WO2023218782A1 - 光源装置及び制御方法 - Google Patents

光源装置及び制御方法 Download PDF

Info

Publication number
WO2023218782A1
WO2023218782A1 PCT/JP2023/012562 JP2023012562W WO2023218782A1 WO 2023218782 A1 WO2023218782 A1 WO 2023218782A1 JP 2023012562 W JP2023012562 W JP 2023012562W WO 2023218782 A1 WO2023218782 A1 WO 2023218782A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
source device
diffraction grating
control signal
Prior art date
Application number
PCT/JP2023/012562
Other languages
English (en)
French (fr)
Inventor
尚明 加藤
優 瀧口
博 田中
良幸 大竹
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Publication of WO2023218782A1 publication Critical patent/WO2023218782A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Definitions

  • One aspect of the present invention relates to a light source device and a control method.
  • Patent Document 1 describes a Littman/Metcalf type external cavity semiconductor laser.
  • the external cavity semiconductor laser of Patent Document 1 has a configuration in which a wide spectrum (bandwidth) can be obtained by changing the end mirror to a concave mirror and making the radius of curvature equal to the distance between the concave mirror and the diffraction grating. .
  • the radius of curvature of the concave mirror is set to a fixed value. With such a configuration, the bandwidth of light returned from the diffraction grating to the light source cannot be arbitrarily adjusted.
  • One aspect of the present invention has been made in view of the above circumstances, and provides a light source device and a control method that can arbitrarily adjust the bandwidth of light returned from a diffraction grating to a light source.
  • a light source device includes a light source that outputs light and an input section for a control signal, and can control the distribution of angles at which incident light is reflected based on the control signal.
  • the light source and the reflecting section a diffraction grating that splits the light output from the light source into the reflecting section and returns at least a portion of the light reflected at the reflecting section to the light source;
  • An optical resonator is formed by the diffraction grating, and the light returned to the light source is output, and the angular distribution of the light reflected at the reflection part is controlled based on the control signal, so that the light is returned from the diffraction grating to the light source.
  • Optical bandwidth is controlled.
  • the light output from the light source is separated by the diffraction grating and enters the reflection section. Then, at least a portion of the light reflected by the reflection section is returned to the light source from the diffraction grating.
  • the reflecting section is configured to be able to control the distribution of the angle at which light is reflected based on a control signal, and by controlling the distribution of the angle, the bandwidth of the light returned from the diffraction grating to the light source can be changed. controlled.
  • the control signal by changing the control signal, the distribution of angles at which light is reflected in the reflection section is changed, and the bandwidth of light returned from the diffraction grating to the light source can be changed. That is, according to the light source device according to one aspect of the present invention, the bandwidth of light returned from the diffraction grating to the light source can be arbitrarily adjusted.
  • the reflecting section includes a spatial light modulator, and the spatial light modulator displays a modulation pattern based on a control signal to control the incident light.
  • the distribution of angles at which the light is reflected may be controlled. In this way, by using the spatial light modulator as the reflection section, the bandwidth of the light returned from the diffraction grating to the light source can be adjusted easily and with high precision.
  • the reflecting section includes a variable curvature mirror, and the variable curvature mirror changes the radius of curvature based on the control signal, so that the incident light is
  • the distribution of reflected angles may also be controlled.
  • the bandwidth of light returned from the diffraction grating to the light source can be adjusted appropriately.
  • a variable curvature mirror there is no need to consider the effects of polarization or unmodulated light, compared to controlling the distribution of reflection angles using a modulation pattern, such as in a spatial light modulator. Light bandwidth can be adjusted.
  • the reflecting section includes a mirror and a variable focus lens provided between the diffraction grating and the mirror, and the variable focus lens receives a control signal.
  • the distribution of angles at which incident light is reflected may be controlled by changing the focal length of the variable focus lens based on . In this way, by using a variable focus lens to change the focal length of the variable focus lens, the bandwidth of the light returned from the diffraction grating to the light source can be adjusted appropriately.
  • the light source outputs light according to the injected current, and by temporally changing the injected current and the control signal, the light is returned from the diffraction grating to the light source.
  • the bandwidth of the light transmitted may be dynamically controlled. According to such a configuration, the light bandwidth can be adjusted more flexibly depending on the usage scene.
  • the reflecting portion and the diffraction grating are arranged such that the center of curvature of the reflecting surface of the reflecting portion coincides with the beam center of the light incident on the diffraction grating. may be placed. According to such a configuration, the paths of light before and after reflection on the reflection surface of the reflection section tend to be the same, and the bandwidth of light returned from the diffraction grating to the light source can be widened.
  • the light source device described in (1) to (6) above may further include a control signal generation unit that generates a second control signal based on the measurement results of the light output from the light source device. .
  • a control signal generation unit that generates a second control signal based on the measurement results of the light output from the light source device.
  • a control method includes outputting light from a light source toward a diffraction grating, and transmitting light separated by the diffraction grating to a reflecting portion on which the light is reflected. and inputting a control signal that controls the angular distribution of the light. According to such a control method, the bandwidth of light returned from the diffraction grating to the light source can be arbitrarily adjusted.
  • the light source unit including the light source includes an excitation light source that outputs excitation light, and a gain fiber that is an optical fiber having a gain corresponding to the excitation light; It may be configured to include. According to such a configuration, switching between laser oscillation and spontaneous emission amplification can be performed by adjusting the power of the excitation light. Furthermore, since a gain fiber having a gain corresponding to the excitation light is used in the light source unit, light is confined within the gain fiber, which is a narrow space, and nonlinear effects are likely to occur. Such nonlinear effects are more likely to occur when a highly nonlinear fiber is used as the gain fiber.
  • nonlinear effects include Self-phase modulation, Cross-phase modulation, Modulation instability, Stimulated Raman scattering, and Stimulated Brillouin scattering ( Examples include stimulated Brillouin scattering, four-wave mixing, and supercontinuum generation.
  • the light source device described in (1) to (7) or (9) above may further include an optical fiber that guides the light output from the diffraction grating.
  • an optical fiber that guides the light output from the diffraction grating.
  • the bandwidth of light returned from the diffraction grating to the light source can be adjusted arbitrarily.
  • FIG. 1 is a diagram schematically showing a light source device according to a first embodiment.
  • FIG. 3 is a diagram showing an example of a modulation pattern displayed on a spatial light modulator. It is a figure explaining the 1st example of operation of a light source device. It is a figure explaining the 2nd example of operation of a light source device. It is a figure explaining the 3rd example of operation of a light source device. It is a figure explaining the 4th example of operation of a light source device.
  • FIG. 7 is a diagram schematically showing a light source device according to a second embodiment.
  • FIG. 7 is a diagram schematically showing a light source device according to a fourth embodiment.
  • FIG. 7 is a diagram schematically showing a light source device according to a fifth embodiment.
  • FIG. 7 is a diagram schematically showing a light source device according to a sixth embodiment.
  • 11 is a diagram illustrating interference measurement using the light source device shown in FIG. 10.
  • FIG. 11 is a flowchart of interference measurement using the light source device shown in FIG. 10. It is a figure explaining interference measurement using the light source device concerning a 7th embodiment.
  • FIG. 7 is a diagram schematically showing a light source device according to an eighth embodiment.
  • FIG. 7 is a diagram schematically showing a light source device according to a ninth embodiment.
  • FIG. 1 is a diagram schematically showing a light source device 1 according to the first embodiment.
  • the light source device 1 is an external cavity laser (ECL).
  • the light source device 1 is, for example, a Littmann type external resonant laser, and is configured to reflect the primary light of a diffraction grating with a mirror and return it into the semiconductor laser.
  • the light source device 1 includes a light source unit 10, a current controller 20, a temperature controller 30, a lens 40, a diffraction grating 50, a spatial light modulator 60 (reflector), and a drive circuit. 70 and a PC 80.
  • the light source unit 10 includes a light source 11 and an LD mount 12.
  • the light source 11 is, for example, a semiconductor laser (LD) that outputs light having a spontaneous emission spectrum with a center wavelength of 850 nm.
  • the light source 11 may be, for example, a Fabry-Perot type semiconductor laser.
  • the end face of the light source 11 on the side coupled to the external resonator (light output direction side) may be coated with an anti-reflection coating.
  • the light source 11 is mounted on an LD mount 12.
  • the LD mount 12 may be a mount equipped with a TEC (Thermo-Electric Cooler).
  • TEC Thermo-Electric Cooler
  • the current controller 20 is configured to supply current to the light source 11 via the LD mount 12 and cause the light source 11 to output light. That is, the light source 11 outputs light according to the current (injected current) supplied from the current controller 20.
  • the light source 11 causes laser oscillation or operates below the oscillation threshold depending on the supplied (injected) current value.
  • the temperature controller 30 is configured to control the heat absorption (or heat radiation) of the TEC by supplying current to the TEC installed in the LD mount 12, and keep the temperature of the light source 11 constant via the TEC.
  • the lens 40 efficiently couples the light output from the light source 11 to the light source 11 when the light returns through the diffraction grating 50 and the spatial light modulator 60 (after making one round inside the external resonator).
  • a lens for example, a collimating lens.
  • the light emitted from the light source 11 spreads widely, and the beam diameter and divergence angle of the light are adjusted by the lens 40.
  • the light after passing through the lens 40 may or may not be parallel light.
  • the position of the lens 40 may be fixed at a position where high optical output can be obtained, regardless of the focal length of the modulation pattern (phase pattern) displayed on the spatial light modulator 60.
  • the diffraction grating 50 separates the light mixed with various wavelengths output from the light source 11 and inputs the light into the spatial light modulator 60, and also transmits at least a portion of the light reflected by the spatial light modulator 60 to the light source 11.
  • the configuration is to return to In the diffraction grating 50, the light is separated for each wavelength, the first-order light is directed to the spatial light modulator 60, and the zero-order light is extracted as output light.
  • the spatial light modulator 60 controls the distribution of angles at which incident light is reflected by displaying a modulation pattern based on a control signal (described later).
  • the spatial light modulator 60 is, for example, a reflective liquid crystal (LCOS) spatial light modulator (SLM).
  • the modulation pattern (phase pattern) is generated in the PC 80, inputted from the PC 80 to the drive circuit 70, and displayed on the spatial light modulator 60 based on a control signal from the drive circuit 70.
  • the control signal input from the drive circuit 70 to the spatial light modulator 60 is a signal related to displaying a modulation pattern.
  • the spatial light modulator 60 displays, for example, a lens pattern as a modulation pattern.
  • a Fresnel lens pattern may be used as the lens pattern.
  • the lens pattern may be an aspherical lens pattern or the like.
  • the radius of curvature of the Fresnel lens pattern is twice the focal length.
  • the radius of curvature has a positive value in the case of a concave mirror, and a negative value in the case of a convex mirror.
  • the focal length has a positive value in the case of a convex lens, and a negative value in the case of a concave lens.
  • the spatial light modulator 60 by changing the focal length of the Fresnel lens pattern, which is a modulation pattern, the radius of curvature of the Fresnel lens pattern changes, and the distribution of angles of light reflected in the spatial light modulator 60 changes. do.
  • the degree of coincidence of the paths of light before and after reflection at the spatial light modulator 60 changes.
  • the higher the degree of coincidence between the radius of curvature of the Fresnel lens pattern and the distance between the spatial light modulator 60 and the diffraction grating 50 the more the paths of light before and after reflection in the spatial light modulator 60 match.
  • the wavelength band (wavelength band with high coupling efficiency to the light source 11) becomes wider.
  • the angular distribution of the reflected light is controlled based on the control signal, thereby making it possible to control the bandwidth of the light returned from the diffraction grating 50 to the light source 11. That is, in the spatial light modulator 60, the spread of the optical spectrum can be controlled by changing the focal length of the Fresnel lens pattern. In this way, the spatial light modulator 60 can control the spread of the optical spectrum without moving or aligning optical components.
  • the bandwidth of the light returned to the light source 11 is determined based on, for example, the wavelength dependence of the coupling efficiency to the light source 11, the emission spectrum of the light source 11, and the like.
  • the phase modulation by the spatial light modulator 60 is strongly influenced by polarization.
  • the spatial light modulator 60 is arranged so that the polarization direction in which the phase can be modulated is the x direction or the y direction in FIG. 1 (that is, the direction parallel to the reflective surface 60a of the spatial light modulator 60).
  • the spatial light modulator 60 may be arranged so that the reflecting surface 60a and the reflecting surface of the diffraction grating 50 are parallel to each other, or may be arranged so that they are not parallel to each other.
  • the polarization direction that can be phase-modulated in the spatial light modulator 60 is made to match, for example, the linear polarization direction of the light output from the light source 11.
  • the optical system or the position of the modulation pattern may be adjusted so that the normal line extending from the center of the modulation pattern passes through the center of the beam of light on the diffraction grating 50.
  • the spatial light modulator 60 and the diffraction grating 50 may be arranged so that the center of curvature of the reflective surface 60a of the spatial light modulator 60 and the beam center of the light incident on the diffraction grating 50 coincide.
  • the spatial light modulator 60 and the diffraction grating 50 are arranged so that the locus of the center of curvature when changing the radius of curvature of the reflective surface 60a of the spatial light modulator 60 and the beam center of the light incident on the diffraction grating 50 may be arranged so that they intersect.
  • the center of curvature of the reflective surface 60a of the spatial light modulator 60 is the center of curvature of the modulation pattern displayed on the spatial light modulator 60.
  • the spatial light modulator 60 may display a predetermined surface shape correction pattern superimposed on the modulation pattern, if necessary.
  • the surface shape correction pattern here is a pattern for correcting the shape of the reflective surface 60a of the spatial light modulator 60.
  • the spatial light modulator 60 may further superimpose and display a pattern for correcting aberrations generated in the optical system.
  • the spatial light modulator 60 may display a modulation pattern (Fresnel lens pattern) with different focal lengths in the x direction and the y direction. In this case, for example, by optimizing the focal length in the y direction, the coupling efficiency of light returning to the light source 11 can be increased. Note that in the spatial light modulator 60, the above-mentioned light bandwidth control (light spectrum spread control) may be performed by changing only the focal length in the x direction.
  • the spatial light modulator 60 has a problem in that unmodulated light appears as zero-order light.
  • a pattern in which a blazed diffraction grating pattern is superimposed on a Fresnel lens pattern may be used as the modulation pattern displayed on the spatial light modulator 60.
  • FIG. 2 shows a blazed diffraction grating pattern 501 and a pattern 502 in which the blazed diffraction grating pattern is superimposed on a Fresnel lens pattern.
  • the primary light diffracted by the pattern 502 in which a blazed diffraction grating pattern is superimposed on a Fresnel lens pattern may be the light returned to the light source 11.
  • FIG. 3 is a diagram illustrating a first operation example of the light source device 1.
  • the spatial light modulator 60 displays a modulation pattern in which the radius of curvature of the Fresnel lens pattern is ⁇ (plane mirror).
  • a uniform image modulation pattern 503 as shown in FIG. 3(a) is displayed.
  • FIG. 3(b) is a simulation result showing the band of output light from the light source device 1 when the radius of curvature of the Fresnel lens pattern is ⁇ .
  • FIG. 3A the spatial light modulator 60 displays a modulation pattern in which the radius of curvature of the Fresnel lens pattern is ⁇ (plane mirror).
  • a uniform image modulation pattern 503 as shown in FIG. 3(a) is displayed.
  • FIG. 3(b) is a simulation result showing the band of output light from the light source device 1 when the radius of curvature of the Fresnel lens pattern is ⁇ .
  • the wavelength band in which the paths of light before and after reflection in the spatial light modulator 60 coincide is about 500 kHz.
  • the spread of the oscillation spectrum is determined by the gain frequency characteristics of the light source 11, the nonlinear behavior of laser oscillation, the bandwidth of the light returned to the light source 11, and the like.
  • FIG. 4 is a diagram illustrating a second operation example of the light source device 1.
  • the spatial light modulator 60 displays a modulation pattern in which the radius of curvature of the Fresnel lens pattern is the same as the distance between the spatial light modulator 60 and the diffraction grating 50. be done.
  • a modulation pattern 504 of a convex lens having a focal length of 45 mm for example, as shown in FIG. 4(a) is displayed.
  • the spatial light modulator 60 it is only necessary to perform phase modulation in the area where the light hits, so the modulation pattern 504 shown in FIG.
  • FIG. 4(a) uses a Fresnel lens pattern only in a limited area (center area in the figure). is displayed.
  • the radius of curvature of the Fresnel lens pattern is the same as the distance between the spatial light modulator 60 and the diffraction grating 50, the light beam spreads from the center of curvature, so all wavelength components are reflected by the spatial light modulator 60. It will return to the same route as the original route. In other words, the wavelength dependence of the diffraction angle at the diffraction grating 50 is canceled by the spatial light modulator 60.
  • 4(b) is a simulation result showing the band of output light from the light source device 1 when the radius of curvature of the Fresnel lens pattern is the same as the distance between the spatial light modulator 60 and the diffraction grating 50.
  • the bandwidth of the light returned to the light source 11 is It is extremely wide.
  • FIG. 5 is a diagram illustrating a third operation example of the light source device 1.
  • a modulation pattern is displayed in the spatial light modulator 60 in which the radius of curvature of the Fresnel lens pattern is larger than the distance between the spatial light modulator 60 and the diffraction grating 50.
  • Ru a modulation pattern 505 of a convex lens having a focal length of 55 mm, for example, as shown in FIG. 5(a) is displayed.
  • FIG. 5B shows simulation results showing the band of output light from the light source device 1 when the radius of curvature of the Fresnel lens pattern is made larger than the distance between the spatial light modulator 60 and the diffraction grating 50.
  • the bandwidth of the light returned to the light source 11 is , is wider than the first operation example and narrower than the second operation example. That is, an intermediate spectral spread between the first operation example and the second operation example is obtained.
  • FIG. 6 is a diagram illustrating a fourth operation example of the light source device 1.
  • the spatial light modulator 60 displays a modulation pattern of a convex curved mirror (convex mirror).
  • a modulation pattern 506 of a concave lens with a focal length of 45 mm for example, as shown in FIG. 6(a) is displayed.
  • the convex mirror increases the difference in the diffraction angle for each wavelength due to the diffraction grating, so the wavelength band that can return straight to the light source 11 is narrowed down, and the first operation example An even narrower bandwidth can be achieved than when the radius of curvature is set to ⁇ , as in Note that the smaller the absolute value of the radius of curvature of the convex mirror, the smaller the width of the wavelength dependence of the coupling efficiency.
  • a diffraction grating pattern is displayed in addition to the row corresponding to the center wavelength (a series of pixels in the y direction) to detect the 0th order light.
  • the direction of the diffraction grating pattern is, for example, a direction in which light is diffracted in the y direction. There may be a plurality of columns corresponding to the center wavelengths.
  • the injection current supplied from the current controller 20 to the light source 11 is set to be less than or equal to the threshold current.
  • the light source 11 does not cause laser oscillation and operates in the region of amplified spontaneous emission (ASE).
  • ASE amplified spontaneous emission
  • a linear polarizing plate may be provided within the optical resonator formed by the light source 11 and the spatial light modulator 60.
  • the diffraction grating 50 is The bandwidth (breadth of the optical spectrum) of the light returned to the light source 11 is dynamically controlled. Changing the control signal over time corresponds to, for example, dynamically and continuously switching the modulation patterns in the first to fourth operation examples described above.
  • the light source device 1 has a light source 11 that outputs light and an input section for a control signal, and a reflection section (spatial light a modulator 60), a diffraction grating 50 that splits the light output from the light source 11 and causes it to enter the spatial light modulator 60, and returns at least a portion of the light reflected by the spatial light modulator 60 to the light source;
  • An optical resonator is formed by the light source 11 and the spatial light modulator 60, and the light returned to the light source 11 is output and the angle of the light reflected by the spatial light modulator 60 is adjusted based on the control signal. By controlling the distribution, the bandwidth of the light returned from the diffraction grating 50 to the light source 11 is controlled.
  • the light output from the light source 11 is separated by the diffraction grating 50 and enters the spatial light modulator 60. At least a portion of the light reflected by the spatial light modulator 60 is then returned to the light source 11 from the diffraction grating 50.
  • the spatial light modulator 60 is configured to be able to control the distribution of the angle at which light is reflected based on a control signal, and by controlling the distribution of the angle, the light is returned from the diffraction grating 50 to the light source 11. The bandwidth of the light transmitted is controlled.
  • the control signal by changing the control signal, the distribution of angles at which light is reflected in the spatial light modulator 60 is changed, and the bandwidth of the light returned from the diffraction grating 50 to the light source 11 is changed. I can do it. That is, according to the light source device 1 according to the present embodiment, the bandwidth of the light returned from the diffraction grating 50 to the light source 11 can be arbitrarily adjusted.
  • the spatial light modulator 60 may control the distribution of angles at which incident light is reflected by displaying a modulation pattern based on a control signal. In this way, by using the spatial light modulator 60 as a reflection section, the bandwidth of the light returned from the diffraction grating 50 to the light source 11 can be adjusted easily and with high precision.
  • the light source 11 may dynamically control the bandwidth of the light returned from the diffraction grating 50 to the light source 11 by outputting light according to the injected current and temporally changing the injected current and control signal. . According to such a configuration, the light bandwidth can be adjusted more flexibly depending on the usage scene.
  • Examples of usage scenarios here include, for example, in the field of optical communications, how the performance of coherent communication systems and optical components changes depending on the optical bandwidth, and how the optical bandwidth changes dynamically. In some cases, it may be necessary to evaluate what kind of impact there will be. Alternatively, it may be used to reduce temporal coherence to reduce speckle noise in imaging using coherent light. Note that the usage scene is not limited to the above.
  • the spatial light modulator 60 and the diffraction grating 50 may be arranged so that the center of curvature of the reflective surface 60a of the spatial light modulator 60 and the beam center of the light incident on the diffraction grating 50 coincide. According to such a configuration, the paths of light before and after reflection on the reflecting surface 60a of the spatial light modulator 60 tend to be the same, and the bandwidth of the light returned from the diffraction grating 50 to the light source 11 can be widened. .
  • FIG. 7 is a diagram schematically showing a light source device 1A according to the second embodiment.
  • configurations that are different from the light source device 1 according to the first embodiment will be mainly explained, and descriptions of configurations that are common to each other will be omitted (the same applies to the third to seventh embodiments described later). .
  • the light source device 1A shown in FIG. 7 has a phase-type SLM 160 that uses a segmented deformable mirror in which reflective surfaces are structurally separated as pixels as a reflective section.
  • a phase-type SLM 160 utilizes the fact that the reflective portion of the pixel is translated and the optical path length changes, so phase modulation is less susceptible to the influence of polarization.
  • the distribution of the angle at which incident light is reflected is controlled based on the control signal from the drive circuit 170, thereby controlling the bandwidth of the light returned from the diffraction grating 50 to the light source 11. In this respect, it is similar to the light source device 1 described above.
  • the light source device has a reflecting surface connected by one continuous film as a reflecting section.
  • a reflecting section may include, for example, a continuous deformable mirror.
  • Continuous deformable mirrors perform spatial phase modulation by deforming the reflecting surface using an actuator array behind the reflecting surface.
  • the arrangement of the actuator array of such a phased SLM may be, for example, a square array or a hexagonal array. In such a phase-type SLM, phase modulation is less affected by polarization, and generation of unmodulated light, which is seen in a spatial light modulator with a pixel structure, is suppressed.
  • the layout of the actuator array of the phase-type SLM may be, for example, radial.
  • phase modulation is less affected by polarization, and generation of unmodulated light, which is seen in a spatial light modulator with a pixel structure, is suppressed.
  • the center of the pattern is the same as the center of the device.
  • FIG. 8 is a diagram schematically showing a light source device 1B according to the fourth embodiment.
  • the light source device 1 includes a variable curvature mirror (VCM) 260 as a reflecting section.
  • the variable curvature mirror 260 controls the distribution of angles at which incident light is reflected by physically changing the radius of curvature of the reflecting surface based on a control signal from the drive circuit 270.
  • the variable curvature mirror 260 can be converted into both a concave mirror and a convex mirror.
  • variable curvature mirror 260 examples include those that change the pressure of a fluid behind the mirror, those that operate an actuator behind the mirror, those that utilize thermal expansion, and those that utilize electrostatic force. Such a variable curvature mirror 260 is not easily affected by polarization, and also suppresses the generation of unmodulated light as seen in a spatial light modulator with a pixel structure.
  • variable curvature mirror 260 by changing the radius of curvature using the variable curvature mirror 260, the bandwidth of the light returned from the diffraction grating 50 to the light source can be adjusted appropriately.
  • variable curvature mirror 260 there is no need to consider the influence of polarization or unmodulated light, compared to the case where the distribution of reflection angles is controlled by a modulation pattern, such as in a spatial light modulator.
  • the light bandwidth can be adjusted.
  • FIG. 9 is a diagram schematically showing a light source device 1C according to the fifth embodiment.
  • the light source device 1C includes a variable focus lens 361 and a plane mirror 362 (mirror) as a reflection section.
  • the variable focus lens 361 controls the distribution of angles at which incident light is reflected by changing the focal length of the variable focus lens 361 based on a control signal from the drive circuit 370.
  • the variable focus lens 361 is provided between the diffraction grating 50 and the plane mirror 362, and may be provided as close to the plane mirror 362 as possible.
  • the light separated by the diffraction grating 50 passes through the variable focus lens 361 and enters the plane mirror 362, and the light reflected by the plane mirror 362 passes through the variable focus lens 361 and the diffraction grating 50 and enters the light source 11. be returned. Since the light returned to the light source 11 passes through the variable focus lens 361 twice, the composite focal length and principal plane are determined, so that the focal length corresponds to the operation mode (control of the distribution of angles at which light is reflected). Can be attached. Further, such a configuration is applicable to both concave mirrors and convex mirrors.
  • variable focus lens 361 examples include a lens that changes the shape of a sealed liquid, a lens that utilizes deformation of a liquid interface, an electro-optic effect, a liquid crystal, and the like. With such a configuration, phase modulation is less affected by polarization and also less affected by unmodulated light. However, when using a polarization-sensitive element such as a liquid crystal, it is necessary to consider the effects of polarized light and unmodulated light.
  • variable focus lens 361 by changing the focal length of the variable focus lens 361 using the variable focus lens 361, the bandwidth of the light returned from the diffraction grating 50 to the light source 11 can be adjusted appropriately.
  • a modulation pattern such as in a spatial light modulator (such as a liquid crystal, etc.).
  • a polarization-sensitive element is used
  • FIG. 10 is a diagram schematically showing a light source device 1D according to the sixth embodiment.
  • the light source device 1D shown in FIG. 10 includes, in addition to the configuration of the light source device 1 according to the first embodiment, an objective lens 90, an optical fiber 100, and a spectrometer (for example, an optical spectrum analyzer) 110. . These additional configurations are for monitoring light from the end face of the light source 11 that is not coupled to the external resonator.
  • the light source device 1D for example, light from the end face that is not coupled to the external resonator is coupled to the optical fiber 100 by the objective lens 90.
  • the light is then input to the optical spectrum analyzer 110 via the optical fiber 100.
  • the optical spectrum analyzer 110 measures the spectrum of input light and outputs the measurement results to the PC 80.
  • the PC 80 generates a modulation pattern by feeding back the measurement results from the optical spectrum analyzer 110, and outputs it to the drive circuit 70.
  • the modulation pattern obtained by feeding back the measurement results is displayed on the spatial light modulator 60 based on a control signal from the drive circuit 70.
  • the measurement results are fed back based on the measurement results of the light returned to the light source 11 from the diffraction grating 50, the bandwidth of which is controlled based on the original control signal (first control signal).
  • a new control signal (second control signal) is generated.
  • the optical spectrum analyzer 110, the PC 80, and the drive circuit 70 are configured to correspond to a control signal generation section.
  • FIG. 11 is a diagram illustrating an example of interference measurement using the light source device 1D shown in FIG. 10.
  • interference measurement is performed using light output from the light source 11 of the light source device 1D.
  • a measurement object 606 shown in FIG. 11 is a measurement object (sample) in this interferometric measurement.
  • a CMOS camera 609 shown in FIG. 11 is a detector in this interferometric measurement.
  • An objective lens 601, a pinhole 602, a lens 603, a beam splitter 604, a reference mirror 605, a lens 607, and a lens 608 shown in FIG. 11 are an interferometer in this interferometric measurement.
  • the PC 610 performs predetermined processing based on the image acquired by the CMOS camera 609.
  • the light output from the light source 11 passes through the objective lens 601 and the pinhole 602 and reaches the lens 603.
  • Objective lens 601 and pinhole 602 function as a spatial filter.
  • the light is made into parallel light by the lens 603.
  • the light that has been made into parallel light by the lens 603 reaches the beam splitter 604 and is split into light that is transmitted as it is and reaches the measurement object 606 and light that is reflected and reaches the reference mirror 605 .
  • the light reflected from the measurement object 606 is reflected by the beam splitter 604, passes through the lenses 607 and 608 that constitute the 4f system, and is detected by the CMOS camera 609. Further, the light from the reference mirror 605 passes through the beam splitter 604, passes through the lenses 607 and 608, and is detected by the CMOS camera 609.
  • the optical path length from the lens 607 to the reference mirror 605 and the optical path length from the lens 607 to the measurement target 606 both match the focal length of the lens 607. Further, the optical path length from the lens 608 to the CMOS camera 609 matches the focal length of the lens 608.
  • FIG. 12 is a flowchart of interference measurement using the light source device 1D shown in FIG. 11.
  • preprocessing is first performed (step S1).
  • the temperature controller 30 starts controlling the temperature of the TEC installed in the LD mount 12. Further, only the surface shape correction pattern is displayed on the spatial light modulator 60.
  • the reciprocal of the radius of curvature of the Fresnel lens pattern which is the modulation pattern of the spatial light modulator 60, is set to zero. In this way, by using the reciprocal of the radius of curvature as a parameter, the radius of curvature is positive (for concave mirrors) and negative (for convex mirrors). It becomes easier to handle and eliminates the need to handle the radius of curvature: ⁇ . Furthermore, a target value for the spread (bandwidth) of the optical spectrum is set.
  • the current controller 20 injects a current equal to or higher than the oscillation threshold into the light source 11, causing the light source 11 to cause laser oscillation (step S2). Subsequently, a modulation pattern (phase pattern) in which the surface shape correction pattern and the Fresnel lens pattern with the set radius of curvature are superimposed is displayed on the spatial light modulator 60 (step S3).
  • the optical spectrum analyzer 110 measures the spectrum of the light (output light) returned to the light source 11 (step S4). Then, it is determined whether the spread (bandwidth) of the optical spectrum is close to a desired value (step S5).
  • the surface shape of the measurement object 606 is calculated from the image acquired by the CMOS camera 609, for example in the PC 610 (step S6). .
  • step S5 If it is determined in step S5 that the spread of the optical spectrum is not close to the desired value, it is determined whether the spread of the optical spectrum is larger than the desired value (step S7).
  • step S8 it is determined whether the reciprocal of the radius of curvature has reached a lower limit.
  • the lower limit of the reciprocal of the radius of curvature may be, for example, (-1/distance between the spatial light modulator 60 and the diffraction grating 50). If it is determined in step S8 that the lower limit has been reached, the process in step S6 is executed. If it is determined in step S8 that the reciprocal of the radius of curvature has not reached the lower limit, the reciprocal of the radius of curvature is decreased (step S9), and the processing is repeated from step S3.
  • step S10 it is determined whether the reciprocal of the radius of curvature has reached an upper limit (step S10).
  • the upper limit of the reciprocal of the radius of curvature may be, for example, (+1/distance between the spatial light modulator 60 and the diffraction grating 50).
  • step S11 it is determined whether the injection current is greater than or equal to the threshold current. If it is determined in step S11 that the injected current is equal to or greater than the threshold current, the injected current is set to be equal to or less than the threshold current, and the reciprocal of the radius of curvature is set to 0 (step S12), and again in step S3. It is carried out from the processing. If it is determined in step S11 that the injected current is not equal to or greater than the threshold current, the process of step S6 is performed.
  • step S10 If it is determined in step S10 that the upper limit has not been reached, the reciprocal of the radius of curvature is increased (step S13), and the process is repeated from step S3.
  • FIG. 13 is a diagram illustrating interference measurement using the light source device 1E according to the seventh embodiment.
  • interference measurement can be performed similarly to the light source device 1D according to the sixth embodiment described above.
  • the light source device 1E differs from the light source device 1D in that it measures (monitors) the optical spectrum on the output light side used for interference measurement.
  • the light source device 1E includes a beam splitter 750, an objective lens 760, an optical fiber 770, and a spectrometer (for example, an optical spectrum analyzer) 120 as a configuration for measuring an optical spectrum.
  • Beam splitter 750 is provided between diffraction grating 50 and objective lens 601.
  • the output light from the diffraction grating 50 reaches the beam splitter 750 and is split into light that passes through and reaches the objective lens 601 and light that is reflected and reaches the objective lens 760.
  • the light reflected at beam splitter 750 is coupled into optical fiber 770 by objective lens 760.
  • the light is then input to the optical spectrum analyzer 120 via the optical fiber 770.
  • the optical spectrum analyzer 120 measures the spectrum of input light and outputs the measurement results to the PC 710. Then, the PC 710 generates a modulation pattern by feeding back the measurement results from the optical spectrum analyzer 120, and outputs it to the drive circuit 70.
  • the modulation pattern obtained by feeding back the measurement results is displayed on the spatial light modulator 60 based on a control signal from the drive circuit 70. In this way, by measuring the optical spectrum on the output light side used for interferometric measurement, feedback control of the control signal can be performed similarly to the sixth embodiment.
  • FIG. 14 is a diagram schematically showing a light source device 1F according to the eighth embodiment.
  • the light source device 1F shown in FIG. 14 has the same basic configuration as the light source device 1 according to the first embodiment, and is different from the light source device 1 in that it includes a light source unit 10F instead of the light source unit 10. .
  • the light source unit 10F includes a light source 11 (excitation light source), an LD mount 12, a lens 13, an optical fiber 14, and a gain fiber 15.
  • the light source 11 and the LD mount 12 have the same configuration as the light source 11 and the LD mount 12 of the light source unit 10 according to the first embodiment.
  • the light source 11 is a light source that outputs excitation light that excites the gain fiber 15, and is, for example, an LD.
  • the lens 13 is a lens that focuses the excitation light output from the light source 11 onto the input end 14a of the optical fiber 14.
  • the optical fiber 14 is an optical fiber that guides the excitation light incident from the input end 14 a to the gain fiber 15 .
  • the output end 14b of the optical fiber 14 is connected to the input end 15a of the gain fiber 15.
  • the optical fiber 14 may be, for example, a single mode optical fiber.
  • the gain fiber 15 is an optical fiber amplifier that has a gain corresponding to the excitation light that enters from the input end 15a via the optical fiber 14.
  • the gain fiber 15 is, for example, a double clad fiber whose fiber core is doped with a rare earth element. In this case, the gain fiber 15 obtains optical gain through stimulated emission from the rare earth element.
  • the rare earth element Yb (ytterbium), Er (erbium), or the like may be used.
  • the gain fiber 15 may be a single mode gain fiber. By using a single mode gain fiber, nonlinearity can be enhanced and spatial mode selection can be made. Further, the gain fiber 15 may be a highly nonlinear fiber.
  • a fiber Bragg grating may be formed in the gain fiber 15. Further, the gain fiber 15 and the optical fiber 14 may be connected by another optical fiber (not shown), and a fiber Bragg grating may be formed in the other optical fiber. Further, the gain fiber 15 and the optical fiber 14 may be connected by, for example, a WDM (Wavelength Division Multiplexing) coupler.
  • WDM Widelength Division Multiplexing
  • switching between laser oscillation and spontaneous emission amplification can be performed by adjusting the power of the excitation light.
  • the gain fiber 15 having a gain according to the excitation light since the gain fiber 15 having a gain according to the excitation light is used, light is confined within the gain fiber 15 which is a narrow space, the optical power becomes high, and nonlinear effects are likely to occur. Become. As light travels back and forth within the optical resonator many times, nonlinear effects are accumulated and a larger nonlinear effect can occur. Such nonlinear effects are more likely to occur when a highly nonlinear fiber is used as the gain fiber 15.
  • nonlinear effects include Self-phase modulation, Cross-phase modulation, Modulation instability, Stimulated Raman scattering, and Stimulated Brillouin scattering ( Examples include stimulated Brillouin scattering, four-wave mixing, and supercontinuum generation.
  • FIG. 15 is a diagram schematically showing a light source device 1G according to the ninth embodiment.
  • a light source device 1G shown in FIG. 15 has the same basic configuration as the light source device 1 according to the first embodiment, and is different from the light source device 1 in that it includes a lens 151 and an optical fiber 152.
  • the lens 151 and the optical fiber 152 are provided on the path along which the light output from the diffraction grating 50 travels.
  • the lens 151 is a coupling lens for coupling the light output from the diffraction grating 50 to the optical fiber 152.
  • the optical fiber 152 is an optical fiber that guides the light output from the diffraction grating 50 and combined by the lens 151.
  • the optical fiber 152 guides the light that has entered from the input end 152a, and outputs the light from the output end 152b.
  • Optical fiber 152 may be a single mode optical fiber. By using a single mode optical fiber, nonlinearity can be enhanced and spatial mode selection becomes possible. Further, the optical fiber 152 may be a highly nonlinear fiber.
  • the configuration in which the light output from the diffraction grating 50 is guided by the optical fiber 152 in this way the light is confined within the optical fiber 152 and nonlinear effects are likely to occur.
  • the spectrum after nonlinear effects can be easily predicted, improving controllability.
  • Such nonlinear effects are more likely to occur when a highly nonlinear fiber is used as the optical fiber 152.
  • the degree of freedom in controlling the spectrum of light increases, for example by further broadening the spectrum.
  • the configuration including such an optical fiber that guides the light output from the diffraction grating 50 is not limited to the embodiment shown in FIG. 15. For example, as shown in FIG.
  • a configuration may be adopted that includes an optical fiber 100 that guides light coming out from an end face (rear end face) of the light source 11 that is not coupled to the external resonator.
  • a configuration may be adopted in which a WDM coupler or the like is inserted into the connecting portion of the optical fiber 14 and the gain fiber 15 shown in FIG. 14 to extract light, and an optical fiber is provided for guiding the extracted light.
  • All configurations have in common that they include an optical fiber that guides the light output from the diffraction grating 50.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Semiconductor Lasers (AREA)

Abstract

光源装置は、光を出力する光源と、制御信号の入力部を有し、該制御信号に基づいて、入射した光が反射する角度の分布を制御可能に構成された反射部(空間光変調器)と、光源から出力された光を分光して空間光変調器に入射させると共に、空間光変調器において反射された光の少なくとも一部を光源に戻す回折格子と、を備え、光源及び空間光変調器によって光共振器が形成されており、制御信号に基づいて空間光変調器において反射される光の角度の分布が制御されることにより、回折格子から光源に戻される光の帯域幅が制御される。

Description

光源装置及び制御方法
 本発明の一態様は、光源装置及び制御方法に関する。
 特許文献1には、Littman/Metcalf型の外部共振器半導体レーザが記載されている。特許文献1の外部共振器半導体レーザでは、エンドミラーを凹面鏡に変更し、その曲率半径を凹面鏡と回折格子との間の距離と等しくすることによって、広いスペクトル(帯域幅)が得られる構成としている。
米国特許第7245642号明細書
 上述したような外部共振器半導体レーザでは、凹面鏡の曲率半径が固定値とされている。このような構成では、回折格子から光源に戻される光の帯域幅を任意に調整することができない。
 本発明の一態様は上記実情に鑑みてなされたものであり、回折格子から光源に戻される光の帯域幅を任意に調整することが可能な光源装置及び制御方法を提供する。
 (1)本発明の一態様に係る光源装置は、光を出力する光源と、制御信号の入力部を有し、該制御信号に基づいて、入射した光が反射する角度の分布を制御可能に構成された反射部と、光源から出力された光を分光して反射部に入射させると共に、反射部において反射された光の少なくとも一部を光源に戻す回折格子と、を備え、光源及び反射部によって光共振器が形成されており、光源に戻された光が出力され、制御信号に基づいて反射部において反射される光の角度の分布が制御されることにより、回折格子から光源に戻される光の帯域幅が制御される。
 本発明の一態様に係る光源装置では、光源から出力された光が回折格子において分光されて反射部に入射する。そして、反射部において反射された光の少なくとも一部が、回折格子から光源に戻される。このような光源装置において、反射部が、制御信号に基づき光が反射する角度の分布を制御可能に構成されており、当該角度の分布の制御によって回折格子から光源に戻される光の帯域幅が制御されている。このような構成によれば、制御信号を変化させることにより、反射部における光が反射する角度の分布が変化し、回折格子から光源に戻される光の帯域幅を変化させることができる。すなわち、本発明の一態様に係る光源装置によれば、回折格子から光源に戻される光の帯域幅を任意に調整することができる。
 (2)上記(1)記載の光源装置において、反射部は、空間光変調器を含んで構成されており、空間光変調器は、制御信号に基づく変調パターンを表示することにより、入射した光が反射する角度の分布を制御してもよい。このように、反射部として空間光変調器が用いられることにより、容易且つ高精度に、回折格子から光源に戻される光の帯域幅を調整することができる。
 (3)上記(1)記載の光源装置において、反射部は、可変曲率ミラーを含んで構成されており、可変曲率ミラーは、制御信号に基づいて曲率半径を変化させることにより、入射した光が反射する角度の分布を制御してもよい。このように、可変曲率ミラーを用いて曲率半径を変化させることにより、回折格子から光源に戻される光の帯域幅を適切に調整することができる。また、可変曲率ミラーでは、例えば空間光変調器のような変調パターンによって反射角度の分布を制御する場合と比較して、偏光や変調されなかった光の影響を考慮する必要がないので、容易に光の帯域幅を調整することができる。
 (4)上記(1)記載の光源装置において、反射部は、ミラーと、回折格子及びミラーの間に設けられた可変焦点レンズと、を含んで構成されており、可変焦点レンズは、制御信号に基づいて可変焦点レンズの焦点距離を変化させることにより、入射した光が反射する角度の分布を制御してもよい。このように、可変焦点レンズを用いて可変焦点レンズの焦点距離を変化させることにより、回折格子から光源に戻される光の帯域幅を適切に調整することができる。また、このような構成では、例えば空間光変調器のような変調パターンによって反射角度の分布を制御する場合と比較して、偏光や変調されなかった光の影響を考慮する必要がない(液晶等の、偏光に敏感な素子を用いた場合を除き、考慮する必要がない)ので、容易に光の帯域幅を調整することができる。
 (5)上記(1)~(4)記載の光源装置において、光源は、注入電流に応じた光を出力し、注入電流及び制御信号を時間的に変化させることにより、回折格子から光源に戻される光の帯域幅を動的に制御してもよい。このような構成によれば、利用シーンに応じて、より柔軟に光の帯域幅を調整することができる。
 (6)上記(1)~(5)記載の光源装置において、反射部の反射面に係る曲率中心と、回折格子に入射する光のビーム中心とが一致するように、反射部及び回折格子が配置されていてもよい。このような構成によれば、反射部の反射面における反射前後の光の経路が同一になりやすくなり、回折格子から光源に戻される光の帯域幅を広くすることができる。
 (7)上記(1)~(6)記載の光源装置は、光源装置から出力される光の計測結果に基づいて、第2の制御信号を生成する制御信号生成部を更に備えていてもよい。このように、回折格子から光源に戻された光が計測されて、計測結果がフィードバックされて、新たな制御信号(第2の制御信号)が生成されることにより、実際の計測結果を考慮して、光の帯域幅をより所望の値に調整しやすくすることができる。
 (8)本発明の一態様に係る制御方法は、光源から回折格子に向けて光を出力することと、回折格子において分光された光が入射する反射部に対して、該反射部において反射される光の角度の分布を制御する制御信号を入力することと、を含む。このような制御方法によれば、回折格子から光源に戻される光の帯域幅を任意に調整することができる。
 (9)上記(1)~(4)記載の光源装置において、光源を含む光源ユニットは、励起光を出力する励起光源と、該励起光に応じたゲインを有する光ファイバであるゲインファイバと、を含んで構成されていてもよい。このような構成によれば、励起光のパワーを調整することにより、レーザ発振及び自然放射増幅の切り替えを行うことができる。また、光源ユニットにおいて、励起光に応じたゲインを有するゲインファイバが用いられることにより、狭い空間であるゲインファイバ内に光が閉じ込められて、非線形効果が生じやすくなる。このような非線形効果は、ゲインファイバとして高非線形ファイバが用いられることによってより生じやすくなる。非線形効果の例としては、例えば、自己位相変調 (Self-phase modulation)、相互位相変調 (Cross-phase modulation)、変調不安定性 (Modulation instability)、誘導ラマン散乱 (Stimulated Raman scattering)、誘導ブリルアン散乱 (Stimulated Brillouin scattering)、四光波混合 (Four-wave mixing)、及び、スーパーコンティニューム光発生 (Supercontinuum generation)等が挙げられる。これらの非線形効果を利用することにより、例えばスペクトルを更に広げる等、光のスペクトル制御の自由度が向上する。
 (10)上記(1)~(7)又は(9)記載の光源装置は、回折格子から出力された光を導光する光ファイバを更に備えていてもよい。このように、回折格子から出力された光が光ファイバによって導光される構成によれば、光ファイバ内に光が閉じ込められて、非線形効果が生じやすくなる。このような非線形効果は、光ファイバとして高非線形ファイバが用いられることによってより生じやすくなる。非線形効果を利用することにより、例えばスペクトルを更に広げる等、光のスペクトル制御の自由度が向上する。
 本発明の一態様によれば、回折格子から光源に戻される光の帯域幅を任意に調整することができる。
第1実施形態に係る光源装置を模式的に示した図である。 空間光変調器に表示される変調パターンの一例を示す図である。 光源装置の第1の動作例を説明する図である。 光源装置の第2の動作例を説明する図である。 光源装置の第3の動作例を説明する図である。 光源装置の第4の動作例を説明する図である。 第2実施形態に係る光源装置を模式的に示した図である。 第4実施形態に係る光源装置を模式的に示した図である。 第5実施形態に係る光源装置を模式的に示した図である。 第6実施形態に係る光源装置を模式的に示した図である。 図10に示される光源装置を用いた干渉計測を説明する図である。 図10に示される光源装置を用いた干渉計測のフローチャートである。 第7実施形態に係る光源装置を用いた干渉計測を説明する図である。 第8実施形態に係る光源装置を模式的に示した図である。 第9実施形態に係る光源装置を模式的に示した図である。
 以下、本発明の実施形態について、図面を参照して詳細に説明する。なお、各図において同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1は、第1実施形態に係る光源装置1を模式的に示した図である。光源装置1は、外部共振型レーザ(ECL:External Cavity Laser)である。光源装置1は、例えばリットマン型の外部共振型レーザであり、回折格子の1次光をミラーで反射させて半導体レーザ内に戻す構成とされている。
 図1に示されるように、光源装置1は、光源ユニット10と、電流コントローラ20と、温度コントローラ30と、レンズ40と、回折格子50と、空間光変調器60(反射部)と、駆動回路70と、PC80と、を備えている。
 光源ユニット10は、光源11と、LDマウント12と、を含んで構成されている。光源11は、例えば850nmを中心波長とする自然放出スペクトルを持つ光を出力する半導体レーザ(LD:Laser Diode)である。光源11は、例えばFabry-Perot型の半導体レーザであってもよい。光源11の外部共振器に結合している側(光出力方向側)の端面は、反射防止コーティングがされていてもよい。光源11は、LDマウント12にマウントされている。LDマウント12は、TEC(Thermo-Electric Cooler)付きのマウントであってもよい。光源装置1においては、光源11及び空間光変調器60(後述)によって光共振器が形成されている。光源装置1では、外部共振器を経て光源11に戻された光が出力される。
 電流コントローラ20は、LDマウント12を介して光源11に電流を供給し、光源11に光を出力させる構成である。すなわち、光源11は、電流コントローラ20から供給される電流(注入電流)に応じた光を出力する。光源11は、供給(注入)される電流値に応じて、レーザ発振を起こすか、または、発振閾値以下で動作する。
 温度コントローラ30は、LDマウント12に備え付けられているTECに電流を供給することによりTECの吸熱(又は放熱)を制御し、TECを介して光源11の温度を一定に保つ構成である。
 レンズ40は、光源11から出力された光が回折格子50及び空間光変調器60を経て(外部共振器内を1周して)戻ってきた際に、該光を光源11に効率良く結合させるレンズ(例えばコリメートレンズ)である。光源11から放出された光は大きく広がっていくところ、レンズ40によって光のビーム径及び発散角が調整される。なお、レンズ40を透過した後の光は平行光であってもよいし、平行光でなくてもよい。レンズ40の位置は、空間光変調器60に表示する変調パターン(位相パターン)の焦点距離に依らずに、高い光出力が得られる位置に固定されていてもよい。
 回折格子50は、光源11から出力された、種々の波長が混在した光を分光して空間光変調器60に入射させると共に、空間光変調器60において反射された光の少なくとも一部を光源11に戻す構成である。回折格子50では、波長毎に光が分けられ、1次光が空間光変調器60に向かうと共に、0次光が出力光として取り出される。
 空間光変調器60は、制御信号(後述)に基づく変調パターンを表示することにより、入射した光が反射する角度の分布を制御する。空間光変調器60は、例えば、反射型液晶(LCOS:Liquid Crystal on Silicon)の空間光変調器(SLM:Spatial Light Modulator)である。変調パターン(位相パターン)は、PC80において生成され、PC80から駆動回路70に入力され、駆動回路70からの制御信号に基づいて空間光変調器60に表示される。このように、駆動回路70から空間光変調器60に入力される制御信号は、変調パターンの表示に係る信号である。
 空間光変調器60は、変調パターンとして、例えばレンズパターンを表示する。レンズパターンとして例えばフレネルレンズパターンを用いてもよい。以下、本実施形態では、レンズパターンがフレネルレンズパターンであるとして説明するが、レンズパターンは非球面レンズパターン等であってもよい。フレネルレンズパターンの曲率半径は、焦点距離を2倍した値となる。曲率半径は、凹面ミラーの場合に正の値、凸面ミラーの場合に負の値となる。焦点距離は、凸レンズの場合に正の値、凹レンズの場合に負の値となる。空間光変調器60では、変調パターンであるフレネルレンズパターンの焦点距離が変化させられることにより、フレネルレンズパターンの曲率半径が変化し、空間光変調器60において反射される光の角度の分布が変化する。空間光変調器60において反射される光の角度の分布が変化すると、空間光変調器60における反射前後の光の経路の一致度が変化する。空間光変調器60では、フレネルレンズパターンの曲率半径と、空間光変調器60-回折格子50間の距離との一致度が高いほど、空間光変調器60における反射前後の光の経路が一致する波長帯域(光源11への結合効率が高い波長帯域)が広くなる。このように空間光変調器60では、制御信号に基づいて反射される光の角度の分布が制御されることにより、回折格子50から光源11に戻される光の帯域幅を制御することができる。すなわち、空間光変調器60では、フレネルレンズパターンの焦点距離を変化させることにより、光スペクトルの広がりを制御することができる。このように、空間光変調器60は、光学部品の移動やアライメントを伴うことなく、光スペクトルの広がりを制御することができる。なお、光源11に戻される光の帯域幅は、例えば、光源11への結合効率の波長依存性と、光源11の発光スペクトルと、などから定まる。
 空間光変調器60は反射型液晶の空間光変調器であった場合、空間光変調器60による位相変調は、偏光の影響を強く受ける。空間光変調器60は、位相変調できる偏光方向が図1中のx方向或いはy方向(すなわち、空間光変調器60における反射面60aと平行な方向)になるように配置される。空間光変調器60は、反射面60aと回折格子50における反射面とが平行になるように配置されていてもよいし、平行にならないように配置されていてもよい。空間光変調器60における位相変調できる偏光方向は、例えば、光源11から出力される光の直線偏光方向と一致させられる。また、空間光変調器60では、変調パターンの中心から延びる法線が、回折格子50上の光のビーム中心を通過するように、光学系の調整または変調パターン位置の調整が行われてもよい。空間光変調器60及び回折格子50は、空間光変調器60の反射面60aに係る曲率中心と、回折格子50に入射する光のビーム中心とが一致するように配置されていてもよい。より詳細には、空間光変調器60及び回折格子50は、空間光変調器60の反射面60aに係る曲率半径を変化させる場合の曲率中心の軌跡と、回折格子50に入射する光のビーム中心とが交わるように配置されていてもよい。なお、空間光変調器60の反射面60aに係る曲率中心とは、空間光変調器60に表示された変調パターンの曲率中心である。
 空間光変調器60は、必要に応じて、変調パターンに所定の面形状補正パターンを重畳させて表示してもよい。ここでの面形状補正パターンとは、空間光変調器60の反射面60aにおける形状を補正するパターンである。空間光変調器60は、光学系で発生した収差を補正するパターンをさらに重畳して表示してもよい。また、空間光変調器60は、x方向とy方向とで焦点距離の異なる変調パターン(フレネルレンズパターン)を表示してもよい。この場合、例えばy方向の焦点距離を最適化することにより、光源11に戻る光の結合効率を上げることができる。なお、空間光変調器60では、x方向の焦点距離だけを変化させて、上述した光の帯域幅の制御(光スペクトルの広がり制御)が行われてもよい。
 空間光変調器60では、変調されない光が0次光として現れてしまうという問題がある。このような問題に対する対策として、図2に示されるように、空間光変調器60に表示される変調パターンとして、フレネルレンズパターンにブレーズド回折格子パターンを重畳させたパターンを用いてもよい。図2では、ブレーズド回折格子パターン501と、フレネルレンズパターンにブレーズド回折格子パターンを重畳させたパターン502とが示されている。この場合、フレネルレンズパターンにブレーズド回折格子パターンを重畳させたパターン502によって回折された1次光が光源11に戻される光とされてもよい。
 次に、光源装置1の動作例として、第1~第6の動作例を説明する。
 図3は、光源装置1の第1の動作例を説明する図である。図3(a)に示されるように、第1の動作例では、空間光変調器60において、フレネルレンズパターンの曲率半径が∞(平面ミラー)となる変調パターンが表示される。この場合には、図3(a)に示されるような均一画像の変調パターン503が表示される。図3(b)は、フレネルレンズパターンの曲率半径が∞とされた場合の、光源装置1の出力光の帯域を示すシミュレーション結果である。図3(b)に示されるように、フレネルレンズパターンの曲率半径が∞とされた場合には、空間光変調器60における反射前後の光の経路が一致する波長帯域(光源11への結合効率が高い波長帯域)が狭くなり、図3(b)の例では、光源装置1から出力される光の帯域幅が500kHz程度となっている。なお、発振スペクトルの広がりは、光源11の利得周波数特性、レーザ発振の非線形な振る舞い、及び光源11に戻される光の帯域幅等により定まる。
 図4は、光源装置1の第2の動作例を説明する図である。図4(a)に示される第2の動作例では、空間光変調器60において、フレネルレンズパターンの曲率半径が、空間光変調器60-回折格子50間の距離と同一となる変調パターンが表示される。この場合には、図4(a)に示されるような、例えば焦点距離が45mmとされた凸レンズの変調パターン504が表示される。空間光変調器60では、光が当たる領域でのみ位相変調が行われればよいので、図4(a)に示される変調パターン504では限定された領域(図中の中央領域)にのみフレネルレンズパターンが表示されている。フレネルレンズパターンの曲率半径が、空間光変調器60-回折格子50間の距離と同一とされた場合、曲率中心から光ビームが広がるので、空間光変調器60での反射によって全ての波長成分が元の経路と同じ経路に返っていくこととなる。つまり、回折格子50での回折角の波長依存性が、空間光変調器60によってキャンセルされる。図4(b)は、フレネルレンズパターンの曲率半径が空間光変調器60-回折格子50間の距離と同一とされた場合の、光源装置1の出力光の帯域を示すシミュレーション結果である。図4(b)に示されるように、フレネルレンズパターンの曲率半径が、空間光変調器60-回折格子50間の距離と同一とされた場合には、光源11に戻される光の帯域幅が極めて広くなっている。
 図5は、光源装置1の第3の動作例を説明する図である。図5(a)に示される第3の動作例では、空間光変調器60において、フレネルレンズパターンの曲率半径が、空間光変調器60-回折格子50間の距離よりも大きい変調パターンが表示される。この場合には、図5(a)に示されるような、例えば焦点距離が55mmとされた凸レンズの変調パターン505が表示される。図5(b)は、フレネルレンズパターンの曲率半径が、空間光変調器60-回折格子50間の距離よりも大きくされた場合の、光源装置1の出力光の帯域を示すシミュレーション結果である。図5(b)に示されるように、フレネルレンズパターンの曲率半径が、空間光変調器60-回折格子50間の距離よりも大きくされた場合には、光源11に戻される光の帯域幅は、第1の動作例よりも広く、且つ、第2の動作例よりも狭くなっている。すなわち、第1の動作例と第2の動作例との中間のスペクトルの広がりが得られている。
 図6は、光源装置1の第4の動作例を説明する図である。図6(a)に示される第4の動作例では、空間光変調器60において、凸状の曲面ミラー(凸面ミラー)の変調パターンが表示される。この場合には、図6(a)に示されるような、例えば焦点距離が45mmとされた凹レンズの変調パターン506が表示される。このような変調パターンが表示される場合、凸面ミラーによって、回折格子による波長毎の回折角の違いが増大されるため、光源11に真っ直ぐ戻ることのできる波長帯が絞られ、第1の動作例のように曲率半径が∞とされる場合よりも、さらに狭い帯域幅を実現することができる。なお、凸面ミラーの曲率半径の絶対値が小さいほど、結合効率の波長依存性の幅が小さくなる。なお、各波長のビーム径が反射面において十分に小さい場合(数画素程度である場合)、中心波長に対応する列(y方向の画素の連なり)以外に回折格子パターンを表示して0次光の強度を落とすことにより、光の帯域をさらに狭めることができる。回折格子パターンの向きは、例えばy方向に光を回折させる向きとされる。中心波長に対応する列は、複数列であってもよい。
 光源装置1の第5の動作例について説明する。第5の動作例では、電流コントローラ20から光源11に供給される注入電流が、閾値電流以下とされる。この場合、光源11は、レーザ発振を起こさず、自然放射増幅光(ASE:Amplified Spontaneous Emission)の領域で動作する。なお、ASEが無偏光であることから、光源11及び空間光変調器60によって形成されている光共振器内には直線偏光板が設けられてもよい。
 光源装置1の第6の動作例について説明する。第6の動作例では、電流コントローラ20によって光源11に供給される注入電流、及び、駆動回路70によって空間光変調器60に供給される制御信号をそれぞれ時間的に変化させることにより、回折格子50から光源11に戻される光の帯域幅(光スペクトルの広がり)を動的に制御する。制御信号を時間的に変化させるとは、例えば、上述した第1の動作例~第4の動作例における変調パターン等を動的且つ連続的に切り替える場合等に相当する。
 次に、第1実施形態に係る光源装置1の作用効果について説明する。
 光源装置1は、光を出力する光源11と、制御信号の入力部を有し、該制御信号に基づいて、入射した光が反射する角度の分布を制御可能に構成された反射部(空間光変調器60)と、光源11から出力された光を分光して空間光変調器60に入射させると共に、空間光変調器60において反射された光の少なくとも一部を光源に戻す回折格子50と、を備え、光源11及び空間光変調器60によって光共振器が形成されており、光源11に戻された光が出力され、制御信号に基づいて空間光変調器60において反射される光の角度の分布が制御されることにより、回折格子50から光源11に戻される光の帯域幅が制御される。
 本実施形態に係る光源装置1では、光源11から出力された光が回折格子50において分光されて空間光変調器60に入射する。そして、空間光変調器60において反射された光の少なくとも一部が、回折格子50から光源11に戻される。このような光源装置1において、空間光変調器60が、制御信号に基づき光が反射する角度の分布を制御可能に構成されており、当該角度の分布の制御によって回折格子50から光源11に戻される光の帯域幅が制御されている。このような構成によれば、制御信号を変化させることにより、空間光変調器60における光が反射する角度の分布が変化し、回折格子50から光源11に戻される光の帯域幅を変化させることができる。すなわち、本実施形態に係る光源装置1によれば、回折格子50から光源11に戻される光の帯域幅を任意に調整することができる。
 空間光変調器60は、制御信号に基づく変調パターンを表示することにより、入射した光が反射する角度の分布を制御してもよい。このように、反射部として空間光変調器60が用いられることにより、容易且つ高精度に、回折格子50から光源11に戻される光の帯域幅を調整することができる。
 光源11は、注入電流に応じた光を出力し、注入電流及び制御信号を時間的に変化させることにより、回折格子50から光源11に戻される光の帯域幅を動的に制御してもよい。このような構成によれば、利用シーンに応じて、より柔軟に光の帯域幅を調整することができる。
 ここでの利用シーンとしては、例えば、光通信の分野において、コヒーレント通信システムや光学部品の性能が、光の帯域幅に応じてどのように変化するか、光の帯域幅が動的に変化したときにどのような影響が出るか、等を評価する場合が考えられる。或いは、利用シーンとしては、コヒーレント光を用いたイメージングにおいて、スペックルノイズを軽減するように時間コヒーレントを減少させるために用いる場合が考えられる。なお、利用シーンは上記に限定されない。
 空間光変調器60の反射面60aに係る曲率中心と、回折格子50に入射する光のビーム中心とが一致するように、空間光変調器60及び回折格子50が配置されていてもよい。このような構成によれば、空間光変調器60の反射面60aにおける反射前後の光の経路が同一になりやすくなり、回折格子50から光源11に戻される光の帯域幅を広くすることができる。
 次に、第2実施形態に係る光源装置1Aについて、図7を参照して説明する。図7は、第2実施形態に係る光源装置1Aを模式的に示した図である。なお、以下の説明では、第1実施形態に係る光源装置1とは異なる構成を主に説明し、互いに共通する構成の説明を省略する(後述する、第3~第7実施形態においても同様)。
 図7に示される光源装置1Aは、反射部として、反射面が画素として構造的に分離しているSegmented deformable mirrorを用いた位相型SLM160を有している。このような位相型SLM160では、画素の反射部分が並進して光路長が変化することを利用しているため、位相変調に関して偏光の影響を受けにくい。位相型SLM160を用いる場合においても、駆動回路170からの制御信号に基づき、入射した光が反射する角度の分布を制御する点、それによって回折格子50から光源11に戻される光の帯域幅を制御する点においては、上述した光源装置1と同様である。
 次に、第3実施形態に係る光源装置について説明する。第3実施形態に係る光源装置は、反射部として、1つの連続した膜でつながっている反射面有している。このような反射部は、例えばcontinuous deformable mirrorを含んで構成されていてもよい。continuous deformable mirrorは、反射面の背後にあるアクチュエータアレイによって反射面を変形させることにより、空間的な位相変調を行う。このような位相型SLMのアクチュエータアレイの配置は、例えば正方形アレイまたは六角形アレイであってもよい。このような位相型SLMでは、位相変調に関して偏光の影響を受けにくく、また、画素構造のある空間光変調器で見られるような変調されない光の発生が抑制される。なお、反射面が連続した膜で互いにつながっている構造であるため、位相が折り返すパターンは表示できないことから、変調パターンとして、位相折り返しの無いレンズパターンが用いられてもよい。所望のパターンを表示するに際しては、制御行列(又は影響関数行列)を決定する必要がある。
 反射部として、continuous deformable mirrorを用いた位相型SLMが用いられる場合、該位相型SLMのアクチュエータアレイのレイアウトは、例えば放射状であってもよい。このような位相型SLMでは、位相変調に関して偏光の影響を受けにくく、また、画素構造のある空間光変調器で見られるような変調されない光の発生が抑制される。この場合の変調パターンでは、パターン中心とデバイス中心とが同じになる。変調パターンを、例えば可変曲率ミラーとして動作させる場合には、位相折り返しのないレンズパターンを表示させてもよい。所望のパターンを表示するに際しては、制御行列(又は影響関数行列)を決定する必要がある。
 次に、第4実施形態に係る光源装置1Bについて、図8を参照して説明する。図8は、第4実施形態に係る光源装置1Bを模式的に示した図である。図8に示されるように、光源装置1は、反射部として、可変曲率ミラー(VCM:Variable Curvature Mirror)260を有している。可変曲率ミラー260は、駆動回路270からの制御信号に基づいて反射面における曲率半径を物理的に変化させることにより、入射した光が反射する角度の分布を制御する。可変曲率ミラー260は、凹面ミラー及び凸面ミラーの両方に変異可能とされている。可変曲率ミラー260としては、例えば、ミラー背後の流体の圧力を変化させるもの、ミラー背後のアクチュエータを動作させるもの、熱膨張を利用するもの、静電力を利用するもの等の態様が考えられる。このような可変曲率ミラー260では、偏光の影響を受けにくく、また、画素構造のある空間光変調器で見られるような変調されない光の発生が抑制される。
 このように、可変曲率ミラー260を用いて曲率半径を変化させることにより、回折格子50から光源に戻される光の帯域幅を適切に調整することができる。また、可変曲率ミラー260では、例えば空間光変調器のような変調パターンによって反射角度の分布を制御する場合と比較して、偏光や変調されなかった光の影響を考慮する必要がないので、容易に光の帯域幅を調整することができる。
 次に、第5実施形態に係る光源装置1Cについて、図9を参照して説明する。図9は、第5実施形態に係る光源装置1Cを模式的に示した図である。図9に示されるように、光源装置1Cは、反射部として、可変焦点レンズ361と、平面ミラー362(ミラー)と、を有している。可変焦点レンズ361は、駆動回路370からの制御信号に基づいて可変焦点レンズ361の焦点距離を変化させることにより、入射した光が反射する角度の分布を制御する。可変焦点レンズ361は、回折格子50及び平面ミラー362の間に設けられており、平面ミラー362に極力近接するように設けられていてもよい。
 このような構成では、回折格子50において分光された光が可変焦点レンズ361を経て平面ミラー362に入射し、平面ミラー362において反射された光が可変焦点レンズ361及び回折格子50を経て光源11に戻される。光源11に戻される光が、可変焦点レンズ361を2回通過するため、合成焦点距離及び主平面が求められることにより、焦点距離と動作モード(光が反射する角度の分布の制御)とが対応付けられる。また、このような構成は、凹面ミラー及び凸面ミラーの両方に対応可能とされている。可変焦点レンズ361としては、例えば、液体を封止した物の形状を変えるもの、液体界面の変形を利用するもの、電気光学効果を利用するもの、液晶を利用するもの等の態様が考えられる。このような構成では、位相変調に関して偏光の影響を受けにくく、また、変調されなかった光の影響についても受けにくい。ただし、液晶等の偏光に敏感な素子を用いる場合には、偏光及び変調されなかった光の影響を考慮する必要がある。
 このように、可変焦点レンズ361を用いて可変焦点レンズ361の焦点距離を変化させることにより、回折格子50から光源11に戻される光の帯域幅を適切に調整することができる。また、このような構成では、例えば空間光変調器のような変調パターンによって反射角度の分布を制御する場合と比較して、偏光や変調されなかった光の影響を考慮する必要がない(液晶等の、偏光に敏感な素子を用いた場合を除き、考慮する必要がない)ので、容易に光の帯域幅を調整することができる。
 次に、第6実施形態に係る光源装置1Dについて、図10を参照して説明する。図10は、第6実施形態に係る光源装置1Dを模式的に示した図である。図10に示される光源装置1Dは、第1実施形態に係る光源装置1の構成に加えて、対物レンズ90と、光ファイバ100と、分光器(例えば光スペクトラムアナライザ)110と、を備えている。追加されているこれらの構成は、光源11における外部共振器に結合していない端面からの光をモニタするための構成である。
 すなわち、光源装置1Dでは、例えば、外部共振器に結合していない端面からの光が対物レンズ90によって光ファイバ100に結合される。そして、光ファイバ100を介して、当該光が、光スペクトラムアナライザ110に入力される。光スペクトラムアナライザ110は、入力された光のスペクトルを測定し、測定結果をPC80に出力する。そして、PC80は、光スペクトラムアナライザ110における測定結果をフィードバックした変調パターンを生成し、駆動回路70に出力する。測定結果をフィードバックした変調パターンは、駆動回路70からの制御信号に基づいて空間光変調器60に表示される。このように、光源装置1Dでは、元の制御信号(第1の制御信号)に基づき帯域幅が制御された、回折格子50から光源11に戻される光の計測結果に基づいて、測定結果がフィードバックされた新たな制御信号(第2の制御信号)が生成される。この場合、光スペクトラムアナライザ110、PC80、及び駆動回路70が、制御信号生成部に相当する構成である。
 このように、回折格子50から光源11に戻された光が計測されて、計測結果がフィードバックされて、新たな制御信号(第2の制御信号)が生成されることにより、実際の計測結果を考慮して、光の帯域幅をより所望の値に調整しやすくすることができる。
 図11は、図10に示される光源装置1Dを用いた干渉計測の一例を説明する図である。本干渉計測では、光源装置1Dの光源11から出力される光を利用して干渉計測が行われる。図11に示される測定対象物606は、本干渉計測における測定対象(サンプル)である。図11に示されるCMOSカメラ609は、本干渉計測における検出器である。図11に示される対物レンズ601、ピンホール602、レンズ603、ビームスプリッタ604、参照ミラー605、レンズ607、及びレンズ608は、本干渉計測における干渉計である。PC610は、CMOSカメラ609で取得した画像に基づき所定の処理を行う。
 光源11から出力された光は、対物レンズ601及びピンホール602を経て、レンズ603に至る。対物レンズ601及びピンホール602は、空間フィルタとして機能している。レンズ603によって光が平行光とされる。レンズ603によって平行光とされた光がビームスプリッタ604に到達し、そのまま透過し測定対象物606に至る光と、反射し参照ミラー605に至る光とに分割される。測定対象物606において反射した光は、ビームスプリッタ604において反射されて、4f系を構成するレンズ607及びレンズ608を透過してCMOSカメラ609に検出される。また、参照ミラー605からの光は、ビームスプリッタ604を透過し、レンズ607及びレンズ608を透過してCMOSカメラ609に検出される。
 上記干渉計において、レンズ607から参照ミラー605までの光路長と、レンズ607から測定対象物606までの光路長とは、いずれもレンズ607の焦点距離に一致している。また、レンズ608からCMOSカメラ609までの光路長は、レンズ608の焦点距離に一致している。
 図10に示される光源装置1Dを用いた干渉計測の処理について、図12を参照して説明する。図12は、図11に示される光源装置1Dを用いた干渉計測のフローチャートである。
 図12に示されるように、最初に、前処理が実施される(ステップS1)。前処理では、温度コントローラ30によって、LDマウント12に備え付けられているTECの温度制御が開始される。また、空間光変調器60に面形状補正パターンのみが表示される。また、空間光変調器60の変調パターンであるフレネルレンズパターンの曲率半径の逆数が0に設定される。このように、曲率半径の逆数がパラメータとされることにより、曲率半径が正である場合(凹面ミラーである場合)及び負である場合(凸面ミラーである場合)のいずれの場合であっても取り扱いが容易になると共に、曲率半径:∞の取り扱いを無くすことができる。また、光スペクトルの広がり(帯域幅)の目標値が設定される。
 つづいて、電流コントローラ20によって、発振閾値以上の電流が光源11に注入され、光源11にレーザ発振を起こさせる(ステップS2)。つづいて、面形状補正パターンと、設定した曲率半径のフレネルレンズパターンとが重畳された変調パターン(位相パターン)が、空間光変調器60に表示される(ステップS3)。
 つづいて、光スペクトラムアナライザ110によって、光源11に戻される光(出力光)のスペクトルが測定される(ステップS4)。そして、光スペクトルの広がり(帯域幅)が所望の値に近いか否かが判定される(ステップS5)。
 ステップS5において、光スペクトルの広がりが所望の値に近いと判定された場合には、例えばPC610において、CMOSカメラ609で取得した画像から、測定対象物606の表面形状が算出される(ステップS6)。
 ステップS5において、光スペクトルの広がりが所望の値に近くないと判定された場合には、光スペクトルの広がりが所望の値よりも大きいか否かが判定される(ステップS7)。
 ステップS7において、光スペクトルの広がりが所望の値よりも大きいと判定された場合には、曲率半径の逆数が下限に達しているか否かが判定される(ステップS8)。曲率半径の逆数の下限とは、例えば、(-1/空間光変調器60と回折格子50との間の距離)とされてもよい。ステップS8において下限に達していると判定された場合には、ステップS6の処理が実施される。ステップS8において、曲率半径の逆数が下限に達していないと判定された場合には、曲率半径の逆数が減少させられ(ステップS9)、再度、ステップS3の処理から実施される。
 ステップS7において、光スペクトルの広がりが所望の値よりも大きくないと判定された場合には、曲率半径の逆数が上限に達しているか否かが判定される(ステップS10)。曲率半径の逆数の上限とは、例えば、(+1/空間光変調器60と回折格子50との間の距離)とされてもよい。
 ステップS10において上限に達していると判定された場合には、注入電流が閾値電流以上であるか否かが判定される(ステップS11)。ステップS11において、注入電流が閾値電流以上であると判定された場合には、注入電流が閾値電流以下に設定されると共に、曲率半径の逆数が0に設定され(ステップS12)、再度、ステップS3の処理から実施される。ステップS11において、注入電流が閾値電流以上でないと判定された場合には、ステップS6の処理が実施される。
 ステップS10において上限に達していないと判定された場合には、曲率半径の逆数が増加させられ(ステップS13)、再度、ステップS3の処理から実施される。
 次に、第7実施形態に係る光源装置1Eについて、図13を参照して説明する。図13は、第7実施形態に係る光源装置1Eを用いた干渉計測を説明する図である。光源装置1Eを用いることにより、上述した第6実施形態に係る光源装置1Dと同様に干渉計測を行うことができる。ここで、光源装置1Eは、干渉計測に用いる出力光側で光スペクトルを測定する(モニタする)点で、上記光源装置1Dと異なっている。
 すなわち、光源装置1Eは、光スペクトルを測定するための構成として、ビームスプリッタ750と、対物レンズ760と、光ファイバ770と、分光器(例えば光スペクトラムアナライザ)120と、を備えている。ビームスプリッタ750は、回折格子50と対物レンズ601との間に設けられている。回折格子50からの出力光は、ビームスプリッタ750に到達し、そのまま透過し対物レンズ601に至る光と、反射し対物レンズ760に至る光とに分割される。ビームスプリッタ750において反射した光は、対物レンズ760によって光ファイバ770に結合される。そして、光ファイバ770を介して、当該光が、光スペクトラムアナライザ120に入力される。光スペクトラムアナライザ120は、入力された光のスペクトルを測定し、測定結果をPC710に出力する。そして、PC710は、光スペクトラムアナライザ120における測定結果をフィードバックした変調パターンを生成し、駆動回路70に出力する。測定結果をフィードバックした変調パターンは、駆動回路70からの制御信号に基づいて空間光変調器60に表示される。このように、干渉計測に用いる出力光側で光スペクトルを測定することによっても、第6実施形態と同様に制御信号のフィードバック制御を実施することができる。
 次に、第8実施形態に係る光源装置1Fについて、図14を参照して説明する。図14は、第8実施形態に係る光源装置1Fを模式的に示した図である。図14に示される光源装置1Fは、基本構成が第1実施形態に係る光源装置1と同様であり、且つ、光源ユニット10に代えて光源ユニット10Fを備える点において、光源装置1と異なっている。
 光源ユニット10Fは、光源11(励起光源)と、LDマウント12と、レンズ13と、光ファイバ14と、ゲインファイバ15と、を含んで構成されている。光源11及びLDマウント12は、第1実施形態に係る光源ユニット10の光源11及びLDマウント12と同様の構成である。光源11は、ゲインファイバ15を励起させる励起光を出力する光源であり、例えばLDである。レンズ13は、光源11から出力された励起光を光ファイバ14の入射端14aに集光するレンズである。光ファイバ14は、入射端14aから入射した励起光をゲインファイバ15まで導光する光ファイバである。光ファイバ14の出射端14bはゲインファイバ15の入射端15aに接続されている。光ファイバ14は例えばシングルモードの光ファイバであってもよい。
 ゲインファイバ15は、光ファイバ14を介して入射端15aから入射した励起光に応じたゲインを有する光ファイバアンプである。ゲインファイバ15は、例えば、ファイバコアに希土類元素をドープしたダブルクラッドファイバである。この場合、ゲインファイバ15は、希土類元素からの誘導放出により光利得を得る。希土類元素としては、Yb(イッテルビウム)又はEr(エルビウム)等が用いられてもよい。ゲインファイバ15は、シングルモードのゲインファイバであってもよい。シングルモードのゲインファイバが用いられることにより、非線形性を高めることができると共に、空間モードの選択が可能になる。また、ゲインファイバ15は、高非線形ファイバであってもよい。
 ゲインファイバ15には、ファイバブラッググレーティングが形成されていてもよい。また、ゲインファイバ15と光ファイバ14とが、別の光ファイバ(不図示)によって接続されていてもよく、該別の光ファイバにファイバブラッググレーティングが形成されていてもよい。また、ゲインファイバ15と光ファイバ14とは、例えばWDM(Wavelength Division Multiplexing:波長分割多重)カプラによって接続されていてもよい。
 このようなゲインファイバ15を有する構成においては、励起光のパワーを調整することにより、レーザ発振及び自然放射増幅の切り替えを行うことができる。また、光源ユニット10Fにおいて、励起光に応じたゲインを有するゲインファイバ15が用いられることにより、狭い空間であるゲインファイバ15内に光が閉じ込められて、光パワーが高くなり、非線形効果が生じやすくなる。光共振器内を何度も光が往復することによって、非線形効果が蓄積されてより大きな非線形効果を起こすことができる。このような非線形効果は、ゲインファイバ15として高非線形ファイバが用いられることによってより生じやすくなる。非線形効果の例としては、例えば、自己位相変調 (Self-phase modulation)、相互位相変調 (Cross-phase modulation)、変調不安定性 (Modulation instability)、誘導ラマン散乱 (Stimulated Raman scattering)、誘導ブリルアン散乱 (Stimulated Brillouin scattering)、四光波混合 (Four-wave mixing)、及び、スーパーコンティニューム光発生 (Supercontinuum generation)等が挙げられる。これらの非線形効果を利用することにより、例えばスペクトルを更に広げる等、光のスペクトル制御の自由度が向上する。
 次に、第9実施形態に係る光源装置1Gについて、図15を参照して説明する。図15は、第9実施形態に係る光源装置1Gを模式的に示した図である。図15に示される光源装置1Gは、基本構成が第1実施形態に係る光源装置1と同様であり、且つ、レンズ151及び光ファイバ152を備える点において、光源装置1と異なっている。レンズ151及び光ファイバ152は、回折格子50から出力された光が進む経路に設けられている。
 レンズ151は、回折格子50から出力された光を光ファイバ152へ結合させるための結合用のレンズである。
 光ファイバ152は、回折格子50から出力された光であってレンズ151によって結合された光を導光する光ファイバである。光ファイバ152は、入射端152aから入射した光を導光し、該光を出射端152bから出射する。光ファイバ152は、シングルモードの光ファイバであってもよい。シングルモードの光ファイバが用いられることにより、非線形性を高めることができると共に、空間モードの選択が可能になる。また、光ファイバ152は、高非線形ファイバであってもよい。
 このように、回折格子50から出力された光が光ファイバ152によって導光される構成によれば、光ファイバ152内に光が閉じ込められて、非線形効果が生じやすくなる。このような構成では、光が1回のみ光ファイバ152を通過するので、非線形効果を起こした後のスペクトルが予想しやすくなり、制御容易性が向上する。このような非線形効果は、光ファイバ152として高非線形ファイバが用いられることによってより生じやすくなる。非線形効果を利用することにより、例えばスペクトルを更に広げる等、光のスペクトル制御の自由度が向上する。なお、このような、回折格子50から出力された光を導光する光ファイバを備える構成は、図15に示される態様に限定されない。例えば、図11に示されるように、光源11における外部共振器に結合していない端面(後側端面)から出てくる光を導光する光ファイバ100を備える構成が採用されてもよい。また、例えば、図14に示される光ファイバ14及びゲインファイバ15の接続部分にWDMカプラ等が挿入されて光が取り出され、取り出した光を導光する光ファイバを備える構成が採用されてもよい。いずれの構成も、回折格子50から出力された光を導光する光ファイバを備える点において共通している。
 1,1A,1B,1C,1D,1E、1F、1G…光源装置、11…光源、50…回折格子、60…空間光変調器(反射部)、60a…反射面、152…光ファイバ、260…可変曲率ミラー、361…可変焦点レンズ、362…平面ミラー(ミラー)。

Claims (10)

  1.  光を出力する光源と、
     制御信号の入力部を有し、該制御信号に基づいて、入射した光が反射する角度の分布を制御可能に構成された反射部と、
     前記光源から出力された光を分光して前記反射部に入射させると共に、前記反射部において反射された光の少なくとも一部を前記光源に戻す回折格子と、を備え、
     前記光源及び前記反射部によって光共振器が形成されており、前記光源に戻された光が出力され、
     前記制御信号に基づいて前記反射部において反射される光の角度の分布が制御されることにより、前記回折格子から前記光源に戻される光の帯域幅が制御される、光源装置。
  2.  前記反射部は、空間光変調器を含んで構成されており、
     前記空間光変調器は、前記制御信号に基づく変調パターンを表示することにより、前記入射した光が反射する角度の分布を制御する、請求項1記載の光源装置。
  3.  前記反射部は、可変曲率ミラーを含んで構成されており、
     前記可変曲率ミラーは、前記制御信号に基づいて曲率半径を変化させることにより、前記入射した光が反射する角度の分布を制御する、請求項1記載の光源装置。
  4.  前記反射部は、ミラーと、前記回折格子及び前記ミラーの間に設けられた可変焦点レンズと、を含んで構成されており、
     前記可変焦点レンズは、前記制御信号に基づいて前記可変焦点レンズの焦点距離を変化させることにより、前記入射した光が反射する角度の分布を制御する、請求項1記載の光源装置。
  5.  前記光源は、注入電流に応じた光を出力し、
     前記注入電流及び前記制御信号を時間的に変化させることにより、前記回折格子から前記光源に戻される光の帯域幅を動的に制御する、請求項1~4のいずれか一項記載の光源装置。
  6.  前記反射部の反射面に係る曲率中心と、前記回折格子に入射する光のビーム中心とが一致するように、前記反射部及び前記回折格子が配置されている、請求項1~4のいずれか一項記載の光源装置。
  7.  光源装置から出力される光の計測結果に基づいて、第2の前記制御信号を生成する制御信号生成部を更に備える、請求項1~4のいずれか一項記載の光源装置。
  8.  光源から回折格子に向けて光を出力することと、
     前記回折格子において分光された光が入射する反射部に対して、該反射部において反射される光の角度の分布を制御する制御信号を入力することと、を含む光源装置の制御方法。
  9.  前記光源を含む光源ユニットは、励起光を出力する励起光源と、該励起光に応じたゲインを有する光ファイバであるゲインファイバと、を含んで構成されている、請求項1~4のいずれか一項記載の光源装置。
  10.  前記回折格子から出力された光を導光する光ファイバを更に備える、請求項1~4のいずれか一項記載の光源装置。
PCT/JP2023/012562 2022-05-12 2023-03-28 光源装置及び制御方法 WO2023218782A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022078928A JP2023167615A (ja) 2022-05-12 2022-05-12 光源装置及び制御方法
JP2022-078928 2022-05-12

Publications (1)

Publication Number Publication Date
WO2023218782A1 true WO2023218782A1 (ja) 2023-11-16

Family

ID=88730087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012562 WO2023218782A1 (ja) 2022-05-12 2023-03-28 光源装置及び制御方法

Country Status (2)

Country Link
JP (1) JP2023167615A (ja)
WO (1) WO2023218782A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313143A (ja) * 1997-05-09 1998-11-24 Komatsu Ltd 狭帯域化レーザ装置
JPH11186648A (ja) * 1997-12-18 1999-07-09 Nec Corp 外部鏡型波長可変レーザ
JP2007242747A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置
US20140023098A1 (en) * 2011-01-24 2014-01-23 William Clarkson Optical fiber lasers
US20150211929A1 (en) * 2010-06-24 2015-07-30 Spectral Sciences, Inc. External Cavity Laser Source
WO2018105549A1 (ja) * 2016-12-09 2018-06-14 日本電信電話株式会社 波長掃引光源、波長掃引光源のための駆動データ作成方法および光偏向器
JP2019015563A (ja) * 2017-07-05 2019-01-31 浜松ホトニクス株式会社 流体分析装置
JP2021022684A (ja) * 2019-07-30 2021-02-18 国立大学法人 和歌山大学 波長掃引型光コヒーレンストモグラフィー装置及び波長可変レーザ光源

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10313143A (ja) * 1997-05-09 1998-11-24 Komatsu Ltd 狭帯域化レーザ装置
JPH11186648A (ja) * 1997-12-18 1999-07-09 Nec Corp 外部鏡型波長可変レーザ
JP2007242747A (ja) * 2006-03-07 2007-09-20 Fujifilm Corp 波長可変レーザ装置および光断層画像化装置
US20150211929A1 (en) * 2010-06-24 2015-07-30 Spectral Sciences, Inc. External Cavity Laser Source
US20140023098A1 (en) * 2011-01-24 2014-01-23 William Clarkson Optical fiber lasers
WO2018105549A1 (ja) * 2016-12-09 2018-06-14 日本電信電話株式会社 波長掃引光源、波長掃引光源のための駆動データ作成方法および光偏向器
JP2019015563A (ja) * 2017-07-05 2019-01-31 浜松ホトニクス株式会社 流体分析装置
JP2021022684A (ja) * 2019-07-30 2021-02-18 国立大学法人 和歌山大学 波長掃引型光コヒーレンストモグラフィー装置及び波長可変レーザ光源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANTOINE CHRISTOPHE, XIANG LI; DAVID SESKO; OLAV SOLGAARD: "An External Cavity Tunable Laser with a Low-Loss Narrowband MEMS Tunable Blazed Grating ", LEOS 2007 - IEEE LASERS AND ELECTRO-OPTICS SOCIETY ANNUAL MEETING CONFERENCE PROCEEDINGS, - 25 October 2007 (2007-10-25), pages 834 - 835, XP093107552, DOI: 10.1109/LEOS.2007.4382667 *

Also Published As

Publication number Publication date
JP2023167615A (ja) 2023-11-24

Similar Documents

Publication Publication Date Title
US9905993B2 (en) Wavelength selective external resonator and beam combining system for dense wavelength beam combining laser
US7233442B1 (en) Method and apparatus for spectral-beam combining of high-power fiber lasers
US7199924B1 (en) Apparatus and method for spectral-beam combining of high-power fiber lasers
US9134538B1 (en) Methods, systems, and apparatus for coherent beam combining
EP3195429B1 (en) Rgb laser source for luminaire projector system
US8625645B2 (en) Solid-state laser apparatus and laser system
JP6807897B2 (ja) レーザのスペクトル帯域幅の低減
US7627013B2 (en) Light source module
JP6928622B2 (ja) 波長可変レーザ装置
US20080273560A1 (en) Method and Apparatus for Optical Mode Multiplexing of Multimode Lasers and Arrays
US6567451B2 (en) Narrow band excimer or molecular fluorine laser having an output coupling interferometer
JP2013545107A (ja) 蛍光測定システム用の広帯域光源の音響光学的同調可能フィルタ(aotf)
JP2004193545A (ja) スペクトル依存性空間フィルタリングによるレーザの同調方法およびレーザ
US7542492B2 (en) Controlled misalignment in wavelength-converted laser sources
TWI790390B (zh) 雷射光源及具有雷射光源之雷射投影器
JPWO2018167975A1 (ja) レーザ発振装置
JP2004101512A (ja) 位置測定装置
WO2023218782A1 (ja) 光源装置及び制御方法
US20030007730A1 (en) Method and apparatus for fiber Bragg grating production
Jain et al. Coherent and spectral beam combining of fiber lasers using volume Bragg gratings
JP2015115509A (ja) レーザ光源装置及びスクリーン投影装置
US7817334B2 (en) Wavelength conversion element, light source device, image display device, and monitor device
JP6763121B2 (ja) レーザ装置
Glebov et al. Coherent Beam Combining Element for Five 150-W Fiber Lasers by Volume Bragg Gratings in PTR Glass
Khizhnyak et al. Coherent coupling of spectrally broadband laser channels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803265

Country of ref document: EP

Kind code of ref document: A1