WO2023221231A1 - 含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件 - Google Patents

含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件 Download PDF

Info

Publication number
WO2023221231A1
WO2023221231A1 PCT/CN2022/100267 CN2022100267W WO2023221231A1 WO 2023221231 A1 WO2023221231 A1 WO 2023221231A1 CN 2022100267 W CN2022100267 W CN 2022100267W WO 2023221231 A1 WO2023221231 A1 WO 2023221231A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
ring
carbon atoms
aromatic amine
Prior art date
Application number
PCT/CN2022/100267
Other languages
English (en)
French (fr)
Inventor
刘嵩远
谢再峰
梁丰
邢玉彬
徐凌伟
Original Assignee
石家庄诚志永华显示材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石家庄诚志永华显示材料有限公司 filed Critical 石家庄诚志永华显示材料有限公司
Publication of WO2023221231A1 publication Critical patent/WO2023221231A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/96Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings spiro-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/625Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing at least one aromatic ring having 7 or more carbon atoms, e.g. azulene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to the technical field of organic light-emitting semiconductors. More specifically, it relates to an aromatic amine compound containing a tetraphenyl structure and an organic electroluminescent device containing the same.
  • the diversity, low cost and excellent optoelectronic properties of organic optoelectronic materials in synthesis enable the prepared display panels or lighting equipment to have features such as wide viewing angle, fast response, light weight, thin thickness, low voltage, low power consumption, high Contrast, flexibility and other advantages.
  • Organic light-emitting elements usually consist of a cathode, an electron injection layer, an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer, and an anode.
  • a certain voltage is given to the two poles, holes are injected from the anode to the organic layer, and holes are injected from the cathode to the organic layer.
  • the organic layer injects electrons, and holes and electrons migrate from both sides of the anode and cathode to the middle light-emitting layer, and meet to form excitons.
  • the excitons have localized electron-hole pairs in the excited energy state.
  • the excitons pass through the light-emitting mechanism. Relaxed and glowing. It can be seen that several organic layers between the anode and the cathode bear different functions, so there are differences in photoelectric properties. The differences in organic material properties depend on structural differences, so the photoelectric performance requirements of the material can be achieved through reasonable structural fragments.
  • OLED materials have been widely used in electronic devices such as mobile phones and tablet computers, and are gradually expanding to large-size display devices such as televisions.
  • the luminous efficiency and service life of OLED light-emitting elements need to be further improved and the driving voltage further reduced.
  • the improvement of the performance of light-emitting devices requires not only improvements in device structure and manufacturing processes, but also innovation in high-performance OLED materials.
  • the hole transport rate will directly affect the driving voltage of the organic electroluminescent device.
  • the hole transport layer in organic electroluminescent devices has the greatest impact on the hole transport rate. Therefore, it is very important to improve the hole transport rate of the hole transport layer material.
  • light-emitting auxiliary layers have been developed in the devices.
  • the light-emitting auxiliary layer is used to block electrons migrated from the light-emitting layer from entering the hole transport layer.
  • the light-emitting auxiliary layer has a high hole transmission rate, which is beneficial to improving the driving voltage of the organic electroluminescent device. Therefore, it is urgent to develop a new material with fast hole transport efficiency and suitable HOMO energy level.
  • the object of the present invention is to provide an aromatic amine compound containing a tetraphenyl structure and an organic electroluminescent device containing the same.
  • the compound containing The organic electroluminescent device in which the compound is used as a hole transport layer and/or a luminescence auxiliary layer has low driving voltage, high external quantum efficiency and long service life.
  • the present invention provides an aromatic amine compound containing a tetraphenyl structure.
  • the structural formula of the aromatic amine compound is as shown in Formula I:
  • Ar 1 represents a substituted or unsubstituted aryl group having C 6 to C 60 carbon atoms, a substituted or unsubstituted heteroaryl group having C 6 to C 60 carbon atoms, or a substituted or unsubstituted heteroaryl group having C 6 to C 60 carbon atoms.
  • Substituted or unsubstituted condensed ring aryl group, substituted or unsubstituted heterocondensed ring aryl group with carbon atoms of C 5 to C 60 , substituted or unsubstituted cycloalkyl group with carbon atoms of C 3 to C 30 A kind of, wherein each substituent in Ar 1 can be the same or different, and each substituent is independently selected from deuterium, halogen, alkyl group with carbon atoms of C 1 to C 10 , carbon group of C 6 to One of a C 60 aryl group, a C 6 to C 60 condensed ring aryl group, or a C 3 to C 30 cycloalkyl group, in which two or more substituents can be Connected to each other to form aliphatic, aromatic or fused rings;
  • R 1 and R 2 each independently represent hydrogen, an alkyl group having C 1 to C 10 carbon atoms, an aryl group having C 6 to C 60 carbon atoms, or a heteroaryl group having C 5 to C 60 carbon atoms.
  • R 1 and R 2 can be connected to each other to form an aliphatic ring, an aromatic ring, a heteroaromatic ring, a condensed ring or a heterofused ring, and R 1 and R 2 do not represent hydrogen at the same time;
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , and R 10 each independently represent hydrogen, deuterium, an alkyl group with a carbon number of C 1 to C 10 , and a carbon number of C 3
  • One of the cycloalkyl groups with ⁇ C 15 , alkenyl groups with carbon atoms from C 2 to C 10 , or aryl groups with carbon atoms from C 6 to C 60 and R 3 , R 4 , R 5 , R 6 , two or more of R 7 , R 8 , R 9 and R 10 can be connected to each other to form an aliphatic ring, aromatic ring or condensed ring;
  • R 11 represents one of hydrogen, an alkyl group with carbon atoms from C 1 to C 10 , or a cycloalkyl group with carbon atoms from C 3 to C 15 ;
  • X represents one of single bond, O or CH 2 ;
  • L 1 , L 2 , and L 3 each independently represent a single bond, One of them, and any one or more non-adjacent Cs on the ring of the group can be substituted by N, and any H can be substituted by F, D, alkyl or cycloalkyl;
  • the hydrogens in the ring structure of the compound represented by formula I may each be independently replaced by deuterium.
  • the compound represented by the formula I is one of the structures represented by the following formulas I-1 to I-10:
  • Ar 1 represents a substituted or unsubstituted aryl group with a carbon number of C 6 to C 60 , a substituted or unsubstituted heteroaryl group with a carbon number of C 6 to C 60 , and a substituted or unsubstituted heteroaryl group with a carbon number of C 6 to C 60.
  • each substituent in Ar 1 can be the same or different, each substituent is independently selected from deuterium, halogen, an alkyl group with a carbon number of C 1 to C 10 , a carbon number of C One of the aryl groups from 6 to C 60 , the condensed ring aryl group from C 6 to C 60 or the cycloalkyl group from C 3 to C 30 , two or more of which are substituted
  • the groups can be connected to each other to form an aliphatic ring, an aromatic ring or a fused ring;
  • R 11 represents one of hydrogen, an alkyl group with carbon atoms from C 1 to C 10 , or a cycloalkyl group with carbon atoms from C 3 to C 15 ;
  • L 1 , L 2 and L 3 each independently represent a single bond or And any one or more non-adjacent Cs on the ring of the group can be substituted by N, and any H can be substituted by F, D, alkyl or cycloalkyl;
  • the hydrogens in the ring structures of the compounds represented by Formula I-1 to Formula I-10 may each be independently replaced by deuterium.
  • said L 1 represents a single bond.
  • Ar 1 represents:
  • One or more non-adjacent Cs on the ring of the group can be substituted by N, and any H can be independently substituted by F, D, alkyl, cycloalkyl or phenyl.
  • cycloalkyl group is selected from one of cyclobutyl, cyclopentyl, cyclohexyl or adamantane.
  • the alkyl group is one of a linear alkyl group with carbon atoms of C 1 to C 10 or a branched alkyl group with carbon atoms of C 1 to C 10 .
  • the compound represented by formula I is selected from any one of the following compounds:
  • the present invention provides an organic electroluminescent device, including an anode, a hole transport region, a luminescent layer, an electron transport region, and a cathode arranged in sequence on a substrate; wherein, the hole transport region includes One or more aromatic amine compounds as described above.
  • the hole transport region includes a hole transport layer and a luminescence auxiliary layer, the luminescence auxiliary layer is located between the hole transport layer and the luminescence layer, and the luminescence auxiliary layer and/or the hole transport layer contains One or more of the aromatic amine compounds.
  • the organic electroluminescent device is a red or green organic electroluminescent device
  • the light-emitting auxiliary layer contains one or more of the aromatic amine compounds.
  • the electron transport region includes an electron transport layer and an electron injection layer.
  • the aromatic amine compound provided by the invention is an aromatic amine compound containing a tetraphenyl structure, has a high hole transmission rate, can be used as a hole transport layer, and can also be used as a light-emitting auxiliary layer, which is beneficial to reducing the driving voltage of the device.
  • a tetraphenyl structure into the molecule of the aromatic amine compound, the thermal stability of the compound is improved, which is beneficial to increasing the service life of the organic electroluminescent device using the aromatic amine compound.
  • the phenyl group in the ortho position of the nitrogen atom connected to the tetraphenyl structure can effectively protect the positive ions generated by the nitrogen atom, which is beneficial to improving the hole transmission efficiency and stability, thereby reducing the The driving voltage of the device and the effect of improving the external quantum efficiency.
  • the phenyl group in the para position of the nitrogen atom can increase the electron cloud density of the compound, improve the degree of conjugation, and further improve the service life of the device.
  • the compound has an appropriate HOMO energy level, which is beneficial to improving hole transport efficiency while blocking electrons from migrating to the hole transport layer. Therefore, organic electroluminescent devices containing this compound have low driving voltage, high external quantum efficiency and long service life.
  • Figure 1 shows a schematic structural diagram of an organic electroluminescent device containing the aromatic amine compound of the present invention.
  • Figure 2 shows the mass spectrum of the compound shown in Synthesis Example 2.
  • Figure 3 shows the mass spectrum of the compound shown in Synthesis Example 3.
  • Figure 4 shows the mass spectrum of the compound shown in Synthesis Example 32.
  • Figure 5 shows the mass spectrum of the compound shown in Synthesis Example 39.
  • Figure 6 shows the mass spectrum of the compound shown in Synthesis Example 44.
  • Figure 7 shows the mass spectrum of the compound shown in Synthesis Example 45.
  • the compound of the present invention is suitable for use in light-emitting elements, display panels and electronic devices, and is especially suitable for use in organic electroluminescent devices.
  • the electronic device according to the present invention is a device comprising at least one layer comprising at least one organic compound.
  • the device may also comprise an inorganic material or a layer formed entirely of inorganic material.
  • the electronic device is preferably an organic electroluminescent device (OLED), an organic integrated circuit (O-IC), an organic field effect transistor (O-FET), an organic thin film transistor (O-TFT), or an organic light emitting transistor (O-LET).
  • organic solar cells O-SC
  • organic dye-sensitized solar cells O-DSSC
  • organic optical detectors organic photoreceptors
  • organic field quenching devices O-FQD
  • luminescent electrochemical cells LEC
  • O-lasers organic laser diodes
  • organic plasma emitting devices OLED
  • OLED organic electroluminescent device
  • the aromatic amine compound of the present invention is prepared by utilizing typical reactions such as Buchwald-Hartwig coupling reaction, Suzuki coupling reaction, and Heck coupling reaction.
  • Example 2 The method is the same as in Example 1, except that A11 (4.52g; 10mmol) and B11 (3.47g; 9mmol) are replaced by A1 and B1, and finally the product C11 is obtained: 4.49g (yield: 66%), MS (m/z) (M+):756.
  • Example 2 The method is the same as in Example 1, except that A40 (5.89g; 10mmol) and B40 (3.47g; 9mmol) are replaced by A1 and B1, and finally the product C40 is obtained: 4.1g (yield: 51%), MS (m/z) (M+):893.
  • Example 2 The method is the same as Example 1, except that A50 (3.75g; 10mmol) and B50 (3.47g; 9mmol) are replaced by A1 and B1, and finally the product C50 is obtained: 4.09g (yield: 67%), MS (m/z) (M+):679.
  • Electrolyte Use ultra-dry methylene chloride or DMF solvent, add tetrabutyl ammonium hexafluorophosphate to it, and prepare an electrolyte solution with a concentration of 0.1 mol/L.
  • Test method Add 10ml of prepared 0.1mol/L electrolyte into a 50ml beaker.
  • the solvent needs to be deoxygenated before testing. Connect the plastic tube to the nitrogen pipeline and insert the solvent for deoxygenation. After deoxygenation, remove the air tube from the solvent but do not leave the bottle to ensure that the test process is always in a nitrogen environment. Test the baseline, sample, and ferrocene internal standard in sequence.
  • Each ampoule tube was filled with 1 g of the compounds of Examples 1 to 50. Then seal it with a tube sealer. Put the sealed ampoule tubes into separate chambers of the thermal stabilizer, turn on the vacuum system and pump the vacuum to below 10 -5 Pa. Set the temperature of the cavity to 300°C, the heating time to 240h, and start heating. After the 240h experiment, grind them separately and take samples to test the purity. When the purity of the compound changes within 0.5%, it means that the compound has good thermal stability and passes the thermal stability test.
  • the compounds provided by the embodiments of the present invention have appropriate HOMO energy levels, are conducive to improving hole transmission efficiency, and have good thermal stability. It is beneficial to improve the driving voltage, external quantum efficiency and service life of the device.
  • the organic electroluminescent device includes an anode, a hole transport area, a luminescent layer, an electron transport area, and a cathode arranged in sequence on a substrate;
  • the hole transport region includes a hole transport layer and a luminescence auxiliary layer; the electron transport region includes an electron transport layer and an electron injection layer.
  • the light-emitting layer is composed of a host and a doped guest, and the body of the light-emitting layer can be composed of one molecular material or multiple molecular materials.
  • the aromatic amine compound described in the present invention can be used in one or more layers of the above-mentioned organic electroluminescent device, and is preferably used in the hole transport layer and/or luminescence auxiliary layer material of the device.
  • the anode in the embodiment adopts anode materials commonly used in this field, such as ITO, Ag or multi-layer structures thereof.
  • the hole transport unit uses hole transport materials commonly used in this field, and is doped with F4TCNQ, HATCN, NDP-9, etc.
  • the light-emitting unit uses light-emitting materials commonly used in the field.
  • it can be composed of a host material and an emitting guest material doped.
  • the emitting guest material can be an organic material such as a boron nitrogen compound or a metal complex (such as metal Ir, Pt etc.).
  • the electron transmission unit adopts electron transmission materials commonly used in this field.
  • the electron injection layer uses electron injection materials commonly used in this field, such as Liq, LiF, Yb, etc.
  • the cathode uses materials commonly used in this field, such as metal Al, Ag or metal mixtures (Ag-doped Mg, Ag-doped Ca, etc.).
  • each functional layer in this embodiment is conventional methods in this field, such as vacuum thermal evaporation or inkjet printing. They will not be described in detail here. Only some process details and tests during the preparation process are discussed. Additional instructions for the method are as follows:
  • a mixture doped with a weight ratio of 97:3 forms a light-emitting layer; then, on the above-mentioned light-emitting layer, ET-01 is vacuum deposited to a thickness of 40nm to form an electron transport layer; then, on the above-mentioned electron transport layer, LiF is deposited to a thickness of 0.2nm An electron injection layer is formed; finally, on the above electron injection layer, aluminum (Al) is deposited with a thickness of 150 nm to form a cathode, and a green organic electroluminescent device is prepared.
  • Light-emitting layer then on the above-mentioned light-emitting layer, vacuum deposit ET-01 with a thickness of 40nm to form an electron transport layer; then on the above-mentioned electron transport layer, deposit LiF with a thickness of 0.2nm to form an electron injection layer, and finally on the above-mentioned electron injection layer On the layer, aluminum (Al) is deposited with a thickness of 150 nm to form a cathode, and a red organic electroluminescent device is prepared.
  • the compound described in the embodiment is made into an organic electroluminescent device, wherein C2, C3, C4, C5, C6, C7, C8, C9, C10 are used instead of C1 to make a blue organic electroluminescent device; Take C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22, C23, C24, C25, C26, C27, C28, C29, C30, C41, C42, C43, C44, C45, C46 , C47, C48, C49, and C50 are used to replace C11 to make green organic light-emitting devices; C32, C33, C34, C35, C36, C37, C38, C39, and C40 are used to replace C31 to make red organic light-emitting devices.
  • the comparative compound was made into an organic electroluminescent device using the above method as a device comparison example.
  • a blue-light organic electroluminescent device was made by using Comparative Compound 1 instead of C1 as Device Comparative Example 1
  • a blue-light organic electroluminescent device was made by using Comparative Compound 2 instead of C11 as Device Comparative Example 2
  • a blue-light organic electroluminescent device was made by using Comparative Compound 3 instead of C1.
  • a red light organic electroluminescent device is used as device comparison example 3.
  • the bond dissociation energy of the example compounds and the comparative example compounds can be calculated by density functional theory method.
  • Bond dissociation energy (BDE) is defined as the reaction enthalpy change during the breaking process of chemical bonds in molecules, which reflects the energy required for the bond breaking process. Therefore, the stability of the compound can be judged by the BDE of each bond in the hole state of the compound. The greater the dissociation energy of a compound, the better the stability of the compound, and vice versa.
  • the brightness is tested using the spectrum scanner PhotoResearch PR-635;
  • Life test Use LT-96ch life test device.
  • the organic light-emitting device prepared by using the aromatic amine compound containing a tetraphenyl structure of the present invention has a significant increase in BDE due to the protective effect of the ortho-position phenyl group on the nitrogen atom, increases the material stability, and ultimately exhibits a greatly reduced life span. Slow down.
  • the tetraphenyl structures contained in the present invention are arranged in the same direction.
  • the tetraphenyl structures arranged in the same direction are The molecules are arranged in a more orderly manner and the intermolecular stacking is better. Therefore, when used as a hole transport layer or a luminescence auxiliary layer, it helps to improve the transmission of holes and reduce the driving voltage, which ultimately makes the driving of the embodiments in Table 2-4 The voltage is small compared to the comparative example.
  • the organic electroluminescent device containing the aromatic amine compound containing a tetraphenyl structure of the present invention has lower driving voltage, higher external quantum efficiency and longer life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

涉及一种含有四联苯结构的芳香胺化合物以及一种有机电致发光器件,该芳香胺化合物作为该有机电致发光器件的空穴传输层和/或发光辅助层,所述有机电致发光器件具有低的驱动电压、高的外量子效率和长的使用寿命。

Description

含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件 技术领域
本发明涉及有机发光半导体技术领域。更具体地,涉及一种含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件。
背景技术
有机光电材料在合成上所具有多样性、低成本和优良的光电性能使其所制备的显示面板或照明设备具有诸如广视角、响应快、质量轻、厚度薄、低电压、低耗电、高对比度、可挠曲性等优点。
有机发光元件通常由阴极、电子注入层、电子传输层、发光层、空穴传输层、空穴注入层、阳极构成,当给予两极一定电压时,由阳极向有机层注入空穴,由阴极向有机层注入电子,空穴和电子由阴阳两极两侧向中间的发光层迁移,并相遇形成激子,该激子具有受激发能态的局限化电子-空穴对,该激子通过发光机制松弛而发光。可以看出阴阳两极之间的若干有机层承担着不同的功能,因此在光电性能上具有差异,有机材料性质差异取决于结构差异,因此可以通过合理的结构片段达到材料光电性能需求。
当前,OLED材料已经广泛应用与手机、平板电脑等电子设备,并逐步向电视等大尺寸显示设备扩展。然而,为了获得更好的显示效果和更广泛的应用场景,OLED发光元件的发光效率、使用寿命需要进一步提高、驱动电压进一步降低。而发光器件的性能的提升不仅需要器件结构和制作工艺的改进,也需要高性能OLED材料的创新。
在有机电致发光器件中,空穴传输速率会直接影响有机电致发光器件的驱动电压。空穴传输速率越快,驱动电压越小,空穴传输速率越慢,驱动电压越大。随着驱动电压的增大,器件的能耗也随之上升。在有机电致发光器件中的空穴传输层对空穴传输速率的影响最大,因此,改善空穴传输层材料的空穴传输速率是非常重要的。随着有机电致发光器件和材料的不断发展,器件中发展出了发光辅助层。发光辅助层用于阻挡由发光层迁移的电子进入空穴传输层。并且,发光辅助层具有较高的空穴传输速率,有利于改善有机电致发光器件的驱动电压。因此亟待开发一种空穴传输效率快,并且具有适宜的HOMO能级的新材料。
发明内容
基于以上事实,本发明的目的在于提供一种含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件,通过提供一种结构中氮原子能够很好的得到保护的化合物,使得包含该化合物作为空穴传输层和/或发光辅助层的有机电致发光器件具有低的驱动电压、高的外量子效率和长的使用寿命。
一方面,本发明提供一种含有四联苯结构的芳香胺化合物,所述芳香胺化合物的结构式如式Ⅰ所示:
Figure PCTCN2022100267-appb-000001
其中:
Ar 1表示碳原子数为C 6~C 60的取代或未取代的芳基、碳原子数为C 6~C 60的取代或未取代的杂芳基、碳原子数为C 6~C 60的取代或未取代的稠环芳基、碳原子数为C 5~C 60的取代或未取代的杂稠环芳基、碳原子数为C 3~C 30的取代或未取代的环烷基中的一种,其中,Ar 1中的各取代基可以相同或不同,各取代基各自独立地选自氘、卤素、碳原子数为C 1~C 10的烷基、碳原子数为C 6~C 60的芳基、碳原子数为C 6~C 60的稠环芳基或碳原子数为C 3~C 30的环烷基中的一种,其中两个或两个以上的取代基可以彼此连接形成脂肪环、芳环或稠环;
R 1、R 2各自独立地表示氢、碳原子数为C 1~C 10的烷基、碳原子数为C 6~C 60的芳基或碳原子数为C 5~C 60的杂芳基中的一种,其中,R 1、R 2可以彼此连接形成脂肪环、芳环、杂芳环、稠环或杂稠环,且R 1、R 2不同时表示氢;
R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10各自独立地表示氢、氘、碳原子数为C 1~C 10的烷基、碳原子数为C 3~C 15的环烷基、碳原子数为C 2~C 10的烯基或碳原子数为C 6~C 60的芳基中的一种,且R 3、R 4、R 5、 R 6、R 7、R 8、R 9、R 10中的两个或两个以上可以彼此连接形成脂肪环、芳环或稠环;
R 11表示氢、碳原子数为C 1~C 10的烷基或碳原子数为C 3~C 15的环烷基中的一种;
X表示单键、O或CH 2中的一种;
L 1、L 2、L 3各自独立地表示单键、
Figure PCTCN2022100267-appb-000002
中的一种,且所述基团环上任意一个或多个不相邻的C可以被N取代,任意一个H可以被F、D、烷基或环烷基取代;
式I所示化合物的环结构上的氢可以各自独立地被氘取代。
可以理解,上述例举的L 1、L 2、L 3表示的基团中,当L 1、L 2、L 3各自选自
Figure PCTCN2022100267-appb-000003
Figure PCTCN2022100267-appb-000004
中的一种时,表示这些基团中,苯环上的任意两个位置均可作为连接位点。
进一步地,所述式Ⅰ所示的化合物为下述式I-1~式I-10所示结构中的一种:
Figure PCTCN2022100267-appb-000005
其中,Ar 1表示碳原子数为C 6~C 60的取代或未取代的芳基、碳原子数为C 6~C 60的取代或未取代的杂芳基、碳原子数为C 6~C 60的取代或未取代的稠环芳基、碳原子数为C 5~C 60的取代或未取代的杂稠环芳基、碳原子数为C 3~C 30的取代或未取代的环烷基中的一种,其中,Ar 1中的各取代基可以相同或不同,各取代基各自独立地选自氘、卤素、碳原子数为C 1~C 10的烷基、碳原子数为C 6~C 60的芳基、碳原子数为C 6~C 60的稠环芳基或碳原子数为C 3~C 30的环烷基中的一种,其中两个或两个以上的取代基可以彼此 连接形成脂肪环、芳环或稠环;
R 11表示氢、碳原子数为C 1~C 10的烷基或碳原子数为C 3~C 15的环烷基中的一种;
L 1、L 2、L 3各自独立地表示单键或
Figure PCTCN2022100267-appb-000006
且所述基团环上任意一个或多个不相邻的C可以被N取代,任意一个H可以被F、D、烷基或环烷基取代;
式I-1~式I-10所示化合物环结构上的氢可以各自独立地被氘取代。
进一步地,所述L 1表示单键。
进一步地,所述Ar 1表示:
Figure PCTCN2022100267-appb-000007
Figure PCTCN2022100267-appb-000008
中的一种,且所述基团环上任意一个或多个不相邻的C可以被N取代,任意一个H可以各自独立地被F、D、烷基、环烷基或苯基取代。
进一步地,所述环烷基选自环丁基、环戊基、环己基或金刚烷中的一种。
进一步地,所述烷基为碳原子数为C 1~C 10直链烷基或碳原子数为C 1~C 10支链烷基中的一种。
进一步地,所述式Ⅰ所示化合物选自下述所示化合物中的任意一种:
Figure PCTCN2022100267-appb-000009
Figure PCTCN2022100267-appb-000010
Figure PCTCN2022100267-appb-000011
Figure PCTCN2022100267-appb-000012
Figure PCTCN2022100267-appb-000013
Figure PCTCN2022100267-appb-000014
Figure PCTCN2022100267-appb-000015
Figure PCTCN2022100267-appb-000016
Figure PCTCN2022100267-appb-000017
Figure PCTCN2022100267-appb-000018
Figure PCTCN2022100267-appb-000019
Figure PCTCN2022100267-appb-000020
Figure PCTCN2022100267-appb-000021
Figure PCTCN2022100267-appb-000022
Figure PCTCN2022100267-appb-000023
Figure PCTCN2022100267-appb-000024
Figure PCTCN2022100267-appb-000025
Figure PCTCN2022100267-appb-000026
Figure PCTCN2022100267-appb-000027
Figure PCTCN2022100267-appb-000028
Figure PCTCN2022100267-appb-000029
又一方面,本发明提供一种有机电致发光器件,包括依次设置在衬底基板上的阳极、空穴传输区、发光层、电子传输区、阴极;其中,所述空穴传输区中包括一种或多种如上所述的芳香胺化合物。
进一步地,所述空穴传输区包括空穴传输层和发光辅助层,所述发光辅助层位于空穴传输层和发光层之间,且所述发光辅助层和/或空穴传输层中包含一种或多种所述的芳香胺化合物。
进一步地,当所述有机电致发光器件为红光或绿光有机电致发光器件时,所述发光辅助层中包含一种或多种所述的芳香胺化合物。
进一步地,所述电子传输区包括电子传输层和电子注入层。
本发明的有益效果如下:
本发明提供的芳香胺化合物为一种含有四联苯结构的芳香胺化合物,具有高的空穴传输速率,可以作为空穴传输层,也可以作为发光辅助层,有利于降低器件的驱动电压。芳香胺化合物的分子中,通过引入四联苯结构,使得该化合物的热稳定性得到提高,有利于提高使用该芳香胺化合物的有机电致发光器件的使用寿命。此外,该芳香胺化合物中,与该四联苯结构连接的氮原子的邻位的苯基能够有效的保护氮原子产生的正离子,有利于提高空穴传输效率和稳定性,从而起到降低器件的驱动电压、提高外量子效率的作用。并且氮原子对位的苯基能够增加该化合物的电子云密度,提高共轭程度,进一步提高器件使用寿命的作用。并且,该化合物具有适宜的HOMO能级,有利于提高空穴传输效率的同时阻挡电子向空穴传输层迁移。因此,包含该化合物的有机电致发光器件具有低的驱动电压、高的外量子效率和长的使用寿命。
附图说明
下面结合附图对本发明的具体实施方式作进一步详细的说明。
图1示出含有本发明的芳香胺化合物的有机电致发光器件的结构示意图。
图2示出合成实施例2所示化合物的质谱图。
图3示出合成实施例3所示化合物的质谱图。
图4示出合成实施例32所示化合物的质谱图。
图5示出合成实施例39所示化合物的质谱图。
图6示出合成实施例44所示化合物的质谱图。
图7示出合成实施例45所示化合物的质谱图。
附图说明:1-基板、2-阳极、3-空穴传输层、4-发光辅助层、5-发光层、6-电子传输层、7-电子注入层、8-阴极。
具体实施方式
为了更清楚地说明本发明,下面结合优选实施例和附图对本发明做进一步的说明。附图中相似的部件以相同的附图标记进行表示。本领域技术人员应当理解,下面所具体描述的内容是说明性的而非 限制性的,不应以此限制本发明的保护范围。
本发明的化合物适用于发光元件、显示面板及电子器件中,尤其适用于有机电致发光器件中。本发明所述的电子器件是包括至少一个包含至少一种有机化合物的层的器件,该器件也可以包含无机材料或完全由无机材料形成的层。所述电子器件优选有机电致发光器件(OLED)、有机集成电路(O-IC)、有机场效应晶体管(O-FET)、有机薄膜晶体管(O-TFT)、有机发光晶体管(O-LET)、有机太阳能电池(O-SC)、有机染料敏化的太阳能电池(O-DSSC)、有机光学检测器、有机光感受器、有机场猝熄器件(O-FQD)、发光电化学电池(LEC)、有机激光二极管(O-laser)和有机等离子体发射器件。所述电子器件优选有机电致发光器件(OLED)。示例性的有机电致发光器件的结构示意图如图1所示。
实验部分
为了对本说明书具体地进行说明,将举出实施例和比较例等而详细地进行说明,但是,根据本说明书的实施例和比较例可以变形为各种不同形态每本书命数的范围不被解释为限定于以下详述的实施例和比较例,本说明书的实施例和比较例是为了向本领域技术人员更完整的说明本说明书而提供的。
本发明的芳香胺化合物是利用作为代表性的反应布赫瓦尔德-哈特维希偶联反应、铃木偶联反应、Heck偶联反应等而制备得到。
一些芳香胺化合物的合成实施例:
(1)中间体合成:
Figure PCTCN2022100267-appb-000030
在氮气保护下,向500ml三口瓶中加入SUB1-X(0.05mol)和SUB2-X(0.05mol),使用250ml甲苯和70ml水将其溶解并搅拌30min,然后加入碳酸钾(0.1mol)、四三苯基膦钯(5mmol)加热至90℃并反应8h,降至室温,加水淬灭分液,有机相旋干后使用柱层析分离,得到中间体B-X,收率88%,纯度99%。MS(m/z)(M+):385。
实施例中使用的中间体A1-A50均由以上方式合成制备。
(2)芳香胺化合物合成实施例:
合成实施例1
Figure PCTCN2022100267-appb-000031
将A1(4.02g;10mmol),B1(3.47g;9mmol),和叔丁醇钠(1.05g,11mmol)加入甲苯(50ml)中,然后在氮气保护下,引入双二亚苄基并同钯(274.J28mg,0.30mmol)和三叔丁基磷(121.2mg,0.6mmol),随后将反应体系加热至回流并维持10小时,降至室温后加水淬灭并分液,有机相过滤后使用无水硫酸钠干燥,旋除溶剂,粗产物通过柱色谱提纯。最终得到产物C1:4.7g(收率:74%),MS(m/z)(M+):706。
合成实施例2
Figure PCTCN2022100267-appb-000032
方法同实施例1,区别在于将A2(5.26g;10mmol),B2(3.47g;9mmol)替换A1和B1,最终得到产物C2:4.11g(收率:55%),MS(m/z)(M+):830。
合成实施例3
Figure PCTCN2022100267-appb-000033
方法同实施例1,区别在于将A3(5.24g;10mmol),B3(3.47g;9mmol)替换A1和B1,最终得到产物C2:4.99g(收率:67%),MS(m/z)(M+):828。
合成实施例4
Figure PCTCN2022100267-appb-000034
方法同实施例1,区别在于将A4(4.16g;10mmol),B4(3.47g;9mmol)替换A1和B1,最终得到产物C4:4.92g(收率:76%),MS(m/z)(M+):720。
合成实施例5
Figure PCTCN2022100267-appb-000035
方法同实施例1,区别在于将A5(5.18g;10mmol),B5(3.47g;9mmol)替换A1和B1,最终得到产物C5:4.96g(收率:67%),MS(m/z)(M+):822。
合成实施例6
Figure PCTCN2022100267-appb-000036
方法同实施例1,区别在于将A6(6.36g;10mmol),B6(3.47g;9mmol)替换A1和B1,最终得到产物C6:4.48g(收率:53%),MS(m/z)(M+):940。
合成实施例7
Figure PCTCN2022100267-appb-000037
方法同实施例1,区别在于将A7(6g;10mmol),B7(3.47g;9mmol)替换A1和B1,最终得到产物C7:6.35g(收率:78%),MS(m/z)(M+):904。
合成实施例8
Figure PCTCN2022100267-appb-000038
方法同实施例1,区别在于将A8(4.51g;10mmol),B8(3.47g;9mmol)替换A1和B1,最终得到产物C8:4.01g(收率:59%),MS(m/z)(M+):755。
合成实施例9
Figure PCTCN2022100267-appb-000039
方法同实施例1,区别在于将A9(5.85g;10mmol),B9(3.47g;9mmol)替换A1和B1,最终得到产物C9:4g(收率:50%),MS(m/z)(M+):889。
合成实施例10
Figure PCTCN2022100267-appb-000040
方法同实施例1,区别在于将A10(5.02g;10mmol),B10(3.47g;9mmol)替换A1和B1,最终得到产物C10:5.08g(收率:70%),MS(m/z)(M+):806。
合成实施例11
Figure PCTCN2022100267-appb-000041
方法同实施例1,区别在于将A11(4.52g;10mmol),B11(3.47g;9mmol)替换A1和B1,最终得到产物C11:4.49g(收率:66%),MS(m/z)(M+):756。
合成实施例12
Figure PCTCN2022100267-appb-000042
方法同实施例1,区别在于将A12(5.74g;10mmol),B12(3.47g;9mmol)替换A1和B1,最终得到产物C12:4.9g(收率:62%),MS(m/z)(M+):878。
合成实施例13
Figure PCTCN2022100267-appb-000043
方法同实施例1,区别在于将A13(6.06g;10mmol),B13(3.47g;9mmol)替换A1和B1,最终得到产物C13:5.98g(收率:73%),MS(m/z)(M+):910。
合成实施例14
Figure PCTCN2022100267-appb-000044
方法同实施例1,区别在于将A14(5.02g;10mmol),B14(3.47g;9mmol)替换A1和B1,最终得到产物C14:4.5g(收率:62%),MS(m/z)(M+):806。
合成实施例15
Figure PCTCN2022100267-appb-000045
方法同实施例1,区别在于将A15(5.74g;10mmol),B15(3.47g;9mmol)替换A1和B1,最终得到产物C15:6.32g(收率:80%),MS(m/z)(M+):878。
合成实施例16
Figure PCTCN2022100267-appb-000046
方法同实施例1,区别在于将A16(6.86g;10mmol),B16(3.47g;9mmol)替换A1和B1,最终得到产物C16:5.35g(收率:60%),MS(m/z)(M+):990。
合成实施例17
Figure PCTCN2022100267-appb-000047
方法同实施例1,区别在于将A17(6.17g;10mmol),B17(3.47g;9mmol)替换A1和B1,最终得到产物C17:5.14g(收率:62%),MS(m/z)(M+):921。
合成实施例18
Figure PCTCN2022100267-appb-000048
方法同实施例1,区别在于将A18(4.52g;10mmol),B18(3.47g;9mmol)替换A1和B1,最终得到产物C18:4.35g(收率:64%),MS(m/z)(M+):756。
合成实施例19
Figure PCTCN2022100267-appb-000049
方法同实施例1,区别在于将A19(6.06g;10mmol),B19(3.62g;9mmol)替换A1和B1,最终得到产物C19:6.67g(收率:80%),MS(m/z)(M+):927。
合成实施例20
Figure PCTCN2022100267-appb-000050
方法同实施例1,区别在于将A20(4.86g;10mmol),B20(3.47g;9mmol)替换A1和B1,最终得到产物C20:4.05g(收率:57%),MS(m/z)(M+):790。
合成实施例21
Figure PCTCN2022100267-appb-000051
方法同实施例1,区别在于将A21(3.71g;10mmol),B21(3.47g;9mmol)替换A1和B1,最终得到产物C21:3.4g(收率:56%),MS(m/z)(M+):675。
合成实施例22
Figure PCTCN2022100267-appb-000052
方法同实施例1,区别在于将A22(5.26g;10mmol),B22(3.47g;9mmol)替换A1和B1,最终得到产物C22:4.48g(收率:60%),MS(m/z)(M+):830。
合成实施例23
Figure PCTCN2022100267-appb-000053
方法同实施例1,区别在于将A23(4.38g;10mmol),B23(3.47g;9mmol)替换A1和B1,最终得到产物C23:5.34g(收率:80%),MS(m/z)(M+):742。
合成实施例24
Figure PCTCN2022100267-appb-000054
方法同实施例1,区别在于将A24(4.38g;10mmol),B24(3.47g;9mmol)替换A1和B1,最终得到产物C24:3.47g(收率:52%),MS(m/z)(M+):742。
合成实施例25
Figure PCTCN2022100267-appb-000055
方法同实施例1,区别在于将A25(4.38g;10mmol),B25(3.47g;9mmol)替换A1和B1,最终得到产物C25:3.67g(收率:55%),MS(m/z)(M+):742。
合成实施例26
Figure PCTCN2022100267-appb-000056
方法同实施例1,区别在于将A26(4.38g;10mmol),B26(3.47g;9mmol)替换A1和B1,最终得到产物C26:4.27g(收率:64%),MS(m/z)(M+):742。
合成实施例27
Figure PCTCN2022100267-appb-000057
方法同实施例1,区别在于将A27(4.38g;10mmol),B27(3.47g;9mmol)替换A1和B1,最终得到产物C27:3.47g(收率:52%),MS(m/z)(M+):742。
合成实施例28
Figure PCTCN2022100267-appb-000058
方法同实施例1,区别在于将A28(5.14g;10mmol),B28(3.47g;9mmol)替换A1和B1,最终得到产物C28:5.6g(收率:76%),MS(m/z)(M+):818。
合成实施例29
Figure PCTCN2022100267-appb-000059
方法同实施例1,区别在于将A29(3.61g;10mmol),B29(3.47g;9mmol)替换A1和B1,最终得到产物C29:3.48g(收率:58%),MS(m/z)(M+):666。
合成实施例30
Figure PCTCN2022100267-appb-000060
方法同实施例1,区别在于将A30(4.19g;10mmol),B30(3.47g;9mmol)替换A1和B1,最终得到产物C30:4.58g(收率:71%),MS(m/z)(M+):716。
合成实施例31
Figure PCTCN2022100267-appb-000061
方法同实施例1,区别在于将A31(5.24g;10mmol),B31(3.62g;9mmol)替换A1和B1,最终得到产物C31:4.79g(收率:63%),MS(m/z)(M+):845。
合成实施例32
Figure PCTCN2022100267-appb-000062
方法同实施例1,区别在于将A32(5.4g;10mmol),B32(3.47g;9mmol)替换A1和B1,最终得到产物C32:4.1g(收率:54%),MS(m/z)(M+):844。
合成实施例33
Figure PCTCN2022100267-appb-000063
方法同实施例1,区别在于将A33(5.4g;10mmol),B33(3.47g;9mmol)替换A1和B1,最终得到产物C33:4.03g(收率:53%),MS(m/z)(M+):844。
合成实施例34
Figure PCTCN2022100267-appb-000064
方法同实施例1,区别在于将A34(5.42g;10mmol),B34(3.47g;9mmol)替换A1和B1,最终得到产物C34:4.04g(收率:53%),MS(m/z)(M+):846。
合成实施例35
Figure PCTCN2022100267-appb-000065
方法同实施例1,区别在于将A35(5.02g;10mmol),B35(3.47g;9mmol)替换A1和B1,最终得到产物C35:4.72g(收率:65%),MS(m/z)(M+):806。
合成实施例36
Figure PCTCN2022100267-appb-000066
方法同实施例1,区别在于将A36(5.74g;10mmol),B36(3.47g;9mmol)替换A1和B1,最终得到产物C36:4.43g(收率:56%),MS(m/z)(M+):878。
合成实施例37
Figure PCTCN2022100267-appb-000067
方法同实施例1,区别在于将A37(5.54g;10mmol),B37(3.47g;9mmol)替换A1和B1,最终得到产物C37:5.95g(收率:77%),MS(m/z)(M+):858。
合成实施例38
Figure PCTCN2022100267-appb-000068
方法同实施例1,区别在于将A38(5.89g;10mmol),B38(3.47g;9mmol)替换A1和B1,最终得到产物C38:6.19g(收率:77%),MS(m/z)(M+):893。
合成实施例39
Figure PCTCN2022100267-appb-000069
方法同实施例1,区别在于将A39(5.24g;10mmol),B39(3.47g;9mmol)替换A1和B1,最终得到产物C39:5.59g(收率:75%),MS(m/z)(M+):828。
合成实施例40
Figure PCTCN2022100267-appb-000070
方法同实施例1,区别在于将A40(5.89g;10mmol),B40(3.47g;9mmol)替换A1和B1,最终得到产物C40:4.1g(收率:51%),MS(m/z)(M+):893。
合成实施例41
Figure PCTCN2022100267-appb-000071
方法同实施例1,区别在于将A41(4.52g;10mmol),B41(3.47g;9mmol)替换A1和B1,最终得到产物C41:3.54g(收率:52%),MS(m/z)(M+):756。
合成实施例42
Figure PCTCN2022100267-appb-000072
方法同实施例1,区别在于将A42(4.52g;10mmol),B42(3.47g;9mmol)替换A1和B1,最终得到产物C42:5.38g(收率:79%),MS(m/z)(M+):756。
合成实施例43
Figure PCTCN2022100267-appb-000073
方法同实施例1,区别在于将A43(4.52g;10mmol),B43(3.47g;9mmol)替换A1和B1,最终得到产物C43:5.38g(收率:79%),MS(m/z)(M+):756。
合成实施例44
Figure PCTCN2022100267-appb-000074
方法同实施例1,区别在于将A44(3.61g;10mmol),B44(3.47g;9mmol)替换A1和B1,最终得到产物C44:3.05g(收率:51%),MS(m/z)(M+):665。
合成实施例45
Figure PCTCN2022100267-appb-000075
方法同实施例1,区别在于将A45(3.75g;10mmol),B45(3.47g;9mmol)替换A1和B1,最终得到产物C45:4.52g(收率:74%),MS(m/z)(M+):679。
合成实施例46
Figure PCTCN2022100267-appb-000076
方法同实施例1,区别在于将A46(3.75g;10mmol),B46(3.47g;9mmol)替换A1和B1,最终得到产物C46:3.54g(收率:58%),MS(m/z)(M+):679。
合成实施例47
Figure PCTCN2022100267-appb-000077
方法同实施例1,区别在于将A47(3.75g;10mmol),B47(3.47g;9mmol)替换A1和B1,最终得到产物C47:3.79g(收率:62%),MS(m/z)(M+):679。
合成实施例48
Figure PCTCN2022100267-appb-000078
方法同实施例1,区别在于将A48(3.92g;10mmol),B48(3.47g;9mmol)替换A1和B1,最终得到产物C48:3.38g(收率:54%),MS(m/z)(M+):696。
合成实施例49
Figure PCTCN2022100267-appb-000079
方法同实施例1,区别在于将A49(4.52g;10mmol),B49(3.47g;9mmol)替换A1和B1,最终得到产物C49:4.69g(收率:69%),MS(m/z)(M+):756。
合成实施例50
Figure PCTCN2022100267-appb-000080
方法同实施例1,区别在于将A50(3.75g;10mmol),B50(3.47g;9mmol)替换A1和B1,最终得到产物C50:4.09g(收率:67%),MS(m/z)(M+):679。
化合物性能
HOMO能级测试
HOMO能级通过循环伏安法测得。仪器型号:ZENNIUM。电解液:使用超干的二氯甲烷或DMF溶剂,并在其中加入四丁基六氟磷酸铵,配制成浓度为0.1mol/L的电解质溶液。
测试方法:向50ml烧杯中加入10ml配置好的0.1mol/L电解液。测试前需要对溶剂进行除氧,将塑料管接入氮气管路,插入溶剂进行除氧。除氧后将气管移出溶剂,但不离开瓶内,保证测试过程一直是氮气环境。依次对基线、样品、二茂铁内标进行测试。
热稳定性实验:
分别在安瓿管中装入1g实施例1~50化合物。然后用封管机封口。将完成封口的安瓿管分别放入到热稳定仪单独腔体内,开启真空系统将真空度抽至10 -5Pa以下。将腔体的温度设置为300℃,加热时间为240h,开始加热。240h实验结束后,分别进行研磨,取样测试纯度。当化合物纯度变化在0.5%以内时,表示该化合物具有良好的热稳定性,通过热稳定性实验。
上述HOMO能级测试、热稳定性测试等的结果如下表1所示。
表1
Figure PCTCN2022100267-appb-000081
Figure PCTCN2022100267-appb-000082
如上表1所示,本发明实施例提供的化合物具有适宜的HOMO能级,有利于提高空穴的传输效率,并且具有良好的热稳定性。有利于改善器件的驱动电压、外量子效率和使用寿命。
OLED的制造和表征
器件实施例
本发明提供的有机电致发光器件,包括依次设置在衬底基板上的阳极、空穴传输区、发光层、电子传输区、阴极;
进一步地,所述空穴传输区包括空穴传输层和发光辅助层;所述电子传输区包括电子传输层和电子注入层。
进一步地,所述发光层为主体和掺杂客体组成,发光层主体可以为一种分子材料组成或多种分子材料组成。
本发明所述的芳香胺化合物可以用于上述有机电致发光器件的一层或多层,优选的用于器件的空穴传输层和/或发光辅助层材料。
实施例中的阳极采用本领域内常用的阳极材料,如ITO、Ag或其多层结构。空穴传输单元采用本领域内常用的空穴传输材料,同时加入F4TCNQ、HATCN、NDP-9等进行掺杂。发光单元采用本领域内常用的发光材料,例如可以由主体材料和发射的客体材料掺杂构成,发射的客体材料可以为有机材料如硼氮类化合物,也可以为金属配合物(如金属Ir,Pt等)。电子传输单元采用本领域内常用的电子传输材料。电子注入层采用本领域内常用的电子注入材料,如Liq、LiF、Yb等。阴极采用本领域内常用材料,如金属Al、Ag或金属混合物(Ag掺杂的Mg、Ag掺杂的Ca等)。
本实施方式中的电极制备方法和各功能层的沉积方法均为本领域常规方法,例如真空热蒸镀或喷墨打印等,在此不再赘述,仅对制备过程中的一些工艺细节、测试方法补充说明如下:
器件实施例1
在蓝光器件制备中,首先在形成于基板的ITO层(阳极)上,以120nm的厚度真空沉积C1和F4TCNQ(质量比97:3)形成空穴传输层;其次在上述空穴传输层上,以10nm的厚度真空沉积B-prime形成发光辅助层;再次在上述发光辅助层上,以20nm的厚度真空沉积BH作为主体、BD-01作为掺杂剂,以98:2重量比掺杂的混合物形成发光层;接着在上述发光层上,以30nm的厚度真空沉积ET-01形成电子传输层;然后在上述电子传输层上,以0.2nm的厚度沉积LiF形成电子注入层;最后在上述电子注入层上,以150nm的厚度沉积铝(Al)形成阴极,制备出蓝光有机电致发光器件。
器件实施例2
在绿光器件制备中,首先在形成于基板的ITO层(阳极)上,以120nm的厚度真空沉积HTL和F4TCNQ(质量比97:3)形成空穴传输层,其次在上述空穴传输层上,以30nm的厚度真空沉积C11形成发光辅助层;再次在上述发光辅助层上,以30nm的厚度真空沉积质量比为4:6的GH1和GH2作为主体、Ir(phq)2tpy作为掺杂剂,以97:3重量比掺杂的混合物形成发光层;接着在上述发光层上,以40nm的厚度真空沉积ET-01形成电子传输层;然后在上述电子传输层上,以0.2nm的厚度沉积LiF形成电子注入层;最后在上述电子注入层上,以150nm的厚度沉积铝(Al)形成阴极,制备出绿光有机电致发光器件。
器件实施例3
在红光器件制备中,首先在形成于基板的ITO层(阳极)上,以120nm的厚度真空沉积HTL和F4TCNQ(质量比97:3)形成空穴传输层;其次在上述空穴传输层上,以80nm的厚度真空沉积C31形成发光辅助层;再次在上述发光辅助层上,以30nm的厚度真空沉积RH作为主体、RD-01作为掺杂剂,以95:5重量比掺杂的混合物形成发光层;接着在上述发光层上,以40nm的厚度真空沉积ET-01形成电子传输层;然后在上述电子传输层上,以0.2nm的厚度沉积LiF来形成电子注入层,最后在上述电子注入层上,以150nm的厚度沉积铝(Al)形成阴极,制备出红光有机电致发光器件。
Figure PCTCN2022100267-appb-000083
Figure PCTCN2022100267-appb-000084
采用上述方法将实施例所述的化合物制成有机电致发光器件,其中,以C2、C3、C4、C5、C6、C7、C8、C9、C10、替代C1制成蓝光有机电致发光器件;以C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22、C23、C24、C25、C26、C27、C28、C29、C30、C41、C42、C43、C44、C45、C46、C47、C48、C49、C50替代C11制成绿光有机发光器件;以C32、C33、C34、C35、C36、C37、C38、C39、C40替代C31制成红光有机发光器件。
器件对比例
采用上述方法将对比化合物制成有机电致发光器件作为器件对比例。其中,以对比化合物1替代C1制成蓝光有机电致发光器件作为器件对比例1,以对比化合物2替代C11制成蓝光有机电致发光器件作为器件对比例2,以对比化合物3替代C1制成红光有机电致发光器件作为器件对比例3。
Figure PCTCN2022100267-appb-000085
通过标准方法测试以上所述的OLED器件。为此,在J=10mA/cm 2的电流密度下确定所述有机电致发光器件的驱动电压,亮度,电致发光电流效率(以cd/A计量)和外量子效率(EQE,以百分比计量),其作为发光密度的函数从呈现郎伯发射特性的电流/电压/发光密度特性线(IVL特性线)进行计算,发光光谱。将寿命LT定义为如下的时间,在恒定电流J下工作时,亮度在该时间后从初始发光亮度L 0降至特定的比例L 1;J=50mA/cm 2和L 1=90%的表述是指在50mA/cm 2下工作时,发光亮度在时间LT之后降至其初始值L 0的90%,类似地,J=20mA/cm 2,L 1=80%是指,在20mA/cm 2下工作时,发光亮度在时间LT之后降至其初始值L 0的80%。
通过密度泛函理论方法可以计算实施例化合物和对比例化合物的键解离能。键解离能(Bond Dissociation Energy,BDE)被定义为分子中化学键断裂过程的反应焓变,它反映了键断裂过程所需要的能量。所以可以通过化合物在空穴状态下的各个键的BDE来判断化合物的稳定性。化合物解离能越大,则表示该化合物的稳定性越好,反之则表示化合物稳定性较差。
将各种OLED器件的数据总结在表2-表4中。实施例与对比例1、对比例2和对比例3的各项参数进行对比,展示了各种OLED器件的性能数据。
对上述实施例、对比例OLED器件进行性能测试的测试仪器及方法如下:
亮度使用光谱扫描仪PhotoResearch PR-635测试;
电流密度和起亮电压:使用数字源表Keithley 2400测试;
寿命测试:使用LT-96ch寿命测试装置。
上述器件的性能检测结果列于表2-表4中。
表2蓝光器件性能测试结果
Figure PCTCN2022100267-appb-000086
表3绿光器件性能测试结果
Figure PCTCN2022100267-appb-000087
Figure PCTCN2022100267-appb-000088
表4红光器件性能测试结果
Figure PCTCN2022100267-appb-000089
由上述表2-4的器件性能测试结果可知,本发明的含有四联苯结构的芳香胺化合物的有机电致发光器件实施例1~实施例50相较对比例1~对比例3,外量子效率明显提高、驱动电压明显降低。并且在20mA/cm 2或50mA/cm 2下工作时,发光亮度降至其初始值L 0的95%或90%的时间,即使用寿命,实施例器件相对于对比例器件也明显的变长。使用本发明含有四联苯结构的芳香胺化合物所制备的有机发光器件,由于其邻位苯基对氮原子的保护作用,其BDE显著增大,材料稳定性增加,最终表现出其寿命衰减大大减缓。通过密度泛函理论方法计算实施例化合物和对比例化合物的优势构象(如下各式所示),可以看出本发明含有的四联苯结构同向排列,这种同向排列的四联苯结构使分子排列更加有序,其分子间堆叠较好,因此作为空穴传输层或发光辅助层时,有助于提高空穴的传输,降低驱动电压,最终使得表2-4中实施例的驱动电压与对比例相比较小。
实施例1、2、3、42、44、45以及对比例化合物1、对比例化合物2、对比例化合物3的优势构象依次如下各式所示:
Figure PCTCN2022100267-appb-000090
Figure PCTCN2022100267-appb-000091
因此,含有本发明含有四联苯结构的芳香胺化合物的有机电致发光器件具有更低的驱动电压、更高的外量子效率和更长的寿命。
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定,对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动,这里无法对所有的实施方式予以穷举,凡是属于本发明的技术方案所引伸出的显而易见的变化或变动仍处于本发明的保护范围之列。

Claims (9)

  1. 一种含有四联苯结构的芳香胺化合物,其特征在于,所述芳香胺化合物的结构式如式Ⅰ所示:
    Figure PCTCN2022100267-appb-100001
    其中:
    Ar 1表示碳原子数为C 6~C 60的取代或未取代的芳基、碳原子数为C 6~C 60的取代或未取代的杂芳基、碳原子数为C 6~C 60的取代或未取代的稠环芳基、碳原子数为C 5~C 60的取代或未取代的杂稠环芳基、碳原子数为C 3~C 30的取代或未取代的环烷基中的一种,其中,Ar 1中的各取代基可以相同或不同,各取代基各自独立地选自氘、卤素、碳原子数为C 1~C 10的烷基、碳原子数为C 6~C 60的芳基、碳原子数为C 6~C 60的稠环芳基或碳原子数为C 3~C 30的环烷基中的一种,其中两个或两个以上的取代基可以彼此连接形成脂肪环、芳环或稠环;
    R 1、R 2各自独立地表示氢、碳原子数为C 1~C 10的烷基、碳原子数为C 6~C 60的芳基或碳原子数为C 5~C 60的杂芳基中的一种,其中,R 1、R 2可以彼此连接形成脂肪环、芳环、杂芳环、稠环或杂稠环,且R 1、R 2不同时表示氢;
    R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10各自独立地表示氢、氘、碳原子数为C 1~C 10的烷基、碳原子数为C 3~C 15的环烷基、碳原子数为C 2~C 10的烯基或碳原子数为C 6~C 60的芳基中的一种,且R 3、R 4、R 5、R 6、R 7、R 8、R 9、R 10中的两个或两个以上可以彼此连接形成脂肪环、芳环或稠环;
    R 11表示氢、碳原子数为C 1~C 10的烷基或碳原子数为C 3~C 15的环烷基中的一种;
    X表示单键、O或CH 2中的一种;
    L 1、L 2、L 3各自独立地表示单键、
    Figure PCTCN2022100267-appb-100002
    中的一种,且所述基团环上任意一个或多个不相邻的C可以被N取代,任意一个H可以被F、D、烷基或环烷基取代;
    式I所示化合物的环结构上的氢可以各自独立地被氘取代。
  2. 根据权利要求1所述的芳香胺化合物,其特征在于,所述式Ⅰ所示的化合物为下述式I-1~式I-10所示结构中的一种:
    Figure PCTCN2022100267-appb-100003
    Figure PCTCN2022100267-appb-100004
    其中,Ar 1表示碳原子数为C 6~C 60的取代或未取代的芳基、碳原子数为C 6~C 60的取代或未取代的杂芳基、碳原子数为C 6~C 60的取代或未取代的稠环芳基、碳原子数为C 5~C 60的取代或未取代的杂稠环芳基、碳原子数为C 3~C 30的取代或未取代的环烷基中的一种,其中,Ar 1中的各取代基可以相同或不同,各取代基各自独立地选自氘、卤素、碳原子数为C 1~C 10的烷基、碳原子数为C 6~C 60的芳基、碳原子数为C 6~C 60的稠环芳基或碳原子数为C 3~C 30的环烷基中的一种,其中两个或两个以上的取代基可以彼此连接形成脂肪环、芳环或稠环;
    R 11表示氢、碳原子数为C 1~C 10的烷基或碳原子数为C 3~C 15的环烷基中的一种;
    L 1、L 2、L 3各自独立地表示单键或
    Figure PCTCN2022100267-appb-100005
    且所述基团环上任意一个或多个不相邻的C可以被N取代,任意一个H可以被F、D、烷基或环烷基取代;
    式I-1~式I-10所示化合物环结构上的氢可以各自独立地被氘取代。
  3. 根据权利要求1所述的芳香胺化合物,其特征在于,所述L 1表示单键。
  4. 根据权利要求1所述的芳香胺化合物,其特征在于,所述Ar 1表示:
    Figure PCTCN2022100267-appb-100006
    Figure PCTCN2022100267-appb-100007
    Figure PCTCN2022100267-appb-100008
    中的一种,且所述基团环上任意一个或多个不相邻的C可以被N取代,任意一个H可以各自独立地被F、D、烷基、环烷基或苯基取代。
  5. 根据权利要求1或2所述的芳香胺化合物,其特征在于,所述环烷基选自环丁基、环戊基、环己基或金刚烷中的一种。
  6. 根据权利要求1或2所述的芳香胺化合物,其特征在于,所述烷基为碳原子数为C 1~C 10直链烷基或碳原子数为C 1~C 10支链烷基中的一种。
  7. 根据权利要求1所述的芳香胺化合物,其特征在于,所述式Ⅰ所示化合物选自下述所示化合物中的任意一种:
    Figure PCTCN2022100267-appb-100009
    Figure PCTCN2022100267-appb-100010
    Figure PCTCN2022100267-appb-100011
    Figure PCTCN2022100267-appb-100012
    Figure PCTCN2022100267-appb-100013
    Figure PCTCN2022100267-appb-100014
    Figure PCTCN2022100267-appb-100015
    Figure PCTCN2022100267-appb-100016
    Figure PCTCN2022100267-appb-100017
    Figure PCTCN2022100267-appb-100018
    Figure PCTCN2022100267-appb-100019
    Figure PCTCN2022100267-appb-100020
    Figure PCTCN2022100267-appb-100021
    Figure PCTCN2022100267-appb-100022
    Figure PCTCN2022100267-appb-100023
    Figure PCTCN2022100267-appb-100024
    Figure PCTCN2022100267-appb-100025
    Figure PCTCN2022100267-appb-100026
    Figure PCTCN2022100267-appb-100027
    Figure PCTCN2022100267-appb-100028
    Figure PCTCN2022100267-appb-100029
  8. 一种有机电致发光器件,其特征在于,包括依次设置在衬底基板上的阳极、空穴传输区、发光层、电子传输区、阴极;其中,所述空穴传输区中包括一种或多种如权利要求1-7任一项所述的芳香胺化合物。
  9. 根据权利要求8所述的有机电致发光器件,其特征在于,所述空穴传输区包括空穴传输层和发光辅助层,所述发光辅助层位于空穴传输层和发光层之间,且所述发光辅助层和/或空穴传输层中包括一种或多种所述的芳香胺化合物。
PCT/CN2022/100267 2022-05-20 2022-06-22 含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件 WO2023221231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210549787.1A CN114805323A (zh) 2022-05-20 2022-05-20 含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件
CN202210549787.1 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221231A1 true WO2023221231A1 (zh) 2023-11-23

Family

ID=82517307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100267 WO2023221231A1 (zh) 2022-05-20 2022-06-22 含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件

Country Status (2)

Country Link
CN (1) CN114805323A (zh)
WO (1) WO2023221231A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028623B (zh) * 2022-07-27 2024-01-05 广州追光科技有限公司 一种芳胺化合物及其在有机电子器件中的应用
CN117843501A (zh) * 2022-09-29 2024-04-09 石家庄诚志永华显示材料有限公司 一种包含四联苯结构的芳香胺化合物及包含其的有机电致发光器件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976132A (zh) * 2017-05-31 2018-12-11 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN109485577A (zh) * 2017-09-13 2019-03-19 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN113912505A (zh) * 2020-07-10 2022-01-11 东进世美肯株式会社 新型化合物以及包含上述新型化合物的有机发光元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976132A (zh) * 2017-05-31 2018-12-11 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN109485577A (zh) * 2017-09-13 2019-03-19 东进世美肯株式会社 新颖化合物及包含其的有机发光器件
CN113912505A (zh) * 2020-07-10 2022-01-11 东进世美肯株式会社 新型化合物以及包含上述新型化合物的有机发光元件

Also Published As

Publication number Publication date
CN114805323A (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023221231A1 (zh) 含有四联苯结构的芳香胺化合物及包含其的有机电致发光器件
Xing et al. A deep-blue emitter with electron transporting property to improve charge balance for organic light-emitting device
Du et al. Multifunctional Phenanthroimidazole Derivatives to Realize High‐Performance Deep‐Blue and White Organic Light‐Emitting Diodes
KR101111413B1 (ko) 다이아릴아민 유도체를 이용하는 유기전기소자, 유기전기소자용 신규 화합물 및 조성물
CN111808085B (zh) 一种化合物及其应用、包含其的有机电致发光器件
KR101165698B1 (ko) 신규 화합물을 포함하는 유기전기소자, 및 유기전기소자용 신규 화합물 및 조성물
KR20130016711A (ko) 유기광전자소자용 화합물 및 이를 포함하는 유기발광소자
WO2019000494A1 (zh) 一种芴类有机电致发光化合物及其有机电致发光器件
Peng et al. Efficient non-doped blue fluorescent OLEDs based on bipolar phenanthroimidazole-triphenylamine derivatives
TW201905167A (zh) 有機電致發光器件
CN111689962A (zh) 一种苯并咪唑并吡啶为受体的化合物及其应用
Maciejczyk et al. Monothiatruxene‐based, solution‐processed green, sky‐blue, and deep‐blue organic light‐emitting diodes with efficiencies beyond 5% limit
CN111606859A (zh) 一种新型咪唑为受体的化合物及其应用
Zheng et al. Constructing highly efficient blue OLEDs with external quantum efficiencies up to 7.5% based on anthracene derivatives
CN110964019B (zh) 一种以6-苯基-6H-吲哚并[2,3-b]喹喔啉为受体的化合物及其应用
TW201918540A (zh) 有機電致發光化合物及包括所述有機電致發光化合物之有機電致發光裝置
CN110835351A (zh) 一种以吡咯亚甲基硼络合物为核心的有机化合物及其制备和应用
Li et al. High‐efficiency thermally activated delayed fluorescence materials via a shamrock‐shaped design strategy to enable OLEDs with external quantum efficiency over 38%
Wang et al. Efficient non-doped deep-blue electroluminescence devices based on unsymmetrical and highly twisted pyrene derivatives
Du et al. Two different implementation strategies for highly efficient non-doped fluorescent organic light-emitting diodes based on benzothiadiazole derivatives
Wang et al. Excellent deep-blue emitting materials based on anthracene derivatives for non-doped organic light-emitting diodes
Janghouri et al. Red organic light emitting device based on TPP and a new host material
Lv et al. High and Balanced Bipolar‐Transporting Deep‐Blue HLCT Material for Efficient Monochrome and White OLEDs based on a Simple Phenanthroimidazole‐Dibenzothiophene Derivative
WO2019085684A1 (zh) 一种含有氰基苯或者硫氰基苯的化合物及其在有机电致发光器件上的应用
CN117247366A (zh) 含有萘苯并呋喃结构的有机化合物及包含其的有机电致发光器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942262

Country of ref document: EP

Kind code of ref document: A1