一种实施例中,所述装置还包括:
自动切换模块,用于将为车辆供电使用的所述电池自动切换为车辆的备 用电池,其中,所述备用电池为可正常使用的电池。
在本申请一种实施例中,所述预警模块包括:
推送子模块,用于当所述累计安时放电容量值达到所述参考安时积分值时,将预警消息以语音、文字、短信中的至少一种方式进行推送。
本申请实施例中,不是采用设定的时间判断电池的电量状态,而是根据电池的累计安时放电容量与预先检测的参考安时积分值的关系判断电池是否过放,通过累计安时放电容量能够准确知道每一个预设周期内电池的具体放电安时值,采用设定的时间判断只能判断出电池放电的时间周期,并不能准确知道设定时间内实际的总安时值,本申请因此能够准确清楚的知道电池放电的安时值和保护电池过放的安时积分值,且不受电池的老化影响,及时对电池进行预警,防止电池因过放对电池造成损伤,有效的保护了电池。
对于装置实施例而言,由于其与方法实施例基本相似,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。
本申请实施例还提供了一种车辆,包括:
包括处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,该计算机程序被处理器执行时实现上述电池预警方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机可读存储介质,计算机可读存储介质上存储计算机程序,计算机程序被处理器执行时实现上述电池预警方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的计算处理设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本公开的方法的计算处理设备。该计算 处理设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的计算处理设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由计算处理设备运行时,导致该计算处理设备执行上面所描述的方法中的各个步骤。
本说明书中每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
本领域内的技术人员应明白,本申请实施例的实施例可提供为方法、装置、或计算机程序产品。因此,本申请实施例可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请实施例可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本申请实施例是参照根据本申请实施例的方法、终端设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理终端设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理终端设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理终 端设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理终端设备上,使得在计算机或其他可编程终端设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程终端设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本申请所提供的一种电池预警方法和一种电池预警装置,进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (12)

  1. 一种电池预警方法,其特征在于,包括:
    获取参考安时积分值;所述参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后可正常使用的安时积分值;
    计算从所述电池的荷电状态开始低于所述预设荷电状态阈值时刻,到当前时刻的累计安时放电容量;
    当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警。
  2. 根据权利要求1所述的方法,其特征在于,所述获取参考安时积分值,包括:
    获取所述电池的初始参考安时积分值和当前的电池健康度;
    根据所述初始参考安时积分值和所述当前的电池健康度,计算所述参考安时积分值。
  3. 根据权利要求2所述的方法,其特征在于,所述初始参考安时积分值通过如下步骤确定:
    在所述电池的荷电状态低于所述预设荷电状态阈值后的预设滤波时间内,按照所述预设周期对所述电池的荷电状态和温度状态进行采样;
    根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值;
    将各个所述预设周期对应的安时值进行累加,得到所述初始参考安时积分值。
  4. 根据权利要求3所述的方法,其特征在于,所述根据各个预设周期采样得到的所述荷电状态、所述温度状态,分别计算各个所述预设周期对应的安时值,包括:
    根据采样得到的所述荷电状态和所述温度状态,确定当前时刻所述电池的内阻状态和当前时刻所述电池所受的功率状态;
    根据采样得到的所述荷电状态,确定上一所述预设周期相对应的历史时刻的所述电池的开路电压的历史开路电压值;
    根据各个预设周期的所述功率状态、所述内阻状态、所述历史开路电压 值,分别计算各个所述预设周期对应的安时值。
  5. 根据权利要求1所述方法,其特征在于,所述当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警之后,还包括:
    自动关闭消耗所述电池且不影响正常驾驶的功能。
  6. 根据权利要求1所述方法,其特征在于,所述当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警之后,还包括:
    将为车辆供电使用的所述电池自动切换为车辆的备用电池,其中,所述备用电池为可正常使用的电池。
  7. 根据权利要求1所述方法,其特征在于,所述当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警,包括:
    当所述累计安时放电容量值达到所述参考安时积分值时,将预警消息以语音、文字、短信中的至少一种方式进行推送。
  8. 一种电池预警装置,其特征在于,所述装置包括:
    获取模块,用于获取参考安时积分值;所述参考安时积分值为在电池的荷电状态低于预设荷电状态阈值后可正常使用的安时积分值;
    确定模块,用于计算从所述电池的荷电状态开始低于所述预设荷电状态阈值时刻,到当前时刻的累计安时放电容量;
    预警模块,用于当所述累计安时放电容量值达到所述参考安时积分值时,进行防止电池过放预警。
  9. 一种车辆,其特征在于,包括:处理器、存储器及存储在所述存储器上并能够在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1-7中任一项所述的电池预警方法的步骤。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一项所述的电池预警方法的步骤。
  11. 一种计算处理设备,其特征在于,包括:
    存储器,其中存储有计算机可读代码;以及
    一个或多个处理器,当所述计算机可读代码被所述一个或多个处理器执行时,所述计算处理设备执行如权利要求1-7中任一项所述的电池预警方法。
  12. 一种计算机程序,包括计算机可读代码,当所述计算机可读代码在计算处理设备上运行时,导致所述计算处理设备执行根据权利要求1-7中任一项所述的电池预警方法。
PCT/CN2023/092095 2022-05-16 2023-05-04 一种电池预警方法、装置、车辆和存储介质 WO2023221775A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210529442.XA CN117110917A (zh) 2022-05-16 2022-05-16 一种电池预警方法、装置、车辆和存储介质
CN202210529442.X 2022-05-16

Publications (1)

Publication Number Publication Date
WO2023221775A1 true WO2023221775A1 (zh) 2023-11-23

Family

ID=88802560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092095 WO2023221775A1 (zh) 2022-05-16 2023-05-04 一种电池预警方法、装置、车辆和存储介质

Country Status (2)

Country Link
CN (1) CN117110917A (zh)
WO (1) WO2023221775A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274411A (ja) * 1994-03-30 1995-10-20 Mitsubishi Electric Corp 車両用発電制御装置
JPH08185890A (ja) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd 移動体の駆動源に用いられるバッテリの管理方法
CN102830360A (zh) * 2012-08-22 2012-12-19 杭州杰能动力有限公司 在汽车运行时获取实时电池容量的方法、系统及电动汽车
CN107689655A (zh) * 2017-09-08 2018-02-13 代炎利 一种蓄电池的过放电保护方法及过放电保护装置
CN108407641A (zh) * 2018-03-09 2018-08-17 中国第汽车股份有限公司 电动汽车及其智能放电装置
CN110194079A (zh) * 2018-02-23 2019-09-03 福特全球技术公司 用于检测电池过放电状况的系统和方法
CN112763920A (zh) * 2021-01-29 2021-05-07 上海仙塔智能科技有限公司 一种蓄电池监测方法、装置及计算机存储介质
WO2021142678A1 (zh) * 2020-01-15 2021-07-22 深圳市大疆创新科技有限公司 电池参数确定方法、设备及存储介质
CN114379371A (zh) * 2022-02-18 2022-04-22 奇瑞商用车(安徽)有限公司 一种基于bms的电动汽车低电量工况高压控制方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07274411A (ja) * 1994-03-30 1995-10-20 Mitsubishi Electric Corp 車両用発電制御装置
JPH08185890A (ja) * 1994-12-28 1996-07-16 Tokyo Gas Co Ltd 移動体の駆動源に用いられるバッテリの管理方法
CN102830360A (zh) * 2012-08-22 2012-12-19 杭州杰能动力有限公司 在汽车运行时获取实时电池容量的方法、系统及电动汽车
CN107689655A (zh) * 2017-09-08 2018-02-13 代炎利 一种蓄电池的过放电保护方法及过放电保护装置
CN110194079A (zh) * 2018-02-23 2019-09-03 福特全球技术公司 用于检测电池过放电状况的系统和方法
CN108407641A (zh) * 2018-03-09 2018-08-17 中国第汽车股份有限公司 电动汽车及其智能放电装置
WO2021142678A1 (zh) * 2020-01-15 2021-07-22 深圳市大疆创新科技有限公司 电池参数确定方法、设备及存储介质
CN112763920A (zh) * 2021-01-29 2021-05-07 上海仙塔智能科技有限公司 一种蓄电池监测方法、装置及计算机存储介质
CN114379371A (zh) * 2022-02-18 2022-04-22 奇瑞商用车(安徽)有限公司 一种基于bms的电动汽车低电量工况高压控制方法

Also Published As

Publication number Publication date
CN117110917A (zh) 2023-11-24

Similar Documents

Publication Publication Date Title
EP3733436B1 (en) Battery management apparatus and method
CN109613436B (zh) 电池管理系统、电池系统及电池析锂的检测方法、装置
JP6171127B2 (ja) 電池制御システム、車両制御システム
JP6171128B2 (ja) 電池制御システム、車両制御システム
JPWO2014122831A1 (ja) 劣化判定方法、蓄電装置の製造方法、劣化判定装置、及び、プログラム
CN113711070A (zh) 电池内短路侦测方法、电子装置和存储介质
CN102343831B (zh) 用于重新平衡车辆电池的系统和方法
CN112485685A (zh) 功率承受能力参数确定方法、装置及电子设备
CN112272908B (zh) 充电方法、电子装置以及存储介质
CN113612295B (zh) 一种应急储能电池电能管理方法、装置及介质
US9997944B2 (en) Method and system of charging a battery
CN111211381B (zh) 一种锂电池在低温下的放电控制方法及装置
JP6332273B2 (ja) 蓄電システム、蓄電池の制御方法及びプログラム
WO2023221775A1 (zh) 一种电池预警方法、装置、车辆和存储介质
WO2017002953A1 (ja) データ抽出装置、データ抽出方法およびデータ抽出プログラム
WO2022188607A1 (zh) 电池内短路检测方法、电子装置以及存储介质
CN112014741A (zh) 电池析锂检测方法、电池、终端设备及存储介质
US11152800B2 (en) Systems and methods for charging a battery
CN113030756A (zh) 一种电池健康度评估方法
CN115372848A (zh) 电池自放电性能的检测方法、装置、设备及介质
CN112731187A (zh) 电池容量修正方法和电池管理系统
CN113270656A (zh) 用于确定至少一个电能存储单元的老化状态的方法
CN113131028B (zh) 一种基于机械压力检测锂离子电池过放电的方法
CN114264961B (zh) 一种电芯内短路的检测方法、装置和电子设备
CN111487541B (zh) 判断电量状态的方法及其电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806727

Country of ref document: EP

Kind code of ref document: A1