WO2023221264A1 - 一种超支化固体聚羧酸减水剂的制备方法 - Google Patents

一种超支化固体聚羧酸减水剂的制备方法 Download PDF

Info

Publication number
WO2023221264A1
WO2023221264A1 PCT/CN2022/104073 CN2022104073W WO2023221264A1 WO 2023221264 A1 WO2023221264 A1 WO 2023221264A1 CN 2022104073 W CN2022104073 W CN 2022104073W WO 2023221264 A1 WO2023221264 A1 WO 2023221264A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
parts
hyperbranched
polycarboxylate water
preparation
Prior art date
Application number
PCT/CN2022/104073
Other languages
English (en)
French (fr)
Inventor
许庚
刘昆明
单坤山
孙晓辉
刘玮琦
张鹏
张梦杰
董平升
Original Assignee
济南城建集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 济南城建集团有限公司 filed Critical 济南城建集团有限公司
Publication of WO2023221264A1 publication Critical patent/WO2023221264A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/06Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals
    • C08F283/065Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polyethers, polyoxymethylenes or polyacetals on to unsaturated polyethers, polyoxymethylenes or polyacetals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/16Sulfur-containing compounds
    • C04B24/161Macromolecular compounds comprising sulfonate or sulfate groups
    • C04B24/163Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/165Macromolecular compounds comprising sulfonate or sulfate groups obtained by reactions only involving carbon-to-carbon unsaturated bonds containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2688Copolymers containing at least three different monomers
    • C04B24/2694Copolymers containing at least three different monomers containing polyether side chains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/30Water reducers, plasticisers, air-entrainers, flow improvers
    • C04B2103/302Water reducers

Definitions

  • the invention relates to the technical field of concrete admixtures, and in particular to a preparation method of hyperbranched solid polycarboxylate water-reducing agent.
  • Polycarboxylate water-reducing agent shows strong designability in molecular structure, and high-performance water-reducing agent can be obtained by adjusting and optimizing the main chain length, side chain length and functional groups. Therefore, in order to solve some problems arising in concrete science and engineering, researchers have focused their attention on the structural design of PCE macromolecules. With the diversification of the molecular structure of water reducing agents, some PCEs with branched structures have attracted people's attention due to their unique properties and potential application value. Compared with conventional polycarboxylate water-reducing agents, this hyperbranched water-reducing agent has better dispersion and dispersion retention capabilities.
  • Patent CN106957398B discloses an eight-arm dendritic hyperbranched superplasticizer and its preparation method.
  • the hyperbranched structure consists of an eight-arm polyamide-amine dendritic branched macromolecule containing unsaturated double bonds as the core, and is unsaturated.
  • Polyether macromonomers, unsaturated carboxylic acid monomers, and unsaturated sulfonate monomers are obtained through water-phase free radical copolymerization under the action of initiators.
  • This superplasticizer is based on the steric hindrance effect of the hyperbranched structural center and comb-shaped molecular chain arms, which enables it to exhibit excellent dispersion properties, water reduction rate and slump retention.
  • the preparation of its core monomer is difficult.
  • Liquid polycarboxylate superplasticizer has a short storage time and is not conducive to long-distance transportation. It cannot be used in dry powder mortar, high-strength grouting materials, thermal insulation mortar, plastering mortar, ceramic bonding mortar and other fields. At the same time, the high-temperature powder spraying process for conventional preparation of solid polycarboxylate water-reducing agents has high energy consumption, is easy to agglomerate, and high drying temperatures will reduce the overall performance of the water-reducing agents. Direct synthesis of solid polycarboxylate superplasticizers using bulk polymerization is one of the current research hotspots.
  • Patent CN108484841A discloses a one-step method for directly synthesizing pure solid polycarboxylate water-reducing agent, using high-temperature liquid polyether macromonomer to add initiators, solubilizers, chain transfer agents and small orders at 100-105°C. body. This synthesis method requires a higher reaction temperature, which is difficult to implement in actual production, and the controllability of the reaction under high temperature conditions is poor.
  • Patent CN107987229B discloses a method for preparing a slump-retaining high-performance solid polycarboxylate water-reducing agent. This method uses self-made liquid polyether to react at a lower reaction temperature. However, the preparation process of the liquid polyether is very complicated. , the cost is high and not suitable for large-scale industrial production.
  • Patent CN106749967A reports a preparation method of solid slump-preserving polycarboxylate water-reducing agent. This patent reduces the concentration of the reaction system by adding an organic solvent to the polymerization system to avoid the occurrence of gel reaction. After the reaction is completed, the organic solvent is removed by vacuum.
  • the solid polycarboxylate water-reducing agent prepared by this invention has excellent water-reducing and dispersing effects and dispersion retention capabilities.
  • the use of organic solvents for subsequent removal not only increases production costs, but also easily causes environmental pollution.
  • the preparation of solid polycarboxylate water-reducing agents has problems such as high preparation costs, difficulty in obtaining raw materials, and high energy consumption.
  • the subsequent processing of the prepared polycarboxylate water-reducing agents is relatively cumbersome. Therefore, without losing the performance of the polycarboxylate water-reducing agent and at a lower cost, the key to further popularizing and applying the polycarboxylate water-reducing agent is to more conveniently prepare a solid polycarboxylate water-reducing agent.
  • this application designs a preparation method for hyperbranched solid polycarboxylate water-reducing agent to solve the above problems.
  • the present invention provides a preparation method of hyperbranched solid polycarboxylate water-reducing agent.
  • a hyperbranched solid polycarboxylate water-reducing agent made of the following components and raw materials in parts by weight:
  • the polyether macromonomer is 813-856 parts
  • the chain transfer agent is 2.5-10 parts
  • the unsaturated carboxylic acid is 84-110 parts
  • the unsaturated ester monomer is 20-35 parts
  • the oxidizing agent is 8-30 parts. 8-15 parts of amine reducing agent with double bonds.
  • the polyether macromonomer is composed of allyl polyoxyethylene ether, methallyl polyoxyethylene ether, isopentenol polyoxyethylene ether, vinyl butyl
  • ether polyoxyethylene ether preferably isopentenyl alcohol polyoxyethylene ether.
  • the oxidizing agent is composed of hydrogen peroxide, benzoyl peroxide, dodecanoyl peroxide, tert-butyl peroxybenzoate, diisopropyl peroxydicarbonate, peroxide One or several components of dicyclohexyl dicarbonate.
  • the chain transfer agent is one or more of thioglycolic acid, mercaptopropionic acid, mercaptoethanol, sodium vinyl sulfonate, sodium styrene sulfonate, and sodium hypophosphite.
  • Composition preferably thioglycolic acid.
  • the amine reducing agent with double bonds is composed of dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, methacrylic acid (N,N- One or more of dimethylamino)benzyl ester, methylphenylaminoethyl methacrylate, and 4'-(dimethylamino)acrylanilide, preferably dimethylaminoethyl methacrylate.
  • the small monomer solution is added for an hour.
  • the small monomer solution is composed of 2.5-10 parts of chain transfer agent, 84 -110 parts of unsaturated carboxylic acid and 20-35 parts of unsaturated ester monomer;
  • the small monomer is composed of acrylic acid, methacrylic acid, maleic acid, fumaric acid, methyl acrylate, ethyl acrylate, hydroxyethyl acrylate, hydroxypropyl acrylate, methyl acrylate, etc.
  • One or several compositions of hydroxyethyl acrylate preferably a composition of acrylic acid and hydroxyethyl acrylate with a mass ratio of 3.8:1.
  • the neutralizing agent is composed of one or more of sodium hydroxide, sodium carbonate, sodium bicarbonate, sodium diethylate, triethanolamine, and triisopropanolamine, preferably Triethanolamine.
  • the dripping time a of the small monomer solution is 1-2.5h; preferably 2h.
  • the dripping time b of the amine reducing agent with double bonds is 1-2.5h; preferably 1.5h.
  • the aging time c is 1-3h; preferably 1.5h.
  • Lower reaction temperature can avoid the phenomenon of automatic acceleration in the middle and late stages of the reaction, increase in molecular weight of reactants, local aggregation and even gel effect caused by the large viscosity of the bulk polymerization system, difficulty in dissipating heat, and difficulty in controlling the reaction temperature.
  • Amine reducing agents with double bonds can not only form a redox reaction initiation system with oxidants to reduce the activation energy of the reaction and reduce the reaction temperature, but the double bonds on their molecules can also participate in chain growth.
  • the initiation of the terminals and the polymerization of the double bonds in the head form a head-to-tail structure, and hyperbranched polymers can be formed as the reaction proceeds.
  • ester derivatives have a certain air-entraining ability, which makes the solid polycarboxylic acid system loose after cooling and molding, which can accelerate the crushing of the finished product. subsequent dissolution rate.
  • the process for preparing the solid polycarboxylate water-reducing agent of the present invention is simple, does not use organic solvents, and is environmentally friendly. After the reaction is completed, it can be used after cooling and crushing.
  • the hyperbranched polymer synthesized in the present invention has better dispersion and dispersion retention ability.
  • Figure 1 is a schematic diagram of the polymerization of the hyperbranched polycarboxylate water-reducing agent in Example 1 of the present invention
  • Figure 2 is a test comparison chart of the flow performance results of the cement slurry of the present invention and the slump and expansion of concrete;
  • Figure 3 is a comparison chart of the infrared spectra of Comparative Example 1 and Example 1 of the present invention.
  • Figure 4 is a molecular weight distribution diagram of Example 1 and Comparative Examples 1 and 2 of the present invention.
  • Figure 5 is a comparison table of molecular weights and distributions of Example 1 of the present invention and Comparative Examples 1 and 2.
  • a method for preparing a hyperbranched solid polycarboxylate water-reducing agent which is characterized in that: the hyperbranched solid polycarboxylate water-reducing agent is prepared from the following components: polyether macromonomer, small monomer solution, chain Transfer agent, amine reducing agent with double bonds, and neutralizing agent; total mass 1,000 parts, the preparation method includes the following steps:
  • the small monomer solution consists of 2.5 parts of thioglycolic acid, 90 parts of acrylic acid, It is composed of 30 parts of hydroxyethyl acrylate; after adding the small monomer dropwise for 10 minutes, add 8 parts of dimethylaminoethyl methacrylate dropwise, and the dropping time is 2.5h.
  • a method for preparing a hyperbranched solid polycarboxylate water-reducing agent which is characterized in that: the hyperbranched solid polycarboxylate water-reducing agent is prepared from the following components: polyether macromonomer, small monomer solution, chain Transfer agent, amine reducing agent with double bonds, and neutralizing agent; total mass 1,000 parts, the preparation method includes the following steps:
  • the small monomer solution consists of 3 parts of mercaptopropionic acid and 84 parts of methyl. It is composed of acrylic acid and 35 parts of hydroxypropyl acrylate; after the small monomer is added dropwise for 10 minutes, 12 parts of p-(N,N-dimethylamino)benzyl methacrylate is added dropwise, and the dropping time is 2h.
  • a method for preparing a hyperbranched solid polycarboxylate water-reducing agent which is characterized in that: the hyperbranched solid polycarboxylate water-reducing agent is prepared from the following components: polyether macromonomer, small monomer solution, chain Transfer agent, amine reducing agent with double bonds, and neutralizing agent; total mass 1,000 parts, the preparation method includes the following steps:
  • the small monomer solution consists of 7 parts of sodium vinyl sulfonate, 40 parts of It is composed of acrylic acid, 60 parts of maleic acid, and 25 parts of methyl acrylate; after the small monomer is added dropwise for 10 minutes, 15 parts of 4'-(dimethylamino)acrylanilide is added dropwise, and the dropping time is 1 hour.
  • a method for preparing a hyperbranched solid polycarboxylate water-reducing agent which is characterized in that: the hyperbranched solid polycarboxylate water-reducing agent is prepared from the following components: polyether macromonomer, small monomer solution, chain Transfer agent, amine reducing agent with double bonds, and neutralizing agent; total mass 1,000 parts, the preparation method includes the following steps:
  • the small monomer solution is added for 1.5 hours.
  • the small monomer solution is composed of 5 parts of mercaptoethanol, 35 parts of acrylic acid, It is composed of 70 parts of methacrylic acid and 20 parts of ethyl acrylate; after the small monomer is added dropwise for 10 minutes, 12 parts of p-(N,N-dimethylamino)benzyl methacrylate is added dropwise, and the dropping time is 1.5h.
  • a method for preparing a hyperbranched solid polycarboxylate water-reducing agent which is characterized in that: the hyperbranched solid polycarboxylate water-reducing agent is prepared from the following components: polyether macromonomer, small monomer solution, chain Transfer agent, amine reducing agent with double bonds, and neutralizing agent; total mass 1,000 parts, the preparation method includes the following steps:
  • the small monomer solution is composed of 10 parts of sodium styrene sulfonate and 80 parts of sodium styrene sulfonate. It is composed of acrylic acid, 10 parts of fumaric acid, and 25 parts of hydroxyethyl methacrylate; after the small monomer is added dropwise for 10 minutes, 13 parts of methylphenylaminoethyl methacrylate is added dropwise, and the dropping time is 2.2h.
  • a method for preparing a hyperbranched solid polycarboxylate water-reducing agent which is characterized in that: the hyperbranched solid polycarboxylate water-reducing agent is prepared from the following components: polyether macromonomer, small monomer solution, chain Transfer agent, amine reducing agent with double bonds, and neutralizing agent; total mass 1,000 parts, the preparation method includes the following steps:
  • the small monomer solution consists of 8 parts of sodium hypophosphite and 50 parts of sodium hypophosphite. It is composed of acrylic acid, 20 parts of methacrylic acid, 40 parts of maleic acid, and 20 parts of hydroxyethyl acrylate; after adding the small monomer for 10 minutes, add 15 parts of diethylaminoethyl methacrylate dropwise, and the dropping time is 2 hours.
  • the hyperbranched solid polycarboxylate water-reducing agent samples prepared in Examples 1-6 and the 40% solid content polycarboxylate water-reducing agent mother liquor sample with better commercial performance were used as comparative example 1.
  • the solid polycarboxylate superplasticizer sample was used as control example 2 to conduct cement slurry fluidity test and concrete performance test.
  • Comparative Example 1 is a solid polycarboxylate superplasticizer synthesized by AIBN thermal initiation. Its average molecular weight is low. Although the polydispersity of the product is small (2.34), its macromonomer conversion rate lowest (84.7%). The higher reaction temperature caused a certain amount of acrylic acid copolymerization or deactivation.
  • the 2-cyanopropyl radical decomposed by AIBN has a strong conjugation effect and is more active in this initiating system.
  • the average molecular weight of the hyperbranched solid polycarboxylate water-reducing agent prepared in Example 1 is relatively large, which proves that there is a certain degree of cross-linking and branching in the water-reducing agent molecules, and its polydispersity is large.
  • This is related to the larger chain transfer constant of the initiator.
  • the molecular weight (Mw-Mp) of the product prepared in Example 1 is >7000, indicating that it contains more heavy products, further proving the existence of cross-linking and branching in the system, while the molecular weights of Comparative Examples 1 and 2 are ( The Mw-Mp) values were 5518 and 3066 respectively, indicating that there were more products with lower molecular weights.
  • test refers to the GB/T8077-2012 "Experimental Method for Homogeneity of Concrete Admixtures" standard, using benchmark cement, with a solid dosage of 0.11%, and testing the fluidity of the pure slurry of the samples obtained in Examples 1-6 and the control example in the benchmark cement. .
  • the test refers to GB/T50080-2016 "Standard for Test Methods for Performance of Ordinary Concrete Mixtures” and GB/T50081-2019 "Standard for Test Methods for Physical and Mechanical Properties of Concrete” to conduct concrete performance tests on the samples obtained in Examples 1-6 and the control examples.
  • the hyperbranched solid polycarboxylate water-reducing agent synthesized in Examples 1-6 has the same slurry dispersion performance, water-reducing dispersion performance, fluidity and slump retention ability. Better than commercially available 40% solid polycarboxylate water-reducing agent.
  • the prepared hyperbranched solid polycarboxylate water-reducing agent has strong stability and good solubility, and has the advantages of reducing equipment costs and process difficulties, reducing reaction temperature, reducing energy consumption, and reducing transportation costs and packaging costs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

本发明涉及混凝土外加剂技术领域,特别涉及一种超支化固体聚羧酸减水剂的制备方法,制备方法为:S1,将聚醚大单体加入反应釜中完全熔化;S2,釜内加入氧化剂;S3,加入氧化剂10分钟后开始滴加小单体溶液和带有双键的胺类还原剂;S4,滴加结束后保温熟化,熟化结束后加入中和剂,反应完毕后使用冷凝切片机进行固化切片即可。本发明节能环保;可以避免出现反应中后期自动加速、反应物分子量升高、局部暴聚甚至出现凝胶效应的现象;工艺简单,不使用有机溶剂,反应完毕后降温粉碎即可应用;具有更好的分散性和分散性保持能力。

Description

一种超支化固体聚羧酸减水剂的制备方法 技术领域
本发明涉及混凝土外加剂技术领域,特别涉及一种超支化固体聚羧酸减水剂的制备方法。
背景技术
聚羧酸减水剂(PCE)在分子结构上表现出很强的可设计性,可以通过调整和优化主链长度、侧链长度和官能团来获得高性能减水剂。因此,为了解决混凝土科学和工程中出现的一些问题,研究人员将注意力集中在PCE大分子的结构设计上。随着减水剂分子结构的多样化,一些具有支化结构的PCE由于其独特的性能和潜在应用价值引起了人们的关注。和常规聚羧酸减水剂相比这种超支化型的减水剂具有更好的分散性和分散性保持能力。
现有技术文献(Xiuju Lin,Bing Liao,Jialin Li,Jianheng Huang,Mangeng Lu,Hao Pang.Effect of crosslinked polycarboxylate superplasticizers with varied structures on cement dispersion performance[J].J Appl Polym Sci.2020;e50012.)使用三种不同交联剂合成了不同结构的交联型聚羧酸减水剂,作者认为随着交联剂中双键含量的增加,水泥浆体的初始流动性增加,交联型聚羧酸减水剂的加入可以延缓水泥的水化过程。
专利CN106957398B公开了一种八臂树状超支化超塑化剂及其制备方法,该超支化结构由含不饱和双键封端的八臂聚酰胺-胺树状支化大分子为核心,不饱和聚醚大单体、不饱和羧酸单体、不饱和磺酸根单体在引发剂的作用下通过水相自由基共聚得到。该超塑化剂基于超支化结构中心和梳型分子链臂的空间位阻效应使其表现出优异的分散性能、减水率及保坍性。但是其核心单体制备较为困难。
目前国内外聚羧酸减水剂的生产与应用以液体水剂为主,固体聚羧酸减水剂产品则需液体聚羧酸减水剂脱水干燥获得。液体聚羧酸减水剂保存时间短,不利于长途运输,不能应用于干粉砂浆、高强灌浆料、保温砂浆、抹面砂浆、陶瓷粘结砂浆等领域。同时,常规制备固体聚羧酸减水剂的高温喷粉工艺能耗高、易结块、较高的干燥温度会使得减水剂综合性能下降。使用本体聚合直接合成固体聚羧酸减水剂是当前研究的热点之一。
专利CN108484841A公开了一种一步法直接合成纯固体聚羧酸减水剂的方法,使用高温液态聚醚大单体在100-105℃的条件下加入引发剂、增溶剂、链转移剂及小单体。该合成方法需要较高的反应温度,在实际生产中较难实现,并且高温条件下反应的可控性较差。
专利CN107987229B公开了一种保坍性高性能固体聚羧酸减水剂的制备方法,该方 法使用自制的液体聚醚可以在较低反应温度下进行反应,但是该液体聚醚的制备过程非常复杂,成本较高,并不适于大规模工业化生产。
专利CN106749967A报道了一种固体保坍型聚羧酸减水剂的制备方法。该专利通过在聚合体系中加入有机溶剂来降低反应体系的浓度,避免凝胶反应的发生,反应完成后通过真空除去有机溶剂。该发明制备的固体聚羧酸减水剂具有优异的减水分散效果和分散性保持能力,但是使用有机溶剂再脱除不仅增加了生产成本,而且容易造成环境污染。
目前,固体聚羧酸减水剂的制备存在制备成本高,原材料不易获取,耗能高的问题,同时制备出的聚羧酸减水剂后续处理工作较为繁琐。因此在不损耗聚羧酸减水剂性能的前提下,在较低成本情况下,比较方便的制备一种固体聚羧酸减水剂是进一步推广和应用聚羧酸减水剂的关键。
为此,本申请设计了一种超支化固体聚羧酸减水剂的制备方法,以解决上述问题。
发明内容
本发明为了弥补现有技术中的不足,提供了一种超支化固体聚羧酸减水剂的制备方法。
一种超支化固体聚羧酸减水剂,由下述组分及重量份数的原料制成:
按照重量份计算,聚醚大单体813-856份,链转移剂2.5-10份、不饱和羧酸84-110份,不饱和酯类单体20-35份,氧化剂8-30份,带有双键的胺类还原剂8-15份。
进一步地,为了更好的实现本发明,所述聚醚大单体由烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚、异戊烯醇聚氧乙烯醚、乙烯基丁基醚聚氧乙烯醚中的一种或几种组成,优选异戊烯醇聚氧乙烯醚。
进一步地,为了更好的实现本发明,所述氧化剂由过氧化氢、过氧化苯甲酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯中的一种或者几种组成。
进一步地,为了更好的实现本发明,所述链转移剂为巯基乙酸、巯基丙酸、巯基乙醇、乙烯基磺酸钠、苯乙烯磺酸钠、次亚磷酸钠中的一种或者几种组成,优选巯基乙酸。
进一步地,为了更好的实现本发明,所述带有双键的胺类还原剂由甲基丙烯酸二甲氨乙酯、甲基丙烯酸二乙氨基乙酯、甲基丙烯酸对(N,N-二甲氨基)苄酯、甲基丙烯酸甲基苯基氨基乙酯、4'-(二甲氨基)丙烯酰苯胺中的一种或者几种组成,优选甲基丙烯酸二甲氨乙酯。
基于上述的超支化固体聚羧酸减水剂,其制备方法为:
S1,将813-856份聚醚大单体加入反应釜中,开启搅拌,升温至40-60℃,使大单体完全熔化;
S2,测定釜内温度,控制温度在35-45℃,温度稳定后,加入8-30份氧化剂;
S3,加入氧化剂10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为a小时,小单体溶液由2.5-10份链转移剂、84-110份不饱和羧酸及20-35份不饱和酯类单体组成;
小单体溶液滴加10分钟后,滴加8-15份带有双键的胺类还原剂,滴加时间为b小时;
S4,滴加过程中做好反应釜的保温工作,不需要加热,滴加结束后保温熟化c小时,熟化结束后缓慢加入5-25份中和剂,反应完毕后使用冷凝切片机进行固化切片,即可得到固含量100%的超支化固体聚羧酸减水剂。
进一步地,为了更好的实现本发明,所述小单体由丙烯酸、甲基丙烯酸、马来酸、富马酸、丙烯酸甲酯、丙烯酸乙酯、丙烯酸羟乙酯、丙烯酸羟丙酯、甲基丙烯酸羟乙酯中的一种或者几种组成,优选质量比为3.8:1的丙烯酸和丙烯酸羟乙酯组合物。
进一步地,为了更好的实现本发明,所述中和剂由氢氧化钠、碳酸钠、碳酸氢钠、二乙醇钠、三乙醇胺、三异丙醇胺中的一种或者几种组成,优选三乙醇胺。
进一步地,为了更好的实现本发明,所述小单体溶液的滴加时间a为1-2.5h;优选为2h。所述带有双键的胺类还原剂的滴加时间b为1-2.5h;优选为1.5h。所述熟化时间c为1-3h;优选为1.5h。
本发明的有益效果是:
1.采用高活性的氧化还原的引发体系可以极大的降低反应温度,滴加小单体和带有双键的胺类还原剂以后可以利用反应热来维持后续反应的进行而不需要持续加热,符合国家节能环保的政策。
2.较低的反应温度可以避免本体聚合体系粘度较大、不易散热、反应温度不易控制等引起的反应中后期自动加速、反应物分子量升高、局部暴聚甚至出现凝胶效应的现象。
3.带有双键的胺类还原剂不仅可以与氧化剂构成氧化还原反应引发体系降低反应的活化能降低反应温度,而且其分子上的双键同时也可以参与链增长。末端的引发和头部的双键聚合使其形成首尾相连的结构,随着反应的进行可以形成超支化聚合物。
4.在原料选择方面,引入少量丙烯酸酯类衍生物,能提高产品的流动度保持性;酯类衍生物具有一定的引气能力,使得冷却成型后的固体聚羧酸体系松散可以加速成品粉碎之后的溶解速度。
5.本发明制备固体聚羧酸减水剂的工艺简单,不使用有机溶剂,环境友好,反应完毕后降温粉碎即可应用。
6.与常规聚羧酸减水剂相比本发明合成的超支化聚合物具有更好的分散性和分散性保持能力。
附图说明
图1为本发明的实施例1的超支化聚羧酸减水剂聚合示意图;
图2为本发明的水泥净浆流动性能结果及混凝土坍落度、扩展度的试验对比图;
图3为本发明的对照例1和实施例1的红外光谱对比图;
图4为本发明的实施例1和对照例1、对照例2的分子量分布图;
图5为本发明的实施例1和对照例1、对照例2的分子量及其分布对照表。
具体实施方式
为了便于本领域技术人员理解和实施本发明,下面结合实施例对本发明作进一步的详细描述,应当理解的是,此处描述的实施实例仅用于说明和解释本发明,并不用于限定本发明。
实施例1,如图1所示,
一种超支化固体聚羧酸减水剂的制备方法,其特征在于:所述超支化固体聚羧酸减水剂由以下组分制备而成:聚醚大单体、小单体溶液、链转移剂、带有双键的胺类还原剂、中和剂;总质量1000份,制备方法包括以下步骤:
(1)将856份烯丙基聚氧乙烯醚加入三口烧瓶,升温至55℃,开启搅拌使大单体完全融化。
(2)大单体完全融化后测定烧瓶内温度,控制温度在40℃,温度稳定后加入氧化剂8份过氧化氢。
(3)待10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为2.5h,小单体溶液由2.5份巯基乙酸、90份丙烯酸、30份丙烯酸羟乙酯组成;小单体滴加10分钟后,滴加8份甲基丙烯酸二甲氨乙酯,滴加时间为2.5h。
(4)滴加过程中做好反应釜的保温工作,不需要加热。滴加结束后保温熟化1h,熟化结束后缓慢加入5份氢氧化钠进行中和,冷却切片后,即得超支化固体聚羧酸减水剂。
实施例2
一种超支化固体聚羧酸减水剂的制备方法,其特征在于:所述超支化固体聚羧酸减水剂由以下组分制备而成:聚醚大单体、小单体溶液、链转移剂、带有双键的胺类还原剂、中和剂; 总质量1000份,制备方法包括以下步骤:
(1)将828份甲基烯丙基聚氧乙烯醚加入三口烧瓶,升温至60℃,开启搅拌使大单体完全融化。
(2)大单体完全融化后测定烧瓶内温度,控制温度在45℃,温度稳定后加入氧化剂22份过氧化苯甲酰。
(3)待10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为2h,小单体溶液由3份巯基丙酸、84份甲基丙烯酸、35份丙烯酸羟丙酯组成;小单体滴加10分钟后,滴加12份甲基丙烯酸对(N,N-二甲氨基)苄酯,滴加时间为2h。
(4)滴加过程中做好反应釜的保温工作,不需要加热。滴加结束后保温熟化2h,熟化结束后缓慢加入10份三乙醇胺进行中和,冷却切片后,即得超支化固体聚羧酸减水剂。
实施例3
一种超支化固体聚羧酸减水剂的制备方法,其特征在于:所述超支化固体聚羧酸减水剂由以下组分制备而成:聚醚大单体、小单体溶液、链转移剂、带有双键的胺类还原剂、中和剂;总质量1000份,制备方法包括以下步骤:
(1)将820份乙烯基丁基醚聚氧乙烯醚加入三口烧瓶,升温至40℃,开启搅拌使大单体完全融化。
(2)大单体完全融化后测定烧瓶内温度,控制温度在35℃,温度稳定后加入氧化剂13份过氧化十二酰。
(3)待10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为1h,小单体溶液由7份乙烯基磺酸钠、40份丙烯酸、60份马来酸、25份丙烯酸甲酯组成;小单体滴加10分钟后,滴加15份4'-(二甲氨基)丙烯酰苯胺,滴加时间为1h。
(4)滴加过程中做好反应釜的保温工作,不需要加热。滴加结束后保温熟化3h,熟化结束后缓慢加入8份二乙醇钠进行中和,冷却切片后,即得超支化固体聚羧酸减水剂。
实施例4
一种超支化固体聚羧酸减水剂的制备方法,其特征在于:所述超支化固体聚羧酸减水剂由以下组分制备而成:聚醚大单体、小单体溶液、链转移剂、带有双键的胺类还原剂、中和剂;总质量1000份,制备方法包括以下步骤:
(1)将813份异戊烯醇聚氧乙烯醚加入三口烧瓶,升温至45℃,开启搅拌使大单体完全融化。
(2)大单体完全融化后测定烧瓶内温度,控制温度在40℃,温度稳定后加入氧化剂 30份过氧化二碳酸二异丙酯。
(3)待10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为1.5h,小单体溶液由5份巯基乙醇、35份丙烯酸、70份甲基丙烯酸、20份丙烯酸乙酯组成;小单体滴加10分钟后,滴加12份甲基丙烯酸对(N,N-二甲氨基)苄酯,滴加时间为1.5h。
(4)滴加过程中做好反应釜的保温工作,不需要加热。滴加结束后保温熟化2h,熟化结束后缓慢加入15份碳酸钠进行中和,冷却切片后,即得超支化固体聚羧酸减水剂。
实施例5
一种超支化固体聚羧酸减水剂的制备方法,其特征在于:所述超支化固体聚羧酸减水剂由以下组分制备而成:聚醚大单体、小单体溶液、链转移剂、带有双键的胺类还原剂、中和剂;总质量1000份,制备方法包括以下步骤:
(1)将815份甲基烯丙基聚氧乙烯醚加入三口烧瓶,升温至50℃,开启搅拌使大单体完全融化。
(2)大单体完全融化后测定烧瓶内温度,控制温度在45℃,温度稳定后加入氧化剂22份过氧化二碳酸二环己酯。
(3)待10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为2h,小单体溶液由10份苯乙烯磺酸钠、80份丙烯酸、10份富马酸、25份甲基丙烯酸羟乙酯组成;小单体滴加10分钟后,滴加13份甲基丙烯酸甲基苯基氨基乙酯,滴加时间为2.2h。
(4)滴加过程中做好反应釜的保温工作,不需要加热。滴加结束后保温熟化1.5h,熟化结束后缓慢加入25份碳酸氢钠进行中和,冷却切片后,即得超支化固体聚羧酸减水剂。
实施例6
一种超支化固体聚羧酸减水剂的制备方法,其特征在于:所述超支化固体聚羧酸减水剂由以下组分制备而成:聚醚大单体、小单体溶液、链转移剂、带有双键的胺类还原剂、中和剂;总质量1000份,制备方法包括以下步骤:
(1)将829份异戊烯醇聚氧乙烯醚加入三口烧瓶,升温至45℃,开启搅拌使大单体完全融化。
(2)大单体完全融化后测定烧瓶内温度,控制温度在40℃,温度稳定后加入氧化剂10份过氧化苯甲酸叔丁酯。
(3)待10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为1.8h,小单体溶液由8份次亚磷酸钠、50份丙烯酸、20份甲基丙烯酸、40份马来酸、20份丙烯酸羟乙酯组成;小单体滴加10分钟后,滴加15份甲基丙烯酸二乙氨基乙酯,滴加时间为2h。
(4)滴加过程中做好反应釜的保温工作,不需要加热。滴加结束后保温熟化2h,熟化结束后缓慢加入8份三异丙醇胺进行中和,冷却切片后,即得超支化固体聚羧酸减水剂。
实施例1
对实施例1-6制备得到的超支化固体聚羧酸减水剂样品、市售性能较好的40%固含量的聚羧酸减水剂母液样品作为对照例1、市售性能较好的固体聚羧酸减水剂样品作为对照例2,进行水泥净浆流动度测试、混凝土性能测试。
如图3、图4、图5所示,对对照例1、实施例1进行了红外测试。测试了对照例1,对照例2,实施例1的分子量及其分布。
由图3中对照例1的红外光谱图可以看出:2890cm -1为C-H的反对称伸缩振动峰,3500cm -1为-OH伸缩振动峰,1125cm -1为侧链醚键C-O-C伸缩振动峰,1700cm -1为羧基中C=O伸缩振动峰。从实施例1的红外谱图可以看出,除了原有聚羧酸减水剂的特征吸收峰之外,在980cm -1出现了C-N伸缩振动峰,说明了胺类引发剂成功接枝到了聚羧酸减水剂分子上;1250cm -1为酯类单体的C-O-C伸缩振动峰,说明聚合物中成功引入了酯类单体。
如图4和图5所示,对三种聚合物的分子量及分子量分布进行比较发现:对照例1的分子量及其多分散性比较适中,较为成熟的合成工艺使其大单体的转化率也最高(91.8%);对照例2是通过AIBN热引发合成的固体聚羧酸减水剂,其平均分子量较低,虽然产物的多分散性较小(2.34),但是其大单体的转化率最低(84.7%),较高的反应温度造成了一定量的丙烯酸共聚或失活,也有可能是AIBN分解的2-氰基丙基自由基存在较强的共轭效应在该引发体系中活性较低造成的;实施例1制备的超支化固体聚羧酸减水剂的平均分子量较大,证明了减水剂分子中存在一定的交联、支化,其多分散性较大,一方面和引发剂的链转移常数较大有关,另一方面也证明了产物具有一定的支化程度。另外,实施例1制备的产物分子量(Mw-Mp)>7000,表明其含有较多的重质产物,进一步证明了体系中存在交联、支化,而对照例1和对照例2的分子量(Mw-Mp)值分别为5518和3066,表明较低分子量的产物较多。
试验参照GB/T8077-2012《混凝土外加剂匀质性实验方法》标准,采用基准水泥,折固掺量0.11%,测试实施例1-6所得样品和对照例在基准水泥中的净浆流动度。
试验参照GB/T50080-2016《普通混凝土拌合物性能试验方法标准》与GB/T50081-2019《混凝土物理力学性能试验方法标准》,对实施例1-6所得样品和对照例进行混凝土性能测试,折固掺量0.18%,测定其混凝土坍落度及1h损失:采用的混凝土配合比设计用量(kg/cm3)均为m(基准水泥):m(砂):m(石):m(水)=360:810:990:160。
实施例1-6合成的超支化固体聚羧酸减水剂和对照例2使用时,将固体聚羧酸减水剂加水溶解为40%固含量的液体减水剂,溶解后无明显杂质,且原本性能保持不变;实施例1-6合成的超支化固体聚羧酸减水剂能快速溶解,对照例2溶解速度较慢。
通过图2可以看出,在相同掺量条件下,实施例1-6合成的超支化固体聚羧酸减水剂的净浆分散性能、减水分散性能、流动性和坍落度保持能力都优于市售的40%固含量、固体型聚羧酸减水剂。制备得到的超支化固体聚羧酸减水剂稳定性强,溶解性好,具有降低设备成本和工艺难度,减低反应温度减少能耗、降低运输成本和包装费用等优点。
最后说明的是,以上实施例仅用以说明本发明的技术方案而非限制,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (5)

  1. 一种超支化固体聚羧酸减水剂的制备方法,其特征在于,包括以下步骤:
    按照重量份计算,
    S1,将813-856份聚醚大单体加入反应釜中,开启搅拌,升温至40-60℃,使大单体完全熔化;
    S2,测定釜内温度,控制温度在35-45℃,温度稳定后,加入8-30份氧化剂;
    S3,加入氧化剂10分钟后开始滴加小单体溶液和带有双键的胺类还原剂,小单体溶液滴加时间为1-2.5小时,小单体溶液由2.5-10份链转移剂、84-110份不饱和羧酸及20-35份不饱和酯类单体组成;
    小单体溶液滴加10分钟后,滴加8-15份带有双键的胺类还原剂,滴加时间为1-2.5小时;所述带有双键的胺类还原剂由甲基丙烯酸二甲氨乙酯、甲基丙烯酸二乙氨基乙酯、甲基丙烯酸对(N,N-二甲氨基)苄酯、甲基丙烯酸甲基苯基氨基乙酯、4'-(二甲氨基)丙烯酰苯胺中的一种或者几种组成;
    S4,滴加过程中做好反应釜的保温工作,不需要加热,滴加结束后保温熟化1-3小时,熟化结束后缓慢加入5-25份中和剂,反应完毕后使用冷凝切片机进行固化切片,即可得到固含量100%的超支化固体聚羧酸减水剂。
  2. 根据权利要求1所述的超支化固体聚羧酸减水剂的制备方法,其特征在于:
    所述中和剂由氢氧化钠、碳酸钠、碳酸氢钠、二乙醇钠、三乙醇胺、三异丙醇胺中的一种或者几种组成。
  3. 根据权利要求1所述的超支化固体聚羧酸减水剂的制备方法,其特征在于:
    所述聚醚大单体由烯丙基聚氧乙烯醚、甲基烯丙基聚氧乙烯醚、异戊烯醇聚氧乙烯醚、乙烯基丁基醚聚氧乙烯醚中的一种或几种组成。
  4. 根据权利要求1所述的超支化固体聚羧酸减水剂的制备方法,其特征在于:
    所述氧化剂由过氧化氢、过氧化苯甲酰、过氧化十二酰、过氧化苯甲酸叔丁酯、过氧化二碳酸二异丙酯、过氧化二碳酸二环己酯中的一种或者几种组成。
  5. 根据权利要求1所述的超支化固体聚羧酸减水剂的制备方法,其特征在于:
    所述链转移剂为巯基乙酸、巯基丙酸、巯基乙醇、乙烯基磺酸钠、苯乙烯磺酸钠、次亚磷酸钠中的一种或者几种组成。
PCT/CN2022/104073 2022-05-19 2022-07-06 一种超支化固体聚羧酸减水剂的制备方法 WO2023221264A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210540815.3 2022-05-19
CN202210540815.3A CN114634602B (zh) 2022-05-19 2022-05-19 一种超支化固体聚羧酸减水剂的制备方法

Publications (1)

Publication Number Publication Date
WO2023221264A1 true WO2023221264A1 (zh) 2023-11-23

Family

ID=81953025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/104073 WO2023221264A1 (zh) 2022-05-19 2022-07-06 一种超支化固体聚羧酸减水剂的制备方法

Country Status (2)

Country Link
CN (1) CN114634602B (zh)
WO (1) WO2023221264A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114634602B (zh) * 2022-05-19 2022-07-29 济南城建集团有限公司 一种超支化固体聚羧酸减水剂的制备方法
CN115849760B (zh) * 2022-12-28 2023-12-01 科之杰新材料集团有限公司 一种早强型聚羧酸减水剂及其制备方法
CN116333231B (zh) * 2023-05-25 2023-08-18 中建材中岩科技有限公司 一种超高分散型减水剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106543382A (zh) * 2016-12-07 2017-03-29 湖北工业大学 一种固片状聚羧酸减水剂及其聚合制备方法
CN107936191A (zh) * 2017-12-15 2018-04-20 上海三瑞高分子材料股份有限公司 一种聚羧酸保坍剂及其制备方法
CN108503256A (zh) * 2018-04-27 2018-09-07 江苏百瑞吉新材料有限公司 一种适应性综合型聚羧酸减水剂
CN114634602A (zh) * 2022-05-19 2022-06-17 济南城建集团有限公司 一种超支化固体聚羧酸减水剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105417985A (zh) * 2015-12-16 2016-03-23 乐平领航新型材料有限公司 一种具有叔胺基的多支链聚羧酸减水剂及其制备方法
CN112358221A (zh) * 2020-09-04 2021-02-12 浙江玖龙新材料有限公司 一种减水型固体聚羧酸减水剂配方及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106543382A (zh) * 2016-12-07 2017-03-29 湖北工业大学 一种固片状聚羧酸减水剂及其聚合制备方法
CN107936191A (zh) * 2017-12-15 2018-04-20 上海三瑞高分子材料股份有限公司 一种聚羧酸保坍剂及其制备方法
CN108503256A (zh) * 2018-04-27 2018-09-07 江苏百瑞吉新材料有限公司 一种适应性综合型聚羧酸减水剂
CN114634602A (zh) * 2022-05-19 2022-06-17 济南城建集团有限公司 一种超支化固体聚羧酸减水剂及其制备方法

Also Published As

Publication number Publication date
CN114634602A (zh) 2022-06-17
CN114634602B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023221264A1 (zh) 一种超支化固体聚羧酸减水剂的制备方法
CN104558434B (zh) 含硅聚羧酸减水剂、其制备方法及用途
CN103183794B (zh) 固体酸酯化制备聚羧酸减水剂的方法
WO2021027174A1 (zh) 一种保水型聚羧酸减水剂及其制备方法
WO2014085996A1 (zh) 一种保坍型聚羧酸超塑化剂
CN108821633B (zh) 一种减水型固体聚羧酸减水剂及其制备方法
CN108794700B (zh) 一种羧酸基聚合物及其制备方法和缓释型聚羧酸减水剂
WO2016045421A1 (zh) 一种醚类聚羧酸保坍剂及其制备方法
CN107586366B (zh) 一种改性聚羧酸减水剂及其制备方法
CN106800622A (zh) 一种缓释保坍型聚羧酸减水剂及其制备方法
CN104140503A (zh) 一种高减水高保坍型高性能聚羧酸减水剂的常温合成方法
CN107629173B (zh) 原子转移自由基聚合反应制备聚羧酸保坍剂的方法
CN102584093B (zh) 一种主链羧基密度可调的高效聚羧酸减水剂
CN105236800A (zh) 一种聚羧酸系减水剂母液及其制备方法和应用
CN107325236A (zh) 一种非泥土敏感型聚羧酸减水剂及其制备方法
WO2014059674A1 (zh) 一种减水剂中间体、其制备方法及由其制备的减水剂
CN103693881A (zh) 一种聚羧酸减水剂及其应用和制备方法
CN106519137A (zh) 一种十字星型缓释保坍型聚羧酸减水剂及其制备方法
CN110183591A (zh) 一种c80管桩混凝土用早强型聚羧酸减水剂
WO2020001008A1 (zh) 一种微交联粉体聚羧酸减水剂的制备方法
CN107200839B (zh) 一种甲基烯丙醇无规聚醚及其制备方法
CN104945576A (zh) 一种高效减水剂的制备方法、产品及应用
CN102503221B (zh) 环己醇接枝聚羧酸减水剂及其制备方法
CN104987472A (zh) 一种增强水泥混凝土保坍特性的减水剂
CN113336902A (zh) 一种茶皂素改性复合型减水剂及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942295

Country of ref document: EP

Kind code of ref document: A1