WO2023218733A1 - Electrical-conductivity measurement device and method for manufacturing same - Google Patents

Electrical-conductivity measurement device and method for manufacturing same Download PDF

Info

Publication number
WO2023218733A1
WO2023218733A1 PCT/JP2023/007078 JP2023007078W WO2023218733A1 WO 2023218733 A1 WO2023218733 A1 WO 2023218733A1 JP 2023007078 W JP2023007078 W JP 2023007078W WO 2023218733 A1 WO2023218733 A1 WO 2023218733A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
flow path
electrical conductivity
sheet
measuring device
Prior art date
Application number
PCT/JP2023/007078
Other languages
French (fr)
Japanese (ja)
Inventor
憲児 坂本
Original Assignee
国立大学法人 九州工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 九州工業大学 filed Critical 国立大学法人 九州工業大学
Publication of WO2023218733A1 publication Critical patent/WO2023218733A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/22Measuring resistance of fluids

Definitions

  • the present invention relates to an electrical conductivity measuring device for measuring the electrical conductivity level of a liquid and a method for manufacturing the same.
  • the amount of each component of saliva changes depending on stress. Since the content of each component in saliva affects the viscosity of saliva, stress can be evaluated by measuring the viscosity of saliva. Therefore, measuring the viscosity of body fluids is effective in confirming a person's health condition.
  • the viscosity of a body fluid can be measured using, for example, the body fluid viscosity measuring device described in Patent Document 1.
  • the device has a chip in which a channel for flowing body fluid is formed, and is designed so that the chip can be replaced every time the viscosity of the body fluid is measured.
  • the device also uses physical quantities (hereinafter referred to as " Evaluate the viscosity of body fluids from the electrical conductivity value (also called “electrical conductivity value").
  • the present invention has been made in view of the above circumstances, and provides an electrical conductivity measuring device and a method for manufacturing the same, which can measure the electrical conductivity value of a liquid at low cost without using a chip with finely processed resin bodies. The purpose is to provide.
  • An electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid, and includes a flow path made of a material capable of absorbing the liquid; first and second electrodes that are spaced apart from each other in contact with the flow path; an application unit that applies voltage to the first electrode; an arithmetic unit that detects an electrical resistance value between the first and second electrodes that are electrically connected to each other, and derives the electrical conductivity value of the liquid.
  • a method of manufacturing an electrical conductivity measuring device that meets the above object is a method of manufacturing an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid, which includes a mold in which a through hole is formed. a step of applying a lyophobic agent to one side of the sheet; and pressing one side of the mold against one side of the sheet capable of absorbing the liquid to absorb the liquid in a region of the sheet corresponding to the through hole. forming a flow path, and providing a lyophobic portion around the flow path of the sheet to prevent the liquid absorbed in the flow path from flowing out of the flow path.
  • a method of manufacturing an electrical conductivity measuring device in accordance with the above object is a method of manufacturing an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid, wherein a groove is formed on one side. a step of applying a lyophobic agent to the one side of the mold, and pressing the one side of the mold against one side of the sheet capable of absorbing the liquid to apply the liquid to the area corresponding to the groove of the sheet. forming a flow path for absorption, and providing a lyophobic portion around the flow path of the sheet to prevent the liquid absorbed in the flow path from flowing out of the flow path.
  • An electrical conductivity measuring device includes: a flow path made of a material capable of absorbing liquid; first and second electrodes that are spaced apart from each other in contact with the flow path; Detects the electrical resistance value between an application unit that applies a voltage to the electrode, and the first and second electrodes that are electrically connected via the liquid absorbed in the flow path, and derives the conductivity value of the liquid. Since the flow path can be formed from paper, for example, the electrical conductivity value of the liquid can be measured at low cost without using a chip made of finely processed resin material.
  • the method for manufacturing an electrical conductivity measuring device includes the steps of applying a lyophobic agent to one side of a mold in which a through hole is formed, and applying a lyophobic agent to one side of a sheet capable of absorbing liquid. One side is pressed to form a channel for absorbing liquid in the area corresponding to the through hole of the sheet, and the liquid absorbed in the channel is prevented from flowing out of the channel around the channel of the sheet. and a step of providing a lyophobic portion.
  • the method for manufacturing an electrical conductivity measuring device includes the steps of applying a lyophobic agent to one side of a mold having grooves formed on one side, and applying a lyophobic agent to one side of a sheet capable of absorbing liquid. , one side of the mold is pressed to form a channel for absorbing liquid in the area corresponding to the groove of the sheet, and a channel is formed around the channel of the sheet to prevent the liquid absorbed in the channel from flowing out of the channel.
  • the present invention includes the step of providing a lyophobic portion that prevents this, it is possible to manufacture an electrical conductivity measurement device that can measure the electrical conductivity value of a liquid at a low cost without using a chip in which a resin body is minutely processed.
  • FIG. 1 is an explanatory diagram of an electrical conductivity measuring device according to an embodiment of the present invention.
  • (A) and (B) are partial cross-sectional views of the electrical conductivity measuring device, respectively.
  • (A) and (B) are explanatory diagrams each showing how the liquid L moves through the flow path.
  • (A) and (B) are electron microscope images taken of the first electrode formed on the sheet.
  • (A) and (B) are explanatory diagrams each showing a process for forming a flow path in a sheet. It is an explanatory view showing a process of forming a channel in a sheet using another mold.
  • FIG. 2 is an explanatory diagram showing the results of a first experiment.
  • FIG. 3 is an explanatory diagram showing the results of a second experiment.
  • FIG. 7 is an explanatory diagram showing the results of a third experiment.
  • an electrical conductivity measuring device 10 measures the electrical conductivity level of the liquid L.
  • a device for measuring electrical conductivity values which includes a channel 11 made of a material capable of absorbing liquid L, first electrodes 12, 13, 14, 15, and second electrodes provided alternately at intervals. 16, 17, 18, and 19, an application section 20 that applies a voltage to the first electrodes 12, 13, 14, and 15, and a calculation section 21 that derives the electric value of the liquid L. This will be explained in detail below.
  • the liquid L is not particularly limited, and may be, for example, a body fluid such as blood or saliva, or an electrolyte.
  • a body fluid such as blood or saliva
  • an electrolyte an example of a liquid containing water
  • the conductivity value indicating the electrical conductivity level of the liquid L is a value indicating the ease or difficulty of conducting electricity of the liquid L. Examples of the conductivity value include electrical conductivity, electrical resistivity, and electrical conductivity. and values that are correlated with electrical resistivity.
  • the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 are made of a material capable of absorbing the liquid L, as shown in FIGS. It is provided on one side (front side) of the formed sheet 22.
  • the sheet 22 is made of paper or nonwoven fabric made of fibers that are lyophilic to the liquid L (having a high affinity for the liquid L), and is deformed by pressing.
  • the rectangular sheet 22 has a linear channel 11 and a liquid supply section 23 connected to one end of the channel 11 and circular in plan view. Therefore, the channel 11 is made of paper or nonwoven fabric made of lyophilic fibers. Further, the liquid supply section 23 is also capable of absorbing the liquid L.
  • the liquid L is supplied to the liquid supply part 23, the liquid L is absorbed into the liquid supply part 23, as shown in FIG. 3(A), and a part or most of it is absorbed as shown in FIG. 3(B). Then, the liquid L is absorbed into the flow path 11 (moves to the flow path 11), and a part or most of the liquid L absorbed into the flow path 11 moves along the flow path 11 toward the other end of the flow path 11.
  • the sheet 22 has a flow path 11, and around the flow path 11 of the sheet 22, the liquid L absorbed in the liquid supply portion 23 and the flow path 11 flows outside the liquid supply portion 23 or A lyophobic portion 25 is formed to prevent the liquid from flowing out of the flow path 11.
  • the lyophobic portion 25 is formed by impregnating a predetermined region of the sheet 22 with a hydrophobic liquid (or an oleophobic liquid if the liquid L contains oil).
  • a hydrophobic liquid for example, a fluorine coating agent, an oil-based paint, or a wax can be employed.
  • fluorine coating agents examples include Fluorosurf (registered trademark) manufactured by Fluoro Technology Co., Ltd.
  • oil-based paints include oil-based Top Guard (“Top Guard” is a registered trademark) manufactured by Campehapio Co., Ltd.
  • the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 are connected to the channel portion 11 on one side of the sheet 22, respectively, as shown in FIGS. 1 and 2(B). These are line-shaped metal plates (copper plates in this embodiment) that are orthogonally crossed (crossed) and are spaced apart and parallel to each other with some of them in contact with the flow path 11. Towards the end, the second electrode 16, the first electrode 12, the second electrode 17, the first electrode 13, the second electrode 18, the first electrode 14, the second electrode 19 and the first The electrodes 15 are sequentially arranged at equal pitches.
  • the flow path 11 has a region (hereinafter referred to as " An electrode non-contact area (also referred to as an “electrode non-contact area”) protrudes and is exposed on one side of the sheet 22.
  • the area of the flow path 11 that the first electrode 12 contacts (hereinafter also referred to as “electrode contact area”) is covered with the first electrode 12 on one side, as shown in FIG. 2(B). ing.
  • This also applies to each region of the flow path 11 where the first electrodes 13, 14, 15 and the second electrodes 16, 17, 18, 19 are in contact. That is, the metal forming the first electrodes 12 , 13 , 14 , 15 and the second electrodes 16 , 17 , 18 , 19 includes some fibers of the flow path 11 .
  • Both the electrode non-contact area and the electrode contact area of the channel 11 are covered with a lyophobic portion 25 from the other surface side (back side) to both side surfaces, as shown in FIGS. 2(A) and 2(B). . Therefore, the liquid L absorbed in the channel 11 moves along the channel 11 while being prevented from flowing out of the channel 11, as shown in FIGS. 3(A) and 3(B). .
  • the entire circumference of the cross section of the flow path 11 is covered with the lyophobic portion 25.
  • only both side surfaces of the flow path 11 may be covered by the lyophobic portion 25 (that is, the other side of the flow path 11 does not need to be covered by the lyophobic portion 25).
  • most of the first electrode 12 is formed in a state that is soaked into the sheet 22, as shown in FIGS. 4(A) and 4(B), and includes some fibers of the sheet 22. are doing.
  • This also applies to the first electrodes 13, 14, 15 and the second electrodes 16, 17, 18, 19. That is, the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 are each made of metal that includes some fibers of the sheet 22.
  • cracks are formed in the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, respectively, into which the liquid L moving through the flow path 11 flows. There is. By forming such cracks in the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, the relationship between the liquid L and the first electrodes is greater than in the case where no cracks are formed. The contact area between the electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 is increased.
  • the first electrodes 12, 13, 14, 15 are connected to the application unit 20 via a conducting wire 26, and the second electrodes 16, 17, 18, 19 are connected to a conducting wire 27 and an AD (not shown). It is connected to the calculation unit 21 via a converter.
  • the application unit 20 is designed to be able to apply an alternating current voltage of a predetermined magnitude to the first electrodes 12 , 13 , 14 , 15 via a conducting wire 26 . Note that an application unit that applies a DC voltage may be employed.
  • the calculation unit 21 can be configured to include, for example, a CPU, a memory, and an interface into which electrical signals are input, and the calculation unit 21 can be configured to include, for example, a CPU, a memory, and an interface into which electrical signals are input. It is designed so that the conductivity value of the liquid L can be derived based on the voltage signal (in this embodiment, the voltage signal).
  • the electrical conductivity measuring device 10 measures the electrical conductivity value of the liquid L through the following steps S1 to S7.
  • Step S1 The application unit 20 applies a voltage of a predetermined magnitude to the first electrodes 12, 13, 14, and 15.
  • Step S2 A predetermined amount of liquid L is dropped into the liquid supply section 23, and the liquid L is absorbed into the liquid supply section 23.
  • the liquid L absorbed by the liquid supply part 23 moves to one end of the flow path 11, as shown in FIGS. Moving.
  • Step S3 The liquid L (the leading part of the liquid L) moving through the flow path 11 reaches the first electrode 12 via the second electrode 16, as shown in FIG. 3(B). Thereby, the second electrode 16 and the first electrode 12 are electrically connected via the liquid L absorbed in the region between the second electrode 16 and the first electrode 12 of the flow path 11, An electrical signal is output from the second electrode 16.
  • Step S4 The calculation unit 21 acquires the electric signal from the second electrode 16 via the AD converter, and calculates the electric resistance value between the second electrode 16 and the first electrode 12 (
  • the electrical resistance value also referred to as “one section electrical resistance value”
  • the electrical resistivity which is an example of the conductivity value of the liquid L, is derived based on the electrical resistance value.
  • the calculation unit 21 calculates the detected R1 ⁇ 1 is calculated by substituting ⁇ 1 into Equation 1 below. Note that the constants S and D are stored in the calculation unit 21 in advance.
  • Step S5 The liquid L moving through the channel 11 passes through the first electrode 12 and reaches the second electrode 17, and the second electrode 16, the first electrode 12, and the second electrode 17 are electrically connected via the liquid L absorbed in the region between the second electrodes 16 and 17 of the flow path 11, the calculation unit 21 outputs the output from the second electrodes 16 and 17.
  • An electrical signal is acquired via an AD converter. At this time, the second electrodes 16 and 17 are connected in parallel.
  • the arithmetic unit 21 detects that the liquid L has reached the second electrode 17 when the magnitude of the acquired electric signal exceeds a predetermined value, and the distance between the second electrodes 16 and 17 is increased.
  • the electrical resistance value (hereinafter also referred to as "two-section electrical resistance value”) is detected, and the conductivity value of the liquid L is derived.
  • the distance between the second electrodes 16 and 17 is twice the distance between the second electrode 16 and the first electrode 12, so it becomes 2D.
  • the theoretical value of the electrical resistance value in two sections is half the electrical resistance value in one section. Assuming that the electrical resistance value in the two sections is R2 and the electrical resistivity is ⁇ 2, the calculation unit 21 calculates ⁇ 2 by substituting the detected R2 into Equation 2 below.
  • Step S6 After that, the calculation unit 21 calculates the electrical resistivity of the liquid L each time the liquid L moving through the channel 11 reaches the first electrode 13, the second electrode 18, etc.
  • the number of electrical resistivities determined by the calculation unit 21 is assumed to be N.
  • Step S7 The calculation unit 21 determines the average value of the N (plural) electrical resistivities determined as the final electrical resistivity of the liquid L. Then, the calculation unit 21 determines the viscosity of the liquid L based on the final electrical resistivity of the liquid L using Walden's law.
  • the electrical conductivity measuring device 10 is manufactured through the following steps (the method for manufacturing the electrical conductivity measuring device 10 has the following steps).
  • Step S11 Perform silk screen printing on one side of the sheet 22 to apply conductivity to the locations where the first electrodes 12, 13, 14, 15, second electrodes 16, 17, 18, 19 and conductive wires 26, 27 are to be formed. Apply a paste (for example, silver paste).
  • a paste for example, silver paste
  • Step S12 By plating the sheet 22, a copper layer is provided on the part on one side of the sheet 22 where the conductive paste is applied, and the area where the flow path 11 is planned to be formed on the one side of the sheet 22 (the area where the flow path is planned to be formed) is formed.
  • First electrodes 12, 13, 14, 15 and second electrodes 16, 17, 18, 19 are provided at intervals, and conductive wires 26, 27 are formed on one side of the sheet 22.
  • Step S13 As shown in FIG. 5A, a lyophobic agent Q is applied to one side of a plate-shaped mold 30 in which through-holes 29 corresponding to the channel 11 and the liquid supply section 23 are formed.
  • Step S14 The mold 30 is arranged horizontally so that the one side coated with the lyophobic agent Q is positioned on the lower side, and the horizontally arranged sheet 22 with the one side applied on the upper side is placed below the mold 30.
  • Two sheet-shaped cushioning materials 31 and 32 are provided directly below the sheet 22, and with a sheet-shaped protective material 33 placed directly above the mold 30, the protective material 33, the mold 30, the sheet 22, and the buffer The materials 31 and 32 are stacked and placed between an upper mold 34 and a lower mold 35 of a press machine.
  • Step S15 Push down the upper mold 34 and apply pressure to the protective material 33, the mold 30, the sheet 22, and the cushioning materials 31 and 32 with the upper mold 34 and the lower mold 35, as shown in FIG. 5(B).
  • one side of the mold 30 is pressed against one side (upper side) of the sheet 22, and the lyophobic agent Q is impregnated into the sheet 22.
  • the lyophobic agent Q has not reached the other side of the sheet 22 at this point.
  • Step S16 The sheet 22 impregnated with the lyophobic agent Q from one side is taken out from the press, and the lyophobic agent Q is applied to the other side of the sheet 22 with a brush or the like.
  • Step S17 The sheet 22 is heated at 130° C. to harden the lyophobic agent Q.
  • the channel 11 and the liquid supply section 23 are formed in the region of the sheet 22 corresponding to the through hole 29 of the mold 30, and the lyophobic section 25 is provided around the channel 11 of the sheet 22.
  • a layer in which the lyophobic agent Q is cured is formed on the upper surface side of the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, but as shown in FIG. In this example, the description of the layer in which the lyophobic agent Q is cured is omitted.
  • the method for manufacturing the electrical conductivity measuring device 10 is to press one side of the mold 30 coated with the lyophobic agent Q onto one surface of the sheet 22, and to The flow path 11 is formed in the sheet 22, and a lyophobic portion 25 is provided around the flow path 11 in the sheet 22.
  • the target is a flow path where the amount of liquid L used for measuring the conductivity value is 20 ⁇ L
  • the surface of the area where the flow path is planned to be formed is masked with tape, and the lyophobic agent is applied to the area where the flow path is planned to be formed. It has been confirmed that it is possible to measure the conductivity value of the liquid L even if it is applied to the sheet from the surface side to form a flow path.
  • the method for manufacturing the electrical conductivity measuring device 10 includes a step of applying a lyophobic agent Q to an area other than the groove 37 on one side of the mold 38, and applying a lyophobic agent Q to one side of the sheet 22.
  • Step S18 Connect the applying section 20 and the calculating section 21 to the conducting wires 26 and 27, respectively. Thereby, the electrical conductivity measuring device 10 is completed.
  • the method for manufacturing the electrical conductivity measuring device 10 described above includes forming the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 on the sheet 22, and then forming the flow channels 11 on the sheet 22.
  • the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 may be formed on the sheet 22 provided with the flow path 11.
  • the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 which are in contact with the region of the sheet 22 where the flow path 11 is formed, are spaced apart. It will be provided with a blank space.
  • a filter paper having a filtration time of 300 seconds or less, a water absorption of 5 cm or more, and a thickness of 0.3 mm or less is used as the sheet 22 .
  • the water filtration time is based on JISP3801, and the water absorption rate means the height to which water rises in 10 minutes when a part of the sheet 22 in an upright state is immersed in water at 20°C.
  • the filtration time of the sheet 22 exceeds 300 seconds, the ability of the flow path 11 to move the liquid L (the liquid L contains water) is low, and it takes time to measure the conductivity value.
  • the lyophobic portion 25 cannot be stably formed by the method of manufacturing the electrical conductivity measuring device 10 described above. occurs. This is because the lyophobic agent Q (the lyophobic agent Q is a hydrophobic agent) is difficult to penetrate into the sheet 22, and the lyophobic portion 25 cannot be stably formed.
  • Sample P2 was different from sample P1 in that it had five first and second electrodes, and the distance between adjacent first and second electrodes was 2.5 mm.
  • Sample P3 differs from sample P2 in that the filter paper has hydrophobicity and that the filter paper was formed by hydrophilic treatment of the filter paper.
  • four types of experimental solutions were prepared by adding sucrose to physiological saline. Each experimental solution had a different concentration of sucrose and a different viscosity. Note that in samples P2 and P3 (same as sample P1), most of the first and second electrodes were formed within the filter paper, and included fibers constituting the filter paper.
  • the experimental solution was dropped into one end of the flow path of samples P2 and P3, and the electrical resistance value between the conductive parts connected to the five first electrodes and the conductive parts connected to the five second electrodes was measured. was measured, and the electrical resistivity was calculated from the measured electrical resistance value. Thereafter, the calculated electrical resistivity was compared with the viscosity coefficient measured in advance for each experimental solution. The comparison results are shown in FIG. From the comparison results, it was confirmed that there is a correlation between the electrical resistivity and the viscosity of the experimental solution for both samples P2 and P3, and that sample P2 has a higher detection resolution for the viscosity of the experimental solution than sample P3. Ta.
  • ⁇ Third experiment> In the third experiment, a linear and elongated sample P4 with a width of 1 mm was used, which was obtained by cutting out the filter paper of sample P2. A pin-shaped electrode is brought into contact with each of two locations spaced apart in the longitudinal direction of sample P4, and the experimental solution used in the second experiment is dropped onto one end of sample P4. The electrical resistance value between the first and second electrodes (corresponding to the first and second electrodes) was measured, and the electrical resistivity was calculated from the measured electrical resistance value. This calculation of electrical resistivity was performed for four types of experimental solutions having different viscosity coefficients in each case in which the state of contact of the pin-shaped electrode with sample P4 was changed.
  • sample P2 represents the experimental results for sample P2 in the second experiment
  • sample P4 point contact
  • sample P4 represents the experimental results when the tip of the pin-shaped electrode was brought into contact with sample P4.
  • sample P4 line contact
  • sample P4 is an experiment in which the side of a pin-shaped electrode was brought into linear contact with sample P4 (at this time, each pin-shaped electrode was arranged perpendicular to sample P4). represents the result.
  • the vertical axis represents the measured electrical resistance value as a relative value
  • the horizontal axis represents the viscosity of the experimental solution as a relative value.
  • sample P4 point contact
  • sample P4 line contact
  • the present invention is not limited to the above-described embodiments, and any changes in conditions that do not depart from the gist are within the scope of the present invention.
  • the first electrode may be provided on both one side and the other side of the sheet, and the first electrodes provided on the one side and the other side, respectively, may be electrically connected.
  • a flow path may be formed by performing lyophilic treatment on a sheet that does not absorb the target liquid. It is not always necessary to form a flow path in the sheet; for example, a hydrophilic string-like object may be fixed to a hydrophobic substrate and the string-like object may be used as the flow path.
  • the flow path does not need to be made of paper or nonwoven fabric, and may be made of, for example, molded wood chips or urethane.
  • the first and second electrodes do not need to have cracks into which the liquid moving through the flow path flows.
  • the measurement resolution of the conductivity value is lower than when the crack is formed.
  • the first and second electrodes can also be formed by a vapor phase method such as plasma CVD or vapor deposition.
  • the measurement resolution of the conductivity value is lower than when forming the first and second electrodes by plating (liquid phase method).
  • microprocessed resin is used to measure the electrical conductivity value of a liquid and to measure the viscosity of a liquid based on the electrical conductivity value of the liquid. It can be done without doing anything. Therefore, for example, it is possible to commercialize a measurement kit that is priced on the premise that people measure the viscosity of body fluids every day in ordinary households.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

An electrical-conductivity measurement device 10 is for measuring the electrical-conductivity value representing an electrical conductive level of a liquid, and comprises: a flow path 11 made from a liquid-absorbable material; first electrodes 12-15 and second electrodes 16-19 that are provided so as to be spaced apart from each other in a state of being in contact with the flow path 11; an application unit 20 for applying voltage to the first electrodes 12-15; and a calculation unit 21 for detecting electrical resistance values between the first electrodes 12-15 and the second electrodes 16-19 that are electrically connected via the liquid absorbed by the flow path 11, and for deriving the electrical-conductivity value of the liquid.

Description

電気伝導性測定装置及びその製造方法Electrical conductivity measuring device and its manufacturing method
本発明は、液体の電気伝導レベルを計測する電気伝導性測定装置及びその製造方法に関する。 The present invention relates to an electrical conductivity measuring device for measuring the electrical conductivity level of a liquid and a method for manufacturing the same.
糖尿病や高脂血症等の生活習慣病の患者は日々の状態確認が重要である。糖尿病については家庭での使用を前提とした血糖値計測器が普及している。これに対し、高脂血症等、糖尿病以外の生活習慣病については、家庭で状態を確認する仕組みが確立しておらず、状態の確認には医療機関での診断や検査が必要となる。ここで、血液の粘性及び生活習慣病の間には相関があることが分かりつつあるため、血液の粘性を簡易的に計測できる仕組みが確立できれば、家庭で生活習慣病の状態を確認できるようになることが期待される。 It is important for patients with lifestyle-related diseases such as diabetes and hyperlipidemia to check their condition on a daily basis. For diabetes, blood sugar level measuring devices designed for home use have become widespread. On the other hand, for lifestyle-related diseases other than diabetes, such as hyperlipidemia, there is no established system for checking the condition at home, and diagnosis and testing at a medical institution is required to confirm the condition. It is becoming clear that there is a correlation between blood viscosity and lifestyle-related diseases, so if a system that can easily measure blood viscosity can be established, it would be possible to check the status of lifestyle-related diseases at home. It is expected that this will happen.
また、唾液の各成分(コルチゾール、DHEA、テストステロン等)はストレスに応じて量が変化する。唾液の各成分の含有量は唾液の粘性に影響を与えることから、唾液の粘性の測定によりストレスの評価が可能である。
従って、体液の粘性の計測は人の健康状態の確認に有効である。体液の粘性は、例えば、特許文献1に記載された体液粘性測定装置を用いて計測できる。
Further, the amount of each component of saliva (cortisol, DHEA, testosterone, etc.) changes depending on stress. Since the content of each component in saliva affects the viscosity of saliva, stress can be evaluated by measuring the viscosity of saliva.
Therefore, measuring the viscosity of body fluids is effective in confirming a person's health condition. The viscosity of a body fluid can be measured using, for example, the body fluid viscosity measuring device described in Patent Document 1.
当該装置は、体液を流す流路が形成されたチップを有し、体液の粘性が計測されるごとにチップの交換ができるように設計されている。また、当該装置は、液体の電気伝導率を基にその液体の粘性を評価できるというWalden則に基づいて、電気伝導率や電気抵抗率等の電気伝導のしやすさが分かる物理量(以下、「電気伝導値」とも言う)から体液の粘性を評価する。 The device has a chip in which a channel for flowing body fluid is formed, and is designed so that the chip can be replaced every time the viscosity of the body fluid is measured. The device also uses physical quantities (hereinafter referred to as " Evaluate the viscosity of body fluids from the electrical conductivity value (also called "electrical conductivity value").
特開2018-28451号公報JP2018-28451A
しかしながら、樹脂板等に微細な加工をして製造されるチップは一定以上の製造コストを要し、例えば、当該装置を用いて家庭で体液の粘性を毎日計測したい患者にとっては、経済的負担が大きいという問題があった。
本発明は、かかる事情に鑑みてなされたもので、樹脂体に微細な加工がなされたチップを用いることなく、安価に液体の電気伝導値を計測可能な電気伝導性測定装置及びその製造方法を提供することを目的とする。
However, chips that are manufactured by finely processing resin plates or the like require a certain amount of manufacturing cost, and for example, it is a financial burden for patients who want to use the device to measure the viscosity of body fluids at home every day. The problem was that it was big.
The present invention has been made in view of the above circumstances, and provides an electrical conductivity measuring device and a method for manufacturing the same, which can measure the electrical conductivity value of a liquid at low cost without using a chip with finely processed resin bodies. The purpose is to provide.
前記目的に沿う第1の発明に係る電気伝導性測定装置は、液体の電気伝導レベルを表す電導値を計測する電気伝導性測定装置において、前記液体を吸収可能な素材からなる流路と、前記流路に接触した状態で間隔を空けて設けられた第1、第2の電極と、前記第1の電極に電圧を印加する印加部と、前記流路に吸収された前記液体を介して電気的に接続された前記第1、第2の電極間の電気抵抗値を検出し、前記液体の前記電導値を導出する演算部とを備える。 An electrical conductivity measuring device according to a first aspect of the invention that meets the above object is an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid, and includes a flow path made of a material capable of absorbing the liquid; first and second electrodes that are spaced apart from each other in contact with the flow path; an application unit that applies voltage to the first electrode; an arithmetic unit that detects an electrical resistance value between the first and second electrodes that are electrically connected to each other, and derives the electrical conductivity value of the liquid.
前記目的に沿う第2の発明に係る電気伝導性測定装置の製造方法は、液体の電気伝導レベルを表す電導値を計測する電気伝導性測定装置の製造方法において、貫通孔が形成された金型の一側面に疎液剤を塗布する工程と、前記液体を吸収可能なシートの一面側に、前記金型の一側面を押し付けて、前記シートの前記貫通孔に対応する領域に前記液体を吸収する流路を形成し、前記シートの該流路の周囲に該流路に吸収された前記液体が該流路外に流出するのを防止する疎液部を設ける工程とを有する。 A method of manufacturing an electrical conductivity measuring device according to a second invention that meets the above object is a method of manufacturing an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid, which includes a mold in which a through hole is formed. a step of applying a lyophobic agent to one side of the sheet; and pressing one side of the mold against one side of the sheet capable of absorbing the liquid to absorb the liquid in a region of the sheet corresponding to the through hole. forming a flow path, and providing a lyophobic portion around the flow path of the sheet to prevent the liquid absorbed in the flow path from flowing out of the flow path.
前記目的に沿う第3の発明に係る電気伝導性測定装置の製造方法は、液体の電気伝導レベルを表す電導値を計測する電気伝導性測定装置の製造方法において、一側面に溝が形成された金型の該一側面に疎液剤を塗布する工程と、前記液体を吸収可能なシートの一面側に、前記金型の一側面を押し付けて、前記シートの前記溝に対応する領域に前記液体を吸収する流路を形成し、前記シートの該流路の周囲に該流路に吸収された前記液体が該流路外に流出するのを防止する疎液部を設ける工程とを有する。 A method of manufacturing an electrical conductivity measuring device according to a third invention in accordance with the above object is a method of manufacturing an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid, wherein a groove is formed on one side. a step of applying a lyophobic agent to the one side of the mold, and pressing the one side of the mold against one side of the sheet capable of absorbing the liquid to apply the liquid to the area corresponding to the groove of the sheet. forming a flow path for absorption, and providing a lyophobic portion around the flow path of the sheet to prevent the liquid absorbed in the flow path from flowing out of the flow path.
第1の発明に係る電気伝導性測定装置は、液体を吸収可能な素材からなる流路と、流路に接触した状態で間隔を空けて設けられた第1、第2の電極と、第1の電極に電圧を印加する印加部と、流路に吸収された液体を介して電気的に接続された第1、第2の電極間の電気抵抗値を検出し、液体の電導値を導出する演算部とを備えるので、例えば、流路を紙によって形成でき、樹脂体に微細な加工がなされたチップを用いることなく、安価に液体の電気伝導値を計測可能である。 An electrical conductivity measuring device according to a first aspect of the present invention includes: a flow path made of a material capable of absorbing liquid; first and second electrodes that are spaced apart from each other in contact with the flow path; Detects the electrical resistance value between an application unit that applies a voltage to the electrode, and the first and second electrodes that are electrically connected via the liquid absorbed in the flow path, and derives the conductivity value of the liquid. Since the flow path can be formed from paper, for example, the electrical conductivity value of the liquid can be measured at low cost without using a chip made of finely processed resin material.
第2の発明に係る電気伝導性測定装置の製造方法は、貫通孔が形成された金型の一側面に疎液剤を塗布する工程と、液体を吸収可能なシートの一面側に、金型の一側面を押し付けて、シートの貫通孔に対応する領域に液体を吸収する流路を形成し、シートの流路の周囲に流路に吸収された液体が流路外に流出するのを防止する疎液部を設ける工程とを有する。また、第3の発明に係る電気伝導性測定装置の製造方法は、一側面に溝が形成された金型の一側面に疎液剤を塗布する工程と、液体を吸収可能なシートの一面側に、金型の一側面を押し付けて、シートの溝に対応する領域に液体を吸収する流路を形成し、シートの流路の周囲に流路に吸収された液体が流路外に流出するのを防止する疎液部を設ける工程とを有するので、樹脂体に微細な加工がなされたチップを用いることなく、安価に液体の電気伝導値を計測可能な電気伝導性測定装置を製造できる。 The method for manufacturing an electrical conductivity measuring device according to the second invention includes the steps of applying a lyophobic agent to one side of a mold in which a through hole is formed, and applying a lyophobic agent to one side of a sheet capable of absorbing liquid. One side is pressed to form a channel for absorbing liquid in the area corresponding to the through hole of the sheet, and the liquid absorbed in the channel is prevented from flowing out of the channel around the channel of the sheet. and a step of providing a lyophobic portion. Further, the method for manufacturing an electrical conductivity measuring device according to the third invention includes the steps of applying a lyophobic agent to one side of a mold having grooves formed on one side, and applying a lyophobic agent to one side of a sheet capable of absorbing liquid. , one side of the mold is pressed to form a channel for absorbing liquid in the area corresponding to the groove of the sheet, and a channel is formed around the channel of the sheet to prevent the liquid absorbed in the channel from flowing out of the channel. Since the present invention includes the step of providing a lyophobic portion that prevents this, it is possible to manufacture an electrical conductivity measurement device that can measure the electrical conductivity value of a liquid at a low cost without using a chip in which a resin body is minutely processed.
本発明の一実施例に係る電気伝導性測定装置の説明図である。FIG. 1 is an explanatory diagram of an electrical conductivity measuring device according to an embodiment of the present invention. (A)、(B)はそれぞれ、同電気伝導性測定装置の部分断面図である。(A) and (B) are partial cross-sectional views of the electrical conductivity measuring device, respectively. (A)、(B)はそれぞれ、液体Lが流路を移動する様子を示す説明図である。(A) and (B) are explanatory diagrams each showing how the liquid L moves through the flow path. (A)、(B)はそれぞれ、シートに形成された第1の電極を撮像した電子顕微鏡の画像である。(A) and (B) are electron microscope images taken of the first electrode formed on the sheet. (A)、(B)はそれぞれ、シートに流路を形成するための工程を示す説明図である。(A) and (B) are explanatory diagrams each showing a process for forming a flow path in a sheet. 別の金型を用いてシートに流路を形成する工程を示す説明図である。It is an explanatory view showing a process of forming a channel in a sheet using another mold. 第1の実験結果を示す説明図である。FIG. 2 is an explanatory diagram showing the results of a first experiment. 第2の実験結果を示す説明図である。FIG. 3 is an explanatory diagram showing the results of a second experiment. 第3の実験結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of a third experiment.
続いて、添付した図面を参照しつつ、本発明を具体化した実施例につき説明し、本発明の理解に供する。
図1、図2(A)、(B)、図3(A)、(B)に示すように、本発明の一実施例に係る電気伝導性測定装置10は、液体Lの電気伝導レベルを表す電導値を計測する装置であって、液体Lを吸収可能な素材からなる流路11と、間隔を空けて交互に設けられた第1の電極12、13、14、15、第2の電極16、17、18、19と、第1の電極12、13、14、15に電圧を印加する印加部20と、液体Lの電動値を導出する演算部21とを備えている。以下、詳細に説明する。
Next, embodiments embodying the present invention will be described with reference to the attached drawings to provide an understanding of the present invention.
As shown in FIGS. 1, 2 (A), (B), and 3 (A), (B), an electrical conductivity measuring device 10 according to an embodiment of the present invention measures the electrical conductivity level of the liquid L. A device for measuring electrical conductivity values, which includes a channel 11 made of a material capable of absorbing liquid L, first electrodes 12, 13, 14, 15, and second electrodes provided alternately at intervals. 16, 17, 18, and 19, an application section 20 that applies a voltage to the first electrodes 12, 13, 14, and 15, and a calculation section 21 that derives the electric value of the liquid L. This will be explained in detail below.
液体Lは特に限定されず、例えば、血液や唾液等の体液であってもよいし、電解液であってもよい。以下、特に記載しない限り、液体Lは体液(水分を含む液体の一例)として説明する。
液体Lの電気伝導レベルを表す電導値とは、液体Lの電気の通しやすさ又は電気の通しにくさを示す値であり、電導値として、例えば、電気伝導率、電気抵抗率、電気伝導率と相関がある値、及び、電気抵抗率と相関がある値が挙げられる。
The liquid L is not particularly limited, and may be, for example, a body fluid such as blood or saliva, or an electrolyte. Hereinafter, unless otherwise specified, the liquid L will be described as a body fluid (an example of a liquid containing water).
The conductivity value indicating the electrical conductivity level of the liquid L is a value indicating the ease or difficulty of conducting electricity of the liquid L. Examples of the conductivity value include electrical conductivity, electrical resistivity, and electrical conductivity. and values that are correlated with electrical resistivity.
第1の電極12、13、14、15及び第2の電極16、17、18、19は、図1、図2(A)、(B)に示すように、液体Lを吸収可能な素材によって形成されたシート22の一面側(表面側)に設けられている。
本実施例において、シート22は液体Lに対し親液性を有する(液体Lとの親和性が大きい)繊維によって形成された紙又は不織布からなり、プレス加工により変形する。
The first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 are made of a material capable of absorbing the liquid L, as shown in FIGS. It is provided on one side (front side) of the formed sheet 22.
In this embodiment, the sheet 22 is made of paper or nonwoven fabric made of fibers that are lyophilic to the liquid L (having a high affinity for the liquid L), and is deformed by pressing.
矩形状のシート22は、直線的な流路11と、流路11の一端部に連結された平面視して円形の給液部23を有している。従って、流路11は親液性を有する繊維によって形成された紙又は不織布からなっている。
また、給液部23も、液体Lを吸収可能である。給液部23に液体Lが供給されると、液体Lは、図3(A)に示すように、給液部23に吸収され、その一部又は大半が、図3(B)に示すように、流路11に吸収され(流路11へ移動し)、流路11に吸収された液体Lの一部又は大半が流路11を流路11の他端部に向けて移動する。
The rectangular sheet 22 has a linear channel 11 and a liquid supply section 23 connected to one end of the channel 11 and circular in plan view. Therefore, the channel 11 is made of paper or nonwoven fabric made of lyophilic fibers.
Further, the liquid supply section 23 is also capable of absorbing the liquid L. When the liquid L is supplied to the liquid supply part 23, the liquid L is absorbed into the liquid supply part 23, as shown in FIG. 3(A), and a part or most of it is absorbed as shown in FIG. 3(B). Then, the liquid L is absorbed into the flow path 11 (moves to the flow path 11), and a part or most of the liquid L absorbed into the flow path 11 moves along the flow path 11 toward the other end of the flow path 11.
シート22は、図1に示すように、流路11を有し、シート22の流路11の周囲には、給液部23及び流路11に吸収された液体Lが給液部23外又は流路11外に流出するのを防止する疎液部25が形成されている。疎液部25は、シート22の所定領域に疎水液(液体Lが油分を含むものであれば、疎油液)を浸み込ませて形成されている。疎水液として、例えば、フッ素コーティング剤、油性塗料又はワックスを採用可能である。フッ素コーティング剤として、例えば、株式会社フロロテクノロジーのフロロサーフ(登録商標)が挙げられ、油性塗料として、例えば、株式会社カンペハピオの油性トップガード(「トップガード」は登録商標)が挙げられる。 As shown in FIG. 1, the sheet 22 has a flow path 11, and around the flow path 11 of the sheet 22, the liquid L absorbed in the liquid supply portion 23 and the flow path 11 flows outside the liquid supply portion 23 or A lyophobic portion 25 is formed to prevent the liquid from flowing out of the flow path 11. The lyophobic portion 25 is formed by impregnating a predetermined region of the sheet 22 with a hydrophobic liquid (or an oleophobic liquid if the liquid L contains oil). As the hydrophobic liquid, for example, a fluorine coating agent, an oil-based paint, or a wax can be employed. Examples of fluorine coating agents include Fluorosurf (registered trademark) manufactured by Fluoro Technology Co., Ltd., and examples of oil-based paints include oil-based Top Guard (“Top Guard” is a registered trademark) manufactured by Campehapio Co., Ltd.
第1の電極12、13、14、15及び第2の電極16、17、18、19はそれぞれ、図1、図2(B)に示すように、シート22の一面側に流路部11に直交(交差)して一部が流路11に接触した状態で間隔を空けて平行に設けられた線分状の金属板(本実施例では銅板)であり、流路11の一端部から他端部に向けて、第2の電極16、第1の電極12、第2の電極17、第1の電極13、第2の電極18、第1の電極14、第2の電極19及び第1の電極15が順に等ピッチで配されている。 The first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 are connected to the channel portion 11 on one side of the sheet 22, respectively, as shown in FIGS. 1 and 2(B). These are line-shaped metal plates (copper plates in this embodiment) that are orthogonally crossed (crossed) and are spaced apart and parallel to each other with some of them in contact with the flow path 11. Towards the end, the second electrode 16, the first electrode 12, the second electrode 17, the first electrode 13, the second electrode 18, the first electrode 14, the second electrode 19 and the first The electrodes 15 are sequentially arranged at equal pitches.
流路11は、図2(A)に示すように、第1の電極12、13、14、15及び第2の電極16、17、18、19のいずれも接触していない領域(以下、「電極非接触領域」とも言う)が、シート22の一面側に突出し露出している。これに対し、流路11の第1の電極12が接触する領域(以下、「電極接触領域」とも言う)は、図2(B)に示すように、一面側が第1の電極12に覆われている。これは、第1の電極13、14、15及び第2の電極16、17、18、19が接触する流路11の各領域についても同様である。即ち、第1の電極12、13、14、15及び第2の電極16、17、18、19を形成する金属は、流路11の一部の繊維を内包している。 As shown in FIG. 2(A), the flow path 11 has a region (hereinafter referred to as " An electrode non-contact area (also referred to as an "electrode non-contact area") protrudes and is exposed on one side of the sheet 22. On the other hand, the area of the flow path 11 that the first electrode 12 contacts (hereinafter also referred to as "electrode contact area") is covered with the first electrode 12 on one side, as shown in FIG. 2(B). ing. This also applies to each region of the flow path 11 where the first electrodes 13, 14, 15 and the second electrodes 16, 17, 18, 19 are in contact. That is, the metal forming the first electrodes 12 , 13 , 14 , 15 and the second electrodes 16 , 17 , 18 , 19 includes some fibers of the flow path 11 .
流路11の電極非接触領域及び電極接触領域は共に、図2(A)、(B)に示すように、他面側(裏面側)から両側面側にかけて疎液部25により覆われている。そのため、流路11に吸収された液体Lは、図3(A)、(B)に示すように、流路11外に流出するのを防止された状態で、流路11に沿って移動する。ここで、流路11を移動する液体Lが流路11から流出するのを防止する観点では、流路11の断面の全周(流路11の一面側を含む)が疎液部25によって覆われるようにしてもよいし、流路11の両側面側のみが疎液部25によって覆われるようにしてもよい(即ち、流路11の他面側は疎液部25により覆われている必要はない)。 Both the electrode non-contact area and the electrode contact area of the channel 11 are covered with a lyophobic portion 25 from the other surface side (back side) to both side surfaces, as shown in FIGS. 2(A) and 2(B). . Therefore, the liquid L absorbed in the channel 11 moves along the channel 11 while being prevented from flowing out of the channel 11, as shown in FIGS. 3(A) and 3(B). . Here, from the viewpoint of preventing the liquid L moving through the flow path 11 from flowing out from the flow path 11, the entire circumference of the cross section of the flow path 11 (including one side of the flow path 11) is covered with the lyophobic portion 25. Alternatively, only both side surfaces of the flow path 11 may be covered by the lyophobic portion 25 (that is, the other side of the flow path 11 does not need to be covered by the lyophobic portion 25). (No)
本実施例では、第1の電極12の大半が、図4(A)、(B)に示すように、シート22内に浸み込んだ状態で形成され、シート22の一部の繊維を内包している。これは、第1の電極13、14、15及び第2の電極16、17、18、19についても同様である。即ち、第1の電極12、13、14、15及び第2の電極16、17、18、19はそれぞれ、シート22の一部の繊維を内包した金属からなっている。 In this example, most of the first electrode 12 is formed in a state that is soaked into the sheet 22, as shown in FIGS. 4(A) and 4(B), and includes some fibers of the sheet 22. are doing. This also applies to the first electrodes 13, 14, 15 and the second electrodes 16, 17, 18, 19. That is, the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 are each made of metal that includes some fibers of the sheet 22.
また、本実施例では、第1の電極12、13、14、15及び第2の電極16、17、18、19にはそれぞれ、流路11を移動する液体Lが流入する割れが形成されている。第1の電極12、13、14、15及び第2の電極16、17、18、19にこのような割れを形成することにより、割れを形成しない場合に比べて、液体Lと第1の電極12、13、14、15及び第2の電極16、17、18、19それぞれとの間の接触面積が大きくなるようにしている。 Furthermore, in this embodiment, cracks are formed in the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, respectively, into which the liquid L moving through the flow path 11 flows. There is. By forming such cracks in the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, the relationship between the liquid L and the first electrodes is greater than in the case where no cracks are formed. The contact area between the electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 is increased.
第1の電極12、13、14、15は、図1に示すように、導線26を介して印加部20に接続され、第2の電極16、17、18、19は導線27及び図示しないAD変換器経由で演算部21に接続されている。
印加部20は導線26を介して所定の大きさの交流電圧を第1の電極12、13、14、15に印加可能に設計されている。なお、直流電圧を印加する印加部を採用してもよい。
As shown in FIG. 1, the first electrodes 12, 13, 14, 15 are connected to the application unit 20 via a conducting wire 26, and the second electrodes 16, 17, 18, 19 are connected to a conducting wire 27 and an AD (not shown). It is connected to the calculation unit 21 via a converter.
The application unit 20 is designed to be able to apply an alternating current voltage of a predetermined magnitude to the first electrodes 12 , 13 , 14 , 15 via a conducting wire 26 . Note that an application unit that applies a DC voltage may be employed.
演算部21は、例えば、CPU、メモリ及び電気信号が入力されるインターフェース等を有して構成でき、第2の電極16、17、18、19から出力されAD変換器を介して取得した電気信号(本実施例では、電圧信号)を基に液体Lの電導値を導出可能に設計されている。 The calculation unit 21 can be configured to include, for example, a CPU, a memory, and an interface into which electrical signals are input, and the calculation unit 21 can be configured to include, for example, a CPU, a memory, and an interface into which electrical signals are input. It is designed so that the conductivity value of the liquid L can be derived based on the voltage signal (in this embodiment, the voltage signal).
電気伝導性測定装置10は、以下の工程S1~S7を経て液体Lの電導値を計測する。 The electrical conductivity measuring device 10 measures the electrical conductivity value of the liquid L through the following steps S1 to S7.
工程S1:印加部20が第1の電極12、13、14、15に所定の大きさの電圧を印加した状態にする。 Step S1: The application unit 20 applies a voltage of a predetermined magnitude to the first electrodes 12, 13, 14, and 15.
工程S2:給液部23に所定量の液体Lを滴下し、液体Lを給液部23に吸収させる。給液部23に吸収された液体Lは、図3(A)、(B)に示すように、流路11の一端部へ移動し、流路11を流路11の他端部に向けて移動する。 Step S2: A predetermined amount of liquid L is dropped into the liquid supply section 23, and the liquid L is absorbed into the liquid supply section 23. The liquid L absorbed by the liquid supply part 23 moves to one end of the flow path 11, as shown in FIGS. Moving.
工程S3: 流路11を移動する液体L(液体Lの先頭部)が、図3(B)に示すように、第2の電極16を経て、第1の電極12に達した状態となる。これにより、第2の電極16及び第1の電極12は、流路11の第2の電極16及び第1の電極12間の領域に吸収されている液体Lを介して電気的に接続され、第2の電極16から電気信号が出力される。 Step S3: The liquid L (the leading part of the liquid L) moving through the flow path 11 reaches the first electrode 12 via the second electrode 16, as shown in FIG. 3(B). Thereby, the second electrode 16 and the first electrode 12 are electrically connected via the liquid L absorbed in the region between the second electrode 16 and the first electrode 12 of the flow path 11, An electrical signal is output from the second electrode 16.
工程S4:演算部21は、第2の電極16からの電気信号をAD変換器経由で取得し、取得した電気信号を基に第2の電極16及び第1の電極12間の電気抵抗値(以下、「1区間の電気抵抗値」とも言う)を検出し、当該電気抵抗値を基に、液体Lの電導値の一例である電気抵抗率を導出する。 Step S4: The calculation unit 21 acquires the electric signal from the second electrode 16 via the AD converter, and calculates the electric resistance value between the second electrode 16 and the first electrode 12 ( Hereinafter, the electrical resistance value (also referred to as "one section electrical resistance value") is detected, and the electrical resistivity, which is an example of the conductivity value of the liquid L, is derived based on the electrical resistance value.
流路11の断面積をS、第2の電極16及び第1の電極12間の距離をD、1区間の電気抵抗値をR1、電気抵抗率をρ1として、演算部21は、検出したR1を以下の式1に代入してρ1を算出する。なお、定数であるS及びDは演算部21に予め記憶されている。 Assuming that the cross-sectional area of the flow path 11 is S, the distance between the second electrode 16 and the first electrode 12 is D, the electrical resistance value of one section is R1, and the electrical resistivity is ρ1, the calculation unit 21 calculates the detected R1 ρ1 is calculated by substituting ρ1 into Equation 1 below. Note that the constants S and D are stored in the calculation unit 21 in advance.
ρ1=(S/D)×R1 (式1) ρ1=(S/D)×R1 (Formula 1)
断面積Sを正確に測定できない場合、給液部23に吸収させた液体Lの質量を液体Lの密度で割って、給液部23に吸収させた液体Lの体積を算出し、当該体積を基に流路11の1区間分に吸収された液体Lの体積Vを求め、式1の代わりに以下の式1’を用いることによってρ1を算出可能である。 If the cross-sectional area S cannot be measured accurately, calculate the volume of the liquid L absorbed by the liquid supply part 23 by dividing the mass of the liquid L absorbed by the liquid supply part 23 by the density of the liquid L, and calculate the volume. Based on this, the volume V of the liquid L absorbed in one section of the flow path 11 is determined, and ρ1 can be calculated by using the following equation 1' instead of equation 1.
ρ1=(V/D)×R1 (式1’) ρ1=(V/D 2 )×R1 (Formula 1')
工程S5:流路11を移動する液体Lが、第1の電極12を経て、第2の電極17に達した状態になり、第2の電極16、第1の電極12及び第2の電極17が、流路11の第2の電極16、17間の領域に吸収されている液体Lを介して電気的に接続されると、演算部21は、第2の電極16、17から出力される電気信号をAD変換器経由で取得する。このとき、第2の電極16、17は並列接続された状態となる。 Step S5: The liquid L moving through the channel 11 passes through the first electrode 12 and reaches the second electrode 17, and the second electrode 16, the first electrode 12, and the second electrode 17 are electrically connected via the liquid L absorbed in the region between the second electrodes 16 and 17 of the flow path 11, the calculation unit 21 outputs the output from the second electrodes 16 and 17. An electrical signal is acquired via an AD converter. At this time, the second electrodes 16 and 17 are connected in parallel.
演算部21は、取得する電気信号の大きさが予め定めた値以上になったことにより、液体Lが第2の電極17に達したのを検知して、第2の電極16、17間の電気抵抗値(以下、「2区間の電気抵抗値」とも言う)を検出し、液体Lの電導値を導出する。 The arithmetic unit 21 detects that the liquid L has reached the second electrode 17 when the magnitude of the acquired electric signal exceeds a predetermined value, and the distance between the second electrodes 16 and 17 is increased. The electrical resistance value (hereinafter also referred to as "two-section electrical resistance value") is detected, and the conductivity value of the liquid L is derived.
ここで、第2の電極16、17間の距離は第2の電極16及び第1の電極12間の距離の2倍のため2Dとなる。また、2区間の電気抵抗値の理論値は1区間の電気抵抗値の半分の大きさとなる。2区間の電気抵抗値をR2、電気抵抗率をρ2として、演算部21は、検出したR2を以下の式2に代入してρ2を算出する。 Here, the distance between the second electrodes 16 and 17 is twice the distance between the second electrode 16 and the first electrode 12, so it becomes 2D. Further, the theoretical value of the electrical resistance value in two sections is half the electrical resistance value in one section. Assuming that the electrical resistance value in the two sections is R2 and the electrical resistivity is ρ2, the calculation unit 21 calculates ρ2 by substituting the detected R2 into Equation 2 below.
ρ2=(S/2D)×R2 (式2) ρ2=(S/2D)×R2 (Formula 2)
工程S6:その後、演算部21は、流路11を移動する液体Lが、第1の電極13、第2の電極18等に到達する度に、液体Lの電気抵抗率を求める。ここでは、演算部21によって求められた電気抵抗率の数をN個とする。 Step S6: After that, the calculation unit 21 calculates the electrical resistivity of the liquid L each time the liquid L moving through the channel 11 reaches the first electrode 13, the second electrode 18, etc. Here, the number of electrical resistivities determined by the calculation unit 21 is assumed to be N.
工程S7:演算部21は求めたN個(複数)の電気抵抗率の平均値を最終的な液体Lの電気抵抗率とする。そして、演算部21は最終的な液体Lの電気抵抗率を基にしてWalden則により液体Lの粘性を求める。 Step S7: The calculation unit 21 determines the average value of the N (plural) electrical resistivities determined as the final electrical resistivity of the liquid L. Then, the calculation unit 21 determines the viscosity of the liquid L based on the final electrical resistivity of the liquid L using Walden's law.
また、電気伝導性測定装置10は以下の工程を経て製造される(電気伝導性測定装置10の製造方法は以下の工程を有する)。 Further, the electrical conductivity measuring device 10 is manufactured through the following steps (the method for manufacturing the electrical conductivity measuring device 10 has the following steps).
工程S11:シート22の一面側にシルクスクリーン印刷を行い、第1の電極12、13、14、15、第2の電極16、17、18、19及び導線26、27の形成予定場所に導電性ペースト(例えば、銀ペースト)を塗布する。 Step S11: Perform silk screen printing on one side of the sheet 22 to apply conductivity to the locations where the first electrodes 12, 13, 14, 15, second electrodes 16, 17, 18, 19 and conductive wires 26, 27 are to be formed. Apply a paste (for example, silver paste).
工程S12:シート22に対するめっき処理によって、シート22の一面側の導電性ペーストを塗布した部分に銅の層を設け、シート22の一面側の流路11の形成予定領域(流路形成予定領域)に接触した状態の第1の電極12、13、14、15、第2の電極16、17、18、19を間隔を空けて設けると共に、シート22の一面側に導線26、27を形成する。 Step S12: By plating the sheet 22, a copper layer is provided on the part on one side of the sheet 22 where the conductive paste is applied, and the area where the flow path 11 is planned to be formed on the one side of the sheet 22 (the area where the flow path is planned to be formed) is formed. First electrodes 12, 13, 14, 15 and second electrodes 16, 17, 18, 19 are provided at intervals, and conductive wires 26, 27 are formed on one side of the sheet 22.
工程S13:図5(A)に示すように、流路11及び給液部23に対応した貫通孔29が形成された板状の金型30の一面側に疎液剤Qを塗布する。 Step S13: As shown in FIG. 5A, a lyophobic agent Q is applied to one side of a plate-shaped mold 30 in which through-holes 29 corresponding to the channel 11 and the liquid supply section 23 are formed.
工程S14:疎液剤Qが塗布された一面側が下側に位置するように金型30を水平に配し、金型30の下方に一面側を上側に配した水平配置したシート22を配置し、シート22の直下に2枚のシート状の緩衝材31、32を設け、金型30の真上にシート状の保護材33を載せた状態で、保護材33、金型30、シート22及び緩衝材31、32を重ね、これらをプレス機の上型34及び下型35の間に配置する。 Step S14: The mold 30 is arranged horizontally so that the one side coated with the lyophobic agent Q is positioned on the lower side, and the horizontally arranged sheet 22 with the one side applied on the upper side is placed below the mold 30. Two sheet-shaped cushioning materials 31 and 32 are provided directly below the sheet 22, and with a sheet-shaped protective material 33 placed directly above the mold 30, the protective material 33, the mold 30, the sheet 22, and the buffer The materials 31 and 32 are stacked and placed between an upper mold 34 and a lower mold 35 of a press machine.
工程S15:上型34を押し下げ、図5(B)に示すように、上型34及び下型35によって、保護材33、金型30、シート22及び緩衝材31、32を挟んで圧力を与え、シート22の一面側(上面側)に、金型30の一側面を押し付けて、シート22に疎液剤Qを浸み込ませる。本実施例では、この時点で、疎液剤Qがシート22の他面側まで達していない。 Step S15: Push down the upper mold 34 and apply pressure to the protective material 33, the mold 30, the sheet 22, and the cushioning materials 31 and 32 with the upper mold 34 and the lower mold 35, as shown in FIG. 5(B). , one side of the mold 30 is pressed against one side (upper side) of the sheet 22, and the lyophobic agent Q is impregnated into the sheet 22. In this embodiment, the lyophobic agent Q has not reached the other side of the sheet 22 at this point.
工程S16:一面側から疎液剤Qが浸み込んだシート22をプレス機から取り出し、シート22の他面側に刷毛等で疎液剤Qを塗布する。 Step S16: The sheet 22 impregnated with the lyophobic agent Q from one side is taken out from the press, and the lyophobic agent Q is applied to the other side of the sheet 22 with a brush or the like.
工程S17:シート22を130℃で加熱して疎液剤Qを硬化させる。これによって、シート22の金型30の貫通孔29に対応する領域に流路11及び給液部23を形成し、シート22の流路11の周囲に疎液部25を設ける。本製造方法では、第1の電極12、13、14、15及び第2の電極16、17、18、19の上面側に疎液剤Qが硬化した層が形成されるが、図2(B)では、疎液剤Qが硬化した層の記載を省略している。
従って、電気伝導性測定装置10の製造方法は、シート22の一面側に、金型30の疎液剤Qを塗布した一側面を押し付けて、シート22の金型30の貫通孔29に対応する領域に流路11を形成し、シート22の流路11の周囲に疎液部25を設ける工程を有している。
Step S17: The sheet 22 is heated at 130° C. to harden the lyophobic agent Q. As a result, the channel 11 and the liquid supply section 23 are formed in the region of the sheet 22 corresponding to the through hole 29 of the mold 30, and the lyophobic section 25 is provided around the channel 11 of the sheet 22. In this manufacturing method, a layer in which the lyophobic agent Q is cured is formed on the upper surface side of the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, but as shown in FIG. In this example, the description of the layer in which the lyophobic agent Q is cured is omitted.
Therefore, the method for manufacturing the electrical conductivity measuring device 10 is to press one side of the mold 30 coated with the lyophobic agent Q onto one surface of the sheet 22, and to The flow path 11 is formed in the sheet 22, and a lyophobic portion 25 is provided around the flow path 11 in the sheet 22.
この点、電導値の計測に使用する液体L量を微量(例えば、10μL)とすることをターゲットとした細い流路を形成する場合、流路の形成予定領域の表面をテープ等でマスキングし、疎液剤を流路の形成予定領域の表面側からシートに塗布して流路を形成する方法では、流路の形成予定領域まで疎液剤が浸入し、流路を安定的に形成することができない。よって、上記の工程S11~工程S17を経ることで、電導値の計測に使用する液体L量を微量とすることをターゲットとした細い流路11も安定的に形成可能である。
なお、電導値の計測に使用する液体L量を20μLとすることをターゲットとした流路であれば、流路の形成予定領域の表面をテープでマスキングし、疎液剤を流路の形成予定領域の表面側からシートに塗布して流路を形成しても、液体Lの電導値の計測が可能なことを確認している。
In this regard, when forming a narrow channel with the target of making the amount of liquid L used for measuring the conductivity value very small (for example, 10 μL), masking the surface of the area where the channel is planned to be formed with tape or the like, In the method of forming a flow path by applying a lyophobic agent to the sheet from the surface side of the area where the flow path is to be formed, the lyophobic agent penetrates into the area where the flow path is to be formed, making it impossible to stably form the flow path. . Therefore, by going through the steps S11 to S17 described above, it is possible to stably form a narrow channel 11 with the target of reducing the amount of liquid L used for measuring the conductivity value to a very small amount.
In addition, if the target is a flow path where the amount of liquid L used for measuring the conductivity value is 20 μL, the surface of the area where the flow path is planned to be formed is masked with tape, and the lyophobic agent is applied to the area where the flow path is planned to be formed. It has been confirmed that it is possible to measure the conductivity value of the liquid L even if it is applied to the sheet from the surface side to form a flow path.
また、貫通孔29が形成された金型30を用いる代わりに、図6に示すように、流路11及び給液部23に対応した溝37が一面側に形成された板状の金型38を用いてもよい。金型38を用いる場合、電気伝導性測定装置10の製造方法は、金型38の一面側の溝37を除く領域に疎液剤Qを塗布する工程、シート22の一面側に、金型38の疎液剤Qを塗布した一側面を押し付けて、シート22の金型38の溝37に対応する領域に流路11を形成し、シート22の流路11の周囲に疎液部25を設ける工程を有する。 Moreover, instead of using the mold 30 in which the through hole 29 is formed, as shown in FIG. may also be used. When using the mold 38, the method for manufacturing the electrical conductivity measuring device 10 includes a step of applying a lyophobic agent Q to an area other than the groove 37 on one side of the mold 38, and applying a lyophobic agent Q to one side of the sheet 22. A step of pressing one side coated with the lyophobic agent Q to form a flow path 11 in a region of the sheet 22 corresponding to the groove 37 of the mold 38, and providing a lyophobic portion 25 around the flow path 11 of the sheet 22. have
工程S18:導線26、27にそれぞれ印加部20及び演算部21を接続する。これにより、電気伝導性測定装置10が完成する。 Step S18: Connect the applying section 20 and the calculating section 21 to the conducting wires 26 and 27, respectively. Thereby, the electrical conductivity measuring device 10 is completed.
上述した電気伝導性測定装置10の製造方法は、第1の電極12、13、14、15及び第2の電極16、17、18、19をシート22に形成した後に、シート22に流路11を設けるものであるが、流路11を設けたシート22に対して第1の電極12、13、14、15及び第2の電極16、17、18、19を形成するようにしてもよい。この場合、シート22に対するめっき処理によって、シート22の流路11を形成した領域に接触した状態の第1の電極12、13、14、15及び第2の電極16、17、18、19を間隔を空けて設けることとなる。 The method for manufacturing the electrical conductivity measuring device 10 described above includes forming the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 on the sheet 22, and then forming the flow channels 11 on the sheet 22. However, the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19 may be formed on the sheet 22 provided with the flow path 11. In this case, by plating the sheet 22, the first electrodes 12, 13, 14, 15 and the second electrodes 16, 17, 18, 19, which are in contact with the region of the sheet 22 where the flow path 11 is formed, are spaced apart. It will be provided with a blank space.
本実施例では、シート22として、ろ水時間300秒以下、吸水度5cm以上、厚み0.3mm以下のろ紙を採用している。なお、ろ水時間はJISP3801によるものであり、吸水度は立設状態のシート22の一部を20℃の水中に浸漬し10分間で水が上昇した高さを意味する。シート22のろ水時間が300秒を超える場合、流路11の液体L(液体Lは水分を含むもの)を移動させる機能が低く、電導値の計測に時間を要することとなる。また、シート22の吸水度が5cm未満の場合や、シート22の厚みが0.3mmを超える場合、上述した電気伝導性測定装置10の製造方法により、疎液部25を安定的に形成できないおそれが生じる。これは、疎液剤Q(疎液剤Qは疎水剤)がシート22に浸み込みにくく、疎液部25を安定的に形成できないためである。 In this embodiment, as the sheet 22, a filter paper having a filtration time of 300 seconds or less, a water absorption of 5 cm or more, and a thickness of 0.3 mm or less is used. Note that the water filtration time is based on JISP3801, and the water absorption rate means the height to which water rises in 10 minutes when a part of the sheet 22 in an upright state is immersed in water at 20°C. When the filtration time of the sheet 22 exceeds 300 seconds, the ability of the flow path 11 to move the liquid L (the liquid L contains water) is low, and it takes time to measure the conductivity value. In addition, if the water absorption of the sheet 22 is less than 5 cm or if the thickness of the sheet 22 exceeds 0.3 mm, there is a possibility that the lyophobic portion 25 cannot be stably formed by the method of manufacturing the electrical conductivity measuring device 10 described above. occurs. This is because the lyophobic agent Q (the lyophobic agent Q is a hydrophobic agent) is difficult to penetrate into the sheet 22, and the lyophobic portion 25 cannot be stably formed.
実験例Experimental example
次に、本発明の作用効果を確認するために行った実験について説明する。 Next, an experiment conducted to confirm the effects of the present invention will be described.
<第1実験>
第1実験では、親水性を有するろ紙に、2個の第1の電極、2個の第2の電極、2個の第1の電極に接続された第1の導電部、2個の第2の電極に接続された第2の導電部及び流路を形成したサンプルP1を用いた。各第1の電極及び各第2の電極は銀ペーストに銅めっきを形成したもので、隣り合う第1、第2の電極間の距離は7.5mmであった。流路はろ紙に疎水液である株式会社フロロテクノロジーのフロロサーフ(登録商標)又は株式会社カンペハピオの油性トップガード(「トップガード」は登録商標)を浸み込ませて形成したもので、幅は約1mmであった。流路の一端部から他端部に向けて1つ目の第1の電極、1つ目の第2の電極、2つ目の第1の電極及び2つ目の第2の電極が順に設けられていた。ろ紙には給液部を設けなかった。
<First experiment>
In the first experiment, two first electrodes, two second electrodes, a first conductive part connected to the two first electrodes, and two second conductive parts were placed on a hydrophilic filter paper. A sample P1 was used in which a second conductive portion connected to the electrode and a flow path were formed. Each first electrode and each second electrode were formed by forming copper plating on silver paste, and the distance between adjacent first and second electrodes was 7.5 mm. The channel is formed by impregnating filter paper with a hydrophobic liquid, Fluorosurf (registered trademark) by Fluoro Technology Co., Ltd. or oil-based Top Guard (Top Guard is a registered trademark) by Campehapio Co., Ltd., and has a width of approx. It was 1 mm. A first electrode, a first second electrode, a second first electrode, and a second second electrode are provided in order from one end of the channel to the other end. It was getting worse. The filter paper was not provided with a liquid supply section.
流路の一端部に約20μLの生理食塩水を滴下し、生理食塩水が流路を他端部に向かって移動する間の第1、第2の導電部間の電気抵抗値を計測した。生理食塩水の先頭部は、最終的に2つ目の第2の電極まで達した。
計測結果を図7に示す。計測結果より、電気抵抗値が3段階低下したことが確認された。
About 20 μL of physiological saline was dropped into one end of the channel, and the electrical resistance value between the first and second conductive parts was measured while the physiological saline moved through the channel toward the other end. The leading edge of the saline eventually reached the second second electrode.
The measurement results are shown in FIG. From the measurement results, it was confirmed that the electrical resistance value decreased by three levels.
<第2実験>
第2実験では、2種類のサンプルP2、P3を用いた。サンプルP2は、サンプルP1に対し、第1、第2の電極をそれぞれ5個としたもので、隣り合う第1、第2の電極間の距離は2.5mmであった。サンプルP3は、サンプルP2に対して、ろ紙が疎水性を有する点、ろ紙への親水処理によってろ紙を形成した点が異なる。また、生理食塩水にショ糖を加えた4種類の実験用溶液を用意した。各実験用溶液は、ショ糖の濃度が異なり、粘性率も異なっていた。なお、サンプルP2、P3(サンプルP1も同じ)は、第1、第2の電極の大半が、ろ紙内に形成され、ろ紙を構成する繊維を内包していた。
<Second experiment>
In the second experiment, two types of samples P2 and P3 were used. Sample P2 was different from sample P1 in that it had five first and second electrodes, and the distance between adjacent first and second electrodes was 2.5 mm. Sample P3 differs from sample P2 in that the filter paper has hydrophobicity and that the filter paper was formed by hydrophilic treatment of the filter paper. In addition, four types of experimental solutions were prepared by adding sucrose to physiological saline. Each experimental solution had a different concentration of sucrose and a different viscosity. Note that in samples P2 and P3 (same as sample P1), most of the first and second electrodes were formed within the filter paper, and included fibers constituting the filter paper.
サンプルP2、P3の流路の一端部に実験用溶液を滴下し、5個の第1の電極に接続された導電部及び5個の第2の電極に接続された導電部間の電気抵抗値を計測し、計測した電気抵抗値から電気抵抗率を算出した。その後、算出した電気抵抗率と各実験用溶液について予め計測しておいた粘性率とを比較した。
比較結果を図8に示す。比較結果より、サンプルP2、P3共に電気抵抗率と実験用溶液の粘性率間に相関があること、及び、サンプルP2はサンプルP3に比べ実験用溶液の粘性率の検出分解能が高いことが確認できた。
The experimental solution was dropped into one end of the flow path of samples P2 and P3, and the electrical resistance value between the conductive parts connected to the five first electrodes and the conductive parts connected to the five second electrodes was measured. was measured, and the electrical resistivity was calculated from the measured electrical resistance value. Thereafter, the calculated electrical resistivity was compared with the viscosity coefficient measured in advance for each experimental solution.
The comparison results are shown in FIG. From the comparison results, it was confirmed that there is a correlation between the electrical resistivity and the viscosity of the experimental solution for both samples P2 and P3, and that sample P2 has a higher detection resolution for the viscosity of the experimental solution than sample P3. Ta.
<第3実験>
第3実験では、サンプルP2のろ紙を切り取った幅1mmの直線的な細長いサンプルP4を用いた。サンプルP4の長手方向に間隔を空けた2箇所にそれぞれピン状の電極を接触させ、サンプルP4の一端部に第2の実験で使用した実験用溶液を滴下し、2つのピン状の電極(それぞれ第1、第2の電極に相当)間の電気抵抗値を計測し、計測した電気抵抗値から電気抵抗率を算出した。この電気抵抗率の算出を、ピン状の電極のサンプルP4への接触状態を変えた各ケースにおいて粘性率が異なる4種類の実験用溶液に対して行った。
<Third experiment>
In the third experiment, a linear and elongated sample P4 with a width of 1 mm was used, which was obtained by cutting out the filter paper of sample P2. A pin-shaped electrode is brought into contact with each of two locations spaced apart in the longitudinal direction of sample P4, and the experimental solution used in the second experiment is dropped onto one end of sample P4. The electrical resistance value between the first and second electrodes (corresponding to the first and second electrodes) was measured, and the electrical resistivity was calculated from the measured electrical resistance value. This calculation of electrical resistivity was performed for four types of experimental solutions having different viscosity coefficients in each case in which the state of contact of the pin-shaped electrode with sample P4 was changed.
実験結果を図9に示す。図9において、「サンプルP2」は第2実験におけるサンプルP2についての実験結果を表し、「サンプルP4(点接触)」はサンプルP4にピン状の電極の先端部を接触させた際の実験結果を表し、「サンプルP4(線接触)」はサンプルP4にピン状の電極の側部を線状に接触させた際(このとき、各ピン状の電極はサンプルP4に対し垂直に配した)の実験結果を表している。なお、図9において、縦軸は計測された電気抵抗値を相対値として表したものであり、横軸は実験用溶液の粘性率を相対値として表現したものである。 The experimental results are shown in FIG. In FIG. 9, "Sample P2" represents the experimental results for sample P2 in the second experiment, and "Sample P4 (point contact)" represents the experimental results when the tip of the pin-shaped electrode was brought into contact with sample P4. "Sample P4 (line contact)" is an experiment in which the side of a pin-shaped electrode was brought into linear contact with sample P4 (at this time, each pin-shaped electrode was arranged perpendicular to sample P4). represents the result. In FIG. 9, the vertical axis represents the measured electrical resistance value as a relative value, and the horizontal axis represents the viscosity of the experimental solution as a relative value.
「サンプルP4(点接触)」の実験結果、及び、「サンプルP4(線接触)」の実験結果より、ピン状の電極を用いた場合も、2つの接触状態で、共に、電気抵抗率と実験用溶液の粘性率間に相関があることが確認された。また、「サンプルP2」は「サンプルP4(点接触)」及び「サンプルP4(線接触)」に比べ(即ち、大半がろ紙内に形成された第1、第2の電極を流路に接触させる場合、電極をろ紙の表面に接触させる場合に比べ)、実験用溶液の粘性率の検出分解能が高いことが確認できた。 From the experimental results of "Sample P4 (point contact)" and "Sample P4 (line contact)", we found that even when using a pin-shaped electrode, the electrical resistivity and experimental results for both the two contact states were It was confirmed that there is a correlation between the viscosity coefficients of the solutions used. In addition, "Sample P2" is different from "Sample P4 (point contact)" and "Sample P4 (line contact)" (i.e., most of the first and second electrodes formed within the filter paper are in contact with the flow path). (compared to the case where the electrode is in contact with the surface of the filter paper), it was confirmed that the detection resolution of the viscosity of the experimental solution was higher.
以上、本発明の実施例を説明したが、本発明は、上記した実施例に限定されるものでなく、要旨を逸脱しない条件の変更等は全て本発明の適用範囲である。
例えば、第1、第2の電極はそれぞれ1つずつであってもよい。第1の電極をシートの一面側及び他面側の双方に設け、一面側及び他面側にそれぞれ設けた第1の電極を電気的に接続するようにしてもよく、これは第2の電極についても同様である。
また、対象の液体を吸収しないシートに親液処理を行って流路を形成してもよい。シートに流路を形成することは必ずしも必要でなく、例えば、疎水性を有する基板に親水性のある紐状物を固定し、その紐状物を流路としてもよい。流路は紙又は不織布からなる必要はなく、例えば、木屑を成形したものやウレタンであってもよい。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and any changes in conditions that do not depart from the gist are within the scope of the present invention.
For example, there may be one each of the first and second electrodes. The first electrode may be provided on both one side and the other side of the sheet, and the first electrodes provided on the one side and the other side, respectively, may be electrically connected. The same applies to
Alternatively, a flow path may be formed by performing lyophilic treatment on a sheet that does not absorb the target liquid. It is not always necessary to form a flow path in the sheet; for example, a hydrophilic string-like object may be fixed to a hydrophobic substrate and the string-like object may be used as the flow path. The flow path does not need to be made of paper or nonwoven fabric, and may be made of, for example, molded wood chips or urethane.
更に、第1、第2の電極には、流路を移動する液体が流入する割れが形成されていなくてもよい。但し、第1、第2の電極に当該割れが形成されていない場合、当該割れが形成されている場合に比べて、電導値の計測分解能が低くなる。
そして、第1、第2の電極はプラズマCVDや蒸着等の気相法により形成することもできる。但し、気相法により第1、第2の電極を形成する場合、めっき処理(液相法)により第1、第2の電極を形成する場合に比べて、電導値の計測分解能が低くなる。
Furthermore, the first and second electrodes do not need to have cracks into which the liquid moving through the flow path flows. However, when the crack is not formed in the first and second electrodes, the measurement resolution of the conductivity value is lower than when the crack is formed.
The first and second electrodes can also be formed by a vapor phase method such as plasma CVD or vapor deposition. However, when forming the first and second electrodes by a vapor phase method, the measurement resolution of the conductivity value is lower than when forming the first and second electrodes by plating (liquid phase method).
本発明に係る電気伝導性測定装置及びその製造方法によれば、液体の電気伝導値の計測や液体の電気伝導値を基にした液体の粘性の計測を、微細な加工がなされた樹脂を使用することなく行うことができる。そのため、例えば、一般家庭において人が体液の粘性を毎日計測することを前提とした価格の計測キットを製品化できる。 According to the electrical conductivity measuring device and the manufacturing method thereof according to the present invention, microprocessed resin is used to measure the electrical conductivity value of a liquid and to measure the viscosity of a liquid based on the electrical conductivity value of the liquid. It can be done without doing anything. Therefore, for example, it is possible to commercialize a measurement kit that is priced on the premise that people measure the viscosity of body fluids every day in ordinary households.
10:電気伝導性測定装置、11:流路、12、13、14、15:第1の電極、16、17、18、19:第2の電極、20:印加部、21:演算部、22:シート、23:給液部、25:疎液部、26、27:導線、29:貫通孔、30:金型、31、32:緩衝材、33:保護材、34:上型、35:下型、37:溝、38:金型、L:液体、Q:疎液剤 10: Electrical conductivity measuring device, 11: Channel, 12, 13, 14, 15: First electrode, 16, 17, 18, 19: Second electrode, 20: Application section, 21: Computation section, 22 : Sheet, 23: Liquid supply part, 25: Liquid-phobic part, 26, 27: Conductive wire, 29: Through hole, 30: Mold, 31, 32: Cushioning material, 33: Protective material, 34: Upper mold, 35: Lower mold, 37: groove, 38: mold, L: liquid, Q: lyophobic agent

Claims (9)

  1. 液体の電気伝導レベルを表す電導値を計測する電気伝導性測定装置において、
    前記液体を吸収可能な素材からなる流路と、
    前記流路に接触した状態で間隔を空けて設けられた第1、第2の電極と、
    前記第1の電極に電圧を印加する印加部と、
    前記流路に吸収された前記液体を介して電気的に接続された前記第1、第2の電極間の電気抵抗値を検出し、前記液体の前記電導値を導出する演算部とを備えることを特徴とする電気伝導性測定装置。
    In an electrical conductivity measurement device that measures a conductivity value that indicates the electrical conductivity level of a liquid,
    a channel made of a material capable of absorbing the liquid;
    first and second electrodes that are spaced apart and in contact with the flow path;
    an application unit that applies a voltage to the first electrode;
    and a calculation unit that detects an electrical resistance value between the first and second electrodes that are electrically connected via the liquid absorbed in the flow path, and derives the conductivity value of the liquid. An electrical conductivity measurement device featuring:
  2. 請求項1記載の電気伝導性測定装置において、前記流路は、親液性を有する繊維によって形成された紙又は不織布からなり、前記第1、第2の電極は、一部の前記繊維を内包した金属からなることを特徴とする電気伝導性測定装置。 2. The electrical conductivity measuring device according to claim 1, wherein the flow path is made of paper or nonwoven fabric made of lyophilic fibers, and the first and second electrodes include some of the fibers. An electrical conductivity measuring device characterized by being made of metal.
  3. 請求項1記載の電気伝導性測定装置において、前記液体を吸収するシートが設けられ、該シートは前記流路を有し、該シートの前記流路の周囲には、該流路に吸収された前記液体が該流路外に流出するのを防止する疎液部が形成されていることを特徴とする電気伝導性測定装置。 2. The electrical conductivity measuring device according to claim 1, further comprising a sheet for absorbing the liquid, the sheet having the flow path, and a portion of the sheet around the flow path having a liquid absorbed in the flow path. An electrical conductivity measuring device characterized in that a lyophobic portion is formed to prevent the liquid from flowing out of the flow path.
  4. 請求項3記載の電気伝導性測定装置において、前記シートは、親液性を有する繊維によって形成された紙又は不織布からなり、前記第1、第2の電極は、一部の前記繊維を内包した金属からなることを特徴とする電気伝導性測定装置。 4. The electrical conductivity measuring device according to claim 3, wherein the sheet is made of paper or nonwoven fabric made of lyophilic fibers, and the first and second electrodes include some of the fibers. An electrical conductivity measuring device characterized by being made of metal.
  5. 請求項2又は4記載の電気伝導性測定装置において、前記第1、第2の電極には、前記流路を移動する前記液体が流入する割れが形成されていることを特徴とする電気伝導性測定装置。 5. The electrical conductivity measuring device according to claim 2, wherein the first and second electrodes are formed with cracks into which the liquid moving through the flow path flows. measuring device.
  6. 請求項1~4のいずれか1項に記載の電気伝導性測定装置において、前記液体は体液であって、前記演算部は、前記電導値を基にして前記液体の粘性を求めることを特徴とする電気伝導性測定装置。 The electrical conductivity measuring device according to any one of claims 1 to 4, wherein the liquid is a body fluid, and the calculation unit calculates the viscosity of the liquid based on the electrical conductivity value. Electrical conductivity measuring device.
  7. 液体の電気伝導レベルを表す電導値を計測する電気伝導性測定装置の製造方法において、
    貫通孔が形成された金型の一側面に疎液剤を塗布する工程と、
    前記液体を吸収可能なシートの一面側に、前記金型の一側面を押し付けて、前記シートの前記貫通孔に対応する領域に前記液体を吸収する流路を形成し、前記シートの該流路の周囲に該流路に吸収された前記液体が該流路外に流出するのを防止する疎液部を設ける工程とを有することを特徴とする電気伝導性測定装置の製造方法。
    In a method for manufacturing an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid,
    a step of applying a lyophobic agent to one side of the mold in which the through hole is formed;
    One side of the mold is pressed against one side of the sheet capable of absorbing the liquid to form a flow path for absorbing the liquid in a region corresponding to the through hole of the sheet, and the flow path of the sheet is formed. A method for manufacturing an electrical conductivity measuring device, comprising the step of providing a lyophobic part around the flow path to prevent the liquid absorbed in the flow path from flowing out of the flow path.
  8. 液体の電気伝導レベルを表す電導値を計測する電気伝導性測定装置の製造方法において、
    一側面に溝が形成された金型の該一側面に疎液剤を塗布する工程と、
    前記液体を吸収可能なシートの一面側に、前記金型の一側面を押し付けて、前記シートの前記溝に対応する領域に前記液体を吸収する流路を形成し、前記シートの該流路の周囲に該流路に吸収された前記液体が該流路外に流出するのを防止する疎液部を設ける工程とを有することを特徴とする電気伝導性測定装置の製造方法。
    In a method for manufacturing an electrical conductivity measuring device that measures a conductivity value representing the electrical conductivity level of a liquid,
    a step of applying a lyophobic agent to one side of a mold having grooves formed on one side;
    One side of the mold is pressed against one side of the sheet capable of absorbing the liquid to form a flow path for absorbing the liquid in a region corresponding to the groove of the sheet, and the flow path of the sheet is A method of manufacturing an electrical conductivity measuring device, comprising the step of providing a lyophobic part around the liquid that prevents the liquid absorbed in the flow path from flowing out of the flow path.
  9. 請求項7又は8記載の電気伝導性測定装置の製造方法において、前記シートに対するめっき処理によって、前記シートの流路形成予定領域又は前記流路が形成された領域に接触した状態の金属製の第1、第2の電極を間隔を空けて設ける工程を、更に有することを特徴とする電気伝導性測定装置の製造方法。 9. The method of manufacturing an electrical conductivity measuring device according to claim 7, wherein the sheet is plated to form a metal plate in contact with a region of the sheet where a flow path is to be formed or a region where the flow path is formed. 1. A method for manufacturing an electrical conductivity measuring device, further comprising the step of providing second electrodes at intervals.
PCT/JP2023/007078 2022-05-12 2023-02-27 Electrical-conductivity measurement device and method for manufacturing same WO2023218733A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-078911 2022-05-12
JP2022078911A JP2023167605A (en) 2022-05-12 2022-05-12 Electric conductivity measurement device and manufacturing method for the same

Publications (1)

Publication Number Publication Date
WO2023218733A1 true WO2023218733A1 (en) 2023-11-16

Family

ID=88729909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007078 WO2023218733A1 (en) 2022-05-12 2023-02-27 Electrical-conductivity measurement device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2023167605A (en)
WO (1) WO2023218733A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013181656A1 (en) * 2012-06-01 2013-12-05 President And Fellows Of Harvard College Microfluidic devices formed from hydrophobic paper
JP2013545109A (en) * 2010-12-09 2013-12-19 ケヴァル,アルテュール Microfluidic devices for fluid sample analysis
JP2015083963A (en) * 2013-09-19 2015-04-30 株式会社リコー Liquid device, transfer material, and manufacturing method of liquid device
WO2015152287A1 (en) * 2014-03-31 2015-10-08 国立大学法人愛媛大学 Functional material, method for producing functional material, and functional liquid
JP2017133918A (en) * 2016-01-27 2017-08-03 国立大学法人九州工業大学 Body fluid viscosity measurement device
JP3212682U (en) * 2017-06-22 2017-09-28 味の素株式会社 Body fluid receiving structure and body fluid analyzer having the same
EP3225309A1 (en) * 2016-03-31 2017-10-04 Biomérieux Membranes for analysing microfluidic devices and manufacturing method
WO2021220716A1 (en) * 2020-04-28 2021-11-04 デクセリアルズ株式会社 Testing chip and method for manufacturing same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013545109A (en) * 2010-12-09 2013-12-19 ケヴァル,アルテュール Microfluidic devices for fluid sample analysis
WO2013181656A1 (en) * 2012-06-01 2013-12-05 President And Fellows Of Harvard College Microfluidic devices formed from hydrophobic paper
JP2015083963A (en) * 2013-09-19 2015-04-30 株式会社リコー Liquid device, transfer material, and manufacturing method of liquid device
WO2015152287A1 (en) * 2014-03-31 2015-10-08 国立大学法人愛媛大学 Functional material, method for producing functional material, and functional liquid
JP2017133918A (en) * 2016-01-27 2017-08-03 国立大学法人九州工業大学 Body fluid viscosity measurement device
EP3225309A1 (en) * 2016-03-31 2017-10-04 Biomérieux Membranes for analysing microfluidic devices and manufacturing method
JP3212682U (en) * 2017-06-22 2017-09-28 味の素株式会社 Body fluid receiving structure and body fluid analyzer having the same
WO2021220716A1 (en) * 2020-04-28 2021-11-04 デクセリアルズ株式会社 Testing chip and method for manufacturing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOVIANA EKA, OZER TUGBA, CARRELL CODY S., LINK JEREMY S., MCMAHON CATHERINE, JANG ILHOON, HENRY CHARLES S.: "Microfluidic Paper-Based Analytical Devices: From Design to Applications", CHEMICAL REVIEWS, AMERICAN CHEMICAL SOCIETY, US, vol. 121, no. 19, 13 October 2021 (2021-10-13), US , pages 11835 - 11885, XP055854824, ISSN: 0009-2665, DOI: 10.1021/acs.chemrev.0c01335 *
THUO MARTIN M., MARTINEZ RAMSES V., LAN WEN-JIE, LIU XINYU, BARBER JABULANI, ATKINSON MANZA B. J., BANDARAGE DINETH, BLOCH JEAN-FR: "Fabrication of Low-Cost Paper-Based Microfluidic Devices by Embossing or Cut-and-Stack Methods", CHEMISTRY OF MATERIALS, AMERICAN CHEMICAL SOCIETY, US, vol. 26, no. 14, 22 July 2014 (2014-07-22), US , pages 4230 - 4237, XP093107228, ISSN: 0897-4756, DOI: 10.1021/cm501596s *

Also Published As

Publication number Publication date
JP2023167605A (en) 2023-11-24

Similar Documents

Publication Publication Date Title
KR20150013197A (en) Sensor array
EP2261657A2 (en) Measurement of substances in liquids
AU2001237587A1 (en) Measurement of substances in liquids
CA2947098C (en) Electrode arrangements for test element integrity
JPH0413930A (en) Level sensor
US20190387993A1 (en) Vital sign information measuring electrode and method for producing vital sign information measuring electrode
JPWO2009057793A1 (en) Analysis tool, analyzer, sample shortage detection method and sample analysis method
WO2023218733A1 (en) Electrical-conductivity measurement device and method for manufacturing same
JP7071723B2 (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
US20130180869A1 (en) Electrochemical test strip and method for testing a sample using the same
US10684245B2 (en) Electrode arrangements for electrochemical test elements
ATE363067T1 (en) REFERENCE ELECTRODE FOR POTENTIOMETRIC MEASUREMENTS AND METHOD FOR MONITORING SAME
Bera et al. Studies on thin film based flexible gold electrode arrays for resistivity imaging in electrical impedance tomography
US9593931B2 (en) Palladium coating thickness measurement
JP2023167605A5 (en)
JP7024553B2 (en) Probe of corrosion environment measuring device and corrosion environment measuring device
EP3088880B1 (en) Methods for measuring analyte concentration
KR20070049939A (en) Manufacturing method of the sensor for liquid concentration measurement and sensor thereof
WO2021070870A1 (en) Electrochemical sensor
TWI274154B (en) Electrochemical biosensor
TWI470218B (en) Method of non-destructive determination of electrochemical characteristics in biosensor test strips
DE3337792C2 (en)
JP2019513980A (en) Test element analysis system
Lu et al. Soft, flexible conductivity sensors for ocean salinity monitoring
JP2018204987A (en) Jig and device for resistance measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23803220

Country of ref document: EP

Kind code of ref document: A1