WO2023219363A1 - 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자 - Google Patents

연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자 Download PDF

Info

Publication number
WO2023219363A1
WO2023219363A1 PCT/KR2023/006220 KR2023006220W WO2023219363A1 WO 2023219363 A1 WO2023219363 A1 WO 2023219363A1 KR 2023006220 W KR2023006220 W KR 2023006220W WO 2023219363 A1 WO2023219363 A1 WO 2023219363A1
Authority
WO
WIPO (PCT)
Prior art keywords
stretchable
conductive film
anisotropic conductive
liquid metal
gallium
Prior art date
Application number
PCT/KR2023/006220
Other languages
English (en)
French (fr)
Inventor
정운룡
임익현
공민식
장세윤
박혜지
Original Assignee
주식회사 마이다스에이치앤티
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230058553A external-priority patent/KR20230157259A/ko
Application filed by 주식회사 마이다스에이치앤티, 포항공과대학교 산학협력단 filed Critical 주식회사 마이다스에이치앤티
Publication of WO2023219363A1 publication Critical patent/WO2023219363A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/16Non-insulated conductors or conductive bodies characterised by their form comprising conductive material in insulating or poorly conductive material, e.g. conductive rubber

Definitions

  • the present invention relates to a stretchable anisotropic conductive film, a method of manufacturing the same, and a stretchable electronic device including the same.
  • ACF anisotropic conductive film
  • solder balls or microparticles responsible for conductivity are hard, so when used as a stretchable anisotropic conductive film (S-ACF), only the stretchable polymer increases and the conductive ball does not stretch when stretched, so the conductive ball does not stretch. Problems such as detachment from the film or loss of electrical connection may occur.
  • S-ACF stretchable anisotropic conductive film
  • the present invention is intended to solve the above-mentioned problems, and the purpose of the present invention is to provide a stretchable anisotropic conductive film having a large area, high elasticity, and excellent conductivity, a method of manufacturing the same, and a stretchable electronic device including the same.
  • a stretchable anisotropic conductive film according to an embodiment of the present invention includes a patterned stretchable polymer; and liquid metal filled in the patterned portion of the stretchable polymer.
  • electricity may be passed to both sides of the anisotropic conductive film by the liquid metal.
  • the liquid metal is gallium (Ga), indium (In), tin (Sn), mercury (Hg), lead (Pb), bismuth (Bi), cadmium (Cd), and gallium-indium eutectic.
  • the liquid metal may be 10% to 80% by weight of the stretchable anisotropic conductive film.
  • solid particles dispersed in the liquid metal may be further included.
  • the solid particles may further include at least one selected from the group consisting of metal particles, metal oxide particles, and semiconductor oxide particles.
  • the solid particle may include a core-shell structure.
  • the metal particles include copper (Cu), gold (Au), platinum (Pt), silver (Ag), iron (Fe), cobalt (Co), nickel (Ni), and aluminum (Al). , it may contain at least one selected from the group consisting of chromium (Cr), tungsten (W), molybdenum (Mo), and titanium (Ti).
  • the volume ratio of the liquid metal to the solid particles may be 99:1 to 70:30.
  • the stretchable polymer is polydimethylsiloxane (PDMS), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butyl rene-styrene-graft-maleic anhydride copolymer (styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), polyethylene-graft-maleic anhydride (polyethylene-graft) -maleic anhydride; PE-g-MA), polypropylene-graft-maleic anhydride copolymer (polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), polyethylene-graft-maleic anhydride (polyethylene-graft-maleic anhydride; PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA), polyethylene-dimethyl
  • EVA amorphous polyethylene terephthalate
  • PPT polypropylene terephthalate
  • PETG polyethylene terephthalate glycerol
  • PCTG polycyclohexylenedimethylene terephthalate
  • TAC modified triacetylcellulose
  • PCTG modified triacetylcellulose
  • COP cycloolefin copolymer
  • DCPD dicyclopentadiene polymer
  • CPD polyarylate
  • PAR polyetherimide
  • silicone resin fluorine resin
  • fluorine resin it may include at least one selected from the group consisting of modified epoxy resin.
  • a method of manufacturing a stretchable anisotropic conductive film according to another embodiment of the present invention includes patterning a photoresist on a substrate; Surface treating the photoresist patterned substrate; coating a stretchable polymer on the surface-treated substrate; heat curing the coated stretchable polymer; removing the patterned photoresist; removing the substrate; and filling the removed photoresist space with liquid metal.
  • the surface treatment may be performed using O 2 plasma, a silane-based material, or both.
  • the silane-based material is fluorodecyltrichlorosilane (FDTS), methacryloxypropyltrimethoxysilane (MPTMS), undecenyltrichlorosilane (UTS), and vinyl-trichlorosilane (VTS).
  • FDTS fluorodecyltrichlorosilane
  • MPTMS methacryloxypropyltrimethoxysilane
  • UTS undecenyltrichlorosilane
  • VTS vinyl-trichlorosilane
  • DTS decyltrichlorosilane
  • OTS octadecyltrichlorosilane
  • DDMS dimethyldichlorosilane
  • DDTS dodecenyltrichlorosilane
  • FOTS fluoro-tetrahydrooctyltrimethylchlorosilane
  • silanes including fluorooctyldimethylchlorosilane, aminopropylmethoxysilane (APTMS), chlorosilane, fluorosilane, methoxysilane, alkylsilane, and aminosilane. It may be.
  • the step of adding solid particles to the liquid metal may be further included.
  • a stretchable electronic device is a stretchable anisotropic conductive film according to an embodiment of the present invention or a stretchable anisotropic conductive film manufactured by a method of manufacturing a stretchable anisotropic conductive film according to another embodiment of the present invention. Includes a novel anisotropic conductive film.
  • the stretchable electronic device may include at least one selected from the group consisting of a flexible display, a stretchable display, a semiconductor test socket, a sensor, and an electronic skin.
  • the stretchable anisotropic conductive film according to an embodiment of the present invention includes a stretchable, conductive liquid metal that is in a liquid state at room temperature, thereby enabling shape modification and high anisotropic conductivity at the metal level (> 10 6 S/m). You can have it.
  • the method of manufacturing a stretchable anisotropic conductive film according to an embodiment of the present invention has simplicity, uniformity, large area, and economic efficiency through a liquid metal printing process.
  • the stretchable electronic device according to an embodiment of the present invention can be applied to various flexible electronic devices or wearable displays by including the stretchable anisotropic conductive film according to an embodiment of the present invention.
  • FIG. 1A is a schematic diagram of a stretchable anisotropic conductive film according to an embodiment of the present invention.
  • Figure 1B is a schematic diagram of a stretchable anisotropic conductive film according to another embodiment of the present invention.
  • Figure 2a is a diagram for explaining the deformation of an anisotropic conductive film using a conventional hard conductive ball
  • Figure 2b is a diagram for explaining the deformation of a stretchable anisotropic conductive film using liquid metal of the present invention.
  • Figures 3a to 3g are schematic diagrams for explaining a method of manufacturing a stretchable anisotropic conductive film according to an embodiment of the present invention.
  • Figure 4 is an image of the patterned surface of a polymer film through a stamping process based on a photolithography process according to an embodiment of the present invention.
  • first, second, A, B, (a), and (b) may be used. These terms are only used to distinguish the component from other components, and the nature, sequence, or order of the component is not limited by the term.
  • a stretchable anisotropic conductive film according to an embodiment of the present invention includes a patterned stretchable polymer; and liquid metal filled in the patterned portion of the stretchable polymer.
  • the stretchable anisotropic conductive film according to an embodiment of the present invention includes a stretchable, conductive liquid metal that is in a liquid state at room temperature, thereby enabling shape modification and high anisotropic conductivity at the metal level (> 10 6 S/m). You can have it. Therefore, it can be applied to various flexible electronic devices or wearable displays.
  • FIG. 1A is a schematic diagram of a stretchable anisotropic conductive film according to an embodiment of the present invention.
  • the stretchable anisotropic conductive film 100 includes a patterned stretchable polymer 110 and a liquid metal 120.
  • the material of the stretchable polymer 110 is not particularly limited as long as it can stably support the liquid metal 120, but for example, it may be flexible, stretchable, foldable, and/or It may be made of a material with rollable properties.
  • the pattern width of the stretchable polymer 110 may vary.
  • the stretchable polymer 110 may be patterned into a predetermined shape, punched with pressure or a laser, or may be in the form of a through hole.
  • the liquid metal 120 may maintain a liquid state at room temperature, and may have a predetermined shape due to surface tension and interfacial tension between the liquid metal 120 and the stretchable polymer 110. can have
  • the anisotropic conductive film 100 may be anisotropically, that is, vertically conductive, by the liquid metal 120.
  • the liquid metal is gallium (Ga), indium (In), tin (Sn), mercury (Hg), lead (Pb), bismuth (Bi), cadmium (Cd), and gallium-indium eutectic.
  • the liquid metal may contain gallium (Ga).
  • the liquid metal 120 is 10% to 80% by weight of the stretchable anisotropic conductive film 100; 10% to 50% by weight; 10% to 30% by weight; 10% to 20% by weight; 30% to 80% by weight; 30% to 50% by weight; Or it may be 50% by weight to 80% by weight.
  • liquid metal is less than 10% by weight of the stretchable anisotropic conductive film, it may be difficult to provide sufficient vertical conductivity, and if it is more than 80% by weight, a problem may occur in which the stretchable polymer does not well surround the liquid metal. .
  • solid particles dispersed in the liquid metal may be further included.
  • Figure 1B is a schematic diagram of a stretchable anisotropic conductive film according to another embodiment of the present invention.
  • the stretchable anisotropic conductive film includes a patterned stretchable polymer 110, liquid metal 120, and solid particles 130.
  • the solid particles 130 may be dispersed on the surface of the liquid metal or dispersed within the entire liquid metal.
  • the solid particles 130 may at least partially cover the sides of the liquid metal. Accordingly, when the stretchable anisotropic conductive film 100 is attached to another place and then detached, the liquid metal 120 can be prevented from flowing.
  • the solid particles 130 may further include at least one selected from the group consisting of metal particles, metal oxide particles, and semiconductor oxide particles.
  • the metal particles include copper (Cu), gold (Au), platinum (Pt), silver (Ag), iron (Fe), cobalt (Co), nickel (Ni), and aluminum (Al). , it may contain at least one selected from the group consisting of chromium (Cr), tungsten (W), molybdenum (Mo), and titanium (Ti).
  • the solid particle may include a core-shell structure.
  • the core-shell structure may also be a core-shell structure in the form of a commercially available conductive ball (polymer-metal with a metal thin film deposited on the surface of the PS particle (may be multiple layers)).
  • the metal oxide particles or semiconductor oxide particles are SiO 2 , Fe 2 O 3 , Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O , NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , MgO, CaO, La 2 O 3 , Nd 2 O 3 , Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 It may include at least one selected from the group consisting of O 3 .
  • the semiconductor oxide particles can change rheology without reacting with liquid metal, showing different characteristics from metal particles.
  • the volume ratio of the liquid metal to the solid particles is 99:1 to 70:30; 99:1 to 80:30; 99:1 to 90:30; 90:1 to 70:30; 90:1 to 80:30; 90:1 to 90:30; 80:1 to 70:30; 80:1 to 80:30; or 70:1 to 70:30; It may be.
  • the ratio of liquid metal:solid particles is less than 70:30, problems with leakage of the liquid metal may occur due to external stress, and if the ratio of liquid metal:solid particles is more than 99:1, processing This becomes difficult, and problems with hardening (stiffness, solidification) may occur.
  • the average diameter of the solid particles is 50 nm to 5 ⁇ m; 50 nm to 3 ⁇ m; 50 nm to 1 ⁇ m; 10 nm to 5 ⁇ m; 10 nm to 3 ⁇ m; 10 nm to 1 ⁇ m; 50 nm to 5 ⁇ m; 50 nm to 3 ⁇ m; 50 nm to 1 ⁇ m; 100 nm to 5 ⁇ m; 100 nm to 3 ⁇ m; 100 nm to 1 ⁇ m; 500 nm to 5 ⁇ m; 500 nm to 3 ⁇ m; 500 nm to 1 ⁇ m; 1 ⁇ m to 5 ⁇ m; 1 ⁇ m to 3 ⁇ m; Or it may be 3 ⁇ m to 5 ⁇ m.
  • the average diameter of the solid particles is less than 50 nm, problems may arise in manufacturing fine particles, and if it is more than 5 ⁇ m, there may be restrictions on pattern size and film thickness.
  • the average particle diameter of the solid particles may be 50 nm to 3 ⁇ m.
  • the stretchable polymer is polydimethylsiloxane (PDMS), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butyl rene-styrene-graft-maleic anhydride copolymer (styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), polyethylene-graft-maleic anhydride (polyethylene-graft) -maleic anhydride; PE-g-MA), polypropylene-graft-maleic anhydride copolymer (polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), polyethylene-graft-maleic anhydride (polyethylene-graft-maleic anhydride; PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA), polyethylene-dimethyl
  • EVA amorphous polyethylene terephthalate
  • PPT polypropylene terephthalate
  • PETG polyethylene terephthalate glycerol
  • PCTG polycyclohexylenedimethylene terephthalate
  • TAC modified triacetylcellulose
  • PCTG modified triacetylcellulose
  • COP cycloolefin copolymer
  • DCPD dicyclopentadiene polymer
  • CPD polyarylate
  • PAR polyetherimide
  • silicone resin fluorine resin
  • fluorine resin it may include at least one selected from the group consisting of modified epoxy resin.
  • the stretchable polymer may be PDMS.
  • FIG. 1A and 1B show only the stretchable polymer 110 and the liquid metal 120, but a support layer, for example, a Si substrate or a glass substrate, may be further included below the stretchable polymer 110. there is.
  • Figure 2a is a diagram for explaining the deformation of an anisotropic conductive film using a conventional hard conductive ball
  • Figure 2b is a diagram for explaining the deformation of a stretchable anisotropic conductive film using liquid metal of the present invention.
  • the stretchable anisotropic conductive film of the present invention uses stretchable, conductive liquid metal in a liquid state at room temperature instead of hard conductive balls, so that its shape can be modified to fit the shape of the concave lower electrode, and the shape can be changed at the metal level. It can be seen that high anisotropic conductivity of (>10 6 S/m) can be provided.
  • a method of manufacturing a stretchable anisotropic conductive film according to another embodiment of the present invention includes patterning a photoresist on a substrate; Surface treating the photoresist patterned substrate; coating a stretchable polymer on the surface-treated substrate; heat curing the coated stretchable polymer; removing the patterned photoresist; removing the substrate; and filling the removed photoresist space with liquid metal.
  • Figures 3a to 3g are schematic diagrams for explaining a method of manufacturing a stretchable anisotropic conductive film according to an embodiment of the present invention.
  • a substrate 210 is prepared, and photoresist 220 is patterned on the substrate.
  • the substrate 210 is not limited in material and type.
  • the substrate may include at least one selected from the group consisting of a flexible substrate, a semiconductor substrate, an insulating substrate, and a stretchable substrate.
  • the substrate 210 may be, for example, a silicon substrate, a P-doped silicon (P+ doped-Si) substrate, a polyimide substrate, a polydimethylsiloxane (PDMS) substrate, a polyethylene terephthalate (PET) substrate, or a glass (glass) substrate. ) It may include at least one selected from the group consisting of a substrate and a paper substrate.
  • the substrate 210 may be a silicon substrate.
  • the patterned photoresist 220 may be formed by a stamping process based on a photolithography process using photoresist.
  • the photoresist may include at least one selected from the group consisting of SU-8 50, SU-8 2, AZ nLOF 2070, and AZ 5214.
  • the surface treatment may be surface treatment using O 2 plasma, silane-based material 230, or both.
  • a silane-based material 230 may be surface treated on the substrate 210 on which the photoresist 220 is patterned.
  • the surface treatment is intended to easily remove the stretchable polymer later.
  • the silane-based material is fluorodecyltrichlorosilane (FDTS), methacryloxypropyltrimethoxysilane (MPTMS), undecenyltrichlorosilane (UTS), and vinyl-trichlorosilane (VTS).
  • FDTS fluorodecyltrichlorosilane
  • MPTMS methacryloxypropyltrimethoxysilane
  • UTS undecenyltrichlorosilane
  • VTS vinyl-trichlorosilane
  • DTS decyltrichlorosilane
  • OTS octadecyltrichlorosilane
  • DDMS dimethyldichlorosilane
  • DDTS dodecenyltrichlorosilane
  • FOTS fluoro-tetrahydrooctyltrimethylchlorosilane
  • silanes including fluorooctyldimethylchlorosilane, aminopropylmethoxysilane (APTMS), chlorosilane, fluorosilane, methoxysilane, alkylsilane, and aminosilane. It may be.
  • the silane-based material may be octadecyltrichlorosilane (OTS).
  • OTS octadecyltrichlorosilane
  • a solution of 2 wt% of n-octadecyltrichlorosilane (OTS) dissolved in toluene is spin-coated at 3,000 rpm, and the toluene is dried at a high temperature of 120 ° C. It may be to do so.
  • OTS n-octadecyltrichlorosilane
  • the stretchable polymer 240 can be coated on the substrate 210 surface-treated with the silane-based material 230.
  • the step of coating the stretchable polymer on the surface-treated substrate includes blade printing, screen printing, brush painting, or spin coating. , at least one method selected from the group consisting of dip coating, bar coating, dropping, spray coating, inkjet printing, and spotting. It may be carried out as follows.
  • the coating may be done by spin coating.
  • the stretchable polymer is polydimethylsiloxane (PDMS), styrene-ethylene/butylene-styrene triblock copolymer (SEBS), styrene-ethylene/butyl rene-styrene-graft-maleic anhydride copolymer (styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), polyethylene-graft-maleic anhydride (polyethylene-graft) -maleic anhydride; PE-g-MA), polypropylene-graft-maleic anhydride copolymer (polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), polyethylene-graft-maleic anhydride (polyethylene-graft-maleic anhydride; PE-g-MA), polypropylene-graft-maleic anhydride (PP-g-MA), polyethylene-dimethyl
  • EVA amorphous polyethylene terephthalate
  • PPT polypropylene terephthalate
  • PETG polyethylene terephthalate glycerol
  • PCTG polycyclohexylenedimethylene terephthalate
  • TAC modified triacetylcellulose
  • PCTG modified triacetylcellulose
  • COP cycloolefin copolymer
  • DCPD dicyclopentadiene polymer
  • CPD polyarylate
  • PAR polyetherimide
  • silicone resin fluorine resin
  • fluorine resin it may include at least one selected from the group consisting of modified epoxy resin.
  • the stretchable polymer may be PDMS.
  • the stretchable polymer may be coated at a thickness lower than the photoresist pattern.
  • the coated stretchable polymer can be thermally cured.
  • the step of thermosetting the coated stretchable polymer is performed at 50° C. to 100° C.; 50°C to 80°C; 50°C to 60°C; 70°C to 100°C; 70°C to 80°C; or 5 to 60 minutes at a temperature range of 80°C to 100°C; 5 to 60 minutes; It may be performed during a period of time.
  • the photoresist can be removed.
  • the substrate may be removed.
  • the substrate was subjected to O 2 plasma treatment and surface treatment with a silane-based material, separation of the substrate and the polymer is easy.
  • the space of the removed photoresist may be filled with liquid metal 250.
  • the liquid metal 250 may maintain a liquid state at room temperature, and its shape may be modified accordingly. It may have a predetermined shape due to surface tension and interfacial tension between the liquid metal 250 and the stretchable polymer 240.
  • the anisotropic conductive film may be anisotropically, that is, vertically conductive, by the liquid metal 250.
  • the liquid metal is gallium (Ga), indium (In), tin (Sn), mercury (Hg), lead (Pb), bismuth (Bi), cadmium (Cd), and gallium-indium eutectic.
  • the liquid metal may contain gallium (Ga).
  • the step of filling the removed photoresist space with liquid metal includes blade printing, screen printing, brush painting, spin coating, By at least one method selected from the group consisting of dip coating, bar coating, dropping, spray coating, inkjet printing, and spotting. It may be carried out.
  • the coating may be done by blade printing.
  • Blade printing differs from screen printing in that the dual blades containing liquid metal are tens to hundreds of micrometers high from the substrate. Unlike inkjet printing, which applies pressure, no pressure is applied.
  • the liquid metal contained in the printer blade is brought into contact with a polymer film with holes patterned in advance and then moved at a constant speed.
  • the liquid metal wets the hole and fills the hole to achieve vertical conduction, and in the non-wetted portion of the polymer film, no liquid metal remains due to the non-wetting nature of the liquid metal, resulting in no horizontal conductivity.
  • liquid metal can be printed on the patterned polymer to induce non-wetting properties, and the liquid metal can be selectively printed only on the patterned portion.
  • Liquid metal can be patterned to have anisotropic conductivity that provides conductivity only in the vertical direction. This overcomes the limitations of liquid metal, which is difficult to pattern due to its high surface tension, through surface oxide film and fluid dynamics analysis.
  • the liquid metal printing process is a process that is simple, uniform, large-area, and economical.
  • Liquid metal is an oxide film that forms on the surface of a particle when it is granulated. When several particles are in contact, it becomes insulating. Additional processes such as microwave irradiation are required to provide conductivity between particles, but the printing technique is Such a process is not necessary because vertical conductivity is provided by liquid metal in bulk form rather than particles.
  • the perforated area is filled with liquid metal to provide vertical conductivity, and in the non-porous polymer area, a non-conductive oxide film with a thickness of, for example, 3 nm is formed, eliminating the crosstalk problem of conducting electricity in the horizontal direction. does not exist.
  • the step of adding solid particles to the liquid metal may be further included.
  • solid particles 260 may be added to the liquid metal 250.
  • the solid particles 260 may be dispersed on the surface of the liquid metal 250 or dispersed within the entire liquid metal 250 to form an alloy. After alloying, the solid particle residues can be removed.
  • the solid particles 260 may at least partially cover the side of the liquid metal 250. Accordingly, it is possible to prevent the liquid metal 250 from flowing as a liquid when the stretchable anisotropic conductive film is attached to another place and then detached.
  • the solid particles 260 may further include at least one selected from the group consisting of metal particles, metal oxide particles, and semiconductor oxide particles.
  • the solid particle may include a core-shell structure, and in addition to the core-shell made of metal-metal, a commercially available conductive ball [PS polymer with a metal thin film deposited on the outside of the particle] -It may be a core-shell structure in the form of metal (may be multiple layers).
  • a commercially available conductive ball [PS polymer with a metal thin film deposited on the outside of the particle] -It may be a core-shell structure in the form of metal (may be multiple layers).
  • the metal particles include copper (Cu), gold (Au), platinum (Pt), silver (Ag), iron (Fe), cobalt (Co), nickel (Ni), and aluminum (Al). , it may contain at least one selected from the group consisting of chromium (Cr), tungsten (W), molybdenum (Mo), and titanium (Ti).
  • the metal particles may be iron (Fe) or nickel (Ni).
  • the metal oxide particles or semiconductor oxide particles are Fe 2 O 3 , Fe 3 O 4 , BiVO 4 , Bi 2 WO 4 , TiO 2 , SrTiO 3 , ZnO, CuO, Cu 2 O, NiO, SnO 2 , CoO, In 2 O 3 , WO 3 , MgO, CaO, La 2 O 3 , Nd 2 O 3 , Y 2 O 3 , CeO 2 , PbO, ZrO 2, Co 3 O 4 and Al 2 O 3 It may include at least one selected from the group consisting of
  • the metal oxide particles or semiconductor oxide particles may be Fe 2 O 3 .
  • a stretchable electronic device is a stretchable anisotropic conductive film according to an embodiment of the present invention or a stretchable anisotropic conductive film manufactured by a method of manufacturing a stretchable anisotropic conductive film according to another embodiment of the present invention. Includes a novel anisotropic conductive film.
  • the stretchable electronic device may include at least one selected from the group consisting of a flexible display, a stretchable display, a semiconductor test socket, a sensor, and an electronic skin.
  • each display may include an average of 5-6 layers of stretchable anisotropic conductive films.
  • Silicon test sockets require anisotropic conductivity, similar to stretchable anisotropic conductive films.
  • silicone rubber sockets are expanding to the high value-added system semiconductor market such as central processing units (CPUs) and graphics processing units (GPUs), and as a result, they have fine and diverse sizes and shapes and large-area, highly flexible, low-pressure contacts.
  • Technology for as fine a pitch as possible is required. It is difficult to simultaneously guarantee high flexibility/uniform contact/high conductivity with the conventional pogo pin and silicone rubber socket method, so a test socket for large area/high flexibility/high conductivity/high density is needed to solve this problem.
  • An embodiment of the present invention A stretchable anisotropic conductive film according to can be used.
  • SU-8 50 photoresist was spin coated on a silicon substrate to a height of 40 ⁇ m (3,000 rpm, 30 seconds), and then soft baked on a hot plate for 5 minutes at 65°C and 15 minutes at 95°C. It was carried out.
  • the SU-8 50 photoresist was exposed at 250 mJ/cm 2 using a UV lamp and a photomask, and then the photoresist patterned substrate was exposed to 1 layer at 65°C on a hot plate.
  • Post expose bake (PEB) was performed continuously at 95°C for 4 minutes.
  • photoresist was patterned into square pillars with width, length, and height of 20 ⁇ m, 20 ⁇ m, and 40 ⁇ m, respectively.
  • O 2 plasma treatment was performed on the silicon substrate on which the photoresist square pillars were patterned, and then a solution of 2 wt% of n-octadecyltrichlorosilane dissolved in toluene was spin-coated at 3,000 rpm and 120 rpm. Toluene was removed at high temperature.
  • the polymer was spin-coated to a thickness of 1 ⁇ m to 10 ⁇ m, which is lower than the photoresist pillar, and thermally cured to obtain a patterned polymer film with holes having a shape opposite to that of the photoresist pattern.
  • the polymer film was removed from the substrate to obtain a patterned polymer film.
  • Figure 4 is an image of the patterned surface of a polymer film through a stamping process based on a photolithography process according to an embodiment of the present invention.
  • the patterned polymer film was placed on a printing substrate, and liquid metal was printed in a square shape with a side length of 20 ⁇ m to prepare a stretchable anisotropic conductive film.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Insulated Conductors (AREA)
  • Laminated Bodies (AREA)

Abstract

본 발명은, 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자에 관한 것으로, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름은, 패터닝된 연신성 고분자; 및 상기 연신성 고분자의 패터닝된 부분에 충진된 액체금속;을 포함한다.

Description

연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자
본 발명은 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자에 관한 것이다.
전자피부, 헬스케어 등의 분야에서 활용도가 높은 연신성 전자소자가 많이 연구됨에 따라, 연신성 소자와 회로를 안정적으로 연결하는 전기적 접합도 중요해지고 있다. 또한, 미세해지는 소자와 회로 간 전기적 연결을 위해서는 고도의 규칙적인 배열을 갖는 이방성 도전 필름(anisotropic conductive film; ACF)이 필수적이다.
하지만, 기존의 ACF들은 소자 구성 요소들 사이 탄성 모듈러스 차이로 인해 연신 시 연결이 불안정해지거나, 미세한 간격의 규칙적인 배열 혹은 대면적화에 한계가 있었다.
종래 ACF의 경우 전도성을 담당하는 솔더볼 혹은 마이크로입자가 단단해서, 연신성 이방성 도전 필름(stretchable anisotropic conductive film; S-ACF)으로 사용할 때 인장 시 연신성 고분자만 늘어나고 도전볼은 늘어나지 않아서, 도전볼이 필름에서 탈착되거나 전기적 연결을 잃는 등의 문제가 발생할 수 있다.
또한, 무작위성 전도 입자 배열로 인한 낮은 해상도와 신뢰도를 갖거나 돌출 되어있는 전극에 눌린 부분만 비등방성 전도성을 가진다는 한계가 있다.
전술한 배경기술은 발명자가 본 발명의 개시 내용을 도출하는 과정에서 보유하거나 습득한 것으로서, 반드시 본 출원 전에 일반 공중에 공개된 공지기술이라고 할 수는 없다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 본 발명의 목적은, 대면적이고 높은 신축성 및 우수한 전도성을 가지는 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자를 제공하는 것이다.
그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 해당 분야 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
본 발명의 일 실시예에 따른 연신성 이방성 도전 필름은, 패터닝된 연신성 고분자; 및 상기 연신성 고분자의 패터닝된 부분에 충진된 액체금속;을 포함한다.
일 실시형태에 있어서, 상기 액체금속에 의하여 상기 이방 전도성 필름의 양면으로 통전되는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속은, 갈륨(Ga), 인듐(In), 주석(Sn), 수은(Hg), 납(Pb), 비스무트(Bi), 카드뮴(Cd), 갈륨-인듐 공융 합금(eutectic gallium-indium alloy, EGaIn), 갈륨-인듐-주석 공융합금(갈린스탄, Galinstan), 갈륨-인듐(Ga/In), 갈륨/납(Ga/Pb), 갈륨/카드뮴(Ga/Cd), 갈륨/아연(Ga/Zn), 갈륨/주석(Ga/ Sn), 갈륨/비스무트(Ga/Bi), 갈륨/탈륨(Ga/Tl), 주석/은(Sn/Ag), 주석/금(Sn/Au), 주석/구리(Sn/Cu), 주석/니켈(Sn/Ni), 납/안티몬(Pb/Sb), 납/금(Pb/Au) 및 납/카드뮴(Pb/Cd)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속은, 상기 연신성 이방성 도전 필름 중 10 중량% 내지 80 중량%인 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속에 분산된 고체 입자를 더 포함할 수 있다.
일 실시형태에 있어서, 상기 고체 입자는, 금속 입자, 금속산화물 입자 및 반도체 산화물 입자로 이루어진 군으로부터 선택되는 적어도 어느 하나를 더 포함할 수 있다.
일 실시형태에 있어서, 상기 고체 입자는, 코어-쉘(core-shell) 구조를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 금속 입자는, 구리(Cu), 금(Au), 백금(Pt), 은(Ag), 철(Fe), 코발트(Co), 니켈(Ni), 알루미늄(Al), 크롬(Cr), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 금속산화물 입자 또는 반도체 산화물 입자는, SiO2, Fe2O3, Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속 : 상기 고체 입자의 부피 비율은, 99 : 1 내지 70 : 30인 것일 수 있다.
일 실시형태에 있어서, 상기 연신성 고분자는, 폴리디메틸실록산(PDMS), 스티렌-에틸렌/부티렌-스티렌 트리블록 코폴리머(styrene-ethylene/butylene-styrene triblock copolymer; SEBS), 스티렌-에틸렌/부틸렌-스티렌-그라프트-말레익 언하이드라이드 코폴리머(styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드 코폴리머(polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드(polypropylene-graft-maleic anhydride; PP-g-MA), 폴리에틸렌-그라프트-아크릴산(polyethylene-graft-acrylic acid; PE-g-AA), 폴리-프로필렌-그라프트-아크릴산(poly-propylene-graft-acrylic acid; PP-g-AA), 폴리우레탄(PU), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 설폰(PES), 폴리메탈크릴레이트(PMA) 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드(PI), 폴리프로필렌(PP), 에틸렌비닐아세테이트(EVA), 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
본 발명의 다른 실시예에 따른 연신성 이방성 도전 필름의 제조방법은, 기판 상에 포토레지스트를 패터닝하는 단계; 상기 포토레지스트가 패터닝된 기판을 표면처리하는 단계; 상기 표면처리된 기판 상에 연신성 고분자를 코팅하는 단계; 상기 코팅된 연신성 고분자를 열경화하는 단계; 상기 패터닝된 포토레지스트를 제거하는 단계; 상기 기판을 제거하는 단계; 및 상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계;를 포함한다.
일 실시형태에 있어서, 상기 표면처리는 O2 플라즈마, 실란계 물질 또는 이 둘을 이용하여 표면처리하는 것일 수 있다.
일 실시형태에 있어서, 상기 실란계 물질은, 플로오로데실트리클로로실란(FDTS), 메타크릴록시프로필트리메톡시실란(MPTMS), 운데세닐트리클로로실란(UTS), 비닐-트리클로로실란(VTS), 데실트리클로로실란(DTS), 옥타데실트리클로로실란(OTS), 디메틸디클로로실란(DDMS), 도데세닐트리클로로실란(DDTS), 플루오로-테트라히도로옥틸트리메틸클로로실란(FOTS), 퍼플루오로옥틸디메틸클로로실란, 아미노프로필메톡시실란(APTMS)을 포함하는 실란, 클로로실란, 플루오로실란, 메톡시실란, 알킬실란 및 아미노실란으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 방법으로 수행되는 것일 수 있다.
일 실시형태에 있어서, 상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계 이후에, 상기 액체금속에 고체 입자를 첨가하는 단계;를 더 포함할 수 있다.
본 발명의 또 다른 실시예에 따른 연신성 전자소자는, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름 또는 본 발명의 다른 실시예에 따른 연신성 이방성 도전 필름의 제조방법에 의해 제조된 연신성 이방성 도전 필름을 포함한다.
일 실시형태에 있어서, 상기 연신성 전자소자는, 플렉서블 디스플레이, 스트레쳐블 디스플레이, 반도체 테스트 소켓, 센서 및 전자스킨으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따른 연신성 이방성 도전 필름은, 상온에서 액체 상태인 연신성, 전도성 액체금속을 포함함으로써 형태 변형이 가능하고 금속 수준 (> 106 S/m)의 높은 비등방성 전도성을 가질 수 있다.
본 발명의 일 실시예에 따른 연신성 이방성 도전 필름의 제조방법은 액체금속 프린팅 공정을 통하여 공정의 단순성, 균일도, 대면적화 및 경제성이 있다.
본 발명의 일 실시예에 따른 연신성 전자소자는, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름을 포함함으로써 다양한 플렉서블 전자소자 또는 웨어러블 디스플레이에 적용 가능하다.
도 1a는 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름의 개략도이다.
도 1b는 본 발명의 다른 실시예에 따른 연신성 이방성 도전 필름의 개략도이다.
도 2a는 종래 단단한 도전볼을 이용한 이방성 도전 필름의 변형을 설명하기 위한 도면이고, 도 2b는 본 발명의 액체금속을 이용한 연신성 이방성 도전 필름의 변형을 설명하기 위한 도면이다.
도 3a 내지 도 3g는 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름의 제조방법을 설명하기 위한 모식도이다.
도 4는 본 발명의 실시예에 따른 포토리소그래피 공정에 기반한 스탬핑 공정을 통한 고분자 필름의 패터닝된 표면의 이미지이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
이하, 본 발명의 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자에 대하여 실시예 및 도면을 참조하여 구체적으로 설명하도록 한다. 그러나, 본 발명이 이러한 실시예 및 도면에 제한되는 것은 아니다.
본 발명의 일 실시예에 따른 연신성 이방성 도전 필름은, 패터닝된 연신성 고분자; 및 상기 연신성 고분자의 패터닝된 부분에 충진된 액체금속;을 포함한다.
본 발명의 일 실시예에 따른 연신성 이방성 도전 필름은, 상온에서 액체 상태인 연신성, 전도성 액체금속을 포함함으로써 형태 변형이 가능하고 금속 수준 (> 106 S/m)의 높은 비등방성 전도성을 가질 수 있다. 따라서, 다양한 플렉서블 전자소자 또는 웨어러블 디스플레이에 적용 가능하다.
도 1a는 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름의 개략도이다.
도 1a를 참조하면, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름(100)은, 패터닝된 연신성 고분자(110) 및 액체금속(120)을 포함한다.
상기 연신성 고분자(110)는 상기 액체금속(120)을 안정적으로 지지할 수 있으면 그 재료는 특별히 제한되지 않으나, 예를 들어 유연성(flexibility), 신축성(stretchability), 폴더블(foldable) 및/또는 롤러블(rollable) 특성을 갖는 재료로 이루어질 수 있다.
상기 연신성 고분자(110)의 패턴 폭은 변화할 수 있다.
상기 연신성 고분자(110)는 소정의 모양으로 패터닝되거나, 압력 또는 레이저로 펀칭, 또는 천공된 관통홀 형태일 수 있다.
일 실시형태에 있어서, 상기 액체금속(120)은, 상온에서 액체 상태를 유지하는 것일 수 있고, 상기 액체금속(120)과 상기 연신성 고분자(110) 간의 표면 장력 및 계면 장력으로 인해 소정의 형상을 가질 수 있다
일 실시형태에 있어서, 상기 액체금속(120)에 의하여 상기 이방 전도성 필름(100)이 이방성, 즉, 수직으로 통전되는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속은, 갈륨(Ga), 인듐(In), 주석(Sn), 수은(Hg), 납(Pb), 비스무트(Bi), 카드뮴(Cd), 갈륨-인듐 공융 합금(eutectic gallium-indium alloy, EGaIn), 갈륨-인듐-주석 공융합금(갈린스탄, Galinstan), 갈륨-인듐(Ga/In), 갈륨/납(Ga/Pb), 갈륨/카드뮴(Ga/Cd), 갈륨/아연(Ga/Zn), 갈륨/주석(Ga/ Sn), 갈륨/비스무트(Ga/Bi), 갈륨/탈륨(Ga/Tl), 주석/은(Sn/Ag), 주석/금(Sn/Au), 주석/구리(Sn/Cu), 주석/니켈(Sn/Ni), 납/안티몬(Pb/Sb), 납/금(Pb/Au) 및 납/카드뮴(Pb/Cd)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 액체금속은, 갈륨(Ga)을 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속(120)은, 상기 연신성 이방성 도전 필름(100) 중 10 중량% 내지 80 중량%; 10 중량% 내지 50 중량%; 10 중량% 내지 30 중량%; 10 중량% 내지 20 중량%; 30 중량% 내지 80 중량%; 30 중량% 내지 50 중량%; 또는 50 중량% 내지 80 중량%인 것일 수 있다.
상기 액체금속은, 상기 연신성 이방성 도전 필름 중 10 중량% 미만인 경우 충분한 수직방향 전도성 부여가 힘들 수 있고, 80 중량% 초과인 경우 상기 연신성 고분자가 액체금속을 잘 감싸고 있지 못하는 문제가 발생할 수 있다.
일 실시형태에 있어서, 상기 액체금속에 분산된 고체 입자를 더 포함할 수 있다.
도 1b는 본 발명의 다른 실시예에 따른 연신성 이방성 도전 필름의 개략도이다.
도 1b를 참조하면, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름은, 패터닝된 연신성 고분자(110), 액체금속(120) 및 고체 입자(130)를 포함한다.
상기 고체 입자(130)는 상기 액체금속 표면에 분산되거나 전체 액체금속 내에 분산된 것일 수 있다.
상기 고체 입자(130)는 상기 액체금속의 측면을 적어도 부분적으로 커버할 수 있다. 이에 따라, 연신성 이방성 도전 필름(100)이 다른 곳에 접착 후 탈착 시 액체성으로 액체금속(120)이 흐르는 것을 방지할 수 있다.
일 실시형태에 있어서, 상기 고체 입자(130)는, 금속 입자, 금속산화물 입자 및 반도체 산화물 입자로 이루어진 군으로부터 선택되는 적어도 어느 하나를 더 포함할 수 있다.
일 실시형태에 있어서, 상기 금속 입자는, 구리(Cu), 금(Au), 백금(Pt), 은(Ag), 철(Fe), 코발트(Co), 니켈(Ni), 알루미늄(Al), 크롬(Cr), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 고체 입자는, 코어-쉘(core-shell) 구조를 포함하는 것일 수 있다. 상기 코어-쉘 구조는, 금속-금속으로 이루어진 코어-쉘 이외에도 상용 도전볼[PS 입자 겉에 금속박막이 증착된 폴리머-금속(여러층일 수 있음)] 형태의 코어-쉘 구조일 수도 있다.
일 실시형태에 있어서, 상기 금속산화물 입자 또는 반도체 산화물 입자는, SiO2, Fe2O3, Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
상기 반도체 산화물 입자는 금속 입자와 다르게 액체금속과 반응하지 않으면서 리올로지(rheology)를 변화시킬 수 있어 금속 입자들과 또 다른 특성을 보인다.
상기 액체금속에 고체 입자를 특정 비율로 혼합하면 페이스트 형태로 변하는 거동을 나타낼 수 있다.
일 실시형태에 있어서, 상기 액체금속 : 상기 고체 입자의 부피 비율은, 99 : 1 내지 70 : 30; 99 : 1 내지 80 : 30; 99 : 1 내지 90 : 30; 90 : 1 내지 70 : 30; 90 : 1 내지 80 : 30; 90 : 1 내지 90 : 30; 80 : 1 내지 70 : 30; 80 : 1 내지 80 : 30; 또는 70 : 1 내지 70 : 30; 인 것일 수 있다.
상기 액체금속 : 상기 고체 입자의 비율이 70 : 30 미만인 경우, 외부 응력(stress)에 의해 액체금속의 누출의 문제가 발생할 수 있고, 액체금속 : 상기 고체 입자의 비율이 99 : 1 초과인 경우 가공이 어려워지고, 경화(강성, 응고) 문제가 발생할 수 있다.
상기 고체 입자의 평균 직경은 50 nm 내지 5 ㎛; 50 nm 내지 3 ㎛; 50 nm 내지 1 ㎛; 10 nm 내지 5 ㎛; 10 nm 내지 3 ㎛; 10 nm 내지 1 ㎛; 50 nm 내지 5 ㎛; 50 nm 내지 3 ㎛; 50 nm 내지 1 ㎛; 100 nm 내지 5 ㎛; 100 nm 내지 3 ㎛; 100 nm 내지 1 ㎛; 500 nm 내지 5 ㎛; 500 nm 내지 3 ㎛; 500 nm 내지 1 ㎛; 1 ㎛ 내지 5 ㎛; 1 ㎛ 내지 3 ㎛; 또는 3 ㎛ 내지 5 ㎛;인 것일 수 있다.
상기 고체 입자의 평균 직경이 50 nm 미만인 경우 미세 입자 제조 문제가 발생할 수 있고, 5 ㎛ 초과인 경우 패턴 크기와 필름 두께에 제한을 줄 수 있다.
바람직하게는, 상기 고체 입자의 평균 입경은, 50 nm 내지 3 ㎛인 것일 수 있다.
일 실시형태에 있어서, 상기 연신성 고분자는, 폴리디메틸실록산(PDMS), 스티렌-에틸렌/부티렌-스티렌 트리블록 코폴리머(styrene-ethylene/butylene-styrene triblock copolymer; SEBS), 스티렌-에틸렌/부틸렌-스티렌-그라프트-말레익 언하이드라이드 코폴리머(styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드 코폴리머(polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드(polypropylene-graft-maleic anhydride; PP-g-MA), 폴리에틸렌-그라프트-아크릴산(polyethylene-graft-acrylic acid; PE-g-AA), 폴리-프로필렌-그라프트-아크릴산(poly-propylene-graft-acrylic acid; PP-g-AA), 폴리우레탄(PU), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 설폰(PES), 폴리메탈크릴레이트(PMA) 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드(PI), 폴리프로필렌(PP), 에틸렌비닐아세테이트(EVA), 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 연신성 고분자는 PDMS인 것일 수 있다.
도 1a 및 도 1b에는 연신성 고분자(110) 및 액체금속(120)만을 도시하였으나, 연신성 고분자(110) 아래 층에 지지대 역할의 층, 예를 들어, Si 기판 또는 유리 기판을 더 포함할 수도 있다.
도 2a는 종래 단단한 도전볼을 이용한 이방성 도전 필름의 변형을 설명하기 위한 도면이고, 도 2b는 본 발명의 액체금속을 이용한 연신성 이방성 도전 필름의 변형을 설명하기 위한 도면이다.
도 2a에 도시된 바와 같이, 종래의 이방성 도전 필름은 단단한 도전볼을 사용하기 때문에 열압착을 통한 변형에 한계가 있어 돌출형 하부 전극이 아닌 오목형 하부 전극과의 통전에 어려움이 있는 것을 알 수 있다.
도 2b에 도시된 바와 같이, 본 발명의 연신성 이방성 도전 필름은 단단한 도전볼 대신 상온에서 액체 상태인 연신성, 전도성 액체금속을 사용함으로써 오목형 하부 전극 형태에 맞춰서 형태 변형이 가능하고, 금속 수준(>106 S/m)의 높은 비등방성 전도성을 부여할 수 있는 것을 알 수 있다.
본 발명의 다른 실시예에 따른 연신성 이방성 도전 필름의 제조방법은, 기판 상에 포토레지스트를 패터닝하는 단계; 상기 포토레지스트가 패터닝된 기판을 표면처리하는 단계; 상기 표면처리된 기판 상에 연신성 고분자를 코팅하는 단계; 상기 코팅된 연신성 고분자를 열경화하는 단계; 상기 패터닝된 포토레지스트를 제거하는 단계; 상기 기판을 제거하는 단계; 및 상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계;를 포함한다.
도 3a 내지 도 3g는 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름의 제조방법을 설명하기 위한 모식도이다.
도 3a를 참조하면, 먼저, 기판(210)을 준비하고, 기판 상에 포토레지스트(220)를 패터닝한다.
상기 기판(210)은 물질과 종류에 제한되지 않는다.
일 실시형태에 있어서, 상기 기판은, 유연기판, 반도체 기판, 절연기판 및 신축성기판으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
상기 기판(210)은, 예를 들어, 실리콘 기판, P-도핑된 실리콘(P+ doped-Si) 기판, 폴리이미드(polyimide) 기판, PDMS(polydimethylsiloxane) 기판, PET(polyethylene terephthalate) 기판, 유리(glass) 기판 및 종이(paper) 기판으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 기판(210)은 실리콘 기판인 것일 수 있다.
상기 패터닝된 포토레지스트(220)는 포토레지스트를 사용하여 포토리소그래피 공정에 기반한 스탬핑 공정에 의해 형성될 수 있다.
상기 포토레지스트는, SU-8 50, SU-8 2, AZ nLOF 2070 및 AZ 5214로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
포토리소그래피 공정에 기반한 스탬핑 공정을 통하여 균일한 크기, 간격, 높은 해상도의 규칙적인 배열을 갖는 고분자 필름을 패터닝할 수 있다.
종래의 보고된 ACF의 경우 복잡한 공정이 수 차례 필요하지만, 스탬핑 공정을 통해 몰드를 재사용할 수 있어 공정의 단순성과 양산성도 확보함은 물론, 다양한 종류의 고분자에 적용 가능하다는 장점도 있어 상황에 따라 다양한 물성을 갖는 S-ACF로의 확장도 가능하다.
일 실시형태에 있어서, 상기 표면처리는 O2 플라즈마, 실란계 물질(230) 또는 이 둘을 이용하여 표면처리하는 것일 수 있다.
도 3b에 도시된 바와 같이, 상기 포토레지스트(220)가 패터닝된 기판(210) 위에 실란계 물질(230)을 표면처리할 수 있다.
상기 표면 처리는 추후 연신성 고분자를 쉽게 떼어내기 위한 것이다.
일 실시형태에 있어서, 상기 실란계 물질은, 플로오로데실트리클로로실란(FDTS), 메타크릴록시프로필트리메톡시실란(MPTMS), 운데세닐트리클로로실란(UTS), 비닐-트리클로로실란(VTS), 데실트리클로로실란(DTS), 옥타데실트리클로로실란(OTS), 디메틸디클로로실란(DDMS), 도데세닐트리클로로실란(DDTS), 플루오로-테트라히도로옥틸트리메틸클로로실란(FOTS), 퍼플루오로옥틸디메틸클로로실란, 아미노프로필메톡시실란(APTMS)을 포함하는 실란, 클로로실란, 플루오로실란, 메톡시실란, 알킬실란 및 아미노실란으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 방법으로 수행되는 것일 수 있다.
바람직하게는, 상기 실란계 물질은, 옥타데실트리클로로실란(OTS)을 사용하는 것일 수 있다.
예를 들어, 상기 기판에 O2 플라즈마 처리를 수행한 후에, 톨루엔에 2 wt%의 n-옥타데실트리클로로실란(OTS)을 녹인 용액을 3,000 rpm으로 스핀코팅하고, 120 ℃ 고온에서 톨루엔을 건조시키는 것일 수 있다.
도 3c에 도시된 바와 같이, 상기 실란계 물질(230)로 표면처리된 기판(210) 상에 연신성 고분자(240)를 코팅할 수 있다.
일 실시형태에 있어서, 상기 표면처리된 기판 상에 연신성 고분자를 코팅하는 단계는, 블레이드 프린팅(blade printing), 스크린 프린팅(screen printing), 브러쉬 페인팅(brush painting), 스핀 코팅법(spin coating), 딥 코팅(dip coating), 바 코팅(bar coating), 낙하(dropping), 스프레이 코팅(spray coating), 잉크젯 프린팅(inkjet printing) 및 스포팅법(spotting)으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 방법으로 수행되는 것일 수 있다.
바람직하게는, 상기 코팅은 스핀 코팅법에 의한 것일 수 있다.
일 실시형태에 있어서, 상기 연신성 고분자는, 폴리디메틸실록산(PDMS), 스티렌-에틸렌/부티렌-스티렌 트리블록 코폴리머(styrene-ethylene/butylene-styrene triblock copolymer; SEBS), 스티렌-에틸렌/부틸렌-스티렌-그라프트-말레익 언하이드라이드 코폴리머(styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드 코폴리머(polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드(polypropylene-graft-maleic anhydride; PP-g-MA), 폴리에틸렌-그라프트-아크릴산(polyethylene-graft-acrylic acid; PE-g-AA), 폴리-프로필렌-그라프트-아크릴산(poly-propylene-graft-acrylic acid; PP-g-AA), 폴리우레탄(PU), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 설폰(PES), 폴리메탈크릴레이트(PMA) 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드(PI), 폴리프로필렌(PP), 에틸렌비닐아세테이트(EVA), 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 연신성 고분자는 PDMS인 것일 수 있다.
상기 연신성 고분자는, 상기 포토레지스트 패턴보다 낮은 두께로 코팅하는 것일 수 있다.
이어서, 상기 코팅된 연신성 고분자를 열경화를 수행할 수 있다.
일 실시형태에 있어서, 상기 코팅된 연신성 고분자를 열경화하는 단계는, 50 ℃ 내지 100 ℃; 50 ℃ 내지 80 ℃; 50 ℃ 내지 60 ℃; 70 ℃ 내지 100 ℃; 70 ℃ 내지 80 ℃; 또는 80 ℃ 내지 100 ℃의 온도 범위에서 5 분 내지 60 분; 5 분 내지 60 분; 동안 수행하는 것일 수 있다.
도 3d에 도시된 바와 같이, 상기 포토레지스트를 제거할 수 있다.
이에 따라, 포토레지스트 패턴과 반대 모양을 갖는 구멍이 있는 패터닝된 고분자 필름을 얻을 수 있다.
패턴의 크기와 깊이를 조절하여 다양한 형태의 이방성 도전 필름을 빠르고 쉽게 제조할 수 있다.
도 3e에 도시된 바와 같이, 상기 기판을 제거하는 것일 수 있다.
상기 기판에 O2 플라즈마 처리와 실란계 물질로 표면처리를 했기 때문에 기판과 고분자의 분리가 용이하다.
도 3f에 도시된 바와 같이, 상기 제거된 포토레지스트 공간에 액체금속(250)을 충진하는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속(250)은, 상온에서 액체 상태를 유지하는 것일 수 있고, 이에 따라 형태가 변형될 수 있다. 상기 액체금속(250)과 상기 연신성 고분자(240) 간의 표면 장력 및 계면 장력으로 인해 소정의 형상을 가질 수 있다.
일 실시형태에 있어서, 상기 액체금속(250)에 의하여 상기 이방 전도성 필름이 이방성, 즉, 수직으로 통전되는 것일 수 있다.
일 실시형태에 있어서, 상기 액체금속은, 갈륨(Ga), 인듐(In), 주석(Sn), 수은(Hg), 납(Pb), 비스무트(Bi), 카드뮴(Cd), 갈륨-인듐 공융 합금(eutectic gallium-indium alloy, EGaIn), 갈륨-인듐-주석 공융합금(갈린스탄, Galinstan), 갈륨-인듐(Ga/In), 갈륨/납(Ga/Pb), 갈륨/카드뮴(Ga/Cd), 갈륨/아연(Ga/Zn), 갈륨/주석(Ga/ Sn), 갈륨/비스무트(Ga/Bi), 갈륨/탈륨(Ga/Tl), 주석/은(Sn/Ag), 주석/금(Sn/Au), 주석/구리(Sn/Cu), 주석/니켈(Sn/Ni), 납/안티몬(Pb/Sb), 납/금(Pb/Au) 및 납/카드뮴(Pb/Cd)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 액체금속은, 갈륨(Ga)을 포함하는 것일 수 있다.
일 실시형태에 있어서, 상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계는, 블레이드 프린팅(blade printing), 스크린 프린팅(screen printing), 브러쉬 페인팅(brush painting), 스핀 코팅법(spin coating), 딥 코팅(dip coating), 바 코팅(bar coating), 낙하(dropping), 스프레이 코팅(spray coating), 잉크젯 프린팅(inkjet printing) 및 스포팅법(spotting)으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 방법으로 수행되는 것일 수 있다.
바람직하게는, 상기 코팅은 블레이드 프린팅(blade printing)에 의한 것일 수 있다. 블레이트 프린팅은, 액체금속이 들어있는 이중 블레이드가 기판으로부터 수십~수백 ㎛ 높이 떨어져 있어, 스크린 프린팅과 다르다. 압력을 가해주는 잉크젯 프린팅과는 다르게, 압력을 가해주지 않는다.
액체금속의 프린팅 방법을 설명하자면, 프린터 날에 들어있는 액체금속을 사전에 구멍이 패터닝된 고분자 필름 위에 접촉시킨 후, 일정 속도로 이동시킨다. 구멍 부분에는 액체금속이 젖어 들어가며 구멍을 채워 수직방향 통전을 이루고, 구멍이 없는 고분자 필름 부분에는 액체금속의 비젖음성으로 액체금속이 남지 않아 수평 방향 전도성이 없게 되는 것이다.
상기 블레이드 프린팅 공정을 통해 단순한 방법으로, 패터닝된 고분자 위에 액체금속을 프린팅하여 비젖음성을 유도하고, 패터닝된 부분에만 선택적으로 액체금속을 프린팅할 수 있다. 액체금속은 수직방향으로만 전도도를 부여하는 이방성 전도성을 갖도록 패터닝될 수 있다. 이는, 높은 표면장력에 의해 패터닝이 어려운 액체 금속의 한계를 표면 산화막 및 유체역학 분석을 통해 극복한 것이다.
종래의 러빙(rubbing) 공정을 사용하는 ACF의 경우 공정이 복잡함은 물론 모든 패턴에 균일하게 전도성 입자를 채워 넣기 어려웠지만, 액체금속의 젖음성을 이용해 특정 부분에만 액체금속을 충진하도록 하는 프린팅 공정을 통해 공정의 단순성과 균일성을 확보할 수 있다.
또한, 종래에는 대면적화에 많은 요소들이 필요했지만, 프린터 헤드 크기를 조절하는 단순한 방법을 통해 대면적화도 용이하다.
상온에서의 단순한 프린팅 공정으로, 고온 공정이 많이 요구되는 종래의 방법들에 비해 경제성 확보에도 용이하다.
따라서, 액체금속 프린팅 공정은, 공정의 단순화, 균일도, 대면적화 및 경제성이 있는 공정이다.
액체금속은 입자화 되어있을 때 입자 표면에 형성되는 산화막으로 여러 입자가 맞닿아 있을 경우 절연 상태가 되어 입자간 전도성을 부여하기 위해 마이크로웨이브 조사와 같은 추가 공정이 필요하지만, 해당 프린팅 기법은 액체금속 입자가 아닌 벌크 형태의 액체금속으로 수직방향 전도성을 부여하기 때문에 그런 공정이 필요하지 않다.
구멍이 뚫린 영역에는 액체금속이 충진되어 수직방향 전도도를 부여하는 역할을 하며, 구멍이 없는 고분자 영역에는 예를 들어, 3 nm 두께의 비전도성 산화막이 형성되어 수평 방향으로 전기가 통하는 크로스톡 문제가 없다.
일 실시형태에 있어서, 상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계 이후에, 상기 액체금속에 고체 입자를 첨가하는 단계;를 더 포함할 수 있다.
도 3g에 도시된 바와 같이, 상기 액체금속(250)에 고체 입자(260)를 첨가하는 것일 수 있다.
상기 고체 입자(260)는 상기 액체금속(250) 표면에 분산되거나 전체 액체금속(250) 내에 분산되어 합금을 이룰 수 있다. 합금을 이룬 후에는 고체 입자 잔여물을 제거할 수 있다.
상기 고체 입자(260)는 상기 액체금속(250)의 측면을 적어도 부분적으로 커버할 수 있다. 이에 따라, 연신성 이방성 도전 필름이 다른 곳에 접착 후 탈착 시 액체성으로 액체금속(250)이 흐르는 것을 방지할 수 있다.
일 실시형태에 있어서, 상기 고체 입자(260)는, 금속 입자, 금속산화물 입자 및 반도체 산화물 입자로 이루어진 군으로부터 선택되는 적어도 어느 하나를 더 포함할 수 있다.
일 실시형태에 있어서, 상기 고체 입자는, 코어-쉘(core-shell) 구조를 포함하는 것일 수 있고, 금속-금속으로 이루어진 코어-쉘 이외에도 상용 도전볼[PS 입자 겉에 금속박막이 증착된 폴리머-금속(여러층일 수 있음)] 형태의 코어-쉘 구조일 수 있다.
일 실시형태에 있어서, 상기 금속 입자는, 구리(Cu), 금(Au), 백금(Pt), 은(Ag), 철(Fe), 코발트(Co), 니켈(Ni), 알루미늄(Al), 크롬(Cr), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 금속 입자는, 철(Fe) 또는 니켈(Ni)인 것일 수 있다.
일 실시형태에 있어서, 상기 금속산화물 입자 또는 반도체 산화물 입자는, Fe2O3, Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
바람직하게는, 상기 금속산화물 입자 또는 반도체 산화물 입자는, Fe2O3인 것일 수 있다.
상기 액체금속에 고체 입자를 특정 비율로 혼합하면 페이스트 형태로 변하는 거동을 나타낼 수 있다. 페이스트 물성을 가지는 조성 비율로 합금을 이루게 되면, 연신성 이방성 도전 필름의 연신 시 안정성과 높은 전도도를 유지할 수 있다.
본 발명의 또 다른 실시예에 따른 연신성 전자소자는, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름 또는 본 발명의 다른 실시예에 따른 연신성 이방성 도전 필름의 제조방법에 의해 제조된 연신성 이방성 도전 필름을 포함한다.
일 실시형태에 있어서, 상기 연신성 전자소자는, 플렉서블 디스플레이, 스트레쳐블 디스플레이, 반도체 테스트 소켓, 센서 및 전자스킨으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것일 수 있다.
플렉서블 디스플레이 및 스트레쳐블 디스플레이의 적층 구조는 연신성 이방성 도전 필름을 통해 수직 접합을 이루기 때문에, 각 디스플레이마다 평균 5-6 층의 연신성 이방성 도전 필름을 포함할 수 있다.
재료 및 공정 기술의 발전에 따라, 전자 소자의 크기와 회로 및 배선이 미세화되며 기계적인 유연성과 변형성이 요구되고 있어, 미세해지는 전자 소자와 회로 간 전기적 연결을 위해서는 고도의 규칙적인 배열의 본 발명의 연신성 이방성 도전 필름이 필수적이다.
반도체 테스트 소켓은 연신성 이방성 도전 필름과 마찬가지로 비등방성 전도성이 필요하다. 최근 중앙처리장치(CPU) 및 그래픽처리장치(GPU) 등 부가가치가 높은 시스템 반도체 시장까지 실리콘 러버 소켓의 적용 범위를 넓히고 있으며, 이에 따라 미세하고 다양한 크기와 모양을 가지며, 대면적 고유연 저압 접촉이 가능한 미세피치에 대한 기술이 필요하다. 종래의 포고핀 및 실리콘 러버소켓 방식은 고유연성/균일 접촉성/고전도성의 동시 보장이 어려워, 이를 해결해 줄 대면적성/고유연성/고전도성/고밀도용 테스트 소켓이 필요한데, 본 발명의 일 실시예에 따른 연신성 이방성 도전 필름이 사용될 수 있다.
이하, 하기 실시예 및 비교예를 참조하여 본 발명을 상세하게 설명하기로 한다. 그러나, 본 발명의 기술적 사상이 그에 의해 제한되거나 한정되는 것은 아니다.
[실시예]
실리콘 기판 상에 SU-8 50 포토레지스트를 40 ㎛ 높이(3,000 rpm, 30 초)로 스핀 코팅한 후, 핫 플레이트상에서 65 ℃에서 5 분간, 95 ℃에서 15 분간 연속하여 소프트 베이크(soft bake)를 실시하였다.
이어서, 고분자 형성할 공간을 개방하기 위해 SU-8 50 포토레지스트를 UV 램프와 포토마스크를 사용하여 250 mJ/cm2에서 노광하고, 이후, 포토레지스트가 패터닝된 기판에 핫 플레이트 상에서 65 ℃에서 1 분간, 95 ℃에서 4 분간 연속하여 노광 후 베이크(post expose bake; PEB)를 실시하였다.
이어서, SU-8 현상액으로 6 분 동안 현상하고, 이소프로필알콜(IPA)로 헹군 후, N2 가스로 건조될 수 있다. 이어서, 포토리소그래피 공정은 150 ℃에서 30 분간 핫 플레이트에서 하드 베이크를 실시하는 경화 단계(curing step)로 마무리하였다.
기판 상에 포토레지스트가 가로, 세로, 높이가 각각, 20 ㎛, 20 ㎛, 40 ㎛인 사각 기둥 모양으로 패터닝되었다.
이어서, 포토레지스트 사각 기둥이 패터닝된 실리콘 기판 위에 O2 플라즈마 처리를 해준 후, 톨루엔에 2 wt%의 n-옥타데실트리클로로실란(n-octadecyltrichlorosilane)을 녹인 용액을 3,000 rpm으로 스핀코팅 하고, 120 ℃ 고온에서 톨루엔을 제거하였다.
포토레지스트 기둥보다 낮은 두께인 1 ㎛ 내지 10 ㎛로 고분자를 스핀코팅하고 열경화시켜 포토레지스트 패턴과 반대 모양을 갖는 구멍이 있는 패터닝된 고분자 필름을 얻었다.
기판으로부터 고분자 필름을 떼어 내, 패터닝된 고분자 필름을 얻었다.
도 4는 본 발명의 실시예에 따른 포토리소그래피 공정에 기반한 스탬핑 공정을 통한 고분자 필름의 패터닝된 표면의 이미지이다.
도 4를 참조하면, 왼쪽은 고분자 필름의 패터닝된 표면 이미지이고, 오른쪽은 액체금속 프린팅 후 액체금속이 충진된 상태의 표면 이미지이다. 10 ㎛ 해상도, 20 ㎛ 해상도에서 균일한 크기, 간격, 높은 해상도의 규칙적인 배열을 갖는 고분자 필름이 패터닝된 것을 알 수 있다.
상기 패터닝된 고분자 필름을 프린팅 기판 위에 두고, 한 변의 길이가 20 ㎛인 사각형 모양으로 액체금속을 프린팅하여 연신성 이방성 도전 필름을 제조하였다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (12)

  1. 패터닝된 연신성 고분자; 및
    상기 연신성 고분자의 패터닝된 부분에 충진된 액체금속;
    을 포함하는,
    연신성 이방성 도전 필름.
  2. 제1항에 있어서,
    상기 액체금속에 의하여 상기 이방 전도성 필름의 양면으로 통전되는 것인,
    연신성 이방성 도전 필름.
  3. 제1항에 있어서,
    상기 액체금속은, 갈륨(Ga), 인듐(In), 주석(Sn), 수은(Hg), 납(Pb), 비스무트(Bi), 카드뮴(Cd), 갈륨-인듐 공융 합금(eutectic gallium-indium alloy, EGaIn), 갈륨-인듐-주석 공융합금(갈린스탄, Galinstan), 갈륨-인듐(Ga/In), 갈륨/납(Ga/Pb), 갈륨/카드뮴(Ga/Cd), 갈륨/아연(Ga/Zn), 갈륨/주석(Ga/ Sn), 갈륨/비스무트(Ga/Bi), 갈륨/탈륨(Ga/Tl), 주석/은(Sn/Ag), 주석/금(Sn/Au), 주석/구리(Sn/Cu), 주석/니켈(Sn/Ni), 납/안티몬(Pb/Sb), 납/금(Pb/Au) 및 납/카드뮴(Pb/Cd)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인,
    연신성 이방성 도전 필름.
  4. 제1항에 있어서,
    상기 액체금속은, 상기 연신성 이방성 도전 필름 중 10 중량% 내지 80 중량%이고,
    연신성 이방성 도전 필름.
  5. 제1항에 있어서,
    상기 액체금속에 분산된 고체 입자를 더 포함하고,
    상기 고체 입자는, 금속 입자, 금속산화물 입자 및 반도체 산화물 입자로 이루어진 군으로부터 선택되는 적어도 어느 하나를 더 포함하고,
    상기 고체 입자는, 코어-쉘(core-shell) 구조를 포함하는 것이고,
    상기 금속 입자는, 구리(Cu), 금(Au), 백금(Pt), 은(Ag), 철(Fe), 코발트(Co), 니켈(Ni), 알루미늄(Al), 크롬(Cr), 텅스텐(W), 몰리브덴(Mo) 및 티타늄(Ti)으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것이고,
    상기 금속산화물 입자 또는 반도체 산화물 입자는, SiO2, Fe2O3, Fe3O4, BiVO4, Bi2WO4, TiO2, SrTiO3, ZnO, CuO, Cu2O, NiO, SnO2, CoO, In2O3, WO3, MgO, CaO, La2O3, Nd2O3, Y2O3, CeO2, PbO, ZrO2, Co3O4 및 Al2O3로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인,
    연신성 이방성 도전 필름.
  6. 제5항에 있어서,
    상기 액체금속 : 상기 고체 입자의 부피 비율은, 99 : 1 내지 70 : 30인 것인,
    연신성 이방성 도전 필름.
  7. 제1항에 있어서,
    상기 연신성 고분자는,
    폴리디메틸실록산(PDMS), 스티렌-에틸렌/부티렌-스티렌 트리블록 코폴리머(styrene-ethylene/butylene-styrene triblock copolymer; SEBS), 스티렌-에틸렌/부틸렌-스티렌-그라프트-말레익 언하이드라이드 코폴리머(styrene-ethylene/butylene-styrene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드 코폴리머(polypropylene-graft-maleic anhydride copolymer; SEBS-g-MA), 폴리에틸렌-그라프트-말레익 언하이드라이드(polyethylene-graft-maleic anhydride; PE-g-MA), 폴리프로필렌-그라프트-말레익 언하이드라이드(polypropylene-graft-maleic anhydride; PP-g-MA), 폴리에틸렌-그라프트-아크릴산(polyethylene-graft-acrylic acid; PE-g-AA), 폴리-프로필렌-그라프트-아크릴산(poly-propylene-graft-acrylic acid; PP-g-AA), 폴리우레탄(PU), 폴리에틸렌 테레프탈레이트(PET), 폴리에틸렌 설폰(PES), 폴리메탈크릴레이트(PMA) 폴리에틸렌 나프탈레이트(PEN), 폴리카보네이트(PC), 폴리메틸메타크릴레이트(PMMA), 폴리이미드(PI), 폴리프로필렌(PP), 에틸렌비닐아세테이트(EVA), 아몰포스폴리에틸렌테레프탈레이트(APET), 폴리프로필렌테레프탈레이트(PPT), 폴리에틸렌테레프탈레이트글리세롤(PETG), 폴리사이클로헥실렌디메틸렌테레프탈레이트(PCTG), 변성트리아세틸셀룰로스(TAC), 사이클로올레핀고분자(COP), 사이클로올레핀코고분자(COC), 디시클로펜타디엔고분자(DCPD), 시클로펜타디엔고분자(CPD), 폴리아릴레이트(PAR), 폴리에테르이미드(PEI), 실리콘수지, 불소수지 및 변성에폭시수지로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인,
    연신성 이방성 도전 필름.
  8. 기판 상에 포토레지스트를 패터닝하는 단계;
    상기 포토레지스트가 패터닝된 기판을 표면처리하는 단계;
    상기 표면처리된 기판 상에 연신성 고분자를 코팅하는 단계;
    상기 코팅된 연신성 고분자를 열경화하는 단계;
    상기 패터닝된 포토레지스트를 제거하는 단계;
    상기 기판을 제거하는 단계; 및
    상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계;
    를 포함하는,
    연신성 이방성 도전 필름의 제조방법.
  9. 제8항에 있어서,
    상기 표면처리는 O2 플라즈마, 실란계 물질 또는 이 둘을 이용하여 표면처리하는 것이고,
    상기 실란계 물질은, 플로오로데실트리클로로실란(FDTS), 메타크릴록시프로필트리메톡시실란(MPTMS), 운데세닐트리클로로실란(UTS), 비닐-트리클로로실란(VTS), 데실트리클로로실란(DTS), 옥타데실트리클로로실란(OTS), 디메틸디클로로실란(DDMS), 도데세닐트리클로로실란(DDTS), 플루오로-테트라히도로옥틸트리메틸클로로실란(FOTS), 퍼플루오로옥틸디메틸클로로실란, 아미노프로필메톡시실란(APTMS)을 포함하는 실란, 클로로실란, 플루오로실란, 메톡시실란, 알킬실란 및 아미노실란으로 이루어진 군으로부터 선택되는 적어도 어느 하나의 방법으로 수행되는 것인,
    연신성 이방성 도전 필름의 제조방법.
  10. 제8항에 있어서,
    상기 제거된 포토레지스트 공간에 액체금속을 충진하는 단계 이후에,
    상기 액체금속에 고체 입자를 첨가하는 단계;
    를 더 포함하는,
    연신성 이방성 도전 필름의 제조방법.
  11. 제1항의 연신성 이방성 도전 필름 또는 제8항의 연신성 이방성 도전 필름의 제조방법에 의해 제조된 연신성 이방성 도전 필름을 포함하는 연신성 전자소자.
  12. 제11항에 있어서,
    상기 연신성 전자소자는,
    플렉서블 디스플레이, 스트레쳐블 디스플레이, 반도체 테스트 소켓, 센서 및 전자스킨으로 이루어진 군으로부터 선택되는 적어도 어느 하나를 포함하는 것인,
    연신성 전자소자.
PCT/KR2023/006220 2022-05-09 2023-05-08 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자 WO2023219363A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2022-0056785 2022-05-09
KR20220056785 2022-05-09
KR1020230058553A KR20230157259A (ko) 2022-05-09 2023-05-04 이방전도성 탄성소재, 그의 제조방법 및 그를 포함하는 탄성 전자소자
KR10-2023-0058553 2023-05-04

Publications (1)

Publication Number Publication Date
WO2023219363A1 true WO2023219363A1 (ko) 2023-11-16

Family

ID=88730668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/006220 WO2023219363A1 (ko) 2022-05-09 2023-05-08 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자

Country Status (2)

Country Link
TW (1) TW202407717A (ko)
WO (1) WO2023219363A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140078557A (ko) * 2012-12-14 2014-06-25 보에 테크놀로지 그룹 컴퍼니 리미티드 이방성 도전 필름 및 전자 장치
KR20170005950A (ko) * 2015-07-06 2017-01-17 삼성디스플레이 주식회사 이방성 도전 필름 및 그 제조방법
JP2019029135A (ja) * 2017-07-27 2019-02-21 日立化成株式会社 異方性導電フィルム及びその製造方法、並びに接続構造体及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140078557A (ko) * 2012-12-14 2014-06-25 보에 테크놀로지 그룹 컴퍼니 리미티드 이방성 도전 필름 및 전자 장치
KR20170005950A (ko) * 2015-07-06 2017-01-17 삼성디스플레이 주식회사 이방성 도전 필름 및 그 제조방법
JP2019029135A (ja) * 2017-07-27 2019-02-21 日立化成株式会社 異方性導電フィルム及びその製造方法、並びに接続構造体及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HWANG HYEJIN, KONG MINSIK, KIM KYUNGHWAN, PARK DOOWON, LEE SANGYEOP, PARK SOOJIN, SONG HO-JIN, JEONG UNYONG: "Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits", SCIENCE ADVANCES, vol. 7, no. 32, 6 August 2021 (2021-08-06), XP093076305, DOI: 10.1126/sciadv.abh0171 *
PARK YOUNG‐GEUN, JANG JIUK, KIM HYOBEOM, HWANG JAE CHUL, KWON YONG WON, PARK JANG‐UNG: "Self‐Healable, Recyclable Anisotropic Conductive Films of Liquid Metal‐Gelatin Hybrids for Soft Electronics", ADVANCED ELECTRONIC MATERIALS, vol. 8, no. 4, 1 April 2022 (2022-04-01), pages 2101034, XP093106756, ISSN: 2199-160X, DOI: 10.1002/aelm.202101034 *

Also Published As

Publication number Publication date
TW202407717A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
KR100607407B1 (ko) Cof용 플렉시블 프린트 배선판 및 그 제조방법
WO2018174599A1 (ko) 투명한 디스플레이용 led 전광 판넬 및 그 제작 방법
EP1629546B8 (en) A field effect transistor arrangement and method of manufacturing a field effect transistor arrangement
KR20060129939A (ko) 반도체 디바이스 및 그 제조방법
WO2013094887A1 (ko) 멀티 터치용 터치 스크린 패널 및 그 제조 방법
TW200301941A (en) Planar polymer transistor
WO2022025415A1 (ko) Led칩 디스플레이 패널로의 전사 및 그 전사 전의 led칩 테스트를 위한 미들 플랫폼 장치
WO2020101319A1 (ko) 밀봉재 조성물
WO2012124979A2 (ko) 도전성 잉크 조성물, 이를 이용한 인쇄 방법 및 이에 의하여 제조된 도전성 패턴
JPH0282625A (ja) 金属層リフト・オフ処理方法
WO2017052177A1 (ko) 필름 터치 센서 및 그 제조 방법
JP2002176178A (ja) 表示装置及びその製造方法
WO2023219363A1 (ko) 연신성 이방성 도전 필름, 그의 제조방법 및 그를 포함하는 연신성 전자소자
WO2018101540A1 (ko) 패턴이 형성된 플렉서블 투명전극의 제조방법
WO2019083246A2 (ko) 광학 필름, 광학 필름 제조 방법 및 유기 발광 전자 장치 제조 방법
WO2015170792A1 (ko) 반도체 소자들을 패키징하는 방법 및 이를 수행하기 위한 장치
WO2022124550A1 (ko) 연신성 acf, 이의 제조방법, 이를 포함하는 계면 접합 부재 및 소자
WO2023219357A1 (ko) 액체금속 입자를 포함하는 연신성 이방 전도성 필름 및 이의 제조방법
WO2017039129A1 (ko) 배선전극을 가지는 투명전극의 제조방법
KR20230157259A (ko) 이방전도성 탄성소재, 그의 제조방법 및 그를 포함하는 탄성 전자소자
WO2023219356A1 (ko) 도전볼을 포함하는 연신성 이방 전도성 필름 및 이의 제조방법
WO2023075348A1 (ko) 다층의 박막 fpcb 및 히터 제작방법
WO2021015540A1 (ko) 확장형 전극패드를 갖는 픽셀 csp 제조방법 및 그 방법에 의해 제조되는 픽셀 csp
WO2017217639A1 (ko) 전극 구조체, 이를 포함하는 전자 소자 및 이의 제조방법
WO2020050481A1 (ko) 반도체 패키지용 폴리이미드 필름

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803786

Country of ref document: EP

Kind code of ref document: A1