WO2023221571A1 - 一种双电机模组潜水器槽道能量回收系统及运行方法 - Google Patents

一种双电机模组潜水器槽道能量回收系统及运行方法 Download PDF

Info

Publication number
WO2023221571A1
WO2023221571A1 PCT/CN2023/075360 CN2023075360W WO2023221571A1 WO 2023221571 A1 WO2023221571 A1 WO 2023221571A1 CN 2023075360 W CN2023075360 W CN 2023075360W WO 2023221571 A1 WO2023221571 A1 WO 2023221571A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor module
module
motor
submersible
channel
Prior art date
Application number
PCT/CN2023/075360
Other languages
English (en)
French (fr)
Inventor
张伟
何巍巍
李德军
郑鹏
杨申申
Original Assignee
中国船舶科学研究中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国船舶科学研究中心 filed Critical 中国船舶科学研究中心
Publication of WO2023221571A1 publication Critical patent/WO2023221571A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/143Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/132Submersible electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to the technical field of energy recovery systems, in particular to a dual-motor module submersible channel energy recovery system and an operating method.
  • Deep-sea submersibles are important equipment for navigation, detection and operations within a certain range in deep-sea environments. With the accelerated implementation of the maritime power strategy and the strong demand for scientific research in geophysics, geochemistry and deep-sea biology, higher requirements have been placed on the working reliability and operating time of deep-sea submersibles.
  • cableless submersibles provide all the energy they need through their own batteries, and their energy capacity is very limited. Energy capacity is currently an important factor restricting the underwater operation time of cableless submersibles.
  • a lot of work has been done in the development of existing deep-sea submersibles in terms of improving energy density. However, due to the stringent volume and weight requirements of the deep sea, the total energy of the battery pack is still small, and the effect on improving the operating time of the submersible is not obvious. .
  • the propeller configuration mode of submersibles is to equip multiple propellers according to the needs of navigation, and provide centralized power supply through a battery pack. Once a certain propeller fails, the navigation performance will be greatly affected, and the mission may even end early and return home. , and the high-power and frequent rotation of the propeller consumes a lot of energy during navigation, which greatly limits the submersible's operating time.
  • the applicant provides a dual-motor module submersible channel energy
  • the recovery system and operation method achieve energy self-sufficiency, reduce the impact of faults on the submersible's navigation, and extend the operation time.
  • a dual-motor module submersible channel energy recovery system including a channel, which is a cylindrical structure with open ends at both ends, and a first motor module and a second motor module are symmetrically arranged in the channel,
  • the head of the first motor module is provided with a first propeller
  • the head of the second motor module is provided with a second propeller
  • the tails of the first motor module and the second motor module are arranged oppositely.
  • the first motor module and the tail part of the second motor module are connected through a driver;
  • a cavity is provided in the driver, and the cavity is filled with compensation oil, and the compensation oil penetrates into the cavities of the first motor module and the second motor module;
  • It also includes an integrated control box arranged on the submersible, and the integrated control box is electrically connected to the driver.
  • the structure of the first motor module is: including a first cylindrical housing, a first motor body is arranged in the first cylindrical housing, and the output end of the first motor body passes through one side of the first cylindrical housing. On the end surface, the output end of the first motor body is drivingly connected to the first propeller.
  • the structure of the second motor module is: including a second cylindrical housing, a second motor body is disposed in the second cylindrical housing, and the output end of the second motor body passes through one side of the second cylindrical housing. On the end surface, the output end of the second motor body is drivingly connected to the second propeller.
  • the outside of the driver is a third cylindrical housing, and through holes are opened on both end surfaces of the third cylindrical housing.
  • the through holes connect the cavities of the first motor module and the second motor module. , used to compensate for the passage of oil; inside the third cylindrical housing
  • a driving device is provided, and a water-tight connector and an oil filling port are provided on the outer periphery of the third cylindrical shell.
  • the integrated control box is electrically connected to the driving device through the water-tight connector. Both end surfaces of the third cylindrical shell are fastened respectively.
  • the component connects the first motor module and the tail of the second motor module.
  • the channel is connected to the submersible through a rotational drive mechanism; the integrated control box is electrically connected to the rotational drive mechanism.
  • the structure of the rotation driving mechanism is: including a hydraulic cylinder, the cylinder body of the hydraulic cylinder is installed on the submersible, the piston rod head of the hydraulic cylinder is connected to the channel through an adapter, and a solenoid valve is provided on the oil line of the hydraulic cylinder. The solenoid valve is electrically connected to the integrated control box.
  • the integrated control box includes a monitoring control unit and a battery pack;
  • Monitoring control unit includes:
  • the status detection module detects the module status of the first motor module and the second motor module and the navigation status of the submersible in real time, and sends out corresponding status signals;
  • the switching control module sends a switching mode signal according to the status signal output by the status detection module, and switches the working mode of the first motor module and the second motor module.
  • the working mode includes the motor mode and the generator mode; the switching control module sends out a switching mode signal according to the switching mode signal. Output the module control signal to the driver, and the driver controls the first motor module and/or the second motor module to start working; the switching control module outputs the steering control signal to the switching channel of the rotation drive mechanism according to the status signal output by the status detection module. Orientation is vertical or horizontal;
  • the AC rectifier module receives the AC power generated by the first motor module and/or the second motor module in generator mode and rectifies it into DC power;
  • the DC charging module charges the battery pack with the DC power obtained after AC rectification. It also monitors the battery pack information and sends the information to the submersible control system through the CAN bus to monitor the status of the battery pack.
  • An operation method of a dual-motor module submersible channel energy recovery system including the following steps:
  • the status detection module detects the module status of the first motor module and the second motor module and the navigation status of the submersible in real time, and sends the detected status signal to the switching control module;
  • the switching control module switches the working modes of the first motor module and the second motor module according to the status signal, switches the direction of the channel to the vertical or horizontal direction, and controls the first motor module and/or the second motor module at the same time.
  • the AC rectifier module rectifies the AC power generated by the first motor module and/or the second motor module in generator mode into DC power;
  • the switching control module switches the working modes of the first motor module and the second motor module according to the status signal, including the first motor module or the second motor module being the motor mode, the first motor module and or the second motor module being in the motor mode.
  • the motor module is in generator mode;
  • the switching control module controls the connection between the driver and the DC discharge module according to the working modes of the first motor module and the second motor module, and delivers the battery power to the first motor module in motor mode through the driver.
  • the second motor module outputs power;
  • the switching control module controls the driver according to the working modes of the first motor module and the second motor module to cause the first motor module or the second motor module in generator mode to generate alternating current;
  • the switching control module controls the rotation drive mechanism to switch the direction of the channel to vertical or horizontal according to the status signal.
  • the solenoid valve controls the movement of the piston end of the hydraulic cylinder to drive the connecting rod assembly to rotate, thereby driving the channel to switch directions.
  • status signals include fault, normal, and power output status signals of the first motor module or the second motor module, as well as unpowered dive, unpowered ascent, and seabed navigation status signals of the submersible.
  • the invention has a compact and reasonable structure and is easy to operate.
  • the invention can pass the different states of the first motor module and the second motor module.
  • a variety of motor/generator working modes can be combined to realize the recovery and utilization of the mechanical energy generated by the water flow in the channel. They can also be used as backup for each other or used alone, achieving energy self-sufficiency, reducing the impact of faults on the submersible's navigation, and extending the operation time. , also has the advantages of simple structure, high reliability, energy saving and environmental protection.
  • the present invention also has the following advantages:
  • the overall cylindrical shape structure of the first motor module and the second motor module minimizes their impact on the water flow and better recovers the kinetic energy of the water flow inside the channel.
  • the mechanical energy generated by the water flow in the channel can be recovered and utilized, and they can also be used as backup for each other or independently. By using it, it achieves energy self-sufficiency, reduces the impact of faults on the submersible's navigation, and extends the operating time.
  • Figure 1 is a schematic structural diagram of the present invention.
  • the first propeller 101.
  • the first propeller 102.
  • the first motor body 103.
  • the second propeller 202.
  • the second motor body 203.
  • the dual-motor module submersible channel energy recovery system of this embodiment includes a channel 4.
  • the channel 4 is a cylindrical structure with open ends.
  • the first motor module is symmetrically arranged in the channel 4.
  • Group 1 and the second motor module 2 the head of the first motor module 1 is provided with a first propeller 101, the head of the second motor module 2 is provided with a second propeller 201, the first motor module 1 and the
  • the tail parts of the two motor modules 2 are arranged oppositely, and the tail parts of the first motor module 1 and the second motor module 2 are connected through the driver 3;
  • a cavity is provided in the driver 3, and the cavity is filled with compensation oil 301.
  • the compensation oil 301 penetrates into the cavities of the first motor module 1 and the second motor module 2;
  • the driver 3 not only serves as a connecting component connecting the first motor module 1 and the second motor module 2, but more importantly serves as a hub for electrically connecting the integrated control box 5 and the first motor module 1 and the second motor module 2.
  • Compensation oil 301 is used to compensate the internal pressure of system components to balance it with the pressure in the water.
  • the first motor module 1 and the second motor module 2 arranged in the channel 4 form a dual-module structure.
  • the first motor module 1 and the second motor module 2 can realize two different types of motors/generators. working mode.
  • the first motor module 1 and the second motor module 2 can be combined with a variety of motor/generator working modes according to the actual situation, so that the water flow in the channel 4 drives the first propeller 101 or the second propeller 201, thereby enabling the generator mode.
  • the first motor module 1 or the second motor module 2 recycles the mechanical energy generated by the water flow in the channel 4; when the submersible is sailing on the seabed, the first motor module 1 and the second motor module When one of the groups 2 fails, the other is in motor mode, and can also be used as backup for each other or used alone, achieving self-sufficiency in energy and extending operating time. It has the advantages of simple structure, high reliability, energy saving and environmental protection.
  • the structure of the first motor module 1 is: including a first cylindrical housing 103.
  • a first motor body 102 is disposed in the first cylindrical housing 103.
  • the output end of the first motor body 102 passes through the first cylindrical housing 103.
  • the output end of the first motor body 102 is drivingly connected to the first propeller 101.
  • the structure of the second motor module 2 is: including a second cylindrical housing 203.
  • a second motor body 202 is disposed in the second cylindrical housing 203.
  • the output end of the second motor body 202 passes through the second cylindrical housing 203.
  • the output end of the second motor body 202 is drivingly connected to the second propeller 201.
  • the driver 3 has a third cylindrical housing 302 outside. Two end surfaces of the third cylindrical housing 302 are provided with through holes. The through holes connect the cavities of the first motor module 1 and the second motor module 2. It is used to compensate for the passage of oil 301; a driving device 303 is provided inside the third cylindrical housing 302, and a watertight connector and an oil filling port are provided on the outer periphery of the third cylindrical housing 302.
  • the integrated control box 5 communicates with the drive through the watertight connector.
  • the device 303 is electrically connected, and the two end surfaces of the third cylindrical housing 302 are respectively connected to the tails of the first motor module 1 and the second motor module 2 through fasteners.
  • the oil filling port is used to fill the cavity of driver 3 with compensation oil 301.
  • the outer diameters of the first cylindrical housing 103, the second cylindrical housing 203 and the third cylindrical housing 302 are the same.
  • the first cylindrical housing 103 and the second cylindrical housing 203 pass through the third cylindrical housing.
  • the body 302 is connected, and the three are combined to form a cylindrical structure. This structure allows the outer structure of the first motor module 1 and the second motor module 2 to minimize the impact on the water flow and better recycle the channel. 4Kinetic energy of internal water flow.
  • the channel 4 is connected to the submersible through the rotation drive mechanism 6; the integrated control box 5 is electrically connected to the rotation drive mechanism 6.
  • the integrated control box 5 controls the rotation drive mechanism 6 to drive the channel 4 to rotate to the vertical direction, and controls the first motor module 1 and the second motor module 2 are both generator modes.
  • the water flow generated by the submersible drives the first propeller 101 and the second propeller 201 to rotate to generate electricity and charge the battery pack 502 in the integrated control box 5;
  • the integrated control box 5 controls the rotation drive mechanism 6 to drive the channel 4 to rotate to the horizontal direction, and controls one of the first motor module 1 and the second motor module 2 to be in motor mode, turning the integrated
  • the electrical energy stored in the battery pack 502 in the chemical control box 5 is converted into mechanical energy for the rotation of the motor to drive the propeller to rotate and generate the thrust required for the navigation of the submersible.
  • the other is a generator mode, driving the first propeller 101 or the second propeller 101 through the channel water flow.
  • the propeller 201 rotates to generate electricity.
  • the structure of the rotation driving mechanism 6 is: a hydraulic cylinder 601, the cylinder body of the hydraulic cylinder 601 is installed on the submersible, the piston rod head of the hydraulic cylinder 601 is connected to the channel 4 through an adapter, and the oil line of the hydraulic cylinder 601 is set There is a solenoid valve 602, and the solenoid valve 602 is electrically connected to the integrated control box 5.
  • the movement of the piston of the hydraulic cylinder 601 is converted into the rotation of the channel 4 through the adapter, thereby changing the direction of the channel 4 to a vertical or horizontal direction.
  • the linear motion of the piston can be converted into the swing motion of the adapter, and the swing motion of the adapter is then converted into the rotation of the channel 4.
  • the integrated control box 5 includes a monitoring control unit 501 and a battery pack 502;
  • the monitoring control unit 501 includes:
  • the status detection module detects the module status of the first motor module 1 and the second motor module 2 and the navigation status of the submersible in real time, and sends out corresponding status signals;
  • the switching control module sends a switching mode signal according to the status signal output by the status detection module, and switches the working mode of the first motor module 1 and the second motor module 2.
  • the working mode includes the motor mode and the generator mode; the switching control module switches according to the switching mode.
  • the mode signal outputs the module control signal to the driver 3, and the driver 3 controls the first motor module 1 and or the second motor module 2 to start working; the control module is switched, and according to the status signal output by the status detection module, the steering control signal is output to the rotation
  • the driving mechanism 6 switches the direction of the channel 4 to the vertical or horizontal direction;
  • the AC rectifier module receives the AC power generated by the first motor module 1 and/or the second motor module 2 in generator mode and rectifies it into DC power;
  • the DC charging module charges the battery pack 502 with the DC power obtained after AC rectification. It also monitors the battery pack 502 information and sends the information to the submersible control system through the CAN bus for monitoring the status of the battery pack 502.
  • the status of the battery pack 502 detected by the DC charging module includes total voltage, total current, single cell voltage, single cell temperature, and single cell bulging status. It determines whether each single cell is full and functional status, thereby controlling the constant current or Switching between constant voltage charging states and whether to stop charging to ensure charging safety.
  • the operation method of the dual-motor module submersible channel energy recovery system in Embodiment 1 includes the following steps:
  • the status detection module detects the module status of the first motor module 1 and the second motor module 2 and the navigation status of the submersible in real time, and sends the detected status signal to the switching control module;
  • the switching control module switches the working modes of the first motor module 1 and the second motor module 2 according to the status signal, switches the direction of the channel 4 to the vertical or horizontal direction, and simultaneously controls the first motor module 1 and or the second motor module 2.
  • the second motor module 2 outputs power or AC power;
  • the AC rectifier module rectifies the AC power generated by the first motor module 1 and/or the second motor module 2 in generator mode into DC power;
  • the status detection module detects the module status of the first motor module 1 and the second motor module 2 and the navigation status of the submersible in real time, and sends the detected status signal to the switching control module;
  • the status signals include the fault, normal, and power output status signals of the first motor module 1 or the second motor module 2, as well as the submersible's unpowered dive, unpowered ascent, and seabed navigation status signals;
  • the switching control module switches the working modes of the first motor module 1 and the second motor module 2 according to the status signal, switches the direction of the channel 4 to the vertical or horizontal direction, and simultaneously controls the first motor module 1 and or the second motor module 2.
  • the second motor module 2 outputs power or AC power;
  • the switching control module switches the working modes of the first motor module 1 and the second motor module 2 according to the status signal, including: the first motor module 1 or the second motor module 2 is in the motor mode, the first motor module 1 and or The second motor module 2 is in generator mode; the switching control module controls the driver 3 to communicate with the DC discharge module according to the working modes of the first motor module 1 and the second motor module 2, and delivers the power of the battery pack 502 through the driver 3 to The first motor module 1 or the second motor module 2 in motor mode outputs power; the switching control module controls the driver 3 according to the working modes of the first motor module 1 and the second motor module 2 to make the first motor in generator mode Module 1 or second motor module 2 generates alternating current;
  • the switching control module controls the rotation drive mechanism 6 to switch the direction of the channel 4 to the vertical or horizontal direction according to the status signal.
  • the solenoid valve 602 controls the movement of the piston end of the hydraulic cylinder 601 to drive the connecting rod assembly to rotate, thereby driving Channel 4 switches direction;
  • the AC rectifier module rectifies the AC power generated by the first motor module 1 and/or the second motor module 2 in generator mode into DC power;
  • the operation method of the dual-motor module submersible channel energy recovery system in Embodiment 3 is as follows:
  • the status detection module detects the navigation status of the submersible in unpowered dive in real time. At the same time, the first motor module 1 and the second motor module are in the normal state, and the detected status will be The signal is sent to the switching control module;
  • the switching control module switches the working modes of the first motor module 1 and the second motor module 2.
  • generator mode the direction of channel 4 is switched to the vertical direction, and the first motor module 1 and the second motor module 2 are controlled to output alternating current at the same time;
  • the AC rectifier module rectifies the AC power generated by the first motor module 1 and the second motor module 2 in generator mode into DC power;
  • the status detection module detects in real time that the submersible is in a seabed sailing state. If it is detected that the first motor module 1 is in a power output state, the second motor module 2 is in a non-power output state. and are all in normal status, and the detected status signal is sent to the switching control module;
  • the switching control module switches the first motor module 1 to the motor mode, the second motor module 2 to the generator mode, switches the direction of the channel 4 to the horizontal direction, and simultaneously switches and controls the first motor module 1
  • the driver 3 is connected to the DC discharge module to output power from the battery pack 502 to the first motor module 1, and switch and control the second motor module 2 to output AC power;
  • the AC rectifier module rectifies the AC power generated by the second motor module 2 in generator mode into DC power
  • the status detection module detects in real time that the submersible is in a seabed sailing state. If it is detected that the first motor module 1 is in a fault state, the second motor module 2 is in a normal state, and will detect The final status signal is sent to the switching control module;
  • the switching control module switches the second motor module 2 to the motor mode according to the status signal, switches the direction of the channel 4 to the horizontal direction, and at the same time switches and controls the second motor module 2 to communicate with the DC discharge module through the driver 3 to connect the battery
  • the power supply of group 502 outputs power to the second motor module 2, and switches and controls the second motor module 2 not to work;
  • the status detection module detects the unpowered buoyancy status of the submersible in real time. At the same time, the first motor module 1 and the second motor module are in a normal state, and the detected status signal is sent. to the switching control module;
  • the switching control module switches the working modes of the first motor module 1 and the second motor module 2.
  • generator mode the direction of channel 4 is switched to the vertical direction, and the first motor module 1 and the second motor module 2 are controlled to output alternating current at the same time;
  • the AC rectifier module rectifies the AC power generated by the first motor module 1 and the second motor module 2 in generator mode into DC power;
  • the mechanical energy generated by the water flow in the channel 4 can be recovered and utilized, and they can also serve as backup or backup for each other. Used alone, it achieves energy self-sufficiency, reduces the impact of faults on the navigation of the submersible, and extends the operating time; by controlling the rotational driving mechanism 6 to switch the direction of the channel 4 to the vertical or horizontal direction, you can choose to carry out water flow energy during diving and ascent. Recycling makes the dual-module drive and energy recovery system more widely used and more energy-saving and environmentally friendly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明涉及一种双电机模组潜水器槽道能量回收系统及运行方法,包括槽道,两端敞口筒状结构的槽道内对称设置第一电机模组与第二电机模组,第一电机模组的头部设置有第一螺旋桨,第二电机模组的头部设置有第二螺旋桨,第一电机模组与第二电机模组的尾部相对设置且通过驱动器连接;驱动器内设置有空腔,空腔内填充补偿油,补偿油贯通至第一电机模组与第二电机模组的空腔中;还包括与驱动器电性连接的一体化控制箱。通过设置于槽道中的第一电机模组与第二电机模组组成的双模组结构,实现对槽道内产生水流的机械能进行回收转利用,能量自给、降低故障对潜水器航行的影响,延长作业时间,还具有结构简单、可靠性高、节能环保的优点。

Description

一种双电机模组潜水器槽道能量回收系统及运行方法 技术领域
本发明涉及能量回收系统技术领域,尤其是一种双电机模组潜水器槽道能量回收系统及运行方法。
背景技术
深海潜水器是在深海环境下一定范围内开展航行探测和作业的重要装备。随着海洋强国战略的加快实施,以及对地球物理、地球化学和深海生物等科学研究的强烈需求,对深海潜水器的工作可靠性和作业时间提出了更高的要求。而目前无缆潜水器是通过自身携带的电池提供所需的所有能源,能源容量非常有限。能源容量是目前制约无缆潜水器水下作业时间的重要因素。现有深海潜水器的研制在提高能量密度等方面开展了很多工作,但受限于深海对体积和重量的苛刻要求,电池组总能量仍然较小,对提高潜水器作业时间的效果并不明显。
根据实际数据统计,潜水器在水下工作期间约70%的时间用于航行探测或寻找作业目标,而推进器是目前潜水器在水下航行时的唯一动力来源,所以推进器是潜水器执行作业任务时最主要的能源消耗,同时推进器的可靠性是潜水器执行任务的前提。
目前,潜水器的推进器配备模式都是按照航行运动的需求配备多个推进器,通过电池组集中供电,一旦某一台推进器发生故障则航行性能将受到极大影响,甚至提前结束任务返航,并且航行过程中推进器大功率、频繁的转动消耗大量能源,使潜水器作业时间受到很大限制。
技术问题
本申请人针对上述现有生产技术中推进器的供电电池组储存能量有限、作业时间短,以及电池组故障或能源不足引起推进器故障的问题,提供一种双电机模组潜水器槽道能量回收系统及运行方法,从而实现了能量自给、降低故障对潜水器航行的影响,延长作业时间。
技术解决方案
本发明所采用的技术方案如下:
一种双电机模组潜水器槽道能量回收系统,包括槽道,所述槽道为两端敞口的筒状结构,所述槽道内对称设置第一电机模组与第二电机模组,所述第一电机模组的头部设置有第一螺旋桨,所述第二电机模组的头部设置有第二螺旋桨,第一电机模组与第二电机模组的尾部相对设置,所述第一电机模组与第二电机模组的尾部之间通过驱动器连接;
驱动器内设置有空腔,空腔内填充补偿油,所述补偿油贯通至第一电机模组与第二电机模组的空腔中;
还包括设置于潜水器上的一体化控制箱,所述一体化控制箱与驱动器电性连接。
作为上述技术方案的进一步改进:
所述第一电机模组的结构为:包括第一圆柱型壳体,所述第一圆柱型壳体内设置第一电机本体,第一电机本体输出端穿出第一圆柱型壳体的一侧端面,第一电机本体输出端传动连接第一螺旋桨。
所述第二电机模组的结构为:包括第二圆柱型壳体,所述第二圆柱型壳体内设置第二电机本体,第二电机本体输出端穿出第二圆柱型壳体的一侧端面,第二电机本体输出端传动连接第二螺旋桨。
所述驱动器外部为第三圆柱形壳体,所述第三圆柱形壳体的两个端面上开有通孔,所述通孔将第一电机模组和第二电机模组的空腔联通,用于补偿油的通过;所述第三圆柱形壳体内部 设置驱动器件,第三圆柱形壳体外周设置有水密接插件和充油口,所述一体化控制箱通过水密接插件与驱动器件电性连接,第三圆柱形壳体两端面分别通过紧固件连接第一电机模组与第二电机模组的尾部。
所述槽道通过转动驱动机构与潜水器连接;所述一体化控制箱与转动驱动机构电性连接。所述转动驱动机构的结构为:包括液压油缸,液压油缸的缸体安装于潜水器上,液压油缸的活塞杆头部通过转接件与槽道连接,液压油缸的油路上设置有电磁阀,所述电磁阀与一体化控制箱电性连接。
所述一体化控制箱包括监测控制单元和电池组;
监测控制单元包括:
状态检测模块,实时检测第一电机模组与第二电机模组的模组状态和潜水器的航行状态,发出相应状态信号;
切换控制模块,根据状态检测模块输出的状态信号发出切换模式信号,切换第一电机模组与第二电机模组的工作模式,工作模式包括电机模式和发电机模式;切换控制模块根据切换模式信号输出模组控制信号到驱动器,驱动器控制第一电机模组和或第二电机模组开始工作;切换控制模块,据状态检测模块输出的状态信号,输出转向控制信号到转动驱动机构切换槽道的方向为垂直或水平方向;
交流整流模块,接收发电机模式的第一电机模组和或第二电机模组产生的交流电整流为直流电;
直流充电模块,将交流整流后得到的直流电为电池组充电,同时还对电池组信息进行监测,并将信息通过CAN总线发送到潜水器的控制系统用于监控电池组的状态。
一种双电机模组潜水器槽道能量回收系统的运行方法,包括以下步骤:
S1:状态检测模块实时检测第一电机模组与第二电机模组的模组状态和潜水器的航行状态,并将检测后的状态信号发送给切换控制模块;
S2:切换控制模块根据状态信号,切换第一电机模组与第二电机模组的工作模式,切换槽道的方向为垂直或水平方向,同时控制第一电机模组和或第二电机模组输出动力或者输出交流电;
S3:交流整流模块将发电机模式的第一电机模组和或第二电机模组产生的交流电整流为直流电;
S4:直流电通过直流充电模块,为电池组充电,同时还对电池组信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组的状态;
重复S1-S3根据实时状态调整系统的相关部件状态。
作为上述技术方案的进一步改进:
S2中:切换控制模块根据状态信号切换第一电机模组与第二电机模组的工作模式包括,第一电机模组或第二电机模组为电机模式,第一电机模组和或第二电机模组为发电机模式;切换控制模块根据第一电机模组与第二电机模组的工作模式控制驱动器与直流放电模块连通,将电池组电源通过驱动器输送给电机模式的第一电机模组或第二电机模组输出动力;切换控制模块根据第一电机模组与第二电机模组的工作模式控制驱动器使发电机模式的第一电机模组或第二电机模组产生交流电;
切换控制模块根据状态信号控制转动驱动机构切换槽道的方向为垂直或水平方向,通过输出转向控制信号到电磁阀,电磁阀控制液压油缸活塞端运动带动连接杆组件转动从而带动槽道切换方向。
S1中:状态信号包括第一电机模组或第二电机模组故障、正常、有无动力输出状态信号,以及潜水器的无动力下潜、无动力上浮、海底航行状态信号。
有益效果
本发明的有益效果如下:
本发明结构紧凑、合理,操作方便,通过设置于槽道中的第一电机模组与第二电机模组组成的双模组结构,可通过第一电机模组与第二电机模组的不同状态可组合多种电机/发电机工作模式,实现对槽道内产生水流的机械能进行回收转利用,也可互为备用或单独使用,实现了能量自给、降低故障对潜水器航行的影响、延长作业时间,还具有结构简单、可靠性高、节能环保的优点。
同时,本发明还存在如下优势:
(1)第一电机模组与第二电机模组的整体圆柱形外形结构尽可能的减小其对水流的影响,更好的回收槽道内部水流的动能。
(2)通过设置转动驱动机构切换槽道的方向为垂直或水平方向,在潜水器下潜和上浮过程中回收水流的动能,更加节能环保。
(3)通过不同航行状态时的第一电机模组与第二电机模组组合多种电机/发电机工作模式,实现对槽道内产生水流的机械能进行回收转利用,也可互为备用或单独使用,实现了能量自给、降低故障对潜水器航行的影响,延长作业时间。
附图说明
图1为本发明的结构示意图。
其中:1、第一电机模组;2、第二电机模组;3、驱动器;4、槽道;5、一体化控制箱;6、转动驱动机构;
101、第一螺旋桨;102、第一电机本体;103、第一圆柱型壳体;
201、第二螺旋桨;202、第二电机本体;203、第二圆柱型壳体;
301、补偿油;302、第三圆柱形壳体;303、驱动器件;
501、监测控制单元;502、电池组;
601、液压油缸;602、电磁阀。
本发明的最佳实施方式
下面结合附图,说明本发明的具体实施方式。
如图1所示,本实施例的双电机模组潜水器槽道能量回收系统,包括槽道4,槽道4为两端敞口的筒状结构,槽道4内对称设置第一电机模组1与第二电机模组2,第一电机模组1的头部设置有第一螺旋桨101,第二电机模组2的头部设置有第二螺旋桨201,第一电机模组1与第二电机模组2的尾部相对设置,第一电机模组1与第二电机模组2的尾部之间通过驱动器3连接;
驱动器3内设置有空腔,空腔内填充补偿油301,补偿油301贯通至第一电机模组1与第二电机模组2的空腔中;
还包括设置于潜水器上的一体化控制箱5,一体化控制箱5与驱动器3电性连接。
驱动器3不仅作为连接第一电机模组1与第二电机模组2的连接部件,更为重要作为电性连接一体化控制箱5和第一电机模组1与第二电机模组2的枢纽,补偿油301用于补偿系统部件的内部压力使其与水中压力平衡。
设置于槽道4中的第一电机模组1与第二电机模组2组成双模组结构,同时第一电机模组1与第二电机模组2均可实现电机/发电机两种不同的工作模式。第一电机模组1与第二电机模组2根据实际情况可组合多种电机/发电机工作模式,实现槽道4内的水流带动第一螺旋桨101或第二螺旋桨201进而使发电机模式的第一电机模组1或第二电机模组2对槽道4内产生水流的机械能进行回收利用;当潜水器在海底航行时,第一电机模组1与第二电机模 组2其一故障时另一为电机模式,也可互为备用或单独使用,实现了能量自给,延长作业时间,有结构简单、可靠性高、节能环保的优点。
第一电机模组1的结构为:包括第一圆柱型壳体103,第一圆柱型壳体103内设置第一电机本体102,第一电机本体102输出端穿出第一圆柱型壳体103的一侧端面,第一电机本体102输出端传动连接第一螺旋桨101。
第二电机模组2的结构为:包括第二圆柱型壳体203,第二圆柱型壳体203内设置第二电机本体202,第二电机本体202输出端穿出第二圆柱型壳体203的一侧端面,第二电机本体202输出端传动连接第二螺旋桨201。
驱动器3外部为第三圆柱形壳体302,第三圆柱形壳体302的两个端面上开有通孔,通孔将第一电机模组1和第二电机模组2的空腔联通,用于补偿油301的通过;第三圆柱形壳体302内部设置驱动器件303,第三圆柱形壳体302外周设置有水密接插件和充油口,一体化控制箱5通过水密接插件与驱动器件303电性连接,第三圆柱形壳体302两端面分别通过紧固件连接第一电机模组1与第二电机模组2的尾部。充油口用于向驱动器3空腔内充补偿油301。
第一圆柱型壳体103、第二圆柱型壳体203和第三圆柱形壳体302的外径尺寸相同,第一圆柱型壳体103和第二圆柱型壳体203通过第三圆柱形壳体302相连接,三者组合形成一个圆柱体结构,这种结构使第一电机模组1与第二电机模组2的外形结构尽可能的减小对水流的影响,更好的回收槽道4内部水流的动能。
槽道4通过转动驱动机构6与潜水器连接;一体化控制箱5与转动驱动机构6电性连接。当潜水器在水面和海底之间长距离无动力潜浮时,一体化控制箱5控制转动驱动机构6驱动槽道4转成垂直方向,并控制第一电机模组1与第二电机模组2均为发电机模式,由潜浮产生的水流带动第一螺旋桨101和第二螺旋桨201转动进行发电,并对一体化控制箱5中的电池组502充电;
当潜水器在海底航行时,一体化控制箱5控制转动驱动机构6驱动槽道4转成水平方向,并控制第一电机模组1与第二电机模组2其一为电机模式,将一体化控制箱5中的电池组502存储的电能转化成电动机转动的机械能,带动螺旋桨转动,产生潜水器航行所需推力,另一为发电机模式,通过槽道水流驱动第一螺旋桨101或第二螺旋桨201转动发电。
转动驱动机构6的结构为:包括液压油缸601,液压油缸601的缸体安装于潜水器上,液压油缸601的活塞杆头部通过转接件与槽道4连接,液压油缸601的油路上设置有电磁阀602,电磁阀602与一体化控制箱5电性连接。
通过转接件将液压油缸601活塞的运动转化成槽道4的转动,进而使槽道4改变方向为垂直或水平方向。可以通过活塞的直线运动转化为转接件的摆动运动,转接件的摆动运动再转化为槽道4的转动。
一体化控制箱5包括监测控制单元501和电池组502;
监测控制单元501包括:
状态检测模块,实时检测第一电机模组1与第二电机模组2的模组状态和潜水器的航行状态,发出相应状态信号;
切换控制模块,根据状态检测模块输出的状态信号发出切换模式信号,切换第一电机模组1与第二电机模组2的工作模式,工作模式包括电机模式和发电机模式;切换控制模块根据切换模式信号输出模组控制信号到驱动器3,驱动器3控制第一电机模组1和或第二电机模组2开始工作;切换控制模块,据状态检测模块输出的状态信号,输出转向控制信号到转动驱动机构6切换槽道4的方向为垂直或水平方向;
交流整流模块,接收发电机模式的第一电机模组1和或第二电机模组2产生的交流电整流为直流电;
直流充电模块,将交流整流后得到的直流电为电池组502充电,同时还对电池组502信息进行监测,并将信息通过CAN总线发送到潜水器的控制系统用于监控电池组502的状态。直流充电模块检测的电池组502的状态包括总电压、总电流、单体电池电压、单体电池温度、单体电池鼓胀状态,判断每个单体电池是否充满和功能状态,从而控制恒流或恒压充电状态的切换,以及是否停止充电,以确保充电安全。
实施例一的双电机模组潜水器槽道能量回收系统的运行方法,包括以下步骤:
S1:状态检测模块实时检测第一电机模组1与第二电机模组2的模组状态和潜水器的航行状态,并将检测后的状态信号发送给切换控制模块;
S2:切换控制模块根据状态信号,切换第一电机模组1与第二电机模组2的工作模式,切换槽道4的方向为垂直或水平方向,同时控制第一电机模组1和或第二电机模组2输出动力或者输出交流电;
S3:交流整流模块将发电机模式的第一电机模组1和或第二电机模组2产生的交流电整流为直流电;
S4:直流电通过直流充电模块,为电池组502充电,同时还对电池组502信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组502的状态;
重复S1-S3根据实时状态调整系统的相关部件状态。
实施例二的双电机模组潜水器槽道能量回收系统的运行方法,包括以下步骤:
S1:状态检测模块实时检测第一电机模组1与第二电机模组2的模组状态和潜水器的航行状态,并将检测后的状态信号发送给切换控制模块;
状态信号包括第一电机模组1或第二电机模组2故障、正常、有无动力输出状态信号,以及潜水器的无动力下潜、无动力上浮、海底航行状态信号;
S2:切换控制模块根据状态信号,切换第一电机模组1与第二电机模组2的工作模式,切换槽道4的方向为垂直或水平方向,同时控制第一电机模组1和或第二电机模组2输出动力或者输出交流电;
切换控制模块根据状态信号切换第一电机模组1与第二电机模组2的工作模式包括,第一电机模组1或第二电机模组2为电机模式,第一电机模组1和或第二电机模组2为发电机模式;切换控制模块根据第一电机模组1与第二电机模组2的工作模式控制驱动器3与直流放电模块连通,将电池组502电源通过驱动器3输送给电机模式的第一电机模组1或第二电机模组2输出动力;切换控制模块根据第一电机模组1与第二电机模组2的工作模式控制驱动器3使发电机模式的第一电机模组1或第二电机模组2产生交流电;
切换控制模块根据状态信号控制转动驱动机构6切换槽道4的方向为垂直或水平方向,通过输出转向控制信号到电磁阀602,电磁阀602控制液压油缸601活塞端运动带动连接杆组件转动从而带动槽道4切换方向;
S3:交流整流模块将发电机模式的第一电机模组1和或第二电机模组2产生的交流电整流为直流电;
S4:直流电通过直流充电模块,为电池组502充电,同时还对电池组502信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组502的状态;
重复S1-S3根据实时状态调整系统的相关部件状态。
实施例三的双电机模组潜水器槽道能量回收系统的运行方法在多种潜水器水下作业状态下的运行步骤:
(一)潜水器下潜过程:
S1:潜水器下潜前给电池组502充电;
S2:潜水器在无动力下潜过程中,状态检测模块实时检测潜水器无动力下潜的航行状态,同时第一电机模组1与第二电机模组为正常状态,并将检测后的状态信号发送给切换控制模块;
S3:根据无动力下潜的航行状态信号和第一电机模组1与第二电机模组正常状态信号,切换控制模块切换第一电机模组1与第二电机模组2的工作模式均为发电机模式,切换槽道4的方向为垂直方向,同时控制第一电机模组1和第二电机模组2输出交流电;
S4:交流整流模块将发电机模式的第一电机模组1和第二电机模组2产生的交流电整流为直流电;
S5:直流电通过直流充电模块,为电池组502充电,同时还对电池组502信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组502的状态,当电池组502充满时或出现预定故障时,停止充电;
(二)潜水器进行海底航行时,情况一:
S1:当潜水器到达海底,进行海底航行时,状态检测模块实时检测潜水器为海底航行状态,若检测第一电机模组1为有动力输出状态,第二电机模组2为无动力输出状态且均为正常状态,并将检测后的状态信号发送给切换控制模块;
S2:切换控制模块根据状态信号,切换第一电机模组1为电机模式,第二电机模组2为发电机模式,切换槽道4的方向为水平方向,同时切换控制第一电机模组1通过驱动器3与直流放电模块连通,将电池组502电源输出动力给第一电机模组1,切换控制第二电机模组2输出交流电;
S3:交流整流模块将发电机模式的第二电机模组2产生的交流电整流为直流电;
S4:直流电通过直流充电模块,为电池组502充电,同时还对电池组502信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组502的状态;
(三)潜水器进行海底航行时,情况二:
S1:当潜水器到达海底,进行海底航行时,状态检测模块实时检测潜水器为海底航行状态,若检测第一电机模组1为故障状态,第二电机模组2为正常状态,并将检测后的状态信号发送给切换控制模块;
S2:切换控制模块根据状态信号,切换第二电机模组2为电机模式,切换槽道4的方向为水平方向,同时切换控制第二电机模组2通过驱动器3与直流放电模块连通,将电池组502电源输出动力给第二电机模组2,切换控制第二电机模组2不工作;
(四)潜水器上浮过程:
S1:潜水器在无动力上浮过程中,状态检测模块实时检测潜水器无动力上浮的航行状态,同时第一电机模组1与第二电机模组为正常状态,并将检测后的状态信号发送给切换控制模块;
S2:根据无动力上浮的航行状态信号和第一电机模组1与第二电机模组2正常状态信号,切换控制模块切换第一电机模组1与第二电机模组2的工作模式均为发电机模式,切换槽道4的方向为垂直方向,同时控制第一电机模组1和第二电机模组2输出交流电;
S3:交流整流模块将发电机模式的第一电机模组1和第二电机模组2产生的交流电整流为直流电;
S4:直流电通过直流充电模块,为电池组502充电,同时还对电池组502信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组502的状态,当电池组502充满或出现预定故障时,停止充电。
通过不同航行状态时的第一电机模组1与第二电机模组2组合多种电机/发电机工作模式,实现对槽道4内产生水流的机械能进行回收转利用,也可互为备用或单独使用,实现了能量自给、降低故障对潜水器航行的影响,延长作业时间;通过控制转动驱动机构6切换槽道4的方向为垂直或水平方向,可选择在下潜和上浮过程中进行水流能量回收,使双模组驱动和能量回收系统的使用范围更广泛,更节能环保。
以上描述是对本发明的解释,不是对发明的限定,本发明所限定的范围参见权利要求,在本发明的保护范围之内,可以作任何形式的修改。

Claims (10)

  1. 一种双电机模组潜水器槽道能量回收系统,其特征在于:包括槽道(4),所述槽道(4)为两端敞口的筒状结构,所述槽道(4)内对称设置第一电机模组(1)与第二电机模组(2),所述第一电机模组(1)的头部设置有第一螺旋桨(101),所述第二电机模组(2)的头部设置有第二螺旋桨(201),第一电机模组(1)与第二电机模组(2)的尾部相对设置,所述第一电机模组(1)与第二电机模组(2)的尾部之间通过驱动器(3)连接;
    驱动器(3)内设置有空腔,空腔内填充补偿油(301),所述补偿油(301)贯通至第一电机模组(1)与第二电机模组(2)的空腔中;
    还包括设置于潜水器上的一体化控制箱(5),所述一体化控制箱(5)与驱动器(3)电性连接。
  2. 如权利要求1所述的双电机模组潜水器槽道能量回收系统,其特征在于:所述第一电机模组(1)的结构为:包括第一圆柱型壳体(103),所述第一圆柱型壳体(103)内设置第一电机本体(102),第一电机本体(102)输出端穿出第一圆柱型壳体(103)的一侧端面,第一电机本体(102)输出端传动连接第一螺旋桨(101)。
  3. 如权利要求1所述的双电机模组潜水器槽道能量回收系统,其特征在于:所述第二电机模组(2)的结构为:包括第二圆柱型壳体(203),所述第二圆柱型壳体(203)内设置第二电机本体(202),第二电机本体(202)输出端穿出第二圆柱型壳体(203)的一侧端面,第二电机本体(202)输出端传动连接第二螺旋桨(201)。
  4. 如权利要求1所述的双电机模组潜水器槽道能量回收系统,其特征在于:所述驱动器(3)外部为第三圆柱形壳体(302),所述第三圆柱形壳体(302)的两个端面上开有通孔,所述通孔将第一电机模组(1)和第二电机模组(2)的空腔联通,用于补偿油(301)的通过;所述第三圆柱形壳体(302)内部设置驱动器件(303),第三圆柱形壳体(302)外周设置有水密接插件和充油口,所述一体化控制箱(5)通过水密接插件与驱动器件(303)电性连接,第三圆柱形壳体(302)两端面分别通过紧固件连接第一电机模组(1)与第二电机模组(2)的尾部。
  5. 如权利要求1所述的双电机模组潜水器槽道能量回收系统,其特征在于:所述槽道(4)通过转动驱动机构(6)与潜水器连接;所述一体化控制箱(5)与转动驱动机构(6)电性连接。
  6. 如权利要求5所述的双电机模组潜水器槽道能量回收系统,其特征在于:所述转动驱动机构(6)的结构为:包括液压油缸(601),液压油缸(601)的缸体安装于潜水器上,液压油缸(601)的活塞杆头部通过转接件与槽道(4)连接,液压油缸(601)的油路上设置有电磁阀(602),所述电磁阀(602)与一体化控制箱(5)电性连接。
  7. 如权利要求6所述的双电机模组潜水器槽道能量回收系统,其特征在于:所述一体化控制箱(5)包括监测控制单元(501)和电池组(502);
    监测控制单元(501)包括:
    状态检测模块,实时检测第一电机模组(1)与第二电机模组(2)的模组状态和潜水器的航行状态,发出相应状态信号;
    切换控制模块,根据状态检测模块输出的状态信号发出切换模式信号,切换第一电机模组(1)与第二电机模组(2)的工作模式,工作模式包括电机模式和发电机模式;切换控制模块根据切换模式信号输出模组控制信号到驱动器(3),驱动器(3)控制第一电机模组(1)和或第二电机模组(2)开始工作;切换控制模块,据状态检测模块输出的状态信号,输出转向控制信号到转动驱动机构(6)切换槽道(4)的方向为垂直或水平方向;
    交流整流模块,接收发电机模式的第一电机模组(1)和或第二电机模组(2)产生的交流电 整流为直流电;
    直流充电模块,将交流整流后得到的直流电为电池组(502)充电,同时还对电池组(502)信息进行监测,并将信息通过CAN总线发送到潜水器的控制系统用于监控电池组(502)的状态。
  8. 一种双电机模组潜水器槽道能量回收系统的运行方法,其特征在于:包括以下步骤:
    S1:状态检测模块实时检测第一电机模组(1)与第二电机模组(2)的模组状态和潜水器的航行状态,并将检测后的状态信号发送给切换控制模块;
    S2:切换控制模块根据状态信号,切换第一电机模组(1)与第二电机模组(2)的工作模式,切换槽道(4)的方向为垂直或水平方向,同时控制第一电机模组(1)和或第二电机模组(2)输出动力或者输出交流电;
    S3:交流整流模块将发电机模式的第一电机模组(1)和或第二电机模组(2)产生的交流电整流为直流电;
    S4:直流电通过直流充电模块,为电池组(502)充电,同时还对电池组(502)信息进行监测,并将信息通过CAN总线发送到控制系统用于监控电池组(502)的状态;
    重复S1-S3根据实时状态调整系统的相关部件状态。
  9. 如权利要求8所述的双电机模组潜水器槽道能量回收系统的运行方法,其特征在于:
    S2中:切换控制模块根据状态信号切换第一电机模组(1)与第二电机模组(2)的工作模式包括,第一电机模组(1)或第二电机模组(2)为电机模式,第一电机模组(1)和或第二电机模组(2)为发电机模式;
    切换控制模块根据第一电机模组(1)与第二电机模组(2)的工作模式控制驱动器(3)与直流放电模块连通,将电池组(502)电源通过驱动器(3)输送给电机模式的第一电机模组(1)或第二电机模组(2)输出动力;切换控制模块根据第一电机模组(1)与第二电机模组(2)的工作模式控制驱动器(3)使发电机模式的第一电机模组(1)或第二电机模组(2)产生交流电;
    切换控制模块根据状态信号控制转动驱动机构(6)切换槽道(4)的方向为垂直或水平方向,通过输出转向控制信号到电磁阀(602),电磁阀(602)控制液压油缸(601)活塞端运动带动连接杆组件转动从而带动槽道(4)切换方向。
  10. 如权利要求8所述的双电机模组潜水器槽道能量回收系统的运行方法,其特征在于:
    S1中:状态信号包括第一电机模组(1)或第二电机模组(2)故障、正常、有无动力输出状态信号,以及潜水器的无动力下潜、无动力上浮、海底航行状态信号。
PCT/CN2023/075360 2022-05-18 2023-02-10 一种双电机模组潜水器槽道能量回收系统及运行方法 WO2023221571A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210539257.9 2022-05-18
CN202210539257.9A CN114744741B (zh) 2022-05-18 2022-05-18 一种双电机模组潜水器槽道能量回收系统及运行方法

Publications (1)

Publication Number Publication Date
WO2023221571A1 true WO2023221571A1 (zh) 2023-11-23

Family

ID=82287526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075360 WO2023221571A1 (zh) 2022-05-18 2023-02-10 一种双电机模组潜水器槽道能量回收系统及运行方法

Country Status (2)

Country Link
CN (1) CN114744741B (zh)
WO (1) WO2023221571A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114744741B (zh) * 2022-05-18 2023-06-02 中国船舶科学研究中心 一种双电机模组潜水器槽道能量回收系统及运行方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150120045A1 (en) * 2013-10-24 2015-04-30 Board Of Trustees Of Michigan State University Gliding robotic fish navigation and propulsion
CN112104059A (zh) * 2020-08-28 2020-12-18 中国科学院沈阳自动化研究所 一种小型深海探测作业型潜水器电源管理系统和管理方法
CN113809797A (zh) * 2021-08-31 2021-12-17 江苏汇智高端工程机械创新中心有限公司 一种全电动高空作业平台能量回收控制系统及方法
CN114389403A (zh) * 2022-01-11 2022-04-22 欧振玉 一种船用能量回收装置
CN114744741A (zh) * 2022-05-18 2022-07-12 中国船舶科学研究中心 一种双电机模组潜水器槽道能量回收系统及运行方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4923482B2 (ja) * 2005-08-29 2012-04-25 富士電機株式会社 船舶の電気推進装置
US7918696B2 (en) * 2008-07-14 2011-04-05 General Electric Company System and method for dynamic energy recovery in marine propulsion
RU130581U1 (ru) * 2012-12-13 2013-07-27 Российская Федерация, от имени которой выступает государственный заказчик - Министерство промышленности и торговли Российской Федерации (Минпромторг России) Судовая система электродвижения с двухвинтовым двигательно-движительным модулем с двигателями кольцевой конструкции
GB2513373B (en) * 2013-04-25 2015-03-25 Tecniq S Ltd A hybrid vessel propulsion and generation system
JP2015196496A (ja) * 2014-03-31 2015-11-09 株式会社小野寺鐵工所 船舶の推進装置
CN104787288A (zh) * 2015-03-27 2015-07-22 上海新实达高速游艇制造有限公司 船舶集成动力系统
CN105676874B (zh) * 2016-03-16 2019-01-25 武汉理工大学 基于声呐遥控的低能耗微型水下探测机器人及控制方法
CN107499487B (zh) * 2017-08-15 2019-01-25 武汉理工大学 基于无轴对转轮缘驱动推进与发电一体化装置
CN210592390U (zh) * 2019-06-13 2020-05-22 南京高精船用设备有限公司 一种永磁电机对转式吊舱推进器
CN110549860A (zh) * 2019-08-12 2019-12-10 刘昌国 一种电动车能量回收系统以及电动车
CN111846172A (zh) * 2020-08-04 2020-10-30 中国船舶科学研究中心 一体化集成全海深推进器
CN113120198A (zh) * 2021-04-19 2021-07-16 北京化工大学 一种水下探测机器人
CN113135077B (zh) * 2021-04-19 2023-12-05 江汉大学 一种智能两栖双体深海工程勘探潜航器
CN114394233B (zh) * 2021-12-31 2023-09-15 南京航空航天大学 一种海空两栖跨介质仿生飞行器及其工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150120045A1 (en) * 2013-10-24 2015-04-30 Board Of Trustees Of Michigan State University Gliding robotic fish navigation and propulsion
CN112104059A (zh) * 2020-08-28 2020-12-18 中国科学院沈阳自动化研究所 一种小型深海探测作业型潜水器电源管理系统和管理方法
CN113809797A (zh) * 2021-08-31 2021-12-17 江苏汇智高端工程机械创新中心有限公司 一种全电动高空作业平台能量回收控制系统及方法
CN114389403A (zh) * 2022-01-11 2022-04-22 欧振玉 一种船用能量回收装置
CN114744741A (zh) * 2022-05-18 2022-07-12 中国船舶科学研究中心 一种双电机模组潜水器槽道能量回收系统及运行方法

Also Published As

Publication number Publication date
CN114744741B (zh) 2023-06-02
CN114744741A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN206826898U (zh) 一种高速水下无人航行器的应急装置及水下无人航行器
CN101462587B (zh) 冗余控制的微小型水下机器人及故障诊断和容错控制方法
WO2023221571A1 (zh) 一种双电机模组潜水器槽道能量回收系统及运行方法
CN110539852A (zh) 具有自主避障巡航功能的河道水质检测无人船
CN106864717B (zh) 水下推进器及其控制系统和控制方法
CN112977773A (zh) 一种可利用潮流能发电的水下无人自主航行器
CN107017693B (zh) 无人船能量管理方法及系统
CN103921925A (zh) 油电混合动力推动和管理系统及无人船
CN103885391A (zh) 一种小型自治水下机器人电源管理系统
CN110641622B (zh) 一种采用无人船投放浮标的装置和方法
CN101219644A (zh) 一种基于超级电容混合动力的船舶电力推进系统
CN108438138A (zh) 一种风力和太阳能混合驱动三体无人船
CN112660347A (zh) 一种节能式水下滑翔机
CN104787288A (zh) 船舶集成动力系统
CN113716003B (zh) 一种x型舵潜航器及其舵卡抗沉方法
CN209274860U (zh) 一种电动救生设备
CN118205696A (zh) 一种双驱动拖轮电力推进系统及其工作模式智能调节方法
CN106892076A (zh) 智能无人帆船及其控制方法
CN101618758A (zh) 风能太阳能发电海空电动救生艇
CN103269120A (zh) 游船用电力推进供电电源系统
CN207060369U (zh) 一种海洋监测无人船
CN102874395A (zh) 太阳能帆船
CN115367083A (zh) 一种混合动力的多工况水下航行器
CN212556208U (zh) 全气流转电能驱动金属气垫喷射回收船舶结构及发电装置
CN212660000U (zh) 一种小型深海探测作业型潜水器电源管理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806533

Country of ref document: EP

Kind code of ref document: A1