WO2023221314A1 - 一种夹胶真空玻璃及其制备方法与应用 - Google Patents

一种夹胶真空玻璃及其制备方法与应用 Download PDF

Info

Publication number
WO2023221314A1
WO2023221314A1 PCT/CN2022/113495 CN2022113495W WO2023221314A1 WO 2023221314 A1 WO2023221314 A1 WO 2023221314A1 CN 2022113495 W CN2022113495 W CN 2022113495W WO 2023221314 A1 WO2023221314 A1 WO 2023221314A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
laminated
layer
layers
laminated vacuum
Prior art date
Application number
PCT/CN2022/113495
Other languages
English (en)
French (fr)
Inventor
丁原杰
叶舒
Original Assignee
福耀高性能玻璃科技(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210538548.6A external-priority patent/CN114772950B/zh
Priority claimed from CN202221189711.4U external-priority patent/CN218084550U/zh
Application filed by 福耀高性能玻璃科技(福建)有限公司 filed Critical 福耀高性能玻璃科技(福建)有限公司
Publication of WO2023221314A1 publication Critical patent/WO2023221314A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/42Layered products comprising a layer of synthetic resin comprising condensation resins of aldehydes, e.g. with phenols, ureas or melamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61DBODY DETAILS OR KINDS OF RAILWAY VEHICLES
    • B61D25/00Window arrangements peculiar to rail vehicles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • C03C27/10Joining glass to glass by processes other than fusing with the aid of adhesive specially adapted for that purpose

Definitions

  • the invention relates to a laminated vacuum glass and its preparation method and application, belonging to the technical field of vacuum glass preparation.
  • Multi-layer laminated insulating glass windows have long been widely used in rail transit and large-scale buildings.
  • Rail transit that has been popularized includes high-speed railways (hereinafter referred to as high-speed rail), high-speed trains, MRTs, subways, light rails, etc., all of which are important in infrastructure construction.
  • high-speed rail high-speed railways
  • MRTs high-speed trains
  • subways subways
  • light rails etc.
  • the following high-speed rail/motor train which has the most stringent requirements, will be discussed as the object of discussion, and will be used as the basis for promotion to all rail transportation.
  • the original average speed of electric trains was 200km/hr, and gradually increased to the current high-speed rail level of 300km/hr, then high-speed rail will gradually challenge the speed of 400km/hr or higher; as the speed With the improvement of the times, the structural safety and user experience of high-speed rail carriages are also facing more stringent challenges.
  • the glass side windows of the carriages directly face environmental factors such as sunlight, external cold and warm temperature differences, track noise, etc.
  • the side cars Windows are also subject to more stringent requirements for energy conservation, noise reduction, and weight reduction.
  • Laminated glass refers to a glass made of one or more layers of organic polymer interlayer sandwiched between two or more pieces of glass. After high-temperature pre-pressing or vacuum high-temperature pressing, the glass and the interlayer are firmly bonded into one.
  • a kind of composite glass; commonly used glass interlayer films include polyvinyl butyral (PVB), ethylene-vinyl acetate copolymer (EVA), ethylene-methacrylic acid copolymer ( Plus, SGP), thermoplastic polyurethane elastomer rubber (Thermoplastic polyurethanes, TPU), etc.
  • Laminated glass has many functions, including being more impact-resistant and thus improving the safety protection capabilities of glass windows; when the glass is broken by external force, the broken glass will be glued to the intermediate film, making it less likely to scatter and cause cuts; some
  • the interlayer film also has a part of the heat insulation or sound insulation function; because of the above advantages, laminated glass is often used in vehicles such as cars.
  • Laminated glass can also be used to make insulating glass to improve its thermal and sound insulation effects. This type of insulating composite glass has been widely used in environmentally friendly and energy-saving glass windows in high-rise buildings; With the rapid development, insulating composite glass has also been applied to the doors, windows and side windows of these carriages.
  • the thermal conductivity (U value) of a single piece of silver-coated glass with a thickness of 6mm is about 4.5W/m2 ⁇ K.
  • the thickness of the hollow layer is ⁇ 10mm, and the U-value is about 4.5W/m2 ⁇ K.
  • the weighted sound insulation (R w ) of the former is about 25dB, and the latter is about 27dB.
  • the purpose of the present invention is to provide a laminated vacuum glass.
  • a glass with high sound insulation, heat insulation effects and light weight is obtained.
  • the present invention provides a laminated vacuum glass, which includes a first glass plate and a second glass plate, and a vacuum layer composed of the first glass plate and the second glass plate; wherein, the first glass plate
  • the glass plate is laminated glass composed of at least two layers of glass and at least one layer of adhesive film;
  • the edges of the vacuum layer are encapsulated by cold laser welding.
  • the first glass plate or the second glass plate is provided with a hollow layer.
  • the laminated vacuum glass of the present invention can be called: vacuum + hollow laminated glass.
  • the thickness of the hollow layer is preferably 8-16 mm.
  • the vacuum layer is located between a glass plate and a laminated glass plate or between two layers of laminated glass plates, and the surrounding length of the two pieces of glass closest to the vacuum layer is longer than that of the other glass plates.
  • a protruding part of at least 10mm is used for airtight sealing by laser welding and sealant.
  • At least one through hole is left in one piece of glass in this protruding part for air extraction. The diameter of the through hole is not less than 1mm;
  • the vacuum layer is assembled under normal pressure, and the maximum process temperature does not exceed 120°C; after the airtight sealing around the vacuum layer is completed, the laser weld seam is transparent and traceless when viewed directly under daily visible light.
  • the thickness of the vacuum layer is 0.1-0.5 mm.
  • the laminated vacuum glass of the present invention can have good sound insulation and heat insulation properties. Among them, when the thickness of the vacuum layer is between 0.2-0.35mm, the best heat insulation effect can be obtained. When the thickness exceeds 0.5mm, the heat insulation effect will decrease. When the thickness is less than 0.2mm, the manufacturing yield will decrease.
  • an appropriate number of tiny supports will be arranged in the vacuum layer.
  • gas pressure is less than 0.01 Pa
  • sufficient supporting force can be provided for the glass plate to hold up. It can withstand atmospheric pressure without deforming; if the support force is not enough, the glass plates will be close to each other, which will change the thickness of the vacuum layer and affect the sound insulation and heat insulation performance of the laminated vacuum glass.
  • the first glass plate is a laminated glass composed of two layers of glass and a layer of adhesive film; and the thickness of the two layers of glass is not less than 3 mm and not less than 1 mm respectively, The total thickness of the two layers of glass (excluding the thickness of the film) shall not exceed 10mm, and the thickness of the film shall not be less than 0.7mm.
  • the first glass plate is a laminated glass composed of three layers of glass and one layer of adhesive film, and the hollow layer is provided between two layers of the three layers of glass. , that is, a hollow layer is provided in the first glass plate.
  • the second glass plate is laminated glass composed of at least two layers of glass and at least one layer of glue film.
  • the second glass plate is laminated glass composed of at least three layers of glass and at least two layers of glue film.
  • the second glass plate is a laminated glass composed of two layers of glass and a layer of adhesive film; and the thickness of the two layers of glass is no less than 2 mm and no less than 1 mm respectively.
  • the total thickness of the two layers of glass shall not exceed 8mm, and the thickness of the film shall not be less than 0.7mm.
  • the second glass plate is a laminated glass composed of three layers of glass and two layers of adhesive film; and the total thickness of the three layers of glass does not exceed 8 mm, and the total thickness of the two layers of adhesive film The total thickness does not exceed 3.2mm.
  • the glass is selected from one or a combination of two or more of soda-lime glass, aluminosilicate glass, and borosilicate glass.
  • the adhesive film is selected from one of PVB film, EVA film, SGP film and TPU film.
  • the number of welds is determined according to the following formula:
  • N is the number of welds, the unit is strip;
  • w is the average width of the weld, in mm
  • S sealing is the welding strength of the welded sealing block, in MPa
  • is the thermal expansion coefficient of glass, the unit is °C -1 ;
  • ⁇ T is the temperature difference between the glass plates on both sides of the vacuum layer, in °C;
  • E is the elastic modulus of glass (Young's coefficient), in MPa;
  • H is the thickness of the thermally expanded glass plate, in mm.
  • the number of welds is ⁇ 2.
  • the vacuum layer is provided with micro-pillars; more preferably, the micro-pillars are flexible micro-pillars, and the flexible micro-pillars have at least one fiber layer, that is, the application number is 202210074202.5
  • the application number is 202210074202.5
  • the flexible micro-pillar has a composite structure composed of two or more fiber layers.
  • the flexible micro-pillar has a composite structure composed of at least two fiber layers and at least one metal layer and/or alloy layer, and the metal layer and/or alloy layer is located on the two layers. between fiber layers.
  • the flexible micro-pillar has a composite structure composed of at least three fiber layers and at least two metal layers and/or alloy layers, wherein the metal layers and/or alloy layers are spaced apart placed between fiber layers.
  • the thickness of the fiber layer is 0.1 mm to 3.0 mm.
  • the thickness of the metal layer or alloy layer is 0.3 mm or less, preferably 0.01 mm to 0.3 mm.
  • the diameter of the flexible micro-pillar is 0.2mm-2.0mm; preferably, the diameter is 0.2mm-0.5mm.
  • the thermal conductivity of the flexible micro-pillars is ⁇ 1W/m ⁇ K (25°C); more preferably, the thermal conductivity of the flexible micro-pillars is ⁇ 0.25W/m ⁇ K ( 25°C).
  • the fiber layer is made of ultrafine fibers; more preferably, the material of the ultrafine fibers is aluminosilicate glass, boroaluminosilicate One or a combination of two or more of glass, soda-lime glass, borosilicate glass, quartz glass, metal, and alloy.
  • the thermal conductivity of the fiber layer is ⁇ 0.03W/m ⁇ K (25°C).
  • the specific surface area of the fiber layer is 700-800 m 2 /g.
  • the material of the metal layer includes one of aluminum, copper, iron, tin, and zinc; the material of the alloy layer includes aluminum, copper, An alloy of two or more elements among iron, tin, and zinc. More preferably, the alloy includes stainless steel.
  • the height of the flexible micro-pillars under compression at a pressure of 1 atmosphere is not less than 0.10 mm, more preferably 0.15-0.5 mm, and further preferably 0.15-0.25 mm.
  • one side surface inside the vacuum layer is provided with an anti-radiation film.
  • the radiation resistant film may be commonly used in the field.
  • the invention also provides a preparation method of the above-mentioned laminated vacuum glass, which includes the following steps:
  • the first glass plate and the second glass plate are welded together using cold laser welding, and the welding position is the edge of the groove. Then, the vacuum layer is evacuated, and after edge sealing and sealing, the laminated vacuum glass is obtained.
  • the laser pulse width at half maximum (Pulse Width, FWHM, or pulse duration) of the cold laser is less than or equal to 20 pico seconds.
  • the wavelength of the laser used in the cold laser welding is 800nm-1600nm (for example, 800nm, 1045nm, 1558nm, 1064nm, with 1064nm being preferred).
  • the laser used in the cold laser has a repetition rate of 1 Hz to 10 MHz.
  • the two glass surfaces at the solder joint position are in close contact.
  • the gap between the glass plates at the welding point is less than 40 ⁇ m, preferably less than 25 ⁇ m.
  • the width of the weld seam is no more than 20 ⁇ m, preferably less than 5 ⁇ m.
  • the welding strength of the weld is greater than the thermal expansion shear stress between the two welded glass plates. More preferably, the welding strength of the weld satisfies:
  • S sealing is the welding strength of the welded sealing block, in MPa
  • is the thermal expansion coefficient of glass, the unit is °C -1 ;
  • ⁇ T is the temperature difference between the glass plates on both sides of the vacuum layer, in °C;
  • E is the elastic modulus of glass (Young's coefficient), in MPa;
  • H is the thickness of the thermally expanded glass plate, in mm.
  • d is the width of the welded sealing area, in mm.
  • the welding sealing area refers to the width of the weld distribution area. For example, if a total of 5 parallel welds are used, the distance between the two outermost welds (the two welds are each on the outer side) The edge meter) distance is defined as the d value here.
  • the distance between the welding seams is not less than 150 ⁇ m, and the depth of the single-sided glass surface welding seam in the two welded glass plates is not less than 20 ⁇ m.
  • the overall shape of the weld seam is continuous or spaced.
  • the single weld seam is a straight line, a diagonal line or a broken line.
  • the shape of the welding seam as a whole is a straight line parallel to each other or a diagonal line parallel to each other or a folded line parallel to each other; or, the welding seam as a whole is parallel to each other and intermittent.
  • the overall shape of the weld is one of the shapes shown in Figure 4.
  • the thermal conductivity U value of the laminated vacuum glass provided by the present invention can reach below 0.9W/m 2 ⁇ K, and the sound insulation amount is greater than 46dB, and has good sound insulation, It has excellent thermal insulation properties and is light in weight, making it suitable for use in environments with special requirements for sound insulation and heat insulation, such as high-speed railways.
  • Figure 1A is a schematic structural diagram of insulating laminated glass.
  • Figure 1B is a schematic structural diagram of vacuum + insulated laminated glass.
  • Figure 1C is a schematic structural diagram of vacuum composite glass.
  • Figures 2A and 2B are schematic diagrams of cold laser welding methods.
  • Figure 3 is a schematic diagram of the position of the solder joints and the Z-axis.
  • Figure 4 is a schematic diagram of weld types.
  • FIG. 5A and Figure 5B are schematic diagrams of the welding effect.
  • the glass of the present invention can be welded by cold laser welding, that is, using a laser with a laser pulse width at half maximum (Pulse Width, FWHM, or pulse duration) of less than or equal to 20 picoseconds (pico second) for welding, for example: Wuhan Raycus
  • the picosecond laser of Fiber Laser Technology Co., Ltd. has a laser pulse half-height width of 800fs (that is, 0.8ps).
  • the American MKS Spectra-Physics company’s model IceFyre 1064-50 laser has a laser pulse half-height width of 10ps.
  • Vacuum laminated glass, vacuum + insulating laminated glass
  • FIGS. 1B and Figure 1C they respectively represent vacuum + insulated laminated glass, vacuum double laminated composite glass, and so on. It can also be a combination of multi-layer vacuum and multi-layer composite glass.
  • the symbols G1, G2, G3, G4, and G5 represent glass.
  • glass G1 has the largest thickness and is used for the outer part of the window.
  • Glass G2-G5 is the middle or inner glass, which is usually thinner than glass G1. On the one hand, it can reduce weight.
  • the asymmetrical thickness design is used to reduce the resonance sound caused by the external sound of the cabin, and thereby slightly improve the sound insulation performance; the innermost window panel can use a glass plate or impact-resistant transparent material depending on the needs of the application scenario.
  • Plastic board such as PC board.
  • the symbols F1-F2 represent the film of laminated glass.
  • the most commonly used film is PVB film, and the thickness can be 0.76mm or 1.52mm.
  • the symbol v represents the vacuum layer, which is assembled with laminated glass on both sides.
  • Symbol A represents the hollow layer.
  • the vacuum layer or hollow layer can be equipped with an anti-radiation film. Specifically, it can be a coating, such as a Low-E film, or a film. The purpose is to reduce the heat radiated from external sunlight into the cabin, and at the same time, it can also increase the comfort of passengers in the cabin. feel.
  • the outer frame of the overall vacuum laminated glass is usually made of aluminum alloy or fiber-reinforced plastic (FRP).
  • the outer frame structure includes matching rubber strips and sealing gaskets to achieve shock absorption, waterproofing, moisture-proof, and insulation. Sound and other functions.
  • the vacuum laminated glass structure shown in Figure 1B and Figure 1C has the following characteristics: 1 Use laminated glass as the side plate of the vacuum glass, because laminated glass is a composite material whose strength and rigidity are much higher than single-layer glass of the same thickness board; 2 The high-temperature solder sintering method currently commonly used in the industry for vacuum packaging has been eliminated, and cold laser is used to directly weld the glass at room temperature, and then the air-tight sealing method is used.
  • the edge packaging of the vacuum layer no longer requires the use of solder or high-temperature packaging. Instead, it is replaced by glass laser welding at room temperature, which is of great significance in terms of environmental protection, energy saving and improving production efficiency.
  • the edge packaging of the vacuum layer uses the same glass material as the glass plate itself as the side wall.
  • the structure of the side wall can be composed of a glass frame as shown in Figure 2A.
  • the glass plates are sandwiched between two pieces.
  • the middle frame of the glass is integrated using cold laser welding at room temperature to form a sealed interlayer; or the structure shown in Figure 2B is to first locally thin at least one of the two pieces of glass that makes up the vacuum layer to no more than The thickness of 0.3mm is to form a groove.
  • Thinning methods include but are not limited to mechanical grinding and polishing, chemical etching, etc. The thinning is only performed on the central part of the glass, leaving the surrounding frame parts, and then thinning this central area.
  • the glass plate and another piece of glass are welded together around the edges with a cold laser; both of the above methods can make a vacuum layer structure at room temperature.
  • the laminated glass is welded into composite laminated glass, and finally the airtight sealing is completed with glue and made into vacuum glass.
  • Multi-layer glued vacuum laminated glass Multi-layer glued vacuum laminated glass
  • the laminated glass plate is used as the side plate of the vacuum glass, it is limited by the temperature resistance of the laminated film, so the traditional high-temperature sintering solder packaging process cannot be used. Therefore, in the present invention, room temperature glass laser welding is used. To be more specific, two pieces of glass are directly welded together using a cold laser at room temperature (or below the working temperature of the laminated film), and Use liquid glue to achieve the goal of airtightness.
  • the airtightness mentioned here means that the vacuum state in the vacuum layer can be maintained at a level where the gas pressure is lower than 10 -2 Pa for a long time. Since laser welding is a welding process, it is a process that directly melts, bonds, and cools the contact surface of two pieces of glass instantly.
  • the entire laser welding process can be completed at room temperature.
  • the laser irradiates the material its characteristic is that the heating and cooling are completed in less than or equal to 20 picoseconds (ps).
  • the heat energy formed in the micro-area of the material irradiated by the laser does not have time to transfer the heat energy. It has been cooled when it is transferred to the surrounding micro-areas, so there will be no excess heat to destroy the surrounding microstructure, it will not harm the glass material at the welding place, and it will not leave residual thermal stress, so the pulse duration is less than or equal to 20 picoseconds.
  • the laser is also considered a cold laser, meaning it does not produce thermal stress and does no thermal damage to the glass.
  • the frame can be made in two forms. What is shown in Figure 2A is that the pre-made edge strips are used to make a frame that matches the shape of the glass window. The frame itself is integrated and there is no middle Breathable gaps. Then place the frame between the two sides of the vacuum layer, align the position, and then weld with cold laser. During welding, the position of the solder joints is close to each other, and the distance between the two glass surfaces at the solder joints is smaller than the diameter of the laser focus. , and the glass surface should be kept clean, and there should be no other solid and liquid contaminants other than glass. These contaminants will absorb the laser energy and prevent the energy from being transferred to the glass microstructure at the solder joint.
  • the glass surface at the solder joint position should be treated to be flat, clean, and dry.
  • Glass laser welding itself uses the nonlinear optical principle of cold laser and is relatively unaffected by the glass material.
  • the compacted glass interface can be instantly stimulated to melt, and then the glass is combined into one and cooled quickly without leaving any thermal stress.
  • the frame shown in Figure 2A forms two interfaces with the glass plates on both sides, so the interfaces on both sides need to be laser welded respectively.
  • the method shown in Figure 2B only forms one side of the glass interface, so only one interface needs to be laser welded.
  • the composite plate pre-processing cutting, grinding, drilling and washing
  • Clamping of glued sheets composite plate 1 and composite plate 2
  • Installation of glass edge strips between composite plate 1 and composite plate 2 ⁇ Layout of supports
  • Laser welding at normal temperature ⁇ Vacuuming
  • Edge sealing (the sealant is sucked into the periphery of the weld)
  • sealing install the window frame to obtain laminated vacuum glass.
  • the composite plate 1 is glass G3
  • the composite plate 2 is a glass plate made of glass G4, glass G5 and adhesive film F2.
  • Glass plate pre-treatment Take one of the glass plates for local etching ⁇ Clamp the glued sheets (composite etching plate 1 and composite plate 2) ⁇ Etch the support points on the concave platform of the composite plate ⁇ Lay out the supports on the composite plate 2 and composite etching Align the plate 1 up and down ⁇ Laser unilateral welding at normal temperature ⁇ Vacuum ⁇ Edge sealing (the sealant is sucked into the periphery of the weld) ⁇ Sealing ⁇ Install the window frame to obtain laminated vacuum glass.
  • the composite etching plate 1 is glass G3
  • the composite plate 2 is a glass plate made of glass G4, glass G5 and adhesive film F2.
  • the glass plate can be tempered in advance and used as the cover plate; for glass G4, the glass plate can be tempered but not necessary in advance and used as the bottom plate; for the convenience of calculation, a flexible circular fiber structure is used
  • the columns serve as tiny pillars with a diameter of 0.5mm, and the height is determined by the thickness of the vacuum layer;
  • Group 2a Take the same material as glass G3 or glass G4, and cut it into four long strips of glass or a square frame according to the length of the four sides of glass G3 and glass G4 as the frame of the vacuum layer.
  • the width of the frame is generally not greater than 20mm. , the thickness does not exceed 0.5mm, the surface of this glass edge/frame is clean, flat and dry.
  • Group 2b Use acid-proof protective film on the first surface of glass G3 (non-thinned surface), stick the edge of the second surface not exceeding 20mm wide (as the frame) with acid-proof film, and use anti-acid film on the surrounding edges as well. Protect it with acid glue, and then place the glass G3 in a chemical thinning tank to thin the parts without acid-proof film protection, and the thinning depth shall not exceed 0.5mm. After thinning, remove the protective film and clean the glass surface to make the glass surface clean, flat, and dry. The surrounding area of the second surface of glass G3 has not been thinned and can be used as a frame.
  • the air extraction holes can be on the cover plate or the bottom plate. Place the glass plate with the air extraction holes flatly.
  • start the air extraction function of the work platform so the cover plate, bottom plate, and frame are all sucked and fixed on the laser welding platform.
  • start the laser and the x-y axis movement mechanism of the working platform and laser weld the glass frame according to the preset path.
  • Laser power, focal length, spot size and other parameters can be adjusted according to different samples.
  • the focus is on the center of the welded surfaces of two pieces of glass, as shown in Figure 3, and the distance between the two glass surfaces at the soldering point position should be smaller than the spot diameter D, so that the laser energy can penetrate evenly into the two welded glass surfaces.
  • the glass at the solder joint is fused together under the action of energy. Since high-energy lasers are emitted in pulse mode, welding is also performed by spot welding. Although the welding strength is very high, in terms of hermetic sealing, vacuum-resistant sealant is still required for hermetic sealing.
  • Step 4 Vacuum air sealing
  • Glass laser welding is spot welding, which can provide sufficient welding strength, but cannot guarantee airtight welding. Therefore, for making vacuum glass, a vacuum degree of 0.01Pa needs to be maintained for a long time, and a vacuum-resistant sealant needs to be used to seal the welding. Caulking the seams to ensure airtight sealing.
  • the operation method is relatively simple. Use sealants that can withstand vacuum environments, have a viscosity of less than 500 cp, are easy to flow, are non-volatile, and have controllable gluing reaction time.
  • the glue When the glue encounters pores or gaps, it will be sucked in due to the negative pressure in the glass interlayer.
  • the sealant When the sealant is completed After the gluing reaction, the weld can achieve the effect of airtight sealing. After the weld is sealed, the air extraction hole is sealed with encapsulating glass or encapsulating alloy to complete the complete sealing of the vacuum layer.
  • Sealants that can be used for airtight packaging with glass welds can include but are not limited to silicone, acrylic glue, polyurethane glue, synthetic rubber, silicone sealant, polyethylene butylene resin glue, modified olefin glue; gluing Methods include but are not limited to chemical reaction curing, UV curing, infrared heat curing, and drying curing.
  • the laser parameters are as shown in Table 2, for soda-lime glass without stiffening treatment, the calculated average welding strength per unit length of the weld is distributed in In the range of 15-60MPa, the average welding strength of stiffened soda-lime glass is distributed between 1-20MPa.
  • the glass plates on both sides of the vacuum layer may be at two different temperatures.
  • the indoor temperature is 20°C but the outdoor temperature may be lower than -10°C; similarly, In summer, the indoor temperature may remain at 20°C but the outdoor temperature may reach over 40°C.
  • the glass material will expand and contract naturally. Facing a relatively high temperature, the glass plate will expand significantly.
  • the present invention can enable the prepared laminated vacuum glass to overcome the effects of expansion or contraction of the glass plate, ensuring that the temperatures on the inside and outside are inconsistent (the difference is large, such as a temperature difference of 20-30 °C), it can still ensure that the welded sealing structure will not be damaged due to the strain caused by the temperature difference between inside and outside, the weld seam or solder joint will not fall off or even break, and good sealing and strength will be maintained.
  • Figure 5A and Figure 5B show the microstructure after laser welding of two pieces of soda-lime glass with a thickness of 3mm in this embodiment. After the two pieces of glass are separated by the tensile test of the welded sample, the front side of the welded sample is measured respectively. (Figure 5A) and cross section ( Figure 5B) were observed. It is clearly visible in Figure 5A that the welding seam connects the two glass surfaces. After the two pieces of glass were separated during the tensile test, crack marks on the glass surface can be seen at the welding seam, indicating that the strength of the welding seam is not less than that of the glass itself. Bursting strength. Figure 5B shows that the weld depth is about 125 ⁇ m.
  • the glass laser welding of the sample in this embodiment can be regarded as a kind of invisible welding under normal visible light.
  • the welding seam cannot be observed with the naked eye when viewed directly, and the welding seam can only be seen under polarized light.
  • the sealant penetrates into the glass gap at the weld position through the suction of the negative pressure in the vacuum layer under vacuum extraction. After solidification, the purpose of airtight sealing can be achieved.
  • the length of the two central pieces of glass is 320mm, which is 20mm longer than the outer glass.
  • one piece is etched with the pattern of glass G3 as shown in Figure 2B by chemical thinning.
  • the central area of glass G3 is etched to a depth of 0.2mm as a vacuum layer.
  • An air extraction hole with a diameter of about 2mm is set on the inside of the frame (near the vacuum layer) about 5mm from the edge. It is processed with a laser drilling machine to ensure a smooth and neat edge.
  • Use laser laser wavelength 1064nm, power 8W
  • a vacuum pump to extract the gas in the vacuum layer through the air extraction hole to form a negative pressure state.
  • the sealant The liquid is applied to the step where the edges of glass G3 and glass G4 are joined in Figure 2B.
  • the viscosity of the liquid glue is less than 1000cp and will be sucked into the gap between the two pieces of glass G3 and glass G4 at the weld position.
  • the liquid glue is silicone Alkane reactive compound
  • the packaging operation is completed after the reaction is completed.
  • pump the air pressure in the vacuum layer to less than 0.01Pa, then close the exhaust valve tightly, and use a helium mass spectrometer leak detector (Anhui Wanyi Technology Co., Ltd. model SFJ-231) and Infitech CFV106 Pirani vacuum
  • a helium mass spectrometer leak detector Asnhui Wanyi Technology Co., Ltd. model SFJ-231) and Infitech CFV106 Pirani vacuum
  • the aforementioned process manufacturing mainly illustrates the unique application of cold laser welding on vacuum laminated glass. Without cold laser welding, it is impossible to combine the three adhesive films of PVB, SGP, and TPU with the vacuum layer. This is cold laser welding. a special and necessary role here.
  • the three most important items for side windows are: 1 Weight reduction of the window module; 2
  • the U value of the window thermal conductivity when the train is stationary should be less than 1.6W/m 2 ⁇ K ; 3
  • Noise in the carriage, according to the national standard GB/T 8485 window weighted sound insulation should not be less than 43dB; when the high-speed rail speed continues to increase to 400 kilometers per hour, the specification requirements will become more stringent, and the specification requirements at different high-speed rail speeds have been selected
  • This invention mainly innovates the weight reduction, construction method, thermal conductivity U value and noise of the window glass module.
  • FIG. 1A The simplified schematic diagram of the side window of a high-speed train with a speed of 350 kilometers per hour is shown in Figure 1A.
  • the G1/F1/G2 on the left are the outside and are in contact with the external environment.
  • the glass G2 is usually coated with an anti-radiation film (Low- E film), the typical material and thickness combination is (soda-lime glass 6mm)/(PVB sound insulation film 1.5mm)/(soda-lime glass 4mm).
  • G3/F2/G4 on the right side of Figure 1A is the inside of the side window, which is in contact with the environment inside the cabin.
  • the typical material and thickness combination is (soda-lime glass 4mm)/(PVB sound insulation film 1.5mm)/(soda-lime glass 4mm) ; Between the laminated glass on the left and the laminated glass on the right is a hollow layer A filled with argon gas with a thickness of 14mm. These three parts are bonded together by the inner frame and the inner frame glue, with a total thickness of 35mm. It can be seen from the data in Table 3 that the weight of the side windows of a high-speed rail carriage with a speed of 400 kilometers per hour should be reduced by 10%, the heat insulation efficiency should be increased by 28%, and the noise should be reduced by 7%. However, the original window glass module strength, such as resistance to The safety requirements for gravel impact, etc. must still be maintained. It is obvious that using the original designed glass material and thickness cannot achieve the requirements of weight reduction while maintaining safety strength.
  • weight reduction through this path has the following risks: 1 Reducing the thickness of either glass or PVB film will also reduce the material strength of the laminated glass; 2 Reducing the material thickness will also reduce the sound insulation and performance of the laminated glass module. Insulating ability. Therefore, if this path is adopted, there must be corresponding remedial methods to make up for the loss of the above three properties, and this corresponding method must not only make up for the reduced performance, but even further increase the thermal insulation capacity by 28% and 7% sound insulation capabilities (see Table 3).
  • the technical solution of the present invention adopts another path, that is, reducing the density.
  • the present invention selects glass with a lower density to replace the original soda-lime glass.
  • the glass plates currently produced by the glass industry can be divided into three types of materials: soda-lime glass (commonly known as window glass), aluminosilicate glass (commonly known as high alumina glass, such as mobile phone covers), borosilicate glass (commonly known as high borosilicate glass).
  • soda-lime glass commonly known as window glass
  • aluminosilicate glass commonly known as high alumina glass, such as mobile phone covers
  • borosilicate glass commonly known as high borosilicate glass.
  • Table 4 The basic physical properties of the three are summarized in Table 4.
  • the density ratio of borosilicate glass (Borofloat 33) is 2.23g/cm 3 , which is 10.8% lower than the 2.5g/cm 3 of soda-lime glass, and the flexural strength and elastic modulus of borosilicate glass are are higher than soda-lime glass, so using borosilicate glass instead of soda-lime glass can reduce the weight by about 10% under the same volume, and the material strength can be slightly improved.
  • the density of aluminosilicate glass is only 1% different from that of soda-lime glass, so there is no significant density reduction effect.
  • the flexural strength of chemically strengthened high-alumina glass is as high as 680MPa, which is much greater than soda-lime glass.
  • the flexural strength of chemically-strengthened high-aluminum glass is also lower. It is more than 2-3 times higher than the latter, so high-alumina glass (take KK3 as an example) can achieve weight reduction by reducing the thickness but still maintaining or even increasing the strength of the glass.
  • high-alumina glass can achieve weight reduction by reducing the thickness but still maintaining or even increasing the strength of the glass.
  • borosilicate glass and reduced-thickness high-alumina glass can also be used to replace the original soda-lime glass. This combination can greatly reduce the weight of the side window glass module.
  • the thickness of the PVB sound insulation film can also be reduced when necessary, but corresponding remedial measures must be taken to improve the sound insulation performance.
  • the law of mass is the first factor to be considered, especially the sound insulation efficiency.
  • mass law means that when sound waves transfer energy, objects with greater mass have higher sound insulation effects.
  • soda-lime glass in the original side window glass module is replaced with lower-density borosilicate glass or reduced-thickness high-aluminum glass, it means that the quality of the window glass is reduced, so the sound insulation efficiency will be reduced, but the speed is 400 kilometers per hour.
  • the side windows of high-speed railways need to improve the sound insulation performance. If we also consider improving the heat insulation performance, this is obviously a dilemma, because reducing weight will sacrifice heat insulation and sound insulation.
  • the best solution is to introduce sound capabilities without increasing mass. It is well known that heat and sound waves are difficult to transmit in a vacuum layer with anti-radiation coating. Therefore, it is necessary to reduce the weight of high-speed rail side window glass modules by 10%.
  • the present invention combines the three requirements of weight reduction, heat insulation and sound insulation by adding a vacuum layer to the glass module and utilizing the principles of vacuum heat insulation and sound insulation.
  • a vacuum-laminated insulating glass side window was designed and produced with the purpose of meeting or exceeding the performance requirements of high-speed rail side windows operating at a speed of 400 kilometers per hour.
  • the following will first analyze the structure and weight reduction of the insulating laminated glass module containing the vacuum layer.
  • the left side of the side window still maintains the combination of glass G1/film F1/glass G2.
  • the focus is on 1 higher safety and anti-collision considerations
  • 2 converting the exterior Heat, radiation, and sound waves are blocked or reflected back to the external environment to the greatest extent possible.
  • 3 Maintain the appearance condition of glass G1 consistent with the previous high-speed rail windows.
  • glass G1 is prioritized to be kept the thickest and the appearance color remains unchanged. Soda-lime gray glass; similarly, the film F1 and Low-E coating remain unchanged; but the glass G2 can be adjusted.
  • the structure on the right side of Figure 1B is adjusted to a vacuum gluing combination of G3/V/G4/F2/G5, mainly using high alumina glass with reduced thickness.
  • the hollow layer filled with argon gas is still maintained in the middle of the left and right sides, and the total thickness T of the window can be adjusted by adjusting the thickness of the hollow layer A. At this time, T can be adjusted to the original thickness of 35mm, or if it is necessary to reduce the total thickness of the window in the future. In terms of thickness, the total thickness of the entire set of windows can be reduced very flexibly by reducing the thickness of the hollow layer A.
  • the original designed side window glass module weight W 0 can be calculated using formula (1):
  • T the total thickness of each layer of material with weight
  • the weight of the glass module (hollow vacuum gluing) W avl can be calculated by the following formula:
  • D g P s ⁇ D 1 +P a ⁇ D 2 +P b ⁇ D 3
  • W avl can also be calculated using area, thickness and mixed average density:
  • the weight W 0 of the side window glass module before weight reduction can be calculated by formula (5):
  • the side window glass module before weight reduction is the original design combination, which is the combination in Figure 1A.
  • formula (8) we can assume different combinations of glass materials and thicknesses to calculate the weight reduction ratio of vacuum-laminated insulating glass windows. Taking into account combinations with practical application value, the calculation results are summarized in Table 7.
  • the length L of the window panel is 1420mm
  • the height h is 750mm
  • the thickness of glass G1 is set unchanged to 6mm soda-lime glass
  • F1 also remains unchanged
  • 1.52mm PVC sound insulation film glass
  • the values of density D 1 , D 2 and D 3 can be found in Table 7.
  • the density of PVB film (D f ) is 1.07g/cm 3 and the density of vacuum layer is 0.30g/cm 3 . If the speed of high-speed rail is increased from 350 kilometers per hour to 400 kilometers per hour, the weight of the side window glass module needs to be reduced by no less than 10%, then formula (8) can be rewritten as
  • the description line gives the specific composition of insulating laminated glass (containing only hollow layers) and medium vacuum laminated glass (containing both hollow layers and vacuum layers), where SL represents soda-lime glass, P represents PVB film, and A Represents the hollow layer, AS represents aluminosilicate glass, V represents vacuum layer, BS represents borosilicate glass, the number before the letter represents the thickness, for example: 6SL represents 6mm thick soda-lime glass, the number before the text represents the laminated glass used The number of glasses of this material, for example, 2 soda-lime represents the use of 2 pieces of soda-lime glass.
  • 7 combinations such as Ex.1, 3, 5, 6, 7, 8, and 10 can achieve the goal of weight loss of 10%. This is only an example but can achieve a weight loss of 10%. There are still many combinations, not limited to the 7 described here. After taking into account manufacturing costs and other related factors, priority will be given to using the Ex.7 combination for actual measurement.
  • the sample production instructions are as follows: Glass G1 uses soda-lime glass with a thickness of 6mm; glass G2, glass G3, glass G4, and glass G5 use chemically strengthened high alumina glass, with thicknesses of 3mm and 3mm respectively. , 2mm, 2mm; Adhesive film F1 and Adhesive film F2 maintain the use of PVB sound insulation film, with a thickness of 1.52mm. Sample size: The length and height of glass G1, glass G2, glass G5, film F1, and film F2 are 1420mm and 750mm respectively.
  • Glass G3 and glass G4 are combined with laser welding to form a boss structure (as shown in Figure 2B), among which glass G3
  • the protrusion is 20mm, the length and width are 1460mm and 790mm respectively.
  • the vacuum layer V is chemically etched by glass G3 to a depth of 0.3mm, and the edge is left with a width of 14mm without etching.
  • the boss range of glass G3 is 20mm wide. There is an unetched area of 14mm on the outer edge of the backing plate, and the remaining etched area has a width of 6mm.
  • At least one step hole should be opened to serve as an air extraction hole and to place a getter;
  • the width of the boss of glass G4 is 25mm, which is 5mm longer than glass G3, so that an L-shaped step can be formed between glass G3 and glass G4 (as shown in Figure 2B).
  • This L-shaped step is conducive to filling the liquid sealant after welding.
  • the sealant can be used to hermetically seal the periphery of the vacuum layer for a second time, as a secondary reinforcement for laser airtight welding, so that the airtightness of the vacuum layer can be acted on by two methods at the same time, improving the reliability of the vacuum airtightness.
  • the flexible micro-pillars recorded in the invention patent application with patent application number 202210074202.5 are used in the vacuum layer.
  • the diameter of the pillars is no more than 0.5mm, has an ultra-low heat transfer coefficient of 0.03W/m ⁇ K, and uses a special sound insulation structure of flexible micro-pillars. ;
  • the average spacing of the flexible pillars is 30mm, the gas pressure in the vacuum layer V is 0.01Pa, and the height of the vacuum layer V does not exceed 0.3mm.
  • G1/F1/G2 uses an autoclave for gluing, with a pressure of 1.4MPa and a temperature of 120-125°C.
  • G4/F2/G5 also uses the same autoclave process to complete gluing.
  • the glass G3 is first opened and then chemically etched, then chemically strengthened, and then the processed glass G3 and the glued G4/F2/G5 are integrated by laser welding. Inactive chemical absorbers should be placed before welding.
  • the aerosol is used, and then the sealant is used for peripheral sealing, followed by processes such as vacuuming and activating the chemical getter, to complete the sample for testing.
  • the thermal conductivity test is based on the national standard GB/T 8484-2020, and simultaneously refers to GB/T 10294-2008 and GB/T 10295-2008.
  • the test results show that the Ex.7 glass module design can achieve a low thermal conductivity U value At 0.9W/m 2 ⁇ K, it meets the requirements for side windows of high-speed trains with a speed of 400 kilometers per hour.
  • the measurement of sound insulation is mainly based on the national standard GB19889.3-2005, and also refers to GB/T 31004.1-2014.
  • the test results show that the Ex.7 glass module design can meet the requirement of sound insulation greater than 46dB.

Abstract

本发明提供了一种夹胶真空玻璃及其制备方法与应用。该夹胶真空玻璃包括第一玻璃板和第二玻璃板,以及由第一玻璃板和第二玻璃板组成的真空层;其中,所述第一玻璃板为由至少两层玻璃和至少一层胶膜组成的夹胶玻璃;并且,所述真空层的边缘通过冷激光焊接的方式进行封装。本发明还提供了上述夹胶真空玻璃的制备方法以及其作为车辆车窗或建筑物外窗的应用。本发明所提供的夹胶真空玻璃具备良好的隔声、隔热性能,并且其重量较轻,适合用于高速铁路等对于隔声、隔热等有特殊要求的环境。

Description

一种夹胶真空玻璃及其制备方法与应用 技术领域
本发明涉及一种夹胶真空玻璃及其制备方法与应用,属于真空玻璃制备技术领域。
背景技术
多层胶合中空玻璃窗早已普遍应用于轨道交通与大型建筑等领域,已经普及化的轨道交通包括高速铁路(以下简称高铁)、动车、捷运、地铁、轻轨等等,均是基础建设的重要项目之一,对于经济建设与交通运输扮演着重要的角色,以下以要求最严格的高铁/动车作为讨论对象,并以此作为推广至所有轨道交通工具的基础。随着行驶速度逐渐提升,例如原先的动车平均时速在200km/hr等级,逐渐提升到目前高铁的300km/hr等级,接下来高铁也将逐步向400km/hr或更高的速度挑战;随着速度提升,高铁车厢的结构安全与用户体验也面临更加严苛的挑战,其中车厢的玻璃侧窗直接面对阳光照射、外部冷暖温差、轨道噪声等等的环境因素,随着行驶速度提升,侧车窗也受到更严格的节能、降噪、减重的要求。
目前的动车或高铁车窗主要是由中空夹层玻璃组成,典型的高铁车厢侧窗结构如图1A所示。夹层玻璃是指由两片或多片玻璃之间夹了一层或多层的有机聚合物中间膜,经过高温预压或抽真空高温压制后使的玻璃与中间膜紧固黏合为一体的一种复合玻璃;常用的玻璃中间膜有聚乙烯醇缩丁醛(Polyvinyl butyral,PVB)、乙烯-醋酸乙烯共聚物(Ethylene-vinyl acetate copolymer,EVA)、乙烯-甲基丙烯酸共聚物(
Figure PCTCN2022113495-appb-000001
Plus,SGP)、热塑性聚氨酯弹性体橡胶(Thermoplastic polyurethanes,TPU)等,也有一些比较特殊的中间膜或装饰件也可以安装到玻璃板之间,形成夹层玻璃,例如:彩色中间膜,Low-E中间膜,含有金属网格的中间膜,以及PET或PI类的功能性中间膜等。夹层玻璃具有许多功能,包括更加耐撞击,并借此提升玻璃窗的安全防护能力;当玻璃受到外力破碎时,碎玻璃会被胶粘在中间膜上,不容易散落而造成人员割伤;有些中间膜兼具一部分的隔热或隔声功能;因为具有上述这些优点,夹层玻璃经常被用在汽车等交通工具上。夹层玻璃也可以用来制作成中空玻璃,提升其隔热与隔声的效果,此类中空复合玻璃已经大量应用在高楼建筑的环保节能玻璃窗;近年来由于地铁、动车、高速铁路等轨道交通蓬勃发展,中空复合玻璃也被应用到这些车厢中的门窗与侧窗。
一般而言,建筑玻璃与车用玻璃除了安全防护与舒适这两项基本功能外,随着全球暖化日益严重,环保节能减碳也是重点考量,这其中对于玻璃的隔热与隔音性能就显得特别重要。以单片镀银6mm厚度的玻璃,其热导率(U值)约在4.5W/m2·K,以两片6mm 厚度所组合的镀银中空玻璃,中空层厚度≥10mm,其U值约在1.5-2.0W/m2·K;前者计权隔声量(R w)约为25dB,后者约为27dB。当玻璃厚度与中空层厚度下降时,玻璃窗整体的隔热与隔声能力都会跟着下降,若同时要求提升隔热、隔声与减重三项指标,那么现有这种中空搭配夹层玻璃的组合就越来越难完成日益提升的上述三项指标,因此,本领域亟待能够同时满足上述三项要求的玻璃产品。
发明内容
为解决上述技术问题,本发明的目的在于提供一种夹胶真空玻璃,通过采用特殊的结构和焊接方式,得到了一种具有较高隔声、隔热效果并且重量较轻的玻璃。
为达到上述目的,本发明提供了一种夹胶真空玻璃,其包括第一玻璃板和第二玻璃板,以及由第一玻璃板和第二玻璃板组成的真空层;其中,所述第一玻璃板为由至少两层玻璃和至少一层胶膜组成的夹胶玻璃;
并且,所述真空层的边缘通过冷激光焊接的方式进行封装。
根据本发明的具体实施方案,优选地,所述第一玻璃板或第二玻璃板中设有中空层,此时本发明的夹胶真空玻璃可以称为:真空+中空夹层玻璃。其中,中空层的厚度优选为8-16mm。
根据本发明的具体实施方案,优选地,真空层位于玻璃板与夹胶玻璃板之间或者两层夹胶玻璃板之间,与真空层最贴近的两片玻璃的四周具有长度比其他玻璃板至少长出10mm的突出部分,作为激光焊接与密封胶进行气密封装之用,在此突出部分的其中一片玻璃中至少留有一个通孔,作为抽气之用,通孔直径不小于1mm;真空层在常压下组装,工艺温度最高不超过120℃;真空层周边气密封装完成后于日常可见光下直视,激光焊缝透明无痕。
根据本发明的具体实施方案,优选地,所述真空层的厚度为0.1-0.5mm。通过将真空层的厚度控制在适当的范围能够使本发明的夹胶真空玻璃具有良好的隔声、隔热性能。其中,当真空层的厚度在0.2-0.35mm之间时,能够获得最佳的隔热效果,厚度超过0.5mm时,隔热效果会下降,厚度低于0.2mm时,制造良率会下降。
根据本发明的具体实施方案,优选地,真空层内会布置适当数量的微小支撑物,于真空层内形成真空状态(气体压力小于0.01Pa)时,可以提供足够的支撑力让玻璃板能顶住大气压力而不变形;若支撑力不够会导致玻璃板相互靠近,就改变了真空层的厚度,影响夹胶真空玻璃的隔声、隔热性能。
根据本发明的具体实施方案,优选地,所述第一玻璃板为由两层玻璃和一层胶膜组 成的夹胶玻璃;并且,两层玻璃的厚度分别为不小于3mm与不小于1mm,两层玻璃(不含胶膜的厚度)总厚度不超过10mm,胶膜的厚度为不小于0.7mm。
根据本发明的具体实施方案,优选地,所述第一玻璃板为由三层玻璃、一层胶膜组成的夹胶玻璃,并且,三层玻璃中的两层之间设有所述中空层,即第一玻璃板中设有一层中空层。
根据本发明的具体实施方案,优选地,所述第二玻璃板为由至少两层玻璃和至少一层胶膜组成的夹胶玻璃。
根据本发明的具体实施方案,优选地,所述第二玻璃板为由至少三层玻璃和至少两层胶膜组成的夹胶玻璃。
根据本发明的具体实施方案,优选地,所述第二玻璃板为由两层玻璃和一层胶膜组成的夹胶玻璃;并且,两层玻璃的厚度分别为不小于2mm与不小于1mm,两层玻璃的总厚度不超过8mm,胶膜的厚度为不小于0.7mm。
根据本发明的具体实施方案,优选地,所述第二玻璃板为由三层玻璃和两层胶膜组成的夹胶玻璃;并且,三层玻璃的总厚度不超过8mm,两层胶膜的总厚度不超过3.2mm。
根据本发明的具体实施方案,优选地,所述玻璃选自钠钙玻璃、铝硅玻璃、硼硅玻璃中的一种或两种以上的组合。
根据本发明的具体实施方案,优选地,所述胶膜选自PVB膜、EVA膜、SGP膜和TPU膜中的一种。
根据本发明的具体实施方案,优选地,采用冷激光焊接时,焊缝的数量按照以下公式确定:
Figure PCTCN2022113495-appb-000002
其中,N为焊缝数量,单位为条;
w为焊缝平均宽度,单位为mm;
S sealing为焊接密封区块的焊接强度,单位为MPa;
α为玻璃的热膨胀系数,单位为℃ -1
ΔT为真空层两侧玻璃板的温差,单位为℃;
E为玻璃的弹性模量(杨氏系数),单位为MPa;
H为受热膨胀的玻璃板的厚度,单位为mm。
根据本发明的具体实施方案,优选地,所述焊缝的数量≥2。
根据本发明的具体实施方案,优选地,所述真空层设有微支柱;更优选地,所述微支柱为柔性微支柱,所述柔性微支柱具有至少一层纤维层,即申请号为202210074202.5的发明专利申请所记载的柔性微支柱,将该发明专利申请的全文引入这里作为参考。
根据本发明的具体实施方案,优选地,所述柔性微支柱具有两层以上的纤维层组成的复合结构。
根据本发明的具体实施方案,优选地,所述柔性微支柱具有至少两层纤维层与至少一层金属层和/或合金层组成的复合结构,所述金属层和/或合金层位于两层纤维层之间。
根据本发明的具体实施方案,优选地,所述柔性微支柱具有至少三层纤维层与至少两层金属层和/或合金层组成的复合结构,其中,所述金属层和/或合金层间隔设置于纤维层之间。
根据本发明的具体实施方案,优选地,所述柔性微支柱中,所述纤维层的厚度为0.1mm至3.0mm。
根据本发明的具体实施方案,优选地,所述柔性微支柱中,所述金属层或合金层的厚度为0.3mm以下,优选为0.01mm至0.3mm。
根据本发明的具体实施方案,优选地,所述柔性微支柱的直径为0.2mm-2.0mm;优选为0.2mm-0.5mm。
根据本发明的具体实施方案,优选地,所述柔性微支柱的导热系数≤1W/m·K(25℃);更优选地,所述柔性微支柱的导热系数≤0.25W/m·K(25℃)。
根据本发明的具体实施方案,优选地,所述柔性微支柱中,所述纤维层是由超细纤维制成的;更优选地,所述超细纤维的材质为铝硅玻璃、硼铝硅玻璃、钠钙玻璃、硼硅玻璃、石英玻璃、金属、合金中的一种或两种以上的组合。
根据本发明的具体实施方案,优选地,所述柔性微支柱中,所述纤维层的导热系数≤0.03W/m·K(25℃)。
根据本发明的具体实施方案,优选地,所述柔性微支柱中,所述纤维层的比表面积为700-800m 2/g。
根据本发明的具体实施方案,优选地,所述柔性微支柱中,所述金属层的材质包括铝、铜、铁、锡、锌中的一种;所述合金层的材质包括铝、铜、铁、锡、锌中的两种以上元素的合金,更优选地,所述合金包括不锈钢。
根据本发明的具体实施方案,优选地,所述柔性微支柱在1大气压的压力的压缩下的高度不小于0.10mm,更优选为0.15-0.5mm,进一步优选为0.15-0.25mm。
根据本发明的具体实施方案,优选地,所述真空层内部的一侧表面设有抗辐射膜。该抗辐射膜可以是本领域常用的。
本发明还提供了上述夹胶真空玻璃的制备方法,其包括以下步骤:
在第一玻璃板和第二玻璃板之间安装玻璃边条并布设微支柱;
采用冷激光焊接的方式将玻璃边条分别与第一玻璃板、第二玻璃板焊接在一起,然后抽真空形成真空层,经过封边、封口,得到所述夹胶真空玻璃;
或者,在组成第一玻璃板的表面或者第二玻璃板的表面形成凹槽;
采用冷激光焊接的方式将第一玻璃板、第二玻璃板焊接在一起,焊接位置为凹槽的边缘部分,然后抽真空形成真空层,经过封边、封口,得到所述夹胶真空玻璃。
根据本发明的具体实施方案,优选地,所述冷激光的激光脉冲半高宽度(Pulse Width,FWHM,或称脉冲时长)小于等于20皮秒(pico second)。
根据本发明的具体实施方案,优选地,所述冷激光焊接所采用的激光的波长为800nm-1600nm(例如800nm、1045nm、1558nm、1064nm,以1064nm为优选)。
根据本发明的具体实施方案,优选地,所述冷激光所采用的激光的重复率为1Hz-10MHz。
根据本发明的具体实施方案,焊点位置的两玻璃面紧密贴合,优选地,进行焊接处的玻璃板之间的缝隙小于40μm,优选为小于25μm。
根据本发明的具体实施方案,优选地,所述焊缝的宽度不大于20μm,优选小于5μm。
根据本发明的具体实施方案,优选地,焊缝的焊接强度大于所焊接的两层玻璃板之间的热膨胀剪应力,更优选地,所述焊缝的焊接强度满足:
Figure PCTCN2022113495-appb-000003
或至少大于1MPa。
在上述公式中,S sealing为焊接密封区块的焊接强度,单位为MPa;
α为玻璃的热膨胀系数,单位为℃ -1
ΔT为真空层两侧玻璃板的温差,单位为℃;
E为玻璃的弹性模量(杨氏系数),单位为MPa;
H为受热膨胀的玻璃板的厚度,单位为mm。
d为焊接密封区块的宽度,单位为mm。
其中,焊接密封区块是指焊缝分布区域的宽度,举例来说,若总共用了5条平行的焊缝,则最靠外侧的两条焊缝的间隔(以两条焊缝各自靠外侧的边缘计)距离被定义为 这里的d值。
根据本发明的具体实施方案,优选地,所述焊缝的间隔距离不小于150μm,在两片被焊接的玻璃板内单边玻璃面焊缝深度不小于20μm。
根据本发明的具体实施方案,优选地,所述焊缝整体上的形状为连续的或间隔的。
根据本发明的具体实施方案,优选地,单一焊缝为直线、斜线或折线。
根据本发明的具体实施方案,优选地,所述焊缝整体上的形状为相互平行的直线或相互平行的斜线或相互平行的折线;或者,所述焊缝整体上为相互平行且断续的直线,或者,相互交错的斜线,或者,相互连续的鱼形。
根据本发明的具体实施方案,优选地,所述焊缝整体上的形状为如图4所示的形状中的一种。
在用作时速400公里高铁侧窗的情况下,本发明所提供的夹胶真空玻璃的热传导率U值可以达到0.9W/m 2·K以下,而隔声量大于46dB,具备良好的隔声、隔热性能,并且其重量较轻,适合用于高速铁路等对于隔声、隔热等有特殊要求的环境。
附图说明
图1A为中空夹层玻璃的结构示意图。
图1B为真空+中空夹层玻璃的结构示意图。
图1C为真空复合玻璃的结构示意图。
图2A和图2B为冷激光焊接方式示意图。
图3为焊点与Z轴位置示意图。
图4为焊缝类型示意图。
图5A和图5B为焊接效果示意图。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
冷激光焊接
本发明的玻璃可以采用冷激光焊接的方式进行,即采用激光脉冲半高宽度(Pulse Width,FWHM,或称脉冲时长)小于等于20皮秒(pico second)的激光进行焊接,例如:武汉锐科光纤激光技术股份有限公司的皮秒激光器,激光脉冲半高宽度是800fs(也就是0.8ps),美国MKS Spectra-Physics公司的型号为IceFyre 1064-50的激光器,激光脉冲半高宽度是10ps。
真空夹层玻璃、真空+中空夹层玻璃:
如图1B、图1C所示,分别代表真空+中空夹层玻璃、真空双夹层复合玻璃,以此类推,还可以有多层真空与多夹层的复合玻璃组合。其中符号G1、G2、G3、G4、G5代表玻璃,通常玻璃G1的厚度最大,用于窗户外侧部位,玻璃G2-G5为中间或内侧玻璃,通常会比玻璃G1要薄,一方面可以减轻重量,另一方面也通过厚度不对称的设计来降低车厢外部声音所引起的共振声,并以此略微提升隔声性能;最内侧窗板可以视应用场景的需求,使用玻璃板或耐冲击的透明塑料板,例如PC板。符号F1-F2代表夹层玻璃的胶膜,最常用到的为PVB膜,厚度可以是0.76mm或是1.52mm。符号v代表真空层,是以两侧的夹层玻璃组装而成。符号A代表中空层。真空层或中空层内可以设有抗辐射膜,具体可以是镀膜,例如Low-E膜,或是贴膜,目的是减少外部阳光辐射到车厢内的热量,同时也可以增加乘客在车厢内的舒适感。整体真空夹层玻璃的外框通常由铝合金或玻璃钢(纤维强化塑料,Fiber-reinforced plastic,FRP)制成,外框结构包括配套的胶条与密封垫,以达到避震、防水、防潮、隔声等的功能。
图1B和图1C中所展示的真空夹层玻璃结构具有以下特征:①使用夹层玻璃作为真空玻璃的侧板,因为夹层玻璃属于一种复合材料,其强度与刚性远高于相同厚度的单层玻璃板;②淘汰了目前业界普遍使用的高温焊料烧结方法来进行真空封装,改以冷激光在常温下直接进行玻璃焊接,再以吸气法于以气密胶封。
真空层的边部封装不再需要使用焊料,也无需经历高温封装,而改以常温下的玻璃激光焊接,这在环保节能与提高生产效益上具有重大意义。在本发明中真空层边部封装是使用玻璃板本身相同的玻璃材质作为边墙,此边墙的结构可以是如图2A所示的玻璃边框构成,将玻璃板分别与此一夹在两片玻璃中间的边框在常温下使用冷激光焊接成为一体,形成密闭夹层;或是如图2B所示的结构,也就是先将组成真空层的两片玻璃中的至少一片进行局部减薄至不超过0.3mm的厚度,即形成凹槽,减薄方法包括但不限于机械磨抛、化学蚀刻等方式,减薄仅对玻璃中央部分进行,保留四周边框部分,然后再将此一中央区域减薄的玻璃板与另外一片玻璃用冷激光在四周边缘部分焊接成为一体;上述两种方法都可以在常温下制作真空层结构,顺序上需要先制作真空层两侧的胶合玻璃,再使用激光将两侧胶合玻璃焊接成为复合夹胶玻璃,最后在上胶完成气密封装并制作成为真空玻璃。
多层胶合真空夹层玻璃:
如上所述,既然是使用夹层玻璃板作为真空玻璃的侧板,受限于夹胶膜的耐温限制, 因此不能使用传统的高温烧结焊料的封装工艺。因此,在本发明中,使用常温玻璃激光焊接,更明确的说,就是在室温下(或是低于夹胶膜的工作温度条件下),使用冷激光将两片玻璃直接焊接在一起,并搭配液体胶达到气密的目标,这里所说的气密是指真空层内的真空状态可以长期保持在气体压力低于10 -2Pa的等级。由于激光焊接是一种硬焊工艺(welding process),是一种直接将两片玻璃的接触面瞬间融熔、黏合、冷却的过程,加工过程中不需要使用到任何焊料,所以避免了对焊料加热的这个过程,整个激光焊接工艺可以在室温下完成。同时,激光照射材料时,其特色就是在小于等于20皮秒(pico-second,ps)的时间内完成加热与冷却,如此短的时间内材料受到激光照射的微区域形成的热能还来不及将热能传递到其周围微区就已经冷却,所以不会有多余热量去破坏周遭微结构,不会伤害被焊接处的玻璃材料,也不会留下残余热应力,所以脉冲时长小于等于20皮秒的激光也被视为一种冷激光,意即不会产生热应力,对玻璃没有热伤害。
如图2A和图2B所示,边框的制作可以有两种形式,图2A中所示是以事先制作好的边条,制作成配合玻璃窗形状的边框,此边框本身是形成一体,中间没有可以透气的缝隙。然后将此边框放置于组成真空层的两侧板之间,对准位置,再以冷激光进行焊接,焊接时焊点的位置紧贴,焊点处的两玻璃面间距小于激光聚焦焦点的直径,且玻璃面保持洁净,不能有玻璃以外的其他固体及液体类污染物,这些污染物会吸收激光能量导致能量无法集中传递到焊点处的玻璃微区结构中。在玻璃前处理程序中,焊点位置的玻璃表面应当处理到平整、清洁、乾燥,玻璃激光焊接本身是应用冷激光的非线性光学原理,比较不受玻璃材质的影响,当激光聚焦于焊接点的交接面时,被压实的玻璃介面能被瞬间激发融化,然后玻璃结合成为一体并迅速冷却,且不留下热应力。图2A中所示的边框与两侧玻璃板形成两个交接面,因此需要分别对这两侧的交接面进行激光焊接。图2B中所示的方法仅形成一侧的玻璃交接面,因此,仅需进行一个交接面的激光焊接。
多层胶合真空玻璃窗的施工步骤:
图2A(框结构):
玻璃板前处理(切磨钻洗)→夹胶合片(复合板1与复合板2)→复合板1与复合板2之间的玻璃边条安装→支撑物布点→常温下激光焊接→抽真空→封边(密封胶吸入焊缝周边)→封口→安装窗外框,得到夹胶真空玻璃。其中,复合板1为玻璃G3,复合板2为玻璃G4、玻璃G5和胶膜F2制成的玻璃板。
图2B(局部减薄结构):
玻璃板前处理(切磨钻洗)→取其中一片玻璃板进行局部蚀刻→夹胶合片(复合蚀刻板1与复合板2)→蚀刻复合板凹下平台处支撑物布点→复合板2与复合蚀刻板1上下对准位置→常温下激光单边焊接→抽真空→封边(密封胶吸入焊缝周边)→封口→安装窗外框,得到夹胶真空玻璃。其中,复合刻蚀板1为玻璃G3,复合板2为玻璃G4、玻璃G5和胶膜F2制成的玻璃板。
多层胶合真空玻璃的封边---玻璃激光焊接
步骤1、材料准备
取玻璃G3,可以但非必要事先将玻璃板经过钢化处理,作为盖板;取玻璃G4,可以但非必要事先将玻璃板经过钢化处理,作为底板;为方便计算,使用纤维结构柔性的圆形立柱作为微小支柱,直径为0.5mm,高度由真空层厚度决定;
步骤2、真空层边框
2a组:取与玻璃G3或玻璃G4相同材质的玻璃,配合玻璃G3与玻璃G4的四边长度裁切成为四个长条状玻璃或一个方框作为真空层的边框,框的宽度一般不大于20mm,厚度不超过0.5mm,此玻璃边条/边框的表面洁净、平坦、乾燥。
2b组:将玻璃G3的第一表面用抗酸保护膜贴紧(非减薄面),将第二表面的边缘不超过20mm的宽度(作为边框)用抗酸膜贴紧,四周边缘也用抗酸胶保护,然后将玻璃G3放至于化学减薄槽中,为无抗酸膜保护的部分减薄,减薄深度不超过0.5mm。减薄后移除保护膜材并对玻璃表面清洁,使得玻璃表面洁净、平坦、乾燥,玻璃G3的第二表面的四周未被减薄,可作为边框使用。
步骤3:玻璃激光焊接
将作为盖板的玻璃G3、作为底板的玻璃G4、边框、与微小支柱依照图2A或图2B的方式各自放置到位,抽气孔可以在盖板或底板,将有抽气孔的玻璃板平放在激光焊接工作平台的吸气台上,启动工作平台抽气功能,于是盖板、底板、边框均被吸紧固定于激光焊接平台上。同时启动激光器以及工作平台的x-y轴运动机构,依照事先设定好的路径,对玻璃边框进行激光焊接。激光的功率、焦距、光斑大小等等参数可随不同的样品而调整。激光焊接时对焦于两片玻璃被焊接面的中央位置,如图3所示,且焊点位置的两玻璃面间距应小于光斑直径D,使得激光能量可以平均深入两焊接玻璃面,在瞬时高能量的作用下将焊点处的玻璃熔接在一起。由于高能激光是以脉冲方式射出,所以焊接也是以点焊的方式进行,虽然焊接强度很高,但就气密封装(Hermetic sealing)而言,仍需要以耐真空的密封胶进行气密封装。
不同的激光波长搭配不同的操作参数可以产生不同的焊接效果,但都可以将玻璃强固的焊接在一起。目前已经被证实可以用于玻璃激光焊接的激光器波长、脉冲重复率(repetition rate)、脉冲时长(Pulse duration)整理于下表1。
表1
激光波长 重复率 脉冲时长
800nm 1kHz 85fs
1045nm 500kHz~1MHz 350~400fs
1558nm 500kHz 950fs
1064nm 500kHz~1MHz 10ps~325fs
步骤4:真空气密封装
玻璃激光焊接属于点焊,可以提供足够的焊接强度,但不能保证气密焊接,因此,对于制作真空玻璃而言,需要将0.01Pa的真空度长时间保持,需要使用耐真空的密封胶将焊缝进行填缝以确保气密封装的效果。操作方式相对简易,取可耐真空环境的密封胶,黏度在500cp以下,具有易流动、不挥发、胶合反应时间可控等条件的密封胶均可使用;施工时先将焊接好的真空玻璃组合经由抽气孔进行抽气,使得玻璃夹层内的气压小于100Pa,然后于玻璃框外缘涂布密封胶,胶水遇到气孔或缝隙处会因为玻璃夹层内的负压而被吸入,当密封胶完成胶合反应后,焊缝即可达到气密封装的效果。于密封好焊缝后,以封装玻璃或封装合金将抽气孔密封,完成真空层的完整封合。
可以用来搭配玻璃焊缝的气密封装的密封胶可以包括但不限于硅胶、丙烯酸酯胶、聚氨酯胶、合成橡胶、硅氧烷密封胶、聚乙丁烯树脂胶、改质烯烃胶;胶合方式包括但不限于化学反应固化、紫外固化、红外热固化、干燥固化。
密封胶要能顺畅的被吸入并且填充事先形成的焊缝间隙,而焊缝本身扮演将两片玻璃焊接紧固的功能,因此,焊缝的长短、间距、走向与分布会直接关系到整体焊接强度与密封胶是否能顺利导入到焊缝间隙,根据实际实践经验,发现图4所展示的规则与焊缝的分布图案,可以有效的同时满足焊接强度与气密封胶两项要求,可以使用的焊缝图案包括但不限于图4中所展示的图案。
实施例:
验证玻璃激光焊接(无焊料)的工艺参数、焊接强度、焊缝微结构、焊缝隐密性与气密性能的验证。
(1)激光焊接工艺参数
选用飞秒红外激光作为玻璃激光焊接工具,在下列参数时可以有效完成两玻璃平面 间的焊接:
表2
激光光源种类 飞秒红外固体激光器
中心波长 1064nm
脉冲宽度 <800fs
重复频率 ≤1MHz
最大单脉冲能量 100μJ
光束质量M2 ≤1.2
功率稳定性 <3%
光班直径 50μm
(2)焊接强度测试
取两片长度100mm、宽度50mm、厚度3mm的钠钙玻璃,经过切磨钻洗等加工程序后,以十字方式将两片玻璃上下叠放,置于激光焊接平台上,启动焊接平台真空吸附装置,于室温下进行玻璃焊接,激光功率8W,焊缝为平均宽度50μm、长度40mm的直线,每个受测的玻璃样品上有平行的10条焊缝,焊缝间隔为2mm试样被分别制作并根据GB/T 31541进行拉力测试,依据测试结果,当激光参数如表2所示,对未经刚化处理的钠钙玻璃而言,计算出来的每单位长度焊缝的平均焊接强度分布在15-60MPa的范围,经过刚化处理的钠钙玻璃的平均焊接强度分布在1-20MPa。
夹胶真空玻璃窗可能会因为真空层隔热效率高而发生真空层两侧的玻璃板处于两个不同的温度,例如,冬天时室内温度20℃但室外温度可能低于-10℃;同理,夏季时可能室内维持20℃但室外高达40℃以上,出现这种内外温差时,玻璃材料会有热胀冷缩的自然现象,面对相对高温的那片玻璃板会比较大的膨胀量,反之,面对比较低温的玻璃板会有比较大的收缩量。本发明通过控制焊缝的数量和焊接强度能够使所制备的夹胶真空玻璃克服玻璃板的膨胀或收缩所带来的影响,确保在内外两侧温度不一致(相差较大,例如温差20-30℃)的情况下,仍能够保证焊接密封结构不会因为内外温差导致的应变而被破坏,不会发生焊缝或焊点脱落甚至破裂,保持良好的密封性和强度。
(3)焊缝微结构观察
图5A、图5B中所示为本实施例中利用激光对两片厚度为3mm的钠钙玻璃进行焊接后的显微结构,焊接试样经过拉力试验使的两片玻璃分开后,分别针对正面(图5A)与断面(图5B)进行观察。由图5A中清晰可见,焊缝位将两玻璃面连结,在拉力试验中两片玻璃被分离后,焊缝处可以见到玻璃表面的破裂痕迹,表示焊接处的强度已经不 小于玻璃本身的破裂强度。图5B显示焊缝深度约为125μm,以图5B中的这个玻璃试样为例,约24μm位于上方玻璃,约100μm位于下方玻璃内,表示激光的光斑聚焦位置在两片玻璃夹缝之间,但略偏向下方玻璃,所以光斑形成的球状等离子能量分布于下方玻璃面较多,造成焊缝在纵深分布上比较深入下方玻璃。由此也可以知道,若光斑聚焦于两玻璃板间的夹缝t中央位置,如图3所示,则上下玻璃a 1、a 2都会有约略高于60μm的焊接深度h 1、h 2
(4)焊缝隐形测试
本实施例的试样的玻璃激光焊接在正常可见光下可以视为一种隐形焊接,直视时肉眼无法观察到焊缝,要在偏光的情况下才能看到焊缝。
(5)气密测试
经过激光焊接的胶合玻璃板,在真空抽气的状态下将密封胶通过真空层内负压的吸力渗入焊缝位置的玻璃缝隙里,固化后即可达到气密封装的目的。取边宽为300mm的正方形钠钙玻璃板,厚度4mm,经过前处理与清洗乾燥后,使用图2B的结构制作真空玻璃,中央的两片玻璃长度为320mm,比外层玻璃多出20mm,作为焊接与开孔之用,其中一片以化学减薄的方法蚀刻出如图2B中的玻璃G3的式样,除周边不减薄外,玻璃G3的中央区域被蚀刻0.2mm的深度,作为真空层之用。于边框内侧(靠近真空层)距离边缘约5mm处设置一抽气孔,直径约为2mm,以激光打孔机加工,确保边缘平滑工整。使用激光(激光波长1064nm,功率8W)以间隔焊的方式将真空层两侧的胶合玻璃板焊接起来,再以真空泵经由抽气孔将真空层内气体抽出,形成负压状态,此时将密封胶液体涂装于图2B中的玻璃G3、玻璃G4边缘接合的阶梯处,液体胶的黏度小于1000cp,会被吸入焊缝位置的两块玻璃G3、玻璃G4之间的缝隙,液体胶为硅氧烷反应型化合物,待反应完成后即完成封装作业。此时,将真空层内的空气压力抽至低于0.01Pa,然后紧闭抽气阀门,使用氦质谱测漏仪(安徽皖仪科技股份有限公司型号SFJ-231)以及Infitech CFV106皮拉尼真空度计两种方法观察与测量是否有漏气现象。测试结果显示,真空度可以维持,并无漏气现象。
(6)隔热与隔声效能的改善
前述工艺制造主要是说明冷激光焊接在真空胶合玻璃上的独特应用,若没有使用冷激光焊接,则无法将PVB、SGP、TPU这三种胶膜与真空层复合在一起,这是冷激光焊接在此所扮演的特殊必要角色。
以时速350公里的高铁为例,对于侧窗最重要的三项是:①车窗模组的减重;②列 车静止状态下的车窗热导率U值应小于1.6W/m 2·K;③车厢内噪声,依据国标GB/T 8485车窗计权隔声量应不小于43dB;当高铁时速继续提升到400公里时,规格要求也更严苛,不同高铁时速下的规格要求已择要汇整于表3,从表3中的数据:可以发现侧窗重量需要减重10%,热传导率U值需要降低28%,隔声量需要增加7%。本发明主要针对车窗玻璃模组的减重、施工方法、热传导率U值与噪声进行创新。
表3
Figure PCTCN2022113495-appb-000004
高铁车厢侧窗的减重:
时速350公里的高铁侧窗简化后的示意图如图1A所示,其中左侧的G1/F1/G2为外侧,与外部环境接触,通常在玻璃G2镀有减少阳光照射的抗辐射膜(Low-E film),典型的材质与厚度组合是(钠钙玻璃6mm)/(PVB隔音胶膜1.5mm)/(钠钙玻璃4mm)。图1A的右侧G3/F2/G4为侧窗内侧,与车厢内环境接触,典型的材质与厚度组合为(钠钙玻璃4mm)/(PVB隔音胶膜1.5mm)/(钠钙玻璃4mm);左侧胶合玻璃与右侧胶合玻璃中间是一层厚度为14mm填充氩气的中空层A,这三个部分由内框及框内胶黏结组合而成,总厚度为35mm。由表3中的数据可知,对于时速400公里的高铁车厢侧窗重量应减少10%,且隔热效能要提升28%,噪声要降低7%,但原有的窗玻璃模组强度,例如抗砾石撞击等等的安全要求仍然要保持住,明显的若使用原设计的玻璃材质与厚度已经无法达成减重又维持安全强度的要求。
与重量直接相关的物理量包括体积与密度,而高铁侧窗的长、高尺寸是固定的,因此只有降低玻璃或PVB膜的厚度才能透过体积这个路径达到减重,但是,本发明的发明人研究发现:通过这个路径来进行减重存在以下风险:①无论是玻璃或是PVB膜的厚度降低会同时降低胶合玻璃的材料强度;②材料厚度降低也同时会降低胶合玻璃模组的隔声与隔热能力。因此,如果采用这种路径,要有相应的补救方法来弥补上述三项性能的损失,且这种相应的方法不但要能弥补下降的性能甚至还要进一步提升28%的隔热能力与7%的隔声能力(请参阅表3)。
本发明的技术方案采用另一个路径,即降低密度,本发明选用密度较小的玻璃来替 代原先的钠钙玻璃,目前玻璃业界所能量产的玻璃板材可分为三类材质:钠钙玻璃(俗称窗玻璃)、铝硅玻璃(俗称高铝玻璃,例如手机盖板)、硼硅玻璃(俗称高硼硅玻璃)。三者的基本物理特性整理于表4。
表4
Figure PCTCN2022113495-appb-000005
由表4中数据可知,硼硅玻璃(Borofloat 33)的密度比为2.23g/cm 3,比钠钙玻璃的2.5g/cm 3要低10.8%,且硼硅玻璃的弯曲强度、弹性模量都比钠钙玻璃高,因此用硼硅玻璃替代钠钙玻璃在同体积情况下可以减重约10%,且材料强度可以轻微提升。铝硅玻璃的密度与钠钙玻璃仅相差1%,因此没有明显降低密度的效果。但是化学强化后的高铝玻璃(KK3)的弯曲强度高达680MPa,远大于钠钙玻璃,化学强化后的高铝玻璃与经过物理刚化或化学刚化后钠钙玻璃比较,前者的弯曲强度也比后者高出2-3倍以上,所以高铝玻璃(以KK3为例)可以通过降低厚度但仍维持甚至提升玻璃强度的方式达到减重的目的。当然也可以同时使用硼硅玻璃与降低厚度的高铝玻璃来替换原先的钠钙玻璃,以这种组合的方式最大幅度的减少侧窗玻璃模组的重量。再者,必要时也可以调降PVB隔音膜的厚度,但须有相应的补救方法提升隔声效能。
对于隔声与隔热而言,质量定律是第一个要考量的因素,特别是隔声效能。简言之,所谓质量定律就是指声波在传递能量时,质量越大的物件具有越高的隔声效果。当原先侧窗玻璃模组里的钠钙玻璃被替换为密度较低的硼硅玻璃或是降低厚度的高铝玻璃时,代表窗玻璃的质量下降,因此隔声效能会下降,但时速400公里的高铁侧窗却需要提升隔声的效能,若又同时考虑到提升隔热的效能,这显然是一个两难的问题,因为减重就会牺牲隔热与隔声,若要提升隔热与隔声能力又不增加质量,最佳的解决方法就是导入 真空层,众所周知热量与声波在具有抗辐射镀膜的真空层中是很难传递的,因此,在高铁侧窗玻璃模组减重10%的同时,本发明通过增加真空层到玻璃模组中,利用真空隔热与隔声的原理兼顾减重、隔热与隔声三种要求。
表5
Figure PCTCN2022113495-appb-000006
真空玻璃的隔热与隔声效能的优越性可以由表5中的数据比较得知,而高铁侧窗的玻璃结构中又加上两层夹胶,形成中空夹胶玻璃,以时速350公里的高铁侧窗为例,其玻璃模组结构如图1A,此结构与表5中镀Low-E双玻单腔的中空玻璃比较,这种4玻2胶单腔的玻璃窗,其隔热可达1.4W/m 2·K,隔声量提高到43dB;由表5中的数据也可以发现,若比较镀Low-E真空玻璃(双玻单真空腔)与镀Low-E中空玻璃(双玻单腔),两者都是两玻单腔结构,但中空层改为真空层之后,热传导率与隔声量都可以大幅下降。
基于上述观察与分析,一种真空夹胶的中空玻璃侧窗被设计与制作出来,目的是要达到或超越时速400公里高铁侧窗的性能要求。以下先就含有真空层的中空夹胶玻璃模组的结构与减重进行分析。如图1B,侧窗左侧仍然维持玻璃G1/胶膜F1/玻璃G2的组合,由于考虑到左侧是对应车厢外部环境的一侧,重点在于①较高的安全防撞考量,②将外部热量、辐射、声波最大可能的阻挡或反射回外部环境中,③维持玻璃G1的外观条件与先前的高铁车窗一致,因此,玻璃G1优先维持最厚且外观颜色均与原先不变,仍保持钠钙灰玻;同理,胶膜F1与Low-E镀膜也都保持不变;但玻璃G2可以调整。图1B右侧的结构调整为G3/V/G4/F2/G5的真空胶合组合,使用降低厚度的高铝玻璃为主。左右两侧中间仍然维持填充氩气的中空层,并藉由调整中空层A的厚度来调控车窗总厚度T,此时T可以调整为原先的35mm厚度,或是未来有需要降低车窗总厚度时可以很有弹性的藉由降低中空层A的厚度来降低整组车窗的总厚度。
减重的数学模型可以如下说明,假设组成玻璃窗的每片玻璃与胶膜长度L与高度h都相同,仅厚度与材质(密度)有变化,此时每片玻璃或胶膜的面积S=L·h;可用的玻 璃种类如表4,则图1B中的各层组合可以表6中的符号及其定义加以计算,并得到减重的比例。
表6
Figure PCTCN2022113495-appb-000007
依据图1A中的原设计(减重前),可以用公式(1)计算原设计的侧窗玻璃模组重量W 0
Figure PCTCN2022113495-appb-000008
依据图1B中的组合结构:G1/F1/G2/A/G3/V/G4/F2/G5,由于中空层的氩气重量可以忽略不计,因此假设具有重量的各层材料的总厚度为T,则T可用下式表达:
T=G1+G2+G3+G4+G5+V+F1+F2           (2)
玻璃模组重量(中空真空胶合)W avl可由下列公式计算:
Figure PCTCN2022113495-appb-000009
上式中D g定义为D g=P s·D 1+P a·D 2+P b·D 3
若已知3种玻璃材质与真空层、胶膜的厚度比例,则更简单的计算方法可以藉由先计算混合平均密度D mix,其定义如下:
D min=P s·D 1+P a·D 2+P b·D 3+P p·D f+P v·D v       (4)
则W avl也可以用面积、厚度与混合平均密度来计算:
W avl=S·T·D mix             (5)
所以,减重前的侧窗玻璃模组重量W 0可以由公式(5)计算得到:
W 0=S·T 0·(P s·D 1+P p·D f)        (6)
减重前的侧窗玻璃模组就是原先设计组合,也就是图1A中的组合,此时可以将公式(3)与(4)中的P a、P b、P v是为0,也就是P a=P b=P v=0,T 0代表原设计的厚度(不含中空层厚度)。
到此可以得到减重比例的计算公式,若ΔW代表减重比例,则
Figure PCTCN2022113495-appb-000010
将公式(4)(5)(6)代入公式(7)可以的到公式(8):
Figure PCTCN2022113495-appb-000011
公式(8)中的k代表原先设计的混合平均密度,k=P s·D 1+P p·D f,因为减重前的原设计方案被当作原始重量,因此T 0·k可以被视为一个常数,所以影响ΔW的因子就只有T(有重量的总厚度)与D mix,这与先前讨论的结果是一致的。根据公式(8),可以假设不同的玻璃材质与厚度组合,计算出真空夹胶的中空玻璃窗的减重比例,考虑到具有实际应用价值的组合,计算结果汇整于表7中。依据目前高铁侧窗的规范,窗板长度L为1420mm,高度h为750mm,玻璃G1的厚度设定不变为6mm的钠钙玻璃,F1也保持不变,为1.52mm的PVC隔音膜,玻璃密度D 1、D 2、D 3的数值可参阅表7中的密度,PVB胶膜的密度(D f)为1.07g/cm 3,真空层的密度为0.30g/cm 3。若高铁时速由350公里提升到400公里需要对侧窗玻璃模组减重不小于10%,则公式(8)可以改写为
Figure PCTCN2022113495-appb-000012
整理后可以得到条件式(10):
T·D mix≤0.9T 0·k                (10)
其中D min=P s·D 1+P a·D 2+P b·D 3+P p·D f+P v·D v且k=P s·D 1+P p·D f
表7
Figure PCTCN2022113495-appb-000013
Figure PCTCN2022113495-appb-000014
其中,说明一行给出的是中空胶合玻璃(仅含有中空层)、中真空胶合玻璃(同时含有中空层、真空层)的具体组成,其中,SL代表钠钙玻璃,P代表PVB胶膜,A代表中空层,AS代表铝硅玻璃,V代表真空层,BS代表硼硅玻璃,字母之前的数字代表厚度,例如:6SL代表6mm厚的钠钙玻璃,文字之前的数字代表该胶合玻璃中所采用的这一材质的玻璃的数量,例如2钠钙代表采用了2块钠钙玻璃。
表7所列举的10个组合中Ex.1、3、5、6、7、8、10等7种组合都可以达到减重10%的目标,此处仅为举例但可以达到减重10%的组合仍有很多,不限于此处所描述的7种。在考量到制造成本与其他相关因素后,将优先采用Ex.7的组合进行实测。
对于真空胶合的4层玻璃+2层胶膜+1个中空层+1个真空层的结构(如图1B)的隔热与隔声测试,Ex.7的减重设计被选取进行实作与实测。
根据Ex.7的玻璃模组设计,样品制作说明如下:玻璃G1选用钠钙玻璃,厚度6mm;玻璃G2、玻璃G3、玻璃G4、玻璃G5选用化学强化的高铝玻璃,厚度分别为3mm、3mm、2mm、2mm;胶膜F1与胶膜F2维持使用PVB隔音膜,厚度1.52mm。样品尺寸:玻璃G1、玻璃G2、玻璃G5、胶膜F1、胶膜F2的长与高分别为1420mm与750mm,玻璃G3与玻璃G4配合激光焊接形成凸台结构(如图2B),其中玻璃G3凸出20mm,长宽分别为1460mm与790mm,真空层V由玻璃G3化学蚀刻深度0.3mm,边缘保留14mm的宽度不蚀刻,作为与玻璃G4激光焊接的位置,玻璃G3的凸台范围宽20mm,其中靠板外缘有14mm的未蚀刻区,剩下的蚀刻区有6mm的宽度,在此6mm范围内至少开一个阶梯孔,作为抽气孔与放置吸气剂之用;玻璃G4的凸台宽度为25mm,比玻璃G3长出5mm,使的玻璃G3与玻璃G4间可以形成L型台阶(如图2B),这是必要的结构设计,此L型台阶有利于焊接之后的液体密封胶的填装,密封胶可以二次对真空 层周边进行气密封装,作为激光气密焊接的再次补强,使得真空层的气密性可以由两种方法同时作用,提高真空气密的可靠性。
真空层内使用专利申请号为202210074202.5的发明专利申请所记载的柔性微支柱,该支柱直径不大于0.5mm,具有超低热传系数0.03W/m·K,并使用柔性微支柱的特殊隔声结构;柔性支柱的平均间隔为30mm,真空层V内气体压力为0.01Pa,真空层V的高度不超过0.3mm。G1/F1/G2使用高压釜进行胶合,压力为1.4MPa,温度120-125℃,同理G4/F2/G5也使用相同的高压釜工艺完成胶合。玻璃G3先开孔然后进行化学蚀刻,接著进行化学强化,然后将处理好的玻璃G3与胶合好的G4/F2/G5以激光焊接的方法形成一体,焊接前应先放置好未激活的化学吸气剂,并再以密封胶进行周边密封,接着进行抽真空与激活化学吸气剂等工序,即可完成用于测试的样品。
热传导率的测试是依据国家标准GB/T 8484-2020,并同步参考GB/T 10294-2008与GB/T 10295-2008,测试结果显示Ex.7的玻璃模组设计可以达到热传导率U值低于0.9W/m 2·K,符合时速400公里高铁侧窗的要求。隔声量的测量主要依据国家标准GB19889.3-2005,同时参考GB/T 31004.1-2014,测试结果可知Ex.7的玻璃模组设计可以满足隔声量大于46dB的要求。

Claims (52)

  1. 一种夹胶真空玻璃,其包括第一玻璃板和第二玻璃板,以及由第一玻璃板和第二玻璃板组成的真空层;其中,所述第一玻璃板为由至少两层玻璃和至少一层胶膜组成的夹胶玻璃;
    并且,所述真空层的边缘通过冷激光焊接的方式进行封装。
  2. 根据权利要求1所述的夹胶真空玻璃,其中,所述真空层的厚度为0.1-0.5mm。
  3. 根据权利要求1所述的夹胶真空玻璃,其中,所述真空层的厚度为0.2-0.35mm。
  4. 根据权利要求1所述的夹胶真空玻璃,其中,所述第一玻璃板或第二玻璃板中设有中空层。
  5. 根据权利要求4所述的夹胶真空玻璃,其中,所述中空层的厚度为8-16mm。
  6. 根据权利要求1-5任一项所述的夹胶真空玻璃,其中,所述第一玻璃板为由两层玻璃和一层胶膜组成的夹胶玻璃;并且,两层玻璃的厚度分别为不小于3mm与不小于1mm,两层玻璃总厚度不超过10mm,胶膜的厚度为不小于0.7mm。
  7. 根据权利要求1-5任一项所述的夹胶真空玻璃,其中,所述第一玻璃板为由三层玻璃、一层胶膜组成的夹胶玻璃,并且,三层玻璃中的两层之间设有所述中空层。
  8. 根据权利要求1-7任一项所述的夹胶真空玻璃,其中,所述第二玻璃板为由至少两层玻璃和至少一层胶膜组成的夹胶玻璃。
  9. 根据权利要求1-7任一项所述的夹胶真空玻璃,其中,所述第二玻璃板为由至少三层玻璃和至少两层胶膜组成的夹胶玻璃。
  10. 根据权利要求8所述的夹胶真空玻璃,其中,所述第二玻璃板为由两层玻璃和一层胶膜组成的夹胶玻璃;并且,两层玻璃的厚度分别为不小于2mm与不小于1mm,两层玻璃的总厚度不超过8mm,胶膜的厚度为不小于0.7mm。
  11. 根据权利要求9所述的夹胶真空玻璃,其中,所述第二玻璃板为由三层玻璃和两层胶膜组成的夹胶玻璃;并且,三层玻璃的总厚度不超过8mm,两层胶膜的总厚度不超过3.2mm。
  12. 根据权利要求1-11任一项所述的夹胶真空玻璃,其中,所述玻璃选自钠钙玻璃、铝硅玻璃、硼硅玻璃中的一种或两种以上的组合。
  13. 根据权利要求1-12任一项所述的夹胶真空玻璃,其中,所述胶膜选自PVB膜、EVA膜、SGP膜和TPU膜中的一种。
  14. 根据权利要求1-13任一项所述的夹胶真空玻璃,其中,所述冷激光焊接的焊缝 的数量按照以下公式确定:
    Figure PCTCN2022113495-appb-100001
    其中,N为焊缝数量,单位为条;
    w为焊缝平均宽度,单位为mm;
    S sealing为焊接密封区块的焊接强度,单位为MPa;
    α为玻璃的热膨胀系数,单位为℃ -1
    ΔT为真空层两侧玻璃板的温差,单位为℃;
    E为玻璃的弹性模量(杨氏系数),单位为MPa;
    H为受热膨胀的玻璃板的厚度,单位为mm。
  15. 根据权利要求1-14任一项所述的夹胶真空玻璃,其中,所述真空层设有微支柱。
  16. 根据权利要求15所述的夹胶真空玻璃,其中,所述微支柱为柔性微支柱,所述柔性微支柱具有至少一层纤维层。
  17. 根据权利要求16所述的夹胶真空玻璃,其中,所述柔性微支柱具有两层以上的纤维层组成的复合结构。
  18. 根据权利要求17所述的夹胶真空玻璃,其中,所述柔性微支柱具有至少两层纤维层与至少一层金属层和/或合金层组成的复合结构,所述金属层和/或合金层位于两层纤维层之间。
  19. 根据权利要求18所述的夹胶真空玻璃,其中,所述柔性微支柱具有至少三层纤维层与至少两层金属层和/或合金层组成的复合结构,其中,所述金属层和/或合金层间隔设置于纤维层之间。
  20. 根据权利要求15-19任一项所述的夹胶真空玻璃,其中,所述纤维层的厚度为0.1mm至3.0mm。
  21. 根据权利要求18-20任一项所述的夹胶真空玻璃,其中,所述金属层或合金层的厚度为0.3mm以下。
  22. 根据权利要求18-20任一项所述的夹胶真空玻璃,其中,所述金属层或合金层的厚度为0.01mm至0.3mm。
  23. 根据权利要求16所述的夹胶真空玻璃,其中,所述柔性微支柱的直径为0.2mm-2.0mm。
  24. 根据权利要求16所述的夹胶真空玻璃,其中,所述柔性微支柱的直径为0.2 mm-0.5mm。
  25. 根据权利要求16所述的夹胶真空玻璃,其中,所述柔性微支柱的导热系数≤1W/m·K(25℃)。
  26. 根据权利要求16所述的夹胶真空玻璃,其中,所述柔性微支柱的导热系数≤0.25W/m·K(25℃)。
  27. 根据权利要求15-26任一项所述的夹胶真空玻璃,其中,所述纤维层是由超细纤维制成的。
  28. 根据权利要求27所述的夹胶真空玻璃,其中,所述超细纤维的材质为铝硅玻璃、硼铝硅玻璃、钠钙玻璃、硼硅玻璃、石英玻璃、金属、合金中的一种或两种以上的组合。
  29. 根据权利要求15-28任一项所述的夹胶真空玻璃,其中,所述纤维层的导热系数≤0.03W/m·K(25℃)。
  30. 根据权利要求15-29任一项所述的夹胶真空玻璃,其中,所述纤维层的比表面积为700-800m 2/g。
  31. 根据权利要求18-20任一项所述的夹胶真空玻璃,其中,所述金属层的材质包括铝、铜、铁、锡、锌中的一种;
    所述合金层的材质包括铝、铜、铁、锡、锌中的两种以上元素的合金。
  32. 根据权利要求31所述的夹胶真空玻璃,其中,所述合金包括不锈钢。
  33. 根据权利要求16-19、23-26任一项所述的夹胶真空玻璃,其中,所述微支柱在1大气压的压力的压缩下的高度不小于0.10mm。
  34. 根据权利要求33所述的夹胶真空玻璃,其中,所述微支柱在1大气压的压力的压缩下的高度为0.15-0.5mm。
  35. 根据权利要求33所述的夹胶真空玻璃,其中,所述微支柱在1大气压的压力的压缩下的高度为0.15-0.25mm。
  36. 权利要求1-35任一项所述的夹胶真空玻璃的制备方法,其包括以下步骤:
    在第一玻璃板和第二玻璃板之间安装玻璃边条并布设微支柱;
    采用冷激光焊接的方式将玻璃边条分别与第一玻璃板、第二玻璃板焊接在一起,然后抽真空形成真空层,经过封边、封口,得到所述夹胶真空玻璃;
    或者,在组成第一玻璃板的表面或者第二玻璃板的表面形成凹槽;
    采用冷激光焊接的方式将第一玻璃板、第二玻璃板焊接在一起,焊接位置为凹槽的边缘部分,然后抽真空形成真空层,经过封边、封口,得到所述夹胶真空玻璃。
  37. 根据权利要求36所述的制备方法,其中,所述冷激光的激光脉冲半高宽度小于等于20皮秒。
  38. 根据权利要求36或37所述的制备方法,其中,所述冷激光的波长为800nm-1600nm,重复率为1Hz-10MHz。
  39. 根据权利要求36所述的制备方法,其中,焊接处的玻璃板之间的缝隙小于40μm。
  40. 根据权利要求36所述的制备方法,其中,焊接处的玻璃板之间的缝隙小于25μm。
  41. 根据权利要求36所述的制备方法,其中,焊接处的焊缝的宽度不大于20μm。
  42. 根据权利要求41所述的制备方法,其中,焊接处的焊缝的宽度小于5μm。
  43. 根据权利要求36、41或42所述的制备方法,其中,焊接处的焊缝的焊接强度大于所焊接的两层玻璃板之间的热膨胀剪应力。
  44. 根据权利要求36、41或42所述的制备方法,其中,焊接处的焊缝的焊接强度至少大于1MPa或者满足:
    Figure PCTCN2022113495-appb-100002
    其中,S sealing为焊接密封区块的焊接强度,单位为MPa;
    α为玻璃的热膨胀系数,单位为℃ -1
    ΔT为真空层两侧玻璃板的温差,单位为℃;
    E为玻璃的弹性模量,单位为MPa;
    H为受热膨胀的玻璃板的厚度,单位为mm;
    d为焊接密封区块的宽度,单位为mm。
  45. 根据权利要求36、41-44任一项所述的制备方法,其中,焊接处的焊缝的间隔距离不小于150μm,在两片被焊接的玻璃板内单边玻璃面的焊缝深度不小于20μm。
  46. 根据权利要求36、41-45任一项所述的制备方法,其中,所述焊接处的焊缝整体上的形状为连续的或间隔的。
  47. 根据权利要求46所述的制备方法,其中,单一焊缝为直线、斜线或折线。
  48. 根据权利要求46所述的制备方法,其中,所述焊接处的焊缝整体上的形状为相互平行的直线或相互平行的斜线或相互平行的折线;或者,所述焊接处的焊缝整体上为相互平行且断续的直线,或者,相互交错的斜线,或者,相互连续的鱼形。
  49. 根据权利要求46所述的制备方法,其中,所述焊接处的焊缝整体上的形状为如 图4所示的形状中的一种。
  50. 权利要求1-35任一项所述的夹胶真空玻璃作为车辆车窗或建筑物外窗的应用。
  51. 根据权利要求50所述的应用,其中,所述夹胶真空玻璃是作为高速列车的车窗。
  52. 根据权利要求51所述的应用,其中,所述夹胶真空玻璃是作为时速400km/h的高速列车的车窗。
PCT/CN2022/113495 2022-05-18 2022-08-19 一种夹胶真空玻璃及其制备方法与应用 WO2023221314A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221189711.4 2022-05-18
CN202210538548.6A CN114772950B (zh) 2022-05-18 2022-05-18 一种夹胶真空玻璃及其制备方法与应用
CN202210538548.6 2022-05-18
CN202221189711.4U CN218084550U (zh) 2022-05-18 2022-05-18 一种夹胶真空玻璃及车辆车窗

Publications (1)

Publication Number Publication Date
WO2023221314A1 true WO2023221314A1 (zh) 2023-11-23

Family

ID=88834472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113495 WO2023221314A1 (zh) 2022-05-18 2022-08-19 一种夹胶真空玻璃及其制备方法与应用

Country Status (1)

Country Link
WO (1) WO2023221314A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117583196A (zh) * 2024-01-18 2024-02-23 江苏鼎业节能科技有限公司 一种连续型中空玻璃封胶机

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215076A (zh) * 2008-01-07 2008-07-09 左树森 一种真空玻璃的制备方法
CN203937254U (zh) * 2014-05-07 2014-11-12 信义汽车玻璃(东莞)有限公司 动车组车窗玻璃
CN109563726A (zh) * 2016-06-03 2019-04-02 康宁股份有限公司 用于真空隔热窗格玻璃的方法和设备
CN110156347A (zh) * 2019-03-19 2019-08-23 武汉理工大学 一种支撑物为玻璃纤维格栅的真空玻璃及其制作方法
CN112878869A (zh) * 2021-01-29 2021-06-01 福耀玻璃工业集团股份有限公司 一种高速机车用隔音玻璃
CN113562989A (zh) * 2021-08-31 2021-10-29 重庆英诺维节能环保科技有限公司 一种真空玻璃的快速生产工艺
CN214786918U (zh) * 2020-08-11 2021-11-19 福耀玻璃工业集团股份有限公司 使用超薄玻璃制作的真空夹层建筑玻璃
CN114211114A (zh) * 2022-01-11 2022-03-22 北京赢圣科技有限公司 一种玻璃与玻璃之间的绿光超快激光焊接方法和系统
CN114772950A (zh) * 2022-05-18 2022-07-22 福耀高性能玻璃科技(福建)有限公司 一种夹胶真空玻璃及其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101215076A (zh) * 2008-01-07 2008-07-09 左树森 一种真空玻璃的制备方法
CN203937254U (zh) * 2014-05-07 2014-11-12 信义汽车玻璃(东莞)有限公司 动车组车窗玻璃
CN109563726A (zh) * 2016-06-03 2019-04-02 康宁股份有限公司 用于真空隔热窗格玻璃的方法和设备
CN110156347A (zh) * 2019-03-19 2019-08-23 武汉理工大学 一种支撑物为玻璃纤维格栅的真空玻璃及其制作方法
CN214786918U (zh) * 2020-08-11 2021-11-19 福耀玻璃工业集团股份有限公司 使用超薄玻璃制作的真空夹层建筑玻璃
CN112878869A (zh) * 2021-01-29 2021-06-01 福耀玻璃工业集团股份有限公司 一种高速机车用隔音玻璃
CN113562989A (zh) * 2021-08-31 2021-10-29 重庆英诺维节能环保科技有限公司 一种真空玻璃的快速生产工艺
CN114211114A (zh) * 2022-01-11 2022-03-22 北京赢圣科技有限公司 一种玻璃与玻璃之间的绿光超快激光焊接方法和系统
CN114772950A (zh) * 2022-05-18 2022-07-22 福耀高性能玻璃科技(福建)有限公司 一种夹胶真空玻璃及其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI CHUANGYE, ZHANG MIN, CHEN CHANGJUN, WANG XIAONAN, CHEN WENGANG: "Effect of Laser Weld Spacing and Multipass Welding on Performance of Glass Sealing with Aluminium Alloy and Underlying Mechanism ", CHINESEJOURNALOFLASERS, vol. 43, no. 7, 1 July 2016 (2016-07-01), pages 0702005, XP093109283, DOI: 10.3788/CJL201643.0702005 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117583196A (zh) * 2024-01-18 2024-02-23 江苏鼎业节能科技有限公司 一种连续型中空玻璃封胶机

Similar Documents

Publication Publication Date Title
CN114772950B (zh) 一种夹胶真空玻璃及其制备方法与应用
WO2023221314A1 (zh) 一种夹胶真空玻璃及其制备方法与应用
CN204113035U (zh) 一种中空玻璃
CN206217292U (zh) 一种曲面复合多层玻璃
WO2017169253A1 (ja) ガラスパネルユニット及びガラス窓
WO2018120063A1 (zh) 一种自动平衡气压的防潮中空玻璃组件
WO2019144501A1 (zh) 一种夹层曲面玻璃复合材料及其制造方法
CN201605234U (zh) 多功能中空玻璃
CN202645325U (zh) 一种多层复合玻璃
CN203547412U (zh) 隔音隔热安全中空玻璃
CN108621504B (zh) 一种安全节能型汽车玻璃及其制造方法
CN218084550U (zh) 一种夹胶真空玻璃及车辆车窗
CN206416603U (zh) 一种夹层隔热装饰玻璃
CN101475304A (zh) 背栓式真空玻璃及其制造方法
CN108621752B (zh) 一种安全节能型汽车玻璃及其制造方法
WO2019144500A1 (zh) 一种夹层曲面玻璃的制造方法
CN205387547U (zh) 高速列车侧窗玻璃
CN106515139A (zh) 一种夹层隔热装饰玻璃
CN204113034U (zh) 一种中空玻璃
CN203476101U (zh) 一种夹层中空玻璃
CN209008087U (zh) 一种隔音降噪透明玻璃
CN211106093U (zh) 一种多曲面钢化夹层中空玻璃
CN211692090U (zh) 一种高隔音功能的钢化玻璃
CN206053744U (zh) 一种铁路车辆及其车窗结构
CN213573664U (zh) 一种隔热玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942343

Country of ref document: EP

Kind code of ref document: A1