WO2023221603A1 - 天线模组和通信设备 - Google Patents

天线模组和通信设备 Download PDF

Info

Publication number
WO2023221603A1
WO2023221603A1 PCT/CN2023/079659 CN2023079659W WO2023221603A1 WO 2023221603 A1 WO2023221603 A1 WO 2023221603A1 CN 2023079659 W CN2023079659 W CN 2023079659W WO 2023221603 A1 WO2023221603 A1 WO 2023221603A1
Authority
WO
WIPO (PCT)
Prior art keywords
ground
feed
unit
antenna
board
Prior art date
Application number
PCT/CN2023/079659
Other languages
English (en)
French (fr)
Inventor
徐海兵
齐美清
周晓
吴伟
陶醉
赵捷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023221603A1 publication Critical patent/WO2023221603A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/521Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the coupling between adjacent antennas

Definitions

  • the present invention relates to the field of network communication technology, and in particular to an antenna module and communication equipment.
  • MIMO system that is, multiple input multiple output system, by setting up multiple transmitting and receiving antennas, and then through specific data processing, the communication capacity can be doubled to meet the growing demand for communication services.
  • multiple antenna units are connected to the radio frequency chip on the motherboard through feed cables.
  • the feed cable is used to feed the antenna unit.
  • the feed cable not only clutters the internal space of the communication equipment, but also requires high process precision for assembling and positioning the feed cable, making it difficult to control the low cost of the communication equipment. .
  • This application provides an antenna module and communication equipment, which can realize a cable-free design on the premise of ensuring the antenna radiation performance, making the internal structure of the communication equipment clean and low-cost.
  • the present application provides an antenna module, including a radiating unit, a grounding unit and a feeding unit.
  • the radiating unit and the grounding unit are stacked.
  • the feeding unit is a transmission line structure formed on an insulating bracket.
  • the feeding unit is arranged along a first direction.
  • the feed unit is located on a side of the radiating unit away from the ground unit.
  • the feed unit includes a feed transmission part and a ground part. The feed transmission part and the ground part are insulated and separated.
  • the width of the feed transmission part includes a first width
  • the width of the ground part includes a second width
  • the first width is not equal to the second width
  • the width of the feed transmission part refers to the width perpendicular to the The dimension in the direction of the extension path of the feed transmission part
  • the width of the ground part refers to the dimension in the direction perpendicular to the extension path of the ground part.
  • This application feeds the radiating unit through the feeding unit of the transmission line structure arranged on the insulating bracket.
  • the feeding unit The unequal width design of the feed transmission part and the ground part has a decoupling effect, that is, it can eliminate or reduce the coupling effect of the feed unit on the radiating unit and improve the radiation performance of the antenna module.
  • the radiating unit and the grounding unit in the antenna module provided by this application form an asymmetric architecture.
  • the asymmetric architecture refers to the radiating unit and the grounding unit being different structures. In the resonance state, the radiating unit and the grounding unit have different structures. The grounding unit produces a current imbalance.
  • the current on the radiating unit and the current on the grounding unit are not of equal amplitude, and the current directions are also different.
  • This application can solve the impedance mismatch problem caused by current imbalance between the radiation unit and the ground unit through the design of unequal widths of the feed transmission part and the ground part.
  • the design of unequal widths of the feed transmission part and the ground part makes The entire antenna module achieves the effect of current balance.
  • the electrical length of the feed transmission part is between 0.3 ⁇ -0.7 ⁇ , and ⁇ is the wavelength of the electromagnetic wave in the resonance state of the radiation unit. .
  • the electrical length of the feed transmission part may be 0.5 ⁇ .
  • the extension path of the feed transmission part and the extension path of the ground part form a dual parallel line architecture. It can be understood that the gap between the first feed end of the feed transmission part and the first ground end of the ground part is the same as the gap between the second feed end of the feed transmission part and the first ground end of the ground part. , and on the extension path of the first feed end and the ground part, the gap between the first feed end and the ground part remains unchanged.
  • the feed unit is When the antenna module is working, it can form currents with equal amplitude and reverse direction, so that the feed unit will not affect the resonance of the radiating unit, ensuring that the antenna module is a vertically polarized antenna and a better pattern can be obtained.
  • the total electrical length of the feed transmission part in the second direction is between 0.15 ⁇ -0.35 ⁇ , ⁇ is the wavelength of the electromagnetic wave in the resonance state of the radiation unit, and the second The direction is perpendicular to said first direction. In a specific implementation, the total electrical length of the feed transmission part in the second direction is 0.25 ⁇ .
  • some transmission lines of the feed transmission part extending in the second direction are collinear. This solution provides a simple wiring scheme for the feed transmission part, which makes it easier to control the electrical length of the feed transmission part and has a more obvious effect on suppressing the induced current.
  • the partial transmission line of the feed transmission part extending in the second direction includes at least two sections of transmission lines, and the at least two sections of transmission lines are connected by a transmission line extending in the first direction. .
  • the at least two sections of transmission lines may be parallel to each other.
  • the feed transmission part and the ground part are coplanar. That is, the feed transmission part and the ground part are located on the same plane, that is to say, the plane of the insulating bracket carrying the feed transmission part and the ground part is the same.
  • the insulating bracket is a circuit board structure
  • the feed transmission part and the grounding part are located on the same layer of the circuit board.
  • This application does not consider the thickness of the feed transmission part and the ground part.
  • the thickness of the feed transmission part and the ground part may be different. However, as long as the feed transmission part and the ground part are arranged on the same plane, they can be understood to be coplanar. .
  • the coplanar design has lower manufacturing cost and is easy to control the positional relationship between the feed transmission part and the ground part.
  • the plane where the feed transmission part is located and the plane where the ground part is located are not coplanar.
  • the feed transmission part and the ground part are arranged oppositely (may be in a positive direction). pair), the third direction is perpendicular to the second direction, and the third direction is also perpendicular to the first direction.
  • This solution is also called the feed transmission part and the ground part forming a heterogeneous transmission line architecture.
  • the feed transmission and ground may be located on different layers of the circuit board.
  • the out-of-plane transmission architecture provided by this solution has the advantages of saving space and occupying board area.
  • the thickness of the base material of the circuit board can be used as the insulation isolation between the feed transmission part and the ground part. Lower production costs.
  • the current on the feed transmission part and the current on the ground part are equal and opposite in amplitude.
  • the feed transmission part includes a first feed end and a second feed end, the first feed end is electrically connected to the radiating unit, and the second feed end is
  • the radio frequency chip on the motherboard in the electrically connected communication device has the feed transmission portion extending equally wide from the first feed end to the second feed end;
  • the ground portion includes a first ground terminal and a second ground terminal, the first ground terminal is electrically connected to the ground unit, and the second ground terminal is used to electrically connect the ground on the mainboard of the communication device. From a ground end to the second ground end, the ground portion extends with equal width.
  • the feed transmission part includes a first feed end and a second feed end, the first feed end is electrically connected to the radiating unit, and the second feed end is The radio frequency chip on the motherboard in the electrically connected communication device, from the first feed end to the second feed end, part of the feed transmission part extends with equal width, and part of the feed transmission part has unequal width. wide extension; and/or
  • the ground portion includes a first ground terminal and a second ground terminal.
  • the first ground terminal is electrically connected to the ground unit.
  • the second ground terminal is used to electrically connect the ground on the communication equipment mainboard. From the first ground terminal From the ground end to the second ground end, part of the ground part extends with equal width, and part of the ground part extends with unequal width.
  • the feed transmission part includes a first feed end and a second feed end, the first feed end is electrically connected to the radiating unit, and the second feed end is
  • the radio frequency chip on the motherboard in the electrically connected communication device has the feed transmission portion extending equally wide from the first feed end to the first feed end;
  • the ground portion includes a first ground terminal and a second ground terminal.
  • the first ground terminal is electrically connected to the ground unit.
  • the second ground terminal is used to electrically connect the ground on the communication equipment mainboard. From the first ground terminal From the ground end to the second ground end, part of the ground part extends with equal width, and part of the ground part extends with unequal width.
  • the ground portion includes a first ground terminal and a second ground terminal, the first ground terminal is electrically connected to the ground unit, and the second ground terminal is used to electrically connect to the motherboard of the communication device.
  • the ground portion extends equally wide from the first ground end to the second ground end;
  • the feed transmission part includes a first feed end and a second feed end.
  • the first feed end is electrically connected to the radiating unit.
  • the second feed end is used to electrically connect to the mainboard in the communication device.
  • part of the feed transmission part extends with equal width, and part of the feed transmission part extends with unequal width.
  • This application provides several combination schemes of the feed transmission part and the ground part.
  • the design of the feed transmission part and the ground part with equal widths can be combined with the design of unequal widths.
  • the design of the feed transmission portion with unequal widths can be a design with gradual width, which is beneficial to adjusting the impedance.
  • the antenna module includes a first board and a second board, the first board includes a first layer and a second layer arranged in a stack, and the radiating unit is located on the first layer, The grounding unit is located on the second layer; the second board is the insulating bracket, the second board includes a wiring layer and first and second edges arranged oppositely, and the wiring layer is located on the third Between an edge and the second edge, the second board is located on one side of the first board, the first edge is connected to the first board, and the feed unit is disposed on the wiring layer above, the wiring layer and the first layer are arranged at an angle.
  • the first board and the second board may be a printed circuit board structure, and the feed unit and the radiating unit of the antenna module are transmission line structures arranged on the printed circuit board.
  • the antenna module does not include any feed cables, and there are no power supply cables inside the communication device. There is no feed cable, which makes the internal structure of the communication equipment simple, and the position and shape of the transmission line are fixed. It is also designed before assembling the antenna module, and there is no adverse impact on the antenna during the assembly process.
  • the connection between the first board and the second board can achieve low-loss board-level interconnection. Not only is the assembly cost low, but for the antenna module, the loss caused by the connection between the first board and the second board is also relatively low. Low.
  • the ground portion is electrically connected to the ground unit through the connection between the first edge and the first board, and the connection between the first board and the second board
  • a connection structure is provided at the base, and the connection structure is used to realize the electrical connection between the feed transmission part and the radiation unit.
  • This application can simultaneously realize the electrical connection between the feed unit and the radiation unit and the electrical connection between the feed unit and the grounding unit through the assembly and connection process between the first board and the second board.
  • This electrical connection method not only It is reliable and has the advantage of low loss.
  • the first plate is provided with a hole penetrating the first layer and the second layer
  • the second The board includes a plug-in structure protruding from the first edge, at least part of the plug-in structure is located in the hole
  • the connection structure includes the hole and the plug-in structure
  • the connection structure also includes a conductive connection part
  • the conductive connection part is electrically connected between the radiation unit and the feed transmission part.
  • the hole is a through hole, and the hole includes a first open end and a second open end, and the plug-in structure is inserted into the hole from the first open end and from the third open end.
  • the conductive connection part is welded to the radiation unit on one side of the two open ends.
  • the first layer is the top surface of the first plate
  • the second layer is the bottom surface of the first plate
  • the first opening end is located on the bottom surface
  • the The second open end is located on the top surface.
  • the second edge of the second board is connected to the main board of the communication device, the ground portion of the feed unit is electrically connected to the ground layer on the main board, and the feed unit
  • the electrical transmission part and the radio frequency chip on the main board are electrically connected through a transmission line provided on the main board.
  • a first main antenna is provided on the second board, and the radiating unit, the grounding unit and the feeding unit constitute a second main antenna, and the resonance of the first main antenna
  • the frequency is the first frequency
  • the resonant frequency of the second main antenna is the second frequency
  • the second frequency is higher than the first frequency
  • the first frequency is 2.4GHz
  • the second frequency is 5G.
  • the antenna module includes multiple antenna units, each of the antenna units includes one of the first main antenna and one of the second main antenna, and the antenna unit further includes a third A decoupling structure and a second decoupling structure, the first decoupling structure is located on the second board, the antenna module also includes a third board, the third board and the second board are arranged crosswise , the second decoupling structure is located on the third board.
  • the distance between the two first main antennas is set between 0.2 wavelength and 0.8 wavelength, and the first decoupling structure and the second decoupling structure are combined to improve the isolation of the two first main antennas. Since the distance between the two first main antennas is between 0.2 wavelength and 0.8 wavelength, if the first decoupling structure is not provided in each antenna unit, the two first main antennas will receive each other's signals in the resonance state. signals, causing signal interference, resulting in poor isolation.
  • one end of the second board and the third board away from the first board is connected to the main board of the communication device, and in a direction perpendicular to the ground layer of the main board of the communication device, the The maximum distance between the first decoupling structure and the ground layer is the cross-sectional height of the first decoupling structure, and the cross-sectional height of the first decoupling structure ranges from 0.01 wavelength to 0.16 wavelength.
  • the distance between the first decoupling structure and the first main antenna is a first distance
  • the distance between the first decoupling structure and the first main antenna of the adjacent antenna unit is a second distance.
  • the first distance and the second distance are both between 0.1 wavelength and 0.6 wavelength; the second decoupling structure is used to reduce the interference between the first main antenna and the adjacent antenna unit The amount of coupling between the first main antenna and the resonant frequency of the second decoupling structure is greater than the first frequency or less than the first frequency.
  • This application can achieve a small size of the antenna by arranging the first decoupling structure, which is conducive to the thin design of the communication equipment and also
  • the problem of isolation between adjacent first main antennas can be solved by controlling the cross-sectional height of the first decoupling structure, the distance between the first decoupling structure and the first main antenna, and the distance between the first decoupling structure and the phase.
  • the distance between adjacent first main antennas can improve the isolation between adjacent first main antennas in a limited space while reducing the impact on the radiation efficiency of the first main antenna. There are no obvious pits in the simulation diagram of the radiation efficiency of the first main antenna.
  • This application realizes decoupling between the first main antennas by adjusting the resonant frequency of the second decoupling structure so that its resonant frequency is not at the first frequency, but slightly larger or smaller. While improving the isolation, Reduce the impact on antenna radiation efficiency. Specifically, when the second decoupling structure resonates, it will produce an efficiency pit for the electromagnetic wave at the resonant frequency of the second decoupling structure. For the first main antenna, the efficiency generated by the second decoupling structure The pits can avoid the in-band frequency (ie, the first frequency) of the resonance of the first main antenna, thereby reducing the impact of the second decoupling structure on the radiation efficiency of the first main antenna.
  • the radiating unit, the ground unit and the feeding unit constitute a horizontally arranged vertically polarized antenna.
  • this application provides a communication device, including a radio frequency chip and the antenna module described in any possible implementation manner of the first party.
  • the radio frequency chip is used to process electromagnetic wave signals sent and received by the antenna module.
  • Figure 1 is an assembly diagram of a communication device provided by an embodiment of the present application.
  • Figure 2 is an assembly diagram from another direction of the communication device provided by an embodiment of the present application.
  • Figure 3 is an exploded perspective view of a communication device provided by an embodiment of the present application.
  • Figure 4 is a cross-sectional view of a communication device provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the inside of the second housing of the communication device provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram showing the distribution of at least part of the electronic components on the bottom surface of the mainboard of the communication device provided by an embodiment of the present application;
  • Figure 7 is a three-dimensional exploded schematic diagram of an antenna module provided by an embodiment of the present application.
  • Figure 8 is a three-dimensional exploded schematic view from another direction of the antenna module provided by an embodiment of the present application.
  • Figure 9 is a schematic cross-sectional view of an antenna module provided by an embodiment of the present application.
  • Figure 9A, Figure 9B and Figure 9C show the positional relationship between the radiating unit and the grounding unit of the antenna module in the specific embodiment of the present application;
  • Figure 10 is a schematic diagram of using a feed cable to feed an antenna module in the prior art
  • Figure 11 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 13 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 14 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 16 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a feed unit in an antenna module provided by an embodiment of the present application.
  • Figure 18 is a schematic cross-sectional view of an antenna module in an exploded state according to an embodiment of the present application.
  • Figure 19 is a schematic cross-sectional view of the assembled state of the antenna module provided in the embodiment shown in Figure 18;
  • Figure 20 is a schematic cross-sectional view of an antenna module in an exploded state according to an embodiment of the present application
  • Figure 21 is a schematic cross-sectional view of the assembled state of the antenna module provided in the embodiment shown in Figure 20;
  • Figure 22 is a three-dimensional exploded schematic diagram of an antenna module provided by an embodiment of the present application.
  • FIG. 23 is a schematic diagram with dimensions of the antenna module provided in the embodiment shown in FIG. 22 .
  • Wireless AP namely Access Point
  • Wireless AP is also a wireless access point. Simply put, it is a wireless switch in a wireless network. It is the access point for mobile terminal users to enter the wired network. It has been widely used in network coverage in various situations, including enterprise-level customer scenarios such as education and medical care. Wireless AP can be used for home broadband, enterprise internal network deployment, etc. The wireless coverage distance is tens to hundreds of meters. General wireless APs also have access point client mode, which means that APs can be wirelessly linked to each other, thereby expanding the coverage of the wireless network.
  • MIMO technology namely Multiple-Input Multiple-Output
  • MIMO technology refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and receiving end respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and receiving end, thereby improving communication quality. It can make full use of space resources and achieve multiple transmissions and multiple receptions through multiple antennas. It can double the system channel capacity without increasing spectrum resources and antenna transmission power. It shows obvious advantages and is regarded as the next generation of mobile phones.
  • the core technology of communication refers to the use of multiple transmitting antennas and receiving antennas at the transmitting end and receiving end respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and receiving end, thereby improving communication quality. It can make full use of space resources and achieve multiple transmissions and multiple receptions through multiple antennas. It can double the system channel capacity without increasing spectrum resources and antenna transmission power. It shows obvious advantages and is regarded as the next generation of mobile phones.
  • the core technology of communication refers to the use of multiple transmitting antennas and
  • FIG. 1 and 2 are assembly diagrams of a communication device provided by an embodiment of the present application
  • FIG. 3 is an exploded perspective view of a communication device provided by an embodiment of the present application
  • Figure 4 is a cross-sectional view of a communication device provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of the inside of the second housing 102 of the communication device provided by an embodiment of the present application.
  • the communication device 100 is a wireless AP.
  • the communication device 100 includes a first housing 101 and a second housing 102 .
  • the first housing 101 and the second housing 102 are engaged with each other to form an internal space G of the communication device 100 .
  • the first housing 101 is a bottom housing
  • the second housing 102 is a top housing
  • the first housing 101 is connected to a carrier.
  • the first housing 101 contacts a desktop or a wall. or other support surfaces.
  • the periphery of the second housing 102 usually has no other shielding objects and is exposed to the air.
  • the first housing 101 is a housing (such as a metal housing) with conductive material and shielding function.
  • the first housing 101 includes a middle area R1 and an edge area R2 surrounding the middle area.
  • the middle area R1 is used to set the connector socket 1011 (for example: and network).
  • Pads 1012 are provided at the intersection of the middle region R1 and the edge region R2.
  • the middle region R1 is square, and the number of pads 1012 is four, which are distributed at the four corners of the middle region R1.
  • the edge area R2 is provided with a heat sink 1013.
  • the heat sink 1013 is used to dissipate heat for the heating elements in the communication equipment.
  • the heat sink 1013 is arranged around the periphery of the connector socket 1011.
  • the heat sink 1013 includes a plurality of fins, each of which is Extending from the junction of the edge area R2 and the middle area R1 to the outer edge of the edge area R2, the edge area R2 is also provided with an opening 1014.
  • This opening 1014 connects the internal space G and the outside of the communication device 100.
  • This opening 1014 is provided for Install the IOT (Internet of things) card module.
  • IOT card can be understood as an Internet of Things card, which is a chip that provides Internet access for devices.
  • the inner surface of the first housing 101 forms multiple accommodation spaces G1. Adjacent accommodation spaces G1 are separated by lower partitions 1015, and the multiple accommodation spaces G1 are independently provided.
  • the plurality of accommodation spaces G1 are used to accommodate electronic devices in the communication device 100.
  • the accommodation spaces G1 are independent of each other, so that the first housing 101 constitutes a shield structure of the electronic device. Therefore, the first housing 100 of the communication device 100 provided by the present application
  • the housing 101 integrates the functions of a housing and a shielding cover. By combining the first housing 101 with the mainboard 103 of the communication device 100, the first housing 101 constitutes multiple shielding covers arranged on the mainboard 103, which can protect the mainboard 103. Mask different electronic devices.
  • the application does not require an additional shielding structure between the casing of the communication device 100 and the main board, which is beneficial to the thin design of the communication device.
  • the second housing 102 is made of non-conductive material (such as plastic), and the inside of the second housing 102 is used to install the antenna module.
  • the second housing 102 is designed to be made of non-conductive material, which does not affect the radiation efficiency of the antenna.
  • the communication device 100 is equipped with a mainboard 103.
  • the mainboard 103 is fixed in the internal space G surrounded by the first housing 101 and the second housing 102.
  • the mainboard 103 includes a bottom surface S1 and a top surface S2.
  • the bottom surface S1 Toward the inner surface of the first housing 101 , the top surface S2 is directed to the inner surface of the second housing 102 .
  • the electronic devices on the motherboard 103 include a CPU, CPU peripheral circuits, multiple radio frequency chips, baseband chips, antenna modules and other functional modules (such as power supply module, Bluetooth module, network port, optical fiber interface, etc.).
  • the main heating components and components requiring electromagnetic shielding on the motherboard 103 are disposed on the bottom surface S1, and the electronic components requiring electromagnetic shielding are correspondingly disposed in the accommodation space G1 formed by the first housing 101, which functions like a shield cover.
  • the main heat-generating device dissipates heat through the first housing 101 .
  • electronic devices such as CPU, baseband chip, radio frequency chip, power supply module, Bluetooth module, network port, optical fiber interface, IOT card module and other electronic devices are arranged on the bottom surface S1 of the motherboard 103 .
  • the antenna module 10 is disposed on the top surface S2 of the main board 103.
  • the second housing 102 is made of non-conductive material, the side of the antenna module 10 away from the main board 103 becomes a clear space, which is beneficial to ensuring antenna performance.
  • the antenna module 10 is arranged in the edge area of the motherboard 103 , and the middle area surrounded by the antenna module 10 is used to install CPU peripheral circuits.
  • the second housing 102 includes a plate body 1021 and an upper partition 1022 protruding from the inner surface of the plate body 1021.
  • the upper partition 1022 can be an integral structure with the plate body 1021.
  • the upper partition 1022 is used to enhance the strength of the board 1021 and ensure the flatness of the board 1021.
  • the upper partition 1022 encloses a plurality of divided spaces G2 on the inner surface of the board 1021.
  • each antenna unit of the antenna module 10 is arranged corresponding to a different separation space G2.
  • the orthographic projection of each antenna unit of the antenna module 10 on the second housing 102 respectively located in each divided space G2.
  • the bottom surface S1 of the motherboard 103 is provided with a CPU located in the middle area.
  • the top of the CPU is equipped with 2G and 5G radio frequency chips and baseband chips.
  • the radio frequency chip and the baseband chip can be independent chips.
  • the radio frequency chip can be equipped with multiple 2G radio frequency antennas and multiple 5G radio frequency chips according to the antenna layout requirements.
  • the number of baseband antennas can also be set to multiple according to the frequency and layout requirements of the antennas.
  • Under the CPU are 6G baseband chips and radio frequency chips, network ports, fiber optic ports, DC power supplies, and power transformer modules.
  • the radio frequency chip and baseband chip in the 6G baseband chip and radio frequency chip can be independent chips.
  • the radio frequency chip can be equipped with multiple 6G radio frequency antennas according to the antenna layout requirements.
  • the baseband antenna The number can also be set to multiple according to the antenna and layout requirements.
  • the communication equipment provided by this application can also be equipped with other electronic devices, such as CPLD logic chips, PHY chips and other processors.
  • the antenna module 10 is directly arranged on the top surface S2 of the mainboard 103 , and the feed traces of each antenna in the antenna module 10 are directly arranged within the mainboard 103 (for example, the micro-circuit on the mainboard 103 With wires forming a feed system), no additional feed cables are required.
  • the antenna module 10 is separately fixed on an antenna board, for example: usually the antenna board can be a metal plate and stacked with the main board, and the radio frequency chip feeds the antenna module through the feed cable.
  • feeder cables also need to occupy the space of communication equipment, and the assembly of antenna boards and feeder cables make the internal structure of communication equipment unable to be simpler.
  • the signal quality of the feed cable is not as good as the signal quality of the direct feed method of this application through the wiring in the main board 103 as the feed structure.
  • the antenna module 10 provided in this application is a MIMO antenna system.
  • the antenna module 10 includes multiple groups of antennas (multiple antenna units), and each group of antennas has a different operating frequency.
  • the antenna module may include two or more antennas working at the first frequency, two or more More than one antenna operating at the second frequency.
  • the antenna module includes three groups of antennas.
  • the first group is a first frequency antenna (for example, a 2.4G antenna, working frequency band: 2.4-2.5GHz)
  • the second group is a first frequency antenna.
  • the second frequency band antenna such as 5G antenna, working frequency band: 5.15 ⁇ 5.85GHz
  • the third group is the third frequency band antenna (such as 6G antenna, working frequency band: 5.925 ⁇ 7.125GHz).
  • Each set of antennas includes multiple independent antennas. Independent antennas mean that the antennas have independent feed sources and radiators and can perform antenna functions independently.
  • the antenna module includes four 2.4G antennas, four 5G antennas, and four 6G antennas.
  • An antenna unit can be equipped with an antenna of one frequency (for example, an antenna unit only includes a 6G antenna).
  • An antenna unit can also be equipped with two antennas of different frequencies. For example, an antenna unit includes a 2.4G antenna and a 2.4G antenna. A 5G antenna.
  • each antenna needs to ensure isolation from other antennas when working.
  • Port isolation is used to quantitatively describe the impact between antennas.
  • the greater the port isolation the greater the impact between the two antennas. The smaller the mutual influence between them.
  • the large distance between antennas will affect the miniaturization design of communication equipment. Therefore, it is necessary to shorten the distance between antennas to save board space and obtain smaller-sized communication equipment.
  • the safe distance between two adjacent low-frequency antennas is relatively large.
  • multiple low-frequency antennas are distributed in different corners of the circuit board to achieve isolation between antennas, but this approach is not effective.
  • the radio frequency chips connected to the antenna also need to be arranged separately to obtain better antenna performance. If the radio frequency chips are arranged centrally and the antennas are arranged separately, there will be long lines between some antennas and the radio frequency chips. Cable connection will cause loss of radio frequency signals.
  • the antenna module 10 is arranged on the top surface S2 of the main board 103.
  • the antenna module 10 includes multiple antenna units.
  • the antenna module 10 includes 8 antenna units, four of which are An antenna unit integrates an antenna of the first frequency and a second frequency, such as four 2.4G antennas and four 5G antennas, that is, each antenna unit includes an antenna of the first frequency and an antenna of the second frequency (can It is understood that: a 2.4G antenna and a 5G antenna are set on an antenna bracket, corresponding to the same position of the motherboard 103).
  • four 2.4G antennas are arranged adjacently, and all 2.4G antennas are arranged on the same side of the central area of the main board 103.
  • the four 2.4G antennas and the four 5G antennas correspond to the main board 103.
  • the location is the same.
  • the first frequency is a low frequency and the second frequency is a high frequency.
  • the high-frequency antenna occupies less space than the low-frequency antenna.
  • This application uses the antenna of the second frequency as the basis for the orientation position arrangement.
  • the antenna of the first frequency is arranged at the position of the corresponding antenna of the second frequency, and then By adjusting the isolation and performance of the first frequency antenna through decoupling technology, this design can save the space occupied by the antenna module and is conducive to the small size and thin design of communication equipment.
  • this application first sets the specific positions of the four 5G antennas on the main board 103, then arranges the four 2.4G antennas on the feed circuit boards of the four 5G antennas, and then sets the decoupling for the 2.4 antennas.
  • the structure ensures the isolation between adjacent 2.4G antennas and also ensures the radiation efficiency of each 2.4G antenna.
  • FIG. 3 and 4 there is no feed cable inside the communication device 100 for feeding the antenna module 10.
  • the internal structure of the communication device 100 is simple, which can not only improve the efficiency of the assembly process but also reduce the assembly cost. , and also brings convenience to the maintenance of the communication equipment 100.
  • An embodiment of the present application provides an antenna module 10 that does not require cable feeding.
  • the antenna module 10 is connected to the top surface S2 of the mainboard 103 .
  • FIG. 7 is a three-dimensional exploded schematic view of the antenna module 10 in one direction according to an embodiment of the present application.
  • FIG. 8 is a three-dimensional exploded schematic view of the antenna module 10 shown in FIG. 7 in another direction.
  • FIG. 9 is a schematic view of the antenna module 10 shown in FIG. 7 The schematic cross-sectional view of the antenna module 10 is shown.
  • the antenna module 10 includes a radiating unit 20 , a grounding unit 30 and a feeding unit 40 .
  • the radiating unit 20 and the ground unit 30 are stacked and arranged, and the ground unit 30 is stacked and arranged between the main board 103 and the radiating unit 20.
  • the ground unit 30 and the main board 103 are spaced apart from each other.
  • the direction in which the radiating unit 20 and the ground unit 30 are stacked is the first direction A1.
  • the feed unit 40 is located on the side of the radiating unit 20 away from the ground unit 30.
  • the first direction A1 can also be Perpendicular to the direction of the motherboard 103 .
  • Radiation unit 20, ground unit 30 and feed unit 40 They are all metal transmission line structures or metal patch structures.
  • the radiation unit 20, the ground unit 30 and the feed unit 40 are arranged on an insulating bracket, and the insulating bracket is assembled to the main board.
  • the insulating bracket can be composed of a circuit board or other structures.
  • the radiating unit 20 is located on the top of the antenna module 10 , which can be understood as the position of the antenna module 10 away from the main board 103 .
  • the radiating unit 20 is adjacent to the second housing 102 .
  • the radiation unit 20 includes an input interface 21, a power division unit 22 and a plurality of radiation oscillators 23.
  • the plurality of radiation oscillators 23 are arranged around the input interface 21.
  • the plurality of radiation oscillators 23 are arranged in a ring area.
  • the power dividing unit 22 and the radiation oscillator 23 can be arranged in one-to-one correspondence, and are respectively connected between each radiation oscillator 23 and the input interface 21 .
  • the power division unit 22 and the radiation oscillator 23 can also be arranged in a one-to-many correspondence manner.
  • one power division unit 22 is connected to two radiation oscillators 23
  • the radiation unit 20 includes four Power dividing unit 22 and eight radiation oscillators 23.
  • the input interface 21 is the feeding position of the radiation unit 20 .
  • the input interface 21 is used to electrically connect the feeding unit 40 .
  • the radiation interface 21 is electrically connected to all the power dividing units 22 .
  • the input interface 21 is located at the center of the radiating unit 20, the power dividing unit 22 surrounds the input interface 21, and the plurality of radiating oscillators 23 surround the power dividing unit 22.
  • the radiating unit 20 may be centered on the input interface 21. rotationally symmetrical structure.
  • the shape of each radiation oscillator 23 may be, but is not limited to, strip-shaped, arc-shaped, L-shaped, etc.
  • the operating frequency of the radiating unit 20 in the resonant state is 5G
  • the electrical length of each radiating oscillator 23 is: one-quarter of the wavelength of the electromagnetic wave at the operating frequency of the radiating unit 20 .
  • the power division unit 22 and the plurality of radiation oscillators 23 are coplanar.
  • the power division unit 22 and the plurality of radiation oscillators 23 are metal microstrip structures arranged on the same layer of the circuit board.
  • the surface where the power dividing unit 22 is located is different from the surface where the multiple radiating oscillators 23 are located.
  • the power dividing unit 22 and the multiple radiating oscillators 23 are arranged on different layers of the circuit board.
  • the power dividing unit 22 can be Located in the middle layer of the circuit board, the plurality of radiation oscillators 23 may be disposed on the surface layer of the circuit board.
  • the grounding unit 30 is a metal layer structure.
  • the grounding unit 30 is a copper foil provided on a certain layer of the circuit board (it can be the middle layer of the circuit board or the surface layer).
  • the grounding unit 30 is a metal layer structure.
  • the grounding unit 30 may also be a metal sheet structure, and the grounding unit 30 may be connected (glued or welded) to the surface of the circuit board.
  • a notch 31 is formed in the central area of the ground unit 30 , and the position of the notch 31 is used to set the connection structure between the radiation unit 20 and the feed unit 40 .
  • the specific shape of the grounding unit 30 may be annular.
  • the outer edge of the grounding unit 30 may be circular, square, or polygonal.
  • the inner edge of the grounding unit 30 may also be circular, square, or polygonal.
  • FIG. 9A, 9B and 9C show the positional relationship between the radiation unit 20 and the ground unit 30 in the specific embodiment of the present application.
  • the inner edge of the ground unit 30 is correspondingly arranged on the periphery of the input interface 21 .
  • the vertical projection of the inner edge of the ground unit 30 on the plane where the radiating unit 20 is located is located on the input interface 21 of the periphery.
  • the vertical projection of the inner edge of the ground unit 30 on the plane where the radiating unit 20 is located may also be located inside the input interface 21 . Referring to FIG. 9A , FIG. 9B and FIG.
  • the vertical projection of the ground unit 30 on the plane where the radiation unit 20 is located coincides with at least part of the power dividing unit 22 .
  • the outer edge of the ground unit 30 is adjacent to the inner edge of the radiation oscillator 23 , or the outer edge of the ground unit 30 is located between the inner edge of the radiation oscillator 23 and the input interface 21 .
  • the outer edge of the ground unit 30 and the inner edge of the radiation oscillator 23 may also overlap.
  • part of the projection of the ground unit 30 on the plane where the radiation unit 20 is located coincides with the power dividing unit 22
  • the other part coincides with part of the radiation oscillator 23 .
  • the power feeding unit 40 is located between the ground unit 30 and the main board 103 .
  • the feed unit 40 is a transmission line structure formed on an insulating bracket.
  • the feed unit 40 is located on a side of the radiating unit 20 away from the ground unit along the first direction.
  • the feed unit 40 is electrically connected to the radio frequency chip on the main board 103 and is used for radiating Unit 20 feeds power.
  • the radio frequency chip is electrically connected to the feeding unit 40 through a transmission line provided in the main board 103 .
  • FIG 10 shows a traditional solution for transmitting feed signals through radio frequency cables between the antenna module and the motherboard.
  • the antenna module is installed above the motherboard.
  • the feed cable feeds the antenna module.
  • the feed line The connection position between the cable and the ground on the motherboard is the first connection point P1, and the connection position between the feed cable and the radiating unit 20 includes the second connection point P2 and the third connection point P3.
  • the length of the feed cable between the antenna modules is an important factor affecting the radiation efficiency of the antenna module. In the process of design and assembly, accurately controlling so many important factors that affect the radiation efficiency of the antenna module requires long working hours and more professional technical support, making the production cost of communication equipment very high.
  • the traditional solution of using radio frequency cables to transmit feed signals not only complicates the internal structure of the communication equipment, but also complicates the assembly process of the radio frequency cables.
  • the aforementioned important factors affecting the antenna radiation efficiency need to be considered, making it difficult to ensure good antenna radiation. performance.
  • the RF cable placement path and the length of the RF cable itself have a great impact on the consistency of the antenna, board-level layout, various indicators of the antenna, and link insertion loss.
  • the feeding of the antenna module 10 provided by this application does not require any external radio frequency cables.
  • the exciting radiation unit 20 is realized through the transmission line arranged on the main board 103 and the feeding unit 40 arranged on the insulating bracket (also a transmission line structure), eliminating the need for The impact of traditional designed RF cables on antenna performance is eliminated.
  • the carrier for transmitting electromagnetic wave signals between the radiation unit 20 and the radio frequency chip is a transmission line structure arranged on a circuit board or other insulating bracket, which makes the internal structure of the communication equipment simple and the location of the transmission line The shape is fixed and designed before assembling the antenna module 10, so there is no adverse impact on the antenna during the assembly process.
  • feeding unit 40 For the specific structural form of the feeding unit 40, refer to the embodiment shown in FIG. 11, FIG. 12, FIG. 13, and FIG. 14.
  • the feed unit 40 includes a feed transmission part 41 and a ground part 42.
  • a gap is provided between the feed transmission part 41 and the ground part 42.
  • the feed transmission part 41 and the ground part 42 42 are separated by an insulating medium 43.
  • the insulating medium 43 between the feed transmission part 41 and the ground part 42 may be air, insulating material of the insulating bracket, insulating glue, etc.
  • the width of the feed transmission part 41 includes a first width WS
  • the width of the ground part 42 includes a second width WG
  • the first width WS is not equal to the second width WG, for realizing the antenna mode.
  • the unequal width design of the feed transmission part 41 and the ground part 42 of the feed unit 40 has a decoupling effect.
  • the width of the feed transmission part 41 refers to the width perpendicular to the feed transmission.
  • the width of the ground portion 42 refers to the dimension perpendicular to the direction of the extension path of the ground portion 42 .
  • the feed transmission portion 41 extends with equal widths along the first direction A1
  • the feed transmission portion 41 also extends with equal widths along the second direction A2
  • the ground portion 42 extends with equal widths along the first direction A1.
  • the ground portion 42 also extends with equal width along the second direction A2.
  • the first width WS includes the width WS1 of the partial transmission line of the feed transmission part 41 extending along the first direction A1 and the width WS2 of the partial transmission line of the feed transmission part 41 extending along the second direction A2.
  • the second width WG includes the width WG1 of the portion of the transmission line where the ground portion 42 extends along the first direction A1 and the width WG2 of the portion of the transmission line where the ground portion 42 extends along the second direction A2.
  • the width WS1 of the partial transmission line of the feed transmission part 41 extending along the first direction A1 and the width WS2 of the partial transmission line extending along the second direction A2 of the feed transmission part 41 may be equal or different; the ground part 42 extends along the first direction A1
  • the width WG1 of the partial transmission line and the width WG2 of the partial transmission line extending along the second direction A2 of the ground portion 42 may be equal to or different from each other.
  • the first width WS and the second width WG defined in this application are not equal, which means that the width WS1 of the part of the transmission line extending along the first direction A1 of the feed transmission part 41 is not equal to the part of the ground part 42 extending along the first direction A1
  • the width WG1 of the transmission line and the width WS2 of the portion of the transmission line extending along the second direction A2 of the feed transmission portion 41 are not equal to the width WG2 of the portion of the transmission line extending along the second direction A2 of the ground portion 42 .
  • This solution can realize the current balance of the antenna module 10 by making the feed transmission part 41 and the ground part 42 have different widths (that is, the first width WS and the second width WG are different), and can eliminate or reduce the radiation of the feed unit 40
  • the coupling effect formed by the unit 20 improves the radiation performance of the antenna module 10 .
  • This application can solve the matching problem of the antenna module 10 by using the feed unit 40 of a transmission line structure arranged on an insulating bracket.
  • the radiating unit 20 and the grounding unit 30 in the antenna module provided by this application form an asymmetric structure.
  • the asymmetric structure refers to the radiating element 23 of the radiating unit 20 and the grounding unit 30 having different structures.
  • the radiating unit 20 and the ground unit 30 produce a current imbalance.
  • the current on the radiating unit 20 and the current on the ground unit 30 are not of equal amplitude, and the current directions are also different.
  • This application can solve the impedance mismatch problem caused by current imbalance in the radiation unit 20 and the ground unit 30 by designing the feed transmission part 41 and the ground part 42 to have unequal widths.
  • the unequal width design enables the entire antenna module to achieve current balance.
  • the feed transmission part 41 and the ground part 42 of the feed unit 40 form a double parallel line feed structure.
  • the microstrip linear power dividing unit 22 is combined with the double parallel line feed structure of the feed unit 40. If the feed transmission If the width of the portion 41 and the ground portion 42 are equal, there will be an impedance mismatch caused by current imbalance, and the feed unit 40 will have a mutual coupling effect with the radiation unit 20, causing changes in the antenna pattern and affecting the radiation performance of the antenna. .
  • the feed unit 40 through the arrangement of the feed transmission part 41 and the ground part 42 with unequal widths, the feed unit 40 has a balun effect and a decoupling effect, achieving current balance of the antenna module 10 and improving radiation efficiency.
  • the feed transmission part 41 includes a first feed end 411 and a second feed end 412.
  • the first feed end 411 is electrically connected to the radiating unit 20.
  • the second feed end 412 is The radio frequency chip on the motherboard 103 in the communication device is electrically connected.
  • the extension path of the feed transmission part 41 refers to the path of radio frequency signal transmission or the path of current flow between the first feed end 411 and the second feed end 412 .
  • the ground portion 42 includes a first ground terminal 421 and a second ground terminal 422.
  • the first ground terminal 421 is electrically connected to the ground unit 30, and the second ground terminal 422 is electrically connected to the ground on the motherboard 103 (ie, the ground layer on the motherboard).
  • the extension path of the ground portion 42 refers to the path in which the current flows between the first ground terminal 421 and the second ground terminal 422 .
  • the first feeding end 411 is located between the second feeding end 412 and the radiating unit 20
  • the first ground end 421 is located between the second ground end 422 and the radiating unit 20 .
  • the electrical length of the feed transmission part 41 is between 0.3 ⁇ -0.7 ⁇ .
  • the electrical length of the feed transmission part 41 It may be 0.5 ⁇ , where ⁇ is the wavelength of the electromagnetic wave in the resonance state of the radiation unit 20 .
  • the feed transmission part 41 can have a balun effect and ensure antenna module impedance matching.
  • the repeated continuity of impedance matching can be understood as the impedance matching at both ends of the feed transmission part 41, that is, the first feed end 411 and the second feed end 412 is the same, so there is no need to Set other matching circuits on 41 to adjust the matching impedance.
  • the electrical length of the feed transmission part 41 may be the electrical length H1 of the feed transmission part 41 in the first direction A1 and the feed transmission part 41 .
  • the electrical length H1 of the feed transmission part 41 in the first direction A1 may be between 0.1 ⁇ -0.35 ⁇ (for example, 0.25 ⁇ ), and the electrical length L1 of the feed transmission part 41 in the second direction A2 may be 0.1 ⁇ -0.1 ⁇ -0.35 ⁇ . Between 0.35 ⁇ (such as 0.25 ⁇ ).
  • the extension path of the feed transmission part 41 and the extension path of the ground part 42 form a double parallel line architecture. It can be understood that the gap between the first feeding end 411 of the feeding transmission part 41 and the first grounding end 421 of the grounding part 42 is the same as the gap between the second feeding end 412 of the feeding transmission part 41 and the first grounding part 42 of the grounding part 42 .
  • the gap between the ground terminals 421 is the same, and the gap between the first feed terminal 411 and the ground part 42 remains unchanged along the extension path of the first feed terminal 411 and the ground part 42, so that the feed unit 40 constitutes a double parallel line structure, so that the feed unit 40 can form equal amplitude and reverse current when the antenna module is working, so that the feed unit 40 will not affect the resonance of the radiating unit 20, ensuring that the sky
  • the line module is a vertically polarized antenna, which can obtain a better pattern.
  • the current with equal amplitude and reverse direction can be understood as: the direction of the current on the feed transmission part 41 and the direction of the current on the ground part 42 are opposite, but the amplitude of the current on the feed transmission part 41 and the amplitude of the current on the ground part 42 are equal.
  • Current amplitude refers to the maximum value of alternating current within a cycle.
  • the extension path of the feed transmission part 41 and the extension path of the ground part 42 includes an extension path in the first direction A1 and an extension path in the second direction A2.
  • the second direction A2 is perpendicular to the first direction A1.
  • the extension path of the feed transmission part 41 in the first direction A1 can be understood as: in one embodiment, the extension of part of the transmission line of the feed transmission part 41 in the first direction A1; in another embodiment, the extension path of the feed transmission part 41 in the first direction A1 Part of the transmission lines of the transmission part 41 has a vertical component in the first direction A1.
  • part of the transmission lines of the feed transmission part 41 extend obliquely with respect to the first direction A1, that is, there is a tendency to extend in the first direction A1, and There is an extending trend in the second direction A2.
  • the total electrical length L1 of the feed transmission part 41 in the second direction A2 is between 0.1 ⁇ -0.35 ⁇ .
  • the feed transmission part 41 is in the second direction A2.
  • the total electrical length L1 in the direction A2 is 0.25 ⁇ , and ⁇ is the wavelength of the electromagnetic wave in the resonance state of the radiation unit 20 .
  • the induced current can be suppressed, decoupling between the feed unit 40 and the radiation unit 20 can be achieved, and the interference between the feed unit 40 and the radiation unit 20 can be reduced. coupling to improve the radiation efficiency of the radiating unit 20.
  • the specific form of the feed transmission part 41 and the ground part 42 can be a simple L-shaped transmission line structure, or it can be formed by a combination of multiple L-shaped transmission lines, or include arc-shaped transmission lines, zigzag or wavy line transmission lines, etc.
  • some of the transmission lines extending in the second direction A2 of the feed transmission part 41 are collinear.
  • This solution provides a simple wiring scheme for the feed transmission part 41, It is easier to control the electrical length of the feed transmission part 41 and has a more obvious effect on suppressing induced current.
  • the feed transmission part 41 includes a first section 413, a second section 414, and a third section 415.
  • the first section 413 extends along the second direction A2, and the second section 414 and the third section 415 respectively Connected to both ends of the first section 413 and extending along the first direction A1, the second section 414 is connected between the first section 413 and the radiating unit 20, and the third section 415 is connected between the first section 413 and the main board 103. between the transmission lines connecting the RF chips.
  • the electrical length of the first section 413 is 0.1 ⁇ -0.35 ⁇ (for example, it can be 0.25 ⁇ ), and the sum of the electrical length of the second section 414 and the third section 415 is 0.1 ⁇ -0.35 ⁇ (for example, it can be 0.25 ⁇ ), the sum of the electrical lengths of the first section 412 , the second section 414 and the third section 415 is the electrical length (0.5 ⁇ ) on the extension path of the feed transmission part 41 .
  • the extension direction of the first section 413 can be set at an angle with the second direction A2.
  • the first section 413 is inclined by 15 degrees relative to the second direction A2 (this angle value is only an example and is not a limitation of this solution.
  • the electrical length of the component of the first segment 413 in the second direction A2 is 0.25 ⁇ .
  • the second section 414 and the third section 415 can also be arranged at an angle with the first direction A1.
  • the electrical length of the component of the second section 414 in the first direction A1 and the electrical length of the third section 415 in the first direction A1 are The sum of the electrical lengths of the components is 0.1 ⁇ -0.35 ⁇ (for example, it can be 0.25 ⁇ ).
  • the ground portion 42 has a two-stage structure.
  • the grounding part 42 includes a fourth section 423 and a fifth section 424.
  • the fourth section 423 and the first section 413 can extend in parallel.
  • the fourth section 423 and the first section 413 can be parallel to each other.
  • the fifth section 424 and the third section 415 can extend in parallel.
  • the fifth segment 424 and the third segment 415 may be parallel to each other.
  • the electrical length of the fourth section 423 may be 0.1 ⁇ -0.35 ⁇ (for example, 0.25 ⁇ )
  • the electrical length of the fifth section 424 may be 0.1 ⁇ -0.35 ⁇ (for example, 0.25 ⁇ ).
  • the fourth section 423 is directly connected to the ground unit 30 of the antenna module 10, and can be directly connected by welding, or fixedly connected by conductive glue.
  • the grounding part 42 has a three-stage structure.
  • the grounding part 42 also includes a sixth section 425.
  • the sixth section 425 and the second section 414 extend in parallel.
  • An L-shaped transmission line architecture can be formed between the sixth section 425 and the fourth section 423. , one end of the sixth section 425 away from the fourth section 423 is connected to the ground unit 30 of the feeding unit 40 .
  • the extension directions of the sixth section 425 and the fifth section 424 may both be the first direction A1, and the sum of the electrical lengths of the sixth section 425 and the fifth section 424 is 0.1 ⁇ -0.35 ⁇ (can be 0.25 ⁇ , for example).
  • the fourth section 423 is separated from the ground unit 30 of the antenna module 10 by an insulating medium.
  • the fourth section 423 and the fifth section 424 are perpendicular to each other and form an L-shaped transmission line structure, and the first section 413 and the third section 415 form an L-shaped transmission line. architecture.
  • the first section 413 and the second section 414 also form an L-shaped transmission line structure.
  • the angle between the fourth section 423 and the fifth section 424 may be greater than 90 degrees or less than 90 degrees.
  • the angle between the first section 413 and the third section 415 and between the first section 413 and the second section 414 can also be greater than 90 degrees or less than 90 degrees.
  • the partial transmission line extending in the second direction A2 of the feed transmission part 41 includes at least two sections of transmission lines, and the at least two sections of transmission lines are parallel to each other but not collinear.
  • the vertical distances from each section of the transmission line extending in the two directions A2 to the ground unit 30 of the antenna module 10 are different.
  • This solution provides a specific wiring solution for the feed transmission part 41. This application can be based on the specific assembly of the antenna module. Depending on the environment and the electromagnetic field environment, different forms of the feed transmission part 41 are provided, and different design solutions can be realized by adjusting the specific form of transmission on the insulation setting, which is simple and easy to implement.
  • the at least two sections of transmission lines are connected by a transmission line extending along the first direction A1.
  • the extension along the first direction A1 and the extension along the second direction A2 defined in this embodiment can be understood as: they may coincide with the first direction A1, or they may form an angle with the first direction A1, but there are
  • the vertical component may coincide with the second direction A2, or form an angle with the second direction A3, but there is a vertical component in the second direction A2.
  • the number of transmission lines extending along the second direction A2 in the feed transmission part 41 is two, and the feed transmission part 41 has a five-section structure, that is, the feed transmission part 41 includes two sections along the second direction A2.
  • the sum of the electrical lengths of the two sections of transmission lines extending along the second direction A2 is 0.1 ⁇ -0.35 ⁇ (for example, it can be 0.25 ⁇ ), and the sum of the electrical lengths of the three sections of transmission lines along the first direction A1 is 0.1 ⁇ -0.35 ⁇ (for example, it can be 0.1 ⁇ -0.35 ⁇ ). is 0.25 ⁇ ).
  • the feed transmission part 41 and the ground part 42 may be coplanar, that is, they are located on the same plane, that is to say, they carry the feed transmission part 41 and the ground part 42
  • the planes of the insulating brackets are the same.
  • the feed transmission part 41 and the ground part 42 are located on the same layer of the circuit board.
  • This application does not consider the thickness of the feed transmission part 41 and the ground part 42.
  • the thickness of the feed transmission part 41 and the ground part 42 can be different, but as long as the feed transmission part 41 and the ground part 42 are arranged on the same plane, both It is understood that the two are coplanar.
  • the coplanar design has lower manufacturing cost and is easy to control the positional relationship between the feed transmission part and the ground part.
  • the feed transmission part 41 and the grounding part 42 are located on the same surface of the insulation bracket.
  • the feed transmission part 41 extends with equal width from the first feed end 411 to the second feed end 412 .
  • the ground portion 42 also extends with equal width.
  • the width of the ground portion 42 is larger than the width of the feed transmission portion 41 .
  • the feed transmission part 41 and the ground part 42 of the feed unit 40 in the embodiments shown in FIGS. 11, 12 and 13 may not be coplanar.
  • the feed transmission part 41 and the ground part 42 may be located on different layers of the circuit board, but the structure and positional relationship of their projections on the same surface of the circuit board are the architectures shown in Figures 11, 12 and 13 .
  • the plane where the feed transmission part 41 is located and the plane where the ground part 42 is located are not coplanar, which can also be called feed transmission.
  • the part 41 and the ground part 42 form a different-plane transmission line structure.
  • the feed transmission part 41 and the grounding part 42 are provided on both surfaces of the circuit board.
  • the feed transmission part 41 is expressed by solid lines and internal hatching lines, indicating where the feed transmission part 41 is located.
  • the surface of the circuit board is the visible surface.
  • the ground portion 42 is represented by a dotted line and a blank space inside (without hatching), and the surface of the circuit board on which the ground portion 42 is located is an invisible surface.
  • the circuit board 43 includes a first surface 431, a second surface 432, a top edge 433, and a bottom edge 434.
  • the first surface 431 and the second surface 432 are oppositely arranged along the third direction A3.
  • the feed transmission part 41 is located on the first surface 431
  • the ground part 42 is located on the second surface 432
  • both the feed transmission part 41 and the ground part 42 extend from the bottom edge 434 to the top edge 433 .
  • the circuit board 43 includes a plug-in structure 435 that protrudes from the top edge 433.
  • the plug-in structure 435 is used for electrical connection with the radiating unit 20.
  • the plug-in structure 435 is provided with a conductive connection portion 436 for conductive connection.
  • the portion 436 is electrically connected to the feed transmission portion 41 .
  • the first ground end 421 of the ground portion 42 extends to the top edge 433 for electrical connection with the ground unit 30 .
  • the bottom edge 434 is provided with a card slot 437, which is used for fixed connection with other circuit boards or brackets.
  • the third direction A3 (for example, the third direction A3 may be the thickness direction of the circuit board), the feed transmission part 41 is facing the ground part 42, and the third direction A3 is perpendicular to the second direction A2.
  • the third direction A3 is also perpendicular to the first direction A1, and the extension plan and specific form of the feed transmission part 41 in the first direction A1 and the second direction A2 are the same as the embodiment shown in Figure 11 , the extension scheme and specific form of the ground part 42 in the first direction A1 and the second direction A2 are the same as the feed transmission part 41.
  • the ground portion 42 may be provided on both surfaces (eg, front and back) of the circuit board.
  • the feed transmission part 41 extends with equal width from the first feed end 411 to the second feed end 412
  • the ground part 42 extends from
  • the first ground terminal 421 and the second ground terminal 422 and the ground portion 42 also extend with the same width, but the width of the feed transmission portion 41 and the width of the ground portion 42 are not equal.
  • the feed transmission part 41 extends with equal width.
  • the ground part 42 from the first ground end 421 and the second ground end 422, part of the ground part 42 extends with equal width, and part of the ground part 42 extends with unequal width.
  • the partial ground portion 42 extending along the second direction extends with equal width
  • the upper half of the partial ground portion 42 extending along the first direction extends with equal width
  • the lower half of the partial ground portion 42 extending along the first direction extends.
  • the portion extends with unequal widths
  • the portion of the ground portion 42 extending with unequal widths has a trapezoidal structure that is narrow at the top and wide at the bottom.
  • the partial ground portion 42 extending with unequal widths can also be arranged in other shapes (such as square, circular, etc.), or in other positions (such as at the portion extending along the second direction or the portion extending along the first direction). the upper part of the section).
  • the feed transmission part and the ground part extending with unequal widths can be extended in a gradually changing width manner, which is beneficial to adjusting the impedance.
  • part of the feed transmission part 41 extends with equal width from the first feed end 411 to the second feed end 412 , and part of the feed transmission part 41 does not
  • the ground portion 42 extends with equal width from the first ground end 421 and the second ground end 422 .
  • part of the feed transmission part 41 extends with equal width from the first feed end 411 to the second feed end 412 , and part of the feed transmission part 41 does not
  • the ground portion 42 extends with equal widths.
  • some of the ground portions 42 extend with equal widths, and some of the ground portions 42 extend with unequal widths.
  • the antenna module 10 includes a bracket 15 made of a printed circuit board, and the radiating unit 20, the grounding unit 30 and the feeding unit 40 are formed on the bracket 15.
  • the antenna module 10 has the advantages of easy production and low production cost.
  • the bracket 15 includes a first plate 151 , a second plate 152 and a third plate 153 .
  • the radiation unit 20 and the ground unit 30 are formed on the first plate 151.
  • the second plate 152 is an insulating bracket for setting the feed unit 40.
  • the second plate 152 and the third plate 153 are arranged crosswise, and both are located on the first between board 151 and main board 103.
  • the specific structure of the second board 152 may be the same as the circuit board 43 of the embodiment shown in FIG. 14 .
  • the first plate 151 includes a first layer 1511 and a second layer 1512 arranged in a stack.
  • the first layer 1511 is the top surface of the first plate 151
  • the second layer 1512 is the bottom surface of the first plate 151 .
  • the radiating unit 20 is located on the first layer 1511
  • the grounding unit 30 is located on the second layer 1512 .
  • the second board 152 includes a wiring layer 1521 and opposing first edges 1522 and second edges 1523 .
  • the wiring layer 1521 is located between the first edge 1522 and the second edge 1523 .
  • the second board 152 Located on one side of the first board 151, the first edge 1522 is connected to the first board 151, the feed unit 40 is provided on the wiring layer 1521, the wiring layer 1521 and the third 1511 on the first floor are arranged at an angle. Specifically, the wiring layer 1521 may be perpendicular to the first layer 1511.
  • the main board 103, the ground unit 30 and the radiating unit 20 are stacked in sequence in the first direction A1.
  • the main board 103, the second board 152 and the first board 151 are connected in sequence in the first direction A1.
  • the main board 103 and the first board 151 can be connected to each other.
  • Parallel arrangement for example, if the main board 103 and the first board 151 are placed horizontally, the second board 152 is placed vertically (upright). Both the first board 151 and the second board 152 have a flat structure, and the second board 152 can be vertically connected between the main board 103 and the first board 151 .
  • This solution provides the antenna module 10 through the first board 151 and the second board 152, which not only has a simple manufacturing process and low manufacturing cost, but also makes the antenna module 10 light in weight, which is beneficial to the design of light, thin and short communication equipment.
  • the radiating unit 20, the grounding unit 30 and the feeding unit 40 can also be placed on other types of insulating brackets, such as an integrated injection-molded plastic bracket, part of which is used to set the radiating unit 20 and the grounding unit, and the other part.
  • a part is used to provide the feed unit 40
  • the plastic bracket can be in the shape of a cylinder, a cube, or other shapes suitable for carrying the radiation unit 20 , the ground unit, and the feed unit 40 .
  • this solution realizes the electrical connection of the ground portion 42 to the ground unit 30 through the connection of the first edge 1522 and the first plate 151.
  • the first edge 1522 and the first The board 151 is in contact, and the ground portion 42 on the wiring layer 1521 is in contact with the ground unit 30 on the first board 151, so that the ground portion 42 is electrically connected to the ground unit 30, or the ground portion 42 and the ground unit 30 can be realized by welding. a solid connection between.
  • the grounding unit 30 is located on the surface of the first plate 151, and the grounding portion 42 is located on the surface of the second plate 152.
  • the grounding unit 30 and the second plate 152 can be connected by welding.
  • the grounding part 42 is connected and fixed.
  • the black semicircular area in Figure 19 is the welding position.
  • the embodiment shown in Figure 19 only schematically shows the welding relationship between the grounding part 42 and the grounding unit 30 and does not constitute an interference relationship. Specific welding positions and welding structure limitations.
  • connection structure 50 is provided at the connection between the first board 151 and the second board 152.
  • the connection structure 50 can be understood as a connector-like structure, or a plug-jack mating structure.
  • the connection structure 50 is used to realize the electrical connection between the feed transmission part 41 and the radiation unit 20 .
  • This application can simultaneously realize the electrical connection between the feed unit 40 and the radiation unit 20 and the electrical connection between the feed unit 40 and the ground unit 30 through the assembly and connection process between the first board 151 and the second board 152.
  • This method of electrical connection is not only reliable but also has the advantage of low loss.
  • the present application realizes the electrical connection between the feed transmission part 41 and the radiating unit 20 through the cooperation of the structure protruding from the edge of the second plate 152 and the hole structure on the first plate 151 .
  • the first plate 151 is provided with a hole 1513 penetrating the first layer 1511 and the second layer 1512
  • the second plate 152 includes a plug-in structure 435 protruding from the first edge 1522 , at least part of the plug-in structure 435 is located in the hole 1513
  • the connection structure 50 includes the hole 1513 and the plug-in structure 435
  • the connection structure 50 also includes a conductive connection portion 436, as shown in Figure 19
  • the conductive connection part 436 is electrically connected between the radiation unit 20 and the feed transmission part 41.
  • the conductive connection part 436 may include a conductive layer electrically connected between the radiation unit 20 and the feed transmission part 41. , or conductive sheet, or conductive glue, or solder.
  • the hole 1513 on the first plate 151 is a through hole, and the hole 1513 includes a first open end E1 and a second open end E2.
  • the plug-in structure 435 The hole 1513 is inserted from the first open end E1, and the conductive connection part 436 is welded to the radiating unit 20 from one side of the second open end E2.
  • the first layer 1511 is the top surface of the first plate 151
  • the second layer 1512 is the bottom surface of the first plate 151
  • the first opening end E1 is located on the bottom surface
  • the second opening End E2 is located on the top surface.
  • the second edge 1523 of the second board 152 is connected to the main board 103 of the communication device.
  • the main board 103 is equipped with a ground layer 103G.
  • the main board 103 is also provided with a radio frequency chip 103F.
  • the feed transmission part 41 is electrically connected to the radio frequency chip 103F through the transmission line in the motherboard 103
  • the ground part 42 of the feed unit 40 is electrically connected to the ground layer 103G in the motherboard 103 .
  • Figure 19 schematically expresses the connection method between the ground part 42 and the ground layer 103G on the mainboard 103.
  • the connection method between the feed transmission part 41 and the radio frequency chip 103F is through a transmission line, and does not limit the specific ground layer 103G.
  • the mainboard 103 has a multi-layer circuit board structure
  • the ground layer 103G can be one of the layers
  • the transmission line can be located on one of the layers
  • the radio frequency chip 103F can be disposed on the surface of the mainboard 103 .
  • the radio frequency chip 103F is disposed on the surface of the main board 103 away from the antenna module 10, and an electromagnetic shielding space is formed by the structure of the first housing 101 of the communication device 100 and the main board 103 (as shown in Figure 3).
  • the difference between the embodiment shown in Figures 20 and 21 and the embodiment shown in Figures 18 and 19 is that: in the embodiments shown in Figures 18 and 19,
  • the inner wall of the hole 1513 is made of the insulating material of the first plate 151 , that is, the inner wall of the hole 1513 does not have a conductive structure.
  • the conductive connection part 436 is welded to the radiation unit 20 from the position of the second open end E2.
  • a conductive layer 1514 is provided on the inner wall of the hole 1513 of the first plate 151 , and the conductive layer 1514 is electrically connected to the radiation unit 20 .
  • the plug-in structure 435 is inserted into the hole 1513 of the first board 151 , and the electrical connection between the conductive connection part 436 and the conductive layer 1514 can be achieved through conductive glue or solder inside the hole 1513 .
  • the connection structure 50 of this solution has better electrical connection strength and stability between the feed transmission part 41 and the radiation unit 20 .
  • the second board 152 in addition to connecting the first edge 1522 of the second board 152 and the first board 151 through the plug structure 435 , the second board 152 also includes positioning protruding from the first edge 1522 Posts 1524.
  • the number of positioning posts 1524 is two, and they are symmetrically distributed on both sides of the plug-in structure 435.
  • the first plate 151 is provided with positioning holes 1515 corresponding to the positioning posts 1524.
  • the number of the positioning holes 1515 is two and is symmetrically distributed on both sides of the hole 1513.
  • the positioning posts 1524 are respectively inserted into the positioning holes 1515 to achieve fixation between the first plate 151 and the second plate 152 .
  • the third plate 153 and the first plate 151 are also connected and fixed through the matching connection between the positioning posts and the positioning holes.
  • the antenna module also includes a reflection unit 60 and a lumping unit 70.
  • the lumping unit 70 is loaded on the reflection unit 60, and the reflection unit 60 is controlled by controlling the lumping unit 70. Whether the antenna module is working or not, the switching between the high-density state and the omnidirectional state of the antenna module is realized by whether the reflection unit 60 is working.
  • the second board 152 is provided with a first main antenna 10A1, and the radiating unit 20, the grounding unit 30 and the feeding unit 40 constitute a second main antenna 10A2.
  • the resonant frequency of the first main antenna 10A1 is a first frequency
  • the resonant frequency of the second main antenna 10A2 is a second frequency
  • the second frequency is higher than the first frequency.
  • the first frequency is 2.4GHz
  • the second frequency is 5G.
  • the antenna module 10 includes a plurality of antenna units 10A, and each of the antenna units 10A includes a first main antenna 10A1 and a second main antenna 10A2.
  • FIG. 23 is a schematic diagram showing distance and height dimensions of the antenna module provided in the embodiment shown in FIG. 22 .
  • the distance D3 between the first main antenna 10A1 and the first main antenna 10A1 of the adjacent antenna unit 10A is between 0.2 wavelength and 0.8 wavelength.
  • the antenna unit 10A also includes a first decoupling structure 13 and a second decoupling structure 14.
  • the first decoupling structure 13 is located on the second board 152
  • the second decoupling structure 14 is located on the second board 152.
  • One end of the second board 152 and the third board 153 away from the first board 151 is connected to the main board 103 of the communication device.
  • the first The maximum distance between the coupling structure 13 and the ground layer 103G of the motherboard 103 is the cross-sectional height H1 of the first decoupling structure 13.
  • the cross-sectional height H1 of the first decoupling structure 13 ranges from 0.01 wavelength to 0.16 wavelength.
  • the distance between the first decoupling structure 13 and the first main antenna 10A1 is a first distance D1
  • the distance between the first decoupling structure 13 and the first main antenna 10A1 of the adjacent antenna unit 10A is a second distance D2
  • the first distance D1 and the second distance D2 All are between 0.1 wavelength and 0.6 wavelength.
  • the first distance D1 refers to the distance between the phase center of the first decoupling structure 13 and the phase center of the first main antenna 10A1.
  • the second distance D2 refers to the distance between the phase center of the first decoupling structure 13 and the phase center of the first main antenna 10A1 in the adjacent antenna unit 10A.
  • the distance between the first decoupling structure 13 and the first main antenna 10A1, and the distance between the first decoupling structure 13 and the first main antenna 10A1 of the adjacent antenna unit can improve the isolation between adjacent first main antennas 10A1 in a limited space while reducing the impact on the radiation efficiency of the first main antenna 10A1. There are no obvious pits in the simulation diagram of the radiation efficiency of the adjacent first main antenna 10A1.
  • the antenna module 10 provided in this application designs each antenna unit 10A with the same structure.
  • each antenna unit 10A When assembling multiple antenna units 10A onto the main board 103, there is no need to consider the specific structure of each antenna unit 10A, because all The structures of the antenna units 10A are the same, and each antenna unit 10A only needs to be placed according to the position of the radio frequency chip. Therefore, this embodiment is conducive to simplifying the assembly process of communication equipment, saving assembly costs, and improving production efficiency.
  • the second decoupling structure 14 is used to reduce the coupling amount between the first main antenna 10A1 and the first main antenna 10A1 of the adjacent antenna unit 10A.
  • the resonant frequency is greater than the first frequency or less than the first frequency.
  • the frequency difference between the resonant frequency of the second decoupling structure 14 and the first frequency is between 0.03GHz and 0.33GHz.
  • the resonant frequency point of the second decoupling structure 14 is limited to the range of (fL-0.33GHz) ⁇ (fL-0.03GHz) or (fH+0.03GHz) ⁇ (fH+0.33GHz), both of which can have improved isolation. effect, while efficiency pits are not introduced into the band.
  • fL ⁇ fH is the frequency range (ie, the first frequency) of the first main antenna 10A1, for example, fL ⁇ fH is 2.4 ⁇ 2.5GHz.
  • the distances D4 and D5 between the second decoupling structure 14 and the first main antenna 10A1 are: 0.05 wavelength to 0.6 wavelength.
  • the distances D4 and D5 between the second decoupling structure 14 and the first main antenna 10A1 may be smaller than the distance between the first decoupling structure 13 and the first main antenna 10A1 (first distance D1), or smaller than the first distance D1.
  • the distance between the decoupling structure 13 and the first main antenna 10A1 of the adjacent antenna unit 10A (the second distance D2).
  • This application realizes the decoupling between the first main antennas 10A1 of adjacent antenna units 10A by adjusting the resonant frequency of the second decoupling structure 14 so that its resonant frequency is not at the first frequency, but slightly larger or smaller. Coupling, while improving isolation, reduces the impact on the antenna radiation efficiency. Specifically, when the second decoupling structure 14 resonates, it will produce an efficiency pit for the electromagnetic wave at the resonant frequency where the second decoupling structure 14 is located.
  • the efficiency pit generated by the second decoupling structure 14 can avoid the resonant in-band frequency (ie, the first frequency) of the first main antenna 10A1 of the adjacent antenna unit 10A, thereby reducing the size of the second decoupling structure 14 Influence on the radiation efficiency of the first main antenna 10A1 of the adjacent antenna unit 10A.
  • the space of the main board 103 can be saved, which is beneficial to the antenna module.
  • Small size design Since the distance between the two first main antennas 10A1 is between 0.2 wavelength and 0.8 wavelength, if the first decoupling structure is not provided in each antenna unit, the two first main antennas 10A1 will receive the signal in the resonance state. to the other party's signal, causing signal interference, resulting in poor isolation.
  • the distance between the two first main antennas 10A1 is set between 0.2 wavelength and 0.8 wavelength, and the two first main antennas 10A1 are ensured by the setting of the first decoupling structure 13 and the second decoupling structure 14 radiation efficiency between them to improve isolation.
  • This application can achieve a small size of the antenna by arranging the first decoupling structure 13, which is conducive to the thin design of the communication equipment, and can also solve the problem of isolation between the adjacent first main antennas 10A1.
  • the cross-sectional height of the coupling structure 13, the distance between the first decoupling structure 13 and the first main antenna 10A1, the distance between the first decoupling structure 13 and the adjacent first main antenna The distance between the lines 10A1 can improve the isolation between adjacent first main antennas 10A1 in a limited space while reducing the impact on the radiation efficiency of the first main antenna 10A1. Therefore, there are no obvious pits in the simulation diagram of the radiation efficiency of the first main antenna 10A1.
  • This application realizes decoupling between the first main antennas 10A1 by adjusting the resonant frequency of the second decoupling structure 14 so that its resonant frequency is not at the first frequency, but slightly larger or smaller, while improving the isolation. At the same time, the impact on the antenna radiation efficiency is reduced. Specifically, when the second decoupling structure 14 resonates, it will produce an efficiency pit for the electromagnetic wave at the resonant frequency of the second decoupling structure 14. For the first main antenna 10A1, the second decoupling structure 14 The generated efficiency pit can avoid the in-band frequency (ie, the first frequency) of the resonance of the first main antenna 10A1, thereby reducing the impact of the second decoupling structure 14 on the radiation efficiency of the first main antenna 10A1.

Landscapes

  • Support Of Aerials (AREA)
  • Details Of Aerials (AREA)

Abstract

本申请提供一种天线模组和通信设备。天线模组包括辐射单元、接地单元和馈电单元。馈电单元为形成在绝缘支架上的传输线结构。馈电单元包括馈电传输部和接地部,馈电传输部和接地部不等宽,用于实现所述天线模组的电流平衡。

Description

天线模组和通信设备
本申请要求于2022年5月20日提交中国专利局、申请号为202210562036.3,发明名称为“天线模组和通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络通信技术领域,尤其涉及一种天线模组和通信设备。
背景技术
MIMO系统,即多输入多输出系统,通过设置多根发射和接收天线,再经过特定的数据处理,通信容量能够成倍的增加,从而满足现在日益增长的通信服务需求。在通信设备中,多个天线单元都要通过馈电线缆连接至主板上的射频芯片。馈电线缆用于为天线单元馈电,馈电线缆不但使得通信设备的内部空间杂乱,而且馈电线缆的组装和位置固定的工艺精度要求较高,不容易控制通信设备的低成本。
因此,在保证天线辐射性能的前提下,如何实现免线缆的设计,使得通信设备内部结构整洁,降低天线模组的组装成本,为业界不断探索的方向。
发明内容
本申请提供一种天线模组和通信设备,能够在保证天线辐射性能的前提下,实现免线缆的设计,使得通信设备内部结构整洁,具有低成本优势。
第一方面,本申请提供一种天线模组,包括辐射单元、接地单元和馈电单元,辐射单元和接地单元层叠设置,馈电单元为形成在绝缘支架上的传输线结构,沿第一方向所述馈电单元位于所述接地单元远离的述辐射单元的一侧,所述馈电单元包括馈电传输部和接地部,所述馈电传输部和所述接地部之间绝缘隔开,所述馈电传输部的宽度包括第一宽度,所述接地部的宽度包括第二宽度,所述第一宽度不等于所述第二宽度,所述馈电传输部的宽度指的是垂直于所述馈电传输部的延伸路径的方向上的尺寸,所述接地部的宽度指的是垂直于所述接地部的延伸路径的方向上的尺寸。
本申请通过设置在绝缘支架上的传输线架构的馈电单元为辐射单元馈电,通过接地部和馈电传输部之间的宽度不等,能够实现所述天线模组的电流平衡,馈电单元的馈电传输部和接地部的不等宽的设计具有去耦作用,即能够消除或减少馈电单元对辐射单元形成的耦合作用,提升天线模组的辐射性能。具体而言,本申请提供的天线模组中的辐射单元和接地单元构成一种不对称架构,不对称架构指的是以辐射单元和接地单元为不一样的结构,谐振状态下,辐射单元和接地单元产生电流不平衡,具体而言,辐射单元上的电流和接地单元上的电流不等幅,且电流方向也不同。本申请通过馈电传输部和接地部的宽度不相等的设计可以解决辐射单元和接地单元产生电流不平衡带来的阻抗不匹配的问题,馈电传输部和接地部的宽度不相等的设计使得天线模组的整体实现电流平衡的效果。
一种可能的实现方式中,在所述馈电传输部的延伸路径上,所述馈电传输部的电长度在0.3λ-0.7λ之间,λ为所述辐射单元谐振状态的电磁波的波长。具体而言,馈电传输部的电长度可以为0.5λ。本方案通过限制馈电传输部的电长度的具体范围(0.3λ-0.7λ之间)及具体的值(0.5λ),可以信馈电传输部具有巴伦作用,保证天线模组阻抗匹配的重复连续性。 阻抗匹配的重复连续性可以理解为馈电传输部的两端阻抗匹配是相同的,这样无需在馈电传输部上设置其它匹配电路来调匹配阻抗。
一种可能的实现方式中,所述馈电传输部的延伸路径和所述接地部的延伸路径构成双平行线架构。可以理解为,馈电传输部的第一馈电端和接地部的第一地端之间的间隙与馈电传输部的第二馈电端和接地部的第一地端之间的间隙相同,且在第一馈电端和接地部的延伸路径上,第一馈电端和接地部之间的间隙均保持不变,通过将馈电单元设计为双平行线架构,使得馈电单元在天线模组工作的状态下能够形成等幅反向的电流,从而使得馈电单元不会对辐射单元的谐振产生影响,保证天线模组为垂直极化天线,可以得到较好的方向图。
一种可能的实现方式中,所述馈电传输部在第二方向上的总的电长度在0.15λ-0.35λ之间,λ为所述辐射单元谐振状态的电磁波的波长,所述第二方向垂直于所述第一方向。一种具体的实施方式中,馈电传输部在第二方向上的总的电长度为0.25λ。通过限定第二方向的馈电传输部的电长度,可以实现扼制感应电流,能够实现馈电单元和辐射单元之间的去耦,降低馈电单元和辐射单元之间的耦合,提升辐射单元的辐射效率。
一种可能的实现方式中,所述馈电传输部在所述第二方向上延伸的部分传输线共线。本方案提供一种简单的馈电传输部的布线方案,较容易控制馈电传输部的电长度,对于扼制感应电流的效果更明显。
一种可能的实现方式中,所述馈电传输部在所述第二方向上延伸的部分传输线包括至少两段传输线,所述至少两段传输线之间通过沿所述第一方向延伸的传输线连接。所述至少两段传输线之间可以相互平行。本方案提供一种具体的馈电传输部的布线方案,本申请可以根据天线模组的具体的组装环境和电磁场环境的不同,设置不同形态的馈电传输部,通过调节绝缘设置上的传输的具体的形态即可实现不同的设计方案,简单易行。
一种可能的实现方式中,所述馈电传输部和所述接地部共面。即所述馈电传输部和所述接地部位于同一个平面上,也就是说承载馈电传输部和接地部的绝缘支架的平面是相同的。例如,绝缘支架为电路板结构时,馈电传输部和接地部位于电路板的同一层。本申请不考虑馈电传输部和接地部的厚度,馈电传输部和接地部的厚度可以不同,但只要馈电传输部和接地部设置在同一个平面上,均可以理解为二者共面。共面的设计的制作成本较低,也易于控制馈电传输部和接地部之间的位置关系。
一种可能的实现方式中,所述馈电传输部所在的平面和所述接地部所在的平面不共面,在第三方向上,所述馈电传输部和所述接地部相对设置(可以是正对的关系),所述第三方向垂直于所述第二方向,所述第三方向亦垂直于所述第一方向。本方案也称为馈电传输部和接地部构成异面传输线架构。例如,馈电传输部和接地部可以位于电路板的不同的层。相较共面的设计方案,本方案提供的异面传输架构具有节约空间和占板面积的优势,可以刚好利用电路板的基材的厚度作为馈电传输部和接地部之间的绝缘隔离,制作成本更低。
一种可能的实现方式中,在谐振状态下,所述馈电传输部上的电流和所述接地部上的电流等幅反向。
一种可能的实现方式中,所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第二馈电端,所述馈电传输部等宽延伸;和/或
所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,所述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,所述接地部等宽延伸。
一种可能的实现方式中,所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第二馈电端,部分所述馈电传输部等宽延伸,部分所述馈电传输部不等宽延伸;和/或
所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,部分所述接地部等宽延伸,部分所述接地部不等宽延伸。
一种可能的实现方式中,所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第一馈电端,所述馈电传输部等宽延伸;和
所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,部分所述接地部等宽延伸,部分所述接地部不等宽延伸。
一种可能的实现方式中,所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,所述接地部等宽延伸;和
所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第一馈电端,部分所述馈电传输部等宽延伸,部分所述馈电传输部不等宽延伸。
本申请提供了几种馈电传输部和接地部的组合方案,馈电传输部和接地部等宽的设计可以和不等宽的设计相结合。一种具体的实施方式中,馈电传输部不等宽的设计可以为宽度渐变的设计方案,有利于调节阻抗。
一种可能的实现方式中,所述天线模组包括第一板和第二板,所述第一板包括层叠设置的第一层和第二层,所述辐射单元位于所述第一层,所述接地单元位于所述第二层;所述第二板为所述绝缘支架,所述第二板包括布线层和相对设置的第一边缘和第二边缘,所述布线层位于所述第一边缘和所述第二边缘之间,所述第二板位于所述第一板的一侧,所述第一边缘连接至所述第一板,所述馈电单元设置在所述布线层上,所述布线层和所述第一层之间呈夹角设置。
本方案通过第一板和第二板设置天线模组,不但制作工艺简单,制作成本低,还使得天线模组具有重量轻的优势,有利于通信设备轻薄短小的设计。第一板和第二板可以为印刷电路板架构,天线模组的馈电单元和辐射单元为设置在印刷电路板上的传输线架构,天线模组不包括任何馈电线缆,通信设备内部也不具有馈电线缆,使得通信设备内部的结构简洁,而且传输线的位置和形态是固定的,也是在组装天线模组之前就设计好的,不存在组装过程的对天线产生的不良影响。而且第一板和第二板之间的连接能够实现低损耗的板级互连,不但组装成本低,对于天线模组而言,第一板和第二板之间的连接产生的损耗也较低。
一种可能的实现方式中,通过所述第一边缘和所述第一板的连接实现所述接地部电连接至所述接地单元,所述第一板和所述第二板之间的连接处设有连接结构,所述连接结构用于实现所述馈电传输部和所述辐射单元之间的电连接。本申请通过第一板和第二板之间的组装连接的过程就可以同步实现馈电单元和辐射单元的电连接及馈电单元和接地单元之间的电连接,此种电连接的方式不但具有可靠性,还具有损耗低的优势。
一种可能的实现方式中,所述第一板设有贯通所述第一层和所述第二层的孔,所述第二 板包括突出于所述第一边缘的插接结构,至少部分所述插接结构位于所述孔内,所述连接结构包括所述孔和所述插接结构,所述连接结构还包括导电连接部,所述导电连接部电连接在所述辐射单元和所述馈电传输部之间。本方案提供一种具体的连接结构的设计方案,通过插接结构和孔的配合,易于组装,易于实现电连接。
一种可能的实现方式中,所述孔为通孔,所述孔包括第一开口端和第二开口端,所述插接结构从所述第一开口端插入所述孔,从所述第二开口端的一侧将所述导电连接部焊接至所述辐射单元。通过在第二开口端的一侧利用焊接方式电连接馈电传输部和辐射单元,操作工作有足够的操作空间,使得天线模组的组装成本更低,也能保证焊接良率。
一种可能的实现方式中,所述第一层为所述第一板的顶面,所述第二层为所述第一板的底面,所述第一开口端位于所述底面,所述第二开口端位于所述顶面。本方案通过将辐射单元设置在第一板的顶面,接地单元设置在第一板的底面,使得天线模组体积更小,通信设备更薄。
一种可能的实现方式中,所述第二板的所述第二边缘连接至通信设备的主板,所述馈电单元的所述接地部电连接至所述主板上的接地层,所述馈电传输部和所述主板上的射频芯片之间通过设置在所述主板上的传输线进行电连接。本方案限定了第二板的第二边缘位置与主板之间的连接关系,不需要任何外接线缆,只需要主板内的电路板走线(传输线结构)就可以实现接地部的接地及馈电传输部和射频芯片之间的电连接。
一种可能的实现方式中,所述第二板上设有第一主天线,所述辐射单元、所述接地单元和所述馈电单元构成第二主天线,所述第一主天线的谐振频率为第一频率,所述第二主天线的谐振频率为第二频率,所述第二频率高于所述第一频率。
一种可能的实现方式中,所述第一频率为2.4GHz,所述第二频率为5G。
一种可能的实现方式中,所述天线模组包括多个天线单元,每个所述天线单元都包括一个所述第一主天线和一个所述第二主天线,所述天线单元还包括第一去耦结构和第二去耦结构,所述第一去耦结构位于所述第二板上,所述天线模组还包括第三板,所述第三板和所述第二板交叉设置,所述第二去耦结构位于所述第三板上。本申请通过将两个第一主天线之间的距离拉近,并将第一主天线和第二主天线设置在同一个支架上,可以节约主板的空间,有利于天线模组的小尺寸的设计。通过第一去耦结构和第二去耦结构的设置来保证两个第一主天线之间的辐射效率,提升隔离度。
本申请将两个第一主天线之间的距离设置在0.2波长~0.8波长之间,并结合第一去耦结构和第二去耦结构提升两个第一主天线的隔离度。由于两个第一主天线之间的距离在0.2波长~0.8波长之间,若各天线单元中不设置第一去耦结构,两个第一主天线在谐振状态下,二者会接收到对方的信号,形成信号干扰,导致隔离度较差。
一种可能的实现方式中,所述第二板和所述第三板远离所述第一板的一端连接通信设备的主板,在垂直于所述通信设备主板的接地层的方向上,所述第一去耦结构与所述接地层之间的最大的距离为所述第一去耦结构的剖面高度,所述第一去耦结构的剖面高度范围在0.01波长~0.16波长之间,所述第一去耦结构和所述第一主天线之间的距离为第一距离,所述第一去耦结构与相邻的所述天线单元的所述第一主天线之间的距离为第二距离,所述第一距离和所述第二距离均在0.1波长~0.6波长之间;所述第二去耦结构用于减少所述第一主天线和相邻的所述天线单元的所述第一主天线之间的耦合量,所述第二去耦结构的谐振频率大于所述第一频率或小于所述第一频率。
本申请通过设置第一去耦结构可以实现天线的小尺寸,有利于通信设备的薄型化设计,还 能解决相邻的第一主天线之间的隔离度的问题,通过控制第一去耦结构的剖面高度、第一去耦结构与第一主天线之间的距离、第一去耦结构与相邻的第一主天线之间的距离,可以在有限的空间内,在提升相邻的第一主天线之间的隔离度的同时,减少对第一主天线的辐射效率的影响。使得第一主天线的辐射效率的仿真图没有明显的凹坑。
本申请通过调节第二去耦结构的谐振频率,使其谐振频率不在第一频率的位置,而是稍大或稍小,实现第一主天线之间的去耦,在提升隔离度的同时,减小对天线辐射效率的影响。具体而言,当第二去耦结构产生谐振时,会对第二去耦结构所在的谐振频率下的电磁波产生效率凹坑,对于第一主天线而言,第二去耦结构所产生的效率凹坑可以避开第一主天线谐振的带内频率(即第一频率),从而减小第二去耦结构对第一主天线的辐射效率的影响。
一种可能的实现方式中,所述辐射单元、所述接地单元和所述馈电单元构成水平布置的垂直极化天线。
第二方面,本申请提供一种通信设备,包括射频芯片和第一方任一种可能的实现方式所述的天线模组,所述射频芯片用于处理所述天线模组收发的电磁波信号。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本申请一种实施方式提供的通信设备的一个方向的组装图;
图2是本申请一种实施方式提供的通信设备的另一个方向的组装图;
图3是本申请一种实施方式提供的通信设备的立体分解图;
图4是本申请一种实施方式提供的通信设备的剖面图;
图5是本申请一种实施方式提供的通信设备的第二壳体的内侧示意图;
图6是本申请一种实施方式提供的通信设备的主板的底面的至少部分电子器件分布示意图;
图7是本申请一种实施方式提供的天线模组的立体分解示意图;
图8是本申请一种实施方式提供的天线模组的另一个方向的立体分解示意图;
图9是本申请一种实施方式提供的天线模组的剖面示意图;
图9A、图9B和图9C所示为本申请具体实施方式中,天线模组的辐射单元和接地单元之间的位置关系;
图10现有技术中使用馈电线缆为天线模组馈电的示意图;
图11是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图12是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图13是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图14是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图15是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图16是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图17是本申请一种实施方式提供的天线模组中的馈电单元的示意图;
图18是本申请一种实施方式提供的天线模组的分解状态的剖面示意图;
图19是图18所示的实施方式提供的天线模组的组装状态的剖面示意图;
图20是本申请一种实施方式提供的天线模组的分解状态的剖面示意图;
图21是图20所示的实施方式提供的天线模组的组装状态的剖面示意图;
图22是本申请一种实施方式提供的天线模组的立体分解示意图;
图23是图22所示的实施方式提供的天线模组的尺寸标注示意图。
具体实施方式
本申请涉及的专业术语解释如下。
无线AP,即Access Point,也就是无线接入点。简单来说就是无线网络中的无线交换机,它是移动终端用户进入有线网络的接入点,已大量用于各种场合的网络覆盖,包括教育、医疗等企业级等客户场景。无线AP可以用于家庭宽带、企业内部网络部署等,无线覆盖距离为几十米至上百米。一般的无线AP还带有接入点客户端模式,也就是说AP之间可以进行无线链接,从而可以扩大无线网络的覆盖范围。
MIMO技术,即Multiple-Input Multiple-Output,指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。
下面结合本发明实施例中的附图对本发明实施例进行描述。
图1和图2是本申请一种实施方式提供的通信设备的组装图,图3是本申请一种实施方式提供的通信设备的立体分解图。图4是本申请一种实施方式提供的通信设备的剖面图。图5是本申请一种实施方式提供的通信设备的第二壳体102的内侧示意图。
参阅图1、图2、图3和图4,一种实施方式中,通信设备100为无线AP。通信设备100包括第一壳体101和第二壳体102,第一壳体101和第二壳体102相互扣合共同围设形成通信设备100的内部空间G。在通信设备100的一种应用环境中,第一壳体101为底壳,第二壳体102为顶壳,第一壳体101与承载物连接,例如第一壳体101接触桌面、墙面或其它载体的支撑面。第二壳体102的外围通常没有其它的遮蔽物,外露在空气中。一种实施方式中,第一壳体101为具有导体材料和屏蔽功能的壳体(例如金属壳体)。
参阅图2,在第一壳体101的外表面,第一壳体101的包括中间区域R1和环绕在中间区域外围的边缘区域R2,中间区域R1用于设置连接器插口1011(例如:和网口对应的插口,以及和光纤接口对应的插口)及容纳外接线缆。中间区域R1和边缘区域R2的交汇处设有垫脚1012,具体而言,中间区域R1呈方形,垫脚1012的数量为四个,分布在中间区域R1的四个角落位置。边缘区域R2设有散热片1013,散热片1013用于为通信设备内的发热元件散热,散热片1013环绕设置在连接器插口1011的外围,散热片1013包括多个翅片,每个翅片均从边缘区域R2和中间区域R1的交界处向边缘区域R2的外边缘延伸,边缘区域R2还设有开口1014,此开口1014连通通信设备100的内部空间G和外部,此开口1014的设置用于安装IOT(Internet of things)插卡模块。IOT卡可以理解为物联网卡,即为设备提供上网的芯片。
参阅图3,一种具体的实施方式中,第一壳体101的内表面形成多个容纳空间G1,相邻的容纳空间G1之间通过下隔板1015隔离,多个容纳空间G1独立设置,多个容纳空间G1用于容纳通信设备100中的电子器件,通过容纳空间G1彼此独立,使得第一壳体101构成了电子器件的屏蔽罩结构,因此,本申请提供的通信设备100的第一壳体101集成了外壳及屏蔽罩的功能,通过第一壳体101和通信设备100的主板103结合,这样第一壳体101构成了设置在主板103上的多个屏蔽罩,可以对主板103上不同的电子器件进行遮罩。因此,本 申请无需在通信设备100的外壳和主板之间另外设置屏蔽罩结构,有利于通信设备的薄型化设计。第二壳体102为非导体材料(例如塑料),第二壳体102的内侧用于设置天线模组,将第二壳体102设计为非导体材料,不影响天线的辐射效率。
参阅图3和图4,通信设备100内设主板103,主板103固定在第一壳体101和第二壳体102围成的内部空间G中,主板103包括底面S1和顶面S2,底面S1朝向第一壳体101的内表面,顶面S2朝向第二壳体102的内表面。主板103上的电子器件包括CPU、CPU外围电路、多个射频芯片、基带芯片、天线模组及其它功能模块(例如供电模块、蓝牙模块、网口、光纤接口等等)。主板103上的主要发热器件及需要电磁屏蔽的器件设置在底面S1,需要电磁屏蔽的电子器件对应设置在第一壳体101所形成的类似屏蔽罩功能的容纳空间G1中。主要发热器件通过第一壳体101进行散热。例如,CPU、基带芯片、射频芯片、供电模块、蓝牙模块、网口、光纤接口、IOT插卡模块等电子器件设置在主板103的底面S1。天线模组10设置在主板103的顶面S2,由于第二壳体102为非导体材料,使得天线模组10背离主板103的一侧成为净空空间,有利于保证天线性能。天线模组10布置在主板103的边缘区域,天线模组10包围的中间区域内用于设置CPU外围电路。
参阅图5,一种实施方式中,第二壳体102包括板体1021和突出在板体1021内表面的上隔板1022,上隔板1022可以与板体1021为一体成型的结构,一方面,上隔板1022用于提升板体1021的强度,保证板体1021的平面度,另一方面,上隔板1022在板体1021的内表面围成多个分隔空间G2。在组装状态下,天线模组10的每个天线单元均对应不同的分隔空间G2设置,在垂直于主板103的方向上,天线模组10的各天线单元在第二壳体102上的正投影分别位于各分隔空间G2内。
参阅图6,一种实施方式中,主板103的底面S1设有位于中间区域的CPU。CPU的顶部设置2G和5G射频芯片和基带芯片,其中射频芯片和基带芯片可以为相互独立的芯片,射频芯片根据天线的布置需求,可以设置多个2G射频天线和多个5G射频芯片,同样,基带天线的数量也可以根据天线的频率和布置需求设置为多个。CPU左侧设有蓝牙芯片。CPU右侧设有IOT插卡模块。CPU的下方设有6G基带芯片和射频芯片、网口、光纤口、DC电源、电源变压模块。6G基带芯片和射频芯片(即6G基带芯片和6G射频芯片)中的射频芯片和基带芯片可以为相互独立的芯片,射频芯片根据天线的布置需求,可以设置多个6G射频天线,同样,基带天线的数量也可以根据天线和布置需求设置为多个。本申请提供的通信设备内还可以设置其它的电子器件,例如CPLD逻辑芯片、PHY芯片等其它处理器。
如图3所示,本申请通过将天线模组10直接设置在主板103的顶面S2,天线模组10中的各天线的馈电走线直接在主板103内布置(例如主板103上的微带线构成馈电系统),无需要额外的馈电线缆。假若天线模组10单独固定在一块天线板上,例如:通常天线板可以为金属板且与主板层叠设置,射频芯片通过馈电线缆为天线模组馈电,这种架构下,不但天线板占据通信设备的空间,馈电线缆也需要占据通信设备的空间,而且天线板的组装、馈电线缆的组装都使得通信设备内部结构无法更简洁。对于天线模组的信号而言,馈电线缆馈电的信号质量没有本申请通过主板103内的走线作为馈电结构直接馈电方式的信号质量好。
本申请提供的天线模组10为MIMO天线系统。天线模组10包括多组天线(多个天线单元),每组天线的工作频率不同,概括而言,天线模组可以包括两个或两个以上的工作在第一频率天线、两个或两个以上的工作在第二频率的天线。例如,一种实施方式中,天线模组包括三组天线,第一组为第一频率天线(例如2.4G天线,工作频段:2.4~2.5GHz),第二组为 第二频率天线(例如5G天线,工作频段:5.15~5.85GHz),第三组为第三频段天线(例如6G天线,工作频段:5.925~7.125GHz)。每组天线都包括多个独立的天线,独立的天线指的是天线具有独立的馈电源和辐射体,能够单独执行天线功能。一种具体的实施方式中,天线模组包括4个2.4G天线,4个5G天线,和4个6G天线。一个天线单元可以设置一个频率的一个天线(例如一个天线单元只包括一个6G天线),一个天线单元也可以设置两个不同频率的天线,例如,一个天线单元内即包括一个2.4G天线,也包括一个5G天线。
为了保证所有天线的工作效率,每个天线在工作时需要保证与其它天线之间的隔离度,端口隔离度用于量化描述天线之间的影响大小,端口隔离度越大,表示两个天线之间相互影响越小。通常天线之间距离越远,隔离度越好。但是,天线之间的距离较大,会影响通信设备小型化的设计。因此,需要将天线之间的距离拉近,节约占板空间,获得较小尺寸的通信设备。对于低频天线而言,相邻的两个低频天线之间安全距离较大,通常,通过将多个低频天线分布在电路板的不同的角落,以实现天线之间的隔离,但是这种做法不利于电路板的布局,天线所连接的射频芯片也需要分开布置才能获得较好的天线的性能,若射频芯片集中布置,天线分开布置,一定会有部分天线与射频芯片之间通过较长的线缆连接,会带来射频信号的损耗。
参阅图3,本申请将天线模组10布置在主板103的顶面S2,天线模组10包括多个天线单元,一种具体的实施方式中,天线模组10包括8个天线单元,其中四个天线单元集成了第一频率和第二频率的天线,例如4个2.4G天线和4个5G天线,即每个天线单元中均包括一个第一频率的天线和一个第二频率的天线(可以理解为:将一个2.4G天线和一个5G天线设置在一个天线支架上,对应主板103的同一个位置设置)。具体而言,本实施方式将4个2.4G天线相邻设置,且所有的2.4G天线均布置在主板103的中心区域的同侧,4个2.4G天线和4个5G天线对应的主板103的位置是相同的。可以理解为第一频率为低频,第二频率为高频,在满足天线性能和隔离度的条件下,高频天线占板空间比低频天线占板的空间小。本申请以第二频率的天线为基准朝向位置布置,在满足多个第二频率的天线之间位置合理布局的基础上,将第一频率的天线设置在相应的第二频率天线的位置,再通过去耦技术调节第一频率天线的隔离度和性能,这样的设计可以节约天线模组的占板空间,有利于通信设备的小尺寸,轻薄的设计。具体而言,本申请先设置4个5G天线的具体在主板103上的位置,再将4个2.4G天线之间布置在4个5G天线的馈电电路板上,再针对2.4天线设置去耦结构,即保证相邻的2.4G天线之间的隔离度,也要保证各2.4G天线的辐射效率。
如图3和图4所示,通信设备100的内部没有任何用于为天线模组10馈电的馈电线缆,通信设备100的内部结构简洁,不但可以提升组装工艺的效率,降低组装成本,还为通信设备100的维修带来了便捷。本申请一种实施方式提供了一种免线缆馈电的天线模组10,天线模组10连接在主板103的顶面S2。
图7为本申请一种实施方式提供的天线模组10的一个方向的立体分解示意图,图8为图7所示的天线模组10的另一个方向的立体分解示意图,图9为图7所示的天线模组10的剖面示意图。参阅图7、图8和图9,天线模组10包括辐射单元20、接地单元30和馈电单元40。辐射单元20和接地单元30层叠设置,且接地单元30层叠设置在主板103和辐射单元20之间,接地单元30和主板103隔空相对。辐射单元20和接地单元30层叠的方向为第一方向A1,沿第一方向A1,所述馈电单元40位于所述接地单元30远离的述辐射单元20的一侧,第一方向A1也可以垂直于主板103的方向。辐射单元20、接地单元30和馈电单元40 均为金属传输线结构或金属贴片结构,本申请具体实施方式中,将辐射单元20、接地单元30和馈电单元40设置在绝缘支架上,并将绝缘支架组装至主板。绝缘支架可以为电路板组成或者其它形态的结构。
接下来先对辐射单元20、接地单元30和馈电单元40的具体结构和位置关系进行描述。
参阅图7、图8和图9,辐射单元20位于天线模组10的顶部,可以理解为天线模组10远离主板103的位置,辐射单元20邻近第二壳体102。辐射单元20包括输入接口21、功分单元22和多个辐射振子23,多个辐射振子23环绕输入接口21排布,例如,多个辐射振子23排列在环形区域中。功分单元22和辐射振子23之间可以一一对应设置,且分别连接在各辐射振子23和输入接口21之间。功分单元22和辐射振子23之间也可以一对多的对应方式设置,例如,图7所示的实施方式中,一个功分单元22对应连接两个辐射振子23,辐射单元20包括四个功分单元22及八个辐射振子23。输入接口21为辐射单元20的馈电位置,输入接口21用于电连接馈电单元40,辐射接口21电连接所有的功分单元22。
一种具体的实施方式中,输入接口21位于辐射单元20的中心位置,功分单元22环绕输入接口21,多个辐射振子23环绕功分单元22,辐射单元20可以为以输入接口21为中心的旋转对称结构。各辐射振子23的形态可以为但不限于:条状、弧形、L形等等。一种实施方式中,辐射单元20在谐振状态下的工作频率为5G,各辐射振子23的电长度为:辐射单元20工作频率的电磁波波长的四分之一。一种实施方式中,功分单元22和多个辐射振子23共面,例如,功分单元22和多个辐射振子23为设置在电路板的同一层上的金属微带线结构。其它实施方式中,功分单元22所在的面和多个辐射振子23所在的面不同,例如,功分单元22和多个辐射振子23为设置在电路板的不同层上,功分单元22可以位于电路板的中间层,多个辐射振子23可以为设置在电路板位于电路板的表层。
接地单元30为金属层结构,例如:一种实施方式中,接地单元30为设在电路板上某一层(可以是电路板的中间层,也可以是表层)的铜箔,另一种实施方式中,接地单元30也可以为金属片结构,接地单元30可以连接(粘胶或焊接)固定在电路板的表面。一种实施方式中,接地单元30的中心区域形成缺口31,此缺口31的位置用于设置辐射单元20和馈电单元40之间的连接结构。接地单元30的具体形态可以为环形,接地单元30的外边缘为圆形或方形或多边形,接地单元30的内边缘也可以为圆形或方形或多边形。
图9A、图9B和图9C所示为本申请具体实施方式中,辐射单元20和接地单元30之间的位置关系。一种实施方式中,参阅图9A,接地单元30的内边缘对应设置在输入接口21的外围,具体而言,接地单元30的内边缘在辐射单元20所在的平面上的垂直投影位于输入接口21的外围。或者,参阅图9B,接地单元30的内边缘在辐射单元20所在的平面上的垂直投影也可以位于输入接口21的内部。参阅图9A、图9B和图9C,接地单元30在辐射单元20所在的平面上的垂直投影和至少部分所述功分单元22重合。如图9A所示,接地单元30的外边缘和辐射振子23的内边缘邻近,或者,接地单元30的外边缘位于辐射振子23的内边缘和输入接口21之间。参阅图9B,接地单元30的外边缘和辐射振子23的内边缘也可以重合。参阅图9C,一种实施方式中,接地单元30在辐射单元20所在的平面上的投影的一部分和功分单元22重合,另一部分和部分辐射振子23重合。
参阅图7、图8和图9,馈电单元40位于接地单元30和主板103之间。具体而言,馈电单元40为形成在绝缘支架上的传输线结构,沿第一方向所述馈电单元40位于所述接地单元远离的述辐射单元20的一侧。馈电单元40电连接至主板103上的射频芯片,并用于为辐射 单元20馈电。射频芯片通过设置在主板103内的传输线电连接至馈电单元40。
图10为传统的天线模组和主板之间通过射频线缆传送馈电信号的方案,参阅图10,天线模组架设在主板的上方,馈电线缆为天线模组馈电,馈电线缆和主板上的地的连接位置为第一连接点P1,馈电线缆和辐射单元20连接的位置包括第二连接点P2和第三连接点P3。第一连接点P1在主板上的具体的位置、第二连接点P2在天线模组上的具体的位置、第三连接点P3在天线模组上的具体的位置,第一连接点P1和第二连接点P2之间的馈电线缆的长度,第二连接点P2和第三连接点P3之间的馈电线缆的长度,以及第三连接点P3和辐射单元20的馈电点之间的馈电线缆的长度均为影响天线模组的辐射效率的重要因素。在设计及组装的过程中,要精确控制这么多的影响天线模组的辐射效率的重要因素,需要较长的工时,较专业的技术支撑,使得通信设备的制作成本变得很高。因此,传统的用射频线缆传送馈电信号的方案不但使得通信设备内部结构复杂,射频线缆的组装工艺也相当复杂,需要考虑前述影响天线辐射效率的重要因素,很难保证天线的良好辐射性能。概括而言,射频线缆摆放路径、射频线缆本身的长短等对天线的一致性、板级布局、天线的各项指标以及链路插损都有较大的影响。
本申请提供的天线模组10的馈电不需要任何外接射频线缆,通过布置在主板103上的传输线及布置在绝缘支架上的馈电单元40(也是传输线结构)实现激励辐射单元20,消除了传统设计的射频线缆对天线性能的影响。本申请提供的天线模组10中,辐射单元20和射频芯片之间传送电磁波信号的载体均是设置在电路板或其它绝缘支架上的传输线结构,使得通信设备内部的结构简洁,而且传输线的位置和形态是固定的,也是在组装天线模组10之前就设计好的,不存在组装过程的对天线产生的不良影响。
馈电单元40的具体的结构形态参阅图11、图12、图13和图14所示的实施方式。
参阅图11,馈电单元40包括馈电传输部41和接地部42,所述馈电传输部41和所述接地部42之间设有间隙,所述馈电传输部41和所述接地部42之间通过绝缘介质43隔开,所述馈电传输部41和所述接地部42之间的绝缘介质43可以为空气、绝缘支架的绝缘材料、绝缘胶等等。所述馈电传输部41的宽度包括第一宽度WS,所述接地部42的宽度包括第二宽度WG,所述第一宽度WS不等于所述第二宽度WG,用于实现所述天线模组10的电流平衡,馈电单元40的馈电传输部41和接地部42的不等宽的设计具有去耦作用,所述馈电传输部41的宽度指的是垂直于所述馈电传输部41的延伸路径的方向上的尺寸,所述接地部42的宽度指的是垂直于所述接地部42的延伸路径的方向上的尺寸。具体而言,一种实施方式中,馈电传输部41沿第一方向A1等宽度延伸,馈电传输部41沿第二方向A2也是等宽度延伸,接地部42沿第一方向A1等宽度延伸,接地部42沿第二方向A2也是等宽度延伸。如图11所示,第一宽度WS包括馈电传输部41沿第一方向A1延伸的部分传输线的宽度WS1和馈电传输部41沿第二方向A2延伸的部分传输线的宽度WS2,第二宽度WG包括接地部42沿第一方向A1延伸的部分传输线的宽度WG1和接地部42沿第二方向A2延伸的部分传输线的宽度WG2。馈电传输部41沿第一方向A1延伸的部分传输线的宽度WS1和馈电传输部41沿第二方向A2延伸的部分传输线的宽度WS2可以相等也可以不同;接地部42沿第一方向A1延伸的部分传输线的宽度WG1和接地部42沿第二方向A2延伸的部分传输线的宽度WG2可以相等也可以不同。本申请定义的第一宽度WS和第二宽度WG不等,指的是:馈电传输部41沿第一方向A1延伸的部分传输线的宽度WS1不等于接地部42沿第一方向A1延伸的部分传输线的宽度WG1,馈电传输部41沿第二方向A2延伸的部分传输线的宽度WS2不等于接地部42沿第二方向A2延伸的部分传输线的宽度WG2。
本方案通过馈电传输部41和接地部42的宽度不同(即第一宽度WS和第二宽度WG不等),能够实现天线模组10的电流平衡,能消除或减少馈电单元40对辐射单元20形成的耦合作用,提升天线模组10的辐射性能。本申请通过设置在绝缘支架上的传输线结构的馈电单元40可以解决天线模组10的匹配问题。
本申请提供的天线模组中的辐射单元20和接地单元30构成一种不对称架构,不对称架构指的是以辐射单元20的辐射振子23和接地单元30为不一样的结构,谐振状态下,辐射单元20和接地单元30产生电流不平衡,具体而言,辐射单元20上的电流和接地单元30上的电流不等幅,且电流方向也不同。本申请通过馈电传输部41和接地部42的宽度不相等的设计可以解决辐射单元20和接地单元30产生电流不平衡带来的阻抗不匹配的问题,馈电传输部41和接地部42的宽度不相等的设计使得天线模组的整体实现电流平衡的效果。
馈电单元40的馈电传输部41和接地部42构成双平行线的馈电架构,微带线状的功分单元22结合馈电单元40的双平行线的馈电架构,若馈电传输部41和接地部42的宽度相等,会存因电流不平衡而造成的阻抗不匹配,而且馈电单元40会与辐射单元20产互耦作用,引起天线方向图的变化,影响天线的辐射性能。本申请通过不等宽的馈电传输部41和接地部42的设置,使得馈电单元40具有巴伦作用和去耦的作用,实现天线模组10的电流平衡,提升辐射效率。
参阅图11,馈电传输部41包括第一馈电端411和第二馈电端412,所述第一馈电端411和所述辐射单元20电连接,所述第二馈电端412用于电连接通信设备内的主板103上的射频芯片。馈电传输部41的延伸路径指的是第一馈电端411和第二馈电端412之间的射频信号传送的路径或者电流流向的路径。接地部42包括第一地端421和第二地端422,第一地端421和接地单元30电连接,第二地端422和主板103上的地(即主板上的接地层)电连接。接地部42的延伸路径指的是第一地端421和第二地端422之间的电流流向的路径。在第一方向上,第一馈电端411位于第二馈电端412和辐射单元20之间,第一地端421位于第二地端422和辐射单元20之间。
一种实施方式中,在所述馈电传输部41的延伸路径上,所述馈电传输部41的电长度在0.3λ-0.7λ之间,具体而言,馈电传输部41的电长度可以为0.5λ,λ为所述辐射单元20谐振状态的电磁波的波长。通过限制馈电传输部41的电长度的具体范围(0.3λ-0.7λ之间)及具体的值(0.5λ),可以使馈电传输部41具有巴伦作用,保证天线模组阻抗匹配的重复连续性,阻抗匹配的重复连续性可以理解为馈电传输部41的两端,即第一馈电端411和第二馈电端412的阻抗匹配是相同的,这样无需在馈电传输部41上设置其它匹配电路来调匹配阻抗。如图11所示,在所述馈电传输部41的延伸路径上,所述馈电传输部41的电长度可以为馈电传输部41在第一方向A1上的电长度H1与馈电传输部41在第二方向A2上的电长度L1的和。馈电传输部41在第一方向A1上的电长度H1可以为0.1λ-0.35λ之间(例如0.25λ),馈电传输部41在第二方向A2上的电长度L1可以为0.1λ-0.35λ之间(例如0.25λ)。
一种实施方式中,所述馈电传输部41的延伸路径和所述接地部42的延伸路径构成双平行线架构。可以理解为,馈电传输部41的第一馈电端411和接地部42的第一地端421之间的间隙与馈电传输部41的第二馈电端412和接地部42的第一地端421之间的间隙相同,且在第一馈电端411和接地部42的延伸路径上,第一馈电端411和接地部42之间的间隙均保持不变,藉此馈电单元40构成双平行线架构,使得馈电单元40在天线模组工作的状态下能够形成等幅反向的电流,从而使得馈电单元40不会对辐射单元20的谐振产生影响,保证天 线模组为垂直极化天线,可以得到较好的方向图。电流等幅反向可以理解为:馈电传输部41上的电流方向和接地部42上的电流方向相反,但馈电传输部41上的电流幅值和接地部42上的电流幅值相等,电流幅值指的是:交变电流在一个周期内出现的最大值。
馈电传输部41的延伸路径和接地部42的延伸路径即包括第一方向A1上的延伸路径也包括第二方向A2上的延伸路,第二方向A2垂直于第一方向A1。馈电传输部41在第一方向A1上的延伸路径可以理解为:一种实施方式中,馈电传输部41的部分传输线在第一方向A1上的延伸;另一种实施方式中,馈电传输部41的部分传输线具有在第一方向A1上的垂直分量,也就是说,馈电传输部41的部分传输线相对第一方向A1倾斜延伸,即有在第一方向A1上的延伸趋势,又有在第二方向A2上的延伸趋势。本申请一种实施方式中,馈电传输部41在第二方向A2上的总的电长度L1在0.1λ-0.35λ之间,一种具体的实施方式中,馈电传输部41在第二方向A2上的总的电长度L1为0.25λ,λ为所述辐射单元20谐振状态的电磁波的波长。通过限定第二方向A2的馈电传输部41的电长度,可以实现扼制感应电流,能够实现馈电单元40和辐射单元20之间的去耦,降低馈电单元40和辐射单元20之间的耦合,提升辐射单元20的辐射效率。
馈电传输部41和接地部42的具体的形态可以为简单的L形传输线架构,也可以为多个L形传输线组合形成,或者包括弧形传输线、锯齿形或波浪线线传输线等等。一种实施方式中,如图11所示,所述馈电传输部41在所述第二方向A2上延伸的部分传输线共线,本方案提供一种简单的馈电传输部41的布线方案,较容易控制馈电传输部41的电长度,对于扼制感应电流的效果更明显。一种具体的实施方式中,馈电传输部41包括第一段413、第二段414和第三段415,第一段413沿第二方向A2延伸,第二段414和第三段415分别连接在第一段413的两端且均沿第一方向A1延伸,第二段414连接在第一段413和辐射单元20之间,第三段415连接在第一段413和主板103上用于连接射频芯片的传输线之间。第一段413的电长度为0.1λ-0.35λ(例如可以为0.25λ),第二段414的电长度和第三段415的电长度的和为0.1λ-0.35λ(例如可以为0.25λ),第一段412、第二段414和第三段415的电长度和为馈电传输部41的延伸路径上的电长度(0.5λ)。其它实施方式中,第一段413的延伸方向可以与第二方向A2呈夹角设置,例如第一段413相对第二方向A2倾斜15度(此角度值只是举例说明,并不是本方案的限定,也可以为其它角度值),第一段413在第二方向A2上的分量的电长度为0.25λ。类似地,第二段414和第三段415也可以与第一方向A1呈夹角设置,第二段414在第一方向A1上的分量的电长度和第三段415在第一方向A1上的分量的电长度的和为0.1λ-0.35λ(例如可以为0.25λ)。
本实施方式中,如图11所示,接地部42为两段式结构。接地部42包括第四段423和第五段424,第四段423和第一段413可以并行延伸,第四段423和第一段413可以相互平行,第五段424和第三段415并行延伸,第五段424和第三段415可以相互平行。第四段423的电长度可以为0.1λ-0.35λ(例如可以为0.25λ),第五段424的电长度可以为0.1λ-0.35λ(例如可以为0.25λ)。第四段423与天线模组10的接地单元30直接连接,可以通过焊接的方式直接连接,也或以通过导电胶的方式固定连接。
另一种实施方式中,参阅图12,图12所示的实施方式和图11所示的实施方式的主要区别在于:接地部42为三段式结构。除了第四段423和第五段424,接地部42还包括第六段425,第六段425和第二段414并行延伸,第六段425和第四段423之间可以构成L形传输线架构,第六段425远离第四段423的一端连接馈电单元40的接地单元30。第六段425和第五段424的延伸方向可以均为第一方向A1,第六段425和第五段424的电长度和为0.1λ-0.35 λ(例如可以为0.25λ)。本实施方式中,第四段423和天线模组10的接地单元30之间通过绝缘介质隔开。
一种实施方式中,如图11和图12所示的实施方式,第四段423和第五段424相互垂直,且构成L形传输线架构,第一段413和第三段415构成L形传输线架构。第一段413和第二段414也构成L形传输线架构。其它实施方式中,第四段423和第五段424之间的夹角可以大于90度或小于90度。类似地,第一段413和第三段415之间,以及第一段413和第二段414之间的夹角也可以大于90度或小于90度。
一种实施方式中,参阅图13,所述馈电传输部41在所述第二方向A2上延伸的部分传输线包括至少两段传输线,且所述至少两段传输线相互平行但不共线,第二方向A2上延伸的各段传输线至天线模组10的接地单元30的垂直距离不同,本方案提供一种具体的馈电传输部41的布线方案,本申请可以根据天线模组的具体的组装环境和电磁场环境的不同,设置不同形态的馈电传输部41,通过调节绝缘设置上的传输的具体的形态即可实现不同的设计方案,简单易行。所述至少两段传输线之间通过沿所述第一方向A1延伸的传输线连接。本实施方式定义的沿第一方向A1延伸和沿第二方向A2延伸可以理解为:可以与第一方向A1重合,或者也可以与第一方向A1形成夹角,但在第一方向A1上有垂直分量;可以与第二方向A2重合,或者也以与第二方向A3形成夹角,但在第二方向A2上有垂直分量。一种具体的实施,馈电传输部41中的沿第二方向A2延伸的传输线的数量为两个,馈电传输部41为五段式结构,即馈电传输部41包括两段沿第二方向延伸的传输线和三段沿第一方向A1延伸的传输线。沿第二方向A2延伸的两段传输的电长度和为0.1λ-0.35λ(例如可以为0.25λ),沿第一方向A1的三段传输线的电长度和为0.1λ-0.35λ(例如可以为0.25λ)。
图11、图12和图13所示的实施方式中,馈电传输部41和接地部42可以共面,即二者位于同一个平面上,也就是说承载馈电传输部41和接地部42的绝缘支架的平面是相同的。例如,绝缘支架为电路板结构时,馈电传输部41和接地部42位于电路板的同一层。本申请不考虑馈电传输部41和接地部42的厚度,馈电传输部41和接地部42的厚度可以不同,但只要馈电传输部41和接地部42设置在同一个平面上,均可以理解为二者共面。共面的设计的制作成本较低,也易于控制馈电传输部和接地部之间的位置关系。
若绝缘支架为其它类型的结构,馈电传输部41和接地部42位于绝缘支架的同一个表面。本实施方式中,从第一馈电端411至第二馈电端412,馈电传输部41等宽延伸。从第一地端421至第二地端422,接地部42也是等宽延伸。接地部42的宽度大于馈电传输部41的宽度。
图11、图12和图13所示的实施方式中的馈电单元40的馈电传输部41和接地部42也可以不共面,例如,馈电单元40设置在电路板上的情况下,馈电传输部41和接地部42可以分别位于电路板的不同层,但是,二者在电路板的同一个表面上的投影的结构和位置关系为图11、图12和图13所示的架构。
另一种实施方式中,参阅图14、图15、图16和图17,所述馈电传输部41所在的平面和所述接地部42所在的平面不共面,也可以称为馈电传输部41和接地部42构成异面传输线架构。图14和图15中,馈电传输部41和接地部42设置在电路板的两个表面,用实线及内部打剖面线的方式表达馈电传输部41,表示馈电传输部41所在的电路板的表面为可以看见的表面。用虚线及内部为空白(不打剖面线)的方式表达接地部42,接地部42所在的电路板的表面为不可见的表面。具体而言,图14、图15、图16和图17所示的实施方式表示馈电传输部41和接地部42位于电路板43的不同的层,但是二者在电路板43的同一个表面上的 投影是至少部分重叠的状态。相较共面的设计方案,本方案提供的异面传输架构具有节约空间和占板面积的优势,可以刚好利用电路板的基材的厚度作为馈电传输部和接地部之间的绝缘隔离,制作成本更低。电路板43包括第一面431、第二面432、顶边433和底边434,第一面431和第二面432沿第三方向A3相对设置。馈电传输部41位于第一面431,接地部42位于第二面432,馈电传输部41和接地部42均从底边434延伸至顶边433。电路板43包括插接结构435,插接结构435突出于顶边433,插接结构435用于与辐射单元20电连接,具体而言,插接结构435上设有导电连接部436,导电连接部436和馈电传输部41电连接。接地部42的第一地端421延伸至顶边433用于与接地单元30电连接。底边434设有卡槽437,此卡槽437用于与其它的电路板或支架固定连接。在第三方向A3(例如第三方向A3可以为电路板的厚度方向)上,所述馈电传输部41正对所述接地部42,所述第三方向A3垂直于所述第二方向A2,所述第三方向A3亦垂直于所述第一方向A1,馈电传输部41在第一方向A1上和第二方向A2上的延伸方案和具体的形态与图11所示的实施方式相同,接地部42在第一方向A1上和第二方向A2上的延伸方案和具体的形态与馈电传输部41相同,一种实施方式中,本方案提供的天线模组的馈电传输部41和接地部42可以设置在电路板的两个表面(例如正面和背面)上。
图14所示的实施方式中,对于馈电传输部41而言,从第一馈电端411至第二馈电端412,馈电传输部41等宽延伸,对于接地部42而言,从第一地端421和第二地端422,接地部42也是等宽延伸,但是馈电传输部41和宽度和接地部42的宽度不等。
图15所示的实施方式中,对于馈电传输部41而言(与图14所示的实施方式中的馈电传输部41结构形态相同),从第一馈电端411至第二馈电端412,馈电传输部41等宽延伸,对于接地部42而言,从第一地端421和第二地端422,部分接地部42等宽延伸,部分接地部42不等宽延伸,具体而言,沿第二方向延伸的部分接地部42为等宽延伸,沿第一方向延伸的部分接地部42的上半部分为等宽延伸,沿第一方向延伸的部分接地部42的下半部分为不等宽延伸,不等宽延伸的部分接地部42为上窄下宽的梯形结构。其它实施方式中,不等宽延伸的部分接地部42也可以设置为其它的形态(例如方形、圆形等),或者其它的位置(例如位于沿第二方向延伸的部分或第一方向延伸的部分的上半部分)。
不等宽延伸的馈电传输部和接地部可以为宽度渐变的延伸方式,有利于调节阻抗。
图16所示的实施方式中,对于馈电传输部41而言,从第一馈电端411至第二馈电端412,部分馈电传输部41等宽延伸,部分馈电传输部41不等宽延伸,对于接地部42而言,从第一地端421和第二地端422,接地部42等宽延伸。
图17所示的实施方式中,对于馈电传输部41而言,从第一馈电端411至第二馈电端412,部分馈电传输部41等宽延伸,部分馈电传输部41不等宽延伸,对于接地部42而言,从第一地端421和第二地端422,部分接地部42等宽延伸,部分接地部42不等宽延伸。
参阅图7、图8和图9,一种实施方式中,天线模组10包括由印刷电路板构成的支架15,通过将辐射单元20、接地单元30和馈电单元40形成在支架15上构成天线模组10,具有易于制作、制作成本低等优势。支架15包括第一板151、第二板152和第三板153。辐射单元20和接地单元30形成在第一板151上,第二板152为用于设置馈电单元40的绝缘支架,第二板152和第三板153交叉设置,且二者均位于第一板151和主板103之间。第二板152的具体的结构与图14所示的实施方式的电路板43可以为相同的结构。
参阅图18和图19,第一板151包括层叠设置的第一层1511和第二层1512。一种实施方 式中,第一层1511为第一板151的顶面,第二层1512为第一板151的底面。所述辐射单元20位于所述第一层1511,所述接地单元30位于所述第二层1512。第二板152包括布线层1521和相对设置的第一边缘1522和第二边缘1523,所述布线层1521位于所述第一边缘1522和所述第二边缘1523之间,所述第二板152位于所述第一板151的一侧,所述第一边缘1522连接至所述第一板151,所述馈电单元40设置在所述布线层1521上,所述布线层1521和所述第一层1511之间呈夹角设置。具体而言,布线层1521可以垂直于第一层1511。主板103、接地单元30和辐射单元20在第一方向A1上依次层叠设置,主板103、第二板152和第一板151在第一方向A1上依次连接,主板103和第一板151可以相互平行设置,例如,主板103和第一板151为水平放置状态,则第二板152为竖直放置的(立式)状态。第一板151和第二板152均为平板状结构,第二板152可以垂直连接在主板103和第一板151之间。本方案通过第一板151和第二板152设置天线模组10,不但制作工艺简单,制作成本低,还使得天线模组10具有重量轻的优势,有利于通信设备轻薄短小的设计。
其它实施方式中,辐射单元20、接地单元30和馈电单元40也可以设置其它类型的绝缘支架上,例如一体式的注塑形成的塑料支架上,一部分用于设置辐射单元20和接地单元,另一部分用设置馈电单元40,塑料支架可以为圆柱体状,正方体状等适合承载辐射单元20、接地单元和馈电单元40的需要的形态。
参阅图18和图19,本方案通过第一边缘1522和第一板151的连接实现接地部42电连接至接地单元30,具体而言,一种实施方式中上,第一边缘1522和第一板151接触,布线层1521上的接地部42与第一板151上的接地单元30接触即可实现接地部42电连接至接地单元30,也可以通过焊接的方式实现接地部42和接地单元30之间的稳固的连接。一种实施方式中,接地单元30位于第一板151的表面,接地部42位于第二板152的表面,第一板151和第二板152接触的情况下,再通过焊接可以将接地单元和接地部42连接固定,图19中黑色的类似半圆形的区域为焊接位置,图19所示的实施方式只是示意性地表示接地部42和接地单元30之间的焊接关系,并不构成对具体的焊接位置和焊接结构的限定。
参阅图18和图19,第一板151和第二板152之间的连接处设有连接结构50,连接结构50可以理解为类似连接器的结构,或者插头插孔配合的结构。连接结构50用于实现馈电传输部41和辐射单元20之间的电连接。本申请通过第一板151和第二板152之间的组装连接的过程就可以同步实现馈电单元40和辐射单元20的电连接及馈电单元40和接地单元30之间的电连接,此种电连接的方式不但具有可靠性,还具有损耗低的优势。一种实施方式中,本申请通过突出在第二板152边缘的结构和第一板151上的孔结构的配合实现馈电传输部41和辐射单元20之间的电连接。具体而言,所述第一板151设有贯通所述第一层1511和所述第二层1512的孔1513,所述第二板152包括突出于所述第一边缘1522的插接结构435,至少部分所述插接结构435位于所述孔1513内,所述连接结构50包括所述孔1513和所述插接结构435,所述连接结构50还包括导电连接部436,如图19所示,所述导电连接部436电连接在所述辐射单元20和所述馈电传输部41之间,导电连接部436可以包括电连接在辐射单元20和馈电传输部41之间的导电层、或导电片、或导电胶、或焊料。
如图18和图19所示,一种实施方式中,第一板151上的孔1513为通孔,所述孔1513包括第一开口端E1和第二开口端E2,所述插接结构435从所述第一开口端E1插入所述孔1513,从所述第二开口端E2的一侧将所述导电连接部436焊接至所述辐射单元20。所述第一层1511为所述第一板151的顶面,所述第二层1512为所述第一板151的底面,所述第一开口端E1位于所述底面,所述第二开口端E2位于所述顶面。
如图19所示,所述第二板152的所述第二边缘1523连接至通信设备的主板103,主板103内设接地层103G,主板103上还设有射频芯片103F,馈电单元40的馈电传输部41通过主板103内的传输线电连接至射频芯片103F,馈电单元40的接地部42电连接至主板103内的接地层103G。图19示意性地表达了接地部42和主板103上的接地层103G之间的连接方式,馈电传输部41和射频芯片103F之间通过传输线连接的方式,并不限定具体的接地层103G的位置、射频芯片103F的位置及传输线的形态。可以理解的是,主板103为多层电路板结构,接地层103G可以为其中的一层,传输线可以位于其中的一层,射频芯片103F可以设置在主板103的表面。一种实施方式中,射频芯片103F设置在主板103背离天线模组10的表面,通过通信设备100的第一壳体101和主板103结构形成电磁屏蔽空间(如图3所示)。
参阅图20和图21,图20和图21所示的实施方式与图18和图19所示的实施方式的区别在于:图18和图19所示的实施方式中的第一板151上的孔1513的内壁为第一板151的绝缘材质,即孔1513内壁不具有导电结构。导电连接部436从第二开口端E2的位置处与辐射单元20焊接。图20和图21所示的实施方式中的第一板151的孔1513的内壁设有导电层1514,导电层1514和辐射单元20电连接。所述插接结构435插入第一板151的孔1513中,可以在孔1513内部通过导电胶或焊料实现导电连接部436和导电层1514之间的电连接。本方案的连接结构50在馈电传输部41和辐射单元20之间的电连接的强度和稳定性更好。
参阅图7、图8和图9,第二板152的第一边缘1522和第一板151的连接除了通过插接结构435连接之外,第二板152还包括突出在第一边缘1522的定位柱1524,一种实施方式中,定位柱1524的数量为两个,且对称分布在插接结构435的两侧。对应地,第一板151上设有与定位柱1524一一对应设置的定位孔1515,具体而言,定位孔1515的数量为两个且对称分布在孔1513的两侧。定位柱1524分别插入定位孔1515中,以实现第一板151和第二板152之间的固定。第三板153和第一板151之间也是通过定位柱和定位孔的配合连接固定。
一种具体的实施方式中,参阅图8,天线模组还包括反射单元60和集总单元70,所述集总单元70加载在反射单元60上,通过控制集总单元70来控制反射单元60是否工作,通过反射单元60的工作与否实现天线模组高密状态和全向状态的切换。
一种具体的实施方式中,所述第二板152上设有第一主天线10A1,所述辐射单元20、所述接地单元30和所述馈电单元40构成第二主天线10A2,所述第一主天线10A1的谐振频率为第一频率,所述第二主天线10A2的谐振频率为第二频率,所述第二频率高于所述第一频率。所述第一频率为2.4GHz,所述第二频率为5G。所述天线模组10包括多个天线单元10A,每个所述天线单元10A都包括一个所述第一主天线10A1和一个所述第二主天线10A2。
结合参阅图22和图23,图23为图22所示的实施方式提供的天线模组的距离和高度尺寸标注示意图。第一主天线10A1和相邻的天线单元10A的第一主天线10A1之间的距离D3在0.2波长~0.8波长之间。
所述天线单元10A还包括第一去耦结构13和第二去耦结构14,所述第一去耦结构13位于所述第二板152上,所述第二去耦结构14位于所述第三板153上。所述第二板152和所述第三板153远离所述第一板151的一端连接通信设备的主板103,在垂直于所述通信设备主板103的接地层的方向上,所述第一去耦结构13与主板103的接地层103G之间的最大的距离为所述第一去耦结构13的剖面高度H1,所述第一去耦结构13的剖面高度H1范围在0.01波长~0.16波长之间,所述第一去耦结构13和所述第一主天线10A1之间的距离为第一距离 D1,所述第一去耦结构13与相邻的所述天线单元10A的所述第一主天线10A1之间的距离为第二距离D2,所述第一距离D1和所述第二距离D2均在0.1波长~0.6波长之间。
第一距离D1指的是第一去耦结构13的相位中心和第一主天线10A1的相位中心之间的距离。第二距离D2指的是第一去耦结构13的相位中心和相邻的天线单元10A中的第一主天线10A1的相位中心之间的距离。本申请通过设置第一去耦结构13可以实现天线模组整体的小尺寸,有利于通信设备的薄型化设计,还能解决相邻的天线单元的第一主天线10A1之间的隔离度的问题,通过控制第一去耦结构13的剖面高度、第一去耦结构13与第一主天线10A1之间的距离、第一去耦结构13与相邻的天线单元的第一主天线10A1之间的距离,可以在有限的空间内,在提升相邻的第一主天线10A1之间的隔离度的同时,减少对第一主天线10A1辐射效率的影响。相邻的第一主天线10A1的辐射效率的仿真图没有明显的凹坑。
本申请提供的天线模组10通过将各天线单元10A设计为相同的架构,将多个天线单元10A组装至主板103上的过程中,不需要考虑各天线单元10A的具体的结构,因为所有的天线单元10A的结构是相同的,只需要按照射频芯片的位置,摆放各天线单元10A。因此本实施方式有利于简化通信设备的组装工艺,节约组装成本,提升制作效率。
所述第二去耦结构14用于减少所述第一主天线10A1和相邻的所述天线单元10A的所述第一主天线10A1之间的耦合量,所述第二去耦结构14的谐振频率大于所述第一频率或小于所述第一频率。所述第二去耦结构14的谐振频率和所述第一频率之间的频率差在0.03GHz~0.33GHz之间。第二去耦结构14的谐振频点限定在(fL-0.33GHz)~(fL-0.03GHz)或(fH+0.03GHz)~(fH+0.33GHz)的范围内,都可以有隔离度提升的效果,同时效率凹坑不引入带内。fL~fH为第一主天线10A1的频率范围(即第一频率),例如fL~fH为2.4~2.5GHz。
第二去耦结构14和第一主天线10A1之间的距离D4,D5为:0.05波长~0.6波长。第二去耦结构14和第一主天线10A1之间的距离D4,D5可以小于第一去耦结构13和所述第一主天线10A1之间的距离(第一距离D1),或小于第一去耦结构13与相邻的所述天线单元10A的所述第一主天线10A1之间的距离(第二距离D2)。
本申请通过调节第二去耦结构14的谐振频率,使其谐振频率不在第一频率的位置,而是稍大或稍小,实现相邻的天线单元10A的第一主天线10A1之间的去耦,在提升隔离度的同时,减小对天线辐射效率的影响。具体而言,当第二去耦结构14产生谐振时,会对第二去耦结构14所在的谐振频率下的电磁波产生效率凹坑,对于相邻的天线单元10A的第一主天线10A1而言,第二去耦结构14所产生的效率凹坑可以避开相邻的天线单元10A的第一主天线10A1的谐振的带内频率(即第一频率),从而减小第二去耦结构14对相邻的天线单元10A的第一主天线10A1的辐射效率的影响。
本申请通过将两个第一主天线之间的距离拉近,并将第一主天线10A1和第二主天线10A2设置在同一个支架上,可以节约主板103的空间,有利于天线模组的小尺寸的设计。由于两个第一主天线10A1之间的距离在0.2波长~0.8波长之间,若各天线单元中不设置第一去耦结构,两个第一主天线10A1在谐振状态下,二者会接收到对方的信号,形成信号干扰,导致隔离度较差。因此本申请将两个第一主天线10A1之间的距离设置在0.2波长~0.8波长之间,通过第一去耦结构13和第二去耦结构14的设置来保证两个第一主天线10A1之间的辐射效率,提升隔离度。
本申请通过设置第一去耦结构13可以实现天线的小尺寸,有利于通信设备的薄型化设计,还能解决相邻的第一主天线10A1之间的隔离度的问题,通过控制第一去耦结构13的剖面高度、第一去耦结构13与第一主天线10A1之间的距离、第一去耦结构13与相邻的第一主天 线10A1之间的距离,可以在有限的空间内,在提升相邻的第一主天线10A1之间的隔离度的同时,减少对第一主天线10A1的辐射效率的影响。使得第一主天线10A1的辐射效率的仿真图没有明显的凹坑。
本申请通过调节第二去耦结构14的谐振频率,使其谐振频率不在第一频率的位置,而是稍大或稍小,实现第一主天线10A1之间的去耦,在提升隔离度的同时,减小对天线辐射效率的影响。具体而言,当第二去耦结构14产生谐振时,会对第二去耦结构14所在的谐振频率下的电磁波产生效率凹坑,对于第一主天线10A1而言,第二去耦结构14所产生的效率凹坑可以避开第一主天线10A1谐振的带内频率(即第一频率),从而减小第二去耦结构14对第一主天线10A1的辐射效率的影响。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (22)

  1. 一种天线模组,其特征在于,包括:
    层叠设置的辐射单元和接地单元;
    馈电单元,为形成在绝缘支架上的传输线结构,沿第一方向所述馈电单元位于所述接地单元远离的述辐射单元的一侧,所述馈电单元包括馈电传输部和接地部,所述馈电传输部和所述接地部之间绝缘隔开,所述馈电传输部的宽度包括第一宽度,所述接地部的宽度包括第二宽度,所述第一宽度不等于所述第二宽度,所述馈电传输部的宽度指的是垂直于所述馈电传输部的延伸路径的方向上的尺寸,所述接地部的宽度指的是垂直于所述接地部的延伸路径的方向上的尺寸。
  2. 根据权利要求1所述的天线模组,其特征在于,在所述馈电传输部的延伸路径上,所述馈电传输部的电长度在0.3λ-0.7λ之间,λ为所述辐射单元谐振状态的电磁波的波长。
  3. 根据权利要求2所述的天线模组,其特征在于,所述馈电传输部的延伸路径和所述接地部的延伸路径构成双平行线架构。
  4. 根据权利要求1-3任一项所述的天线模组,其特征在于,所述馈电传输部在第二方向上的总的电长度在0.15λ-0.35λ之间,λ为所述辐射单元谐振状态的电磁波的波长,所述第二方向垂直于所述第一方向。
  5. 根据权利要求4所述的天线模组,其特征在于,所述馈电传输部在所述第二方向上延伸的部分传输线共线。
  6. 根据权利要求4所述的天线模组,其特征在于,所述馈电传输部在所述第二方向上延伸的部分传输线包括至少两段传输线,所述至少两段传输线之间通过沿所述第一方向延伸的传输线连接。
  7. 根据权利要求1-6任一项所述的天线模组,其特征在于,所述馈电传输部和所述接地部共面。
  8. 根据权利要求1-6任一项所述的天线模组,其特征在于,所述馈电传输部所在的平面和所述接地部所在的平面不共面,在第三方向上,所述馈电传输部和所述接地部相对设置,所述第三方向垂直于所述第二方向,所述第三方向亦垂直于所述第一方向。
  9. 根据权利要求1-8任一项所述的天线模组,其特征在于,所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第二馈电端,所述馈电传输部等宽延伸;和/或
    所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,所述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,所述接地部等宽延伸。
  10. 根据权利要求1-8任一项所述的天线模组,其特征在于,所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第二馈电端,部分所述馈电传输部等宽延伸,部分所述馈电传输部不等宽延伸;和/或
    所述接地部包括第一地端和第二地端,所述第一地端和所述地电连接,述第二地端用于 电连接通信设备主板上的地,从所述第一地端至所述第二地端,部分所述接地部等宽延伸,部分所述接地部不等宽延伸。
  11. 根据权利要求1-8任一项所述的天线模组,其特征在于,所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第一馈电端,所述馈电传输部等宽延伸;和
    所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,部分所述接地部等宽延伸,部分所述接地部不等宽延伸。
  12. 根据权利要求1-8任一项所述的天线模组,其特征在于,所述接地部包括第一地端和第二地端,所述第一地端和所述接地单元电连接,述第二地端用于电连接通信设备主板上的地,从所述第一地端至所述第二地端,所述接地部等宽延伸;和
    所述馈电传输部包括第一馈电端和第二馈电端,所述第一馈电端和所述辐射单元电连接,所述第二馈电端用于电连接通信设备内的主板上的射频芯片,从所述第一馈电端至所述第一馈电端,部分所述馈电传输部等宽延伸,部分所述馈电传输部不等宽延伸。
  13. 根据权利要求1-12任一项所述的天线模组,其特征在于,所述天线模组包括第一板和第二板,
    所述第一板包括层叠设置的第一层和第二层,所述辐射单元位于所述第一层,所述接地单元位于所述第二层;
    所述第二板为所述绝缘支架,所述第二板包括布线层和相对设置的第一边缘和第二边缘,所述布线层位于所述第一边缘和所述第二边缘之间,所述第二板位于所述第一板的一侧,所述第一边缘连接至所述第一板,所述馈电单元设置在所述布线层上,所述布线层和所述第一层之间呈夹角设置。
  14. 根据权利要求13所述的天线模组,其特征在于,通过所述第一边缘和所述第一板的连接实现所述接地部电连接至所述接地单元,所述第一板和所述第二板之间的连接处设有连接结构,所述连接结构用于实现所述馈电传输部和所述辐射单元之间的电连接。
  15. 根据权利要求14所述的天线模组,其特征在于,所述第一板设有贯通所述第一层和所述第二层的孔,所述第二板包括突出于所述第一边缘的插接结构,至少部分所述插接结构位于所述孔内,所述连接结构包括所述孔和所述插接结构,所述连接结构还包括导电连接部,所述导电连接部电连接在所述辐射单元和所述馈电传输部之间。
  16. 根据权利要求15所述的天线模组,其特征在于,所述孔为通孔,所述孔包括第一开口端和第二开口端,所述插接结构从所述第一开口端插入所述孔,从所述第二开口端的一侧将所述导电连接部焊接至所述辐射单元。
  17. 根据权利要求16所述的天线模组,其特征在于,所述第一层为所述第一板的顶面,所述第二层为所述第一板的底面,所述第一开口端位于所述底面,所述第二开口端位于所述顶面。
  18. 根据权利要求13-17任一项所述的天线模组,其特征在于,所述第二板的所述第二边缘连接至通信设备的主板,所述馈电单元的所述接地部电连接至所述主板上的接地层,所述馈电传输部和所述主板上的射频芯片之间通过设置在所述主板上的传输线进行电连接。
  19. 根据权利要求13-18任一项所述的天线模组,其特征在于,所述第二板上设有第一主天线,所述辐射单元、所述接地单元和所述馈电单元构成第二主天线,所述第一主天线的谐 振频率为第一频率,所述第二主天线的谐振频率为第二频率,所述第二频率高于所述第一频率。
  20. 根据权利要求19所述的天线模组,其特征在于,所述天线模组包括多个天线单元,每个所述天线单元都包括一个所述第一主天线和一个所述第二主天线,所述天线单元还包括第一去耦结构和第二去耦结构,所述第一去耦结构位于所述第二板上,所述天线模组还包括第三板,所述第三板和所述第二板交叉设置,所述第二去耦结构位于所述第三板上。
  21. 根据权利要求20所述的天线模组,其特征在于,所述第二板和所述第三板远离所述第一板的一端连接通信设备的主板,在垂直于所述通信设备主板的接地层的方向上,所述第一去耦结构与所述接地层之间的最大的距离为所述第一去耦结构的剖面高度,所述第一去耦结构的剖面高度范围在0.01波长~0.16波长之间,所述第一去耦结构和所述第一主天线之间的距离为第一距离,所述第一去耦结构与相邻的所述天线单元的所述第一主天线之间的距离为第二距离,所述第一距离和所述第二距离均在0.1波长~0.6波长之间;所述第二去耦结构用于减少所述第一主天线和相邻的所述天线单元的所述第一主天线之间的耦合量,所述第二去耦结构的谐振频率大于所述第一频率或小于所述第一频率。
  22. 一种通信设备,其特征在于,包括射频芯片和如权利要求1-21任一项所述的天线模组,所述天线模组电连接至所述射频芯片。
PCT/CN2023/079659 2022-05-20 2023-03-03 天线模组和通信设备 WO2023221603A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210562036.3A CN117134113A (zh) 2022-05-20 2022-05-20 天线模组和通信设备
CN202210562036.3 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221603A1 true WO2023221603A1 (zh) 2023-11-23

Family

ID=88834559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079659 WO2023221603A1 (zh) 2022-05-20 2023-03-03 天线模组和通信设备

Country Status (2)

Country Link
CN (1) CN117134113A (zh)
WO (1) WO2023221603A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080117108A1 (en) * 2006-11-22 2008-05-22 Wavefar Technology Co., Ltd Miniature antenna with feeding coupled line
US20200203803A1 (en) * 2018-12-25 2020-06-25 AAC Technologies Pte. Ltd. Antenna element, antenna array and base station
CN111384600A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 一种馈电系统、阵列天线以及基站
CN112751168A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080117108A1 (en) * 2006-11-22 2008-05-22 Wavefar Technology Co., Ltd Miniature antenna with feeding coupled line
US20200203803A1 (en) * 2018-12-25 2020-06-25 AAC Technologies Pte. Ltd. Antenna element, antenna array and base station
CN111384600A (zh) * 2018-12-29 2020-07-07 华为技术有限公司 一种馈电系统、阵列天线以及基站
CN112751168A (zh) * 2019-10-31 2021-05-04 Oppo广东移动通信有限公司 天线模组及电子设备

Also Published As

Publication number Publication date
CN117134113A (zh) 2023-11-28

Similar Documents

Publication Publication Date Title
Zhou et al. Triband dual-polarized shared-aperture antenna for 2G/3G/4G/5G base station applications
US20210376481A1 (en) Radiation apparatus and multi-band array antenna
CN112787089B (zh) 毫米波封装天线及阵列天线
TWI533522B (zh) 小型化天線及相關天線模組
WO2021232820A1 (zh) 基站天线及其高频辐射单元
WO2020010941A1 (zh) 天线及通信设备
WO2023087391A1 (zh) 天线设备及电子装置
US11316243B2 (en) Antenna apparatus and electronic device
WO2021103949A1 (zh) 一种天线结构、带天线结构的电路板和通信设备
WO2023221603A1 (zh) 天线模组和通信设备
JP7237161B2 (ja) 無線装置の放射増強器、放射システム及び無線装置
KR20220158009A (ko) 안테나, 안테나 모듈, 및 무선 네트워크 디바이스
TWI769107B (zh) 柔性天線結構及電子設備
JP2024505805A (ja) 偏波共用磁電アンテナ・アレイ
CN112400256B (zh) 易于制造且在高频带下性能可控的贴片天线设计
WO2023221602A1 (zh) 天线模组和通信设备
KR20190015419A (ko) 방사기에 신호를 공급하기 위한 회로 보드 조립체
KR20110063280A (ko) 안테나 장치
KR20220036179A (ko) 안테나 장치
CN218525735U (zh) 电子器件
TWM463429U (zh) 天線模組及無線收發裝置
RU2771751C2 (ru) Цепь питания антенны базовой станции, антенна базовой станции и базовая станция
CN216565797U (zh) 通信模组安装结构以及通信设备
CN220324705U (zh) Sub6G天线结构
WO2022095981A1 (zh) 多频段融合天线组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806563

Country of ref document: EP

Kind code of ref document: A1