WO2023221492A1 - 低硅低氧三甲基铝提纯方法 - Google Patents

低硅低氧三甲基铝提纯方法 Download PDF

Info

Publication number
WO2023221492A1
WO2023221492A1 PCT/CN2022/139591 CN2022139591W WO2023221492A1 WO 2023221492 A1 WO2023221492 A1 WO 2023221492A1 CN 2022139591 W CN2022139591 W CN 2022139591W WO 2023221492 A1 WO2023221492 A1 WO 2023221492A1
Authority
WO
WIPO (PCT)
Prior art keywords
trimethylaluminum
potassium
low
pellets
sodium alloy
Prior art date
Application number
PCT/CN2022/139591
Other languages
English (en)
French (fr)
Inventor
邢怀勇
朱熠
吉敏坤
郭锦源
孙明璐
陈化冰
Original Assignee
江苏南大光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏南大光电材料股份有限公司 filed Critical 江苏南大光电材料股份有限公司
Publication of WO2023221492A1 publication Critical patent/WO2023221492A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/06Aluminium compounds
    • C07F5/061Aluminium compounds with C-aluminium linkage
    • C07F5/062Al linked exclusively to C
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for purifying low-silicon and low-oxygen trimethylaluminum, belonging to the technical field of semiconductor materials.
  • trimethylaluminum is an important raw material for the growth of optoelectronic materials in the processes of metal organic vapor deposition (MOCVD) and chemical beam epitaxy (CBE). It is mainly used for epitaxial wafers of Group III nitride semiconductor materials based on AlGaN/AlN.
  • the growth is the core raw material for growing epitaxial wafers such as third-generation semiconductors such as AlGaN and AlN, and is also one of the core raw materials for phase change memories, radio frequency integrated circuit chips, etc.
  • the quality of compound semiconductor materials epitaxially grown using trimethylaluminum as a precursor is mainly affected by impurities in trimethylaluminum.
  • impurities in trimethylaluminum During the synthesis and treatment of trimethylaluminum, hydrocarbon components, silicone components, alkyl aluminum oxycompounds, metal compounds and inorganic impurities are often introduced.
  • silicone components and alkyl aluminum oxides usually have higher or similar vapor pressures than trimethylaluminum. Therefore, silicon inclusions will be produced in compound semiconductors produced by trimethylaluminum. and oxygen inclusions, which in turn lead to a serious decline in the quality of downstream wafers through chain reactions, ultimately affecting the performance of compound semiconductors.
  • the silicone component of trimethylaluminum and the alkyl aluminum oxide impurities are difficult to purify through conventional distillation devices because they have similar boiling points to the product, and must be removed through new impurity removal methods.
  • the patent application with patent publication number CN1749260 discloses a sodium-adding reflux purification method, which causes part of the trimethylaluminum to react with metallic sodium at high temperature to generate sodium tetramethylaluminum, resulting in trimethylaluminum. Loss of methylaluminum; the patent application with patent publication number CN1769289B discloses a purification method of using an inert gas (such as high-purity helium) to blow through the trimethylaluminum vapor. This method will cause part of the trimethylaluminum vapor to accompany the inert gas.
  • an inert gas such as high-purity helium
  • the patent application with patent publication number CN1603328A discloses a purification method using high boiling point solvents and Lewis bases, which will introduce new impurities, and the operation temperature is relatively high High temperature will cause losses due to decomposition of trimethylaluminum, and high temperature will also bring certain safety hazards;
  • the US patent application with patent application number US4797500 discloses a reflux purification method by adding potassium and sodium alloy.
  • the potassium and sodium alloy is Large particles will form in trimethylaluminum, making it difficult for the potassium-sodium alloy to be completely dispersed in trimethylaluminum, causing the two to be unable to effectively contact each other, ultimately affecting the impurity removal effect of the product. Moreover, the trimethylaluminum body and the potassium-sodium alloy under high temperatures Side reactions are prone to occur, resulting in the loss of trimethylaluminum.
  • the purpose of the present invention is to overcome the shortcomings of the existing technology and provide a low-silicon and low-oxygen trimethylaluminum purification method that does not introduce new impurities and has good impurity removal effects.
  • the low silicon and low oxygen trimethylaluminum purification method is characterized by: including the following steps:
  • Step 5 Detection of impurity content of high-purity trimethylaluminum
  • the treatment method includes: mixing and stirring method, mix the potassium-sodium alloy pellets and trimethylaluminum in a flask or beaker or reaction kettle, use a stirrer to stir for 1 to 300 minutes at a rotation speed of 20 to 300 r/min, and then let it stand. 1 ⁇ 120min; pass through the chromatography/packing column method, add potassium-sodium alloy beads into the chromatography/packing column, add trimethylaluminum into the chromatography/packing column at 1 ⁇ 2000g/h, chromatography /The lower end of the packed column uses a flask or beaker or a receiving kettle to receive the filtered trimethylaluminum.
  • the beads are alumina, molecular sieves or zeolite.
  • the mass of the potassium-sodium alloy is 1% to 20% of the mass of the pellet.
  • the pore size of the filter screen is 10 to 500 mesh.
  • the pore size of the filter screen is 10 to 500 mesh.
  • the fourth step is to rectify the treated trimethylaluminum, and the obtained middle distillate is the final product.
  • the organosilicon impurities are less than 0.2ppm and the oxygen impurities are less than 0.2ppm, which is a qualified product.
  • the present invention has significant advantages and beneficial effects, which are specifically reflected in the following aspects:
  • the method of the present invention can prepare high-purity trimethylaluminum.
  • the potassium-sodium alloy is adsorbed on the surface of the beads to increase the contact and reaction area between the potassium-sodium alloy and trimethylaluminum.
  • the potassium-sodium alloy beads are removed. Mix and stir with the crude trimethylaluminum in the hybrid reaction vessel, or place the potassium-sodium alloy beads in the chromatography/packing column, so that the trimethylaluminum passes through the chromatography/packing column, and the trimethylaluminum is reacted by the high specific surface area of the beads.
  • the method of the present invention is accurate and reliable. It uses small balls as carriers to increase the contact and reaction area between the potassium-sodium alloy and trimethylaluminum. It can achieve efficient impurity removal and purification at room temperature, reduce side reactions, and meet the requirements for the production of high-performance compound semiconductor materials. Index requirements; the process flow is simple and no new impurities are introduced;
  • Potassium-sodium alloy pellets Place 1 to 500g of potassium-sodium alloy in the reaction bottle/kettle.
  • the mass of the potassium-sodium alloy is 1% to 20% of the mass of the pellets.
  • the pellets are alumina, molecular sieves or zeolite.
  • Each 1kg of potassium-sodium alloy beads is treated with 1 to 20kg of trimethylaluminum.
  • the treatment method includes: Mixing and stirring method: Place the potassium-sodium alloy beads and trimethylaluminum in a flask or beaker or other reaction kettle.
  • chromatography/packing column method add potassium-sodium alloy pellets to the chromatography/packing column, and Methyl aluminum is added into the chromatography/packing column at 1 ⁇ 2000g/h, and the lower end of the chromatography/packing column uses a flask or beaker or a receiving kettle to receive the filtered trimethylaluminum;
  • Step 5 Detection of impurity content of high-purity trimethylaluminum
  • the collected middle fractions were sent for sample testing.
  • the organic silicon was analyzed by the organic sampling system ICP-OES, and the oxygen species was analyzed by a nuclear magnetic resonance spectrometer. Among them, silicone is less than 0.2ppm and oxygen is less than 0.2ppm, which are qualified products.
  • the treated trimethylaluminum is placed in the distillation equipment for rectification, and the ratio of the front fraction, the middle fraction, and the stillage residue is 2:6:2;
  • the mass of the potassium-sodium alloy is 10% of the mass of the pellet 4A molecular sieve.
  • Add 100g of 4A molecular sieve and use a stirrer to stir for 60 minutes at a speed of 60r/min to make the surface of each 4A molecular sieve Both are loaded with potassium-sodium alloy, and after standing for 60 minutes, use a funnel with a filter (filter pore size is 30 mesh) to separate the potassium-sodium alloy from the 4A molecular sieve carrying the potassium-sodium alloy;
  • Step 5 Detection of impurity content of high-purity trimethylaluminum
  • the mass of the potassium-sodium alloy is 5% of the zeolite mass.
  • potassium-sodium alloy Place 20g of potassium-sodium alloy in a glass flask.
  • the mass of potassium-sodium alloy is 40% of the mass of 4A molecular sieve pellets.
  • Add 50g of 4A molecular sieve pellets. Use a stirrer to stir for 60 minutes at a speed of 60r/min, so that each 4A molecular sieve The surface of the pellets is loaded with potassium-sodium alloy. After standing for 60 minutes, use a funnel with a filter (filter pore size is 30 mesh) to separate the potassium-sodium alloy from the 4A molecular sieve carrying the potassium-sodium alloy;
  • trimethylaluminum and potassium-sodium alloy are pyrophoric, so all work is performed under an inert protective atmosphere such as nitrogen or argon, with strict exclusion of air and moisture, and all experimental instruments used are It needs to be washed with deionized water and then dried to eliminate the impact of contamination on the test instrument itself on the test results.
  • the method of the present invention can prepare high-purity trimethylaluminum.
  • the potassium-sodium alloy is adsorbed on the surface of the pellet to increase the contact and reaction area between the potassium-sodium alloy and trimethylaluminum.
  • the potassium-sodium alloy is The pellets are mixed and stirred with the crude trimethylaluminum in the impurity removal reaction vessel, or the potassium-sodium alloy pellets are placed in the chromatography/packing column, so that the trimethylaluminum passes through the chromatography/packing column and passes through the pellet high
  • the specific surface adsorption and desorption of trimethylaluminum, the full contact and reaction between potassium and sodium on the surface of the ball and trimethylaluminum, effectively remove the organic silicon impurities and oxygen impurities in trimethylaluminum, and convert the treated
  • the trimethylaluminum solution is distilled to obtain a low-silicon, low-oxygen, high-purity trimethylaluminum product.
  • the high-purity trimethylaluminum after distillation is detected to obtain stable, high-purity trimethylaluminum with an organic silicon content of ⁇ 0.2 ppm, the oxygen content is ⁇ 0.2ppm, and its inorganic purity reaches 99.9999%.
  • the method of the invention is accurate and reliable. It uses small balls as carriers to increase the contact and reaction area between the potassium-sodium alloy and trimethylaluminum. It can achieve efficient impurity removal and purification effects at room temperature, reduce side reactions, and meet the indicators for the production of high-performance compound semiconductor materials. Requirements: The process flow is simple and no new impurities are introduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明涉及低硅低氧三甲基铝提纯方法,首先制备担载钾钠合金小球,利用担载钾钠合金小球对粗品三甲基铝处理;将担载钾钠合金小球与粗品三甲基铝分离;对处理后三甲基铝进行精馏;高纯三甲基铝杂质含量检测;使钾钠合金吸附在小球表面,加大钾钠合金与三甲基铝的接触和反应面积,担载钾钠合金小球在除杂反应容器中与粗品三甲基铝混合搅拌,或将担载钾钠合金小球置于层析/填料柱内,使三甲基铝通过层析/填料柱,通过小球高比表面对三甲基铝的吸附和脱附,小球表面的钾钠与三甲基铝的充分接触和反应,高效地除去三甲基铝中的有机硅杂及氧杂,处理后的三甲基铝溶液精馏,得到低硅低氧高纯三甲基铝产品;满足生产高性能化合物半导体材料指标要求。

Description

低硅低氧三甲基铝提纯方法
本发明要求2022年05月19日向中国专利局提交的、申请号为202210555806.1、发明名称为“低硅低氧三甲基铝提纯方法”的中国专利申请的优先权,该申请的全部内容通过引用结合在本文中。
技术领域
本发明涉及一种低硅低氧三甲基铝提纯方法,属于半导体材料技术领域。
背景技术
目前,三甲基铝(TMA)是金属有机气相沉积(MOCVD)、化学束外延(CBE)过程中生长光电子材料的重要原料,主要用于AlGaN/AlN为主的Ⅲ族氮化物半导体材料外延片的生长,是生长第三代半导体AlGaN、AlN等外延片的核心原材料,进而也是相变存储器、射频集成电路芯片等的核心原材料之一。
以三甲基铝为前驱体外延生长的化合物半导体材料质量主要受三甲基铝中杂质的影响。三甲基铝的合成和处理过程中,经常会引入包括烃类组分、有机硅组分、烷基铝氧化合物、金属化合物和无机杂质等。在这些杂质中,有机硅组分和烷基铝氧化物通常具有比三甲基铝更高或与之相近的蒸汽压,由此,在三甲基铝生产的化合物半导体中,会产生硅夹杂物和氧夹杂物,进而以链式反应导致下游晶圆品质的严重下降,最终影响化合物半导体的性能。针对三甲基铝的有机硅组分和烷基铝氧化物杂质,因其和产品沸点相近,难以通过常规精馏装置进行提纯,必须通过新的除杂方法进行去除。
高纯度三甲基铝制备方法有,专利公开号为CN1749260的专利申请公开了一种加钠回流提纯方法,使部分三甲基铝与金属钠高温下反应,生成四甲基铝钠,造成三甲基铝的损失;专利公开号为CN1769289B的专利申请公开了使用惰性气体(如高纯氦气)吹过三甲基铝蒸汽提纯方法,此方法会造成部分三甲基铝蒸汽随惰性气体一起流失,造成三甲基铝损失,以及增加尾气的安全处理步骤;专利公开号为CN1603328A的专利申请公开了一种使用高沸点溶剂与路易斯碱提纯方法,会引入新的杂质,且操作时温度较高引起三甲基铝分解造成损失,并且温度高也会带来一定的安全隐患;专 利申请号为US4797500的美国专利申请公开了一种加入钾钠合金回流提纯方法,此方法中钾钠合金在三甲基铝中会形成大片颗粒,使得钾钠合金难以完全分散在三甲基铝中,造成两者不能有效接触,最终影响产品除杂效果,而且高温下三甲基铝本体和钾钠合金容易发生副反应,造成三甲基铝的损失。
公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。
发明内容
本发明的目的是克服现有技术存在的不足,提供一种不引入新杂质、除杂效果佳的低硅低氧三甲基铝提纯方法。
本发明的目的通过以下技术方案来实现:
低硅低氧三甲基铝提纯方法,特点是:包含以下步骤:
步骤一、制备担载钾钠合金小球
将钾钠合金置于反应瓶/釜中,添加小球,采用搅拌器在转速20~300r/min搅拌1~120min,使小球表面担载钾钠合金,静置1~120min后使用带滤网的漏斗对钾钠合金与担载钾钠合金小球进行分离;
步骤二、担载钾钠合金小球对三甲基铝处理
步骤三、担载钾钠合金小球与三甲基铝分离
与担载钾钠合金小球混匀搅拌的三甲基铝,采用带过滤网的漏斗对其进行分离,收集处理后的三甲基铝;
步骤四、对处理后三甲基铝进行精馏
将处理后的三甲基铝置于精馏设备中进行精馏;
步骤五、高纯三甲基铝杂质含量检测
对收集的中馏分进行送样检测。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,
步骤二、担载钾钠合金小球对三甲基铝处理
处理方法包含:混合搅拌法,将担载钾钠合金小球与三甲基铝在烧瓶或烧杯或反应釜中进行混合,使用搅拌器在转速20~300r/min搅拌1~300min,之后静置1~ 120min;过层析/填料柱法,将担载钾钠合金小球加入到层析/填料柱内,三甲基铝以1~2000g/h加入到层析/填料柱内,层析/填料柱下端用烧瓶或烧杯或接收釜接收过滤的三甲基铝。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤一,小球为氧化铝、分子筛或沸石。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤一,钾钠合金质量为小球质量的1%~20%。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤一,滤网的孔径为10~500目。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤二,每1kg担载钾钠合金小球处理1~20kg的三甲基铝。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤三,滤网的孔径为10~500目。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤四,对处理后的三甲基铝进行精馏,所得中馏分为最终产品。
进一步地,上述的低硅低氧三甲基铝提纯方法,其中,步骤五,有机硅杂<0.2ppm,氧杂<0.2ppm,为合格品。
本发明与现有技术相比具有显著的优点和有益效果,具体体现在以下方面:
①本发明方法可制备得到高纯三甲基铝,首先将钾钠合金吸附在小球表面,加大钾钠合金与三甲基铝的接触和反应面积,之后将钾钠合金小球在除杂反应容器中与粗品三甲基铝进行混合搅拌,或者将钾钠合金小球置于层析/填料柱内,使三甲基铝通过层析/填料柱,通过小球高比表面对三甲基铝的吸附和脱附,小球表面的钾钠与三甲基铝的充分接触和反应,高效地除去三甲基铝中的有机硅杂及氧杂,将处理后的三甲基铝溶液进行精馏,得到低硅低氧高纯三甲基铝产品;
②本发明方法准确可靠,以小球为载体,增大钾钠合金与三甲基铝接触和反应面积,室温下即可实现高效除杂提纯效果、减少副反应,满足生产高性能化合物半导体材料指标要求;工艺流程简洁,不引入新杂质;
③获得稳定的高纯三甲基铝,有机硅含量<0.2ppm,氧含量<0.2ppm,其无机纯度达99.9999%。
具体实施方式
为了对本发明的技术特征、目的和效果有更加清楚的理解,现详细说明具体实施方案。
本发明低硅低氧三甲基铝提纯工艺步骤:
步骤一、制备担载钾钠合金小球
将1~500g的钾钠合金置于反应瓶/釜中,以钾钠合金质量为小球质量的1%~20%,添加小球,小球为氧化铝、分子筛或沸石,采用搅拌器在转速20~300r/min搅拌1~120min,使小球表面担载钾钠合金,静置1~120min后使用带滤网(滤网孔径为10~500目)的漏斗对钾钠合金与担载钾钠合金小球进行分离;
步骤二、担载钾钠合金小球对三甲基铝处理
每1kg担载钾钠合金小球处理1~20kg的三甲基铝,处理方法包含:混合搅拌法:将担载钾钠合金小球与三甲基铝在烧瓶或烧杯或其他反应釜中进行混合,使用搅拌器在转速20~300r/min搅拌1~300min,之后静置1~120min;过层析/填料柱法:将担载钾钠合金小球加入到层析/填料柱内,三甲基铝以1~2000g/h加入到层析/填料柱内,层析/填料柱下端用烧瓶或烧杯或接收釜接收过滤的三甲基铝;
步骤三、担载钾钠合金小球与三甲基铝分离
通过与担载钾钠合金小球混匀搅拌的三甲基铝,采用带过滤网(滤网孔径为10~500目)的漏斗对其进行分离,收集处理后的三甲基铝;
步骤四、对处理后三甲基铝进行精馏
将处理后的三甲基铝置于精馏设备中进行精馏;
步骤五、高纯三甲基铝杂质含量检测
对收集的中馏分进行送样检测,有机硅通过有机进样系统ICP-OES进行分析,氧杂用核磁共振波谱仪进行分析。其中,有机硅<0.2ppm,氧杂<0.2ppm,为合格品。
实施例1
担载钾钠合金小球制备
将1.6g的钾钠合金置于玻璃烧瓶中,以钾钠合金质量为氧化铝分子筛质量的0.8%,添加200g氧化铝小球,使用搅拌器在转速为20r/min搅拌30min,静置20min后使用带滤网(滤网孔径30目)的漏斗对钾钠合金与担载钾钠合金小球进行分离;
担载钾钠合金小球对三甲基铝处理
将50g担载钾钠合金的氧化铝分子筛与100g三甲基铝在1L玻璃烧瓶中进行混合均匀,使用搅拌器在转速为20r/min搅拌30min,之后静置20min;
担载钾钠合金小球与三甲基铝分离
与担载钾钠合金的氧化铝分子筛混匀搅拌的三甲基铝,使用带过滤网(滤网孔径为30目)的漏斗对其进行分离,收集处理后的三甲基铝;
处理后三甲基铝精馏
将处理后的三甲基铝置于精馏设备中进行精馏,按照前馏分、中馏分、釜残比例为2:6:2进行接取;
高纯三甲基铝杂质含量检测
对收集到的中馏分进行送样检测,中馏分分析结果列于表1中;
表1
  精制前(ppm) 精制后(ppm)
有机硅组分 5.2 1.2
烷基铝氧化合物 9.5 2.5
实施例2
担载钾钠合金小球制备
将10g的钾钠合金置于玻璃烧瓶中,以钾钠合金质量为氧化铝小球质量的5%,添加200g氧化铝小球,使用搅拌器在转速为40r/min搅拌40min,使每一个氧化铝小球表面都担载上钾钠合金,静置40min后使用带滤网(滤网孔径为30目)的漏斗对钾钠合金与担载钾钠合金的氧化铝小球进行分离;
担载钾钠合金小球对三甲基铝处理
将100g担载钾钠合金的氧化铝小球与500g三甲基铝在1L玻璃烧瓶中进行混合均匀,使用搅拌器在转速为40r/min搅拌60min,之后静置40min;
担载钾钠合金小球与三甲基铝分离
与担载钾钠合金氧化铝小球混匀搅拌的三甲基铝,使用带过滤网(滤网孔径为50目)的漏斗对其进行分离,收集处理后的三甲基铝;
处理后三甲基铝精馏
将处理后的三甲基铝置于精馏设备中进行精馏,按照前馏分、中馏分、釜残比例 为2:6:2进行接取;
高纯三甲基铝杂质含量检测
对收集到的中馏分进行送样检测,中馏分分析结果列于表2中;
表2
  精制前(ppm) 精制后(ppm)
有机硅组分 5.2 <0.2
烷基铝氧化合物 9.5 <0.2
实施例3
钾钠合金处理三甲基铝
将10g的钾钠合金与500g三甲基铝在1L玻璃烧瓶中进行混合搅拌,使用搅拌器在转速为40r/min搅拌60min,之后静置40min;
钾钠合金与三甲基铝分离
使用带过滤网(滤网孔径为30目)的漏斗对其进行分离,收集处理后的三甲基铝;
处理后三甲基铝精馏
将处理后的三甲基铝置于精馏设备中进行精馏,按照前馏分、中馏分、釜残比例为2:6:2进行接取;
高纯三甲基铝杂质含量检测
对收集到的中馏分进行送样检测,中馏分分析结果列于表3中;
表3
  精制前(ppm) 精制后(ppm)
有机硅组分 5.2 4.3
烷基铝氧化合物 9.5 5.2
实施例4
担载钾钠合金小球制备
将10g的钾钠合金置于玻璃烧瓶中,以钾钠合金质量为小球4A分子筛质量的10%,添加100g 4A分子筛,使用搅拌器在转速为60r/min搅拌60min,使每一个4A分子筛表面都担载上钾钠合金,静置60min后使用带滤网(滤网孔径为30目)的漏斗对钾 钠合金与担载钾钠合金的4A分子筛进行分离;
担载钾钠合金小球对三甲基铝处理
将100g担载钾钠合金的4A分子筛小球与1000g三甲基铝在2L玻璃烧瓶中进行混合均匀,使用搅拌器在转速为60r/min搅拌90min,之后静置60min;
担载钾钠合金小球与三甲基铝分离
与担载钾钠合金的4A分子筛小球和三甲基铝的混合搅拌,使用带过滤网(滤网孔径为30目)的漏斗对其进行分离,收集处理后的三甲基铝;
处理后三甲基铝精馏
将处理后的三甲基铝置于精馏设备中进行精馏,按照前馏分、中馏分、釜残比例为2:6:2进行接取;
步骤五、高纯三甲基铝杂质含量检测
对收集到的中馏分进行送样检测,中馏分分析结果列于表4中;
表4
  精制前(ppm) 精制后(ppm)
有机硅组分 8.7 <0.2
烷基铝氧化合物 15.2 <0.2
实施例5
担载钾钠合金小球制备
将10g的钾钠合金置于玻璃烧瓶中,以钾钠合金质量为沸石质量的5%,添200g加沸石,使用搅拌器在转速为40r/min搅拌40min,使每一个小球表面都担载上钾钠合金,静置40min后使用带滤网(滤网孔径为30目)的漏斗对钾钠合金与担载钾钠合金的沸石进行分离;
担载钾钠合金小球对三甲基铝处理
将200g担载钾钠合金小球加入到层析/填料柱内,使500g三甲基铝以500g/h加入到层析/填料柱内过滤,层析/填料柱下端用玻璃烧瓶接收三甲基铝;
处理后三甲基铝精馏
将处理后的三甲基铝置于精馏设备中进行精馏,按照前馏分、中馏分、釜残比例为2:6:2进行接取;
高纯三甲基铝杂质含量检测
对收集到的中馏分进行送样检测,中馏分分析结果列于表5中;
表5
  精制前(ppm) 精制后(ppm)
有机硅组分 7.8 <0.2
烷基铝氧化合物 9.8 <0.2
实施例6
担载钾钠合金小球制备
将20g的钾钠合金置于玻璃烧瓶中,以钾钠合金质量为4A分子筛小球质量的40%,添加50g4A分子筛小球,使用搅拌器在转速为60r/min搅拌60min,使每一个4A分子筛小球表面都担载上钾钠合金,静置60min后使用带滤网(滤网孔径为30目)的漏斗对钾钠合金与担载钾钠合金的4A分子筛进行分离;
担载钾钠合金小球对三甲基铝处理
将50g担载钾钠合金小球加入到层析/填料柱内,使1500g三甲基铝以1000g/h加入到层析/填料柱内过滤,层析/填料柱下端用玻璃烧瓶接收三甲基铝;
处理后三甲基铝精馏
将处理后的三甲基铝置于精馏设备中进行精馏,按照前馏分、中馏分、釜残比例为2:6:2进行接取;
高纯三甲基铝杂质含量检测
对收集到的中馏分进行送样检测,中馏分分析结果列于表6中。
表6
  精制前(ppm) 精制后(ppm)
有机硅组分 6.0 4.2
烷基铝氧化合物 12.4 4.8
需说明的是,三甲基铝和钾钠合金是自燃性的,因此所有的工作都是在氮气或氩气等惰性保护气氛下,在严格排除空气和水分下执行,所使用的实验仪器均需用去离子水清洗后烘干,排除因实验仪器本身沾污对检测结果的影响。
综上所述,本发明方法可制备得到高纯三甲基铝,首先将钾钠合金吸附在小球表 面,加大钾钠合金与三甲基铝的接触和反应面积,之后将钾钠合金小球在除杂反应容器中与粗品三甲基铝进行混合搅拌,或者将钾钠合金小球置于层析/填料柱内,使三甲基铝通过层析/填料柱,通过小球高比表面对三甲基铝的吸附和脱附,小球表面的钾钠与三甲基铝的充分接触和反应,高效地除去三甲基铝中的有机硅杂及氧杂,将处理后的三甲基铝溶液进行精馏,得到低硅低氧高纯三甲基铝产品,对精馏后高纯三甲基铝进行检测,获得稳定的高纯三甲基铝,有机硅含量<0.2ppm,氧含量<0.2ppm,其无机纯度达99.9999%。
本发明方法准确可靠,以小球为载体,增大钾钠合金与三甲基铝接触和反应面积,室温下即可实现高效除杂提纯效果、减少副反应,满足生产高性能化合物半导体材料指标要求;工艺流程简洁,不引入新杂质。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。

Claims (9)

  1. 低硅低氧三甲基铝提纯方法,其特征在于:包含以下步骤:
    步骤一、制备担载钾钠合金小球,
    将钾钠合金置于反应瓶/釜中,添加小球,采用搅拌器在转速20~300r/min搅拌1~120min,使小球表面担载钾钠合金,静置1~120min后使用带滤网的漏斗对钾钠合金与担载钾钠合金小球进行分离;
    步骤二、担载钾钠合金小球对三甲基铝处理;
    步骤三、担载钾钠合金小球与三甲基铝分离,
    与担载钾钠合金小球混匀搅拌的三甲基铝,采用带过滤网的漏斗对其进行分离,收集处理后的三甲基铝;
    步骤四、对处理后三甲基铝进行精馏,
    将处理后的三甲基铝置于精馏设备中进行精馏;
    步骤五、高纯三甲基铝杂质含量检测,
    对收集的中馏分进行送样检测。
  2. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:
    步骤二、担载钾钠合金小球对三甲基铝处理,
    处理方法包含:混合搅拌法,将担载钾钠合金小球与三甲基铝在烧瓶或烧杯或反应釜中进行混合,使用搅拌器在转速20~300r/min搅拌1~300min,之后静置1~120min;过层析/填料柱法,将担载钾钠合金小球加入到层析/填料柱内,三甲基铝以1~2000g/h加入到层析/填料柱内,层析/填料柱下端用烧瓶或烧杯或接收釜接收过滤的三甲基铝。
  3. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤一,小球为氧化铝、分子筛或沸石。
  4. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤一,钾钠合金质量为小球质量的1%~20%。
  5. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤一,滤网的孔径为10~500目。
  6. 根据权利要求1或2所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤二,每1kg担载钾钠合金小球处理1~20kg的三甲基铝。
  7. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤三,滤网的孔径为10~500目。
  8. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤四,对处理后的三甲基铝进行精馏,所得中馏分为最终产品。
  9. 根据权利要求1所述的低硅低氧三甲基铝提纯方法,其特征在于:步骤五,有机硅杂<0.2ppm,氧杂<0.2ppm,为合格品。
PCT/CN2022/139591 2022-05-19 2022-12-16 低硅低氧三甲基铝提纯方法 WO2023221492A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210555806.1 2022-05-19
CN202210555806.1A CN114835740B (zh) 2022-05-19 2022-05-19 低硅低氧三甲基铝提纯方法

Publications (1)

Publication Number Publication Date
WO2023221492A1 true WO2023221492A1 (zh) 2023-11-23

Family

ID=82572894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/139591 WO2023221492A1 (zh) 2022-05-19 2022-12-16 低硅低氧三甲基铝提纯方法

Country Status (2)

Country Link
CN (1) CN114835740B (zh)
WO (1) WO2023221492A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114835740B (zh) * 2022-05-19 2023-10-03 江苏南大光电材料股份有限公司 低硅低氧三甲基铝提纯方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797500A (en) * 1985-12-03 1989-01-10 Sumitomo Chemical Company, Ltd. Purification of organometallic compounds
CN1749260A (zh) * 2004-06-18 2006-03-22 信越化学工业株式会社 高纯三甲基铝及粗三甲基铝的精制方法
CN102892771A (zh) * 2010-03-05 2013-01-23 乔治洛德方法研究和开发液化空气有限公司 用于移除金属化合物的吸附剂和方法
CN106831841A (zh) * 2016-12-22 2017-06-13 安徽亚格盛电子新材料有限公司 一种通过钾钠合金去除工业三甲基铝中含氯杂质的方法
CN114835740A (zh) * 2022-05-19 2022-08-02 江苏南大光电材料股份有限公司 低硅低氧三甲基铝提纯方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104774218B (zh) * 2015-04-23 2016-08-17 苏州普耀光电材料有限公司 高纯三甲基铝的制备方法
CN108456221A (zh) * 2018-02-08 2018-08-28 浙江博瑞电子科技有限公司 一种三甲基铝精制的方法
CN109553632A (zh) * 2018-12-29 2019-04-02 贵州威顿晶磷电子材料股份有限公司 一种三甲基铝的提纯方法
CN113764674B (zh) * 2020-06-03 2024-03-19 北京理工大学 一种负载钠钾合金的电极载体及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4797500A (en) * 1985-12-03 1989-01-10 Sumitomo Chemical Company, Ltd. Purification of organometallic compounds
CN1749260A (zh) * 2004-06-18 2006-03-22 信越化学工业株式会社 高纯三甲基铝及粗三甲基铝的精制方法
CN102892771A (zh) * 2010-03-05 2013-01-23 乔治洛德方法研究和开发液化空气有限公司 用于移除金属化合物的吸附剂和方法
CN106831841A (zh) * 2016-12-22 2017-06-13 安徽亚格盛电子新材料有限公司 一种通过钾钠合金去除工业三甲基铝中含氯杂质的方法
CN114835740A (zh) * 2022-05-19 2022-08-02 江苏南大光电材料股份有限公司 低硅低氧三甲基铝提纯方法

Also Published As

Publication number Publication date
CN114835740B (zh) 2023-10-03
CN114835740A (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
WO2023221492A1 (zh) 低硅低氧三甲基铝提纯方法
JP5122700B1 (ja) モノシランの精製方法
CN103523796B (zh) 一种亚微米x型分子筛的合成方法及其应用
CN110902691B (zh) 一种y型分子筛疏水改性的方法
JP5771012B2 (ja) 超高純度過酸化水素水の生産方法およびこれに用いる分子篩の製作方法
CN106349008A (zh) 一种六氟丁二烯纯化的方法
CN112326579B (zh) 一种同时检测食品中亚硝酸盐及抗坏血酸的方法
CN103601624A (zh) 一种超纯丙酮的制备方法
US10584035B2 (en) Purification system of trichlorosilane and silicon crystal
CN104774218B (zh) 高纯三甲基铝的制备方法
WO2023226629A1 (zh) Mo源除氧提纯方法
CN114345300A (zh) 一种吸附剂及其制备方法,一种提纯环烯烃聚合物的方法
CN116747546A (zh) 硅氧烷类化合物的纯化装置及纯化方法
CN111205297A (zh) 一种福比他韦rrrr型对映异构体的制备方法
CN110614089A (zh) 一种功能化聚酰胺-胺树形分大子吸附剂的制备方法
CN115894237A (zh) 一种醋酸乙烯的分离纯化方法
CN104860973B (zh) 三甲基镓的纯化方法
CN106866387A (zh) 一种抑制高纯度乙醚中过氧化氢产生的保存方法
CN110237816B (zh) 一种硝酸银修饰的金属有机骨架吸附材料的制备方法及其应用
CN113817172B (zh) 用于纯化铁皮石斛多糖类化合物的金属有机骨架材料及纯化方法
CN115044050B (zh) 一种优先吸附烷烃的金属有机骨架-有机分子链共价修饰材料及其制备方法
JP7281937B2 (ja) 低炭素高純度多結晶シリコン塊とその製造方法
AU2021238988B2 (en) A process for removing arsine from hydrocarbon mixture
CN117466301A (zh) 基于Cu@ZIF-8吸附剂同时高效去除氯硅烷中B、P杂质的方法
Hynninen et al. Synthesis and characterization of chlorophyll a enol derivatives: Chlorophyll a tert-butyldimethylsilyl-enol ether and 13 1-deoxo-13 1, 13 2-didehydro-chlorophyll a

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942512

Country of ref document: EP

Kind code of ref document: A1