JP7093924B2 - Non-contact measurement system - Google Patents

Non-contact measurement system Download PDF

Info

Publication number
JP7093924B2
JP7093924B2 JP2018135373A JP2018135373A JP7093924B2 JP 7093924 B2 JP7093924 B2 JP 7093924B2 JP 2018135373 A JP2018135373 A JP 2018135373A JP 2018135373 A JP2018135373 A JP 2018135373A JP 7093924 B2 JP7093924 B2 JP 7093924B2
Authority
JP
Japan
Prior art keywords
measurement
measured
contact
container
capacitance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018135373A
Other languages
Japanese (ja)
Other versions
JP2020012740A (en
Inventor
史郎 岩田
直人 今若
健一 野村
美徳 堀井
洋史 牛島
良作 鍛冶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Shimane Prefecture
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Shimane Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Shimane Prefecture filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2018135373A priority Critical patent/JP7093924B2/en
Publication of JP2020012740A publication Critical patent/JP2020012740A/en
Application granted granted Critical
Publication of JP7093924B2 publication Critical patent/JP7093924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、非接触測定システムに関し、詳しくは、液体またはゲルを含む物質を測定対象として、その導電性の有無や導電率を測定する非接触測定システムに関する。 The present invention relates to a non-contact measurement system, and more particularly to a non-contact measurement system for measuring the presence or absence of conductivity and conductivity of a substance containing a liquid or gel as a measurement target.

従来から、液体状の食品や薬品を製造する場合、物質の溶液濃度が所望の値から外れることはたとえば異物混入や調合比の変調などの製造工程における異変を意味するため、その溶液濃度の変化が品質を表していると言え、その溶液濃度は厳密に管理される必要があることが知られている。 Conventionally, when manufacturing liquid foods and chemicals, the fact that the solution concentration of the substance deviates from the desired value means a change in the manufacturing process such as contamination of foreign substances or modulation of the mixing ratio. It is known that the solution concentration needs to be strictly controlled.

このような溶液濃度の管理手法としては、例えば金属からなる一対のプローブを溶液に浸漬させ、プローブ間に流れる電流を測定して、導電率を検出することにより溶液濃度を測定する測定装置が知られている。この測定装置では、金属製のプローブを直接液体に浸漬させているので、測定対象の液体によっては、プローブが腐食し、精確な測定ができなくなるおそれがある。 As a method for controlling such a solution concentration, for example, a measuring device that measures a solution concentration by immersing a pair of probes made of metal in a solution, measuring the current flowing between the probes, and detecting the conductivity is known. Has been done. In this measuring device, since the metal probe is directly immersed in the liquid, the probe may corrode depending on the liquid to be measured, and accurate measurement may not be possible.

こうした問題に対し、金属製のプローブを樹脂によって完全にコーティングした導電率測定装置が提案されている(特許文献1参照)。この提案された導電率測定装置によれば、金属製のプローブ部分が測定対象の液体に直接触れないので、プローブ腐食の問題を回避することができる。 To solve these problems, a conductivity measuring device in which a metal probe is completely coated with a resin has been proposed (see Patent Document 1). According to the proposed conductivity measuring device, the problem of probe corrosion can be avoided because the metal probe portion does not come into direct contact with the liquid to be measured.

また、特許文献2には、二本一対の測定電極が2組設けられ、2組の測定電極による導電率信号とから補正係数を演算し、補正係数によってセル定数の変化を較正した導電率信号を表示する測定装置が開示されている。この構成によれば、測定電極の汚れによる測定誤差を低減し、高精度に測定することができる。 Further, in Patent Document 2, two sets of two pairs of measurement electrodes are provided, a correction coefficient is calculated from the conductivity signal of the two sets of measurement electrodes, and the change in the cell constant is calibrated by the correction coefficient. A measuring device for displaying the above is disclosed. According to this configuration, the measurement error due to the dirt on the measuring electrode can be reduced, and the measurement can be performed with high accuracy.

特開平11-304856号公報Japanese Unexamined Patent Publication No. 11-304856 特開平07-055744号公報Japanese Unexamined Patent Publication No. 07-055744

しかしながら、上述した構成では、いずれも結局は測定対象の液体に測定装置のセンサ部分を接触させなければならず、センサの浸漬による測定対象物の汚損の問題は依然として解消していない。 However, in any of the above configurations, the sensor portion of the measuring device must be brought into contact with the liquid to be measured in the end, and the problem of contamination of the measuring object due to immersion of the sensor has not been solved yet.

そこで本発明者らは、かかる問題を鋭意検討した結果、静電容量型センサを用いて測定対象に非接触で測定することにより、かかる測定対象物の汚損の問題を解消する非接触測定システムを提案するに至った。さらに本発明者らは、この非接触測定システムにおいて、静電容量型センサの静電容量値を測定する交流電圧の測定周波数に依存して、測定した結果得られる静電容量値もしくは規定となる静電容量値からの差分(以下、差分と表記する)が測定対象物の観測パラメータの変動に対応している領域が異なることを見出し、本発明に至った。 Therefore, as a result of diligent studies on such a problem, the present inventors have developed a non-contact measurement system that solves the problem of contamination of the measurement object by measuring the measurement object in a non-contact manner using a capacitance type sensor. I came up with a proposal. Further, in this non-contact measurement system, the present inventors have a capacitance value or a regulation obtained as a result of measurement depending on the measurement frequency of the AC voltage for measuring the capacitance value of the capacitance type sensor. We have found that the region where the difference from the capacitance value (hereinafter referred to as the difference) corresponds to the fluctuation of the observation parameter of the measurement object is different, and arrived at the present invention.

本発明の課題は、測定の目的、測定対象物の観測パラメータに応じた適切な測定周波数を設定することにより高感度および高精度な測定が可能な非接触測定システムを提供することにある。 An object of the present invention is to provide a non-contact measurement system capable of high-sensitivity and high-precision measurement by setting an appropriate measurement frequency according to an object of measurement and an observation parameter of an object to be measured.

上記の課題を解決するために、一実施形態に記載された非接触測定システムは、測定対象物を収容した被測定物用容器と、前記測定対象物とは接触せずに前記被測定物容器の近傍に接触状態または非接触状態で配置された静電容量型センサと、前記静電容量型センサと接続され、前記静電容量型センサに所定の測定周波数で交流電圧を印加することにより静電容量値を測定する測定装置とを備えた非接触測定システムであって、前記測定装置は、前記被測定物用容器に既知の濃度の溶液を収容して行われた予備測定において取得された静電容量値を記憶する記憶部と、前記被測定物用容器に収容された未知の濃度の溶液に対して前記測定周波数の交流電圧を印加して静電容量値を取得する測定部と、前記記憶部に記憶された静電容量値と、前記未知の濃度の溶液から取得された静電容量値との差分を算出し、算出された差分が許容範囲内であるかを判定する制御部と、前記制御部によって前記差分が許容範囲にないと判定された場合、警告を行う警告部と、を備え、前記測定対象物の観測パラメータの値の領域に応じて前記測定周波数を設定することを特徴とする。 In order to solve the above-mentioned problems, the non-contact measurement system described in one embodiment is for the object to be measured without contacting the container for the object to be measured containing the object to be measured and the object to be measured. By connecting a capacitance type sensor arranged in a contact state or a non-contact state in the vicinity of the container to the capacitance type sensor and applying an AC voltage to the capacitance type sensor at a predetermined measurement frequency. It is a non-contact measurement system including a measuring device for measuring a capacitance value, and the measuring device is acquired in a preliminary measurement performed by accommodating a solution having a known concentration in the container for an object to be measured. A storage unit that stores the capacitance value, and a measurement unit that acquires the capacitance value by applying an AC voltage of the measurement frequency to a solution of unknown concentration contained in the container for the object to be measured. , A control that calculates the difference between the capacitance value stored in the storage unit and the capacitance value obtained from the solution having an unknown concentration, and determines whether the calculated difference is within the allowable range. A unit and a warning unit that warns when the difference is determined to be out of the allowable range by the control unit are provided, and the measurement frequency is set according to a region of the value of the observation parameter of the measurement object. It is characterized by that.

他の一実施形態に記載された非接触測定システムは、測定対象物を収容した被測定物用容器と、前記測定対象物とは接触せずに前記被測定物容器の近傍に接触状態または非接触状態で配置された静電容量型センサと、前記静電容量型センサと接続され、前記静電容量型センサに所定の測定周波数で交流電圧を印加することにより静電容量値を測定する測定装置とを備えた非接触測定システムであって、前記測定装置は、1つの基準となる既知の濃度の溶液を前記被測定物用容器に収容した状態で行われた測定において取得された基準の静電容量からの、複数の既知の異なる濃度の溶液を前記被測定物用容器に収容した状態で行われた測定において取得された静電容量の差分を、測定に用いられた溶液の濃度ごとに、前記測定周波数に対応付けた基準の静電容量値差分変化モデルとして記憶する記憶部を備えることを特徴とする。 In the non-contact measurement system described in another embodiment, the container for a measured object containing the object to be measured is in contact with or not in contact with the object to be measured in the vicinity of the container to be measured without contacting the object to be measured. Measurement that measures the capacitance value by connecting the capacitance type sensor arranged in contact state and the capacitance type sensor and applying an AC voltage to the capacitance type sensor at a predetermined measurement frequency. A non-contact measurement system equipped with a device, wherein the measurement device is a reference obtained in a measurement performed in a state where a solution having a known concentration as a reference is contained in the container for an object to be measured. The difference in capacitance obtained in the measurement performed with a plurality of known solutions having different concentrations contained in the container for the object to be measured from the capacitance is calculated for each concentration of the solution used for the measurement. It is characterized in that it is provided with a storage unit for storing as a reference capacitance value difference change model associated with the measurement frequency .

本実施形態の非接触測定システムの構成例を示す図である。It is a figure which shows the structural example of the non-contact measurement system of this embodiment. 静電容量型センサ部の概略構成を示す図である。It is a figure which shows the schematic structure of the capacitance type sensor part. 本実施形態の非接触測定システムの構成例を示す機能ブロック図である。It is a functional block diagram which shows the structural example of the non-contact measurement system of this embodiment. 異なる3つの測定周波数においてKCl溶液の濃度変化に対する静電容量値(差分)の変化を表す図である。It is a figure which shows the change of the capacitance value (difference) with respect to the concentration change of the KCl solution at three different measurement frequencies. 補助電極400として接地接続された電極を用いた場合の非接触測定システムの等価回路を示す図である。It is a figure which shows the equivalent circuit of the non-contact measurement system when the electrode connected to the ground is used as an auxiliary electrode 400. 異なる各濃度のKCl溶液において、周波数の変化に対する規定静電容量値からの差分の変化の様子を表す図である。It is a figure which shows the state of the change of the difference from the specified capacitance value with respect to the change of frequency in the KCl solution of each different concentration.

以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.

図1は、本実施形態の非接触測定システムの構成例を示す図であり、図2は、静電容量型センサ部の概略構成を示す図である。本実施形態の非接触測定システムは、静電容量型センサ部100と、この静電容量型センサ部100に電気的に接続された測定装置200と、測定対象物の液体などが収容される被測定物用容器300と、補助電極400とを備えて構成されている。 FIG. 1 is a diagram showing a configuration example of the non-contact measurement system of the present embodiment, and FIG. 2 is a diagram showing a schematic configuration of a capacitance type sensor unit. In the non-contact measurement system of the present embodiment, the capacitance type sensor unit 100, the measuring device 200 electrically connected to the capacitance type sensor unit 100, the liquid of the object to be measured, and the like are accommodated. It is configured to include a container for measuring objects 300 and an auxiliary electrode 400.

本実施形態の非接触測定システムでは、被測定物用容器300内に測定対象物が収容された状態で、被測定物用容器300の近傍に接触状態または非接触状態で配置された静電容量型センサ100に対して、測定装置200により交流電圧を印加して非接触測定システム全体の静電容量値を測定することができる。本実施形態の非接触測定システムでは、この印加する交流電圧の周波数(測定周波数)を測定の目的、測定対象物に応じて適宜変更することにより、測定感度および測定精度の高い測定が可能となる。 In the non-contact measurement system of the present embodiment, the electrostatic capacity is arranged in contact or non-contact state in the vicinity of the container 300 for measurement while the object to be measured is housed in the container 300 for measurement. An AC voltage can be applied to the type sensor 100 by the measuring device 200 to measure the capacitance value of the entire non-contact measurement system. In the non-contact measurement system of the present embodiment, by appropriately changing the frequency (measurement frequency) of the applied AC voltage according to the purpose of measurement and the object to be measured, measurement with high measurement sensitivity and measurement accuracy becomes possible. ..

測定対象物としては、液体またはゲルを含む物質であればよく、例えば、食品・薬品や化学反応性溶液、高温溶液、乳濁/懸濁溶液などが挙げられる。測定対象物は被測定物用容器300内に収容される。 The object to be measured may be a substance containing a liquid or a gel, and examples thereof include foods / chemicals, chemically reactive solutions, high-temperature solutions, and emulsion / suspension solutions. The object to be measured is housed in the container 300 for the object to be measured.

静電容量型センサ部100は、被測定物用容器300の近傍に接触状態または非接触状態で配置された状態で被測定物用容器300内に導電性の物質が収容された場合に、収容された物質との間で静電容量を形成することができる公知の静電容量型センサを用いることができ、例えば、基材の片面に互いの櫛歯が対向するように形成された2つの櫛歯型電極や、基材の両面に互いに対向するように形成され、それぞれ面積が異なる非対称な2つの平板電極で構成された相互容量型の静電容量型センサとすることができる。 The capacitance type sensor unit 100 is housed when a conductive substance is housed in the device to be measured 300 in a state of being arranged in a contact state or a non-contact state in the vicinity of the container for the object to be measured 300. A known capacitance type sensor capable of forming a capacitance with the material can be used. For example, two sensors formed so that the comb teeth face each other on one side of the base material. It can be a mutual capacitance type capacitive sensor formed of a comb tooth type electrode or two asymmetric flat plate electrodes having different areas and formed so as to face each other on both sides of a base material.

静電容量型センサ部100で用いる基材は、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリイミドなどの材料で構成された薄膜フィルムとすることができる。また、静電容量型センサ部100で使用される検出電極は、例えば、銅、銀、金、アルミニウム、ニッケル、錫、カーボンなどの導電材料で構成することができ、これらの材料を用いてスクリーン印刷法などの印刷法、あるいは蒸着法やスパッタリング法など、種々の方法でセンサを形成することができる。 The base material used in the capacitance type sensor unit 100 can be, for example, a thin film made of a material such as polyethylene terephthalate, polyethylene naphthalate, or polyimide. Further, the detection electrode used in the capacitance type sensor unit 100 can be made of a conductive material such as copper, silver, gold, aluminum, nickel, tin, or carbon, and a screen using these materials can be used. The sensor can be formed by various methods such as a printing method such as a printing method, a vapor deposition method, and a sputtering method.

静電容量型センサ部100は、2つの電極の一方から他方に向かう電気力線で示される電界を利用して検出範囲を定めている。静電容量型センサ部100の検出範囲内に導電性を有する物体が入ると、当該物体により電気力線の一部が吸収されて静電容量型センサ部100の静電容量値が減少する。 The capacitance type sensor unit 100 defines a detection range by using an electric field indicated by electric lines of force from one of the two electrodes to the other. When an object having conductivity enters the detection range of the capacitance type sensor unit 100, a part of the electric lines of force is absorbed by the object and the capacitance value of the capacitance type sensor unit 100 decreases.

また、本実施形態に係る非接触測定システムでは、静電容量型センサ部100として、特許文献3に記載されるような静電容量型センサを用いた。具体的には、図2に示されるように、静電容量型センサ部100は、基材101と、基材101の第1の表面に形成された第1の電極1021と、基材101の第1の表面とは反対側の第2の表面に形成された第2の電極1022と、第1の表面において引き出されて第1の電極1021に電圧を印加する第1の引き出し配線1031と、第2の表面において引き出されて第2の電極1022に電圧を印加する第2の引き出し配線1032と、を含む。 Further, in the non-contact measurement system according to the present embodiment, a capacitance type sensor as described in Patent Document 3 is used as the capacitance type sensor unit 100. Specifically, as shown in FIG. 2, the capacitance type sensor unit 100 includes a base material 101, a first electrode 102 1 formed on the first surface of the base material 101, and a base material 101. The second electrode 102 2 formed on the second surface opposite to the first surface of the first surface, and the first lead-out wiring drawn out on the first surface to apply a voltage to the first electrode 102 1 . Includes 103 1 and a second lead-out wire 103 2 that is drawn out at the second surface and applies a voltage to the second electrode 102 2 .

本実施形態に係る静電容量型センサ部100では、第1の電極1021及び第2の電極1022は、それぞれ、第1の引き出し配線1031及び第2の引き出し配線1032を介して、測定部200に接続されている。 In the capacitance type sensor unit 100 according to the present embodiment, the first electrode 102 1 and the second electrode 102 2 are via the first lead-out wiring 103 1 and the second lead-out wiring 103 2 , respectively. It is connected to the measuring unit 200.

第1の電極1021及び第2の電極1022並びに第1の引き出し配線1031及び第2の引き出し配線1032は、例えば、銅、銀、金、アルミニウム、ニッケル、錫、カーボンなどの導電材料で構成することができ、スクリーン印刷法などの印刷法を用いて形成することができる。 The first electrode 102 1 and the second electrode 102 2 and the first lead wire 103 1 and the second lead wire 103 2 are conductive materials such as copper, silver, gold, aluminum, nickel, tin, and carbon. It can be formed by using a printing method such as a screen printing method.

例えば第1の電極1021をシグナル電極とし、第2の電極1022をグラウンド電極として、被測定物用容器300がシグナル電極である第1の電極1021側にある場合、グラウンド電極として機能する第2の電極1022の方が第1の電極1021よりも面積が大きくなるように構成されている。 For example, when the first electrode 102 1 is a signal electrode, the second electrode 102 2 is a ground electrode, and the container for the object to be measured 300 is on the side of the first electrode 102 1 which is a signal electrode, it functions as a ground electrode. The second electrode 102 2 is configured to have a larger area than the first electrode 102 1 .

測定装置200は、静電容量型センサ部100に対して所定の周波数で所定の振幅の交流電圧を印加して、静電容量型センサ部100を含む非接触測定システム全体の静電容量値を測定する。 The measuring device 200 applies an AC voltage having a predetermined amplitude at a predetermined frequency to the capacitance type sensor unit 100 to obtain a capacitance value of the entire non-contact measurement system including the capacitance type sensor unit 100. Measure.

本実施形態では、静電容量型センサ部100を被測定物用容器300の近傍に接触状態または非接触状態で配置する。具体的には、静電容量型センサ部100を被測定物用容器300に接触しないが近傍の位置に単に置くだけでもよいし、静電容量型センサ部100を被測定物用容器300に対して、例えば、貼付、スクリーン印刷法などの印刷法、あるいは蒸着法やスパッタリング法などにより、被測定物用容器300の被測定物が接する面とは反対側の表面上に静電容量型センサ部100を設けてもよい。 In the present embodiment, the capacitance type sensor unit 100 is arranged in the vicinity of the container for the object to be measured 300 in a contact state or a non-contact state. Specifically, the capacitance type sensor unit 100 may be simply placed at a position in the vicinity of the container 300 to be measured, although it does not come into contact with the container 300 to be measured, or the capacitance type sensor unit 100 may be placed with respect to the container 300 to be measured. Then, for example, by a printing method such as affixing or screen printing, a vapor deposition method, a sputtering method, or the like, the capacitance type sensor unit is placed on the surface of the container for the object to be measured 300 on the surface opposite to the surface in contact with the object to be measured. 100 may be provided.

図3は本実施形態の非接触測定システムの構成例を示す機能ブロック図である。測定装置200は、図3に示すように、所定の周波数で所定の振幅の交流電圧を印加する高周波電源201と、静電容量型センサ部100を含む非接触測定システム全体の静電容量値を測定する測定部202と、高周波電源201と測定部202と記憶部204とを適宜制御する制御部203と、測定した静電容量値などを記憶する記憶部204とを備えて構成される。測定装置200の高周波電源201と測定部202は、静電容量型センサ部100に接続される。 FIG. 3 is a functional block diagram showing a configuration example of the non-contact measurement system of the present embodiment. As shown in FIG. 3, the measuring device 200 obtains the capacitance value of the entire non-contact measurement system including the high-frequency power supply 201 that applies an AC voltage of a predetermined amplitude at a predetermined frequency and the capacitance type sensor unit 100. It is configured to include a measuring unit 202 for measurement, a control unit 203 for appropriately controlling the high frequency power supply 201, the measuring unit 202, and a storage unit 204, and a storage unit 204 for storing the measured capacitance value and the like. The high frequency power supply 201 and the measuring unit 202 of the measuring device 200 are connected to the capacitance type sensor unit 100.

高周波電源201は、制御部203に制御されて、接続された静電容量型センサ部100と測定部202とに所定の振幅の交流電圧を所定の周波数(測定周波数)で印加する。本実施形態の非接触測定システムでは、高周波電源201において印加する測定周波数によって、測定した結果得られる静電容量値(差分)が測定対象物の観測パラメータの変動に対応している領域(感度閾ともいう)が異なるので、この特性を活用して高感度かつ高精度の測定を行う設定を可能としている。 The high-frequency power supply 201 is controlled by the control unit 203 to apply an AC voltage having a predetermined amplitude to the connected capacitance type sensor unit 100 and the measurement unit 202 at a predetermined frequency (measurement frequency). In the non-contact measurement system of the present embodiment, the region (sensitivity threshold) in which the capacitance value (difference) obtained as a result of measurement corresponds to the fluctuation of the observation parameter of the measurement object depending on the measurement frequency applied in the high frequency power supply 201. (Also known as) is different, so it is possible to make settings for high-sensitivity and high-precision measurement by utilizing this characteristic.

図4は異なる3つの測定周波数において複数の濃度のKCl溶液の静電容量値(差分)を測定した結果を表す図である。例えば、図4によれば、測定周波数を10kHz、100kHz、1000kHzとした場合のそれぞれにおいて複数の濃度のKCl溶液(すなわち観測パラメータを変動させて)の静電容量値(差分)を測定しているが、その測定結果である静電容量値(差分)の変動が大きい領域は、測定周波数によって異なっていることが判る。具体的には、10kHzでは0.0001mMから0.01mMの付近において、100kHzでは0.001mMから0.5mMの付近において、1000kHzでは0.1mMから1mMの付近において、静電容量値(差分)が測定対象物の観測パラメータの変動によく対応しているといえる。 FIG. 4 is a diagram showing the results of measuring the capacitance values (differences) of KCl solutions having a plurality of concentrations at three different measurement frequencies. For example, according to FIG. 4, when the measurement frequencies are 10 kHz, 100 kHz, and 1000 kHz, the capacitance values (differences) of the KCl solutions having a plurality of concentrations (that is, the observation parameters are varied) are measured. However, it can be seen that the region where the fluctuation of the capacitance value (difference), which is the measurement result, is large differs depending on the measurement frequency. Specifically, the capacitance value (difference) is in the vicinity of 0.0001 mM to 0.01 mM at 10 kHz, in the vicinity of 0.001 mM to 0.5 mM at 100 kHz, and in the vicinity of 0.1 mM to 1 mM at 1000 kHz. It can be said that it corresponds well to the fluctuation of the observation parameters of the object to be measured.

図4に示す例では、それぞれの測定周波数について測定結果である静電容量値(差分)に変動がある領域を検出領域とすることができる。検出領域においては、検出上限と検出下限とにおける応答量の差である最大応答量が大きく、変動の傾きが大きいものが感度が高いと言える。 In the example shown in FIG. 4, the region where the capacitance value (difference), which is the measurement result, fluctuates for each measurement frequency can be set as the detection region. In the detection region, it can be said that the sensitivity is high when the maximum response amount, which is the difference between the response amounts between the upper limit of detection and the lower limit of detection, is large and the slope of fluctuation is large.

1つの態様では、制御部203は、高周波電源201における測定周波数を、測定対象物の観測パラメータの値領域に応じて設定する。測定対象物の観測パラメータの値領域とは、例えば、測定対象の濃度を観測パラメータとする場合に、濃度の値が存在すると推定される領域である。したがって、測定対象物の観測パラメータの値領域において、検出領域を有する測定周波数を用いることができる。さらには、測定対象物の観測パラメータの値領域において感度の高い検出領域を採用することが高感度および高精度な測定を実現する上で好ましい。 In one embodiment, the control unit 203 sets the measurement frequency in the high frequency power supply 201 according to the value region of the observation parameter of the measurement object. The value region of the observation parameter of the measurement target is, for example, a region in which the concentration value is estimated to exist when the concentration of the measurement target is used as the observation parameter. Therefore, a measurement frequency having a detection region can be used in the value region of the observation parameter of the measurement object. Furthermore, it is preferable to adopt a highly sensitive detection region in the value region of the observation parameter of the measurement object in order to realize highly sensitive and accurate measurement.

別の態様では、制御部203は、高周波電源201における測定周波数を、掃引させることができる。掃引させることによって、観測パラメータの値が推定できない場合に、より広い領域で測定を行うことができる。 In another aspect, the control unit 203 can sweep the measured frequency in the high frequency power supply 201. By sweeping, when the value of the observation parameter cannot be estimated, the measurement can be performed in a wider area.

図1に戻って、被測定物用容器300は、静電容量型センサ部100の近傍に接触状態または非接触状態で配置されたときに、静電容量型センサ部100と離間するように被測定物を保持する手段であり、例えば、透明スチロールケースやガラス、ポリ塩化ビニル、ポリテトラフルオロエチレンなどの導電性を有しない材料で構成することができる。本実施形態では、被測定物用容器300としてプール型の構成を例示しているが、例えば、被測定物を流入可能に構成された導管型等、その形状や大きさを含めて種々の形態を採ることができる。 Returning to FIG. 1, when the container 300 for an object to be measured is arranged in a contact state or a non-contact state in the vicinity of the capacitance type sensor unit 100, it is covered so as to be separated from the capacitance type sensor unit 100. It is a means for holding the measured object, and can be made of a non-conductive material such as a transparent styrene case, glass, polyvinyl chloride, or polytetrafluoroethylene. In the present embodiment, the pool type configuration is exemplified as the container 300 for the object to be measured, but various embodiments including the shape and size thereof, for example, a conduit type configured to allow the object to be measured to flow in, etc. Can be taken.

補助電極400は、被測定物容器300に隣接して配置される電極であり、静電容量型センサ部100の検出空間に干渉しないように静電容量型センサ部100とは十分離間して配置される。補助電極400は、接地接続された接地電極として構成してもよいし、接地接続されない浮遊電極として構成してもよい。補助電極400は必須の構成ではないが、測定装置200における測定の安定性、感度の向上を図ることができる点で有効であり、その構成も浮遊電極として構成するよりも接地電極として構成する方がこれらの効果を発揮するうえでより好ましい。 The auxiliary electrode 400 is an electrode arranged adjacent to the object container 300 to be measured, and is arranged sufficiently separated from the capacitance type sensor unit 100 so as not to interfere with the detection space of the capacitance type sensor unit 100. Will be done. The auxiliary electrode 400 may be configured as a ground electrode connected to the ground or as a floating electrode not connected to the ground. Although the auxiliary electrode 400 is not an indispensable configuration, it is effective in that the stability and sensitivity of the measurement in the measuring device 200 can be improved, and the configuration is also configured as a ground electrode rather than as a floating electrode. Is more preferable in exerting these effects.

図5は、補助電極400として接地電極を用いた場合の非接触測定システムの等価回路を示す図である。本実施形態の非接触測定システムは、高周波電源201に対し、静電容量型センサ部100において形成される静電容量Cmと、静電容量型センサ部100の2つの電極のそれぞれと測定対象物との間に形成される静電容量C1、C2と、導電性を有する測定対象物の抵抗値Rと、測定対象物と接地接続された補助電極400との間に形成される静電容量C3とが接続された構成となっている。 FIG. 5 is a diagram showing an equivalent circuit of a non-contact measurement system when a ground electrode is used as the auxiliary electrode 400. In the non-contact measurement system of the present embodiment, the capacitance C m formed in the capacitance type sensor unit 100, each of the two electrodes of the capacitance type sensor unit 100, and the measurement target are measured with respect to the high frequency power supply 201. The capacitances C 1 and C 2 formed between the object and the resistance value R of the object to be measured having conductivity and the static electrode 400 formed between the object to be measured and the auxiliary electrode 400 connected to the ground. It is configured to be connected to the electric capacity C 3 .

図5に示すように、本実施形態の非接触測定システムの等価回路は、高周波電源201に測定対象物の形成するCR成分が接続された構成であるので、高周波電源201の周波数に対して測定対象物の物性による依存特性をもつと考えられる。本発明者らは、この依存特性が測定対象物の溶液濃度にあることを見出し、測定対象物の濃度を高感度かつ高精度に測定する以下の測定手法を提案している。 As shown in FIG. 5, since the equivalent circuit of the non-contact measurement system of the present embodiment has a configuration in which the CR component formed by the object to be measured is connected to the high frequency power supply 201, the measurement is performed with respect to the frequency of the high frequency power supply 201. It is considered to have dependent characteristics depending on the physical properties of the object. The present inventors have found that this dependent characteristic lies in the solution concentration of the object to be measured, and have proposed the following measurement method for measuring the concentration of the object to be measured with high sensitivity and high accuracy.

本実施形態の非接触測定システムは、測定装置200における測定周波数を変えると観測パラメータである濃度についての感度閾が変化する特性を利用して、測定の目的、測定対象物やその濃度に応じた適切な周波数を設定することにより、高感度かつ高精度な測定が可能となる。本実施形態の非接触測定システムの測定手法について以下に説明する。 The non-contact measurement system of the present embodiment utilizes the characteristic that the sensitivity threshold for the concentration, which is an observation parameter, changes when the measurement frequency in the measuring device 200 is changed, according to the purpose of measurement, the object to be measured, and its concentration. By setting an appropriate frequency, highly sensitive and highly accurate measurement becomes possible. The measurement method of the non-contact measurement system of the present embodiment will be described below.

(第1の測定手法)
まず、上記非接触測定システムにおける第1の測定手法について説明する。この測定手法は、測定対象物の濃度変化や異物混入などの定性的な評価を行うことを目的として測定対象物の濃度域に応じた適切な周波数に固定して測定を行う手法である。
(First measurement method)
First, the first measurement method in the non-contact measurement system will be described. This measurement method is a method of measuring by fixing the frequency to an appropriate frequency according to the concentration range of the object to be measured for the purpose of qualitatively evaluating changes in the concentration of the object to be measured and contamination of foreign substances.

この測定手法では、測定対象物の測定の前に、被測定物用容器300に既知の所定濃度の溶液を収容した状態で静電容量値の測定を行う(予備測定)。予備測定において、制御部203は、高周波電源201における測定周波数を固定した状態で、測定部202により既知の濃度の溶液を測定対象物として測定して取得した静電容量値を記憶部204に記憶しておく。既知の所定濃度の溶液は基準濃度とされ、その時の静電容量値と共に、記憶部204に記憶される。 In this measurement method, before the measurement of the object to be measured, the capacitance value is measured in a state where a solution having a known predetermined concentration is contained in the container 300 for the object to be measured (preliminary measurement). In the preliminary measurement, the control unit 203 stores the capacitance value obtained by measuring the solution of a known concentration as the measurement object by the measurement unit 202 in the storage unit 204 with the measurement frequency of the high frequency power supply 201 fixed. I will do it. A solution having a known predetermined concentration is set as a reference concentration, and is stored in the storage unit 204 together with the capacitance value at that time.

次に、被測定物用容器300に濃度が未知の測定対象物を収容した状態で測定を行う。制御部203は、高周波電源201における測定周波数を先ほどと同じ周波数に固定した状態で、測定部202により静電容量値を取得する。 Next, the measurement is performed with the object to be measured having an unknown concentration contained in the container 300 for the object to be measured. The control unit 203 acquires the capacitance value by the measurement unit 202 in a state where the measurement frequency of the high frequency power supply 201 is fixed to the same frequency as before.

制御部203は、記憶部204に記憶されている静電容量値と取得した静電容量値との差分を算出する。算出した差分が、許容範囲内であるか否かを判定する。 The control unit 203 calculates the difference between the capacitance value stored in the storage unit 204 and the acquired capacitance value. It is determined whether or not the calculated difference is within the allowable range.

制御部203は、算出した差分が許容範囲内でないと判定した場合は、図示しない警告手段などによって警告を行う。警告は、警告音(警告音声)や警告表示(警告ランプ)を用いる態様がある。 When the control unit 203 determines that the calculated difference is not within the allowable range, the control unit 203 gives a warning by a warning means (not shown) or the like. The warning may include a warning sound (warning voice) or a warning display (warning lamp).

判定の結果の通知は、許容範囲内でない場合にのみ警告する態様でもよいが、許容範囲内である場合に、正常であることを知らせる表示を行う態様でもよい。 The notification of the result of the determination may be a mode of warning only when it is not within the permissible range, or may be a mode of displaying that it is normal when it is within the permissible range.

制御部203において、測定を行う頻度を上げることにより、検出した差分が許容範囲を外れた場合に素早く検出できるので、検出精度の向上を図ることができる。 By increasing the frequency of measurement in the control unit 203, it is possible to quickly detect when the detected difference is out of the permissible range, so that the detection accuracy can be improved.

この測定手法によれば、測定対象物の濃度変化や異物混入などの定性的な評価を高感度にかつ素早く行うことができる。 According to this measurement method, qualitative evaluations such as changes in the concentration of the object to be measured and contamination of foreign substances can be performed with high sensitivity and quickly.

(第2の測定手法)
本実施形態の非接触測定システムにおける第2の測定手法は、測定対象物の濃度の値など定量的な評価を行うことを目的として、測定対象物の濃度域に応じた適切な周波数に固定して測定を行う手法である。
(Second measurement method)
The second measurement method in the non-contact measurement system of the present embodiment is fixed at an appropriate frequency according to the concentration range of the measurement target for the purpose of quantitatively evaluating the value of the concentration of the measurement target. It is a method of measuring.

この測定手法では、測定対象物の測定の前に、2種類以上の既知の濃度の溶液について各濃度の溶液をそれぞれ被測定物用容器300に収容した状態でそれぞれ測定を行い、得られた2つ以上の静電容量値を測定に用いた溶液の濃度と組み合わせて2組以上のデータを記憶部204に記憶しておく(予備測定)。予備測定における測定周波数は、測定対象物の推定濃度に応じた検出感度を有する1つ以上の周波数を選択することができる。2種類以上の既知の濃度の溶液についての測定は、実際の測定の際に全ての種類について行ってもよいし、工場出荷時に所定の1つ以上の濃度を除く溶液について測定を行い、実際の測定の際に残りの1つ以上の濃度の溶液について測定を行なってもよい。例えば、既知の濃度の数が2種類の場合は、非接触測定システムの出荷時に1種類を測定し、実際の対象物測定の際に残りの1種類を測定するか、非接触測定システムの出荷時には測定を行わず、実際の対象物測定の際に全2種類を測定してよい。また例えば、既知の濃度の数が3種類場合は、非接触測定システムの出荷時に1種類を測定し、実際の対象物測定の際に残りの2種類を測定するか、非接触測定システムの出荷時に2種類を測定し、実際の対象物測定の際に残りの1種類を測定するか、非接触測定システムの出荷時には測定を行わず、実際の対象物測定の際に全3種類を測定してもよい。 In this measurement method, before the measurement of the object to be measured, two or more kinds of solutions having known concentrations are measured in a state where the solutions of each concentration are housed in the container 300 for the object to be measured, respectively, and the obtained 2 is obtained. Two or more sets of data are stored in the storage unit 204 by combining one or more capacitance values with the concentration of the solution used for the measurement (preliminary measurement). As the measurement frequency in the preliminary measurement, one or more frequencies having detection sensitivity according to the estimated concentration of the object to be measured can be selected. The measurement for two or more kinds of known concentration solutions may be performed for all kinds at the time of actual measurement, or the measurement is performed for the solution excluding one or more predetermined concentrations at the time of shipment from the factory, and the actual measurement is performed. At the time of measurement, the measurement may be performed on the remaining solution having one or more concentrations. For example, if the number of known concentrations is two, one is measured at the time of shipment of the non-contact measurement system, and the remaining one is measured at the time of actual object measurement, or the non-contact measurement system is shipped. Sometimes the measurement is not performed, and all two types may be measured at the time of actual object measurement. For example, when the number of known concentrations is three, one type is measured at the time of shipment of the non-contact measurement system, and the remaining two types are measured at the time of actual object measurement, or the non-contact measurement system is shipped. Sometimes two types are measured and the remaining one is measured when actually measuring the object, or when the non-contact measurement system is shipped, no measurement is performed and all three types are measured when actually measuring the object. You may.

次に、被測定物用容器300に濃度が未知の測定対象物を収容した状態で測定を行う。制御部203は、高周波電源201における測定周波数を固定した状態で、測定部202により静電容量値を取得する。固定した状態の測定周波数は、予備測定の際に用いた1つ以上の周波数から選択することができる。この手法では、測定周波数を固定して測定を行うので素早く静電容量値を取得することが可能である。 Next, the measurement is performed with the object to be measured having an unknown concentration contained in the container 300 for the object to be measured. The control unit 203 acquires the capacitance value by the measurement unit 202 in a state where the measurement frequency of the high frequency power supply 201 is fixed. The fixed measurement frequency can be selected from one or more frequencies used in the preliminary measurement. In this method, since the measurement is performed with the measurement frequency fixed, it is possible to quickly acquire the capacitance value.

取得した静電容量値が、予備測定において記憶された2つ以上の静電容量値の範囲の値である場合は、取得した静電容量値に対応する濃度を内挿により求める。取得した静電容量値が、予備測定において記憶された2つ以上の静電容量値の範囲にない場合は、2つ以上の静電容量値から予想される濃度を外挿により求める。 When the acquired capacitance value is a value in the range of two or more capacitance values stored in the preliminary measurement, the concentration corresponding to the acquired capacitance value is obtained by interpolation. If the acquired capacitance value is not within the range of the two or more capacitance values stored in the preliminary measurement, the concentration expected from the two or more capacitance values is obtained by extrapolation.

このように、本測定手法においては、測定対象物の濃度の値など定量的な評価を高感度にかつ素早く行うことができる。 As described above, in this measurement method, quantitative evaluation such as the value of the concentration of the object to be measured can be performed with high sensitivity and quickly.

(第3の測定手法)
本実施形態の非接触測定システムにおける第3の測定手法は、測定対象物の濃度変化や異物混入などの定性的な評価を行うことを目的として測定周波数を固定せずに掃引して測定を行う手法である。
(Third measurement method)
The third measurement method in the non-contact measurement system of the present embodiment performs measurement by sweeping without fixing the measurement frequency for the purpose of qualitatively evaluating changes in the concentration of the object to be measured and contamination of foreign matter. It is a method.

この測定手法では、測定対象物の測定の前に、被測定物用容器300に既知の濃度の溶液を収容した状態で静電容量値の測定を行う(予備測定)。予備測定において、制御部203は、高周波電源201における測定周波数を掃引させながら、測定部202により既知の濃度の溶液を測定対象物として測定して取得した静電容量値を記憶部204に記憶しておく。既知の濃度の溶液は基準濃度とされ、その時の静電容量値は測定周波数に対応付けられて基準の静電容量値変化モデル(周波数特性)として記憶部204に記憶される。 In this measurement method, before the measurement of the object to be measured, the capacitance value is measured with a solution having a known concentration contained in the container 300 for the object to be measured (preliminary measurement). In the preliminary measurement, the control unit 203 stores the capacitance value obtained by measuring the solution of a known concentration as the measurement object by the measurement unit 202 in the storage unit 204 while sweeping the measurement frequency of the high frequency power supply 201. Keep it. A solution having a known concentration is set as a reference concentration, and the capacitance value at that time is associated with the measurement frequency and stored in the storage unit 204 as a reference capacitance value change model (frequency characteristic).

次に、被測定物用容器300に測定対象物を収容した状態で測定を行う。制御部203は、高周波電源201における測定周波数を掃引させながら、測定部202により静電容量値を取得する。取得した静電容量値は測定周波数に対応付けて測定した静電容量値変化モデルとして記憶部204に記憶する。この手法では周波数を掃引させて静電容量値を取得するので、より高精度な値を取得できる。 Next, the measurement is performed with the object to be measured contained in the container 300 for the object to be measured. The control unit 203 acquires the capacitance value by the measurement unit 202 while sweeping the measurement frequency of the high frequency power supply 201. The acquired capacitance value is stored in the storage unit 204 as a capacitance value change model measured in association with the measurement frequency. In this method, the frequency is swept to acquire the capacitance value, so that a more accurate value can be acquired.

制御部203は、予備測定において記憶された基準の静電容量値変化モデルと測定した静電容量値変化モデルとをフィッティングして、両者が一致するか否かを判定する。一致するか否かはある程度の誤差を考慮して判定される。 The control unit 203 fits the reference capacitance value change model stored in the preliminary measurement and the measured capacitance value change model, and determines whether or not they match. Whether or not they match is determined by considering some error.

両者が一致する場合は、濃度変化がなかった、または異物混入がなかったと判定できる。一方で、両者が一致しない場合は、濃度変化が発生した、または異物混入があったと判定できる。 If both match, it can be determined that there is no change in concentration or no foreign matter is mixed. On the other hand, if the two do not match, it can be determined that the concentration has changed or that foreign matter has been mixed.

判定の結果、第1の測定手法と同様に、図示しない警告手段などによって、必要に応じて警告等をすることができる。 As a result of the determination, as in the first measurement method, a warning or the like can be given as necessary by a warning means (not shown) or the like.

このように、本測定手法においては、測定対象物の濃度変化や異物混入などの定性的な評価を高感度かつ高精度に行うことができる。 As described above, in this measurement method, it is possible to perform qualitative evaluation such as change in concentration of the object to be measured and contamination of foreign matter with high sensitivity and high accuracy.

(第4の測定手法)
本実施形態の非接触測定システムにおける第4の測定手法は、測定対象物の濃度の値など定量的な評価を行うことを目的として測定周波数を固定せずに掃引させて測定を行う手法である。
(Fourth measurement method)
The fourth measurement method in the non-contact measurement system of the present embodiment is a method of performing measurement by sweeping without fixing the measurement frequency for the purpose of quantitatively evaluating the value of the concentration of the object to be measured. ..

この測定手法では、測定対象物の測定の前に、1つの基準となる既知の濃度の溶液および複数の既知の異なる濃度の溶液についてそれぞれの濃度の溶液を被測定物用容器300に収容した状態で測定を行い、測定に用いた溶液の濃度ごとに、取得した静電容量値の基準の静電容量値からの差分をその測定周波数に対応付けて基準の静電容量値差分変化モデル(周波数特性)として記憶部204に記憶しておく(予備測定)。複数の種類の既知の濃度の溶液についての測定は、実際の測定の際に全ての種類について行ってもよいし、工場出荷時に所定の1つ以上を除く濃度の溶液について行い、実際の測定の際に残りの1つ以上の濃度の溶液について行ってもよい。 In this measurement method, before the measurement of the object to be measured, a solution having a known concentration as a reference and a solution having a plurality of known different concentrations are contained in a container 300 for a measured object. For each concentration of the solution used for the measurement, the difference from the reference capacitance value of the acquired capacitance value is associated with the measurement frequency and the reference capacitance value difference change model (frequency). It is stored in the storage unit 204 as a characteristic) (preliminary measurement). Measurements for a plurality of types of known concentrations may be performed for all types during the actual measurement, or may be performed for a solution having a concentration other than one or more predetermined at the time of shipment from the factory, and the actual measurement may be performed. It may be done with the remaining one or more concentrations of solution.

次に、被測定物用容器300に測定対象物を収容した状態で測定を行う。制御部203は、高周波電源201における測定周波数を掃引させながら、測定部202により静電容量値を取得する。 Next, the measurement is performed with the object to be measured contained in the container 300 for the object to be measured. The control unit 203 acquires the capacitance value by the measurement unit 202 while sweeping the measurement frequency of the high frequency power supply 201.

取得した静電容量値を周波数に対応付けてプロットし、予備測定において記憶された基準の静電容量値変化モデルにフィッティングする。フィッティングの結果、一番フィットするモデルがどの濃度の溶液を測定したものかに基づいて測定対象物の濃度を推定することができる。 The acquired capacitance value is plotted in association with the frequency and fitted to the reference capacitance value change model stored in the preliminary measurement. As a result of fitting, the concentration of the object to be measured can be estimated based on the concentration of the solution measured by the model that fits best.

図6は、各濃度のKCl溶液の周波数変化に対する静電容量値の差分の変化のモデル(周波数特性)を表す図である。例えば、図6に示すように、測定対象物としてKCl溶液を用いた場合、周波数変化に対する静電容量値の差分の変化は、図6に示すように各濃度ごとに変化の形状が異なる。図6の例では、基準とする溶液としてKClを含有する前の蒸留水を用い、KClを含有する前の蒸留水での静電容量値との差分を周波数変化に対して示している。したがって、制御部203は、測定して得られた測定対象物であるKCl溶液の周波数変化に対する静電容量値の差分の変化の形状がどのモデルに近いかに基づいて測定対象物であるKCl溶液の濃度を推定することができる。この手法によれば、より多くの測定点において静電容量値を測定することになるので、より精度が高い測定をすることができるといえる。 FIG. 6 is a diagram showing a model (frequency characteristic) of the change in the difference in capacitance value with respect to the frequency change of the KCl solution having each concentration. For example, as shown in FIG. 6, when a KCl solution is used as a measurement object, the change in the difference in capacitance value with respect to the frequency change has a different shape for each concentration as shown in FIG. In the example of FIG. 6, distilled water before containing KCl is used as a reference solution, and the difference from the capacitance value in the distilled water before containing KCl is shown with respect to the frequency change. Therefore, the control unit 203 of the KCl solution, which is the measurement target, is based on which model the shape of the change in the difference in the capacitance value with respect to the frequency change of the KCl solution, which is the measurement target, is close to. The concentration can be estimated. According to this method, the capacitance value is measured at more measurement points, so that it can be said that the measurement can be performed with higher accuracy.

このように、本測定手法においては、測定対象物の濃度の値など定量的な評価を高感度かつ高精度に行うことができる。 As described above, in this measurement method, quantitative evaluation such as the value of the concentration of the object to be measured can be performed with high sensitivity and high accuracy.

100 静電容量型センサ部
200 測定装置
201 高周波電源
202 測定部
203 制御部
204 記憶部
300 被測定物用容器
400 補助電極
100 Capacitance type sensor unit 200 Measuring device 201 High frequency power supply 202 Measuring unit 203 Control unit 204 Storage unit 300 Container for measured object 400 Auxiliary electrode

Claims (8)

測定対象物を収容した被測定物用容器と、
前記測定対象物とは接触せずに前記被測定物容器の近傍に接触状態または非接触状態で配置された静電容量型センサと、
前記静電容量型センサと接続され、前記静電容量型センサに所定の測定周波数で交流電圧を印加することにより静電容量値を測定する測定装置とを備えた非接触測定システムであって、
前記測定装置は、前記被測定物用容器に既知の濃度の溶液を収容して行われた予備測定において取得された静電容量値を記憶する記憶部と、
前記被測定物用容器に収容された未知の濃度の溶液に対して前記測定周波数の交流電圧を印加して静電容量値を取得する測定部と、
前記記憶部に記憶された静電容量値と、前記未知の濃度の溶液から取得された静電容量値との差分を算出し、算出された差分が許容範囲内であるかを判定する制御部と、
前記制御部によって前記差分が許容範囲にないと判定された場合、警告を行う警告部と、を備え、
前記測定対象物の観測パラメータの値の領域に応じて前記測定周波数を設定することを特徴とする非接触測定システム。
A container for the object to be measured that houses the object to be measured,
Capacitance type sensors arranged in contact or non-contact near the container for the object to be measured without contacting the object to be measured.
A non-contact measurement system provided with a measuring device connected to the capacitance type sensor and measuring a capacitance value by applying an AC voltage to the capacitance type sensor at a predetermined measurement frequency.
The measuring device includes a storage unit that stores a capacitance value acquired in a preliminary measurement performed by accommodating a solution having a known concentration in the container for an object to be measured.
A measuring unit that obtains a capacitance value by applying an AC voltage at the measurement frequency to a solution of unknown concentration contained in the container for the object to be measured.
A control unit that calculates the difference between the capacitance value stored in the storage unit and the capacitance value obtained from the solution having an unknown concentration, and determines whether the calculated difference is within the allowable range. When,
A warning unit for giving a warning when the control unit determines that the difference is not within the allowable range is provided.
A non-contact measurement system characterized in that the measurement frequency is set according to a region of values of observation parameters of the measurement object.
記測定装置は、前記測定周波数を掃引させながら前記測定を行うことを特徴とする請求項1に記載の非接触測定システム。 The non-contact measurement system according to claim 1 , wherein the measuring device performs the measurement while sweeping the measurement frequency. 測定対象物を収容した被測定物用容器と、A container for the object to be measured that houses the object to be measured,
前記測定対象物とは接触せずに前記被測定物用容器の近傍に接触状態または非接触状態で配置された静電容量型センサと、Capacitance type sensors arranged in contact or non-contact near the container for the object to be measured without contacting the object to be measured.
前記静電容量型センサと接続され、前記静電容量型センサに測定周波数を掃引しながら交流電圧を印加することにより静電容量値を測定する測定装置とを備えた非接触測定システムであって、It is a non-contact measurement system provided with a measuring device connected to the capacitance type sensor and measuring the capacitance value by applying an AC voltage to the capacitance type sensor while sweeping the measurement frequency. ,
前記測定装置は、1つの基準となる既知の濃度の溶液を前記被測定物用容器に収容した状態で行われた測定において取得された基準の静電容量からの、複数の既知の異なる濃度の溶液を前記被測定物用容器に収容した状態で行われた測定において取得された静電容量の差分を、測定に用いられた溶液の濃度ごとに、前記測定周波数に対応付けた基準の静電容量値差分変化モデルとして記憶する記憶部を備えることを特徴とする非接触測定システム。The measuring device has a plurality of known different concentrations from the reference capacitance obtained in the measurement performed with the solution of the known concentration as one reference contained in the container for the object to be measured. The difference in capacitance obtained in the measurement performed with the solution contained in the container for the object to be measured is the reference electrostatic associated with the measurement frequency for each concentration of the solution used in the measurement. A non-contact measurement system characterized by having a storage unit for storing as a capacitance value difference change model.
前記静電容量型センサの検出空間に干渉しない位置において、前記測定対象物とは接触せずに前記被測定物容器に近接して配置された補助電極をさらに備えたことを特徴とする請求項1から3のいずれか一項に記載の非接触測定システム。 A claim characterized by further provided with an auxiliary electrode arranged in the vicinity of the container for the object to be measured without contacting the object to be measured at a position not interfering with the detection space of the capacitance type sensor. The non-contact measurement system according to any one of Items 1 to 3 . 前記補助電極は浮遊電極であることを特徴とする請求項に記載の非接触測定システム。 The non-contact measurement system according to claim 4 , wherein the auxiliary electrode is a floating electrode. 前記補助電極は接地電極であることを特徴とする請求項に記載の非接触測定システム。 The non-contact measurement system according to claim 4 , wherein the auxiliary electrode is a ground electrode. 前記測定装置は、前記測定結果に基づいて前記測定対象物の定性的評価を行うことを特徴とする請求項1または2に記載の非接触測定システム。 The non-contact measurement system according to claim 1 or 2 , wherein the measuring device performs a qualitative evaluation of the measurement object based on the measurement result. 前記測定装置は、前記測定結果に基づいて前記測定対象物の定量的評価を行うことを特徴とする請求項に記載の非接触測定システム。 The non-contact measurement system according to claim 3 , wherein the measuring device quantitatively evaluates the object to be measured based on the result of the measurement.
JP2018135373A 2018-07-18 2018-07-18 Non-contact measurement system Active JP7093924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018135373A JP7093924B2 (en) 2018-07-18 2018-07-18 Non-contact measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018135373A JP7093924B2 (en) 2018-07-18 2018-07-18 Non-contact measurement system

Publications (2)

Publication Number Publication Date
JP2020012740A JP2020012740A (en) 2020-01-23
JP7093924B2 true JP7093924B2 (en) 2022-07-01

Family

ID=69169734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018135373A Active JP7093924B2 (en) 2018-07-18 2018-07-18 Non-contact measurement system

Country Status (1)

Country Link
JP (1) JP7093924B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008230A1 (en) 2003-07-16 2005-01-27 Tokyo Gas Co., Ltd. Device for judging types of liquid in container and control method therefor
JP2006208234A (en) 2005-01-28 2006-08-10 Ngk Spark Plug Co Ltd Liquid concentration detector
JP2013205034A (en) 2012-03-27 2013-10-07 Honda Motor Co Ltd Particulate matter detector
JP2015225047A (en) 2014-05-29 2015-12-14 愛三工業株式会社 Liquid sensor
US20170336337A1 (en) 2016-05-18 2017-11-23 Tty-Säätiö Method and apparatus for monitoring a heterogeneous mixture
JP2017211329A (en) 2016-05-27 2017-11-30 Kyb株式会社 Fluid identification device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH083478B2 (en) * 1986-09-29 1996-01-17 宏郎 加藤 Internal quality sorting method for fruits and vegetables of arbitrary shape
JP3348006B2 (en) * 1998-02-16 2002-11-20 タツタ電線株式会社 Fluid detection sensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005008230A1 (en) 2003-07-16 2005-01-27 Tokyo Gas Co., Ltd. Device for judging types of liquid in container and control method therefor
JP2006208234A (en) 2005-01-28 2006-08-10 Ngk Spark Plug Co Ltd Liquid concentration detector
JP2013205034A (en) 2012-03-27 2013-10-07 Honda Motor Co Ltd Particulate matter detector
JP2015225047A (en) 2014-05-29 2015-12-14 愛三工業株式会社 Liquid sensor
US20170336337A1 (en) 2016-05-18 2017-11-23 Tty-Säätiö Method and apparatus for monitoring a heterogeneous mixture
JP2017211329A (en) 2016-05-27 2017-11-30 Kyb株式会社 Fluid identification device

Also Published As

Publication number Publication date
JP2020012740A (en) 2020-01-23

Similar Documents

Publication Publication Date Title
US7550979B2 (en) System and method for measuring conductivity of fluid
JP5757798B2 (en) Non-invasive capacitive fill level measuring device and method for filling medium in a container
US8642287B2 (en) Cell-impedance sensors
US6894502B2 (en) pH sensor with internal solution ground
US7772854B2 (en) High-conductivity contacting-type conductivity measurement
EP2405263B1 (en) Analysis of a dielectric medium
JPH03502728A (en) Method and device for measuring dielectric constant in substances
RU2017109736A (en) METHODS AND ANALYTES DETECTION SYSTEMS
JP2017534064A5 (en)
JP2020008591A (en) Electrode device for integrity of test element
US5489849A (en) High accuracy calibration-free electrical parameter measurements using differential measurement with respect to immersion depth
JP7071723B2 (en) Circuit for measuring complex permittivity, device for measuring complex permittivity, and method for measuring complex permittivity
JP7093924B2 (en) Non-contact measurement system
US7343798B1 (en) Method, apparatus, hardware, and computer program product for a liquid level sensor
CA2862183C (en) Low-conductivity contacting-type conductivity measurement
US5872454A (en) Calibration procedure that improves accuracy of electrolytic conductivity measurement systems
US11035893B2 (en) Sensor device
TWI591329B (en) Test strip with capacity of sensing humidity
JP2001174436A (en) Method and apparatus for measuring ion concentration
RU2708682C1 (en) Contact sensor of specific electric conductivity of liquid
US20220229006A1 (en) A sensor device
KR100968896B1 (en) Apparatus for measurement of complex capacitance
CN216792325U (en) Liquid conductivity detection device
JP7048043B2 (en) Non-contact measurement system
JP3372173B2 (en) Capacitance type level measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220609

R150 Certificate of patent or registration of utility model

Ref document number: 7093924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150