JP7071723B2 - Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity - Google Patents

Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity Download PDF

Info

Publication number
JP7071723B2
JP7071723B2 JP2017150517A JP2017150517A JP7071723B2 JP 7071723 B2 JP7071723 B2 JP 7071723B2 JP 2017150517 A JP2017150517 A JP 2017150517A JP 2017150517 A JP2017150517 A JP 2017150517A JP 7071723 B2 JP7071723 B2 JP 7071723B2
Authority
JP
Japan
Prior art keywords
dielectric
comb
measured
capacitance
additional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017150517A
Other languages
Japanese (ja)
Other versions
JP2019028012A (en
Inventor
哲男 吉田
歩 白岩
Original Assignee
哲男 吉田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哲男 吉田 filed Critical 哲男 吉田
Priority to JP2017150517A priority Critical patent/JP7071723B2/en
Publication of JP2019028012A publication Critical patent/JP2019028012A/en
Application granted granted Critical
Publication of JP7071723B2 publication Critical patent/JP7071723B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、液体を含む誘電体の複素誘電率を測定するための複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法に関するものであり、特に周波数に対する複素誘電率が既知の基板にくし形電極を形成したくし形電極基板を有する複素誘電率測定用回路及びそれを用いた複素誘電率の測定方法に関する。 The present invention relates to a circuit for measuring a complex dielectric constant for measuring the complex dielectric constant of a dielectric containing a liquid, a complex dielectric constant measuring device, and a method for measuring the complex dielectric constant, and in particular, the complex dielectric constant with respect to frequency is known. The present invention relates to a circuit for measuring a complex dielectric constant having a comb-shaped electrode substrate having a comb-shaped electrode formed on the substrate thereof, and a method for measuring the complex dielectric constant using the circuit.

物質の誘電率や導電率などの電気物性は,物質の内部構造を反映しているので,物質の構造や内部の状態変化を知る手段として、例えば、潤滑オイルや蓄電池の電解液の劣化の原因解明や、食品の製造ラインで成分の変化をオンラインで計測する手段など、広い分野で注目されている。 Electrical properties such as the dielectric constant and conductivity of a substance reflect the internal structure of the substance, so as a means of knowing the structure of the substance and changes in the internal state, for example, the cause of deterioration of the lubricating oil or the electrolyte of the storage battery. It is attracting attention in a wide range of fields, such as elucidation and means for measuring changes in ingredients online in food production lines.

測定周波数の増加と共に誘電体の誘電率が減少する誘電緩和現象は、複素誘電率という概念を用いることにより、物質の誘電率と導電率の変化を同時に考えることができることが良く知られている。 It is well known that the dielectric relaxation phenomenon, in which the dielectric constant of a dielectric decreases as the measurement frequency increases, can be considered at the same time as changes in the dielectric constant and conductivity of a substance by using the concept of complex dielectric constant.

物質の複素誘電率の測定には、誘電分光法や平板コンデンサ法など、いくつかの測定方法があり、被測定誘電体の状態や形状、さらには、測定周波数などにより適宜最適な方法が選ばれている。 There are several measurement methods for measuring the complex permittivity of a substance, such as the dielectric spectroscopy method and the flat plate capacitor method, and the optimum method is appropriately selected according to the state and shape of the dielectric to be measured, as well as the measurement frequency. ing.

図1は、平板コンデンサ法の測定原理の説明図であり、被測定誘電体10を挟んで上面電極11と下面電極12が平行に対向してコンデンサを形成している。平板コンデンサ法は、図1のコンデンサの所定の周波数におけるアドミタンスの測定値から被測定誘電体10の複素誘電率を測定する方法であり、図1の上面電極11と下面電極12の面積をA [m2],電極間距離をd [m]とすると、まず、被測定誘電体が無い状態の静電容量C0[F]は(1)式で与えられる。(1)式において、ε0は、真空あるいは大気の誘電率で、8.854×10-12[F/m]である。 FIG. 1 is an explanatory diagram of the measurement principle of the flat plate capacitor method, in which the upper surface electrode 11 and the lower surface electrode 12 face each other in parallel with the dielectric 10 to be measured interposed therebetween to form a capacitor. The flat plate capacitor method is a method of measuring the complex dielectric constant of the dielectric 10 to be measured from the measured value of admittance at a predetermined frequency of the capacitor of FIG. 1, and the area of the upper surface electrode 11 and the lower surface electrode 12 of FIG. 1 is A [ If m 2 ] and the distance between the electrodes are d [m], first, the capacitance C 0 [F] without the dielectric to be measured is given by Eq. (1). In equation (1), ε 0 is the permittivity of vacuum or atmosphere, which is 8.854 × 10 -12 [F / m].

Figure 0007071723000001
Figure 0007071723000001

被測定誘電体の複素誘電率ε*は(2)式で定義されているので、図1のコンデンサの静電容量C*は(3)式で与えられ、この静電容量C*のアドミタンスをRpとCpの並列回路で表すと(4)式を介して、それぞれ、(5)式、および(6)式で与えられる。平板コンデンサ法は、このRpとCp より、複素誘電率ε*の実部ε1および虚部ε2を、それぞれ、(7)式および(8)式により求める方法である。 Since the complex permittivity ε * of the measured dielectric is defined by Eq. (2), the capacitance C * of the capacitor in Fig. 1 is given by Eq. (3), and the admittance of this capacitance C * is given. Expressed as a parallel circuit of R p and C p , they are given by Eqs. (5) and (6), respectively, via Eq. (4). The flat plate capacitor method is a method of obtaining the real part ε 1 and the imaginary part ε 2 of the complex permittivity ε * from R p and C p by Eqs. (7) and (8), respectively.

(4)式、(6)式、(8)式のω0は、周波数f0に対する角周波数でω0=2πf0であり、以下の計算式においても同様である。 Ω 0 in Eqs. (4), (6), and (8) is an angular frequency with respect to the frequency f 0 , and ω 0 = 2π f 0 , which is the same in the following calculation formula.

(2)式~(8)式で与えられる複素誘電率ε*およびその実部ε1と虚部ε2は、それぞれ、材料の複素誘電率を真空の誘電率ε0で除した値で、本来はそれぞれ、複素比誘電率というのが正しいが、以下の説明では、表現を簡単にするために単に複素誘電率と呼ぶことにする。また、以下の説明の中で、複素誘電率、複素誘電率ε*、複素誘電率ε11、ε12など、異なった表現が用いられているが、複素誘電率は、(2)式で表されるように、実部と虚部を有する複素数なので、いずれもこれを簡単に表現したものである。 The complex permittivity ε * given by Eqs. (2) to (8) and its real part ε 1 and imaginary part ε 2 are the values obtained by dividing the complex permittivity of the material by the permittivity ε 0 of the vacuum, respectively. It is correct to call each of them the complex relative permittivity, but in the following explanation, we will simply call them the complex permittivity for the sake of simplicity. In the following explanation, different expressions such as complex permittivity, complex permittivity ε *, complex permittivity ε 11 , and ε 12 are used, but the complex permittivity is expressed by Eq. (2). As is shown, since it is a complex number having a real part and an imaginary part, both are simple expressions of this.

Figure 0007071723000002
Figure 0007071723000002

Figure 0007071723000003
Figure 0007071723000003

Figure 0007071723000004
Figure 0007071723000004

Figure 0007071723000005
Figure 0007071723000005

Figure 0007071723000006
Figure 0007071723000006

Figure 0007071723000007
Figure 0007071723000007

Figure 0007071723000008
Figure 0007071723000008

(従来技術とその課題)
特許文献1には、平板コンデンサ法を用いて、潤滑オイルの複素インピーダンスを測定し、その逆数のアドミタンスの実部を抵抗成分とみなして導電率を求めるとともに、複素インピーダンスの逆数の虚部を容量成分とみなして誘電率を求めて、導電率と誘電率の変化からオイルの劣化・変質を検出する方法が開示されている。
(Prior techniques and their problems)
In Patent Document 1, the complex impedance of the lubricating oil is measured by using the flat plate capacitor method, the real part of the admittance of the reciprocal is regarded as the resistance component, and the conductivity is obtained, and the imaginary part of the reciprocal of the complex impedance is capacitive. A method of detecting the deterioration / deterioration of oil from changes in conductivity and dielectric constant by determining the dielectric constant as a component is disclosed.

しかしながら、この特許文献1に記載の方法では、対向電極の間隔が、潤滑オイルに加わる圧力や温度の変化などにより変化したり、対向電極の間にごみなどが挟まったりして、正しい測定ができなくなるという問題がある。また、対向電極の構造が立体的になるため、センサ部が大きくなるという問題がある。 However, in the method described in Patent Document 1, the distance between the counter electrodes changes due to a change in pressure or temperature applied to the lubricating oil, or dust or the like is caught between the counter electrodes, so that correct measurement can be performed. There is a problem that it disappears. Further, since the structure of the counter electrode becomes three-dimensional, there is a problem that the sensor portion becomes large.

非特許文献1には前記、平板コンデンサ法の欠点を除去した方法として、誘電体基板の一方の面にくし形電極を形成して2端子型誘電センサとし、くし形電極を覆うように被測定誘電体を接触させ、そのときのアドミタンスを測定して被測定誘電体の誘電率と導電率を測定する方法が示されている。この中では、被測定誘電体の誘電率に起因する静電容量Cmutを求めるために、誘電センサ全体の静電容量Ctotからくし形電極の基板材料に起因する静電容量Cbaseを差し引く方法が示されているが、基板材料の複素誘電率の寄与を含めて被測定誘電体の複素誘電率を求める方法は示されていない。さらに、非特許文献1には、被測定誘電体の誘電率に起因する静電容量Cmutを求めるために必要な、このくし形電極だけが空中に浮いていると仮定した場合の静電容量Cairを求めるために、導電率がほとんど無視でき、誘電率が既知の液体を用いて測定する方法が示されているが、この方法では、
・標準液体として用いる試料の測定周波数による特性変化の補正や、経時変化の影響の補正が行われていないために、測定精度が低下するという問題がある。
・さらに、非特許文献1に記載の方法では、くし形電極の基板材料に起因する静電容量Cbase の中に、基板の厚さの影響が考慮されていないため、もし、薄い基板を用いた場合には、実効的な複素誘電率の値が小さくなる上に、基板の裏側に何か物体が近接した場合、その近接した物体の誘電特性の影響を受け、測定精度が低下するという問題がある。
・さらに、非特許文献1に記載の方法では、くし形電極を覆うように接触させている被測定誘電体の厚さの影響も考慮されていないため、被測定誘電体の厚さにより、測定値が変化するという問題がある。
・また、特許文献1や非特許文献1に開示されているインピーダンスあるいはアドミタンスの測定には、専用の計測装置を用いており、特に、誘電センサを個々の蓄電池などに搭載しようとした場合には使用が困難である。
In Non-Patent Document 1, as a method of removing the drawbacks of the flat plate capacitor method, a comb-shaped electrode is formed on one surface of a dielectric substrate to form a two-terminal dielectric sensor, and the measurement is performed so as to cover the comb-shaped electrode. A method of contacting a dielectric and measuring the admittance at that time to measure the dielectric constant and the conductivity of the dielectric to be measured is shown. In this, in order to obtain the capacitance C mut due to the dielectric constant of the dielectric to be measured, the capacitance C base due to the substrate material of the comb-shaped electrode is subtracted from the capacitance C tot of the entire dielectric sensor. Although a method has been shown, no method has been shown for determining the complex dielectric constant of the object to be measured, including the contribution of the complex dielectric constant of the substrate material. Further, in Non-Patent Document 1, it is assumed that only this comb-shaped electrode, which is necessary for obtaining the capacitance C mut due to the dielectric constant of the dielectric to be measured, is floating in the air. In order to obtain C air , a method of measuring using a liquid whose conductivity is almost negligible and whose dielectric constant is known has been shown.
-There is a problem that the measurement accuracy is lowered because the characteristic change due to the measurement frequency of the sample used as the standard liquid is not corrected and the influence of the change with time is not corrected.
-Furthermore, in the method described in Non-Patent Document 1, since the influence of the thickness of the substrate is not taken into consideration in the capacitance C base caused by the substrate material of the comb-shaped electrode, if a thin substrate is used. If this is the case, the effective complex permittivity value will be small, and if any object is close to the back side of the substrate, it will be affected by the dielectric properties of the close object and the measurement accuracy will be reduced. There is.
-Furthermore, in the method described in Non-Patent Document 1, the influence of the thickness of the measured dielectric in contact so as to cover the comb-shaped electrode is not taken into consideration, so the measurement is performed based on the thickness of the measured dielectric. There is a problem that the value changes.
-In addition, a dedicated measuring device is used for impedance or admittance measurement disclosed in Patent Document 1 and Non-Patent Document 1, and in particular, when a dielectric sensor is to be mounted on an individual storage battery or the like. Difficult to use.

特開2009-2693号公報Japanese Unexamined Patent Publication No. 2009-2693

The Handbook of Dielectric Analysis and Cure Monitoring ; Lambient TechnologiesThe Handbook of Dielectric Analysis and Cure Monitoring; Lambient Technologies

本発明は、従来の平板コンデンサ法の欠点である、対向電極の間隔が変化したり、対向電極の間にごみなどが挟まったりして、測定精度が低下するという問題を解決するとともに、従来のくし形電極法の欠点である、標準液体として用いる試料の測定周波数や経時変化の影響の補正が行われていないことや、くし形電極の基板の厚さや被測定試料の厚さの影響が考慮されていないことなどによる測定精度の低下や、専用の計測装置を用いて測定する必要があるという問題点を解決することを課題として、被測定誘電体の材料定数としての複素誘電率を高精度に測定可能な複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法を提供するものである。 The present invention solves the drawbacks of the conventional flat plate capacitor method, that is, the distance between the counter electrodes changes and dust is caught between the counter electrodes, resulting in a decrease in measurement accuracy, and the conventional method. Considering the drawbacks of the comb-shaped electrode method, that the measurement frequency of the sample used as the standard liquid and the influence of changes over time are not corrected, and the influence of the thickness of the substrate of the comb-shaped electrode and the thickness of the sample to be measured are taken into consideration. With the problem of solving the problems that the measurement accuracy is lowered due to the fact that the measurement is not performed and that it is necessary to measure using a dedicated measuring device, the complex dielectric constant as the material constant of the material to be measured is highly accurate. Provided is a measurable complex dielectric constant measuring circuit, a complex dielectric constant measuring device, and a method for measuring a complex dielectric constant.

本発明によれば、
所定の周波数における複素誘電率が既知の誘電材料からなる誘電体基板の一方の面に、電極ピッチが少なくとも誘電体基板の厚さよりも小さいくし形電極が形成されていることを特徴とする複素誘電率測定用誘電センサが得られる。
According to the present invention
A complex dielectric characterized in that a comb-shaped electrode having an electrode pitch at least smaller than the thickness of the dielectric substrate is formed on one surface of a dielectric substrate made of a dielectric material having a known complex dielectric constant at a predetermined frequency. A dielectric sensor for rate measurement can be obtained.

本発明によれば、
前記所定の周波数における請求項1に記載の誘電センサの大気中におけるアドミタンスから第一の等価並列容量及び第一の等価並列抵抗を求める手段と、
前記誘電センサの電極面を、少なくとも前記くし形電極のピッチよりも大きな厚さの被測定誘電体で覆った状態の前記所定の周波数における前記誘電センサのアドミタンスから第二の等価並列容量及び第二の等価並列抵抗を求める手段と、
前記第一の等価並列容量と前記第二の等価並列容量から付加並列容量を求める手段と、
前記第一の等価並列抵抗と前記第二の等価並列抵抗から付加並列抵抗を求める手段と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量及び前記誘電体基板の複素誘電率の値を用いて、前記被測定誘電体の複素誘電率を求める手段と、
を備えることを特徴とする複素誘電率の測定装置が得られる。
According to the present invention
A means for obtaining the first equivalent parallel capacitance and the first equivalent parallel resistance from the admittance of the dielectric sensor according to claim 1 at a predetermined frequency in the atmosphere.
The second equivalent parallel capacitance and the second from the admittance of the dielectric sensor at the predetermined frequency in a state where the electrode surface of the dielectric sensor is covered with a dielectric to be measured having a thickness at least larger than the pitch of the comb electrode. As a means to find the equivalent parallel resistance of
A means for obtaining an additional parallel capacity from the first equivalent parallel capacity and the second equivalent parallel capacity,
A means for obtaining an additional parallel resistance from the first equivalent parallel resistance and the second equivalent parallel resistance,
Using the values of the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate, the dielectric to be measured is used. As a means to obtain the complex permittivity of
A device for measuring a complex permittivity is obtained.

本発明によれば、
前記所定の周波数における請求項1に記載の誘電センサの大気中におけるアドミタンスから第一の等価並列容量及び第一の等価並列抵抗を求める工程と、
前記誘電センサの電極面を、少なくとも前記くし形電極のピッチよりも大きな厚さの被測定誘電体で覆った状態の前記所定の周波数における前記誘電センサのアドミタンスから第二の等価並列容量及び第二の等価並列抵抗を求める工程と、
前記第一の等価並列容量と前記第二の等価並列容量から付加並列容量を求める工程と、
前記第一の等価並列抵抗と前記第二の等価並列抵抗から付加並列抵抗を求める工程と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量、及び前記誘電体基板の複素誘電率の値を用いて、前記被測定誘電体の複素誘電率を求める工程と、
を含むことを特徴とする複素誘電率の測定方法が得られる。
According to the present invention
The step of obtaining the first equivalent parallel capacitance and the first equivalent parallel resistance from the admittance of the dielectric sensor according to claim 1 at a predetermined frequency in the atmosphere.
The second equivalent parallel capacitance and the second from the admittance of the dielectric sensor at the predetermined frequency in a state where the electrode surface of the dielectric sensor is covered with a dielectric to be measured having a thickness at least larger than the pitch of the comb electrode. And the process of finding the equivalent parallel resistance of
The process of obtaining the additional parallel capacitance from the first equivalent parallel capacitance and the second equivalent parallel capacitance,
The step of obtaining the additional parallel resistance from the first equivalent parallel resistance and the second equivalent parallel resistance,
The dielectric to be measured is measured using the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate. The process of finding the complex permittivity of the body and
A method for measuring a complex permittivity is obtained, which comprises.

本発明によれば、
並列接続された、同じ特性を有する請求項1に記載の2つの誘電センサと、前記2つの誘電センサの一方のくし形電極を被測定誘電体で覆った状態で、前記並列接続された誘電センサに所定の周波数の交流電圧を印加するための発振器と、前記交流電圧に対する前記2つの誘電センサを流れる電流の差分を検出する差分検出器と、前記交流電圧と前記差分検出器の出力信号との位相差を検出する位相検出器と、前記差分検出器の出力で前記交流電圧を除することにより、前記被測定誘電体で前記一方のくし形電極が覆われた誘電センサの付加アドミタンスを求める手段と、前記位相検出器により検出された前記交流電圧と前記差分検出器の出力の位相差と、前記誘電センサの付加アドミタンスから、付加並列容量と付加並列抵抗を求める手段と、前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量及び前記誘電体基板の複素誘電率を用いて前記被測定誘電体の複素誘電率を求める手段と、を備えることを特徴とする複素誘電率の測定装置が得られる。
According to the present invention
The two dielectric sensors having the same characteristics and having the same characteristics connected in parallel, and the dielectric sensor connected in parallel with one of the two dielectric sensors having a comb-shaped electrode covered with a dielectric to be measured. An oscillator for applying an AC voltage of a predetermined frequency, a difference detector for detecting the difference between the currents flowing through the two dielectric sensors with respect to the AC voltage, and an output signal of the AC voltage and the difference detector. A means for obtaining an additional admittance of a dielectric sensor in which one of the comb-shaped electrodes is covered with the dielectric to be measured by dividing the AC voltage by the output of the phase detector and the phase detector for detecting the phase difference. A means for obtaining an additional parallel capacitance and an additional parallel resistance from the phase difference between the AC voltage detected by the phase detector and the output of the difference detector, and the additional admittance of the dielectric sensor, and the additional parallel capacitance. As a means for obtaining the complex dielectric constant of the dielectric to be measured by using the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex dielectric constant of the dielectric substrate. , A device for measuring a complex dielectric constant is obtained.

本発明によれば、
前記2つの誘電センサの一方のくし形電極を被測定誘電体で覆った状態で、前記並列接続された誘電センサに所定の周波数の交流電圧を印加する工程と、
前記交流電圧に対する前記2つの誘電センサを流れる電流の差分を検出する工程と、
前記交流電圧と前記差分検出器の出力信号との位相差を検出する工程と、
前記差分検出器の出力で前記交流電圧を除することにより、前記被測定誘電体で前記一方のくし形電極が覆われた誘電センサの付加アドミタンスを求める工程と、
前記位相検出器により検出された前記交流電圧と前記差分検出器の出力の位相差と、前記誘電センサの付加アドミタンスから、付加並列容量と付加並列抵抗を求める工程と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量及び前記誘電体基板の複素誘電率を用いて前記被測定誘電体の複素誘電率を求める工程と、
を含むことを特徴とする複素誘電率の測定方法が得られる。
According to the present invention
A step of applying an AC voltage having a predetermined frequency to the dielectric sensors connected in parallel with one of the two dielectric sensors having a comb-shaped electrode covered with a dielectric to be measured.
The step of detecting the difference between the currents flowing through the two dielectric sensors with respect to the AC voltage, and
The step of detecting the phase difference between the AC voltage and the output signal of the difference detector, and
A step of obtaining an additional admittance of a dielectric sensor in which one of the comb-shaped electrodes is covered with the dielectric to be measured by dividing the AC voltage by the output of the difference detector.
A step of obtaining an additional parallel capacitance and an additional parallel resistance from the phase difference between the AC voltage detected by the phase detector and the output of the difference detector and the additional admittance of the dielectric sensor.
The complex dielectric of the dielectric to be measured using the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate. The process of finding the rate and
A method for measuring a complex permittivity is obtained, which comprises .

本発明によれば、誘電体基板の複素誘電率の影響、基板の厚さの影響、および被測定誘電体の厚さの影響を含めて、被測定誘電体の複素誘電率の値を正しく測定することができる。 According to the present invention, the value of the complex dielectric constant of the measured dielectric is correctly measured, including the influence of the complex dielectric constant of the dielectric substrate, the influence of the thickness of the substrate, and the influence of the thickness of the measured dielectric. can do.

また、本発明によれば、簡単な回路で、複素誘電率を求めるための被測定誘電体によるアドミタンス変化△Yを求めることが可能となり、アドミタンスを測定するための計測器が不要となる。 Further, according to the present invention, it is possible to obtain the admittance change ΔY due to the object to be measured for obtaining the complex permittivity with a simple circuit, and a measuring instrument for measuring the admittance becomes unnecessary.

平板コンデンサ法の測定原理説明図である。It is explanatory drawing of the measurement principle of a plate capacitor method. 本発明のくし形電極基板からなる誘電センサの構造例の概略を示す平面図である。It is a top view which shows the outline of the structural example of the dielectric sensor made of the comb-shaped electrode substrate of this invention. 図2に示した本発明のくし形電極基板からなる誘電センサの概略断面図である。FIG. 2 is a schematic cross-sectional view of the dielectric sensor made of the comb-shaped electrode substrate of the present invention shown in FIG. 図3に示した本発明のくし形電極基板からなる誘電センサの電極面が被測定誘電体で覆われた状態を示す概略断面図である。FIG. 3 is a schematic cross-sectional view showing a state in which the electrode surface of the dielectric sensor made of the comb-shaped electrode substrate of the present invention shown in FIG. 3 is covered with the dielectric to be measured. 被測定誘電体が無い場合の基板の厚さに対するRpとCpの計算結果である。It is the calculation result of Rp and Cp for the thickness of the substrate when there is no dielectric to be measured. 被測定誘電体の厚さに対するRpとCpの計算結果である。It is the calculation result of Rp and Cp for the thickness of the dielectric to be measured. 二つの等しいアドミタンスの一方にアドミタンス△Yが付加された場合の△Yを求める方法の説明図である。It is explanatory drawing of the method of finding the admittance ΔY when the admittance ΔY is added to one of two equal admittances. 二つの等しいアドミタンスの一方にアドミタンス△Yが付加された場合の△Yを求める方法の説明図である。It is explanatory drawing of the method of finding the admittance ΔY when the admittance ΔY is added to one of two equal admittances. 本発明の誘電センサを用いて構成した付加アドミタンス△Yを求める回路構成例を示す回路ブロック図である。It is a circuit block diagram which shows the circuit structure example which obtains the additional admittance ΔY which was constructed using the dielectric sensor of this invention. 本発明のくし形電極基板の別の電極構成の一例を示す平面図である。It is a top view which shows an example of another electrode composition of the comb-shaped electrode substrate of this invention.

以下,図面を参照して本発明の実施の形態について説明する。しかしながら,かかる実施の形態例が,本発明の技術的範囲を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, such embodiments do not limit the technical scope of the invention.

(本発明のくし形電極基板の構造と複素誘電率の測定原理の説明)
図2は、本発明のくし形電極基板からなる誘電センサの構造例の概略を示す平面図である。図2において、誘電体基板20の一方の面に、帯状電極21および22が複数個形成され、それぞれ、一つおきの帯状電極がそれぞれ共通電極23および24に接続され、それぞれ、測定端子25および26に接続されている。したがって、図2に示した本発明の2端子型くし形電極基板からなる誘電センサは、測定端子25および測定端子26から見ると、一つのコンデンサと考えることができる。
(Explanation of the structure of the comb-shaped electrode substrate of the present invention and the measurement principle of the complex permittivity)
FIG. 2 is a plan view showing an outline of a structural example of a dielectric sensor made of the comb-shaped electrode substrate of the present invention. In FIG. 2, a plurality of strip-shaped electrodes 21 and 22 are formed on one surface of the dielectric substrate 20, and every other strip-shaped electrode is connected to the common electrodes 23 and 24, respectively, and the measurement terminals 25 and 22 are respectively. It is connected to 26. Therefore, the dielectric sensor made of the two-terminal comb-shaped electrode substrate of the present invention shown in FIG. 2 can be considered as one capacitor when viewed from the measurement terminal 25 and the measurement terminal 26.

図3は、図2に示した本発明のくし形電極基板からなる誘電センサの概略断面図であり、帯状電極21、22が、ガラスエポキシなどの誘電体基板20の一方の面に形成されている。 FIG. 3 is a schematic cross-sectional view of the dielectric sensor made of the comb-shaped electrode substrate of the present invention shown in FIG. 2, wherein the band-shaped electrodes 21 and 22 are formed on one surface of a dielectric substrate 20 such as glass epoxy. There is.

図4は、図3に示した本発明のくし形電極基板からなる誘電センサの電極面が被測定誘電体で覆われた状態を示す概略断面図であり、帯状電極21、22が、ガラスエポキシなどの誘電体基板20の一方の面に形成され、くし形電極部分が、被測定誘電体47で覆われている。 FIG. 4 is a schematic cross-sectional view showing a state in which the electrode surface of the dielectric sensor made of the comb-shaped electrode substrate of the present invention shown in FIG. 3 is covered with the dielectric to be measured, and the band-shaped electrodes 21 and 22 are made of glass epoxy. It is formed on one surface of the dielectric substrate 20 such as the above, and the comb-shaped electrode portion is covered with the dielectric 47 to be measured.

図2、図3、および図4においては、帯状電極の形状、寸法などは、構造の理解を容易にするために、概略的に示されており実際のものと異なっている。 In FIGS. 2, 3, and 4, the shapes, dimensions, etc. of the strip-shaped electrodes are shown schematically and differ from the actual ones in order to facilitate understanding of the structure.

図2~図4において、くし形電極が空中に浮いていると仮定した場合の静電容量C01は(9)式で与えられる。 In FIGS. 2 to 4, the capacitance C 01 assuming that the comb-shaped electrode is floating in the air is given by Eq. (9).

Figure 0007071723000009
Figure 0007071723000009

ここに、Seとdeはそれぞれ、くし形電極の形状や寸法によって定まる実効的な電極面積および実効的な電極間隔であり、それぞれ別々に求めることは難しいが、Seとdeの比は定数となる。 Here, Se and de are the effective electrode area and the effective electrode spacing determined by the shape and dimensions of the comb-shaped electrode, respectively, and although it is difficult to obtain them separately, the ratio of Se and de is a constant. ..

次に、このくし形電極が複素誘電率ε1*の材料の中に埋もれていると仮定した場合の静電容量C1*は(10)式で与えられる。 Next, assuming that this comb-shaped electrode is buried in a material having a complex permittivity ε 1 *, the capacitance C 1 * is given by Eq. (10).

Figure 0007071723000010
Figure 0007071723000010

同様に、このくし形電極が複素誘電率ε2*の材料の中に埋もれている場合の静電容量C2*は(11)式で与えられる。 Similarly, the capacitance C 2 * when this comb-shaped electrode is buried in a material having a complex permittivity ε 2 * is given by Eq. (11).

Figure 0007071723000011
Figure 0007071723000011

従って、図4に示すように、このくし形電極の下半分が複素誘電率ε1*の材料で覆われ、上半分が複素誘電率ε2*の材料で覆われている場合の静電容量C12*は、(10)式の静電容量C1*と(11)式の静電容量C2*の半分ずつの和で与えられると考えられ、(12)式で与えられる。 Therefore, as shown in FIG. 4, the capacitance when the lower half of the comb-shaped electrode is covered with a material having a complex dielectric constant ε 1 * and the upper half is covered with a material having a complex dielectric constant ε 2 *. C 12 * is considered to be given by the sum of half of the capacitance C 1 * of Eq. (10) and half of the capacitance C 2 * of Eq. (11), and is given by Eq. (12).

Figure 0007071723000012
Figure 0007071723000012

(12)式で表されるコンデンサの静電容量C12は、図4に示すように、くし形電極基板の電極面が被測定誘電体で覆われている場合の静電容量と考えられるので、このアドミタンスY2を求めると(13)式で与えられ、さらに、アドミタンスY2を(13)式で示すように、抵抗Rp2とコンデンサCp2の並列回路で表すと、Rp2、Cp2は、それぞれ、(14)式、(15)式で与えられる。 As shown in Fig. 4, the capacitance C 12 of the capacitor represented by Eq. (12) is considered to be the capacitance when the electrode surface of the comb-shaped electrode substrate is covered with the dielectric to be measured. , This admittance Y 2 is given by Eq. (13), and further, as shown by Eq. (13), when the admittance Y 2 is expressed by the parallel circuit of the resistor R p2 and the capacitor C p2 , R p2 and C p2 Are given by Eqs. (14) and (15), respectively.

Figure 0007071723000013
Figure 0007071723000013

Figure 0007071723000014
Figure 0007071723000014

Figure 0007071723000015
Figure 0007071723000015

一方、くし形電極基板単体のアドミタンスY1を抵抗Rp1と容量Cp1の並列回路で表した場合、Rp1とCp1は、(14)式と(15)式において、被測定誘電体の複素誘電率として真空の複素誘電率を用いてε21=1、ε22=0とすることにより得られ、それぞれ、(16)式と(17)式で与えられる。 On the other hand, when the admittance Y 1 of a single comb-shaped electrode substrate is represented by a parallel circuit of resistance R p1 and capacitance C p1 , R p1 and C p1 are the dielectrics to be measured in Eqs. (14) and (15). It is obtained by setting ε 21 = 1 and ε 22 = 0 using the complex permittivity of vacuum as the complex permittivity, and is given by Eqs. (16) and (17), respectively.

Figure 0007071723000016
Figure 0007071723000016

Figure 0007071723000017
Figure 0007071723000017

したがって、くし形電極基板単体とくし形電極基板の電極面を被測定誘電体で覆った場合の並列容量の変化と並列抵抗の変化をそれぞれ、付加並列容量△Cp付加並列抵抗△Rpとすると、それぞれ、(18)式及び(19)式で与えられる。 Therefore, the change in parallel capacitance and the change in parallel resistance when the electrode surface of the comb-shaped electrode substrate alone and the electrode surface of the comb-shaped electrode substrate are covered with the dielectric to be measured are shown as the additional parallel capacitance ΔC p and the additional parallel resistance ΔR p , respectively. Then, it is given by the equations (18) and (19), respectively.

Figure 0007071723000018
Figure 0007071723000018

Figure 0007071723000019
Figure 0007071723000019

したがって、もしC01と誘電体基板の複素誘電率ε11とε12が既知の場合、△Rp、△Cpがわかれば、被測定誘電体の複素誘電率ε21およびε22は、それぞれ(20)式、(21)式から求めることができる。 Therefore, if C 01 and the complex permittivity ε 11 and ε 12 of the dielectric substrate are known, and if ΔR p and ΔC p are known, the complex permittivity ε 21 and ε 22 of the measured dielectric will be, respectively. It can be obtained from Eqs. (20) and (21).

Figure 0007071723000020
Figure 0007071723000020

Figure 0007071723000021
Figure 0007071723000021

また、C01が不明な場合には、誘電体基板の複素誘電率ε11とε12がわかれば、くし形電極基板単体の並列容量Cp1を測定することにより、(17)式により求めることができる。 If C 01 is unknown, if the complex permittivity ε 11 and ε 12 of the dielectric substrate are known, it can be obtained by Eq. (17) by measuring the parallel capacitance C p1 of the comb-shaped electrode substrate alone. Can be done.

(9)式~(21)式の手順で説明したように、本発明では、あらかじめ誘電体基板の複素誘電率を知る必要があるが、誘電体基板の複素誘電率は、前述した(1)式~(8)式の手順により、厚さDが既知の基板材料の両面に面積Aの対向電極を形成し、所望とする周波数におけるアドミタンスYを測定し、並列等価回路定数RpとCpを求めることにより、所望とする周波数における誘電体基板の複素誘電率ε11とε12の値を容易に求めることができる。 As described in the procedures of Eqs. (9) to (21), in the present invention, it is necessary to know the complex permittivity of the dielectric substrate in advance, but the complex permittivity of the dielectric substrate is the above-mentioned (1). By the procedure of Eqs. to (8), counter electrodes of area A are formed on both sides of the substrate material having a known thickness D, the admittance Y at the desired frequency is measured, and the parallel equivalent circuit constants R p and C p . By obtaining, the values of the complex permittivity ε 11 and ε 12 of the dielectric substrate at a desired frequency can be easily obtained.

以上の手順により、非特許文献1に記載されているくし形電極基板を用いた測定方法では不可能であった、誘電体基板の複素誘電率の影響を考慮した状態で被測定誘電体の複素誘電率を測定することができる。 By the above procedure, the complex of the dielectric to be measured is complex in consideration of the influence of the complex dielectric constant of the dielectric substrate, which was impossible by the measurement method using the comb-shaped electrode substrate described in Non-Patent Document 1. The dielectric constant can be measured.

(くし形電極基板の厚さと被測定誘電体の厚さに要求される特性の確認)
以上の説明では、くし形電極が複素誘電率ε1*の物体や複素誘電率ε2*の物体の中に埋もれていると仮定しており、誘電体基板の厚さや被測定誘電体の厚さは十分に厚いと暗黙的に仮定している。しかしながら、実用的には、誘電体基板や被測定誘電体の厚さは薄い方が望ましいため、どの程度の厚さが適しているのかを、確認するために、実測した誘電体基板の複素誘電率の値と、被測定誘電体として複素誘電率の値が一般的に知られているグリセリンの値を用いて有限要素法により計算した。
(Confirmation of the characteristics required for the thickness of the comb-shaped electrode substrate and the thickness of the dielectric to be measured)
In the above explanation, it is assumed that the comb-shaped electrode is buried in an object having a complex permittivity ε 1 * or an object having a complex permittivity ε 2 *, and the thickness of the dielectric substrate and the thickness of the measured dielectric are measured. It is implicitly assumed to be thick enough. However, in practice, it is desirable that the thickness of the dielectric substrate or the dielectric to be measured is thin, so in order to confirm how thick the dielectric substrate is suitable, the complex dielectric of the actually measured dielectric substrate is used. It was calculated by the finite element method using the value of the rate and the value of glycerin, which is generally known as the value of the complex permittivity as the dielectric to be measured.

図5は、被測定誘電体が無い場合の誘電体基板の厚さに対するRpとCpの計算結果であり、基板材質として、ε11=5.5、ε12=0.1のエポキシ基板を用い、導体幅0.25mm、電極間隔0.25mm、電極長さ7mm、電極対数8個としている。 Figure 5 shows the calculation results of R p and C p for the thickness of the dielectric substrate when there is no dielectric to be measured. Using an epoxy substrate with ε 11 = 5.5 and ε 12 = 0.1 as the substrate material, the conductor The width is 0.25 mm, the electrode spacing is 0.25 mm, the electrode length is 7 mm, and the number of electrode pairs is eight.

図6は、被測定誘電体として、ε21=34、ε22=0.47のグリセリンを用いた場合の被測定誘電体の厚さに対するRpとCpの計算結果であり、誘電体基板の厚さを1mmに固定し、図5と同じくし形電極を用いている。 Figure 6 shows the calculation results of R p and C p for the thickness of the dielectric to be measured when glycerin of ε 21 = 34 and ε 22 = 0.47 is used as the dielectric to be measured, and the thickness of the dielectric substrate is shown in FIG. The diameter is fixed to 1 mm, and the same shaped electrode as in Fig. 5 is used.

図5と図6の結果から、誘電体基板の厚さと被測定誘電体の厚さが、くし形電極のピッチ(=導体幅+電極間隔)よりも大きい領域で、RpとCpの値がほぼ一定の値を示しており、誘電体基板の厚さと被測定誘電体の厚さは、少なくともくし形電極のピッチ以上にする必要があり、望ましくは、くし形電極のピッチの2倍程度とするのが良いことがわかる。このようにすることにより、非特許文献1の方法で不明確であった、誘電体基板の厚さの影響と被測定誘電体の厚さの影響を無くすとともに、誘電体基板の裏側に近接する材料の影響を無くした状態で、被測定誘電体の複素誘電率を高精度の測定が可能になる。 From the results shown in FIGS. 5 and 6, the values of R p and C p in the region where the thickness of the dielectric substrate and the thickness of the measured dielectric are larger than the pitch of the comb-shaped electrodes (= conductor width + electrode spacing). Shows almost constant values, and the thickness of the dielectric substrate and the thickness of the dielectric to be measured must be at least equal to or greater than the pitch of the comb-shaped electrode, and is preferably about twice the pitch of the comb-shaped electrode. It turns out that it is good to say. By doing so, the influence of the thickness of the dielectric substrate and the influence of the thickness of the dielectric to be measured, which are unclear by the method of Non-Patent Document 1, are eliminated, and the influence is close to the back side of the dielectric substrate. It is possible to measure the complex permittivity of the dielectric to be measured with high accuracy without the influence of the material.

(本発明の誘電センサの等価回路と具体的な付加アドミタンス△Yの求め方)
図7と図8は、二つの等しいアドミタンスの一方にアドミタンス△Yが付加された場合の△Yを求める方法の説明図であり、図7は、二つのアドミタンスY1とY2が並列に接続された回路に電圧Vを印加した場合に、それぞれのアドミタンスを流れる電流I1およびI2を示しており、I1とI2は(22)式で与えられる。
(Equivalent circuit of the dielectric sensor of the present invention and how to obtain a specific admittance ΔY)
FIG. 7 and FIG. 8 are explanatory diagrams of a method of finding ΔY when the admittance ΔY is added to one of two equal admittances, and FIG. 7 shows two admittances Y 1 and Y 2 connected in parallel. When the voltage V is applied to the circuit, the currents I 1 and I 2 flowing through the respective admittances are shown, and I 1 and I 2 are given by Eq. (22).

Figure 0007071723000022
Figure 0007071723000022

図8は、図7においてY2=Y1+△Yとした場合の回路を示しており、△Yに流れる電流△Iは(23)式で与えられる。(23)式より、電圧Vは実数、△Iと△Yが複素数であることから、△Iの位相と△Yの位相が等しいことがわかる。 FIG. 8 shows a circuit when Y 2 = Y 1 + ΔY in FIG. 7, and the current ΔI flowing through ΔY is given by Eq. (23). From Eq. (23), it can be seen that the voltage V is a real number and ΔI and ΔY are complex numbers, so that the phase of ΔI and the phase of ΔY are equal.

Figure 0007071723000023
Figure 0007071723000023

また、(23)式より、付加アドミタンス△Yは(24)式で与えられる。 Further, from Eq. (23), the additional admittance ΔY is given by Eq. (24).

Figure 0007071723000024
Figure 0007071723000024

つまり、アドミタンスY1およびY2を流れる電流I1とI2を検出し、それらの差の電流△Iを求めると(24)式より△Yを求めることができる。 That is, if the currents I 1 and I 2 flowing through the admittances Y 1 and Y 2 are detected and the current ΔI of the difference between them is obtained, ΔY can be obtained from Eq. (24).

ここで、付加アドミタンス△Yを△Y=1/△R p +jω 0 △C p と置くと、△Rpと△Cpは、(25)式および(26)式で与えられ、△Rpと△Cpが求められると、(20)式、(21)式を用いて、被測定誘電体の複素誘電率を求めることができる。(25)式および(26)式においてθは、付加アドミタンス△Yの位相であり、前述したように、前記差の電流△Iの位相に等しい。 Here, if the additional admittance ΔY is set as ΔY = 1 / ΔR p + jω 0 ΔC p , then ΔR p and ΔC p are given by equations (25) and (26), and ΔR p . And ΔC p can be obtained, and the complex permittivity of the dielectric to be measured can be obtained by using Eqs. (20) and (21). In equations (25) and (26), θ is the phase of the added admittance ΔY, and as described above, is equal to the phase of the current ΔI of the difference.

Figure 0007071723000025
Figure 0007071723000025

Figure 0007071723000026
Figure 0007071723000026

以上に説明したように、本発明では、誘電センサのくし形電極面を所定の厚さの被測定誘電体で覆ったときの、付加アドミタンス△Yから付加並列容量△C p と付加並列抵抗△R p を求め、あらかじめ既知の誘電体基板の複素誘電率の値、および、くし形電極が空中に浮いていると仮定した場合の静電容量を用いて、被測定誘電体の複素誘電率を求めることができる。 As described above, in the present invention, when the comb-shaped electrode surface of the dielectric sensor is covered with a dielectric material to be measured having a predetermined thickness, the additional admittance ΔY to the additional parallel capacitance ΔC p and the additional parallel resistance Δ Obtain R p and use the value of the complex permittivity of the previously known dielectric substrate and the capacitance assuming that the comb-shaped electrode is floating in the air to determine the complex permittivity of the dielectric to be measured. Can be asked.

(付加アドミタンス△Yを求める回路構成例)
図9は、本発明のくし形電極基板である誘電センサを用いて構成した付加アドミタンス△Yを求める回路構成例を示す回路ブロック図であって、複素誘電率測定用回路の構成例を示す。図9においては、特性の等しい2個の前記誘電センサ92と93の一方の端子が接続されて、さらに周波数f0の交流電圧Vを出力する発振回路91に接続され、それぞれの誘電センサの他方の端子が電流-電圧変換回路94および95に接続されている。電流-電圧変換回路94および95の出力電圧はそれぞれ差動増幅器96(差分検出器)に接続され、差動増幅器96の出力と前記発振回路91の出力は、位相検波回路97に接続されて、付加アドミタンスΔYの位相θを表す位相検波回路(位相検出器)97の出力信号は、位相信号端子98に接続され、付加アドミタンスΔYを表す差動増幅回路96の出力信号は、付加アドミタンス△Y信号端子99に接続されている。
(Circuit configuration example for obtaining additional admittance △ Y)
FIG. 9 is a circuit block diagram showing a circuit configuration example for obtaining additional admittance ΔY configured by using the dielectric sensor which is the comb-shaped electrode substrate of the present invention, and shows a configuration example of a circuit for measuring complex dielectric constant. In FIG. 9, one terminal of the two dielectric sensors 92 and 93 having the same characteristics is connected, and further connected to an oscillation circuit 91 that outputs an AC voltage V having a frequency f 0 , and the other of the respective dielectric sensors. Terminals are connected to current-voltage conversion circuits 94 and 95. The output voltages of the current-voltage conversion circuits 94 and 95 are connected to the differential amplifier 96 (difference detector), respectively, and the output of the differential amplifier 96 and the output of the oscillation circuit 91 are connected to the phase detection circuit 97. The output signal of the phase detection circuit (phase detector) 97 representing the phase θ of the additional admittance ΔY is connected to the phase signal terminal 98, and the output signal of the differential amplifier circuit 96 representing the additional admittance ΔY is the additional admittance ΔY signal. It is connected to terminal 99.

図9の回路では、2個の誘電センサ92と93の内の一方の誘電センサのくし形電極部を被測定誘電体で覆った場合、誘電センサ92と93を流れる電流に違いが発生し、電流-電圧変換回路94および95の出力電圧がこれに応じて変化する。したがって、差動増幅器96の出力電圧はこの電流の差に比例した値となる。前述の(23)式、(24)式で説明したように、この電流の差△Iは付加アドミタンス△Yに比例し、△Iと△Yの印加電圧Vに対する位相は等しくなる。したがって、回路系の比例定数がわかれば、差動増幅器96出力と位相検波回路97出力から、前記(25)式および(26)式を用いて、付加アドミタンス△Y、すなわち付加並列抵抗△Rpおよび付加並列容量△Cpが得られ、さらに前記(20)式および(21)式により、被測定誘電体の複素誘電率を求めることができる。被測定誘電体の複素誘電率は、差動増幅器96出力と位相検波回路97出力をデジタル処理して、上述した演算式による演算を行う集積回路や汎用のコンピュータ装置などの演算処理手段に入力されて求められる。本発明の複素誘電率測定装置は、図9に示す複素誘電率測定用回路と複素誘電率を演算で求める演算処理手段とを有して構成され、複素誘電率測定用回路と演算処理手段とは一体的に構成されてもよく、また別々の部品の組み合わせとして構成されてもよい。 In the circuit of FIG. 9, when the comb-shaped electrode portion of one of the two dielectric sensors 92 and 93 is covered with the measured dielectric, a difference occurs in the current flowing through the dielectric sensors 92 and 93. The output voltage of the current-voltage conversion circuits 94 and 95 changes accordingly. Therefore, the output voltage of the differential amplifier 96 is a value proportional to the difference in this current. As described in the above equations (23) and (24), this current difference ΔI is proportional to the added admittance ΔY, and the phases of ΔI and ΔY with respect to the applied voltage V are equal. Therefore, if the proportionality constant of the circuit system is known, the additional admittance ΔY, that is, the additional parallel resistance ΔR p , using the equations (25) and (26) from the differential amplifier 96 output and the phase detection circuit 97 output. And the additional parallel capacitance ΔC p is obtained, and the complex dielectric constant of the dielectric to be measured can be obtained by the above equations (20) and (21). The complex dielectric constant of the dielectric to be measured is input to an arithmetic processing means such as an integrated circuit or a general-purpose computer device that digitally processes the output of the differential amplifier 96 and the output of the phase detection circuit 97 to perform the calculation by the above-mentioned arithmetic expression. Is required. The complex permittivity measuring device of the present invention is configured to include the complex permittivity measuring circuit shown in FIG. 9 and the arithmetic processing means for obtaining the complex permittivity by calculation, and includes the complex dielectric constant measuring circuit and the arithmetic processing means. May be configured integrally or as a combination of separate components.

本発明によれば、被測定誘電体の複素誘電率ε*の実部と虚部を別々に測定することができるが、被測定誘電体の特性によっては、実部だけが大きく変化し、虚部がほとんど変化しない場合や、逆に実部の変化は少ないのに、虚部が大きく変化する場合などある。この場合には、複素誘電率ε*の絶対値の変化、すなわち、前記2個の誘電センサのアドミタンスの差△Yの絶対値の変化や、あるいは、前記2個の誘電センサを流れる電流の差△Iの絶対値の変化によっても、実用的に有用な被測定誘電体の特性変化を測定できる。 According to the present invention, the real part and the imaginary part of the complex permittivity ε * of the measured dielectric can be measured separately, but only the real part changes greatly depending on the characteristics of the measured dielectric, and the imaginary part is imaginary. There are cases where the part hardly changes, or conversely, the imaginary part changes significantly even though the change in the real part is small. In this case, the change in the absolute value of the complex dielectric constant ε *, that is, the change in the absolute value of the admittance difference ΔY between the two dielectric sensors, or the difference in the current flowing through the two dielectric sensors. Changes in the characteristics of the dielectric to be measured, which are practically useful, can also be measured by changing the absolute value of ΔI.

以上の説明では、くし形電極基板の構造を、図2に示すように、誘電体基板の一方の面に、複数個の帯状電極を形成して2端子構造とした場合について述べたが、電極の構成は必ずしも帯状電極に限定されるものではない。 In the above description, as shown in FIG. 2, the structure of the comb-shaped electrode substrate has been described in the case where a plurality of strip-shaped electrodes are formed on one surface of the dielectric substrate to form a two-terminal structure. The configuration of is not necessarily limited to the band-shaped electrode.

図10は、本発明のくし形電極基板の別の電極構成の一例を示す平面図であり、誘電体基板100の一方の面に同心円状の線状電極101、102が形成され、図10に示すように、互いに両隣りの線状電極を接続して2端子構造となって、接続端子103、104に接続されている。 FIG. 10 is a plan view showing another example of the electrode configuration of the comb-shaped electrode substrate of the present invention, in which concentric linear electrodes 101 and 102 are formed on one surface of the dielectric substrate 100, and FIG. 10 shows. As shown, the linear electrodes on both sides are connected to each other to form a two-terminal structure, which is connected to the connection terminals 103 and 104.

本発明における複素誘電率測定用回路、複素誘電率測定装置及び複素誘電率の測定方法は、例えば、潤滑オイルや蓄電池の電解液の劣化の原因解明や、食品の製造ラインで成分の変化の監視に使用することができる。 The complex permittivity measuring circuit, the complex permittivity measuring device, and the complex permittivity measuring method in the present invention include, for example, elucidating the cause of deterioration of the electrolytic solution of lubricating oil and storage battery, and monitoring changes in components in a food production line. Can be used for.

本発明は、前記実施の形態に限定されるものではなく、本発明の分野における通常の知識を有する者であれば想到し得る各種変形、修正を含む要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは勿論である。 The present invention is not limited to the above-described embodiment, and there are design changes within a range that does not deviate from the gist including various modifications and modifications that can be conceived by a person having ordinary knowledge in the field of the present invention. Of course, it is also included in the present invention.

10:被測定誘電体
11:上面電極
12:下面電極
20:誘電体基板
21:帯状電極
22:帯状電極
23:共通電極
24:共通電極
25:測定端子
26:測定端子
47:被測定誘電体
91:発振回路
92、93:本発明の誘電センサ
94、95:電流―電圧変換回路
96:差動増幅器
97:位相検波回路
98:位相信号端子
99:付加アドミタンス△Y信号端子
100:誘電体基板
101、102:線状電極
103、104:接続端子
10: Dielectric to be measured
11: Top electrode
12: Bottom electrode
20: Dielectric substrate
21: Band-shaped electrode
22: Band-shaped electrode
23: Common electrode
24: Common electrode
25: Measurement terminal
26: Measurement terminal
47: Dielectric to be measured
91: Oscillator circuit
92, 93: Dielectric sensor of the present invention
94, 95: Current-voltage conversion circuit
96: Differential amplifier
97: Phase detection circuit
98: Phase signal terminal
99: Additional admittance △ Y signal terminal
100: Dielectric substrate
101, 102: Linear electrode
103, 104: Connection terminal

Claims (4)

所定の周波数における複素誘電率が既知の誘電材料からなる誘電体基板の一方の面に、電極ピッチが少なくとも誘電体基板の厚さよりも小さいくし形電極が形成された誘電センサの大気中におけるアドミタンスから第一の等価並列容量及び第一の等価並列抵抗を求める手段と、
前記誘電センサの電極面を、少なくとも前記くし形電極のピッチよりも大きな厚さの被測定誘電体で覆った状態の前記所定の周波数における前記誘電センサのアドミタンスから第二の等価並列容量及び第二の等価並列抵抗を求める手段と、
前記第一の等価並列容量と前記第二の等価並列容量から付加並列容量を求める手段と、
前記第一の等価並列抵抗と前記第二の等価並列抵抗から付加並列抵抗を求める手段と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量及び前記誘電体基板の複素誘電率の値を用いて、前記被測定誘電体の複素誘電率を求める手段と、
を備えることを特徴とする複素誘電率の測定装置。
From the admittance in the atmosphere of a dielectric sensor in which a comb-shaped electrode having an electrode pitch at least smaller than the thickness of the dielectric substrate is formed on one surface of a dielectric substrate made of a dielectric material having a known complex dielectric constant at a predetermined frequency. A means for obtaining the first equivalent parallel capacitance and the first equivalent parallel resistance,
The second equivalent parallel capacitance and the second from the admittance of the dielectric sensor at the predetermined frequency in a state where the electrode surface of the dielectric sensor is covered with a dielectric to be measured having a thickness at least larger than the pitch of the comb electrode. As a means to find the equivalent parallel resistance of
A means for obtaining an additional parallel capacity from the first equivalent parallel capacity and the second equivalent parallel capacity,
A means for obtaining an additional parallel resistance from the first equivalent parallel resistance and the second equivalent parallel resistance,
Using the values of the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate, the dielectric to be measured is used. As a means to obtain the complex permittivity of
A device for measuring complex permittivity.
所定の周波数における複素誘電率が既知の誘電材料からなる誘電体基板の一方の面に、電極ピッチが少なくとも誘電体基板の厚さよりも小さいくし形電極が形成された誘電センサの大気中におけるアドミタンスから第一の等価並列容量及び第一の等価並列抵抗を求める工程と、
前記誘電センサの電極面を、少なくとも前記くし形電極のピッチよりも大きな厚さの被測定誘電体で覆った状態の前記所定の周波数における前記誘電センサのアドミタンスから第二の等価並列容量及び第二の等価並列抵抗を求める工程と、
前記第一の等価並列容量と前記第二の等価並列容量から付加並列容量を求める工程と、
前記第一の等価並列抵抗と前記第二の等価並列抵抗から付加並列抵抗を求める工程と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量、及び前記誘電体基板の複素誘電率の値を用いて、前記被測定誘電体の複素誘電率を求める工程と、
を含むことを特徴とする複素誘電率の測定方法。
From the admittance in the atmosphere of a dielectric sensor in which a comb-shaped electrode having an electrode pitch at least smaller than the thickness of the dielectric substrate is formed on one surface of a dielectric substrate made of a dielectric material having a known complex dielectric constant at a predetermined frequency. The process of finding the first equivalent parallel capacitance and the first equivalent parallel resistance,
The second equivalent parallel capacitance and the second from the admittance of the dielectric sensor at the predetermined frequency in a state where the electrode surface of the dielectric sensor is covered with a dielectric to be measured having a thickness at least larger than the pitch of the comb electrode. And the process of finding the equivalent parallel resistance of
The process of obtaining the additional parallel capacitance from the first equivalent parallel capacitance and the second equivalent parallel capacitance,
The step of obtaining the additional parallel resistance from the first equivalent parallel resistance and the second equivalent parallel resistance,
The dielectric to be measured is measured using the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate. The process of finding the complex permittivity of the body and
A method for measuring a complex permittivity, which comprises.
所定の周波数における複素誘電率が既知の誘電材料からなる誘電体基板の一方の面に、電極ピッチが少なくとも誘電体基板の厚さよりも小さいくし形電極が形成され、同じ特性を有する2つの誘電センサを並列接続するとともに、
前記2つの誘電センサの一方のくし形電極を被測定誘電体で覆った状態で、前記並列接続された誘電センサに所定の周波数の交流電圧を印加するための発振器と、
前記交流電圧に対する前記2つの誘電センサを流れる電流の差分を検出する差分検出器と、
前記交流電圧と前記差分検出器の出力信号との位相差を検出する位相検出器と、
前記差分検出器の出力で前記交流電圧を除することにより、前記被測定誘電体で前記一方のくし形電極が覆われた誘電センサの付加アドミタンスを求める手段と、
前記位相検出器により検出された前記交流電圧と前記差分検出器の出力の位相差と、前記誘電センサの付加アドミタンスから、付加並列容量と付加並列抵抗を求める手段と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量及び前記誘電体基板の複素誘電率を用いて前記被測定誘電体の複素誘電率を求める手段と、
を備えることを特徴とする複素誘電率の測定装置。
Two dielectric sensors having the same characteristics are formed on one surface of a dielectric substrate made of a dielectric material having a known complex dielectric constant at a predetermined frequency, in which a comb-shaped electrode having an electrode pitch at least smaller than the thickness of the dielectric substrate is formed. In parallel,
With the comb-shaped electrode of one of the two dielectric sensors covered with the dielectric to be measured, an oscillator for applying an AC voltage of a predetermined frequency to the dielectric sensors connected in parallel, and an oscillator.
A difference detector that detects the difference between the currents flowing through the two dielectric sensors with respect to the AC voltage, and
A phase detector that detects the phase difference between the AC voltage and the output signal of the difference detector, and
A means for obtaining the additional admittance of a dielectric sensor in which one of the comb-shaped electrodes is covered with the dielectric to be measured by dividing the AC voltage by the output of the difference detector.
A means for obtaining an additional parallel capacitance and an additional parallel resistance from the phase difference between the AC voltage detected by the phase detector and the output of the difference detector and the additional admittance of the dielectric sensor.
The complex dielectric of the dielectric to be measured using the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate. The means to find the rate,
A device for measuring complex permittivity.
所定の周波数における複素誘電率が既知の誘電材料からなる誘電体基板の一方の面に、電極ピッチが少なくとも誘電体基板の厚さよりも小さいくし形電極が形成され、同じ特性を有する2つの誘電センサを並列接続するとともに、
前記2つの誘電センサの一方のくし形電極を被測定誘電体で覆った状態で、前記並列接続された2つの誘電センサに発振器により所定の周波数の交流電圧を印加する工程と、
前記交流電圧に対する前記2つの誘電センサを流れる電流の差分を差分検出器により検出する工程と、
前記交流電圧と前記差分検出器の出力信号との位相差を位相検波器により検出する工程と、
前記差分検出器の出力で前記交流電圧を除することにより、前記被測定誘電体で前記一方のくし形電極が覆われた誘電センサの付加アドミタンスを求める工程と、
前記位相検出器により検出された前記交流電圧と前記差分検出器の出力の位相差と、前記誘電センサの付加アドミタンスから、付加並列容量と付加並列抵抗を求める工程と、
前記付加並列容量、前記付加並列抵抗、前記くし形電極単体が大気中に浮いていると仮定した場合の静電容量及び前記誘電体基板の複素誘電率を用いて前記被測定誘電体の複素誘電率を求める工程と、
を含むことを特徴とする複素誘電率の測定方法。
Two dielectric sensors having the same characteristics are formed on one surface of a dielectric substrate made of a dielectric material having a known complex dielectric constant at a predetermined frequency, in which a comb-shaped electrode having an electrode pitch at least smaller than the thickness of the dielectric substrate is formed. In parallel,
A step of applying an AC voltage of a predetermined frequency to the two dielectric sensors connected in parallel with the comb-shaped electrode of one of the two dielectric sensors covered with the dielectric to be measured.
A step of detecting the difference between the currents flowing through the two dielectric sensors with respect to the AC voltage by a difference detector, and
A step of detecting the phase difference between the AC voltage and the output signal of the difference detector by a phase detector, and
A step of obtaining an additional admittance of a dielectric sensor in which one of the comb-shaped electrodes is covered with the dielectric to be measured by dividing the AC voltage by the output of the difference detector.
A step of obtaining an additional parallel capacitance and an additional parallel resistance from the phase difference between the AC voltage detected by the phase detector and the output of the difference detector and the additional admittance of the dielectric sensor.
The complex dielectric of the dielectric to be measured using the additional parallel capacitance, the additional parallel resistance, the capacitance when the comb-shaped electrode alone is assumed to be floating in the atmosphere, and the complex permittivity of the dielectric substrate. The process of finding the rate and
A method for measuring a complex permittivity, which comprises.
JP2017150517A 2017-08-03 2017-08-03 Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity Active JP7071723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017150517A JP7071723B2 (en) 2017-08-03 2017-08-03 Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017150517A JP7071723B2 (en) 2017-08-03 2017-08-03 Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity

Publications (2)

Publication Number Publication Date
JP2019028012A JP2019028012A (en) 2019-02-21
JP7071723B2 true JP7071723B2 (en) 2022-05-19

Family

ID=65476159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017150517A Active JP7071723B2 (en) 2017-08-03 2017-08-03 Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity

Country Status (1)

Country Link
JP (1) JP7071723B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020201042A (en) * 2019-06-06 2020-12-17 Tdk株式会社 Measurement device
WO2023149575A1 (en) * 2022-02-07 2023-08-10 日本碍子株式会社 Conductivity sensor and conductivity measurement method
WO2023149572A1 (en) * 2022-02-07 2023-08-10 日本碍子株式会社 Electrical conductivity measuring method
WO2023149571A1 (en) * 2022-02-07 2023-08-10 日本碍子株式会社 Electrical conductivity measuring method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121428A (en) 2003-10-15 2005-05-12 Alps Electric Co Ltd Liquid concentration sensor
JP2009229390A (en) 2008-03-25 2009-10-08 Toppan Printing Co Ltd Dielectric sensor and hardening degree measurement method using it
US20100089131A1 (en) 2004-11-12 2010-04-15 Niksa Andrew J MEMS-based sensor for lubricant analysis
WO2011065340A1 (en) 2009-11-25 2011-06-03 出光興産株式会社 Measurement method of degradation/alteration degree of lubricant oil and measurement device thereof
WO2014112227A1 (en) 2013-01-18 2014-07-24 ソニー株式会社 Electrical characteristic measurement device
JP2015040841A (en) 2013-08-23 2015-03-02 株式会社前川製作所 Apparatus for measuring solid phase rate of solid-liquid two-phase fluid, cooling system, and solid phase rate measurement method
JP2015083987A (en) 2008-04-15 2015-04-30 パナソニックヘルスケアホールディングス株式会社 Particle measurement apparatus and particle measurement method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005121428A (en) 2003-10-15 2005-05-12 Alps Electric Co Ltd Liquid concentration sensor
US20100089131A1 (en) 2004-11-12 2010-04-15 Niksa Andrew J MEMS-based sensor for lubricant analysis
JP2009229390A (en) 2008-03-25 2009-10-08 Toppan Printing Co Ltd Dielectric sensor and hardening degree measurement method using it
JP2015083987A (en) 2008-04-15 2015-04-30 パナソニックヘルスケアホールディングス株式会社 Particle measurement apparatus and particle measurement method
WO2011065340A1 (en) 2009-11-25 2011-06-03 出光興産株式会社 Measurement method of degradation/alteration degree of lubricant oil and measurement device thereof
WO2014112227A1 (en) 2013-01-18 2014-07-24 ソニー株式会社 Electrical characteristic measurement device
JP2015040841A (en) 2013-08-23 2015-03-02 株式会社前川製作所 Apparatus for measuring solid phase rate of solid-liquid two-phase fluid, cooling system, and solid phase rate measurement method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Huan L. Lee,The Handbook of Dielectric Analysis and Cure Monitoring,Lambient Technologies LLC,2017年

Also Published As

Publication number Publication date
JP2019028012A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
JP7071723B2 (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
US7550979B2 (en) System and method for measuring conductivity of fluid
JP5871237B2 (en) Soil moisture state identification device and method
EP2405263B1 (en) Analysis of a dielectric medium
US9500735B2 (en) Method for calibrating a conductivity measuring cell
RU2017109736A (en) METHODS AND ANALYTES DETECTION SYSTEMS
US20150346132A1 (en) Apparatus for identifying a value of a property of a fluid which is to be measured, method for operating an apparatus for identifying a value of a property of a fluid which is to be measured, and method for manufacturing an apparatus for identifying a value of a property of a fluid which is to be measured
US20200141789A1 (en) Capacitive measuring method, and filling level measuring device
US3287637A (en) High frequency current means including capacitive probe members for determining the electrical resistance of a semiconductor layer
Rustomji et al. Thin-film electrochemical sensor electrode for rapid evaluation of electrolytic conductivity, cyclic voltammetry, and temperature measurements
Aldosky et al. A new system for measuring electrical conductivity of water as a function of admittance
CN105758902A (en) Water content measuring probe based on PCB and electric field marginal effect, and manufacturing method of water content measuring probe
Bera et al. A modified Schering bridge for measurement of the dielectric parameters of a material and the capacitance of a capacitive transducer
Golnabi et al. Investigation of water electrical parameters as a function of measurement frequency using cylindrical capacitive sensors
Lage et al. Bench system for iron ore moisture measurement
JP5917583B2 (en) Impedance measuring method, impedance measuring device
JPH04110618A (en) Liquid level sensor
TWI425211B (en) Electrochemical test strip and electrochemical test method
KR101188161B1 (en) Electronic device measuring method and electronic device measuring apparatus
KR100968896B1 (en) Apparatus for measurement of complex capacitance
Fendri et al. Investigation of interdigital sensor geometry for oil quality measurement
JP4007484B2 (en) Resistivity measuring method and resistivity meter
JP7093924B2 (en) Non-contact measurement system
RU2377552C2 (en) Device for measurement of humidity
KR101020534B1 (en) Portable Four-Point Probe for Sheet Resistance Measurement with the Dual Configuration Method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200305

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200721

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220426

R150 Certificate of patent or registration of utility model

Ref document number: 7071723

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150