WO2023218580A1 - 加工光学系、加工装置及び加工方法 - Google Patents

加工光学系、加工装置及び加工方法 Download PDF

Info

Publication number
WO2023218580A1
WO2023218580A1 PCT/JP2022/019995 JP2022019995W WO2023218580A1 WO 2023218580 A1 WO2023218580 A1 WO 2023218580A1 JP 2022019995 W JP2022019995 W JP 2022019995W WO 2023218580 A1 WO2023218580 A1 WO 2023218580A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
optical system
light
interference
processing light
Prior art date
Application number
PCT/JP2022/019995
Other languages
English (en)
French (fr)
Inventor
志強 柳
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to PCT/JP2022/019995 priority Critical patent/WO2023218580A1/ja
Publication of WO2023218580A1 publication Critical patent/WO2023218580A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/359Working by laser beam, e.g. welding, cutting or boring for surface treatment by providing a line or line pattern, e.g. a dotted break initiation line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • B23K26/364Laser etching for making a groove or trench, e.g. for scribing a break initiation groove

Definitions

  • the present disclosure relates to, for example, the technical field of a processing optical system, a processing device, and a processing method for processing an object.
  • Patent Document 1 describes a processing device that can process an object such as an aircraft body so that riblets are formed on the surface of the object. Such processing devices are required to process objects appropriately.
  • the first optical system branches processing light from a light source into a first processing light and a second processing light, and divides the second processing light into a plurality of second processing lights.
  • a second optical system that forms interference fringes on the surface of the object by irradiating the object with the plurality of second processing lights from different incident directions; and the first processing light from the first optical system.
  • a processing optical system comprising: a third optical system that irradiates the interference region on the surface of the object where the interference fringes are formed.
  • the second processed light is divided into a plurality of second processed lights among the first and second processed lights that are pulsed lights whose emission periods overlap at least partially with each other, and the divided an interference fringe forming optical system that forms interference fringes on the surface of the object by irradiating the object with the plurality of second processing lights from different incident directions;
  • a processing optical system is provided that includes an irradiation optical system that irradiates toward an interference region.
  • a processing device that performs riblet processing on the surface of an object using light from a light source, the processing optical system described above and the processing optical system forming riblets on the surface of the object.
  • a processing device is provided that includes a positional relationship changing device that changes the positional relationship between the interference fringes and the surface of the object.
  • a processing method for performing riblet processing on the surface of an object using light from a light source comprising branching processing light from the light source into first processing light and second processing light. and dividing the second processing light into a plurality of second processing lights, and irradiating the object with the plurality of split second processing lights from different incident directions, thereby forming interference fringes on the surface of the object. and irradiating the first processing light toward an interference region on the surface of the object where the interference fringes are formed.
  • FIG. 1 is a cross-sectional view schematically showing the overall structure of the processing system according to the present embodiment.
  • FIG. 1 is a system configuration diagram showing the system configuration of a processing system according to the present embodiment.
  • FIG. 2 is a perspective view showing a riblet structure.
  • FIG. 3 is a cross-sectional view (a cross section taken along line III-III' in FIG. 3A) showing the riblet structure.
  • FIG. 3 is a top view showing the riblet structure.
  • FIG. 3 is a plan view showing an example of interference fringes.
  • FIG. 2 is a configuration diagram showing the configuration of a processing optical system according to the present embodiment.
  • the fluence distribution of processing light in this embodiment in which the first processing light is irradiated in a superimposed manner onto an interference region where interference fringes are formed with a plurality of second processing lights, and the cross section of the riblet structure formed by the processing light of this embodiment Show shape. It is a graph showing the relationship between the fluence of light and the processing amount of a workpiece.
  • the fluence distribution of processing light in this embodiment in which the first processing light is irradiated in a superimposed manner onto an interference region where interference fringes are formed with a plurality of second processing lights, and the cross section of the riblet structure formed by the processing light of this embodiment Show shape. indicates the ideal waveform. Two waveforms (a fundamental frequency waveform and a double frequency waveform) obtained by Fourier transforming an ideal waveform are shown.
  • FIG. 6 is an explanatory diagram that summarizes in a table the manner of irradiation in the irradiation area, interference area, and overlapping area in five examples of processing optical systems. It is an explanatory view showing the structure of a processing optical system of a first example. In the special beam splitter of the processing optical system of the first example, the mode of the second processing light on the splitting surface, the mode of the second processing light on the reflecting surface, and the mode of the second processing light on the passing surface are shown. It is an explanatory diagram. It is an explanatory view showing the structure of a processing optical system of a second example.
  • the mode of the second processing light on the splitting surface, the mode of the second processing light on the reflecting surface, and the mode of the second processing light on the passing surface are shown. It is an explanatory diagram. It is an explanatory view showing the structure of a processing optical system of a third example. In the third example of the special beam splitter of the processing optical system, the mode of the second processing light on the splitting surface, the mode of the second processing light on the reflecting surface, and the mode of the second processing light on the passing surface are shown. It is an explanatory diagram. It is an explanatory view showing the structure of a processing optical system of a fourth example.
  • the mode of the second processing light on the splitting surface, the mode of the second processing light on the reflecting surface, and the mode of the second processing light on the passing surface are shown. It is an explanatory diagram. It is an explanatory view showing the structure of a processing optical system of a fifth example. In the special beam splitter of the processing optical system of the fifth example, the mode of the second processing light on the splitting surface, the mode of the second processing light on the reflecting surface, and the mode of the second processing light on the passing surface are shown. It is an explanatory diagram. It is an explanatory view showing the structure of a processing optical system of a modification.
  • each of the X-axis direction and the Y-axis direction is a horizontal direction (that is, a predetermined direction within a horizontal plane), and the Z-axis direction is a vertical direction (that is, a direction perpendicular to the horizontal plane). (and substantially in the vertical direction).
  • the rotation directions (in other words, the tilt directions) around the X-axis, Y-axis, and Z-axis are referred to as the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction, respectively.
  • the Z-axis direction may be the direction of gravity.
  • the XY plane may be set in the horizontal direction.
  • FIG. 1 is a sectional view schematically showing the structure of the processing system SYS of this embodiment.
  • FIG. 2 is a system configuration diagram showing the system configuration of the processing system SYS of this embodiment.
  • the processing system SYS includes a processing device 1, a processing light source 2, and a control device 3.
  • the processing device 1 is attached as an end effector to an articulated robot 102 attached to a self-propelled drive unit 101, and placed on a stage 13 using processing light EL from a processing light source 2 via a beam transmission optical system 103.
  • a processing head 11 that irradiates processing light EL toward the surface of the workpiece W is provided.
  • the processing head 11 is controlled by a control device 3 along with a self-propelled drive unit 101, an articulated robot 102, and a processing light source 2.
  • the beam transmission optical system 103 transmits the processing light EL from the processing light source 2 that supplies the processing light EL to the processing head 11.
  • the processing head 11 directs the processing light EL from the beam transmission optical system 103 toward the surface of the workpiece W placed on the stage 13 based on a command from the control device 3 (see arrow R in FIG. 1). Irradiate with EL.
  • the articulated robot 102 changes the position and orientation of the processing head 11 with respect to the surface of the workpiece W based on a command from the control device 3, and adjusts the position and processing where the processing light EL is irradiated onto the surface of the workpiece W. The direction of irradiation of the light EL onto the surface is changed.
  • the self-propelled drive unit 101 changes the position and orientation of the articulated robot 102 and, by extension, the processing head 11 attached to the articulated robot 102 with respect to the surface of the workpiece W, based on a command from the control device 3. , the position at which the processing light EL is irradiated onto the surface of the workpiece W and the direction in which the processing light EL is irradiated onto the surface are changed. Note that details of the structure of the processing head 11 will be described later with reference to FIGS. 2 to 6.
  • the processing device 1 is capable of processing a workpiece W, which is an object to be processed (which may also be referred to as a base material), under the control of the control device 3.
  • the workpiece W may be made of, for example, a metal, an alloy (such as duralumin), a semiconductor (such as silicon), a resin, or a CFRP. (Carbon Fiber Reinforced Plastic), paint (as an example, a paint layer applied to a base material), glass, or any other material. It may also be an object made of material.
  • the surface of the work W may be coated with a film made of a material different from that of the work W.
  • the surface of the film coated on the surface of the workpiece W may be the surface to be processed by the processing device 1.
  • the processing apparatus 1 may be considered to process the work W (that is, process the work W coated with the film).
  • the processing device 1 irradiates the workpiece W with processing light EL in order to process the workpiece W.
  • the processing light EL may be any type of light as long as the workpiece W can be processed by being irradiated onto the workpiece W. In this embodiment, the description will proceed using an example in which the processing light EL is a laser beam, but the processing light EL may be a different type of light than a laser beam.
  • the wavelength of the processing light EL may be any wavelength as long as the workpiece W can be processed by being irradiated with the processing light EL.
  • the processing light EL may be visible light or invisible light (for example, at least one of infrared light, ultraviolet light, extreme ultraviolet light, etc.).
  • the processing light EL includes pulsed light (for example, pulsed light with a pulse width of picoseconds or less). This pulse width is the emission time of pulsed light. However, the processing light EL does not need to include pulsed light. In other words, the processing light EL may be continuous light.
  • the processing light EL is supplied from the processing light source 2 that generates the processing light EL to the processing apparatus 1 via an unillustrated light propagation member (for example, at least one of an optical fiber and a mirror).
  • the processing device 1 irradiates the workpiece W with processing light EL supplied from the processing light source 2 .
  • the processing light source 2 may include a laser light source (for example, a semiconductor laser such as a laser diode (LD)).
  • the laser light source may include at least one of a fiber laser, a CO2 laser, a YAG laser, an excimer laser, and the like.
  • the processing light source 2 may include an arbitrary light source (for example, at least one of an LED (Light Emitting Diode), a discharge lamp, etc.).
  • the processing apparatus 1 may perform a removal process to remove a part of the workpiece W by irradiating the workpiece W with the processing light EL.
  • the processing apparatus 1 may perform removal processing to remove a part of the workpiece W using the principle of thermal processing. Specifically, when the surface of the workpiece W is irradiated with the processing light EL, the processing light EL is applied to the irradiated part of the workpiece W that is irradiated with the processing light EL and to the adjacent part of the workpiece W that is close to the irradiated part. energy is transferred.
  • the processing light EL When the heat caused by the energy of the processing light EL is transferred, the materials constituting the irradiated portion and the adjacent portion of the workpiece W are melted by the heat caused by the energy of the processing light EL.
  • the molten material scatters as droplets.
  • the molten material is evaporated by heat caused by the energy of the processing light EL.
  • the processing light EL may include pulsed light or continuous light with a pulse width of milliseconds or more.
  • the processing apparatus 1 may perform removal processing to remove a part of the workpiece W using the principle of non-thermal processing (for example, ablation processing). That is, the processing apparatus 1 may perform non-thermal processing (for example, ablation processing) on the workpiece W.
  • non-thermal processing for example, ablation processing
  • the materials forming the irradiated portion and the adjacent portion of the workpiece W instantly evaporate and scatter. That is, the materials constituting the irradiated portion and the adjacent portion of the workpiece W evaporate and scatter within a sufficiently shorter time than the thermal diffusion time of the workpiece W.
  • the material constituting the irradiated portion and the adjacent portion of the workpiece W may be emitted from the workpiece W as at least one of ions, atoms, radicals, molecules, clusters, and solid pieces.
  • the processing light EL may include pulsed light with a pulse width of picoseconds or less (or, depending on the case, nanoseconds or femtoseconds or less).
  • pulsed light with a pulse width of picoseconds or less or in some cases, nanoseconds or femtoseconds or less
  • the materials constituting the irradiated part and the adjacent part of the workpiece W undergo a molten state. Sometimes it sublimates without any change. Therefore, it is possible to process the workpiece W while minimizing the influence on the workpiece W due to heat caused by the energy of the processing light EL.
  • the processing device 1 may form the riblet structure RB (see FIG. 3, etc.) on the surface of the workpiece W by performing removal processing.
  • the processing to form the riblet structure RB may be referred to as riblet processing. That is, the processing device 1 may perform riblet processing on the surface of the workpiece W.
  • the riblet structure RB may include an uneven structure capable of reducing resistance to fluid on the surface of the workpiece W (particularly, at least one of frictional resistance and turbulent frictional resistance). For this reason, the riblet structure RB may be formed on the workpiece W having a member installed (in other words, located) in the fluid. In other words, the riblet structure RB may be formed on the workpiece W having a member that moves relative to the fluid.
  • the term "fluid" used herein means a medium (for example, at least one of gas and liquid) flowing toward the surface of the workpiece W. For example, if the surface of the workpiece W moves relative to the medium while the medium itself is stationary, this medium may be referred to as a fluid.
  • the state in which the medium is stationary may mean a state in which the medium is not moving relative to a predetermined reference object (for example, the ground surface).
  • the workpiece W When the workpiece W is formed with a riblet structure RB including a structure capable of reducing resistance to fluid on the surface of the workpiece W (in particular, at least one of frictional resistance and turbulent frictional resistance), the workpiece W is It becomes easier to move relative to the fluid. Therefore, the resistance that prevents movement of the workpiece W relative to the fluid is reduced, leading to energy savings. In other words, it is possible to manufacture an environmentally friendly work W, such as a turbine blade, for example. This will enable us to meet Goal 7 "Affordable and Clean Energy" of the Sustainable Development Goals (SDGs) led by the United Nations, and target 7.3 "Improve global energy efficiency by 2030.” can contribute to "doubling the improvement rate.”
  • SDGs Sustainable Development Goals
  • the riblet structure RB may be formed on a work W different from the turbine blade.
  • An example of the workpiece W on which the riblet structure RB is formed is at least one of a turbine vane, a fan, an impeller, a propeller, and a pump, which may be referred to as stationary blades.
  • a fan is a member (typically a rotating body) that is used for a blower or the like and forms a flow of gas.
  • An impeller is a member used in a pump, for example, and is an impeller that is rotatable so that the pump generates force to send out (or suck out) fluid.
  • a propeller is a member (typically a rotating body) that converts rotational force output from a prime mover including at least one of an engine and a motor into propulsive force for a moving body including at least one of an airplane and a ship. It is.
  • a workpiece W on which the riblet structure RB is formed is a casing (for example, a fuselage or a ship) of a moving body including at least one of an airplane, a ship, and the like.
  • the riblet structure RB will be explained with reference to FIGS. 3A, 3B, and 3C.
  • the riblet structure RB has a convex structure 81 extending along the first direction along the surface of the workpiece W, and a convex structure 81 extending along the first direction along the surface of the workpiece W.
  • the structure may include a plurality of structures arranged along a second direction intersecting the first direction. That is, the riblet structure RB may include a structure in which a plurality of convex structures 81, each of which is formed so as to extend along the first direction, are lined up along the second direction.
  • the riblet structure RB includes a structure in which a plurality of convex structures 81 extending along the X-axis direction are arranged along the Y-axis direction.
  • the convex structures 81 are structures that protrude along a direction intersecting both a first direction (the direction in which the convex structures 81 extend) and a second direction (the direction in which the convex structures 81 are arranged). It is the body.
  • the convex structure 81 is a structure protruding from the surface of the workpiece W. In the examples shown in FIGS. 3A, 3B, and 3C, the convex structure 81 is a structure that protrudes along the Z-axis direction. Note that the convex structure 81 may include a protrusion-shaped structure that protrudes from the surface of the workpiece W.
  • the convex structure 81 may include a convex structure that is convex with respect to the surface of the workpiece W.
  • the convex structure 81 may include a mountain-shaped structure that forms a mountain on the surface of the workpiece W.
  • a groove structure 82 is formed between adjacent convex structures 81, which is depressed compared to the surroundings. Therefore, in the riblet structure RB, the groove structure 82 extends along the first direction along the surface of the workpiece W, and the groove structure 82 extends along the second direction along the surface of the workpiece W and intersects with the first direction. It may include a structure in which multiple structures are arranged. That is, the riblet structure RB may include a structure in which a plurality of groove structures 82, each of which is formed so as to extend along the first direction, are lined up along the second direction. In the examples shown in FIGS.
  • the riblet structure RB includes a structure in which a plurality of groove structures 82 extending along the X-axis direction are arranged along the Y-axis direction.
  • the groove structure 82 may also be referred to as a groove-like structure.
  • the convex structure 81 may be considered to be a structure protruding from the groove structure 82.
  • the convex structure 81 may be considered to be a structure that forms at least one of a protrusion-shaped structure, a convex-shaped structure, and a mountain-shaped structure between two adjacent groove structures 82 .
  • the groove structure 82 may be considered to be a structure recessed from the convex structure 81.
  • the groove structure 82 may be considered to be a structure that forms a groove-shaped structure between two adjacent convex structures 81. Note that the groove structure 82 may also be referred to as a groove-like structure.
  • the height H_rb of at least one of the plurality of convex structures 81 may be set to a height determined according to the pitch P_rb of the convex structures 81.
  • the height H_rb of at least one of the plurality of convex structures 81 may be equal to or less than the pitch P_rb of the convex structures 81.
  • the height H_rb of at least one of the plurality of convex structures 81 may be less than half the pitch P_rb of the convex structures 81.
  • the pitch P_rb of the convex structures 81 may be larger than 5 micrometers and smaller than 200 micrometers. In this case, the height H_rb of at least one of the plurality of convex structures 81 may be larger than 2.5 micrometers and smaller than 100 micrometers.
  • the processing apparatus 1 includes, in addition to the processing head 11 described above, a head drive system 12 (in the example of FIG. 1, an automatic It includes a running drive unit 101, an articulated robot 102), a stage 13, and a stage drive system 14.
  • the processing head 11 irradiates the workpiece W with processing light EL from the processing light source 2 .
  • the processing head 11 includes a processing optical system 15.
  • the processing head 11 irradiates the workpiece W with processing light EL via the processing optical system 15.
  • the processing optical system 15 may form the riblet structure RB on the surface of the workpiece W by forming interference fringes IS (see FIG. 4, etc.) on the surface of the workpiece W. Specifically, the processing optical system 15 divides the processing light EL from the processing light source 2 to generate a plurality of processing lights EL (in the example shown in FIG. 1, two processing lights EL), each with a different processing light EL. The workpiece W is irradiated from the incident direction. As a result, interference light is generated due to interference between the plurality of processing lights EL. In this case, the processing optical system 15 may be considered to substantially irradiate the workpiece W with interference light generated by interference of a plurality of processing lights EL.
  • interference fringes IS are formed on the surface of the workpiece W due to the interference light. Note that the detailed structure of the processing optical system 15 will be described in detail later with reference to FIG. 5 and the like, so a description thereof will be omitted here.
  • the interference fringes IS may be fringes having a bright portion IL and a dark portion ID.
  • the bright portion IL may include a portion of the interference fringes IS where the fluence is larger (that is, becomes higher) than a predetermined amount.
  • the bright portion IL may include a portion that is irradiated with a light portion of which the fluence of the interference light forming the interference fringes IS is greater than a predetermined amount.
  • the dark area ID may include a portion of the interference fringe IS where the fluence is smaller than a predetermined amount (that is, becomes lower).
  • the dark portion ID may include a portion that is irradiated with a light portion whose fluence is smaller than a predetermined amount of the interference light forming the interference fringes IS. Furthermore, the fluence in the bright portion IL may be greater than the fluence in the dark portion ID.
  • FIG. 4 further shows the relationship between the interference fringes IS and the riblet structure RB.
  • the bright portion IL may be used mainly to form the groove structure 82 described above.
  • the processing optical system 15 configures the riblet structure RB on the surface of the workpiece W by forming a bright part IL included in the interference fringes IS on the surface of the workpiece W and removing a part of the workpiece W.
  • a groove structure 82 may also be formed.
  • the processing optical system 15 forms a groove structure 82 on the surface of the workpiece W by irradiating the surface of the workpiece W with a light portion of the interference light that forms the bright portion IL and removing a part of the workpiece W. You can.
  • the processing optical system 15 removes a part of the workpiece W using the processing light EL that reaches the bright area IL (that is, using the light portion of the processing light EL that reaches the bright area IL).
  • a groove structure 82 may be formed on the surface of the workpiece W.
  • the bright portion IL extending along the direction in which the groove structures 82 extend (the X-axis direction in the example of FIG. 4) is It may include a plurality of stripes arranged along the pitch direction). That is, in the interference fringes IS, a plurality of bright parts IL extending along the direction in which the groove structures 82 extend (in the example of FIG. 4, the X-axis direction) are arranged in the direction in which the groove structures 82 are lined up (in the example of FIG. 4, the Y-axis direction ( The pattern may include stripes arranged along the stripe pitch direction).
  • the dark area ID may be used mainly to form the above-mentioned convex structure 81.
  • the processing optical system 15 forms a dark part ID included in the interference fringes IS on the surface of the workpiece W and removes a part of the workpiece W (or, depending on the case, does not remove a part of the workpiece W)
  • a convex structure 81 constituting the riblet structure RB may be formed on the surface of the workpiece W.
  • the processing optical system 15 forms a convex structure 81 on the surface of the workpiece W by irradiating the surface of the workpiece W with a light portion of the interference light that forms the dark area ID and removing a part of the workpiece W. You may.
  • the processing optical system 15 removes a part of the workpiece W using the processing light EL that reaches the dark part ID (that is, using the light part of the processing light EL that reaches the dark part ID).
  • a convex structure 81 may be formed on the surface.
  • the dark area ID extending along the direction in which the convex structures 81 extend (the X-axis direction in the example of FIG. 4) is
  • the pattern may include a plurality of stripes arranged along the direction (direction).
  • a plurality of dark portions ID extending along the direction in which the convex structures 81 extend (in the example of FIG. 4, the X-axis direction) It may include stripes arranged along the axial direction.
  • the head drive system 12 (self-propelled drive unit 101, articulated robot 102) operates at least one of the X-axis direction, Y-axis direction, and Z-axis direction under the control of the control device 3.
  • the processing head 11 is moved along.
  • the head drive system 12 moves the processing head 11 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction in addition to or in place of at least one of the X-axis direction, Y-axis direction, and Z-axis direction. You may let them.
  • the processing head 11 moves, the positional relationship between the stage 13 (furthermore, the workpiece W placed on the stage 13) and the processing head 11 changes.
  • the positional relationship between the interference area IA (see FIG. 4) where the processing head 11 forms interference fringes IS on the workpiece W, the stage 13, and the workpiece W changes.
  • the interference area IA can be moved on the workpiece W.
  • a workpiece W is placed on the stage 13.
  • the stage 13 does not have to hold the work W placed on the stage 13.
  • the stage 13 does not need to apply a holding force to the work W placed on the stage 13 to hold the work W.
  • the stage 13 may hold the work W placed on the stage 13. That is, the stage 13 may apply a holding force to the work W placed on the stage 13 to hold the work W.
  • the stage 13 may hold the work W by vacuum suction and/or electrostatic suction.
  • a jig for holding the work W may hold the work W, and the stage 13 may hold the jig holding the work W.
  • the stage drive system 14 moves the stage 13 under the control of the control device 3. Specifically, the stage drive system 14 moves the stage 13 with respect to the processing head 11. For example, the stage drive system 14 may move the stage 13 along at least one of the X-axis direction, Y-axis direction, Z-axis direction, ⁇ X direction, ⁇ Y direction, and ⁇ Z direction under the control of the control device 3. good.
  • moving the stage 13 along at least one of the ⁇ X direction, ⁇ Y direction, and ⁇ Z direction means moving the stage 13 along at least one of the ⁇ X direction, the ⁇ Y direction, and the ⁇ Z direction. may be regarded as equivalent to changing the attitude of at least one of the surroundings.
  • moving the stage 13 along at least one of the ⁇ X direction, ⁇ Y direction, and ⁇ Z direction means rotating (or rotationally moving) the stage 13 around at least one of the X axis, Y axis, and Z axis. may be considered to be equivalent to
  • the positional relationship between the stage 13 (furthermore, the workpiece W placed on the stage 13) and the processing head 11 changes. Furthermore, as a result of the processing between the stage 13 and the workpiece W, the positional relationship between the stage 13 and the workpiece W and the interference area IA (see FIG. 4) where the processing head 11 forms interference fringes IS on the workpiece W changes. In other words, the interference area IA moves on the workpiece W.
  • the processing system SYS changes the positional relationship between the workpiece W placed on the stage 13 and the processing head 11 by moving both the stage 13 and the processing head 11 under the control of the control device 3. You can. Further, the processing system SYS may move the interference fringes IS with respect to the workpiece W without moving the processing head 11 or the stage 13.
  • the control device 3 controls the operation of the processing system SYS. For example, the control device 3 generates processing control information for processing the workpiece W, and controls the processing device 1 based on the processing control information so that the workpiece W is processed according to the generated processing control information. You can. That is, the control device 3 may control the processing of the workpiece W.
  • the control device 3 may include, for example, a calculation device and a storage device.
  • the arithmetic device may include, for example, at least one of a CPU (Central Processing Unit) and a GPU (Graphics Processing Unit).
  • the control device 3 functions as a device that controls the operation of the processing system SYS by the arithmetic device executing a computer program.
  • This computer program is a computer program for causing the control device 3 (for example, an arithmetic device) to perform (that is, execute) an operation to be performed by the control device 3, which will be described later. That is, this computer program is a computer program for causing the control device 3 to function so as to cause the processing system SYS to perform the operations described below.
  • the computer program executed by the arithmetic device may be recorded in a storage device (that is, a recording medium) included in the control device 3, or may be stored in any storage device built into the control device 3 or externally attachable to the control device 3. It may be recorded on a medium (for example, a hard disk or a semiconductor memory). Alternatively, the arithmetic device may download the computer program to be executed from a device external to the control device 3 via the network interface.
  • a storage device that is, a recording medium
  • the arithmetic device may download the computer program to be executed from a device external to the control device 3 via the network interface.
  • the control device 3 does not need to be provided inside the processing system SYS.
  • the control device 3 may be provided as a server or the like outside the processing system SYS.
  • the control device 3 and the processing system SYS may be connected via a wired and/or wireless network (or a data bus and/or a communication line).
  • a wired network for example, a network using a serial bus interface represented by at least one of IEEE1394, RS-232x, RS-422, RS-423, RS-485, and USB may be used.
  • a network using a parallel bus interface may be used.
  • a network using an interface compliant with Ethernet typified by at least one of 10BASE-T, 100BASE-TX, and 1000BASE-T may be used.
  • a network using radio waves may be used.
  • An example of a network using radio waves is a network compliant with IEEE802.1x (for example, at least one of wireless LAN and Bluetooth (registered trademark)).
  • a network using infrared rays may be used.
  • a network using optical communication may be used as the wireless network.
  • the control device 3 and the processing system SYS may be configured to be able to transmit and receive various information via a network.
  • control device 3 may be capable of transmitting information such as commands and control parameters to the processing system SYS via a network.
  • the processing system SYS may include a receiving device that receives information such as commands and control parameters from the control device 3 via the network.
  • a first control device that performs some of the processing performed by the control device 3 is provided inside the processing system SYS, while a second control device that performs another part of the processing performed by the control device 3 is provided inside the processing system SYS.
  • the control device may be provided outside the processing system SYS.
  • a computation model that can be constructed by machine learning may be implemented in the control device 3 by a computation device executing a computer program.
  • An example of a calculation model that can be constructed by machine learning is a calculation model that includes a neural network (so-called artificial intelligence (AI)).
  • learning the computational model may include learning parameters (eg, at least one of weights and biases) of the neural network.
  • the control device 3 may control the operation of the processing system SYS using the calculation model. That is, the operation of controlling the operation of the processing system SYS may include the operation of controlling the operation of the processing system SYS using a calculation model.
  • the control device 3 may be equipped with an arithmetic model that has been constructed by offline machine learning using teacher data.
  • the calculation model installed in the control device 3 may be updated by online machine learning on the control device 3.
  • the control device 3 may use a calculation model installed in a device external to the control device 3 (that is, a device provided outside the processing system SYS) in addition to or in place of the calculation model installed in the control device 3. may be used to control the operation of the processing system SYS.
  • recording media for recording computer programs executed by arithmetic units include CD-ROM, CD-R, CD-RW, flexible disk, MO, DVD-ROM, DVD-RAM, DVD-R, DVD+R, At least one of optical disks such as DVD-RW, DVD+RW and Blu-ray (registered trademark), magnetic media such as magnetic tape, magneto-optical disks, semiconductor memories such as USB memory, and any other arbitrary medium capable of storing programs.
  • the recording medium may include a device capable of recording a computer program (for example, a general-purpose device or a dedicated device in which a computer program is implemented in an executable state in the form of at least one of software and firmware).
  • each process or function included in the computer program may be realized by a logical processing block that is realized within the control device 3 when the control device 3 (that is, a computer) executes the computer program, or It may be realized by hardware such as a predetermined gate array (FPGA, ASIC) included in the control device 3, or it may be realized by a mixture of logical processing blocks and partial hardware modules that realize some elements of the hardware. It may be realized in the form of
  • the processing optical system 15 includes a first optical system 16, a second optical system 17, and a third optical system 18, as shown in FIG.
  • the processing light EL generated by the processing light source 2 is branched into two processing lights EL by the first optical system 16, and one of the two is irradiated onto the workpiece W from the third optical system 18.
  • the second optical system 17 divides the other branched processing light EL to generate a plurality of processing lights EL (in the example shown in FIG.
  • the processing optical system 15 substantially irradiates the workpiece W with interference light generated by interference of a plurality of processing lights EL. In this way, the processing optical system 15 forms interference fringes IS caused by interference light on the surface of the workpiece W in the interference area IA by the second optical system 17, and also forms interference fringes IS caused by the interference light in the interference area IA from the third optical system 18.
  • the processing light EL is irradiated.
  • each processing light EL will be distinguished by being referred to as follows.
  • the processing light EL generated by the processing light source 2 is referred to as processing light EL0
  • the processing light EL0 that is branched by the first optical system 16 and directed to the third optical system 18 is referred to as first processing light EL1.
  • the processing light EL0 that is branched by the first optical system 16 and directed to the second optical system 17 is referred to as second processing light EL2
  • the second processing light EL2 is split by the second optical system 17 to work on the workpiece.
  • the light irradiated onto W is referred to as second processing light EL22.
  • the first processing light EL1 from the first optical system 16 that is irradiated onto the workpiece W by the third optical system 18 is referred to as first processing light EL11.
  • the first optical system 16 branches the processing light EL0 from the processing light source 2 to generate the first processing light EL1 and the second processing light EL2 as pulsed lights whose emission periods overlap at least partially. It can also be called a branched optical system.
  • the second optical system 17 irradiates the workpiece W with a plurality of second processing lights EL22 generated by dividing the second processing light EL2 from different incident directions, thereby forming interference fringes on the surface of the workpiece W. It can also be called an interference fringe forming optical system that forms an IS.
  • the third optical system 18 can also be called an irradiation optical system that irradiates the first processing light EL11 from the first processing light EL1 toward the interference region IA where the interference fringes IS are formed.
  • the processing optical system 15 forms interference fringes IS by irradiating the work W with the plurality of second processing lights EL22 from the second optical system 17 from different incident directions.
  • the number of the plurality of processing lights EL22 may be an integer of 2 or more as long as they form interference fringes IS.
  • the first processing light EL11 from the third optical system 18 is irradiated in addition to the interference area IA by the plurality of second processing lights EL22, compared to the comparative example in which the first processing light EL11 is not irradiated
  • the fluence distribution of the processing light changes in the interference region IA where the interference fringes IS are formed on the surface of the workpiece W.
  • FIG. 6A shows the fluence distribution of the processing light in the comparative example
  • FIG. 6B shows the fluence distribution of the processing light in the present embodiment.
  • the minimum fluence of processing light is higher than in the comparative example.
  • the minimum fluence may be the minimum value of the fluence of processing light in the dark area ID of the interference fringes IS.
  • the minimum fluence may be the minimum value of the fluence of processing light that reaches the dark area ID of the interference pattern IS.
  • the reason why the minimum fluence of this embodiment is larger than the minimum fluence of the comparative example is that the formation of interference fringes IS is achieved by irradiating the plurality of second processing lights EL22 and first processing lights EL11 in a superimposed manner.
  • One example of this is to provide the processing light with a light component that affects the fluence distribution without affecting the fluence distribution.
  • the processing optical system 15 irradiates the plurality of second processing lights EL22 and first processing lights EL11 in a superimposed manner to eliminate light components that do not affect the formation of the interference fringes IS but affect the fluence distribution. (so-called DC component of the fluence distribution of the interference fringes IS) is given to the interference light.
  • the processing optical system 15 irradiates a plurality of second processing lights EL22 and first processing lights EL11 in a superimposed manner, thereby controlling the contrast component of the fluence distribution that affects the formation of the interference fringes IS (that is, the density of the interference fringes IS).
  • the DC component of the fluence distribution of the interference fringes IS is given to the interference light without affecting the DC component of the fluence distribution of the interference fringes IS.
  • the processing optical system 15 applies the first processing to the plurality of second processing lights EL22 so as to give the interference light a light component that does not affect the formation of the interference fringes IS but affects the fluence distribution.
  • the light EL11 may be irradiated in an overlapping manner.
  • the processing optical system 15 superimposes the first processing light EL11 on the plurality of second processing lights EL22 so as to give the interference light a light component that increases the minimum fluence while not affecting the formation of the interference fringes IS. You may.
  • the first processing light EL11 (its fluence) that is superimposed on the plurality of second processing lights EL22 does not affect the formation of the interference fringes IS, but gives the interference light a light component that affects the fluence distribution.
  • the setting may be such that it is possible to do so.
  • the first processing light EL11 (its fluence) that is irradiated to overlap the plurality of second processing lights EL22 is based on at least one of the characteristics of the processing light EL0, the characteristics of the interference light, the characteristics of the workpiece W, and the characteristics of the riblet structure RB. may be determined.
  • the first processing light EL11 (its fluence) that is irradiated in a superimposed manner on the plurality of second processing lights EL22 is determined based on the results of an experiment or simulation in which the riblet structure RB is formed on the workpiece W by forming interference fringes IS. You can leave it there.
  • the tip of the convex structure 81 may have a flat shape. This is because, as described above, in the comparative example, the minimum fluence is relatively small. Therefore, as shown in FIG. 6A, in the comparative example, the fluence of at least a part of the dark part ID of the interference pattern IS is at the lower limit of the fluence at which the workpiece W can be processed (that is, a part of the workpiece W can be removed). There is a relatively high possibility that the value will be smaller than the value TH_lowest.
  • the tip of the convex structure 81 will have a flat shape. become higher.
  • the shape of the tip of the convex structure 81 is smaller than that of the workpiece. There is a possibility that the effect of reducing the resistance to fluid on the surface of W will be weakened.
  • the tip of the convex structure 81 is less likely to have a flat shape compared to the comparative example.
  • the minimum fluence is relatively large. Therefore, as shown in FIG. 6B, in this embodiment, there is a relative possibility that the fluence of at least a part of the dark part ID of the interference pattern IS becomes smaller than the lower limit value TH_lowest of the fluence that can process the workpiece W. becomes lower. In other words, there is a relatively high possibility that the fluence of at least a portion of the dark portion ID of the interference fringes IS will be set to a fluence at which the workpiece W can be processed.
  • the portion of the workpiece W where the dark portion ID of the interference fringes IS is formed is processed, and as a result, the shape of the tip of the convex structure 81 approaches an ideal shape (for example, a pointed shape) or The probability of matching becomes relatively high. That is, in this embodiment, the accuracy of the shape of the riblet structure RB is improved compared to the comparative example. As a result, in this embodiment, there is a relatively high possibility that a riblet structure RB having a relatively high effect of reducing the resistance to fluid on the surface of the workpiece W will be formed.
  • the processing apparatus 1 of the present embodiment can bring the shape of the riblet structure RB closer to or match the ideal shape compared to the comparative example.
  • the processing apparatus 1 can form a riblet structure RB having a shape that is close to or corresponds to an ideal shape compared to the comparative example.
  • the processing device 1 irradiates the plurality of second processing lights EL22 with the first processing light EL11 so that the shape of the riblet structure RB formed on the workpiece W is changed to the riblet structure formed in the comparative example.
  • the shape of the riblet structure RB is adjusted so that it has a predetermined shape that is closer to an ideal shape than the shape of RB.
  • the processing apparatus 1 can enjoy the effect of being able to appropriately process the workpiece W so as to form the riblet structure RB having a shape close to or matching the ideal shape.
  • the processing optical system 15 The first processing light EL11 (its fluence) that is irradiated to overlap the plurality of second processing lights EL22 may be set so that the fluence is set to be equal to or higher than the lower limit value TH_lowest.
  • the processing optical system 15 sets the first processing light EL11 (its fluence) to be irradiated over the plurality of second processing lights EL22 so that the minimum fluence of the processing light is set to a fluence that can process the workpiece W. You may.
  • the first processing light EL11 (its fluence) that is irradiated in a superimposed manner on the plurality of second processing lights EL22 may be set so that the minimum fluence of the processing light is a fluence at which the workpiece W can be processed. As a result, the above-mentioned effects can be appropriately enjoyed.
  • the relationship between the fluence of the light irradiated to the workpiece W and the processing amount of the workpiece W may vary depending on the fluence. may vary depending on. For example, depending on the characteristics of the workpiece W, as shown in FIG.
  • the first relationship between the fluence and the amount of machining of the workpiece W when the fluence of the machining light EL11 (fluence of the machining light EL11) is smaller than the predetermined threshold value Fth is that the fluence of the machining light (interference light) irradiated onto the workpiece W is greater than the predetermined threshold value Fth.
  • the second relationship between the fluence and the amount of machining of the workpiece W will be different from that in the case.
  • the fluence of the processing light changes across both the first range smaller than the predetermined threshold value Fth and the second range larger than the predetermined threshold value Fth, as shown in the upper part of FIG.
  • the processing amount in the first part of the workpiece W is irradiated with a light portion having a fluence smaller than a predetermined threshold value Fth of the light, and the light portion having a fluence larger than a predetermined threshold value Fth of the processing light is irradiated. This results in a different amount of machining from the second portion of the workpiece W.
  • the ratio of the increase in processing amount to the increase in fluence in the second relationship is larger than the ratio of the increase in processing amount to the increase in fluence in the first relationship.
  • the amount of processing at the first portion of the workpiece W that is irradiated with the light portion having a fluence smaller than the predetermined threshold value Fth of the processing light is the light having a fluence larger than the predetermined threshold value Fth of the processing light.
  • the amount of processing in the second portion of the workpiece W that is irradiated will be smaller than that of the second portion of the workpiece W that is irradiated.
  • the shape of the tip of the convex structure 81 is mainly formed by a light portion of the processing light that has a relatively small fluence (for example, a light portion irradiated to the dark area ID). may have a flat shape.
  • the processing optical system 15 irradiates the first processing light EL11 superimposed on the plurality of second processing lights EL22 so that the minimum fluence of the interference light becomes equal to or higher than the predetermined threshold value Fth. (its fluence) may be set.
  • the processing optical system 15 may irradiate the plurality of second processing lights EL22 so that the minimum fluence of the interference light is equal to or greater than a threshold value obtained by adding a predetermined margin to a predetermined threshold value Fth. 1 processing light EL11 (its fluence) may be set.
  • the processing optical system 15 superimposes the first processing light EL11 (its fluence) on the plurality of second processing lights EL22 so that the minimum fluence of the interference light is equal to or greater than the threshold set based on the predetermined threshold value Fth. ) may be set.
  • the tip of the convex structure 81 is mainly formed by a light portion of the processing light with a relatively small fluence (for example, a light portion irradiated to the dark area ID). The possibility that the shape will be an ideal shape becomes relatively high. As a result, the above-mentioned effects can be appropriately enjoyed.
  • the first relationship between the fluence and the amount of processing when the fluence of each processing light is smaller than a predetermined threshold is the same as when the fluence of each processing light is larger than a predetermined threshold. It has a characteristic that the second relationship between the fluence and the processing amount is different from the second relationship, and the ratio of the increase in the processing amount to the increase in the fluence of the processing light in the second relationship is the same as the processing amount in the first relationship.
  • the second optical system 17 controls the third optical system 18 so that the minimum fluence of the processing light that reaches the dark part of the interference fringes is greater than or equal to a predetermined threshold value.
  • the first processing light EL11 is set.
  • the processing light mode (waveform shape (hereinafter also referred to as ideal waveform Wi)) for obtaining an ideal shape is unlikely to be a beautiful sine waveform.
  • the ideal waveform Wi also becomes periodic. Therefore, the ideal waveform Wi can be represented by a plurality of sine waveforms by Fourier transformation. An example of this is shown in FIGS. 10A and 10B.
  • This FIG. 10A shows an ideal waveform Wi as an example, and FIG. 10B shows two waveforms (fundamental frequency waveform Wb, double frequency waveform Wd) obtained by Fourier transforming the ideal waveform Wi. . Therefore, the ideal waveform Wi in FIG. 10A is a superposition of the fundamental frequency waveform Wb and the double frequency waveform Wd in FIG. 10B.
  • the processing optical system 15 processes the workpiece W by forming interference fringes IS (hereinafter also referred to as interference fringes IS1) showing the fundamental frequency waveform Wb, and also forms interference fringes IS (hereinafter also referred to as interference fringes IS1) showing the double frequency waveform Wd.
  • interference fringes IS2 hereinafter also referred to as interference fringes IS2
  • a riblet structure RB having an ideal shape is formed.
  • the processing optical system 15 uses the interference fringes IS1 and IS2 to form the ideally shaped riblet structure RB, which forms the interference fringes IS that substantially exhibit the ideal waveform Wi. .
  • the processing optical system 15 can also be said to form interference fringes IS1 and IS2 instead of forming interference fringes IS showing the ideal waveform Wi. .
  • the processing optical system 15 adjusts the shape of the fundamental frequency waveform Wb and the n-times frequency waveform Wn to be superimposed on the fundamental frequency waveform Wb in accordance with the ideal waveform Wi set to form the desired riblet structure RB.
  • the number and shape may be set as appropriate.
  • the processing optical system 15 may superimpose at least one n-fold frequency waveform Wn obtained by Fourier transformation on the fundamental frequency waveform Wb obtained by Fourier transformation of the ideal waveform Wi. can.
  • the processing optical system 15 may superimpose two n-fold frequency waveforms Wn obtained by Fourier transformation on the fundamental frequency waveform Wb obtained by Fourier transformation of the ideal waveform Wi. Furthermore, the processing optical system 15 may superimpose three or more n-fold frequency waveforms Wn obtained by Fourier transform on the fundamental frequency waveform Wb obtained by Fourier transform of the ideal waveform Wi.
  • the processing optical system 15 branches the processing light EL0 from the processing light source 2 into the first processing light EL1 and the second processing light EL2 using the first optical system 16. Further, in the processing optical system 15, the second optical system 17 generates a fundamental frequency waveform Wb and a plurality of n-times frequency waveforms Wn as the second processing light EL22 from the second processing light EL2, and generates them in different incident directions. By irradiating the workpiece W with the irradiation light, interference fringes IS are formed for each frequency.
  • the third optical system 18 irradiates the first processing light EL1 as the first processing light EL11 onto the interference region IA where each interference fringe IS is formed, superimposed on each second processing light EL22. .
  • the processing optical system 15 properly processes the workpiece W using each interference fringe IS, and by superimposing each interference fringe IS, the processing optical system 15 can create a riblet with the same ideal shape as when using the ideal waveform Wi. Structure RB can be formed.
  • the period changes depending on the angle of the second processing light EL22 that interferes, the smaller the angle, the longer the period, and the larger the angle, the narrower (shorter) the period.
  • the amplitude of the interference fringes IS changes depending on the fluence of the plurality of second processing lights EL22. Therefore, the second optical system 17 can change at least one of the amplitude and the period of the interference fringes IS by changing the incident angle of the plurality of second processing lights EL22 to emit, thereby changing the fundamental frequency Interference fringes IS of waveform Wb and n-times frequency waveform Wn can be formed.
  • the second optical system 17 can adjust at least one of the amplitude and the period of the interference fringes IS by changing the incident angle of the plurality of second processing lights EL22 emitted.
  • the frequency waveform Wb and the n-times frequency waveform Wn can be made appropriate.
  • FIG. 11 shows a table summarizing the manner (formation) of the first processing light EL11 in the irradiation area RA, the interference fringe IS in the interference area IA, and the overlapping area OA (described later) in the processing area PA in five examples.
  • the processing area PA indicates an area where the riblet structure RB can be processed by the processing optical system 15 (processing head 11), that is, an area where the first processing light EL11 and the second processing light EL22 can be irradiated.
  • the area that can be irradiated is an area that can be irradiated with the first processing light EL11 and the second processing light EL22 at once (all at once), and the first processing light EL11 and the like can be irradiated by the galvanometer mirror 21 (see FIG. 12, etc.), which will be described later. and the sum of the areas irradiated with the first processing light EL11 and the processing light EL22 by scanning or sweeping (displacing the irradiation position) the second processing light EL22.
  • the processing area PA allows the workpiece W placed on the stage 13 to be exposed to the first processing light EL11 or the second processing light without relatively moving the stage 13 and the processing optical system 15 (processing head 11).
  • the processing area PA has a rectangular shape having sides extending in the X-axis direction and sides extending in the Y-axis direction. Further, in the processing optical system 15 (processing head 11), the area to which the first processing light EL11 is irradiated by the third optical system 18 is defined as an irradiation area RA.
  • the galvanometer mirror 21 is an interference fringe moving member that moves the position of the interference area IA in a direction intersecting, typically orthogonal to, the optical axis of the second optical system 17 with respect to the second optical system 17.
  • the galvanometer mirror 21 as the interference fringe moving member has a function of moving the position of the irradiation area RA in a direction that intersects with the optical axis of the second optical system 17, typically in a direction perpendicular to it.
  • this scanning range may be smaller than the processing area PA (only a part of the processing area PA is processed).
  • the processing area PA may be set smaller than the range in which the first processing light EL11 and the second processing light EL22 can actually be scanned. In this case, the scanning range may be larger than the processing area PA (the first processing light EL11 and the second processing light EL22 are irradiated to a wider range than the processing area PA).
  • FIG. 11 five examples of processing methods using the processing optical system 15A, processing optical system 15B, processing optical system 15C, processing optical system 15D, and processing optical system 15E are shown in order from the left side.
  • the upper row shows the aspect of the irradiation area RA by the first processing light EL11
  • the middle row shows the aspect of the interference area IA (interference fringes IS) by the second processing light EL22
  • the lower row shows the irradiation area RA and interference in the processing area PA.
  • the irradiation area RA (hereinafter referred to as irradiation area RA1) of the first processing light EL11 by the third optical system 18 is changed to the processing area PA (see the lower row).
  • the irradiation area RA1 is made into a rectangular shape that is equal in size to the processing area PA in the Y-axis direction and smaller than the processing area PA in the X-axis direction. .
  • the interference area IA where the interference fringes IS are formed by the plurality of second processing lights EL22 from the second optical system 17 is referred to as the irradiation area RA1. They are rectangular shapes of equal size.
  • the interference region IA there are interference fringes IS1 (hereinafter referred to as interference region IA1) showing the fundamental frequency waveform Wb and interference fringes IS2 (hereinafter referred to as interference region IA1) showing the double frequency waveform Wd.
  • the interference area IA2) and the interference area IA2 are formed at different timings (times).
  • an interference area IA1 in which interference fringes IS1 showing the fundamental frequency waveform Wb are formed, and an irradiation area RA1 formed by irradiation with the first processing light EL11. and repeat.
  • the area where the interference area IA1 and the irradiation area RA1 overlap is also referred to as an overlapping area OA1.
  • this superimposed area OA1 is scanned over the entire processing area PA.
  • the interference area IA1 and the irradiation area RA1 are overlapped at one end in the X-axis direction of the processing area PA to form an overlapping area OA1, and the overlapping area OA1 is By moving it toward the other end, the entire processing area PA is scanned.
  • the interference area IA2 in which the interference fringes IS2 showing the double frequency waveform Wd are formed and the irradiation area RA1 by the irradiation of the first processing light EL11 are overlapped to create a superimposed area OA2. form.
  • the entire processing area PA is scanned in the overlap area OA2 including the double frequency waveform Wd, similarly to the overlap area OA1 including the fundamental frequency waveform Wb.
  • the entire machining area PA on the surface of the workpiece W is covered with the interference fringes IS1 showing the fundamental frequency waveform Wb and the interference fringes IS2 showing the double frequency waveform Wd. It can be irradiated.
  • each of the interference fringes IS1 and IS2 is irradiated with the first processing light EL11, so that the dark area ID of each of the interference fringes IS1 and IS2 is The workpiece W can be appropriately processed even if the portion is formed. Therefore, in the processing method using the processing optical system 15A, the ideally shaped riblet structure RB can be formed on the surface of the workpiece W in the processing area PA.
  • the irradiation area RA (hereinafter referred to as irradiation area RA2) of the first processing light EL11 by the third optical system 18 is smaller than the processing area PA. shall be.
  • the irradiation area RA2 is made into a rectangular shape that is equal in size to the processing area PA in the Y-axis direction and smaller than the processing area PA in the X-axis direction. .
  • an interference region IA (hereinafter referred to as an interference region IA3) forms interference fringes IS by a plurality of second processing lights EL22 from the second optical system 17. has a rectangular shape with approximately the same size as the irradiation area RA2.
  • interference fringes IS1 showing the fundamental frequency waveform Wb and interference fringes IS2 showing the double frequency waveform Wd are formed in parallel in the X-axis direction. ing.
  • the interference fringes IS2 of the double frequency waveform Wd are formed on one end side in the X-axis direction, and the interference fringes IS2 of the double frequency waveform Wd are arranged on the other end side in the X-axis direction.
  • Interference fringes IS1 of the frequency waveform Wb are formed.
  • the region where the interference fringes IS1 of the fundamental frequency waveform Wb are formed is the first region, and the region where the interference fringes IS2 of the double frequency waveform Wd are formed is the second region. Note that the order of the first area and the second area may be set as appropriate, and is not limited to this example.
  • an interference area IA3 is formed by arranging interference fringes IS1 and IS2 of two types of frequency waveforms Wb and Wd, and is formed by irradiation with the first processing light EL11.
  • the irradiation area RA2 overlaps with the irradiation area RA2.
  • the area where the interference area IA3 and the irradiation area RA2 overlap is also referred to as an overlapping area OA3.
  • the entire processing area PA is scanned with this superimposed area OA3.
  • the interference area IA3 and the irradiation area RA2 are overlapped at one end in the X-axis direction of the processing area PA to form an overlapping area OA3, and the overlapping area OA3 is overlapped in the X-axis direction.
  • the entire processing area PA is scanned.
  • the entire machining area PA on the surface of the workpiece W is covered with the interference fringe IS1 showing the fundamental frequency waveform Wb and the interference fringe IS2 showing the double frequency waveform Wd. Can be irradiated.
  • the dark area ID of each of the interference fringes IS1 and IS2 is The workpiece W can be appropriately processed even in a portion where a is formed. Therefore, in the processing method using the processing optical system 15B, the ideally shaped riblet structure RB can be formed on the surface of the workpiece W in the processing area PA.
  • the interference fringe IS1 showing the fundamental frequency waveform Wb and the interference fringe IS2 showing the double frequency waveform Wd are formed side by side, that is, the two interference fringes IS are formed in a positional relationship in which they touch in the Y-axis direction. is forming.
  • the interference fringes IS1 and IS2 may be formed in a positional relationship that is separated from each other in the Y-axis direction, or may be formed in a positional relationship that at least partially overlaps each other, and the interference fringes IS1 and IS2 are not limited to the above example. .
  • the irradiation area RA (hereinafter referred to as irradiation area RA3) of the first processing light EL11 by the third optical system 18 is set to have a size equal to the processing area PA. do.
  • the interference area IA where the interference fringes IS are formed by the plurality of second processing lights EL22 from the second optical system 17 is set to be smaller than the processing area PA. shall be.
  • the interference area IA is set to have the same size as the processing area PA in the Y-axis direction, and the processing area is set in the X-axis direction. It has a rectangular shape smaller than the PA.
  • the processing method using the processing optical system 15C similarly to the processing method using the processing optical system 15A, in the interference area IA, an interference fringe IS1 showing the fundamental frequency waveform Wb and a double frequency waveform Wd are shown.
  • the interference fringes IS2 are formed at different timings (times).
  • the interference region IA1 in which the interference fringe IS1 indicating the fundamental frequency waveform Wb is formed, and the double frequency waveform Wd are An interference area IA2 having interference fringes IS2 shown in FIG.
  • an interference area IA1 due to interference fringes IS1 of the fundamental frequency waveform Wb and an interference area IA2 due to interference fringes IS2 of the double frequency waveform Wd are formed.
  • the processing area PA is irradiated with the first processing light EL11 to form an irradiation area RA3.
  • the irradiation area RA3 has a size equal to the processing area PA, and the interference area IA1 and the interference area IA2 are smaller than the processing area PA.
  • the irradiation area RA3 (processing area PA)
  • the area where the interference area IA1 and the interference area IA2 are formed is where the first processing light EL11 and the plurality of second processing lights EL22 (interference fringes IS1, IS2) overlap.
  • the entire processing area PA is scanned with the interference area IA1 and the interference area IA2 while forming the irradiation area RA3.
  • an irradiation area RA3 is formed in the processing area PA, an interference area IA1 is formed at one end of the processing area PA in the X-axis direction, and the interference area IA1 is aligned in the X-axis direction.
  • the entire area of the processing area PA is scanned, and an overlapping area OA4 is formed over the entire area of the processing area PA.
  • an irradiation area RA3 is formed in the processing area PA
  • an interference area IA2 is formed at one end in the X-axis direction in the processing area PA
  • the interference area IA2 is moved in the X-axis direction.
  • the entire area of the processing area PA is scanned, and an overlapping area OA5 is formed over the entire area of the processing area PA.
  • the entire machining area PA on the surface of the workpiece W is covered with the interference fringes IS1 showing the fundamental frequency waveform Wb and the interference fringes IS2 showing the double frequency waveform Wd. Can be irradiated.
  • the entire area of the processing area PA is irradiated with the first processing light EL11, so that the interference fringes IS1 and IS2 are reliably overlapped with the first processing light EL11.
  • the workpiece W can be appropriately processed even in the portions where the dark portions ID of the interference fringes IS1 and IS2 are formed. Therefore, in the processing method using the processing optical system 15C, the ideally shaped riblet structure RB can be formed on the surface of the workpiece W in the processing area PA.
  • the irradiation area RA3 of the first processing light EL11 by the third optical system 18 is The size should be equal to PA.
  • interference fringes are generated by the plurality of second processing lights EL22 from the second optical system 17, as in the processing method using the processing optical system 15B.
  • the interference area IA3 forming the IS is made smaller than the processing area PA.
  • the interference area IA3 is made into a rectangular shape that is equal in size to the processing area PA in the Y-axis direction and smaller than the processing area PA in the X-axis direction.
  • the interference region IA3 similarly to the processing method using the processing optical system 15B, in the interference region IA3, an interference fringe IS1 showing the fundamental frequency waveform Wb and a double frequency waveform Wd are shown. It is formed in parallel with the interference pattern IS2 in the X-axis direction.
  • the interference fringes IS2 of the double frequency waveform Wd are formed on one end side in the X-axis direction, and the interference fringes IS2 of the double frequency waveform Wd are arranged on the other end side in the X-axis direction.
  • Interference fringes IS1 of the frequency waveform Wb are formed.
  • a first 1 processing light EL11 is irradiated to form an irradiation area RA3.
  • the irradiation area RA3 has a size equal to the processing area PA, and the interference area IA3 is smaller than the processing area PA. Therefore, in the irradiation area RA3 (processing area PA), the area where the interference area IA3 is formed is a superimposed area where the first processing light EL11 and the plurality of second processing lights EL22 (interference fringes IS1, IS2) are overlapped. It becomes OA6.
  • the entire processing area PA is scanned with the interference area IA3 while forming the irradiation area RA3. That is, in the processing method using the processing optical system 15D, an irradiation area RA3 is formed in the processing area PA, an interference area IA3 is formed at one end of the processing area PA in the X-axis direction, and the interference area IA3 is aligned in the X-axis direction. By moving it toward the other end, the entire area of the processing area PA is scanned, and an overlapping area OA6 is formed over the entire area of the processing area PA.
  • the entire machining area PA on the surface of the workpiece W is covered with the interference fringes IS1 showing the fundamental frequency waveform Wb and the interference fringes IS2 showing the double frequency waveform Wd. Can be irradiated.
  • the interference fringes IS1 and IS2 are irradiated with the first processing light EL11 in a superimposed manner. Therefore, the workpiece W can be appropriately processed even in the portion where the dark portion ID of each interference fringe IS is formed. Therefore, in the processing method using the processing optical system 15D, the ideally shaped riblet structure RB can be formed on the surface of the workpiece W in the processing area PA.
  • the irradiation area of the first processing light EL11 by the third optical system 18 is the same as in the processing method using the processing optical systems 15C and 15D.
  • the interference area IA forming the interference fringes IS by the plurality of second processing lights EL22 from the second optical system 17 is The size is approximately equal to the area PA. Therefore, in the processing method using the processing optical system 15E, the second optical system 17 can form interference fringes IS over the entire processing area PA without moving the interference area IA.
  • the positional relationship between the irradiation area RA3 by the third optical system 18 and the interference area IA formed by the second optical system 17 does not change (the positional relationship remains constant). ).
  • an interference fringe IS1 (hereinafter referred to as an interference area IA4) showing the fundamental frequency waveform Wb and a double frequency waveform Wd are formed.
  • the interference fringes IS2 (hereinafter referred to as interference area IA5) shown in FIG. 1 are formed at different timings (times).
  • the interference area IA4 in which the interference fringes IS1 showing the fundamental frequency waveform Wb are formed is overlapped with the irradiation area RA3 formed by irradiation with the first processing light EL11.
  • the area where the interference area IA4 and the irradiation area RA3 are overlapped is also referred to as an overlapping area OA7.
  • the interference area IA5 in which the interference fringes IS2 showing the double frequency waveform Wd are formed is overlapped with the irradiation area RA3 formed by irradiation with the first processing light EL11.
  • the area where the irradiation area RA3 is superimposed on the interference area IA5 is also referred to as an overlapping area OA8.
  • the irradiation area RA3, the interference area IA4, and the interference area IA5 have the same size as the processing area PA. Therefore, in the overlapping area OA6 and the overlapping area OA7, the first processing light EL11 and the plurality of second processing lights EL22 (interference fringes IS1, IS2) are superimposed over the entire processing area PA.
  • the entire machining area PA on the surface of the workpiece W is covered with the interference fringes IS1 showing the fundamental frequency waveform Wb and the interference fringes IS2 showing the double frequency waveform Wd. Can be irradiated.
  • the entire processing area PA is irradiated with the first processing light EL11, so the interference fringe IS1 or IS2 and the first processing light EL11 overlap.
  • the workpiece W can be appropriately processed even in the portions where the dark portions ID of the interference fringes IS1 and IS2 are formed. Therefore, in the processing method using the processing optical system 15E, the ideally shaped riblet structure RB can be formed on the surface of the workpiece W in the processing area PA.
  • FIGS. 12 to 21 examples of specific configurations of the five processing optical systems 15A, 15B, 15C, 15D, and 15E described above will be explained in order using FIGS. 12 to 21. do. 12, FIG. 14, FIG. 16, FIG. 18, and FIG. 20, the processing light source 2 is omitted and only the processing light EL0 from the processing light source 2 is shown.
  • FIG. 12 is a diagram showing the structure of the processing optical system 15A, and illustration of the processing light source 2 is omitted in FIG.
  • the processing optical system 15A includes a galvanometer mirror 21 and a collimating lens 22 in order to advance the processing light EL0 from the processing light source 2 to the first optical system 16.
  • the galvanometer mirror 21 is an interference fringe moving member that moves the position of the interference area IA with respect to the second optical system 17 in a direction that intersects with, and is typically perpendicular to, the optical axis of the second optical system 17.
  • the processing light EL0 from the processing light source 2 is reflected toward the beam splitter 23.
  • the galvanometer mirror 21 is capable of changing its tilt in the direction of rotation about a rotation axis extending in the Z-axis direction. By changing the inclination of the galvanometer mirror 21, the direction of reflection of the processing light EL0 toward the beam splitter 23 can be changed.
  • the galvanometer mirror 21 is configured such that the range in which the direction of reflection of the processing light EL0 can be changed is within the range in which the branched second processing light EL2 can enter a splitting surface 25a of the special beam splitter 25, which will be described later. That is, the galvanometer mirror 21 can change the direction in which the processing light EL0 travels within a range where the second processing light EL2 can enter the dividing surface 25a.
  • This galvanometer mirror 21 may be driven under the control of the control device 3, or may be driven under the control of another control device.
  • the collimating lens 22 converts the processing light EL0 from the processing light source 2 reflected by the galvanometer mirror 21 into collimated light (parallel light). That is, the collimating lens 22 diffuses (diverges) the processing light EL0 from the processing light source 2 in this example, and converts the processing light EL0 into collimated light (parallel light).
  • the processing optical system 15A includes a beam splitter 23 as a first optical system 16 that branches the processing light EL0 from the processing light source 2 into the first processing light EL1 and the second processing light EL2.
  • the processing light EL0 that has been collimated by the collimating lens 22 is incident on the beam splitter 23.
  • the beam splitter 23 branches the processing light EL0 into a first processing light EL1 and a second processing light EL2.
  • the beam splitter 23 generates the first processing light EL1 that travels to the third optical system 18 by reflecting a part of the processing light EL0, and allows the other part of the processing light EL0 to pass through.
  • the second processing light EL2 that travels to the second optical system 17 is generated.
  • the beam splitter 23 transmits a part of the processing light EL0 to generate the first processing light EL1, and reflects another part of the processing light EL0 to generate the second processing light EL2. Good too.
  • This beam splitter 23 may be an amplitude splitting type beam splitter or a polarizing beam splitter.
  • the beam splitter 23 causes the generated second processing light EL2 to proceed to the second optical system 17 in parallel to the Y-axis direction.
  • the galvano mirror 21 as an interference fringe moving member functions as the first optical system 16 arranged at a position where the processing light source 2 and the processing light EL0 are branched into the first processing light EL1 and the second processing light EL2. It is placed in the optical path between the beam splitter 23 and the beam splitter 23. As described above, the galvanometer mirror 21 moves the position of the interference area IA with respect to the second optical system 17 in a direction intersecting (orthogonal to) the optical axis of the second optical system 17.
  • the processing optical system 15A in the example of FIG. 12 uses a diffractive optical element (DOE) (not shown) to transmit the processing light EL0 from the processing light source 2 before entering the first optical system 16 (its galvano mirror 21).
  • DOE diffractive optical element
  • the beam is split into two using a beam splitter.
  • the processing optical system 15A collects the two branched processing lights EL0 at different positions on the galvanometer mirror 21 (its reflective surface) at one point or a narrow area close to it using an optical element such as a lens. .
  • the first optical system 16 reflects the two processing lights EL0 by a galvano mirror 21, passes them through a collimating lens 22, and reflects one of the branched processing lights EL0 by a beam splitter 23, and the beam splitter 23 reflects the two processing lights EL0.
  • the processing light EL1 is used as the processing light EL1
  • the other branched processing light EL0 is passed through the beam splitter 23 to become the second processing light EL2.
  • the processing optical system 15A can prevent the energy of the processing light EL0 from the processing light source 2 from concentrating on a narrow spot in the beam splitter 23, and can suppress damage to the beam splitter 23 caused by the processing light EL0.
  • the processing optical system 15A collects the two processing lights EL0 at one point of the galvanometer mirror 21 (its reflective surface) or a narrow area close to it, the processing light EL0 advances due to the change in the inclination of the galvano mirror 21.
  • the direction of change can be adjusted easily and appropriately.
  • the processing optical system 15A also includes a first cylindrical lens 24 and a special beam splitter as a second optical system 17 that branches the second processing light EL2 from the first optical system 16 to generate a plurality of second processing lights EL22. 25, a second cylindrical lens 26, a first mirror 27, an optical deflection member 28, a second mirror 29, a third mirror 31, a third cylindrical lens 32, and a lens 33.
  • the second optical system 17 of the processing optical system 15A does not need to include the first cylindrical lens 24, the second cylindrical lens 26, the second mirror 29, and the lens 33.
  • the first cylindrical lens 24 is an optical member having a shape extending in the X-axis direction and having refractive power only in the Z-axis direction, and is a convex lens in a cross section perpendicular to the X-axis direction.
  • This first cylindrical lens 24 focuses the second processing light EL2 from the first optical system 16 in the Z-axis direction without changing it in the X-axis direction.
  • the rear focal point of the first cylindrical lens 24 in the traveling direction of the second processing light EL2 is set near a splitting surface 25a of the special beam splitter 25, which will be described later. For this reason, the first cylindrical lens 24 makes the second processing light EL2 linear light that extends in the X-axis direction on the dividing surface 25a (see FIG. 13).
  • the special beam splitter 25 splits the second processing light EL2, which has been made into linear light extending in the X-axis direction by the first cylindrical lens 24, into a plurality of second processing lights EL22. Therefore, the special beam splitter 25 functions as a light splitting member that splits the second processing light EL2 into a plurality of second processing lights EL22.
  • the special beam splitter 25 splits the second processing light EL2 into two second processing lights EL22 (when shown individually, one is called the second processing light EL221, and the other is called the second processing light EL221). An example of dividing into EL222) will be explained.
  • the special beam splitter 25 also has a function of merging the two split second processing lights EL22 and causing both of the second processing lights EL22 to advance toward the lens 33, that is, the workpiece W beyond that. Note that the focal position of the second processing light EL2 formed by the first cylindrical lens 24 may be slightly shifted from the special beam splitter 25 in the optical axis direction.
  • This special beam splitter 25 is a rectangular plate-like member, and is arranged at an angle of 45 degrees with respect to the Y-axis direction, with the center axis extending in the X-axis direction as the center.
  • the special beam splitter 25 has a splitting surface 25a, a reflecting surface 25b, and a passing surface 25c, each extending in the X-axis direction (see FIG. 13).
  • the vicinity of the central axis in the 45-degree inclination direction is the dividing surface 25a, and the upper side in the inclination direction and the right side (third cylindrical lens 32 side) as seen in FIGS. 12 and 13 is the reflective surface.
  • the lower side in the inclination direction and the left side (first cylindrical lens 24 side) when viewed in FIGS. 12 and 13 is the passage surface 25c. Note that the inclination angle of the special beam splitter 25 is not limited to 45 degrees.
  • the dividing surface 25a branches the second processing light EL2, which has been made into linear light extending in the X-axis direction by the first cylindrical lens 24, into a plurality of second processing lights EL22.
  • This splitting surface 25a is composed of an amplitude splitting type beam splitter or a polarizing beam splitter, and generates the second processing light EL221 by reflecting a part of the second processing light EL2, and also generates the second processing light EL221 and other parts of the second processing light EL2.
  • the second processing light EL222 is generated by passing a part of the processing light EL222.
  • the special beam splitter 25 is arranged with an inclination of 45 degrees with respect to the Y-axis direction, the second processing light EL221 generated by reflection on the splitting surface 25a is transmitted to the second processing light EL221 in parallel with the Z-axis direction.
  • the second processing light EL222 generated by passing through another dividing surface 25a is caused to proceed to the cylindrical lens 26 and to the third cylindrical lens 32 in parallel to the Y-axis direction.
  • the reflective surface 25b allows the second processing light EL221 reflected by the third mirror 31 and focused by the third cylindrical lens 32 to proceed downward in the Z-axis direction (towards the lens 33), as described later. reflect.
  • the reflective surface 25b is configured such that the back surface of the special beam splitter 25 facing the third cylindrical lens 32 side has an optical characteristic of reflecting light.
  • This reflective surface 25b can be formed by partially vapor depositing on the upper end of the back surface of the special beam splitter 25. Note that the configuration and position of the reflective surface 25b may be set as appropriate as long as it reflects the second processing light EL221 from the third cylindrical lens 32 toward the lens 33, and is not limited to this example.
  • the passage surface 25c allows the second processing light EL222 reflected by the first mirror 27 and focused by the second cylindrical lens 26 to proceed downward in the Z-axis direction (towards the lens 33), as will be described later. Transparent to.
  • the passage surface 25c in this example is blank, that is, a portion of the special beam splitter 25 corresponding to the passage surface 25c is cut out.
  • the configuration and position of the passage surface 25c may be set as appropriate as long as it allows the second processing light EL222 from the second cylindrical lens 26 to pass toward the lens 33, and is not limited to this example.
  • the second cylindrical lens 26 is an optical member having a shape extending in the X-axis direction and having refractive power only in the Y-axis direction, and is a convex lens in a cross section perpendicular to the X-axis direction.
  • This second cylindrical lens 26 has a front focal point in the traveling direction of the second processing light EL221 set near the dividing surface 25a of the special beam splitter 25, and directs the second processing light EL221 in the X-axis direction and the Y-axis direction.
  • the light is collimated (parallel light) with a predetermined size.
  • the second cylindrical lens 26 causes the collimated second processing light EL221 to advance toward the first mirror 27 in parallel to the Z-axis direction.
  • the second cylindrical lens 26 focuses the second processing light EL222 reflected by the first mirror 27 in the Y-axis direction without changing it in the X-axis direction, and focuses it on the passing surface 25c as described later. It is assumed to be linear light extending in the X-axis direction (see FIG. 13).
  • the first mirror 27 is a plate-like member, and is arranged at an angle of 45 degrees with respect to the Z-axis direction, with the center axis extending in the X-axis direction as the center.
  • the first mirror 27 reflects the second processing light EL221 from the second cylindrical lens 26 and causes it to travel parallel to the Y-axis direction to the optical deflection member 28. Further, the first mirror 27 reflects the second processing light EL222 from the second mirror 29 that has passed through the optical deflection member 28, and causes it to proceed to the second cylindrical lens 26.
  • the optical deflection member 28 is a member that changes (deflects) the traveling direction of the light (second processing light EL221, second processing light EL222) traveling between the first mirror 27 and the second mirror 29.
  • the optical deflection member 28 is an optical member that has a shape extending in the X-axis direction and has a refractive power only in the Z-axis direction, and is arranged between the first mirror 27 and the second mirror 29 to change the direction in which light travels. The beam is bent either upward or downward in the Z-axis direction.
  • the thickness (size in the Y-axis direction) on the upper side in the Z-axis direction is the smallest, and the thickness decreases toward the lower side in the Z-axis direction. It has a trapezoidal shape (wedge shape) in which the thickness increases as the thickness increases. Therefore, the optical deflection member 28 refracts the light from one of the first mirror 27 and the second mirror 29 downward in the Z-axis direction, compared to a state where the optical deflection member 28 is not provided. while moving the mirror toward the other of the first mirror 27 and the second mirror 29.
  • This optical deflection member 28 can be placed in the optical path between the first mirror 27 and the second mirror 29, and can be removed from the optical path. Driven below.
  • the second mirror 29 is a plate-shaped member, and has a reference position at an angle of 45 degrees to the Z-axis direction with respect to a central axis extending in the X-axis direction, and is centered around the central axis with respect to the reference position. It is placed at an angle.
  • the second mirror 29 is in a conjugate positional relationship with the special beam splitter 25 (its splitting surface 25a).
  • the second mirror 29 in this example is tilted counterclockwise (opposite to clockwise) about the central axis with respect to the reference position in FIG. Note that the direction of inclination from this reference position may be clockwise, and is not limited to this example.
  • the second mirror 29 reflects the second processing light EL221 that has passed through the optical deflection member 28 and causes it to proceed to the third mirror 31, and also reflects the second processing light EL222 reflected by the third mirror 31 and optically It advances to the deflection member 28.
  • the third mirror 31 is a plate-like member, and is arranged at an angle of 45 degrees with respect to the Z-axis direction, with the center axis extending in the X-axis direction as the center.
  • the third mirror 31 reflects the second processing light EL221 reflected by the second mirror 29 to advance to the third cylindrical lens 32, and also reflects the second processing light EL222 that has passed through the third cylindrical lens 32. to advance toward the second mirror 29 parallel to the Z-axis direction.
  • the third cylindrical lens 32 is an optical member having a shape extending in the X-axis direction and having refractive power only in the Z-axis direction, and is a convex lens in a cross section perpendicular to the X-axis direction.
  • This third cylindrical lens 32 has a front focal point in the traveling direction of the second processing light EL222 set near the dividing surface 25a of the special beam splitter 25, and directs the second processing light EL222 in the X-axis direction and the Y-axis direction.
  • the light is collimated (parallel light) with a predetermined size.
  • the third cylindrical lens 32 causes the collimated second processing light EL222 to advance toward the third mirror 31 in parallel to the Y-axis direction.
  • the third cylindrical lens 32 focuses the second processing light EL221 reflected by the third mirror 31 in the Y-axis direction without changing it in the X-axis direction, and directs it onto the reflective surface 25b as described later. It is assumed to be linear light extending in the X-axis direction (see FIG. 13).
  • the focal positions of the second cylindrical lens 26 and the third cylindrical lens 32 may be the same. Then, due to the second cylindrical lens 26, the third cylindrical lens 32, and the optical deflection member 28, the dividing surface 25a and the reflecting surface 25b become optically conjugate in the YZ plane with respect to the second processing light EL221. Further, due to the second cylindrical lens 26, the third cylindrical lens 32, and the optical deflection member 28, the dividing surface 25a and the passing surface 25c become optically conjugate in the YZ plane with respect to the second processing light EL222.
  • the incident position of the second processing light EL221 incident on the special beam splitter 25 is displaced from the position of the dividing surface 25a to the position of the reflecting surface 25b, and the second processing light EL221 incident on the special beam splitter 25 is The incident position of the processing light EL222 is displaced from the position of the dividing surface 25a to the position of the passage surface 25c. That is, the optical deflection member 28 has a function of spatially separating the optical paths of the light from the special beam splitter 25 and the light incident on the special beam splitter 25.
  • the lens 33 forms interference fringes IS on the surface of the work W by the second processing light EL221 reflected by the reflective surface 25b as described later and the second processing light EL222 transmitted through the passing surface 25c as described later.
  • the light is focused on the surface of the workpiece W as shown in FIG. That is, the lens 33 aligns the central axis of the optical path along which the second processing light EL221 reflected by the reflective surface 25b travels, and the central axis of the optical path along which the second processing light EL222 transmitted through the passage surface 25c travels. Match on the surface of.
  • the lens 33 condenses the second processing lights EL221 and EL222, which are incident from a position away from the optical axis, and makes them obliquely enter the surface of the work W so that they intersect with each other on the surface of the work W.
  • interference fringes IS are formed in a linear region extending in the Y-axis direction, thereby forming an interference region IA.
  • the processing optical system 15A includes a fourth mirror 34, a fourth cylindrical lens 35, and a fifth mirror 36 as a third optical system 18 that allows the first processing light EL1 from the first optical system 16 to proceed to the interference area IA. and has.
  • the fourth mirror 34 is a plate-like member, and is arranged at an angle of 45 degrees with respect to the Z-axis direction, with the center axis extending in the X-axis direction as the center.
  • the fourth mirror 34 reflects the first processing light EL1 from the first optical system 16 and causes it to travel parallel to the Y-axis direction to the fourth cylindrical lens 35.
  • the fourth cylindrical lens 35 focuses the first processing light EL1 in the X-axis direction without changing it in the Z-axis direction.
  • the fourth cylindrical lens 35 is set so that the rear focal point of the first processing light EL1 in the traveling direction is located at a position where an interference area IA is formed on the surface of the work W after passing through the fifth mirror 36. Therefore, the fourth cylindrical lens 35 makes the first processing light EL1 linear light extending in the Z-axis direction and causes it to travel parallel to the Y-axis direction to the fifth mirror 36.
  • the fifth mirror 36 is a plate-like member, and is arranged at an angle of 45 degrees with respect to the Z-axis direction, with the center axis extending in the X-axis direction as the center.
  • the fifth mirror 36 reflects the first processing light EL1 from the fourth cylindrical lens 35 and causes it to advance toward the surface of the workpiece W. Therefore, the third optical system 18 reflects the first processing light EL1 by the fifth mirror 36 after passing through the fourth mirror 34 and the fourth cylindrical lens 35, so that it is directed to the surface of the workpiece W as the first processing light EL11. and make him go.
  • This first processing light EL11 is made into a linear light that extends in the Z-axis direction by the fourth cylindrical lens 35, and is reflected toward the surface of the workpiece W by the fifth mirror 36, so that it is reflected in the Y-axis direction. It is considered to be a stretching linear light.
  • the processing light EL0 emitted from the processing light source 2 is reflected by the galvano mirror 21, passes through the collimating lens 22, and is split into the first processing light EL1 and the second processing light by the beam splitter 23 as the first optical system 16.
  • the light is branched into light EL2.
  • the first processing light EL1 and the second processing light EL2 are collimated by passing through the collimating lens 22.
  • the first processing light EL1 is advanced to the third optical system 18, and the second processing light EL2 is advanced to the second optical system 17.
  • the second processing light EL2 passes through the first cylindrical lens 24 and advances to the splitting surface 25a of the special beam splitter 25 as linear light extending in the X-axis direction (Fig. (see 13). Then, a part of the second processing light EL2 is reflected by the dividing surface 25a toward the second cylindrical lens 26 and becomes the second processing light EL221, and the other part passes through the dividing surface 25a.
  • the second processing light EL222 is directed toward the third cylindrical lens 32.
  • the second processing light EL221 passes through the second cylindrical lens 26, is reflected by the first mirror 27, is then reflected by the second mirror 29 and the third mirror 31, and passes through the third cylindrical lens 32. , proceed toward the special beam splitter 25.
  • the second processing light EL222 passes through the third cylindrical lens 32, is reflected by the third mirror 31 and the second mirror 29, and is then reflected by the first mirror 27 and passes through the second cylindrical lens 26.
  • the beam then advances toward the special beam splitter 25.
  • the optical deflection member 28 is arranged in the optical path between the first mirror 27 and the second mirror 29, the second processing light EL221 and the second processing light EL222 are also passes through.
  • the special beam splitter 25 (its splitting surface 25a), the first mirror 27, and the third mirror 31 are all plate-shaped members and are inclined at 45 degrees with respect to the Z-axis direction.
  • the second mirror 29 is also made of a plate-like member, and its reference position is inclined at 45 degrees with respect to the Z-axis direction. Therefore, in the second optical system 17, the second processing light EL221 and the second processing light EL222 basically advance in different rotational directions (clockwise direction and counterclockwise direction) from the special beam splitter 25. The beam is then moved back to the special beam splitter 25 again. In the second optical system 17, the second mirror 29 is tilted counterclockwise about the central axis with respect to the reference position in FIG.
  • the second processing light EL221 reflected by the second mirror 29 travels to a position shifted to the right on the third mirror 31 compared to the case where it is at the reference position, and is reflected there, thereby becoming a special beam. It advances toward a position shifted upward in the splitter 25, that is, toward the reflective surface 25b (see FIG. 13). Further, the second processing light EL222 reflected by the second mirror 29 advances to a position shifted downward on the first mirror 27 compared to the case where it is at the reference position, and is reflected there, thereby becoming a special beam. It advances toward a position shifted downward in the splitter 25, that is, toward a passage surface 25c (see FIG. 13).
  • the second processing light EL221 and the second processing light EL222 are allowed to pass through basically the same optical path, while the second processing light EL221 and the second processing light EL222 have different spatial positions. It can make a difference. Therefore, it can be said that the second optical system 17 constitutes a quadrangular Sagnac optical system.
  • the second optical system 17 then reflects the second processing light EL221 on the reflective surface 25b and causes it to travel toward the lens 33, and transmits the second processing light EL222 from the passing surface 25c to advance toward the lens 33.
  • the second optical system 17 reflects the second processing light EL221 reflected by the splitting surface 25a toward the lens 33 by the reflecting surface 25b, and also reflects the second processing light EL221 reflected by the splitting surface 25a toward the lens 33.
  • the second processing light EL222 is caused to pass through the passage surface 25c and proceed toward the lens 33.
  • the second optical system 17 utilizes the second processing light EL2 from the first optical system 16 with extremely high efficiency, and the second processing light EL221 and the second processing light EL221 that irradiate the workpiece W from different incident directions. EL222 can be generated.
  • the second optical system 17 causes the second processing light EL221 and the second processing light EL222 to pass through the lens 33, thereby condensing the light onto the surface of the workpiece W to form interference fringes IS.
  • the second optical system 17 sets each optical system so that the angle between the second processing light EL221 and the second processing light EL222 after passing through the lens 33 forms an interference fringe IS1 of the fundamental frequency waveform Wb.
  • the angle of the second mirror 29 is set in consideration of the arrangement of members and optical performance. That is, in the second optical system 17, the arrangement and optical performance of each optical member and the angle of the second mirror 29 are set in accordance with the period of the interference fringes IS1 of the fundamental frequency waveform Wb. Thereby, the second optical system 17 can form an interference region IA1 (see FIG. 11) of interference fringes IS1 showing the fundamental frequency waveform Wb on the surface of the workpiece W.
  • an optical deflection member 28 on the optical path between the first mirror 27 and the second mirror 29.
  • the optical deflection member 28 refracts the light from one of the first mirror 27 and the second mirror 29 downward in the Z-axis direction compared to a state where the optical deflection member 28 is not provided. It is directed toward the other of the first mirror 27 and the second mirror 29. Therefore, by passing through the optical deflection member 28, the second processing light EL221 advances to a position shifted downward in the second mirror 29 compared to the case where it does not pass through the optical deflection member 28, and is reflected there.
  • the amount of shift to the right in the third mirror 31 increases, and by being reflected there, the amount of shift toward the upper side (outside) of the reflective surface 25b of the special beam splitter 25 increases (as shown by the dotted chain line in FIG. 13).
  • the second processing light EL222 is shifted downward in the first mirror 27 by a larger amount than when it does not pass through the optical deflection member 28, and is reflected there.
  • the amount of downward (outside) deviation of the passage surface 25c of the special beam splitter 25 becomes large (see symbol EL222 indicated by the dashed line in FIG. 13).
  • the second optical system 17 by arranging the optical deflection member 28, the second processing light EL221 and the second The distance from the processing light EL222 can be increased.
  • the second optical system 17 by arranging the optical deflection member 28, the second processing light EL221 after passing through the lens 33 and the second processing The angle formed with the light EL 222 can be increased. Therefore, in the second optical system 17, by arranging the optical deflection member 28, interference fringes IS with a smaller period can be formed on the surface of the workpiece W, compared to a case where the optical deflection member 28 is not arranged.
  • the second optical system 17 then converts the angle between the second processed light EL221 and the second processed light EL222 after passing through the lens 33 when the optical deflection member 28 is arranged into an interference pattern of the double frequency waveform Wd.
  • the shape (angle (degree of refraction (optical setting)) of the optical deflection member 28 is set in consideration of the arrangement and optical performance of each optical member. That is, the second optical system 17 sets the arrangement and optical performance of each optical member as well as the shape of the optical deflection member 28 in accordance with the period of the interference fringes IS2 of the double frequency waveform Wd.
  • the second optical system 17 can form an interference region IA2 (see FIG. 11) of interference fringes IS2 exhibiting the double frequency waveform Wd on the surface of the workpiece W.
  • the period (pitch) P of the interference fringes IS1 and IS2 formed on the surface of the workpiece W is determined by the wavelength of the second processing light beams EL221 and EL222 being ⁇ , and the refractive index of the medium on the lens 33 side of the workpiece W with respect to the wavelength ⁇ .
  • the above-mentioned difference in amplitude (energy amount) can be set by changing the intensity of the processing light EL0 from the processing light source 2 when forming the interference area IA1 and the interference area IA2.
  • the intensity of the processing light EL0 can be changed by changing the output of the processing light source 2 or by providing an optical member with a light attenuation effect on the optical path from the processing light source 2 to the first optical system 16.
  • the second optical system 17 by changing the positions of the second processing light EL221 and the second processing light EL222 in the optical deflection member 28, the second processing light after passing through the lens 33 from the optical deflection member 28 is processed.
  • the emission position and emission angle of the light EL221 and the second processing light EL222 can be changed. Since the second optical system 17 forms the interference fringes IS1 of the fundamental frequency waveform Wb by removing the optical deflection member 28 from the optical path, the intensity of the interference fringes IS1 can be ensured, and substantially the ideal waveform Wi. Interference fringes IS can be appropriately formed.
  • the second optical system 17 forms the interference fringes IS1 of the n-fold frequency waveform Wn by removing the optical deflection member 28 from the optical path. You can.
  • the second optical system 17 superimposes three or more n-times frequency waveforms Wn, it provides a plurality of optical deflection members 28 having mutually different shapes (refraction angles), and separately directs them to the first mirror. 27 and the second mirror 29, and can be removed from the optical path.
  • the first processing light EL1 from the first optical system 16 is reflected by a fourth mirror 34, and then passed through a fourth cylindrical lens 35 to be converted into linear light extending in the Z-axis direction. It is advanced to the fifth mirror 36.
  • the first processing light EL11 is reflected by the fifth mirror 36 at a position where the interference area IA (interference area IA1, interference area IA2) is formed on the surface of the work W on the Y axis.
  • the irradiation area RA1 is formed by irradiating the light as a linear light extending in the direction (see FIG. 11).
  • the processing optical system 15A overlaps the interference area IA1 and the irradiation area RA1 on the surface of the workpiece W, and overlaps the interference area IA1 and the irradiation area RA1 (Fig. 11) can be formed. Further, the processing optical system 15A has the optical deflection member 28 disposed in the second optical system 17, so that the interference area IA2 and the irradiation area RA1 are overlapped on the surface of the workpiece W to overlap the overlapping area OA2 (FIG. 11). ) can be formed.
  • This processing optical system 15A is configured to control each optical member in the first optical system 16, second optical system 17, and third optical system 18 so that the minimum fluence of the processing light in the superimposed area OA2 is a fluence that can process the workpiece W.
  • the fluence of the first processing light EL11 is set in consideration of the arrangement and optical performance of the first processing light EL11. That is, the processing optical system 15A operates the first optical system 16, the second optical system 17, and the third optical system so that the fluence of the interference fringes IS1 and IS2 becomes equal to or higher than the lower limit value TH_lowest of the fluence that can process the workpiece W. Based on the arrangement and optical performance of each optical member in 18, the branching ratio of processing light EL0 from processing light source 2 is set.
  • the processing optical system 15A can move on the surface of the work W while keeping the overlapping area OA1, that is, the interference area IA1 and the irradiation area RA1 overlapped. Therefore, in the processing optical system 15A, the area in which the overlapping area OA1 can be moved by driving the galvanometer mirror 21 becomes the processing area PA.
  • the processing optical system 15A drives the galvanometer mirror 21 to move the superimposed area OA1, thereby scanning the entire processing area PA with the superimposed area OA1 including the fundamental frequency waveform Wb.
  • the processing optical system 15A drives the galvanometer mirror 21 to move the superimposed region OA2, thereby forming the entire processing region PA in the superimposed region OA2 including the double frequency waveform Wd. scan.
  • the processing optical system 15A overlaps the first processing light EL11 over the entire processing area PA on the surface of the workpiece W, and shows the interference fringes IS1 showing the fundamental frequency waveform Wb and the double frequency waveform Wd. It can be irradiated with interference fringes IS2. Therefore, the processing optical system 15A can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15A can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure in an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • Processing optical system 15B has the same basic concept and configuration as the above-described processing optical system 15A, so parts having the same configuration are given the same reference numerals, and detailed explanations will be omitted.
  • the first optical system 16 and the third optical system 18 have the same configuration as the processing optical system 15A.
  • a second optical system 17B that branches the second processing light EL2 from the first optical system 16 to generate a plurality of second processing lights EL22 is a second optical system of the processing optical system 15A. It is said to be different from 17.
  • This second optical system 17B does not include an optical deflection member 28 and has a different second mirror 29B compared to the second optical system 17 of the processing optical system 15A.
  • the second mirror 29B is formed by combining two plate-like members in the X-axis direction, each of which has a reference position tilted at an angle of 45 degrees with respect to the Z-axis direction around a central axis extending in the X-axis direction. , and is arranged at an angle with respect to the reference position about the central axis.
  • the back side in FIG. 14 (the negative side (-side) in the X-axis direction) is the first reflecting part 29Ba, and the near side in FIG. It is referred to as a reflecting portion 29Bb.
  • the first reflecting section 29Ba is shown with a broken line
  • the second reflecting section 29Bb is shown with a solid line.
  • both the first reflecting part 29Ba and the second reflecting part 29Bb are tilted counterclockwise (opposite to clockwise) about the central axis with respect to the reference position in FIG. ing.
  • the direction of inclination from this reference position may be clockwise as long as the first reflecting section 29Ba and the second reflecting section 29Bb are inclined in the same direction, and is not limited to this example.
  • the second mirror 29 reflects the second processing light EL221 from the first mirror 27 on both the first reflection section 29Ba and the second reflection section 29Bb and causes it to proceed to the third mirror 31.
  • the second processing light EL222 is reflected by both the first reflecting section 29Ba and the second reflecting section 29Bb and is caused to proceed to the first mirror 27.
  • the first reflecting section 29Ba adjusts each optical member so that the angle between the second processing light EL221 and the second processing light EL222 after passing through the lens 33 forms an interference fringe IS1 of the fundamental frequency waveform Wb.
  • the angle is set in consideration of the arrangement and optical performance. That is, the angle of the first reflecting portion 29Ba is set in accordance with the period of the interference fringes IS1 of the fundamental frequency waveform Wb, and in accordance with the arrangement and optical performance of each optical member.
  • the second reflecting section 29Bb adjusts the angle between the second processing light EL221 and the second processing light EL222 after passing through the lens 33 to form an interference fringe IS2 of the double frequency waveform Wd.
  • the angle is set in consideration of the arrangement of members and optical performance.
  • the angle of the second reflection section 29Bb is set in accordance with the period of the interference fringes IS2 of the double frequency waveform Wd, and in accordance with the arrangement and optical performance of each optical member. Therefore, in the second mirror 29B, the second reflecting section 29Bb on the near side has a larger inclination with respect to the reference position than the first reflecting section 29Ba on the back side.
  • the second processing light EL221 and the second processing light EL222 are formed after the second processing light EL2 (see FIG. 15), which is linear light extending in the X-axis direction on the dividing surface 25a, is divided.
  • the second cylindrical lens 26 and the third cylindrical lens 32 produce collimated light (parallel light) having a predetermined size in the X-axis direction and the Y-axis direction. Therefore, since the second processing light EL221 and the second processing light EL222 have a predetermined size in the X-axis direction and proceed to the second mirror 29B, a part of them is reflected by the first reflection part 29Ba. At the same time, the other part is reflected by the second reflecting section 29Bb.
  • the second processing light EL221 is transmitted in the X-axis direction on the upper side in the X-axis direction (corresponding to the back side in the X-axis direction in FIG. 14) on the reflective surface 25b of the special beam splitter 25.
  • it is a linear light that extends in the X-axis direction at a position displaced to the right on the lower side in the X-axis direction (corresponding to the front side in the X-axis direction in FIG. 14).
  • the second processing light EL222 is linear light that extends in the X-axis direction on the upper side in the X-axis direction (corresponding to the back side in the X-axis direction in FIG.
  • the difference in length between the upper side and the lower side of the second processing light EL221 and the second processing light EL222 is the difference in time for overlapping the interference area IA and the irradiation area RA to form the overlapping area OA, It is set according to the difference between the intensity (amplitude) of the fundamental frequency waveform Wb and the intensity (amplitude) of the double frequency waveform Wd.
  • the second optical system 17B shows the fundamental frequency waveform Wb on the surface of the workpiece W by irradiating the surface of the workpiece W with the second processing light EL221 and the second processing light EL222 through the lens 33.
  • An interference region IA3 can be formed in which the interference fringe IS1 and the interference fringe IS2 of the double frequency waveform Wd are arranged in parallel (see FIG. 11).
  • the processing light EL0 emitted from the processing light source 2 is reflected by the galvanometer mirror 21, passes through the collimating lens 22, and is split into the first processing light EL1 and the second processing light by the beam splitter 23 as the first optical system 16. It branches into light EL2.
  • the first processing light EL1 is advanced to the third optical system 18, and the second processing light EL2 is advanced to the second optical system 17B.
  • the second optical system 17B converts the second processing light EL2 into linear light that passes through the first cylindrical lens 24 and extends in the X-axis direction.
  • the second processing light EL221 proceeds to the third cylindrical lens 32, and the second processing light EL222 proceeds to the third cylindrical lens 32.
  • the second optical system 17B rotates the second processing light EL221 and the second processing light EL222 in mutually different rotation directions (clockwise direction and counterclockwise direction). ), and then the beam is advanced from the special beam splitter 25 toward the lens 33.
  • the second optical system 17B causes the second processing light EL221 and the second processing light EL222 to pass through the lens 33, thereby condensing them on the surface of the workpiece W to form interference fringes IS.
  • the second processing light EL221 and the second processing light EL222 are reflected on the back side in FIG. 14 by the first reflecting section 29Ba, and on the near side in FIG. 14 are reflected on the second reflecting section 29Bb. Therefore, the second optical system 17B uses the second processing light EL221 and the second processing light EL222 after passing through the lens 33 to generate the fundamental frequency at the back side (the negative side (-side) in the X-axis direction) of FIG.
  • the surface of the workpiece W is irradiated at an angle that can form interference fringes IS1 of waveform Wb, and an angle that can form interference fringes IS2 of double frequency waveform Wd on the near side (positive side (+ side) in the X-axis direction) of FIG. 14.
  • the surface of the workpiece W is irradiated with the light.
  • the second optical system 17B forms an interference area IA3 on the surface of the workpiece W in which the interference fringe IS1 showing the fundamental frequency waveform Wb and the interference fringe IS2 showing the double frequency waveform Wd are arranged side by side.
  • the third optical system 18 converts the first processing light EL1 from the first optical system 16 into a linear first processing light EL11 that passes through the fourth cylindrical lens 35 and extends in the Z-axis direction. Then, the third optical system 18 irradiates the first processing light EL11 as linear light extending in the Y-axis direction at the position where the interference area IA3 is formed on the surface of the work W to form an irradiation area RA2. . Thereby, the processing optical system 15B can overlap the interference area IA3 and the irradiation area RA2 on the surface of the work W using the second optical system 17B to form an overlapping area OA3.
  • the processing optical system 15B can move on the surface of the work W while keeping the overlapping area OA3, that is, the interference area IA3 and the irradiation area RA3 overlapped.
  • the processing optical system 15B drives the galvanometer mirror 21 to move the superimposed area OA3, thereby scanning the entire processing area PA with the superimposed area OA3 including the fundamental frequency waveform Wb and the double frequency waveform Wd.
  • the processing optical system 15B overlaps the first processing light EL11 over the entire processing area PA on the surface of the workpiece W, and shows the interference fringes IS1 showing the fundamental frequency waveform Wb and the double frequency waveform Wd. It can be irradiated with interference fringes IS2.
  • the processing optical system 15B can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15B can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure having an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • the processing optical system 15C includes a first optical system 16C that branches the processing light EL0 from the processing light source 2 into a first processing light EL1 and a second processing light EL2, and a first processing light EL1 to the first processing light EL2.
  • the third optical system 18C that generates the EL 11 and irradiates the workpiece W is different from the first optical system 16 and the third optical system 18 of the processing optical system 15A. Furthermore, the processing optical system 15C is different from the processing optical system 15A in the configuration from the first optical system 16C to the second optical system 17.
  • the position (arrangement) of the first optical system 16C (beam splitter 23) with respect to the galvano mirror 21 and the collimating lens 22 is changed, and a new lens is added.
  • the difference is that 41 is provided.
  • the beam splitter 23 as the first optical system 16C is provided at a position where the machining light EL0 from the machining light source 2 travels, and reflects a part of the machining light EL0 so that the first beam splitter 23 travels to the third optical system 18.
  • a processing light EL1 is generated, and a second processing light EL2 is generated which proceeds to the lens 41 by passing another part of the processing light EL0.
  • the lens 41 focuses the second processing light EL2 that has passed through the beam splitter 23 onto the galvanometer mirror 21 (its reflective surface).
  • the processing light EL0 from the processing light source 2 is substantially collimated light (parallel light), so the first processing light EL1 branched from there is directed in the X-axis direction.
  • the light is collimated (parallel light) with a predetermined size in the Y-axis direction.
  • the lens 41 sets the rear focal point of the second processing light EL2 in the traveling direction near the galvano mirror 21 (its reflective surface), and focuses the second processing light EL2 onto the galvano mirror 21.
  • the collimating lens 22 converts the second processing light EL2 reflected by the galvanometer mirror 21 into collimated light (parallel light). Note that the second processing light EL2 focused by the lens 41 does not need to be completely focused on the reflective surface of the galvano mirror 21, and the position of the condensing line of the second processing light EL2 by the lens 41 is It may be slightly off the reflecting surface of the galvanometer mirror 21 in the axial direction.
  • the second optical system 17 of the processing optical system 15C reflects the second processing light EL221 on the reflective surface 25b to advance toward the lens 33 in the special beam splitter 25, and also directs the second processing light EL221 toward the lens 33.
  • the processing light EL222 is transmitted through the passage surface 25c and travels toward the lens 33.
  • the second optical system 17 of the processing optical system 15C switches between a state in which the optical deflection member 28 is removed and a state in which the optical deflection member 28 is disposed.
  • the distance between the EL 221 and the second processing light EL 222 in the special beam splitter 25 is changed (see FIG. 17).
  • the second optical system 17 of the processing optical system 15C shows the interference area IA1 of the interference fringe IS1 showing the fundamental frequency waveform Wb and the double frequency waveform Wd on the surface of the workpiece W.
  • An interference area IA2 of interference fringes IS2 is formed.
  • the fourth mirror 34 and the fourth cylindrical lens 35 are not provided, and only the fifth mirror 36 is provided. They are different in that they are In the third optical system 18C, the first processing light EL1 from the first optical system 16C, that is, the beam splitter 23, is reflected by the fifth mirror 36 and is caused to advance toward the surface of the workpiece W.
  • the processing optical system 15C since the processing light EL0 from the processing light source 2 is substantially collimated light (parallel light), the first processing light EL1 branched from there is directed in the X-axis direction.
  • the light is collimated (parallel light) with a predetermined size in the Y-axis direction. Therefore, the third optical system 18C allows the first processing light EL11, which is reflected by the fifth mirror 36 and directed toward the surface of the workpiece W, to be directed to the surface of the work W in a predetermined direction in the X-axis direction and the Y-axis direction.
  • the light is collimated in size.
  • the processing optical system 15C irradiates the first processing light EL11 to form an irradiation area RA3, and makes the irradiation area RA3 equal in size to the processing area PA (see FIG. 11). That is, the processing optical system 15C sets the processing light EL0 from the processing light source 2 so that the irradiation area RA3 has the same size as the processing area PA.
  • this processing optical system 15C when the processing light EL0 is emitted from the processing light source 2, it is split into the first processing light EL1 and the second processing light EL2 by the beam splitter 23 in the first optical system 16C, and then the first processing light EL1 is It advances to the third optical system 18C. Further, the processing optical system 15C makes the second processing light EL2 branched by the first optical system 16C collimated by the collimating lens 22, and then makes it proceed to the second optical system 17.
  • the second optical system 17 can generate an interference area IA1 of the interference fringes IS1 showing the fundamental frequency waveform Wb on the surface of the workpiece W. form.
  • the second optical system 17 has an optical deflection member 28 disposed in the optical path between the first mirror 27 and the second mirror 29, so that interference fringes IS2 exhibiting the double frequency waveform Wd can be formed on the surface of the workpiece W.
  • An interference area IA2 is formed.
  • the first processing light EL1 from the first optical system 16C is reflected by the fifth mirror 36, thereby forming an interference area IA (interference area IA1, interference area IA2) is irradiated with the first processing light EL11 having a predetermined size in the X-axis direction and the Y-axis direction to form an irradiation area RA3.
  • the irradiation area RA3 has a size equal to the processing area PA.
  • the processing optical system 15C forms an overlapping area OA4 by overlapping the interference area IA1 and the irradiation area RA3 on the surface of the workpiece W by removing the optical deflection member 28 in the second optical system 17. (See Figure 11).
  • the processing optical system 15C has the optical deflection member 28 disposed in the second optical system 17, so that the interference area IA2 and the irradiation area RA3 overlap to form an overlapping area OA5 on the surface of the workpiece W. (See Figure 11).
  • the processing optical system 15C forms an irradiation area RA3 in the processing area PA and an interference area IA1 at one end of the processing area PA in the X-axis direction.
  • the processing optical system 15C drives the galvano mirror 21 to move the interference area IA1 toward the other end in the X-axis direction to scan the entire area of the processing area PA, and creates an overlapping area OA4 in the entire area of the processing area PA. (see Figure 11).
  • the processing optical system 15C forms an irradiation area RA3 in the processing area PA and an interference area IA2 at one end of the processing area PA in the X-axis direction.
  • the processing optical system 15C drives the galvanometer mirror 21 to move the interference area IA2 toward the other end in the X-axis direction to scan the entire area of the processing area PA.
  • An overlapping area OA5 is formed (see FIG. 11).
  • the machining optical system 15C superimposes the interference fringe IS1 of the fundamental frequency waveform Wb and the interference fringe IS2 of the double frequency waveform Wd on the first machining light EL11 over the entire machining area PA on the surface of the workpiece W. can be irradiated. Therefore, the processing optical system 15C can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15C can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure in an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • processing optical system 15D uses the first optical system 16C and third optical system 18C of the processing optical system 15C, and also uses the second optical system 17B of the processing optical system 15B. be. Therefore, the same reference numerals are given to the parts having the same structure, and the detailed explanation will be omitted.
  • this processing optical system 15D converts the second processing light EL2 branched by the first optical system 16C into collimated light by the collimating lens 22, and then causes the light to proceed to the second optical system 17B.
  • the second processing light EL221 is made into a linear light that extends in the X-axis direction on the reflective surface 25b and is shifted in the Y-axis direction halfway, and
  • the second processing light EL222 is linear light that extends in the X-axis direction on the passage surface 25c and is shifted in position in the Y-axis direction (see FIG. 19).
  • the second optical system 17B irradiates the surface of the workpiece W with the second processing light EL221 and the second processing light EL222 through the lens 33, thereby causing interference that shows the fundamental frequency waveform Wb on the surface of the workpiece W.
  • An interference area IA3 is formed in which the fringe IS1 and the interference fringe IS2 of the double frequency waveform Wd are arranged in parallel (see FIG. 11).
  • the processing optical system 15D can overlap the interference area IA3 and the irradiation area RA3 to form an overlapping area OA6 on the surface of the workpiece W using the second optical system 17B (see FIG. 11).
  • the processing optical system 15D forms an irradiation area RA3 in the processing area PA and an interference area IA3 at one end in the X-axis direction in the processing area PA.
  • the processing optical system 15D scans the entire processing area PA by driving the galvano mirror 21 and moving the interference area IA3 toward the other end in the X-axis direction, and creates an overlapping area OA6 in the entire processing area PA. form.
  • the processing optical system 15D superimposes the interference fringe IS1 of the fundamental frequency waveform Wb and the interference fringe IS2 of the double frequency waveform Wd on the first processing light EL11 for the entire processing area PA on the surface of the workpiece W. can be irradiated.
  • the processing optical system 15D can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15D can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure in an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • this processing optical system 15E includes a first optical system 16E having the same basic concept and configuration as the first optical system 16C of the processing optical system 15C described above. In the following description, the same reference numerals will be given to parts having the same configuration, and detailed description will be omitted. Further, the processing optical system 15E includes a second optical system 17E having the same basic concept and configuration as the second optical system 17 of the processing optical system 15A described above. In the following description, the same reference numerals will be given to parts having the same configuration, and detailed description will be omitted. Furthermore, since the processing optical system 15E uses the third optical system 18C of the processing optical system 15C, the same reference numerals are given to the parts having the same configuration, and detailed explanations are omitted.
  • the processing optical system 15E is different from the processing optical system 15C in that the galvanometer mirror 21, collimating lens 22, and lens 41 are not provided, and a mirror 42 is newly provided.
  • the beam splitter 23 as the first optical system 16E is provided at a position where the machining light EL0 from the machining light source 2 travels, and the first beam splitter 23 serves as the first optical system 16E, which propagates to the third optical system 18 by reflecting a part of the machining light EL0.
  • a processing light EL1 is generated, and a second processing light EL2 is generated which proceeds to the mirror 42 by passing another part of the processing light EL0.
  • the mirror 42 is a plate-like member, and reflects the second processing light EL2 that has passed through the beam splitter 23 toward the second optical system 17E (its first cylindrical lens 24).
  • the second optical system 17E of the processing optical system 15E is different from the second optical system 17 of the processing optical system 15A in that a fourth cylindrical lens 43 is newly provided in place of the lens 33.
  • the fourth cylindrical lens 43 converts the second processing light EL221 and second processing light EL222 (see FIG. 21), which are linear lights extending in the X-axis direction from the special beam splitter 25, into sides extending in the X-axis direction.
  • the light has a rectangular shape with sides extending in the Y-axis direction (see FIG. 11).
  • the front focus of the fourth cylindrical lens 43 in the traveling direction of the second processing light EL221 and the second processing light EL222 is set near the special beam splitter 25 (its reflective surface).
  • the fourth cylindrical lens 43 transmits the second processing light EL221 and the second processing light EL222 onto the surface of the workpiece W in a state of collimated light (parallel light) having a predetermined size in the X-axis direction and the Y-axis direction. light).
  • this processing optical system 15E will be explained. First, when the processing light EL0 is emitted from the processing light source 2, it is split into the first processing light EL1 and the second processing light EL2 by the beam splitter 23 in the first optical system 16E, and then the first processing light EL1 is It advances to the third optical system 18C. Further, the processing optical system 15E reflects the second processing light EL2 branched by the first optical system 16E on the mirror 42 and causes it to proceed to the second optical system 17E.
  • the second optical system 17E allows the second processing light EL221 and the second processing light EL222 from the special beam splitter 25 to pass through the fourth cylindrical lens 43, thereby creating a predetermined size in the X-axis direction and the Y-axis direction.
  • the surface of the workpiece W is irradiated with this light.
  • the second optical system 17E removes the optical deflection member 28 from the optical path between the first mirror 27 and the second mirror 29, so that the interference area of the interference fringes IS1 showing the fundamental frequency waveform Wb on the surface of the workpiece W is Form IA4 (see Figure 11).
  • the second optical system 17 has an optical deflection member 28 disposed in the optical path between the first mirror 27 and the second mirror 29, so that interference fringes IS2 exhibiting the double frequency waveform Wd can be formed on the surface of the workpiece W.
  • An interference area IA5 is formed (see FIG. 11).
  • the first processing light EL1 from the first optical system 16E is reflected by the fifth mirror 36, so that the first processing light EL1 is superimposed on the interference area IA4 formed on the surface of the workpiece W.
  • the EL11 is irradiated to form an irradiation area RA3 having the same size as the processing area PA.
  • the processing optical system 15E overlaps the interference area IA4 and the irradiation area RA3 on the surface of the workpiece W to be equal to the processing area PA.
  • An overlapping area OA7 of the same size is formed (see FIG. 11).
  • the first processing light EL1 from the first optical system 16E is reflected by the fifth mirror 36, so that the first processing light EL1 is superimposed on the interference area IA5 formed on the surface of the workpiece W.
  • the EL11 is irradiated to form an irradiation area RA3 having the same size as the processing area PA.
  • the processing optical system 15E places the optical deflection member 28 in the second optical system 17, so that the interference area IA5 and the irradiation area RA3 overlap to form an overlapping area OA8 on the surface of the workpiece W. (See Figure 11).
  • the processing optical system 15E superimposes the interference fringe IS1 of the fundamental frequency waveform Wb and the interference fringe IS2 of the double frequency waveform Wd on the first processing light EL11 for the entire processing area PA on the surface of the workpiece W. can be irradiated. Therefore, the processing optical system 15E can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15E can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure having an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • processing optical system 15F as a modified example
  • this machining optical system 15F has the same basic concept and configuration as the above-described machining optical system 15A, so parts with the same configuration are given the same reference numerals and detailed explanations are omitted. do.
  • the processing light EL0 from the processing light source 2 is highly directional, having components in two different polarization directions.
  • the processing optical system 15F differs from the processing optical system 15A in that it does not include a galvanometer mirror 21 and a collimating lens 22.
  • the first optical system 16F of the processing optical system 15F branches the processing light EL0 from the processing light source 2 into the first processing light EL1 and the second processing light EL2 using the beam splitter 23.
  • the beam splitter 23 generates the first processing light EL1 that travels to the third optical system 18F by reflecting a part of the processing light EL0, and allows the other part of the processing light EL0 to pass through. This generates second processing light EL2 that travels to the second optical system 17F.
  • the second optical system 17F into which the second processing light EL2 from the first optical system 16F is incident, includes the first cylindrical lens 24, the second cylindrical lens 26, the optical deflection member 28, and the third cylindrical lens.
  • the processing optical system 15A is different from the second optical system 17 in that the lenses 32 and 33 are not provided.
  • a first polarizing beam splitter 44 is provided in place of the special beam splitter 25, and a second polarizing beam splitter 45, a first lens 46, and a second lens 47 are newly installed. This is different from the second optical system 17 of the processing optical system 15A in that the second optical system 17 is provided with the processing optical system 15A.
  • the first polarizing beam splitter 44 splits the second processing light EL2 from the first optical system 16F into a plurality of second processing lights EL22.
  • the first polarizing beam splitter 44 splits the second processing light EL2 into two second processing lights EL22 (when individually shown, one is referred to as the second processing light EL221 and the other is referred to as the second processing light EL221).
  • An example of dividing into processing light EL222 will be explained.
  • the first polarizing beam splitter 44 also has a function of merging the two divided second processing lights EL22 and causing both of the second processing lights EL22 to proceed toward the second polarizing beam splitter 45.
  • the first polarizing beam splitter 44 is a rectangular plate-shaped polarizing beam splitter, and is arranged at an angle of 45 degrees with respect to the Y-axis direction with the central axis extending in the X-axis direction as the center. ing. Therefore, the first polarization beam splitter 44 has a first polarization splitting surface 44a that is inclined at 45 degrees with respect to the Y-axis direction.
  • the first polarizing beam splitter 44 generates a second processing light EL221 by reflecting a part of the second processing light EL2 from the first optical system 16F, and by passing the remainder of the second processing light EL2. A second processing light EL222 is generated.
  • the first polarizing beam splitter 44 reflects one of the p-polarized light component and the s-polarized light component at the first polarization splitting surface 44a, and reflects the other of the p-polarized light component and the s-polarized light component. Let it pass. Therefore, the second processing light EL2 from the first optical system 16F includes a p-polarized light component and an s-polarized light component in the first polarized beam splitter 44 at least when it enters the first polarized beam splitter 44.
  • the processing light EL0 from the processing light source 2 includes a p-polarized light component and an s-polarized light component at the first polarization beam splitter 44 at the time of incidence.
  • the first polarizing beam splitter 44 is arranged at an angle of 45 degrees with respect to the Y-axis direction
  • the second processing light EL221 reflected and generated is directed to the first mirror 27 in parallel with the Z-axis direction.
  • the generated second processing light EL222 is caused to advance toward the third mirror 31 in parallel to the Y-axis direction.
  • the second optical system 17F In the second optical system 17F, the first cylindrical lens 24, the second cylindrical lens 26, the optical deflection member 28, and the third cylindrical lens 32 are not provided.
  • the relationship between the first mirror 27, the second mirror 29, and the third mirror 31 is the same as that of the second optical system 17 of the processing optical system 15A. Therefore, the second optical system 17F basically rotates the second processing light EL221 and the second processing light EL222 from the first polarizing beam splitter 44 in mutually different rotation directions (clockwise direction and counterclockwise direction). Then, the light beam is caused to advance back to the first polarizing beam splitter 44 again.
  • the second optical system 17F since the second mirror 29 is arranged inclined from the reference position (surface), the second processing light EL221 and the second processing light EL222 are passed through basically the same optical path. At the same time, the emission angles of the second processing light EL221 and the second processing light EL222 are set in different directions. Then, the second optical system 17F reflects the second processing light EL221 by the first polarization beam splitter 44 and causes it to travel toward the second polarization beam splitter 45, and also sends the second processing light EL222 to the first polarization beam splitter 44. The polarizing beam is transmitted through the polarizing beam splitter 45 and proceeds toward the second polarizing beam splitter 45.
  • This second processing light EL221 is linearly polarized light of one of p-polarization and s-polarization (first polarization direction) in the first polarization beam splitter 44
  • second processing light EL222 is linearly polarized light in the first polarization beam splitter 44.
  • the linearly polarized light is the other (second polarization direction) of the polarized light and the s-polarized light.
  • the first polarizing beam splitter 44 emits the second processing light EL221 in the first polarization direction and the second processing light EL222 in the second polarization direction so that at least one of the emission angle and the emission position is different.
  • the second optical system 17F the first polarized beam splitter 44, the first mirror 27, the second mirror 29, and the third mirror 31 separate the second processed light EL221 in the first polarization direction and the second polarized light.
  • the second polarizing beam splitter 45 is configured by combining a cube-shaped polarizing beam splitter section 45a with an orthogonal triangular prism section 45b continuous on one surface thereof.
  • the polarization beam splitter section 45a has a second polarization splitting surface 45c inclined at 45 degrees with respect to the Y-axis direction.
  • the second polarization splitting surface 45c reflects one of the p-polarized light component and the s-polarized light component on the second polarization splitting surface 45c, and allows the other of the p-polarized light component and the s-polarized light component to pass through.
  • the second polarizing beam splitter 45 is configured such that the second polarizing beam splitting surface 45c is non-parallel to the first polarizing beam splitting surface 44a of the first polarizing beam splitter 44 (in different plane directions).
  • the polarizing beam splitter 44 is rotated about a central axis extending in the Y-axis direction.
  • the surface direction may be the normal direction of the surface.
  • the second polarization splitting surface 45c is at an angle of 45 degrees with respect to the first polarization splitting surface 44a when viewed in the rotation direction about the central axis extending in the Y-axis direction. It is considered to be an angle.
  • the surface perpendicular to the first polarization splitting surface 44a includes the X-axis direction (is parallel to it)
  • the surface perpendicular to the second polarization splitting surface 45c includes a predetermined direction with respect to the X-axis direction. It is assumed that the angle (45 degrees in this modification) is formed.
  • the second polarization splitting surface 45c is rotated about the central axis extending in the Y-axis direction with respect to the first polarization splitting surface 44a as described above, the second polarization splitting surface 45c is The second processing light EL221, which is linearly polarized light in the first polarization direction, and the second processing light EL222, which is linearly polarized light in the second polarization direction, can be respectively divided.
  • the second polarization splitting surface 45c allows a part of the second processed light EL221, which is linearly polarized light in the first polarization direction, to pass therethrough to become the second processed light EL221 in the third polarization direction, and also The remainder of the EL221 is reflected to form the second processing light EL221 in the fourth polarization direction.
  • the second polarization splitting surface 45c allows a part of the second processed light EL222, which is linearly polarized light in the second polarization direction, to pass therethrough to become the second processed light EL222 in the third polarization direction, and also The remainder of the EL222 is reflected to form the second processing light EL222 in the fourth polarization direction.
  • the second polarization splitting surface 45c allows the second processing light EL221 in the third polarization direction that has passed therethrough to interfere with the second processing light EL222 in the third polarization direction, and the reflected fourth This allows the second processing light EL221 in the polarization direction and the second processing light EL222 in the fourth polarization direction to interfere with each other. Then, the second polarization beam splitter 45 emits the second processing light EL221 and the second processing light EL222 with the third polarization direction toward the lower side of the second polarization splitting surface 45c in the Y-axis direction, It is advanced toward the first lens 46.
  • the orthogonal triangular prism part 45b has a reflecting surface 45d provided in the traveling direction of the second processing light EL221 in the fourth polarization direction and the second processing light EL222 in the fourth polarization direction reflected by the second polarization splitting surface 45c. .
  • the reflective surface 45d of this modification is parallel to the second polarization splitting surface 45c. Therefore, like the second polarization splitting surface 45c, the reflective surface 45d has orthogonal surfaces that form a predetermined angle (45 degrees in this modification) with respect to the X-axis direction.
  • the reflective surface 45d reflects the second processed light EL221 and the second processed light EL222 having the fourth polarization direction toward the lower side of the reflective surface 45d in the Y-axis direction and toward the first lens 46. Let it proceed.
  • the first lens 46 is provided as a pair with the second lens 47 in the Y-axis direction.
  • the first lens 46 cooperates with the second lens 47 to irradiate the first position P1 on the surface of the workpiece W with the second processing light EL221 in the third polarization direction and the second processing light EL222 in the third polarization direction.
  • a first interference fringe interference fringe IS in interference area IA6 (see FIG. 23)
  • the first lens 46 cooperates with the second lens 47 to direct the second processing light EL221 in the fourth polarization direction and the second processing light EL222 in the fourth polarization direction to the second position P2 on the surface of the workpiece W.
  • the first lens 46 cooperates with the second lens 47 to adjust the size of the interference area IA6 at the first position P1 on the surface of the workpiece W, and also adjusts the size of the interference area IA7 at the second position P2. Adjust the brightness. That is, the first lens 46 cooperates with the second lens 47 to create a first interference fringe (interference fringe IS in the interference area IA6) caused by the second processing light EL221 and the second processing light EL222 in the third polarization direction.
  • the size of the second interference fringe (interference fringe IS in the interference area IA7) formed by the second processing light EL221 and the second processing light EL222 in the fourth polarization direction is adjusted.
  • This size adjustment includes adjusting the period of the interference fringes IS on the surface of the workpiece W in addition to adjusting the size of the interference area IA6 and the interference area IA7 on the surface of the workpiece W. Therefore, it can be said that the first lens 46 and the second lens 47 constitute an afocal optical system.
  • the first lens 46 and the second lens 47 are each shown as one lens in FIG. 22, but the first lens 46 and the second lens 47 each include a plurality of lenses. It may be composed of lenses. Therefore, the first lens 46 and the second lens 47 may be referred to as a first lens group 46 and a second lens group 47, respectively. Further, a reflective member or a diffractive optical element may be used instead of or in addition to the lens. Therefore, the first lens 46 and the second lens 47 may be referred to as a first optical member group 46 and a second optical member group 47, respectively.
  • This second optical system 17F moves the fringe pitch direction of the first interference fringe (interference fringe IS in interference area IA6) and the fringe pitch direction of the second interference fringe (interference fringe IS in interference area IA7) in the same direction or The directions are parallel to each other. Further, the second optical system 17F makes the fringe pitch of the first interference fringes (interference fringes IS in the interference area IA6) equal to the fringe pitch of the second interference fringes (interference fringes IS in the interference area IA7). In the second optical system 17F, the bright and dark phases of the interference fringes IS in the interference area IA6 are aligned with the bright and dark phases of the interference fringes IS in the interference area IA7.
  • the fact that the bright and dark phases of both interference fringes IS are aligned means that the interference fringes IS in the interference area IA6 are formed by expanding virtually, and the interference fringes IS in interference area IA7 are formed by expanding virtually. It refers to the fact that the positions of the light and dark areas of an object match, that is, they form similar patterns of light and shade. In other words, when the bright and dark phases of both interference fringes IS are aligned, one is formed by virtually expanding the interference fringe IS in the interference area IA6, and the other is formed by virtually expanding the interference fringe IS in the interference area IA7. It can also be said that the phases of the two are matched.
  • the second polarizing beam splitter 45 splits the second processing light EL221 in the first polarization direction into the second processing light EL221 in the third polarization direction and the second processing light EL221 in the fourth polarization direction, and The second processing light EL222 in the second polarization direction is divided into the second processing light EL222 in the third polarization direction and the second processing light EL222 in the fourth polarization direction.
  • the second polarizing beam splitter 45, the first lens 46, and the second lens 47 form a first interference fringe (interference fringe IS in the interference area IA6) at the first position P1.
  • the downstream optical system forms a second interference fringe (interference fringe IS in the interference area IA7) at the second position P2.
  • the third optical system 18F differs from the third optical system 18 of the processing optical system 15A in that a beam splitter 48 is newly provided in place of the fourth cylindrical lens 35.
  • the fourth mirror 34 reflects the first processing light EL1 from the first optical system 16F and causes it to proceed to the beam splitter 48.
  • the beam splitter 48 splits the first processing light EL1 into a first processing light EL111 and a first processing light EL112. Specifically, the beam splitter 48 generates the first processing light EL111 that travels toward the surface of the workpiece W by reflecting a part of the first processing light EL1, and generates the other part of the first processing light EL1. By passing it, the first processing light EL112 that travels to the fifth mirror 36 is generated.
  • the area to which this first processing light EL111 is irradiated is defined as an irradiation area RA4.
  • the beam splitter 48 (third optical system 18F) of this modification is set to irradiate the first processing light EL111 to the first position P1 where the interference area IA6 is formed on the surface of the workpiece W. Area RA4 and interference area IA6 are overlapped (see FIG. 23).
  • This beam splitter 48 may be an amplitude splitting type beam splitter or a polarizing beam splitter.
  • the fifth mirror 36 reflects the first processing light EL112 from the beam splitter 48 and causes it to advance toward the surface of the workpiece W.
  • the fifth mirror 36 (third optical system 18F) of this modification is set to irradiate the first processing light EL112 to the second position P2 where the interference area IA7 is formed on the surface of the workpiece W ( (See Figure 23).
  • the area irradiated with this first processing light EL112 is defined as an irradiation area RA5.
  • the third optical system 18F uses the beam splitter 48 to send the first processing light EL1 to the first processing light EL111 (irradiation area RA4) that irradiates the area where the interference area IA6 is formed on the surface of the workpiece W, and the workpiece It branches into a first processing light EL112 (irradiation area RA5) that irradiates the area where the interference area IA7 is formed on the surface of W.
  • the processing optical system 15F can overlap the interference area IA6 and the irradiation area RA4 to form an overlapping area OA8 on the surface of the workpiece W, and can overlap the interference area IA7 and the irradiation area RA5 to form an overlapping area OA9. (See Figure 23). Therefore, the processing optical system 15F sets the combined area of the overlapping area OA8 and the overlapping area OA9 as the processing area PA.
  • the processing optical system 15F of this modification has the first optical system 16F, the second optical system 17F, and the third
  • the fluences of the first processing light EL111 and the first processing light EL112 are set in consideration of the arrangement and optical performance of each optical member in the optical system 18F. That is, the processing optical system 15F controls the first optical system 16F and the second optical system so that the fluence of the interference fringes IS between the interference area IA7 and the interference area IA8 is equal to or higher than the lower limit value TH_lowest of the fluence that can process the workpiece W.
  • the splitting ratio in the beam splitter 23 of the first optical system 16F and the beam splitter 48 of the third optical system 18F is set based on the arrangement and optical performance of each optical member in the system 17F and the third optical system 18F.
  • this processing optical system 15F will be explained.
  • the processing light EL0 is emitted from the processing light source 2, it is split into the first processing light EL1 and the second processing light EL2 by the beam splitter 23 in the first optical system 16F.
  • the first processing light EL1 proceeds to the third optical system 18F, and the second processing light EL2 proceeds to the second optical system 17F.
  • a part of the second processing light EL2 is reflected toward the first mirror 27 by the first polarization beam splitter 44 (first polarization splitting surface 44a) as a second processing light EL221,
  • the other part passes through the first polarization beam splitter 44 (first polarization splitting surface 44a) and becomes the second processing light EL222 heading toward the third mirror 31.
  • the second processing light EL221 is reflected by the first mirror 27, the second mirror 29, and the third mirror 31, and travels toward the first polarizing beam splitter 44.
  • the second processing light EL222 is reflected by the third mirror 31, the second mirror 29, and the first mirror 27, and travels toward the first polarizing beam splitter 44.
  • the first polarizing beam splitter 44, the first mirror 27, and the third mirror 31 are all plate-shaped members and are inclined at 45 degrees with respect to the Z-axis direction
  • the second mirror 29 is also It is made into a plate-like member, and its reference position is inclined at 45 degrees with respect to the Z-axis direction. Therefore, the second optical system 17F basically rotates the second processing light EL221 and the second processing light EL222 from the first polarizing beam splitter 44 in mutually different rotation directions (clockwise direction and counterclockwise direction).
  • the polarizing beam splitter 44 then returns to the first polarizing beam splitter 44 again.
  • the second mirror 29 is tilted counterclockwise about the central axis with respect to the reference position in FIG.
  • the second processing light EL221 reflected by the second mirror 29 travels to a position shifted to the right on the third mirror 31 compared to the case where it is at the reference position, and is reflected there, so that the second processing light EL221 The beam proceeds toward a position shifted upward in the polarizing beam splitter 44.
  • the second processing light EL222 reflected by the second mirror 29 advances to a position shifted downward on the first mirror 27 compared to the case where it is at the reference position, and is reflected there, so that the second processing light EL222 The beam proceeds toward a position shifted downward in the polarizing beam splitter 44.
  • the second optical system 17F the second processing light EL221 and the second processing light EL222 are allowed to pass through basically the same optical path, while the second processing light EL221 and the second processing light EL222 have different spatial positions. It can make a difference. Therefore, it can be said that the second optical system 17F (its upstream optical system) constitutes a quadrangular Sagnac optical system.
  • the second optical system 17F reflects the second processing light EL221 on the first polarization beam splitter 44 (first polarization splitting surface 44a) and causes it to proceed toward the second polarization beam splitter 45, and also causes the second processing light EL221 to travel toward the second polarization beam splitter 45.
  • the EL 222 is transmitted through the first polarizing beam splitter 44 (first polarizing beam splitting surface 44a) and travels toward the second polarizing beam splitter 45.
  • the second processing light EL221 is made into linearly polarized light in the first polarization direction
  • the second processing light EL222 is made into linearly polarized light in the second polarization direction.
  • the second polarization beam splitter 45 allows a part of the second processing light EL221 in the first polarization direction to pass through the first polarization splitting surface 44a to become the second processing light EL221 in the third polarization direction, and also makes the second processing light EL221 in the third polarization direction A part of the second processing light EL222 in the direction is passed through to become the second processing light EL222 in the third polarization direction.
  • the second polarizing beam splitter 45 reflects the remainder of the second processing light EL221 in the first polarization direction on the first polarization splitting surface 44a to form the second processing light EL221 in the fourth polarization direction, and The remainder of the second processing light EL222 in the polarization direction is reflected to become the second processing light EL222 in the fourth polarization direction. Then, the second polarizing beam splitter 45 causes the second processing light EL221 and the second processing light EL222 in the third polarization direction to proceed toward the first lens 46.
  • the second polarizing beam splitter 45 reflects the second processing light EL221 and the second processing light EL222 in the fourth polarization direction on the reflecting surface 45d, and causes them to travel toward the first lens 46. Then, on the surface of the work W, the first lens 46 and the second lens 47 generate interference fringes IS (interference area IA6 ) to form. Further, the first lens 46 and the second lens 47 generate interference fringes IS (interference area IA7 ) to form.
  • the first processing light EL1 from the first optical system 16F is reflected by the fourth mirror 34 and then split into the first processing light EL111 and the first processing light EL112 by the beam splitter 48. . Then, in the third optical system 18F, the first processing light EL111 is advanced from the beam splitter 48 to the surface of the workpiece W to form an irradiation area RA4 at the first position P1, and the first processing light EL112 is transmitted to the fifth mirror. 36 and advances toward the surface of the workpiece W, forming an irradiation area RA5 at the second position P2.
  • the processing optical system 15F overlaps the interference area IA6 and the irradiation area RA4 at the first position P1 to form an overlapping area OA8 on the surface of the workpiece W, and at the same time forms the interference area IA7 and the irradiation area at the second position P2.
  • RA5 is overlapped to form an overlapping area OA9.
  • the bright and dark phases of the interference fringes IS in the interference area IA6 are aligned with the bright and dark phases of the interference fringes IS in the interference area IA7.
  • the processing optical system 15F can irradiate the entire area of the processing area PA on the surface of the workpiece W with the interference fringes IS in which the first processing light EL111 or the first processing light EL112 is superimposed. Then, the processing optical system 15F sets the fluence of the first processing light EL111 and the first processing light EL112 so that the minimum fluence of the processing light in the superimposed area OA8 and the superimposed area OA9 is a fluence that can process the workpiece W. ing. Therefore, the processing optical system 15F can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15F can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure having an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • the processing optical system 15F aligns the bright and dark phases of the interference fringes IS in the overlapping areas OA8 and OA9, so that a similar riblet structure RB can be formed in both the overlapping areas OA8 and OA9. . Therefore, by moving the processing optical system 15F in a direction in which the bright and dark areas extend relative to the workpiece W, the riblet structure RB can be formed more efficiently at any position on the surface of the workpiece W.
  • the upstream optical system of the second optical system 17F outputs a second processing light EL221 that is linearly polarized light in the first polarization direction and a second processing light EL222 that is linearly polarized light in the second polarization direction.
  • the light is emitted from the first polarizing beam splitter 44 such that at least one of the emitting angle and the emitting position is different.
  • the first polarization beam splitter 44 splits the second processing light EL2 into a second processing light EL221 in the first polarization direction and a second processing light EL222 in the second polarization direction. Therefore, since the processing optical system 15F splits the second processing light EL2 using the first polarizing beam splitter 44, the loss of light during splitting can be significantly suppressed.
  • the processing optical system 15F aligns the first polarization splitting surface 44a of the first polarization beam splitter 44 and the second polarization splitting surface 45c of the second polarization beam splitter 45 with respect to a central axis extending in the Y-axis direction. The positional relationship is rotated. Thereby, the second polarization splitting surface 45c splits each of the second processing light EL221 and the second processing light EL222, which have been split into the p-polarized light component and the s-polarized light component on the first polarization splitting surface 44a, into the second polarization splitting surface 45c. This means that the light can be divided into a p-polarized light component and an s-polarized light component at the polarization splitting surface 45c.
  • the second polarization splitting surface 45c of the second polarization beam splitter 45 splits the second processing light EL221 in the first polarization direction into the second processing light EL221 in the third polarization direction and the fourth polarization direction.
  • the second processing light EL222 in the second polarization direction is divided into the second processing light EL222 in the third polarization direction and the second processing light EL222 in the fourth polarization direction.
  • the processing optical system 15F converts the second processing light EL221 in the third polarization direction and the second processing light EL222 in the third polarization direction, which have passed through the first polarization splitting surface 44a, into the first lens 46 and the second lens 47.
  • a reflecting surface 45d is provided in the reflecting direction of the second polarization splitting surface 45c of the second polarizing beam splitter 45. Then, in the processing optical system 15F, the second processing light EL221 and the second processing light EL222 in the fourth polarization direction reflected by the reflecting surface 45d are passed through the first lens 46 and the second lens 47 to form the workpiece W. It is advanced to the second position P2 on the surface of.
  • the processing optical system 15F changes the polarization of the second processing light EL221 and the second processing light EL222 by passing through the second polarization splitting surface 45c and reflecting at the second polarization splitting surface 45c. You can align each direction. Thereby, the processing optical system 15F can interfere the polarization directions of the second processing light EL221 and the second processing light EL222, which cannot interfere because their polarization directions are different, by using the second polarization beam splitter 45.
  • the processing optical system 15F forms interference fringes IS with the passed second processing light EL221 in the third polarization direction and second processing light EL222, and forms interference fringes IS with the reflected second processing light EL221 in the fourth polarization direction and the second processing light EL222. Interference fringes IS are formed with the second processing light EL222. Therefore, the processing optical system 15F can form the interference fringes IS by efficiently utilizing the second processing light EL2 emitted toward the second optical system 17F.
  • the processing optical system 15F described above is supposed to form interference fringes IS of a single frequency, but similarly to the processing optical systems 15A, 15C, and 15E, the fundamental frequency waveform Wb has one or more n times The frequency waveforms Wn may be superimposed.
  • the optical deflection member 28 is placed between the first mirror 27 and the second mirror 29, similarly to the second optical system 17 of the processing optical system 15A. What is necessary is to provide it so that it can be placed in the optical path and removed from the optical path.
  • This machining optical system 15G has the same basic concept and configuration as the above-described machining optical system 15A, so parts with the same configuration are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • the processing optical system 15G differs from the processing optical system 15A in that it does not include a galvanometer mirror 21 and a collimating lens 22. Therefore, the first optical system 16G splits the processing light EL0 from the processing light source 2 into the first processing light EL1 and the second processing light EL2 by the beam splitter 23. Specifically, the beam splitter 23 generates the first processing light EL1 that proceeds to the third optical system 18G by passing a part of the processing light EL0, and reflects the other part of the processing light EL0. This generates second processing light EL2 that travels to the second optical system 17G.
  • the second optical system 17G into which the second processing light EL2 from the first optical system 16G is incident, has a different configuration from the second optical system 17 of the processing optical system 15A.
  • This second optical system 17G includes a beam splitter 51, a mirror 52, and a mirror 53.
  • the beam splitter 51 is a light splitting member that receives the second processing light EL2 from the first optical system 16G and splits the second processing light EL2 into a plurality of second processing lights EL22.
  • This beam splitter 51 generates a plurality of second processing lights EL2 by splitting the second processing light EL2.
  • the beam splitter 51 splits the second processing light EL22 into two second processing lights EL22 (when shown individually, one is referred to as the second processing light EL221, and the other is referred to as the second processing light EL222).
  • the beam splitter 51 may be an amplitude splitting type beam splitter. In this case, a portion of the second processing light EL2 passes through the beam splitter 51 as the second processing light EL221. On the other hand, another part of the second processing light EL2 is reflected by the beam splitter 51 as the second processing light EL222.
  • the beam splitter 51 is not limited to an amplitude splitting type beam splitter, but may be a polarizing beam splitter.
  • a polarization control member such as a wavelength plate may be placed on one or more of the optical paths of the plural processing lights split by the polarization beam splitter.
  • the second processing light EL221 that has passed through the beam splitter 51 is incident on the mirror 52.
  • the mirror 52 reflects the second processing light EL221 toward the workpiece W.
  • the mirror 52 reflects the second processing light EL221 so that the second processing light EL221 is incident on the workpiece W at a predetermined angle of incidence ⁇ .
  • the second processing light EL222 reflected by the beam splitter 51 enters the mirror 53.
  • the mirror 53 reflects the second processing light EL222 toward the workpiece W.
  • the mirror 53 reflects the second processing light EL221 so that the second processing light EL222 is incident on the work W at an incident angle ⁇ from a direction different from that of the second processing light EL221.
  • the second processing light EL221 reflected by the mirror 52 and the second processing light EL222 reflected by the mirror 53 are irradiated onto an interference area IA8 set on the workpiece W.
  • the second optical system 17G has an interference area IA8 of a predetermined size in the X-axis direction and the Y-axis direction. As a result, in the interference region IA8, interference light generated by the interference between the second processing light EL221 and the second processing light EL222 forms interference fringes IS.
  • the third optical system 18G of the processing optical system 15G is not provided with the fourth mirror 34 and the fourth cylindrical lens 35, and only the fifth mirror 36 is provided. They are different in that they are provided with In the third optical system 18G, the first processing light EL1 from the first optical system 16G, that is, the beam splitter 23, is reflected by the fifth mirror 36 and is caused to proceed to the surface of the workpiece W as the first processing light EL11.
  • This third optical system 18G makes the first processing light EL11 directed toward the surface of the workpiece W a light of a predetermined size in the X-axis direction and the Y-axis direction.
  • the area to which this first processing light EL11 is irradiated is defined as an irradiation area RA6.
  • this processing optical system 15G will be explained.
  • the processing light EL0 is emitted from the processing light source 2, it is split into the first processing light EL1 and the second processing light EL2 by the beam splitter 23 in the first optical system 16G, and then the first processing light EL1 is The second processing light EL2 is made to proceed to the second optical system 17G while being made to proceed to the third optical system 18G.
  • the second optical system 17G splits the second processing light EL2 from the first optical system 16G into a second processing light EL221 and a second processing light EL222 using a beam splitter 51, and splits them into a second processing light EL221 and a second processing light EL222 using a mirror 52 and a mirror 53 to work on the workpiece. It is reflected to the surface of W. Thereby, the second optical system 17G forms an interference area IA8 of interference fringes IS on the surface of the workpiece W.
  • the third optical system 18G reflects the first processing light EL1 from the first optical system 16G by the fifth mirror 36, so that the third optical system 18G overlaps the interference area IA8 formed on the surface of the workpiece W in the X-axis direction. Then, the first processing light EL11 of a predetermined size is irradiated in the Y-axis direction to form an irradiation area RA6.
  • the processing optical system 15G overlaps the interference area IA8 and the irradiation area RA6 on the surface of the work W to form an overlapping area OA10. Therefore, in the processing optical system 15G, the overlapping area OA10 becomes the processing area PA. Thereby, the processing optical system 15G can irradiate the entire processing area PA on the surface of the workpiece W with the interference fringes IS superimposed on the first processing light EL11.
  • the processing optical system 15G sets the fluence of the first processing light EL111 so that the minimum fluence of the processing light in the superimposed area OA10 is a fluence at which the workpiece W can be processed.
  • the processing optical system 15G can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15G can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure having an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • the processing optical system 15G described above is supposed to form interference fringes IS of a single frequency, but similarly to the processing optical systems 15A, 15C, and 15E, the fundamental frequency waveform Wb has one or more n times The frequency waveforms Wn may be superimposed.
  • the processing optical system 15G can, for example, change the angle of at least one of the mirrors 52 and 53, or refract the light onto an optical path from the first mirror 27 or the second mirror 29 to the surface of the workpiece W. What is necessary is just to provide it so that an optical member can be placed and removed from the optical path.
  • the optical path along which the second processing lights EL221 and EL222 travel toward the workpiece W and the optical path through which the first processing light EL11 travels toward the workpiece W are located on the same plane.
  • the optical path along which the first processing light EL11 travels toward the workpiece W does not have to be located on the same plane as the optical path of the second processing light EL221 and EL222.
  • Processing optical system 15H as a modified example
  • This processing optical system 15H has the same basic concept and configuration as the above-mentioned processing optical system 15A, so parts having the same structure are given the same reference numerals, and detailed explanation will be omitted.
  • the processing optical system 15H differs from the processing optical system 15A in that it does not include a galvanometer mirror 21 and a collimating lens 22. Therefore, the first optical system 16H of the processing optical system 15H splits the processing light EL0 from the processing light source 2 into the first processing light EL1 and the second processing light EL2 by the beam splitter 23. Specifically, the beam splitter 23 generates the first processing light EL1 that proceeds to the third optical system 18H by passing a part of the processing light EL0, and reflects the other part of the processing light EL0. This generates second processing light EL2 that travels to the second optical system 17H. In this example, the beam splitter 23 allows the generated second processing light EL2 to travel parallel to the Y-axis direction.
  • the second optical system 17H into which the second processing light EL2 from the first optical system 16H is incident, has a different configuration from the second optical system 17 of the processing optical system 15A.
  • This second optical system 17H includes a beam splitter 55, an optical deflection member 56, a first mirror 57, and a second mirror 58.
  • the beam splitter 55 is a light splitting member into which the second processing light EL2 from the first optical system 16H enters and splits the second processing light EL2 into a plurality of second processing lights EL22.
  • the beam splitter 55 splits the second processing light EL2, which has been made into linear light extending in the X-axis direction by the first cylindrical lens 24, into a plurality of second processing lights EL22. Therefore, the beam splitter 55 functions as a light splitting member that splits the second processing light EL2 into a plurality of second processing lights EL22.
  • the beam splitter 55 splits the second processing light EL2 into two second processing lights EL22 (when shown individually, one is referred to as the second processing light EL221, and the other is referred to as the second processing light EL222).
  • An example of dividing into The beam splitter 55 also has a function of merging the two split second processing lights EL22 and causing both of the second processing lights EL22 to advance toward the workpiece W.
  • This beam splitter 55 is a rectangular plate-like member, and is arranged at an angle of 45 degrees with respect to the Y-axis direction, with the center axis extending in the X-axis direction as the center.
  • the beam splitter 55 is composed of an amplitude division type beam splitter or a polarizing beam splitter, and generates the second processing light EL221 by reflecting a part of the second processing light EL2, and also generates the second processing light EL221 and other parts of the second processing light EL2.
  • the second processing light EL222 is generated by passing a part of the processing light EL222.
  • the beam splitter 55 is arranged at an angle of 45 degrees with respect to the Y-axis direction, the second processing light EL221 reflected by the beam splitter 55 is directed to the optical deflection member in parallel to the Z-axis direction. 56, and the second processing light EL222 generated by passing through another beam splitter 55 is caused to travel parallel to the Y-axis direction to the second mirror 58.
  • the optical deflection member 56 is a member that changes (deflects) the traveling direction of the light (second processing light EL221, second processing light EL222) traveling between the beam splitter 55 and the first mirror 57.
  • the optical deflection member 56 is an optical member that has a shape extending in the X-axis direction and has refractive power only in the Y-axis direction, and is arranged between the beam splitter 55 and the first mirror 57 so that the traveling direction of light is It is bent either to the right or to the left in the axial direction in FIG.
  • the thickness on the right side in the Y-axis direction is smallest, and the thickness increases toward the left side in the Y-axis direction. It has a trapezoidal shape (wedge shape) in which the thickness increases. Therefore, the optical deflection member 56 refracts the light from one of the beam splitter 55 and the first mirror 57 to the left side in the Y-axis direction, compared to a state where the optical deflection member 56 is not provided. The beam is directed toward the other of the beam splitter 55 and the first mirror 57.
  • the first mirror 57 is a plate-like member, and is arranged at a predetermined inclination with respect to the Z-axis direction with the central axis extending in the X-axis direction as the center. This predetermined inclination reflects the second processing light EL221 that has been reflected by the beam splitter 55 and passed through the optical deflection member 56 toward the second mirror 58, and also reflects the second processing light EL221 that has been reflected by the second mirror 58. is set to reflect toward the optical deflection member 56.
  • the first mirror 57 reflects the second processing light EL221 from the optical deflection member 56 and causes it to proceed to the second mirror 58. Further, the first mirror 57 reflects the second processing light EL222 from the second mirror 29 and causes it to proceed to the optical deflection member 56.
  • the second mirror 58 is a plate-like member, and is arranged with a predetermined inclination different from that of the first mirror 57 with respect to the Z-axis direction about a central axis extending in the X-axis direction.
  • This predetermined inclination different from that of the first mirror 57 reflects the second processing light EL222 that has passed through the beam splitter 55 toward the first mirror 57, and also reflects the second processing light EL221 reflected by the first mirror 57.
  • the beam is set to be reflected toward the beam splitter 55.
  • the beam splitter 55 reflects the second processing light EL221 reflected by the second mirror 58 to advance to the surface of the workpiece W, and also allows the second processing light EL221 reflected by the first mirror 57 to pass through the optical deflection member 56 to be processed.
  • the light EL222 is allowed to pass through and proceed to the interference area IA9 on the surface of the workpiece W.
  • the second optical system 17H has an interference area IA9 of a predetermined size in the X-axis direction and the Y-axis direction. As a result, in the interference region IA9, interference light generated by the interference between the second processing light EL221 and the second processing light EL222 forms interference fringes IS.
  • the third optical system 18H of the processing optical system 15H is not provided with the fourth cylindrical lens 35, and the fourth mirror 34 and the fifth mirror 36 are They are different in that they are provided with.
  • the first processing light EL1 from the first optical system 16H that is, the beam splitter 23
  • the fourth mirror 34 and then reflected by the fifth mirror 36 as the first processing light EL11.
  • This third optical system 18H makes the first processing light EL11 directed toward the surface of the workpiece W have a predetermined size in the X-axis direction and the Y-axis direction.
  • the area to which this first processing light EL11 is irradiated is defined as an irradiation area RA7.
  • this processing optical system 15H will be explained.
  • the processing light EL0 is emitted from the processing light source 2, it is split into the first processing light EL1 and the second processing light EL2 by the beam splitter 23 in the first optical system 16H, and then the first processing light EL1 is The second processing light EL2 is caused to proceed to the second optical system 17H while being caused to proceed to the third optical system 18H.
  • the second optical system 17H advances the second processing light EL2 to the beam splitter 55. Then, a part of the second processing light EL2 is reflected by the beam splitter 55 toward the optical deflection member 56 and becomes the second processing light EL221, and another part passes through the beam splitter 55 and is reflected by the second mirror 58.
  • the second processing light EL222 is directed toward The second processing light EL221 passes through the optical deflection member 56, is reflected by the first mirror 57, is then reflected by the second mirror 58, and travels toward the beam splitter 55. Further, the second processing light EL222 is reflected by the second mirror 58 and the first mirror 57, and then passes through the optical deflection member 56 and proceeds toward the beam splitter 55.
  • the second processing light EL221 reflected by the beam splitter 55, the first mirror 57, and the second mirror 58 advances to the beam splitter 55, passes through the beam splitter 55, and enters the second processing light EL221.
  • the second processing light EL222 reflected by the second mirror 58 and the first mirror 57 advances to the beam splitter 55. Therefore, in the second optical system 17H, the second processing light EL221 and the second processing light EL222 are basically caused to proceed from the beam splitter 55 in mutually different rotational directions (clockwise direction and counterclockwise direction). The beam then returns to the beam splitter 55 again.
  • an optical deflection member 56 is provided between the beam splitter 55 and the first mirror 57.
  • the second processing light EL221 reflected by the beam splitter 55 travels to a position shifted to the left on the first mirror 57 compared to the case where there is no optical deflection member 56, and is reflected there, so that the second processing light EL221
  • the two mirrors 58 and the beam splitter 55 also move to positions where the deviation of the first mirror 57 is reflected.
  • the second processing light EL222 that has passed through the beam splitter 55 is reflected by the second mirror 58 and the first mirror 57, and then enters the optical deflection member 56, compared to the case where there is no optical deflection member 56. By being refracted, the beam proceeds toward a position shifted to the left in the beam splitter 55.
  • the second optical system 17H includes the optical deflection member 56 between the beam splitter 55 and the first mirror 57, so that the second processing light EL221 and the second processing light EL222 are directed to the optical deflection member 56.
  • This causes a deviation in the direction of the optical path that travels after being refracted by the beam. Therefore, in the second optical system 17H, the influence of the second processing light EL221 and the second processing light EL222 due to being refracted by the optical deflection member 56, that is, the difference in the shift caused by passing through the optical deflection member 56 is reduced. is causing it.
  • the second optical system 17H the second processing light EL221 and the second processing light EL222 are passed through basically the same optical path, but the emission angles of the second processing light EL221 and the second processing light EL222 are different from each other. Can be in the direction. Therefore, it can be said that the second optical system 17H constitutes a triangular Sagnac optical system.
  • the second optical system 17H reflects the second processing light EL221 by the beam splitter 55 and causes it to advance toward the surface of the workpiece W, and also causes the second processing light EL222 to pass through the beam splitter 55 so as to cause the second processing light EL221 to travel toward the surface of the workpiece W. Proceed towards.
  • the second optical system 17H forms interference fringes IS by focusing the second processing light EL221 and the second processing light EL222 on the surface of the workpiece W, thereby forming an interference area IA9.
  • the third optical system 18H reflects the first processing light EL1 from the first optical system 16H by the fourth mirror 34 and the fifth mirror 36, so that it is reflected in the interference area IA9 formed on the surface of the workpiece W.
  • the first processing light EL11 having a predetermined size is irradiated in the X-axis direction and the Y-axis direction to form an irradiation area RA7.
  • the processing optical system 15H overlaps the interference area IA9 and the irradiation area RA7 on the surface of the workpiece W to form an overlapping area OA11. Therefore, in the processing optical system 15H, the overlapping area OA11 becomes the processing area PA. Thereby, the processing optical system 15H can irradiate the entire processing area PA on the surface of the workpiece W with the interference fringes IS superimposed on the first processing light EL11.
  • the processing optical system 15H sets the fluence of the first processing light EL111 so that the minimum fluence of the processing light in the superimposed area OA11 is a fluence at which the workpiece W can be processed.
  • the processing optical system 15H can form the ideally shaped riblet structure RB on the surface of the workpiece W in the processing area PA.
  • the processing optical system 15H can set any position on the surface of the workpiece W as the processing area PA, and the riblet structure in an ideal shape can be placed at any position on the surface of the workpiece W. Can form RB.
  • the processing optical system 15H described above is supposed to form interference fringes IS of a single frequency, but similarly to the processing optical systems 15A, 15C, and 15E, the fundamental frequency waveform Wb has one or more n times The frequency waveforms Wn may be superimposed.
  • the processing optical system 15H for example, in the second optical system 17H, refracts the traveling direction of the light to either one of the Y-axis directions similarly to the optical deflection member 56, and has a refraction angle with respect to the optical deflection member 56.
  • a different second optical deflection member may be provided so as to be replaceable with the optical deflection member 56.
  • the processing optical system 15, etc., the processing apparatus 1, and the processing method according to the present disclosure can form a riblet structure with an ideal shape.
  • the processing device 1 includes the head drive system 12. However, the processing device 1 may not include the head drive system 12. That is, the processing head 11 does not need to be movable. Furthermore, in the above description, the processing apparatus 1 includes the stage drive system 14. However, the processing apparatus 1 may not include the stage drive system 14. In other words, the stage 13 does not need to be movable. Alternatively, the processing apparatus 1 may not include the stage 13 in the first place.
  • the processing apparatus 1 forms a riblet structure RB on a metallic workpiece W (an object serving as a base material), and the processing apparatus 1 forms a riblet structure RB on a film coated on the surface of the workpiece W.
  • a metallic workpiece W an object serving as a base material
  • the processing apparatus 1 forms a riblet structure RB on a film coated on the surface of the workpiece W.
  • An example of forming an RB has been described.
  • the processing performed by the processing device 1 is not limited to the example described above.
  • the processing apparatus 1 may form the riblet structure RB on the surface of the work W, and the surface of the work W on which the riblet structure RB is formed may be coated with a film.
  • the film on which the riblet structure RB is formed may be further coated with another film.
  • the riblet structure RB may be coated with a membrane.
  • the thickness of the film may be determined so that the function of the riblet structure RB is not reduced by the film coated on the riblet structure RB.
  • the function of the riblet structure RB may be reduced by the membrane, so even if the thickness of the membrane is determined so that the riblet structure RB is not buried in the membrane. good.
  • a film is formed along the shape of the riblet structure RB (for example, along the convex structure 81 or the groove structure 82) so that the function of the riblet structure RB is not reduced by the film coated on the riblet structure RB. Good too.
  • the processing apparatus 1 may perform an additional process of adding a new structure to the work W by irradiating the work W with the process light EL.
  • the processing apparatus 1 may form the above-described riblet structure RB on the surface of the workpiece W by performing additional processing.
  • the processing apparatus 1 may perform machining of the workpiece W by bringing a tool into contact with the workpiece W in addition to or in place of at least one of the removal processing and the addition processing.
  • the processing device 1 may form the above-described riblet structure RB on the surface of the workpiece W by performing machining.
  • the processing system SYS forms the riblet structure RB that has the function of reducing the resistance to fluid on the surface of the workpiece W.
  • the processing system SYS may form a structure on the workpiece W that has a function different from the function of reducing the resistance to fluid on the surface of the workpiece W.
  • the processing system SYS may form a riblet structure on the workpiece W to reduce noise generated when the fluid and the surface of the workpiece W move relative to each other.
  • the processing system SYS may form a riblet structure on the workpiece W that generates a vortex in the flow of fluid on the surface of the workpiece W.
  • the processing system SYS may form a structure on the workpiece W to impart hydrophobicity to the surface of the workpiece W.
  • the processing system SYS forms the riblet structure RB on the surface of the workpiece W.
  • the processing system SYS may form any structure having any shape on the surface of the workpiece W.
  • An example of an arbitrary structure is a structure that generates a vortex in the flow of fluid on the surface of the workpiece W.
  • Another example of the arbitrary structure is a structure for imparting hydrophobicity to the surface of the workpiece W.
  • Another example of an arbitrary structure is a regularly or irregularly formed fine texture structure on the order of micro-nanometers (typically, an uneven structure including a ridge structure and a groove structure).
  • the fine texture structure may include at least one of a shark skin structure and a dimple structure that have the function of reducing resistance due to fluid (gas and/or liquid).
  • the fine texture structure may include a lotus leaf surface structure that has at least one of a liquid repellent function and a self-cleaning function (eg, has a lotus effect).
  • the fine texture structure includes a fine protrusion structure with a liquid transport function (see US Patent Publication No. 2017/0044002), an uneven structure with a lyophilic function, an uneven structure with an antifouling function, a reflectance reduction function, and a repellent structure.
  • a moth-eye structure that has at least one of the liquid functions, an uneven structure that exhibits a structural color by intensifying only light of a specific wavelength through interference, a pillar array structure that has an adhesive function that utilizes van der Waals forces, an uneven structure that has an aerodynamic noise reduction function, It may include at least one of a honeycomb structure having a droplet collecting function, an uneven structure for improving adhesion with a layer formed on the surface, an uneven structure for reducing frictional resistance, and the like.
  • the convex structure forming the uneven structure may have the same structure as the convex structure 81 forming the riblet structure RB described above.
  • the groove structure forming the uneven structure may have the same structure as the groove structure 82 forming the riblet structure RB described above. Note that the fine texture structure does not need to have a specific function.
  • the processing system SYS forms the riblet structure RB on the surface of the workpiece W.
  • the processing system SYS may form a mold for transferring the riblet structure RB onto the surface of the workpiece W.
  • the work W may be the surface of the moving body, or may be a film that can be attached to the moving body.
  • the processing system SYS processes the workpiece W by irradiating the workpiece W with the processing light EL.
  • the processing system SYS may process the workpiece W by irradiating the workpiece W with an arbitrary energy beam different from light.
  • the processing system SYS may include, in addition to or instead of the processing light source 2, a beam irradiation device capable of irradiating any energy beam.
  • arbitrary energy beams include at least one of charged particle beams and electromagnetic waves.
  • An example of a charged particle beam is at least one of an electron beam and an ion beam.
  • the processing system SYS includes a single galvanometer mirror 21 as an interference fringe moving member before and after the first optical system 16 (16A, 16C) in the first four processing optical systems 15 (15A to 15D). It is set up. However, the interference fringe moving member moves the position of the interference area IA (interference fringe IS) formed by the second optical system 17 (17A to 17D) in a direction perpendicular to the optical axis of the second optical system 17. If any, other configurations may be used, and the configuration is not limited to the above example. Further, the galvanometer mirror 21 as an interference fringe moving member is provided separately before and after the first optical system 16 (16A, 16C), but it is included in the optical path from the processing light source 2 to the workpiece W via the second optical system 17.
  • a plurality of them may be provided, and a plurality of them may be provided in the optical path from the processing light source 2 to the workpiece W via the third optical system 18, and the invention is not limited to the above example.
  • another galvano mirror may be provided in the processing optical system 15A.
  • a re-imaging optical system is disposed between the special beam splitter 25 and the lens 33, and a re-imaging optical system is arranged between the re-imaging optical system and the lens 33.
  • a galvanometer mirror may be provided at a position between the two and substantially conjugate with the special beam splitter 25.
  • the galvano mirror between the re-imaging optical system and the lens 33 and the galvano mirror 21 will function as an interference fringe moving member.
  • a galvanometer mirror can also be provided on the optical path from the processing light source 2 to the workpiece W via the third optical system 18, if necessary.
  • the processing system SYS shows an example of a plurality of second optical systems 17 (17A to 17H) as the processing optical systems 15 (15A to 15H).
  • the second optical system 17 splits the second processing light EL2 from the first optical system 16 to irradiate the workpiece W from different incident directions to perform a plurality of second processing beams to form interference fringes IS.
  • Other configurations may be used as long as the optical EL 22 is formed, and the configuration is not limited to the above example.
  • the second processing light EL2 from the first optical system 16 is processed by using a diffractive optical element (DOE) or an optical mask (which partially blocks the progress of the light).
  • DOE diffractive optical element
  • a plurality of second processing lights EL22 may be formed that travel in mutually different directions.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

【課題】理想的な形状のリブレット構造を形成できる加工光学系、加工装置及び加工方法を提供する。 【解決手段】加工光学系(15)は、光源(2)からの加工光EL0を第1加工光EL1と第2加工光EL2とに分岐する第1光学系(16)と、第2加工光EL2を複数の第2加工光EL2に分割し、分割された複数の第2加工光EL2をそれぞれ異なる入射方向から物体(W)に照射することで、物体(W)の表面に干渉縞ISを形成する第2光学系(17)と、第1光学系(16)からの第1加工光EL1を、物体(W)の表面上の、干渉縞ISが形成される干渉領域IAに向けて照射する第3光学系(18)と、を備える。

Description

加工光学系、加工装置及び加工方法
 本開示は、例えば、物体を加工する加工光学系、加工装置及び加工方法の技術分野に関する。
 特許文献1には、航空機の機体等の物体の表面にリブレットが形成されるように、物体を加工可能な加工装置が記載されている。このような加工装置は、物体を適切に加工することが要求される。
米国特許第4,994,639号明細書
 第1の態様によれば、光源からの加工光を第1加工光と第2加工光とに分岐する第1光学系と、前記第2加工光を複数の第2加工光に分割し、分割された前記複数の第2加工光をそれぞれ異なる入射方向から物体に照射することで、前記物体の表面に干渉縞を形成する第2光学系と、前記第1光学系からの前記第1加工光を、前記物体の前記表面上の、前記干渉縞が形成される干渉領域に向けて照射する第3光学系と、を備える加工光学系が提供される。
 第2の態様によれば、発光期間の少なくとも一部同士が重なるパルス光である第1及び第2加工光のうち、前記第2加工光を複数の第2加工光に分割し、分割された前記複数の第2加工光をそれぞれ異なる入射方向から前記物体に照射することで、前記物体の表面に干渉縞を形成する干渉縞形成光学系と、前記第1加工光を前記干渉縞が形成される干渉領域に向けて照射する照射光学系と、を備える加工光学系が提供される。
 第3の態様によれば、光源からの光を用いて物体の表面にリブレット加工を行う加工装置であって、上記した加工光学系と、前記加工光学系により前記物体の前記表面に形成される前記干渉縞と前記物体の前記表面との位置関係を変更する位置関係変更装置とを備える加工装置が提供される。
 第4の態様によれば、光源からの光を用いて物体の表面にリブレット加工を行う加工方法であって、前記光源からの加工光を第1加工光と第2加工光とに分岐することと、前記第2加工光を複数の第2加工光に分割し、分割された前記複数の第2加工光をそれぞれ異なる入射方向から前記物体に照射することで前記物体の前記表面に干渉縞を形成することと、前記第1加工光を前記物体の前記表面上の、前記干渉縞が形成される干渉領域に向けて照射することと、を含む加工方法が提供される。
本実施形態の加工システムの全体構造を模式的に示す断面図である。 本実施形態の加工システムのシステム構成を示すシステム構成図である。 リブレット構造を示す斜視図である。 リブレット構造を示す断面図(図3AのIII-III’線で得られた断面)である。 リブレット構造を示す上面図である。 干渉縞の一例を示す平面図である。 本実施形態の加工光学系の構成を示す構成図である。 第1加工光を照射することなく複数の第2加工光で干渉縞を形成する比較例における加工光(干渉光)のフルエンス分布と、比較例の加工光によって形成されるリブレット構造の断面の形状を示す。 複数の第2加工光で干渉縞を形成した干渉領域に第1加工光を重ねて照射する本実施形態における加工光のフルエンス分布と、本実施形態の加工光によって形成されるリブレット構造の断面の形状を示す。 光のフルエンスとワークの加工量との関係を示すグラフである。 第1加工光を照射することなく少なくとも第2加工光で干渉縞を形成する比較例における加工光(干渉光)のフルエンス分布と、その比較例の加工光によって形成されるリブレット構造の断面の形状を示す。 複数の第2加工光で干渉縞を形成した干渉領域に第1加工光を重ねて照射する本実施形態における加工光のフルエンス分布と、本実施形態の加工光によって形成されるリブレット構造の断面の形状を示す。 は、理想波形を示している。 理想波形をフーリエ変換して得られた2つの波形(基本周波数波形、2倍周波数波形)を示している。 5つの例の加工光学系における照射領域、干渉領域および重畳領域での照射の態様を表に纏めて示す説明図である。 1つ目の例の加工光学系の構造を示す説明図である。 1つ目の例の加工光学系の特殊ビームスプリッタにおいて、分割面における第2加工光の態様と、反射面における第2加工光の態様と、通過面における第2加工光の態様と、を示す説明図である。 2つ目の例の加工光学系の構造を示す説明図である。 2つ目の例の加工光学系の特殊ビームスプリッタにおいて、分割面における第2加工光の態様と、反射面における第2加工光の態様と、通過面における第2加工光の態様と、を示す説明図である。 3つ目の例の加工光学系の構造を示す説明図である。 3つ目の例の加工光学系の特殊ビームスプリッタにおいて、分割面における第2加工光の態様と、反射面における第2加工光の態様と、通過面における第2加工光の態様と、を示す説明図である。 4つ目の例の加工光学系の構造を示す説明図である。 4つ目の例の加工光学系の特殊ビームスプリッタにおいて、分割面における第2加工光の態様と、反射面における第2加工光の態様と、通過面における第2加工光の態様と、を示す説明図である。 5つ目の例の加工光学系の構造を示す説明図である。 5つ目の例の加工光学系の特殊ビームスプリッタにおいて、分割面における第2加工光の態様と、反射面における第2加工光の態様と、通過面における第2加工光の態様と、を示す説明図である。 変形例の加工光学系の構造を示す説明図である。 変形例の加工光学系の第2光学系がワークの表面に形成する2つの干渉領域と2つの照射領域とを示す説明図である。 他の変形例としての加工光学系の構造を示す説明図である。 さらに他の変形例としての加工光学系の構造を示す説明図である。
 以下、図面を参照しながら、加工光学系、加工装置及び加工方法の実施形態について説明する。以下では、物体の一例であるワークWを加工可能な加工システムSYSを用いて、加工光学系、加工装置及び加工方法の実施形態を説明する。但し、本発明が以下に説明する実施形態に限定されることはない。また、以下の説明では、互いに直交するX軸、Y軸及びZ軸から定義されるXYZ直交座標系を用いて、加工システムSYSを構成する各種構成要素の位置関係について説明する。尚、以下の説明では、説明の便宜上、X軸方向及びY軸方向のそれぞれが水平方向(つまり、水平面内の所定方向)であり、Z軸方向が鉛直方向(つまり、水平面に直交する方向であり、実質的には上下方向)であるものとする。また、X軸、Y軸及びZ軸周りの回転方向(言い換えれば、傾斜方向)を、それぞれ、θX方向、θY方向及びθZ方向と称する。ここで、Z軸方向を重力方向としてもよい。また、XY平面を水平方向としてもよい。
 (1)加工システムSYSの構造
  初めに、図1及び図2を参照しながら、本実施形態の加工システムSYSの構造について説明する。図1は、本実施形態の加工システムSYSの構造を模式的に示す断面図である。図2は、本実施形態の加工システムSYSのシステム構成を示すシステム構成図である。
 図1及び図2に示すように、加工システムSYSは、加工装置1と、加工光源2と、制御装置3と、を備えている。その加工装置1は、自走駆動部101に取り付けられた多関節ロボット102にエンドエフェクタとして取り付けられ、ビーム伝送光学系103を介した加工光源2からの加工光ELでステージ13に載置されたワークWの表面に向けて加工光ELを照射する加工ヘッド11を備える。その加工ヘッド11は、自走駆動部101、多関節ロボット102及び加工光源2とともに、制御装置3により制御される。
 ここで、ビーム伝送光学系103は、加工ヘッド11に加工光ELを供給する加工光源2からの加工光ELを伝送する。加工ヘッド11は、制御装置3からの指令に基づいて(図1の矢印R参照)、ビーム伝送光学系103からの加工光ELでステージ13に載置されたワークWの表面に向けて加工光ELを照射する。多関節ロボット102は、制御装置3からの指令に基づいて、加工ヘッド11の位置及び姿勢をワークWの表面に対して変更して、加工光ELがワークWの表面に照射される位置及び加工光ELの表面に対する照射方向を変更する。自走駆動部101は、制御装置3からの指令に基づいて、多関節ロボット102、ひいては多関節ロボット102に取り付けられている加工ヘッド11の位置及び姿勢をワークWの表面に対して変更して、加工光ELがワークWの表面に照射される位置及び加工光ELの表面に対する照射方向を変更する。尚、加工ヘッド11の構造の詳細については、図2から図6を参照しながら後述する。
 加工装置1は、制御装置3の制御下で、物体としての加工対象物(母材と称されてもよい)であるワークWを加工可能である。ワークWは、例えば、金属であってもよいし、合金(例えば、ジュラルミン等)であってもよいし、半導体(例えば、シリコン)であってもよいし、樹脂であってもよいし、CFRP(Carbon Fiber Reinforced Plastic)等の複合材料であってもよいし、塗料(一例として基材に塗布された塗料層)であってもよいし、ガラスであってもよいし、それ以外の任意の材料から構成される物体であってもよい。
 ワークWの表面は、ワークWとは異なる材質の膜でコーティングされていてもよい。この場合、ワークWの表面にコーティングされた膜の表面が、加工装置1によって加工される面であってもよい。この場合であっても、加工装置1は、ワークWを加工する(つまり、膜でコーティングされたワークWを加工する)とみなしてもよい。
 加工装置1は、ワークWを加工するために、ワークWに対して加工光ELを照射する。加工光ELは、ワークWに照射されることでワークWを加工可能である限りは、どのような種類の光であってもよい。本実施形態では、加工光ELがレーザ光である例を用いて説明を進めるが、加工光ELは、レーザ光とは異なる種類の光であってもよい。更に、加工光ELの波長は、ワークWに照射されることでワークWを加工可能である限りは、どのような波長であってもよい。例えば、加工光ELは、可視光であってもよいし、不可視光(例えば、赤外光、紫外光及び極端紫外光等の少なくとも一つ)であってもよい。加工光ELは、パルス光(例えば、パルス幅がピコ秒以下のパルス光)を含む。このパルス幅とは、パルス光の発光時間である。但し、加工光ELは、パルス光を含んでいなくてもよい。言い換えると、加工光ELは、連続光であってもよい。
 加工光ELは、加工光ELを生成する加工光源2から、不図示の光伝搬部材(例えば、光ファイバ及びミラーの少なくとも一方)を介して加工装置1に供給される。加工装置1は、加工光源2から供給される加工光ELを、ワークWに照射する。上述したように加工光ELがレーザ光である場合には、加工光源2は、レーザ光源(例えば、レーザダイオード(LD:Laser Diode)等の半導体レーザ)を含んでいてもよい。レーザ光源は、ファイバ・レーザ、CO2レーザ、YAGレーザ及びエキシマレーザ等の少なくとも一つを含んでいてもよい。但し、加工光ELがレーザ光でない場合には、加工光源2は、任意の光源(例えば、LED(Light Emitting Diode)及び放電ランプ等の少なくとも一つ)を含んでいてもよい。
 加工装置1は、ワークWに加工光ELを照射することでワークWの一部を除去する除去加工を行ってもよい。例えば、加工装置1は、熱加工の原理を利用して、ワークWの一部を除去する除去加工を行ってもよい。具体的には、ワークWの表面に加工光ELが照射されると、ワークWのうち加工光ELが照射された照射部分及びワークWのうちの照射部分と近接する近接部分に、加工光ELのエネルギーが伝達される。加工光ELのエネルギーに起因した熱が伝達されると、加工光ELのエネルギーに起因した熱によって、ワークWの照射部分及び近接部分を構成する材料が溶融する。溶融した材料は、液滴となって飛散する。或いは、溶融した材料は、加工光ELのエネルギーに起因した熱によって蒸発する。その結果、ワークWの照射部分及び近接部分が除去される。尚、熱加工が行われる場合には、加工光ELは、パルス幅がミリ秒以上のパルス光又は連続光を含んでいてもよい。
 一方で、加工光ELの特性によっては、加工装置1は、非熱加工(例えば、アブレーション加工)の原理を利用して、ワークWの一部を除去する除去加工を行ってもよい。つまり、加工装置1は、ワークWに対して非熱加工(例えば、アブレーション加工)を行ってもよい。例えば、光子密度(言い換えれば、フルエンス)が高い光が加工光ELとして用いられると、ワークWの照射部分及び近接部分を構成する材料は、瞬時に蒸発及び飛散する。つまり、ワークWの照射部分及び近接部分を構成する材料は、ワークWの熱拡散時間よりも十分に短い時間内に蒸発及び飛散する。この場合、ワークWの照射部分及び近接部分を構成する材料は、イオン、原子、ラジカル、分子、クラスタ及び固体片のうちの少なくとも一つとして、ワークWから放出されてもよい。尚、非熱加工が行われる場合には、加工光ELは、パルス幅がピコ秒以下(或いは、場合によっては、ナノ秒又はフェムト秒以下)のパルス光を含んでいてもよい。パルス幅がピコ秒以下(或いは、場合によっては、ナノ秒又はフェムト秒以下)のパルス光が加工光ELとして用いられる場合、ワークWの照射部分及び近接部分を構成する材料は、溶融状態を経ずに昇華することもある。このため、加工光ELのエネルギーに起因した熱によるワークWへの影響を極力抑制しながら、ワークWを加工可能となる。
 本実施形態では、加工装置1は、除去加工を行うことで、リブレット構造RB(図3等参照)をワークWの表面に形成してもよい。リブレット構造RBを形成する加工は、リブレット加工と称されてもよい。つまり、加工装置1は、ワークWの表面にリブレット加工を行ってもよい。
 リブレット構造RBは、ワークWの表面の流体に対する抵抗(特に、摩擦抵抗及び乱流摩擦抵抗の少なくとも一方)を低減可能な凹凸構造を含んでいてもよい。このため、リブレット構造RBは、流体中に設置される(言い換えれば、位置する)部材を有するワークWに形成されてもよい。言い換えれば、リブレット構造RBは、流体に対して相対的に移動する部材を有するワークWに形成されてもよい。尚、ここでいう「流体」とは、ワークWの表面に対して流れている媒質(例えば、気体及び液体の少なくとも一方)を意味する。例えば、媒質自体が静止している状況下でワークWの表面が媒質に対して移動する場合には、この媒質を流体と称してもよい。尚、媒質が静止している状態は、所定の基準物(例えば、地表面)に対して媒質が移動していない状態を意味していてもよい。
 このようなワークWの表面の流体に対する抵抗(特に、摩擦抵抗及び乱流摩擦抵抗の少なくとも一方)を低減可能な構造を含むリブレット構造RBがワークWに形成される場合には、ワークWは、流体に対して相対的に移動しやすくなる。このため、流体に対するワークWの移動を妨げる抵抗が低減されるがゆえに、省エネルギー化につながる。つまり、環境にやさしいワークW、一例としてタービンブレードの製造が可能となる。これにより、国連が主導する持続可能な開発目標(SDGs)の目標7「エネルギーをみんなにそしてクリーンに」に対応することができ、ターゲット7.3「2030年までに、世界全体のエネルギー効率の改善率を倍増させる」に貢献することができる。
 尚、リブレット構造RBは、タービンブレードとは異なるワークWに形成されてもよい。リブレット構造RBが形成されるワークWの一例として、静翼と称されてもよいタービンベーン、ファン、インペラ、プロペラ及びポンプの少なくとも一つがあげられる。ファンは、送風機等に用いられ、気体の流れを形成する部材(典型的には、回転体)である。インペラは、例えば、ポンプに用いられる部材であって、ポンプが流体を送り出す(或いは、吸い出す)力を発生させるように回転可能な羽根車である。プロペラは、例えば、エンジン及びモータの少なくとも一方を含む原動機から出力される回転力を、飛行機及び船舶等の少なくとも一つを含む移動体の推進力に変換する部材(典型的には、回転体)である。リブレット構造RBが形成されるワークWの他の一例として、飛行機及び船舶等の少なくとも一つを含む移動体の筐体(例えば、機体又は船体)があげられる。
 ここで、図3A、図3B、図3Cを参照しながら、リブレット構造RBについて説明する。図3A、図3B、図3Cに示すように、リブレット構造RBは、ワークWの表面に沿った第1の方向に沿って延びる凸状構造体81が、ワークWの表面に沿っており且つ第1の方向に交差する第2の方向に沿って複数配列された構造を含んでいてもよい。つまり、リブレット構造RBは、それぞれが第1の方向に沿って延びるように形成される複数の凸状構造体81が、第2の方向に沿って並んだ構造を含んでいてもよい。図3A、図3B、図3Cに示す例では、リブレット構造RBは、X軸方向に沿って延びる凸状構造体81が、Y軸方向に沿って複数配列された構造を含んでいる。
 凸状構造体81は、第1の方向(凸状構造体81が延びる方向)及び第2の方向(凸状構造体81が配列される方向)の双方に交差する方向に沿って突き出た構造体である。凸状構造体81は、ワークWの表面から突き出た構造体である。図3A、図3B、図3Cに示す例では、凸状構造体81は、Z軸方向に沿って突き出た構造体である。尚、凸状構造体81は、ワークWの表面に対して突起となる突起形状の構造を含んでいてもよい。凸状構造体81は、ワークWの表面に対して凸となる凸形状の構造を含んでいてもよい。凸状構造体81は、ワークWの表面に対して山となる山形状の構造を含んでいてもよい。
 隣り合う凸状構造体81の間には、周囲と比較して窪んだ溝構造82が形成される。このため、リブレット構造RBは、ワークWの表面に沿った第1の方向に沿って延びる溝構造82が、ワークWの表面に沿っており且つ第1の方向に交差する第2の方向に沿って複数配列された構造を含んでいてもよい。つまり、リブレット構造RBは、それぞれが第1の方向に沿って延びるように形成される複数の溝構造82が、第2の方向に沿って並んだ構造を含んでいてもよい。図3A、図3B、図3Cに示す例では、リブレット構造RBは、X軸方向に沿って延びる溝構造82が、Y軸方向に沿って複数配列された構造を含んでいる。尚、溝構造82は、溝状構造体と称されてもよい。
 尚、凸状構造体81は、溝構造82から突き出た構造であるとみなしてもよい。凸状構造体81は、隣り合う二つの溝構造82の間に、突起形状の構造、凸形状の構造及び山形状の構造の少なくとも一つを形成する構造であるとみなしてもよい。溝構造82は、凸状構造体81から窪んだ構造であるとみなしてもよい。溝構造82は、隣り合う二つの凸状構造体81の間に、溝形状の構造を形成する構造であるとみなしてもよい。尚、溝構造82は、溝状構造体と称されてもよい。
 複数の凸状構造体81の少なくとも一つの高さH_rbは、凸状構造体81のピッチP_rbに応じて定まる高さに設定されていてもよい。例えば、複数の凸状構造体81の少なくとも一つの高さH_rbは、凸状構造体81のピッチP_rb以下であってもよい。例えば、複数の凸状構造体81の少なくとも一つの高さH_rbは、凸状構造体81のピッチP_rbの半分以下であってもよい。一例として、凸状構造体81のピッチP_rbは、5マイクロメートルより大きく且つ200マイクロメートルよりも小さくてもよい。この場合、複数の凸状構造体81の少なくとも一つの高さH_rbは、2.5マイクロメートルより大きく且つ100マイクロメートルよりも小さくてもよい。
 このようなリブレット構造RBをワークWに加工するために、加工装置1は、図1及び図2に示すように、上記した加工ヘッド11に加えて、ヘッド駆動系12(図1の例では自走駆動部101、多関節ロボット102)と、ステージ13と、ステージ駆動系14とを備える。加工ヘッド11は、加工光源2からの加工光ELをワークWに照射する。加工光ELをワークWに照射するために、加工ヘッド11は、加工光学系15を備える。加工ヘッド11は、加工光学系15を介して、加工光ELをワークWに照射する。
 本実施形態では、加工光学系15は、ワークWの表面に干渉縞IS(図4等参照)を形成することで、ワークWの表面にリブレット構造RBを形成してもよい。具体的には、加工光学系15は、加工光源2からの加工光ELを分割することで生成される複数の加工光EL(図1に示す例では、二つの加工光EL)を、それぞれ異なる入射方向からワークWに照射する。その結果、複数の加工光ELが干渉することで、干渉光が発生する。この場合、加工光学系15は、実質的には、複数の加工光ELが干渉することで発生する干渉光をワークWに照射しているとみなしてもよい。その結果、ワークWの表面には、干渉光に起因した干渉縞ISが形成される。なお、加工光学系15の詳細な構造については、図5等を参照しながら後に詳述するため、ここでの説明を省略する。
 干渉縞ISの一例を図4に示す。干渉縞ISは、明部ILと暗部IDとを有する縞であってもよい。明部ILは、干渉縞ISのうちのフルエンスが所定量よりも大きくなる(つまり、高くなる)部分を含んでいてもよい。明部ILは、干渉縞ISを形成する干渉光のうちのフルエンスが所定量よりも大きくなる光部分が照射される部分を含んでいてもよい。暗部IDは、干渉縞ISのうちのフルエンスが所定量よりも小さくなる(つまり、低くなる)部分を含んでいてもよい。暗部IDは、干渉縞ISを形成する干渉光のうちのフルエンスが所定量よりも小さくなる光部分が照射される部分を含んでいてもよい。また、明部ILでのフルエンスは暗部IDでのフルエンスより大きくてもよい。
 図4は、さらに干渉縞ISとリブレット構造RBとの関係を示している。明部ILは、主として上述した溝構造82を形成するために用いられてもよい。この場合、加工光学系15は、干渉縞ISに含まれる明部ILをワークWの表面に形成してワークWの一部を除去することで、ワークWの表面に、リブレット構造RBを構成する溝構造82を形成してもよい。加工光学系15は、干渉光のうちの明部ILを形成する光部分をワークWの表面に照射してワークWの一部を除去することで、ワークWの表面に溝構造82を形成してもよい。加工光学系15は、明部ILに到達する加工光ELを用いて(つまり、加工光ELのうちの明部ILに到達する光部分を用いて)ワークWの一部を除去することで、ワークWの表面に溝構造82を形成してもよい。この場合、干渉縞ISは、溝構造82が延びる方向(図4の例ではX軸方向)に沿って延びる明部ILが、溝構造82が並ぶ方向(図4の例ではY軸方向(縞ピッチ方向))に沿って複数配列された縞を含んでいてもよい。つまり、干渉縞ISは、溝構造82が延びる方向(図4の例ではX軸方向)に沿って延びる複数の明部ILが、溝構造82が並ぶ方向(図4の例ではY軸方向(縞ピッチ方向))に沿って並ぶ縞を含んでいてもよい。
 暗部IDは、主として上述した凸状構造体81を形成するために用いられてもよい。この場合、加工光学系15は、干渉縞ISに含まれる暗部IDをワークWの表面に形成してワークWの一部を除去する(或いは、場合によっては、ワークWの一部を除去しない)ことで、ワークWの表面に、リブレット構造RBを構成する凸状構造体81を形成してもよい。加工光学系15は、干渉光のうちの暗部IDを形成する光部分をワークWの表面に照射してワークWの一部を除去することで、ワークWの表面に凸状構造体81を形成してもよい。加工光学系15は、暗部IDに到達する加工光ELを用いて(つまり、加工光ELのうちの暗部IDに到達する光部分を用いて)ワークWの一部を除去することで、ワークWの表面に凸状構造体81を形成してもよい。この場合、干渉縞ISは、凸状構造体81が延びる方向(図4の例ではX軸方向)に沿って延びる暗部IDが、凸状構造体81が並ぶ方向(図4の例ではY軸方向)に沿って複数配列された縞を含んでいてもよい。つまり、干渉縞ISは、凸状構造体81が延びる方向(図4の例ではX軸方向)に沿って延びる複数の暗部IDが、凸状構造体81が並ぶ方向(図4の例ではY軸方向)に沿って並ぶ縞を含んでいてもよい。
 図1及び図2に示すように、ヘッド駆動系12(自走駆動部101、多関節ロボット102)は、制御装置3の制御下で、X軸方向、Y軸方向及びZ軸方向の少なくとも一つに沿って加工ヘッド11を移動させる。尚、ヘッド駆動系12は、X軸方向、Y軸方向及びZ軸方向の少なくとも一つに加えて又は代えて、θX方向、θY方向及びθZ方向の少なくとも一つに沿って加工ヘッド11を移動させてもよい。加工ヘッド11が移動すると、ステージ13(更には、ステージ13に載置されたワークW)と加工ヘッド11との位置関係が変わる。その結果、ワークW上で加工ヘッド11が干渉縞ISを形成する干渉領域IA(図4参照)とステージ13及びワークWとの位置関係が変わる。つまり、ワークW上で干渉領域IAを移動できる。
 ステージ13上には、ワークWが載置される。ステージ13は、ステージ13に載置されたワークWを保持しなくてもよい。つまり、ステージ13は、ステージ13に載置されたワークWに対して、当該ワークWを保持するための保持力を加えなくてもよい。或いは、ステージ13は、ステージ13に載置されたワークWを保持してもよい。つまり、ステージ13は、ステージ13に載置されたワークWに対して、当該ワークWを保持するための保持力を加えてもよい。例えば、ステージ13は、ワークWを真空吸着及び/又は静電吸着することで、ワークWを保持してもよい。或いは、ワークWを保持するための治具がワークWを保持し、ステージ13は、ワークWを保持した治具を保持してもよい。
 ステージ駆動系14は、制御装置3の制御下で、ステージ13を移動させる。具体的には、ステージ駆動系14は、加工ヘッド11に対してステージ13を移動させる。例えば、ステージ駆動系14は、制御装置3の制御下で、X軸方向、Y軸方向、Z軸方向、θX方向、θY方向及びθZ方向の少なくとも一つに沿ってステージ13を移動させてもよい。尚、ステージ13をθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させることは、ステージ13(更には、ステージ13に載置されたワークW)のX軸、Y軸及びZ軸の少なくとも一つの廻りの姿勢を変更することと等価であるとみなしてもよい。或いは、ステージ13をθX方向、θY方向及びθZ方向の少なくとも一つに沿って移動させることは、ステージ13をX軸、Y軸及びZ軸の少なくとも一つの廻りに回転(又は回転移動)させることと等価であるとみなしてもよい。
 ステージ13が移動すると、ステージ13(更には、ステージ13に載置されたワークW)と加工ヘッド11との位置関係が変わる。更には、ステージ13及びワークWと加工その結果、ワークW上で加工ヘッド11が干渉縞ISを形成する干渉領域IA(図4参照)とステージ13及びワークWとの位置関係が変わる。つまり、ワークW上で干渉領域IAが移動する。
 なお、加工システムSYSは、制御装置3の制御下で、ステージ13と加工ヘッド11との双方を移動させることにより、ステージ13に載置されたワークWと加工ヘッド11との位置関係を変化させてもよい。また、加工システムSYSは、加工ヘッド11やステージ13を移動させることなく、ワークWに対して干渉縞ISを移動させてもよい。
 制御装置3は、加工システムSYSの動作を制御する。例えば、制御装置3は、ワークWを加工するための加工制御情報を生成すると共に、生成した加工制御情報に従ってワークWが加工されるように、加工制御情報に基づいて、加工装置1を制御してもよい。つまり、制御装置3は、ワークWの加工を制御してもよい。
 制御装置3は、例えば、演算装置と記憶装置とを含んでいてもよい。演算装置は、例えば、CPU(Central Processing Unit)及びGPU(Graphics Processing Unit))の少なくとも一方を含んでいてもよい。制御装置3は、演算装置がコンピュータプログラムを実行することで、加工システムSYSの動作を制御する装置として機能する。このコンピュータプログラムは、制御装置3が行うべき後述する動作を制御装置3(例えば、演算装置)に行わせる(つまり、実行させる)ためのコンピュータプログラムである。つまり、このコンピュータプログラムは、加工システムSYSに後述する動作を行わせるように制御装置3を機能させるためのコンピュータプログラムである。演算装置が実行するコンピュータプログラムは、制御装置3が備える記憶装置(つまり、記録媒体)に記録されていてもよいし、制御装置3に内蔵された又は制御装置3に外付け可能な任意の記憶媒体(例えば、ハードディスクや半導体メモリ)に記録されていてもよい。或いは、演算装置は、実行するべきコンピュータプログラムを、ネットワークインタフェースを介して、制御装置3の外部の装置からダウンロードしてもよい。
 制御装置3は、加工システムSYSの内部に設けられていなくてもよい。例えば、制御装置3は、加工システムSYS外にサーバ等として設けられていてもよい。この場合、制御装置3と加工システムSYSとは、有線及び/又は無線のネットワーク(或いは、データバス及び/又は通信回線)で接続されていてもよい。有線のネットワークとして、例えばIEEE1394、RS-232x、RS-422、RS-423、RS-485及びUSBの少なくとも一つに代表されるシリアルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、パラレルバス方式のインタフェースを用いるネットワークが用いられてもよい。有線のネットワークとして、10BASE-T、100BASE-TX及び1000BASE-Tの少なくとも一つに代表されるイーサネット(登録商標)に準拠したインタフェースを用いるネットワークが用いられてもよい。無線のネットワークとして、電波を用いたネットワークが用いられてもよい。電波を用いたネットワークの一例として、IEEE802.1xに準拠したネットワーク(例えば、無線LAN及びBluetooth(登録商標)の少なくとも一方)があげられる。無線のネットワークとして、赤外線を用いたネットワークが用いられてもよい。無線のネットワークとして、光通信を用いたネットワークが用いられてもよい。この場合、制御装置3と加工システムSYSとはネットワークを介して各種の情報の送受信が可能となるように構成されていてもよい。また、制御装置3は、ネットワークを介して加工システムSYSにコマンドや制御パラメータ等の情報を送信可能であってもよい。加工システムSYSは、制御装置3からのコマンドや制御パラメータ等の情報を、上記ネットワークを介して受信する受信装置を備えていてもよい。或いは、制御装置3が行う処理のうちの一部を行う第1制御装置が加工システムSYSの内部に設けられている一方で、制御装置3が行う処理のうちの他の一部を行う第2制御装置が加工システムSYSの外部に設けられていてもよい。
 制御装置3内には、演算装置がコンピュータプログラムを実行することで、機械学習によって構築可能な演算モデルが実装されてもよい。機械学習によって構築可能な演算モデルの一例として、例えば、ニューラルネットワークを含む演算モデル(いわゆる、人工知能(AI:Artificial Intelligence))があげられる。この場合、演算モデルの学習は、ニューラルネットワークのパラメータ(例えば、重み及びバイアスの少なくとも一つ)の学習を含んでいてもよい。制御装置3は、演算モデルを用いて、加工システムSYSの動作を制御してもよい。つまり、加工システムSYSの動作を制御する動作は、演算モデルを用いて加工システムSYSの動作を制御する動作を含んでいてもよい。尚、制御装置3には、教師データを用いたオフラインでの機械学習により構築済みの演算モデルが実装されてもよい。また、制御装置3に実装された演算モデルは、制御装置3上においてオンラインでの機械学習によって更新されてもよい。或いは、制御装置3は、制御装置3に実装されている演算モデルに加えて又は代えて、制御装置3の外部の装置(つまり、加工システムSYSの外部に設けられる装置)に実装された演算モデルを用いて、加工システムSYSの動作を制御してもよい。
 尚、演算装置が実行するコンピュータプログラムを記録する記録媒体としては、CD-ROM、CD-R、CD-RWやフレキシブルディスク、MO、DVD-ROM、DVD-RAM、DVD-R、DVD+R、DVD-RW、DVD+RW及びBlu-ray(登録商標)等の光ディスク、磁気テープ等の磁気媒体、光磁気ディスク、USBメモリ等の半導体メモリ、及び、その他プログラムを格納可能な任意の媒体の少なくとも一つが用いられてもよい。記録媒体には、コンピュータプログラムを記録可能な機器(例えば、コンピュータプログラムがソフトウェア及びファームウェア等の少なくとも一方の形態で実行可能な状態に実装された汎用機器又は専用機器)が含まれていてもよい。更に、コンピュータプログラムに含まれる各処理や機能は、制御装置3(つまり、コンピュータ)がコンピュータプログラムを実行することで制御装置3内に実現される論理的な処理ブロックによって実現されてもよいし、制御装置3が備える所定のゲートアレイ(FPGA、ASIC)等のハードウェアによって実現されてもよいし、論理的な処理ブロックとハードウェアの一部の要素を実現する部分的ハードウェアモジュールとが混在する形式で実現してもよい。
 (2)加工光学系15
  (2-1)加工光学系15の概要
  続いて、ワークWの表面に干渉縞ISを形成する加工光学系15について説明する。加工光学系15は、図5に示すように、第1光学系16と第2光学系17と第3光学系18とを有する。加工光学系15は、加工光源2が生成する加工光ELを、第1光学系16で2つの加工光ELに分岐し、一方を第3光学系18からワークWに照射する。また、加工光学系15は、分岐した他方の加工光ELを、第2光学系17が分割して複数の加工光EL(図1に示す例では、二つの加工光EL)を生成し、それぞれ異なる方向からワークWに照射する。このとき、第2光学系17が生成した複数の加工光ELが干渉することで干渉光を発生させている。このため、加工光学系15は、実質的には、複数の加工光ELが干渉することで発生する干渉光をワークWに照射しているとみなしてもよい。このように、加工光学系15は、ワークWの表面に、第2光学系17により干渉光に起因した干渉縞ISを干渉領域IAに形成するとともに、その干渉領域IAに第3光学系18からの加工光ELを照射する。
 尚、以下の説明では、各加工光ELを以下のように称することで区別する。先ず、加工光源2が生成する加工光ELを、加工光EL0と称し、その加工光EL0が第1光学系16により分岐されて第3光学系18へと向かうものを第1加工光EL1と称する。また、加工光EL0が第1光学系16により分岐されて第2光学系17へと向かうものを第2加工光EL2と称し、その第2加工光EL2が第2光学系17により分割されてワークWに照射されるものを第2加工光EL22と称する。そして、第1光学系16からの第1加工光EL1が第3光学系18によりワークWに照射されるもの第1加工光EL11と称する。
 このため、第1光学系16は、加工光源2からの加工光EL0を分岐することにより、発光期間の少なくとも一部同士が重なるパルス光としての第1加工光EL1及び第2加工光EL2を生成しており、分岐光学系ということもできる。また、第2光学系17は、その第2加工光EL2を分割して生成した複数の第2加工光EL22をそれぞれ異なる入射方向からワークWに照射することで、そのワークWの表面に干渉縞ISを形成する干渉縞形成光学系ということもできる。そして、第3光学系18は、第1加工光EL1からの第1加工光EL11を干渉縞ISが形成される干渉領域IAに向けて照射する照射光学系ということもできる。
 上述したように、加工光学系15は、第2光学系17からの複数の第2加工光EL22をそれぞれ異なる入射方向からワークWに照射することで、干渉縞ISを形成する。ここで、複数の加工光EL22の数は、干渉縞ISを形成するものであれば、2以上の整数であってもよい。
 複数の第2加工光EL22による干渉領域IAに加えて第3光学系18からの第1加工光EL11が照射される本実施形態では、第1加工光EL11が照射されない比較例と比較して、ワークWの表面での干渉縞ISが形成される干渉領域IAでの加工光のフルエンス分布が変わる。具体的には、図6Aは、比較例における加工光のフルエンス分布を示しており、図6Bは、本実施形態における加工光のフルエンス分布を示している。図6A及び図6Bに示すように、本実施形態では、比較例と比較して、加工光の最小フルエンスが高くなる。尚、最小フルエンスは、干渉縞ISの暗部IDにおける加工光のフルエンスの最小値であってもよい。最小フルエンスは、干渉縞ISの暗部IDに到達する加工光のフルエンスの最小値であってもよい。このように本実施形態の最小フルエンスが比較例の最小フルエンスよりも大きくなるのは、複数の第2加工光EL22と第1加工光EL11とを重ねて照射することで、干渉縞ISの形成に影響を与えることなくフルエンス分布に影響を与える光成分を加工光に与えることがあげられる。つまり、加工光学系15は、複数の第2加工光EL22と第1加工光EL11とを重ねて照射することで、干渉縞ISの形成に影響を与えない一方でフルエンス分布に影響を与える光成分(いわゆる、干渉縞ISのフルエンス分布のDC成分)を干渉光に与えている。加工光学系15は、複数の第2加工光EL22と第1加工光EL11とを重ねて照射することで、干渉縞ISの形成に影響を与えるフルエンス分布のコントラスト成分(つまり、干渉縞ISの濃淡(明暗)に影響を与える成分)に影響を与えることなく、干渉縞ISのフルエンス分布のDC成分)を干渉光に与えている。
 逆に言えば、加工光学系15は、干渉縞ISの形成に影響を与えない一方でフルエンス分布に影響を与える光成分を干渉光に与えるように、複数の第2加工光EL22に第1加工光EL11を重ねて照射してもよい。加工光学系15は、干渉縞ISの形成に影響を与えない一方で最小フルエンスを増加させる光成分を干渉光に与えるように、複数の第2加工光EL22に第1加工光EL11を重ねて照射してもよい。また、複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)は、干渉縞ISの形成に影響を与えない一方でフルエンス分布に影響を与える光成分を干渉光に与えることが可能とするように設定されていてもよい。複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)は、加工光EL0の特性、干渉光の特性、ワークWの特性及びリブレット構造RBの特性の少なくとも一つに基づいて決定されていてもよい。複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)は、干渉縞ISを形成することでワークWにリブレット構造RBを形成する実験又はシミュレーションの結果に基づいて決定されていてもよい。
 図6Aに示すように、比較例において形成されるリブレット構造RBでは、凸状構造体81の先端の形状が平坦な形状になる可能性がある。というのも、上述したように、比較例では、最小フルエンスが相対的に小さい。このため、図6Aに示すように、比較例では、干渉縞ISの暗部IDの少なくとも一部のフルエンスが、ワークWを加工可能な(つまり、ワークWの一部を除去可能な)フルエンスの下限値TH_lowestよりも小さくなってしまう可能性が相対的に高くなる。その結果、ワークWのうちの干渉縞ISの暗部IDが形成される部分の少なくとも一部が加工されず、結果として、凸状構造体81の先端の形状が平坦な形状になる可能性が相対的に高くなる。リブレット構造RBの特性を考慮すると、凸状構造体81の先端の形状が平坦な形状である場合には、凸状構造体81の先端の形状がとがった形状である場合と比較して、ワークWの表面の流体に対する抵抗を低減する効果が薄れてしまう可能性がある。
 一方で、図6Bに示すように、本実施形態において形成されるリブレット構造RBでは、比較例と比較して、凸状構造体81の先端の形状が平坦な形状になる可能性は低い。というのも、上述したように、本実施形態では、最小フルエンスが相対的に大きい。このため、図6Bに示すように、本実施形態では、干渉縞ISの暗部IDの少なくとも一部のフルエンスが、ワークWを加工可能なフルエンスの下限値TH_lowestよりも小さくなってしまう可能性が相対的に低くなる。つまり、干渉縞ISの暗部IDの少なくとも一部のフルエンスが、ワークWを加工可能なフルエンスに設定される可能性が相対的に高くなる。その結果、ワークWのうちの干渉縞ISの暗部IDが形成される部分が加工され、結果として、凸状構造体81の先端の形状が理想的な形状(例えば、とがった形状)に近づく又は一致する可能性が相対的に高くなる。つまり、本実施形態では、比較例と比較して、リブレット構造RBの形状の精度が改善される。その結果、本実施形態では、ワークWの表面の流体に対する抵抗を低減する効果が相対的に高いリブレット構造RBが形成される可能性が相対的に高くなる。
 このように、本実施形態の加工装置1は、比較例と比較して、リブレット構造RBの形状を理想的な形状に近づける又は一致させることができる。加工装置1は、比較例と比較して、理想的な形状に近い又は一致している形状を有するリブレット構造RBを形成できる。この場合、加工装置1は、複数の第2加工光EL22に第1加工光EL11を重ねて照射することで、ワークWに形成されるリブレット構造RBの形状が、比較例において形成されるリブレット構造RBの形状よりも理想的な形状に近い所定の形状になるように、リブレット構造RBの形状を調整しているとみなしてもよい。その結果、加工装置1は、理想的な形状に近い又は一致している形状を有するリブレット構造RBを形成するように、ワークWを適切に加工できるという効果を享受できる。
 尚、加工光の最小フルエンスがワークWを加工可能なフルエンスの下限値TH_lowest以上になることで上述した効果が適切に享受可能になることを考慮すれば、加工光学系15は、加工光の最小フルエンスが下限値TH_lowest以上に設定されるように、複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)を設定してもよい。加工光学系15は、加工光の最小フルエンスが、ワークWを加工可能なフルエンスに設定されるように、複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)を設定してもよい。複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)は、加工光の最小フルエンスを、ワークWを加工可能なフルエンスとするように設定されていてもよい。その結果、上述した効果が適切に享受可能となる。
 ワークWの特性によっては、ワークWに照射される光のフルエンスとワークWの加工量(例えば、単位時間当たりの除去量であり、一例として、1パルスあたりの加工量)との関係が、フルエンスに依存して変動する可能性がある。例えば、ワークWの特性によっては、図7に示すように、ワークWに照射される加工光のフルエンス(或いは、干渉光を発生させる複数の第2加工光EL22のフルエンスと、それに重ねられる第1加工光EL11のフルエンス)が所定閾値Fthよりも小さい場合におけるフルエンスとワークWの加工量との第1関係が、ワークWに照射される加工光(干渉光)のフルエンスが所定閾値Fthよりも大きい場合におけるフルエンスとワークWの加工量との第2関係と異なるものとなる可能性がある。この場合、仮に図7の上部に示すように加工光のフルエンスが、所定閾値Fthよりも小さい第1範囲及び所定閾値Fthよりも大きい第2範囲の双方にまたがるように変化する場合には、加工光のうちの所定閾値Fthよりも小さいフルエンスを有する光部分が照射されるワークWの第1部分での加工量が、加工光のうちの所定閾値Fthよりも大きいフルエンスを有する光部分が照射されるワークWの第2部分での加工量と異なるものとなってしまう。図7に示す例では、第2関係におけるフルエンスの増加分に対する加工量の増加分の割合は、第1関係におけるフルエンスの増加分に対する加工量の増加分の割合よりも大きい。この場合、加工光のうちの所定閾値Fthよりも小さいフルエンスを有する光部分が照射されるワークWの第1部分での加工量が、加工光のうちの所定閾値Fthよりも大きいフルエンスを有する光部分が照射されるワークWの第2部分での加工量よりも少なくなってしまう。その結果、ワークWの第1部分での加工量が不足する及び/又はワークWの第2部分での加工量が過剰になる可能性がある。このため、ワークWに形成されるリブレット構造RBの形状の精度が悪化する可能性がある。例えば、図8の下部に示すように、加工光のうちの相対的にフルエンスが小さい光部分(例えば、暗部IDに照射される光部分)によって主として形成される凸状構造体81の先端の形状が平坦な形状になる可能性がある。
 このため、図9の上部に示すように、加工光学系15は、干渉光の最小フルエンスが所定閾値Fth以上になるように、複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)を設定してもよい。或いは、加工光学系15は、干渉光の最小フルエンスが所定閾値Fthに対して所定のマージンを加算することで得られる閾値以上になるように、複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)を設定してもよい。つまり、加工光学系15は、干渉光の最小フルエンスが所定閾値Fthに基づいて設定される閾値以上になるように、複数の第2加工光EL22に重ねて照射する第1加工光EL11(そのフルエンス)を設定してもよい。この場合、図9の下部に示すように、加工光のうちの相対的にフルエンスが小さい光部分(例えば、暗部IDに照射される光部分)によって主として形成される凸状構造体81の先端の形状が理想的な形状になる可能性が相対的に高くなる。その結果、上述した効果が適切に享受可能となる。
 すなわち、物体(上記の実施例ではワークW)は、各加工光のフルエンスが所定閾値よりも小さい場合におけるフルエンスと加工量との第1関係が、各加工光のフルエンスが所定閾値よりも大きい場合におけるフルエンスと加工量との第2関係とは異なるものとなるという特性を有しており、第2関係における加工光のフルエンスの増加分に対する加工量の増加分の割合は、第1関係における加工光のフルエンスの増加分に対する加工量の増加分の割合よりも大きく、第2光学系17は、干渉縞の暗部に達する加工光の最小フルエンスが所定閾値以上となるように、第3光学系18からの第1加工光EL11を設定している。
 ここで、リブレット構造RBは、理想的な形状を得るための加工光の態様(波形の形状(以下では理想波形Wiともいう))が、綺麗な正弦波形となる可能性は低い。しかしながら、リブレット構造RBは、周期的な形状であるので、理想波形Wiも周期的なものとなる。このため、理想波形Wiは、フーリエ変換することにより、複数の正弦波形で示すことができる。この一例を図10A、図10Bに示す。この図10Aは、一例としての理想波形Wiを示しており、図10Bは、理想波形Wiをフーリエ変換して得られた2つの波形(基本周波数波形Wb、2倍周波数波形Wd)を示している。このため、図10Aの理想波形Wiは、図10Bの基本周波数波形Wbと2倍周波数波形Wdとを重ね合わせたものとなる。
 このことから、加工光学系15は、基本周波数波形Wbを示す干渉縞IS(以下では干渉縞IS1ともいう)を形成してワークWを加工するとともに、2倍周波数波形Wdを示す干渉縞IS(以下では干渉縞IS2ともいう)を形成してワークWを加工することにより、理想的な形状のリブレット構造RBを形成する。換言すると、加工光学系15は、干渉縞IS1と干渉縞IS2とを用いることで、実質的に理想波形Wiを示す干渉縞ISを形成するものとして、理想的な形状のリブレット構造RBを形成する。加工光学系15は、理想的な形状のリブレット構造RBを形成するために、理想波形Wiを示す干渉縞ISを形成することに替えて、干渉縞IS1と干渉縞IS2を形成するということもできる。
 なお、理想波形Wiは、リブレット構造RBとして求められる形状によって変化するものであり、フーリエ変換して得られる正弦波形の数や種類(周波数の倍数や振幅等)も併せて変化する。このため、加工光学系15は、求められるリブレット構造RBを形成するために設定された理想波形Wiに合わせて、基本周波数波形Wbの形状や、その基本周波数波形Wbに重ね合わせるn倍周波数波形Wnの数や形状を、適宜設定すればよい。ここで、加工光学系15は、理想波形Wiをフーリエ変換して得られた基本周波数波形Wbに、同じくフーリエ変換して得られた少なくとも1つのn倍周波数波形Wnを重ね合わせるものとすることができる。また、加工光学系15は、理想波形Wiをフーリエ変換して得られた基本周波数波形Wbに、同じくフーリエ変換して得られた2つのn倍周波数波形Wnを重ね合わせるものとしてもよい。さらに、加工光学系15は、理想波形Wiをフーリエ変換して得られた基本周波数波形Wbに、同じくフーリエ変換して得られた3つ以上のn倍周波数波形Wnを重ね合わせるものとしてもよい。
 これらのことから、加工光学系15は、加工光源2からの加工光EL0を第1光学系16で第1加工光EL1と第2加工光EL2とに分岐する。また、加工光学系15は、第2光学系17が第2加工光EL2からの第2加工光EL22として、基本周波数波形Wbと複数のn倍周波数波形Wnとを生成し、それぞれを異なる入射方向からワークWに照射することで、周波数毎に干渉縞ISを形成する。そして、加工光学系15は、第3光学系18が第1加工光EL1を第1加工光EL11として、各干渉縞ISが形成される干渉領域IAに各第2加工光EL22に重ねて照射する。これにより、加工光学系15は、各干渉縞ISによるワークWの加工を適切なものとしつつ、各干渉縞ISを重ね合わせることにより理想波形Wiを用いた場合と同様の理想的な形状のリブレット構造RBを形成できる。
 ここで、干渉縞ISでは、その周期が干渉させる第2加工光EL22の角度に応じて変化し、角度が小さいほど周期が長くなり、角度が大きいほど周期が狭く(短く)なる。また、干渉縞ISでは、複数の第2加工光EL22のフルエンスに応じて、振幅が変化する。このため、第2光学系17は、射出する複数の第2加工光EL22の入射角度を変化させることにより、干渉縞ISにおける振幅と周期との少なくともいずれか一方を変化させることができ、基本周波数波形Wbやn倍周波数波形Wnの干渉縞ISを形成できる。また、第2光学系17は、射出する複数の第2加工光EL22の入射角度を変化させることにより、干渉縞ISにおける振幅と周期との少なくともいずれか一方を調整できるものとすることにより、基本周波数波形Wbやn倍周波数波形Wnを適切なものとすることができる。
 次に、加工光学系15による加工方法の一例としての5つの例について図11を用いて説明する。図11は、5つの例における照射領域RAでの第1加工光EL11、干渉領域IAでの干渉縞ISおよび加工領域PAでの後述する重畳領域OAの態様(形成される様子)を表に纏めたものである。ここで、加工領域PAは、加工光学系15(加工ヘッド11)によりリブレット構造RBの加工が可能な領域、すなわち第1加工光EL11や第2加工光EL22を照射できる領域を示す。この照射できる領域は、第1加工光EL11や第2加工光EL22を一度に(一斉に)照射できる領域であることと、後述するガルバノミラー21(図12等参照)等によって第1加工光EL11や第2加工光EL22を走査または掃引(照射位置を変位)させることにより第1加工光EL11や加工光EL22が照射される領域の総和であることと、を含むものとする。換言すると、加工領域PAは、ステージ13と加工光学系15(加工ヘッド11)とを相対的に移動させることなく、そのステージ13に載置されたワークWを第1加工光EL11や第2加工光EL22で照射できる領域である。この加工領域PAは、本実施形態では、X軸方向に伸びる辺と、Y軸方向に伸びる辺と、を有する矩形状としている。また、加工光学系15(加工ヘッド11)において、第3光学系18により第1加工光EL11が照射される領域を照射領域RAとする。
 そして、以下では、干渉領域IAや照射領域RAが加工領域PAよりも小さい場合には、後述するガルバノミラー21を用いて第1加工光EL11や第2加工光EL22を加工領域PAの全体を走査するもの(全体を走査範囲)としている。このため、ガルバノミラー21は、第2光学系17に対して、干渉領域IAの位置を第2光学系17の光軸に交差する、典型的には直交する方向へと移動させる干渉縞移動部材として機能する。また、この干渉縞移動部材としてのガルバノミラー21は、照射領域RAの位置も第2光学系17の光軸に交差する、典型的には直交する方向へと移動させる機能を有する。なお、この走査範囲は、加工領域PAよりも小さい(加工領域PAの一部のみを加工する)ものであってもよい。また、加工領域PAは、実際に第1加工光EL11や第2加工光EL22を走査できる範囲よりも小さく設定していてもよい。この場合、走査範囲は、加工領域PAよりも大きい(加工領域PAよりも広い範囲に第1加工光EL11や第2加工光EL22を照射する)ものであってもよい。
 図11では、左側から順に、加工光学系15A、加工光学系15B、加工光学系15C、加工光学系15D、加工光学系15Eを用いた加工手法の5つの例を示している。また、図11では、上段に第1加工光EL11による照射領域RAの態様、中段に第2加工光EL22による干渉領域IA(干渉縞IS)の態様、下段に加工領域PAにおける照射領域RAおよび干渉領域IA(後述する重畳領域OA)の態様を示している。
 加工光学系15Aを用いた加工手法では、上段に示すように、第3光学系18による第1加工光EL11の照射領域RA(以下では照射領域RA1とする)を、加工領域PA(下段参照)よりも小さなものとする。詳細には、加工光学系15Aを用いた加工手法では、照射領域RA1を、Y軸方向で加工領域PAと等しい大きさとしつつ、X軸方向で加工領域PAよりも小さな大きさの矩形状としている。
 また、加工光学系15Aを用いた加工手法では、中段に示すように、第2光学系17からの複数の第2加工光EL22により干渉縞ISを形成する干渉領域IAを、照射領域RA1と略等しい大きさの矩形状としている。そして、加工光学系15Aを用いた加工手法では、干渉領域IAにおいて、基本周波数波形Wbを示す干渉縞IS1(以下では干渉領域IA1とする)と、2倍周波数波形Wdを示す干渉縞IS2(以下では干渉領域IA2とする)と、を異なるタイミング(時間)で形成する。
 そして、加工光学系15Aを用いた加工手法では、下段に示すように、基本周波数波形Wbを示す干渉縞IS1を形成した干渉領域IA1と、第1加工光EL11の照射により形成される照射領域RA1と、を重ねる。以下では、干渉領域IA1と照射領域RA1とが重なった領域を重畳領域OA1ともいう。加工光学系15Aを用いた加工手法では、この重畳領域OA1を加工領域PAの全域で走査する。すなわち、加工光学系15Aを用いた加工手法では、加工領域PAにおけるX軸方向の一端に干渉領域IA1と照射領域RA1とを重ねて重畳領域OA1を形成し、その重畳領域OA1をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査する。その後、加工光学系15Aを用いた加工手法では、2倍周波数波形Wdを示す干渉縞IS2を形成した干渉領域IA2と、第1加工光EL11の照射による照射領域RA1と、を重ねて重畳領域OA2を形成する。そして、加工光学系15Aを用いた加工手法では、基本周波数波形Wbを含む重畳領域OA1と同様に、2倍周波数波形Wdを含む重畳領域OA2で加工領域PAの全域を走査する。
 これにより、加工光学系15Aを用いた加工手法では、ワークWの表面における加工領域PAの全域を、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射することができる。このとき、加工光学系15Aを用いた加工手法では、干渉縞IS1および干渉縞IS2のそれぞれと第1加工光EL11とを重ねて照射しているので、それぞれの干渉縞IS1、IS2の暗部IDが形成される部分であってもワークWを適切に加工できる。このため、加工光学系15Aを用いた加工手法では、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。
 加工光学系15Bを用いた加工手法では、上段に示すように、第3光学系18による第1加工光EL11の照射領域RA(以下では照射領域RA2とする)を、加工領域PAよりも小さなものとする。詳細には、加工光学系15Bを用いた加工手法では、照射領域RA2を、Y軸方向で加工領域PAと等しい大きさとしつつ、X軸方向で加工領域PAよりも小さな大きさの矩形状としている。
 また、加工光学系15Bによる加工手法では、中段に示すように、第2光学系17からの複数の第2加工光EL22により干渉縞ISを形成する干渉領域IA(以下では干渉領域IA3とする)を、照射領域RA2と略等しい大きさの矩形状としている。そして、加工光学系15Bを用いた加工手法では、干渉領域IA3において、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、X軸方向に並列して形成している。すなわち、加工光学系15Bを用いた加工手法では、干渉領域IA3において、X軸方向の一端側に2倍周波数波形Wdの干渉縞IS2を形成するとともに、そのX軸方向の他端側に並べて基本周波数波形Wbの干渉縞IS1を形成している。この例では、干渉領域IA3において、基本周波数波形Wbの干渉縞IS1が形成された領域が第1領域となり、2倍周波数波形Wdの干渉縞IS2が形成された領域が第2領域となる。なお、第1領域と第2領域との順番は適宜設定すればよく、この例に限定されない。
 そして、加工光学系15Bによる加工手法では、下段に示すように、2種類の周波数波形Wb、Wdの干渉縞IS1、IS2を並べて形成した干渉領域IA3と、第1加工光EL11の照射により形成される照射領域RA2と、を重ねる。以下では、干渉領域IA3と照射領域RA2とが重なった領域を重畳領域OA3ともいう。そして、加工光学系15Bを用いた加工手法では、この重畳領域OA3で加工領域PAの全域を走査する。すなわち、加工光学系15Bを用いた加工手法では、加工領域PAにおけるX軸方向の一端に干渉領域IA3と照射領域RA2とを重ねて重畳領域OA3を形成し、その重畳領域OA3をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査する。
 これにより、加工光学系15Bを用いた加工手法では、ワークWの表面における加工領域PAの全域を、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射できる。このとき、加工光学系15Bを用いた加工手法では、並べられた干渉縞IS1および干渉縞IS2と第1加工光EL11とを重ねて照射しているので、それぞれの干渉縞IS1、IS2の暗部IDが形成される部分であってもワークWを適切に加工できる。このため、加工光学系15Bを用いた加工手法では、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。
 なお、この例の照射領域RA2では、基本周波数波形Wbを示す干渉縞IS1と2倍周波数波形Wdを示す干渉縞IS2とを並べて形成、すなわち2つの干渉縞ISをY軸方向で接する位置関係で形成している。しかしながら、干渉縞IS1と干渉縞IS2とは、Y軸方向で離れた位置関係で形成されていてもよく、少なくとも一部が互いに重なる位置関係で形成されていてもよく、上記した例に限定されない。
 加工光学系15Cを用いた加工手法では、上段に示すように、第3光学系18による第1加工光EL11の照射領域RA(以下では照射領域RA3とする)を、加工領域PAに等しい大きさとする。また、加工光学系15Cによる加工手法では、中段に示すように、第2光学系17からの複数の第2加工光EL22により干渉縞ISを形成する干渉領域IAを、加工領域PAよりも小さなものとする。詳細には、加工光学系15Cによる加工手法では、加工光学系15Aを用いた加工手法と同様に、干渉領域IAを、Y軸方向で加工領域PAと等しい大きさとしつつ、X軸方向で加工領域PAよりも小さな大きさの矩形状としている。そして、加工光学系15Cを用いた加工手法では、加工光学系15Aを用いた加工手法でと同様に、干渉領域IAにおいて、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、を異なるタイミング(時間)で形成する。すなわち、加工光学系15Cを用いた加工手法では、加工光学系15Aを用いた加工手法でと同様に、基本周波数波形Wbを示す干渉縞IS1を形成した干渉領域IA1と、2倍周波数波形Wdを示す干渉縞IS2を形成した干渉領域IA2と、を形成する。
 そして、加工光学系15Cを用いた加工手法では、下段に示すように、基本周波数波形Wbの干渉縞IS1による干渉領域IA1や、2倍周波数波形Wdの干渉縞IS2による干渉領域IA2が形成された加工領域PAに、第1加工光EL11を照射して照射領域RA3を形成する。ここで、照射領域RA3は、加工領域PAに等しい大きさであり、干渉領域IA1や干渉領域IA2は、加工領域PAよりも小さなものとされている。このため、照射領域RA3(加工領域PA)において、干渉領域IA1や干渉領域IA2が形成された領域が、第1加工光EL11と複数の第2加工光EL22(干渉縞IS1、IS2)とが重ねられた重畳領域OAとなる。そして、加工光学系15Cを用いた加工手法では、照射領域RA3を形成しつつ干渉領域IA1や干渉領域IA2で加工領域PAの全域を走査する。すなわち、加工光学系15Cを用いた加工手法では、加工領域PAに照射領域RA3を形成しつつその加工領域PAにおけるX軸方向の一端に干渉領域IA1を形成し、その干渉領域IA1をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査して、加工領域PAの全域に重畳領域OA4を形成する。その後、加工光学系15Cを用いた加工手法では、加工領域PAに照射領域RA3を形成しつつその加工領域PAにおけるX軸方向の一端に干渉領域IA2を形成し、その干渉領域IA2をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査して、加工領域PAの全域に重畳領域OA5を形成する。
 これにより、加工光学系15Cを用いた加工手法では、ワークWの表面における加工領域PAの全域を、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射できる。このとき、加工光学系15Cを用いた加工手法では、加工領域PAの全域を第1加工光EL11で照射しているので、干渉縞IS1および干渉縞IS2と第1加工光EL11とが確実に重ねて照射され、それぞれの干渉縞IS1、IS2の暗部IDが形成される部分であってもワークWを適切に加工できる。このため、加工光学系15Cを用いた加工手法では、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。
 加工光学系15Dを用いた加工手法では、上段に示すように、加工光学系15Cを用いた加工手法でと同様に、第3光学系18による第1加工光EL11の照射領域RA3を、加工領域PAに等しい大きさとする。また、加工光学系15Dを用いた加工手法では、中段に示すように、加工光学系15Bを用いた加工手法でと同様に、第2光学系17からの複数の第2加工光EL22により干渉縞ISを形成する干渉領域IA3を、加工領域PAよりも小さなものとする。詳細には、加工光学系15Cを用いた加工手法では、干渉領域IA3を、Y軸方向で加工領域PAと等しい大きさとしつつ、X軸方向で加工領域PAよりも小さな大きさの矩形状としている。そして、加工光学系15Dを用いた加工手法では、加工光学系15Bを用いた加工手法でと同様に、干渉領域IA3において、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、X軸方向に並列して形成している。すなわち、加工光学系15Dを用いた加工手法では、干渉領域IA3において、X軸方向の一端側に2倍周波数波形Wdの干渉縞IS2を形成するとともに、そのX軸方向の他端側に並べて基本周波数波形Wbの干渉縞IS1を形成している。
 そして、加工光学系15Dを用いた加工手法では、下段に示すように、2種類の周波数波形Wb、Wdの干渉縞IS1、IS2が並べられた干渉領域IA3が形成された加工領域PAに、第1加工光EL11を照射して照射領域RA3を形成する。ここで、照射領域RA3は、加工領域PAに等しい大きさであり、干渉領域IA3は、加工領域PAよりも小さなものとされている。このため、照射領域RA3(加工領域PA)において、干渉領域IA3が形成された領域が、第1加工光EL11と複数の第2加工光EL22(干渉縞IS1、IS2)とが重ねられた重畳領域OA6となる。そして、加工光学系15Dを用いた加工手法では、照射領域RA3を形成しつつ干渉領域IA3で加工領域PAの全域を走査する。すなわち、加工光学系15Dを用いた加工手法では、加工領域PAに照射領域RA3を形成しつつその加工領域PAにおけるX軸方向の一端に干渉領域IA3を形成し、その干渉領域IA3をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査して、加工領域PAの全域に重畳領域OA6を形成する。
 これにより、加工光学系15Dを用いた加工手法では、ワークWの表面における加工領域PAの全域を、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射できる。このとき、加工光学系15Dを用いた加工手法では、加工領域PAの全域を第1加工光EL11で照射しているので、干渉縞IS1および干渉縞IS2と第1加工光EL11とが重ねて照射され、それぞれの干渉縞ISの暗部IDが形成される部分であってもワークWを適切に加工できる。このため、加工光学系15Dを用いた加工手法では、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。
 加工光学系15Eを用いた加工手法では、上段に示すように、加工光学系15C、加工光学系15Dを用いた加工手法でと同様に、第3光学系18による第1加工光EL11の照射領域RA3を、加工領域PAに等しい大きさとする。また、加工光学系15Eを用いた加工手法では、中段に示すように、第2光学系17からの複数の第2加工光EL22により干渉縞ISを形成する干渉領域IAを、照射領域RA3すなわち加工領域PAと略等しい大きさとしている。このため、加工光学系15Eを用いた加工手法では、第2光学系17が干渉領域IAを移動させることなく、加工領域PAの全域に干渉縞ISを形成できる。換言すると、加工光学系15Eを用いた加工手法では、第3光学系18による照射領域RA3と、第2光学系17により形成される干渉領域IAと、の位置関係が変わらない(一定に位置関係である)。
 そして、加工光学系15Eを用いた加工手法では、下段に示すように、干渉領域IAにおいて、基本周波数波形Wbを示す干渉縞IS1(以下では干渉領域IA4とする)と、2倍周波数波形Wdを示す干渉縞IS2(以下では干渉領域IA5とする)と、を異なるタイミング(時間)で形成する。このとき、加工光学系15Eを用いた加工手法では、基本周波数波形Wbを示す干渉縞IS1を形成した干渉領域IA4と、第1加工光EL11の照射により形成さされる照射領域RA3と、を重ねる。以下では、干渉領域IA4と照射領域RA3とが重ねられた領域を重畳領域OA7ともいう。その後、加工光学系15Eを用いた加工手法では、2倍周波数波形Wdを示す干渉縞IS2を形成した干渉領域IA5と、第1加工光EL11の照射により形成される照射領域RA3と、を重ねる。以下では、干渉領域IA5に照射領域RA3が重ねられた領域を重畳領域OA8ともいう。ここで、照射領域RA3と干渉領域IA4と干渉領域IA5とは、互いに加工領域PAに等しい大きさである。このため、重畳領域OA6と重畳領域OA7とは、加工領域PAの全域において、第1加工光EL11と複数の第2加工光EL22(干渉縞IS1、IS2)とが重ねられていることとなる。
 これにより、加工光学系15Eを用いた加工手法では、ワークWの表面における加工領域PAの全域を、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射できる。このとき、加工光学系15Eを用いた加工手法では、加工領域PAの全域を第1加工光EL11で照射しているので、干渉縞IS1または干渉縞IS2と、第1加工光EL11と、が重ねて照射され、それぞれの干渉縞IS1、IS2の暗部IDが形成される部分であってもワークWを適切に加工できる。このため、加工光学系15Eを用いた加工手法では、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。
 次に、上記した5つの加工光学系15A、加工光学系15B、加工光学系15C、加工光学系15D、加工光学系15Eの具体的な構成の例について、図12から図21を用いて順に説明する。なお、図12、図14、図16、図18、図20では、加工光源2を省略して、その加工光源2からの加工光EL0のみを示している。
 (2-2)加工光学系15A
  図12は加工光学系15Aの構造を示す図であり、図12では加工光源2の図示を省略している。図12に示すように、加工光学系15Aは、加工光源2からの加工光EL0を、第1光学系16へと進行させるために、ガルバノミラー21とコリメートレンズ22とを有する。ガルバノミラー21は、上述したように第2光学系17に対して干渉領域IAの位置を第2光学系17の光軸と交差、典型的には直交する方向へと移動させる干渉縞移動部材であり、加工光源2からの加工光EL0をビームスプリッタ23へ向けて反射する。このガルバノミラー21は、Z軸方向に伸びる回転軸を中心とする回転方向に傾きの変更が可能とされている。ガルバノミラー21は、傾きを変更することで、加工光EL0のビームスプリッタ23へ向けた反射の方向を変更できる。ガルバノミラー21は、加工光EL0の反射の方向の変更可能な範囲が、分岐された第2加工光EL2が後述する特殊ビームスプリッタ25における分割面25aへと入射できる範囲内に収まるものとしている。すなわち、ガルバノミラー21は、第2加工光EL2が分割面25aへと入射できる範囲内で、加工光EL0が進行する方向を変化させることができる。このガルバノミラー21は、制御装置3の制御下で駆動されてもよく、他の制御装置の制御下で駆動されるものでもよい。
 コリメートレンズ22は、ガルバノミラー21で反射された加工光源2からの加工光EL0をコリメートされた状態の光(平行な光)とする。すなわち、コリメートレンズ22は、この例の加工光源2からの加工光EL0が拡散(発散)する光とされており、その加工光EL0をコリメートされた状態の光(平行な光)とする。
 加工光学系15Aは、加工光源2からの加工光EL0を第1加工光EL1と第2加工光EL2とに分岐する第1光学系16として、ビームスプリッタ23を有する。このビームスプリッタ23には、コリメートレンズ22によりコリメートされた状態の加工光EL0が入射する。ビームスプリッタ23は、加工光EL0を第1加工光EL1と第2加工光EL2とに分岐する。詳細には、ビームスプリッタ23は、加工光EL0の一部を反射することにより第3光学系18へと進行する第1加工光EL1を生成し、加工光EL0の他の一部を通過させることにより第2光学系17へと進行する第2加工光EL2を生成する。尚、ビームスプリッタ23は、加工光EL0の一部を透過して第1加工光EL1を生成し且つ加工光EL0の他の一部を反射して第2加工光EL2を生成するものであってもよい。このビームスプリッタ23は、振幅分割型のビームスプリッタであってもよく、偏光ビームスプリッタであってもよい。ビームスプリッタ23は、通過させて生成した第2加工光EL2を、Y軸方向と平行に第2光学系17へと進行させる。このため、干渉縞移動部材としてのガルバノミラー21は、加工光源2と、加工光EL0を第1加工光EL1と第2加工光EL2とに分岐する位置に配置される第1光学系16としてのビームスプリッタ23と、の間の光路中に配置されている。ガルバノミラー21は、上述したように第2光学系17に対して干渉領域IAの位置を第2光学系17の光軸と交差(直交)する方向へと移動させる
 図12の例の加工光学系15Aは、第1光学系16(そのガルバノミラー21)に入射する前に、加工光源2からの加工光EL0を、図示なき回折光学素子(DOE:Diffractive Optical Element)やビームスプリッタを用いて、2つに分岐させている。また、加工光学系15Aは、分岐した2つの加工光EL0をレンズ等の光学素子を用いて、ガルバノミラー21(その反射面)上においてそれぞれ異なる位置で1点もしくはそれに近い狭い領域に集めている。そして、第1光学系16は、2つの加工光EL0をガルバノミラー21で反射させた後にコリメートレンズ22を通過させて、その分岐された一方の加工光EL0をビームスプリッタ23が反射して第1加工光EL1とするとともに、分岐された他の一方の加工光EL0をビームスプリッタ23を通過させて第2加工光EL2とする。これにより、加工光学系15Aは、加工光源2からの加工光EL0のエネルギーがビームスプリッタ23における狭い箇所に集中することを防止でき、加工光EL0によるビームスプリッタ23の損傷を抑制できる。また、加工光学系15Aは、ガルバノミラー21の(その反射面)の1点もしくはそれに近い狭い領域に2つの加工光EL0を集めているので、ガルバノミラー21の傾きの変更による加工光EL0が進行する方向を変化の調整を容易で適切なものにできる。
 また、加工光学系15Aは、第1光学系16からの第2加工光EL2を分岐して複数の第2加工光EL22を生成する第2光学系17として、第1シリンドリカルレンズ24と特殊ビームスプリッタ25と第2シリンドリカルレンズ26と第1ミラー27と光学偏向部材28と第2ミラー29と第3ミラー31と第3シリンドリカルレンズ32とレンズ33とを有する。ここで、加工光学系15Aの第2光学系17は、第1シリンドリカルレンズ24と第2シリンドリカルレンズ26と第2ミラー29とレンズ33とを有していなくてもよい。第1シリンドリカルレンズ24は、X軸方向に伸びた形状を有しZ軸方向のみに屈折力を持つ光学部材であって、X軸方向に直交する断面で凸レンズとされている。この第1シリンドリカルレンズ24は、第1光学系16からの第2加工光EL2を、X軸方向では変化させることなくZ軸方向で集光する。そして、第1シリンドリカルレンズ24は、第2加工光EL2の進行方向における後側焦点が特殊ビームスプリッタ25の後述する分割面25aの近傍に設定されている。このため、第1シリンドリカルレンズ24は、第2加工光EL2を、分割面25a上においてX軸方向に伸びる線状の光とする(図13参照)。
 特殊ビームスプリッタ25は、第1シリンドリカルレンズ24によりX軸方向に伸びる線状の光とされた第2加工光EL2を、複数の第2加工光EL22に分割する。このため、特殊ビームスプリッタ25は、第2加工光EL2を複数の第2加工光EL22に分割する光分割部材として機能する。以下の説明では、説明の便宜上、特殊ビームスプリッタ25が第2加工光EL2を二つの第2加工光EL22(個別に示す際には、一方を第2加工光EL221とし、他方を第2加工光EL222とする)に分割する例について説明する。また、特殊ビームスプリッタ25は、分割した二つの第2加工光EL22を合流させて、両第2加工光EL22を、レンズ33すなわちその先のワークWへ向けて進行させる機能も有する。尚、第1シリンドリカルレンズ24によって形成される第2加工光EL2の集光位置は、特殊ビームスプリッタ25から光軸方向において若干ずらされていてもよい。
 この特殊ビームスプリッタ25は、矩形状の板状部材とされており、X軸方向に伸びる中心軸を中心としてY軸方向に対して45度の傾斜とされて配置されている。特殊ビームスプリッタ25は、それぞれX軸方向に伸びる分割面25aと反射面25bと通過面25cとを有する(図13参照)。特殊ビームスプリッタ25では、45度の傾斜方向で中心軸の近傍が分割面25aとされ、その傾斜方向で上側であって図12、図13で見て右側(第3シリンドリカルレンズ32側)が反射面25bとされ、傾斜方向で下側であって図12、図13で見て左側(第1シリンドリカルレンズ24側)が通過面25cとされている。尚、特殊ビームスプリッタ25の傾斜角度は45度には限定されない。
 分割面25aは、第1シリンドリカルレンズ24によりX軸方向に伸びる線状の光とされた第2加工光EL2を、複数の第2加工光EL22に分岐する。この分割面25aは、振幅分割型のビームスプリッタや偏光ビームスプリッタで構成され、第2加工光EL2の一部を反射することにより第2加工光EL221を生成するとともに、第2加工光EL2の他の一部を通過させることにより第2加工光EL222を生成する。ここで、特殊ビームスプリッタ25は、Y軸方向に対して45度の傾斜とされて配置されているので分割面25aで反射して生成した第2加工光EL221をZ軸方向と平行に第2シリンドリカルレンズ26へと進行させ、もう一つの分割面25aを通過させて生成した第2加工光EL222をY軸方向と平行に第3シリンドリカルレンズ32へと進行させる。
 反射面25bは、後述するように第3ミラー31で反射されて第3シリンドリカルレンズ32で集光された第2加工光EL221を、Z軸方向の下側(レンズ33側)へと進行させるように反射する。このため、反射面25bは、特殊ビームスプリッタ25における第3シリンドリカルレンズ32側に向けられた裏面が光を反射させる光学的な特性とされて構成されている。この反射面25bは、特殊ビームスプリッタ25における裏面の上側の端部に部分的に蒸着すること等により形成できる。なお、反射面25bは、第3シリンドリカルレンズ32からの第2加工光EL221をレンズ33へ向けて反射するものであれば、構成や位置は適宜設定すればよく、この例に限定されない。
 通過面25cは、後述するように第1ミラー27で反射されて第2シリンドリカルレンズ26で集光された第2加工光EL222を、Z軸方向の下側(レンズ33側)へと進行させるように透過する。ここで、通過面25cは、第2シリンドリカルレンズ26からの第2加工光EL222に対して、光学的に何らの作用を及ぼさないことが望ましい。このため、この例の通過面25cは、何もないもの、すなわち特殊ビームスプリッタ25において通過面25cに相当する箇所が切り欠かれたものとしている。なお、通過面25cは、第2シリンドリカルレンズ26からの第2加工光EL222をレンズ33へ向けて通過させるものであれば、構成や位置は適宜設定すればよく、この例に限定されない。
 第2シリンドリカルレンズ26は、X軸方向に伸びた形状を有しY軸方向のみに屈折力を持つ光学部材であって、X軸方向に直交する断面で凸レンズとされている。この第2シリンドリカルレンズ26は、第2加工光EL221の進行方向における前側焦点が特殊ビームスプリッタ25の分割面25aの近傍に設定されており、第2加工光EL221をX軸方向およびY軸方向に所定の大きさのコリメートされた状態の光(平行な光)とする。第2シリンドリカルレンズ26は、コリメートした状態の第2加工光EL221を、Z軸方向と平行に第1ミラー27へと進行させる。また、第2シリンドリカルレンズ26は、第1ミラー27で反射された第2加工光EL222を、X軸方向では変化させることなくY軸方向で集光して、後述するように通過面25c上においてX軸方向に伸びる線状の光とする(図13参照)。
 第1ミラー27は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して45度の傾斜とされて配置されている。第1ミラー27は、第2シリンドリカルレンズ26からの第2加工光EL221を反射して、Y軸方向と平行に光学偏向部材28へと進行させる。また、第1ミラー27は、光学偏向部材28を通過した第2ミラー29からの第2加工光EL222を反射して、第2シリンドリカルレンズ26へと進行させる。
 光学偏向部材28は、第1ミラー27と第2ミラー29との間を進行する光(第2加工光EL221、第2加工光EL222)の進行方向を変化(偏向)させる部材である。光学偏向部材28は、X軸方向に伸びた形状を有しZ軸方向のみに屈折力を持つ光学部材であって、第1ミラー27と第2ミラー29との間において、光の進行方向をZ軸方向の上側か下側のいずれか一方に屈折させる。この例の光学偏向部材28は、X軸方向に直交する断面において、Z軸方向の上側における厚さ(Y軸方向の大きさ)が最も小さくされるとともに、Z軸方向の下側に向かうに連れて厚さが大きくなる台形状(楔形状)とされている。このため、光学偏向部材28は、光学偏向部材28が設けられていない状態と比較して、第1ミラー27と第2ミラー29との一方からの光を、Z軸方向の下側へと屈折させつつ第1ミラー27と第2ミラー29との他方へと向かわせる。この光学偏向部材28は、第1ミラー27と第2ミラー29との間の光路に配置することと、その光路から外すことと、が可能とされており、実施例1では制御装置3の制御下で駆動される。
 第2ミラー29は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して45度の傾斜を基準位置として、その基準位置に対して上記中心軸を中心として傾斜されて配置されている。第2ミラー29は、特殊ビームスプリッタ25(その分割面25a)と共役な位置関係とされている。この例の第2ミラー29は、図12において、基準位置に対して、中心軸を中心に左回り(時計回りとは反対側)に傾けられている。なお、この基準位置からの傾ける方向は、右回りとしてもよく、この例に限定されない。第2ミラー29は、光学偏向部材28を通過した第2加工光EL221を反射して第3ミラー31へと進行させるとともに、第3ミラー31で反射された第2加工光EL222を反射して光学偏向部材28へと進行させる。
 第3ミラー31は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して45度の傾斜とされて配置されている。第3ミラー31は、第2ミラー29で反射された第2加工光EL221を反射して第3シリンドリカルレンズ32へと進行させるとともに、第3シリンドリカルレンズ32を通過した第2加工光EL222を反射してZ軸方向と平行に第2ミラー29へと進行させる。
 第3シリンドリカルレンズ32は、X軸方向に伸びた形状を有しZ軸方向のみに屈折力を持つ光学部材であって、X軸方向に直交する断面で凸レンズとされている。この第3シリンドリカルレンズ32は、第2加工光EL222の進行方向における前側焦点が特殊ビームスプリッタ25の分割面25aの近傍に設定されており、第2加工光EL222を、X軸方向およびY軸方向に所定の大きさのコリメートされた状態の光(平行な光)とする。第3シリンドリカルレンズ32は、コリメートした状態の第2加工光EL222を、Y軸方向と平行に第3ミラー31へと進行させる。また、第3シリンドリカルレンズ32は、第3ミラー31で反射された第2加工光EL221を、X軸方向では変化させることなくY軸方向で集光して、後述するように反射面25b上においてX軸方向に伸びる線状の光とする(図13参照)。
 ここで、第2シリンドリカルレンズ26と第3シリンドリカルレンズ32との焦点位置は一致していてもよい。そして、第2シリンドリカルレンズ26、第3シリンドリカルレンズ32及び光学偏向部材28によって、第2加工光EL221に関して分割面25aと反射面25bとはYZ面において光学的に共役となる。また、第2シリンドリカルレンズ26、第3シリンドリカルレンズ32及び光学偏向部材28によって、第2加工光EL222に関して分割面25aと通過面25cとはYZ面において光学的に共役となる。ここで、光学偏向部材28によって、特殊ビームスプリッタ25に入射する第2加工光EL221は分割面25aの位置から反射面25bの位置へその入射位置が変位し、特殊ビームスプリッタ25に入射する第2加工光EL222は分割面25aの位置から通過面25cの位置へその入射位置が変位する。すなわち、光学偏向部材28は、特殊ビームスプリッタ25からの光と特殊ビームスプリッタ25に入射する光との光路を空間的に分離する機能を有する。
 レンズ33は、後述するように反射面25bで反射された第2加工光EL221と、後述するように通過面25cを透過した第2加工光EL222と、によりワークWの表面に干渉縞ISを形成するように、ワークWの表面に集光する。すなわち、レンズ33は、反射面25bで反射された第2加工光EL221が進行する光路における中心軸と、通過面25cを透過した第2加工光EL222が進行する光路における中心軸と、をワークWの表面で一致させる。言い換えると、レンズ33はその光軸から離れた位置から入射する第2加工光EL221、EL222をそれぞれ集光してワークWの表面で互いに交差するようにワークWの表面に斜入射させる。これにより、ワークWの表面では、Y軸方向に伸びる線状の領域に干渉縞ISが形成されて干渉領域IAが形成される。
 さらに、加工光学系15Aは、第1光学系16からの第1加工光EL1を干渉領域IAへと進行させる第3光学系18として、第4ミラー34と第4シリンドリカルレンズ35と第5ミラー36とを有する。第4ミラー34は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して45度の傾斜とされて配置されている。第4ミラー34は、第1光学系16からの第1加工光EL1を反射して、Y軸方向と平行に第4シリンドリカルレンズ35へと進行させる。
 第4シリンドリカルレンズ35は、第1加工光EL1をZ軸方向では変化させることなくX軸方向で集光する。そして、第4シリンドリカルレンズ35は、第1加工光EL1の進行方向における後側焦点が第5ミラー36を経たワークWの表面における干渉領域IAが形成される位置に設定されている。このため、第4シリンドリカルレンズ35は、第1加工光EL1を、Z軸方向に伸びる線状の光としつつ、Y軸方向と平行に第5ミラー36へと進行させる。
 第5ミラー36は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して45度の傾斜とされて配置されている。第5ミラー36は、第4シリンドリカルレンズ35からの第1加工光EL1を反射して、ワークWの表面へと進行させる。このため、第3光学系18は、第1加工光EL1を第4ミラー34および第4シリンドリカルレンズ35を経てから第5ミラー36で反射することで、第1加工光EL11としてワークWの表面へと向かわせる。この第1加工光EL11は、第4シリンドリカルレンズ35によりZ軸方向に伸びる線状の光とされており、第5ミラー36によりワークWの表面へ向けて反射されることにより、Y軸方向に伸びる線状の光とされる。
 次に、この加工光学系15Aの作用について説明する。先ず、加工光源2から射出される加工光EL0は、ガルバノミラー21で反射された後にコリメートレンズ22を通過して、第1光学系16としてのビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐する。ここで、第1加工光EL1と第2加工光EL2とは、コリメートレンズ22を通過することにより、コリメートされた状態の光とされている。その第1加工光EL1は、第3光学系18へと進行され、第2加工光EL2は、第2光学系17へと進行される。
 その第2光学系17では、その第2加工光EL2を、第1シリンドリカルレンズ24を通過させてX軸方向に伸びる線状の光として、特殊ビームスプリッタ25の分割面25aへと進行させる(図13参照)。すると、第2加工光EL2は、一部が分割面25aで第2シリンドリカルレンズ26へ向けて反射されて第2加工光EL221とされ、他の一部が分割面25aを通過(透過)して第3シリンドリカルレンズ32ヘと向かう第2加工光EL222とされる。その第2加工光EL221は、第2シリンドリカルレンズ26を通過して第1ミラー27で反射され、その後に第2ミラー29と第3ミラー31とで反射されて第3シリンドリカルレンズ32を通過して、特殊ビームスプリッタ25へ向けて進行する。また、第2加工光EL222は、第3シリンドリカルレンズ32を通過して第3ミラー31と第2ミラー29とで反射され、その後に第1ミラー27で反射されて第2シリンドリカルレンズ26を通過して、特殊ビームスプリッタ25へ向けて進行する。このとき、第2加工光EL221と第2加工光EL222とは、第1ミラー27と第2ミラー29との間の光路に光学偏向部材28が配置されている場合には、その光学偏向部材28も通過する。
 ここで、特殊ビームスプリッタ25(その分割面25a)と第1ミラー27と第3ミラー31とが、全て板状部材とされるとともにZ軸方向に対して45度の傾斜とされており、第2ミラー29も板状部材とされるとともにZ軸方向に対して45度の傾斜を基準位置としている。このため、第2光学系17では、基本的に第2加工光EL221と第2加工光EL222とを、特殊ビームスプリッタ25から互いに異なる回転方向(時計回りの方向および反時計回りの方向)で進行させて、再び特殊ビームスプリッタ25に戻るように進行させている。そして、第2光学系17では、第2ミラー29を、図12において基準位置に対して中心軸を中心に左回りに傾けている。このため、第2ミラー29で反射された第2加工光EL221は、基準位置にある場合と比較して、第3ミラー31における右側にずれた位置に進行し、そこで反射されることで特殊ビームスプリッタ25における上側にずれた位置すなわち反射面25bに向けて進行する(図13参照)。また、第2ミラー29で反射された第2加工光EL222は、基準位置にある場合と比較して、第1ミラー27における下側にずれた位置に進行し、そこで反射されることで特殊ビームスプリッタ25における下側にずれた位置すなわち通過面25cに向けて進行する(図13参照)。これにより、第2光学系17では、第2加工光EL221と第2加工光EL222とを基本的に等しい光路を通しつつ、第2加工光EL221と第2加工光EL222とに空間的な位置の差を生じさせることができる。このため、第2光学系17は、四角形のサニャック光学系を構成しているともいえる。
 そして、第2光学系17は、第2加工光EL221を反射面25bで反射してレンズ33へ向けて進行させるとともに、第2加工光EL222を通過面25cから透過させてレンズ33へ向けて進行させる。このように、第2光学系17は、特殊ビームスプリッタ25において、分割面25aで反射した第2加工光EL221を反射面25bによりレンズ33へ向けて反射するとともに、分割面25aを通過させた第2加工光EL222を通過面25cを通過させてレンズ33へ向けて進行させる。このため、第2光学系17は、第1光学系16からの第2加工光EL2を極めて高い効率で利用して、異なる入射方向からワークWを照射する第2加工光EL221と第2加工光EL222とを生成できる。
 また、第2光学系17は、その第2加工光EL221と第2加工光EL222とをレンズ33を通過させることにより、ワークWの表面に集光して干渉縞ISを形成する。ここで、第2光学系17は、レンズ33を通過させた後の第2加工光EL221と第2加工光EL222との角度が、基本周波数波形Wbの干渉縞IS1を形成できるように、各光学部材の配置や光学性能を鑑みて第2ミラー29の角度が設定されている。すなわち、第2光学系17は、基本周波数波形Wbの干渉縞IS1の周期に合わせて、各光学部材の配置や光学性能と第2ミラー29の角度とを設定している。これにより、第2光学系17は、ワークWの表面に基本周波数波形Wbを示す干渉縞IS1の干渉領域IA1(図11参照)を形成できる。
 また、第2光学系17では、第1ミラー27と第2ミラー29との間の光路に光学偏向部材28を配置することが可能とされている。その光学偏向部材28は、第1ミラー27と第2ミラー29との一方からの光を、光学偏向部材28が設けられていない状態と比較して、Z軸方向の下側へと屈折させつつ第1ミラー27と第2ミラー29との他方へと向かわせる。このため、第2加工光EL221は、光学偏向部材28を通過することにより、光学偏向部材28を通過しない場合と比較して、第2ミラー29における下側にずれた位置に進行し、そこで反射されることで第3ミラー31における右側へのずれ量が大きくなり、そこで反射されることで特殊ビームスプリッタ25の反射面25bにおける上側(外側)へのずれ量が大きくなる(図13の一点鎖線で示す符号EL221参照)。また、第2加工光EL222は、光学偏向部材28を通過することにより、光学偏向部材28を通過しない場合と比較して、第1ミラー27における下側へのずれ量が大きくなり、そこで反射されることで特殊ビームスプリッタ25の通過面25cにおける下側(外側)へのずれ量が大きくなる(図13の一点鎖線で示す符号EL222参照)。
 このため、第2光学系17では、光学偏向部材28を配置することにより、光学偏向部材28を配置しない場合と比較して、レンズ33へ向けて進行させる際の第2加工光EL221と第2加工光EL222との間隔を拡げることができる。これにより、第2光学系17では、光学偏向部材28を配置することにより、光学偏向部材28を配置しない場合と比較して、レンズ33を通過させた後の第2加工光EL221と第2加工光EL222とのなす角度を大きくすることができる。このため、第2光学系17では、光学偏向部材28を配置することにより、光学偏向部材28を配置しない場合と比較して、周期の小さい干渉縞ISをワークWの表面に形成できる。そして、第2光学系17は、光学偏向部材28を配置した際のレンズ33を通過させた後の第2加工光EL221と第2加工光EL222との角度を、2倍周波数波形Wdの干渉縞IS2を形成できるように、各光学部材の配置や光学性能を鑑みて光学偏向部材28の形状(角度(屈折度合い(光学設定)))を設定している。すなわち、第2光学系17は、2倍周波数波形Wdの干渉縞IS2の周期に合わせて、各光学部材の配置や光学性能とともに光学偏向部材28の形状を設定している。これにより、第2光学系17は、光学偏向部材28を配置することにより、ワークWの表面に2倍周波数波形Wdを示す干渉縞IS2の干渉領域IA2(図11参照)を形成できる。
 なお、ワークWの表面に形成される干渉縞IS1、IS2の周期(ピッチ)Pは、第2加工光EL221、EL222の波長をλ、ワークWのレンズ33側の媒質の波長λに対する屈折率をn、ワークWへ向かう加工光EL221、EL222の交差角を2θとするとき、
    P=λ/(2n×sinθ)
で与えられる。
 ここで、基本周波数波形Wbと2倍周波数波形Wdとにおいて、振幅に差異をつける必要がある場合を考える。この場合、基本周波数波形Wbを示す干渉縞IS1によってワークWに与えられるエネルギー量の分布を示す波形と、2倍周波数波形Wdを示す干渉縞IS2によってワークWに与えられるエネルギー量の分布を示す波形と、においても同様の振幅(エネルギー量)の差分を設定する必要がある。この振幅(エネルギー量)の差分は、干渉領域IAと照射領域RAとを重ねて重畳領域OAを形成する時間、すなわちガルバノミラー21による走査の速度を変更することにより設定できる。また、上記の振幅(エネルギー量)の差分は、干渉領域IA1と干渉領域IA2とを形成する際に加工光源2からの加工光EL0の強度を変更することで設定できる。この加工光EL0の強度は、加工光源2の出力を変更することや、加工光源2から第1光学系16までの光路に減光作用のある光学部材を設けることにより変更できる。
 このように、第2光学系17では、光学偏向部材28における第2加工光EL221と第2加工光EL222と位置を変化させることで、光学偏向部材28からレンズ33を通した後の第2加工光EL221と第2加工光EL222との射出位置や射出角度を変化させることができる。そして、第2光学系17は、光学偏向部材28を光路から外すことで基本周波数波形Wbの干渉縞IS1を形成しているので、干渉縞IS1における強度を確保でき、実質的に理想波形Wiの干渉縞ISを適切に形成できる。これは、一般に、基本周波数波形Wbの干渉縞IS1は、n倍周波数波形Wnの干渉縞ISと比較して、高い強度が求められる場合が多いことによる。このことから、第2光学系17は、n倍周波数波形Wnの方が高い強度が求められる場合には、光学偏向部材28を光路から外すことでn倍周波数波形Wnの干渉縞IS1を形成してもよい。そして、第2光学系17は、3つ以上のn倍周波数波形Wnを重ね合わせる際には、互いに形状(屈折角)の異なる複数の光学偏向部材28を設けるとともに、それらを個別に第1ミラー27と第2ミラー29との間の光路に配置すること及びその光路から外すことを可能とすればよい。
 また、第3光学系18では、第1光学系16からの第1加工光EL1を、第4ミラー34で反射した後に第4シリンドリカルレンズ35を通過させてZ軸方向に伸びる線状の光として第5ミラー36へと進行させる。そして、第3光学系18では、第5ミラー36で反射することで、第1加工光EL11としてワークWの表面において干渉領域IA(干渉領域IA1、干渉領域IA2)が形成された位置でY軸方向に伸びる線状の光として照射して、照射領域RA1を形成する(図11参照)。これにより、加工光学系15Aは、第2光学系17において光学偏向部材28を外した状態とすることで、ワークWの表面において、干渉領域IA1と照射領域RA1とを重ねて重畳領域OA1(図11参照)を形成できる。また、加工光学系15Aは、第2光学系17において光学偏向部材28を配置した状態とすることで、ワークWの表面において、干渉領域IA2と照射領域RA1とを重ねて重畳領域OA2(図11参照)を形成できる。
 この加工光学系15Aは、重畳領域OA2における加工光の最小フルエンスがワークWを加工可能なフルエンスとするように、第1光学系16、第2光学系17および第3光学系18における各光学部材の配置や光学性能を鑑みて第1加工光EL11のフルエンスを設定している。すなわち、加工光学系15Aは、干渉縞IS1、IS2のフルエンスが、ワークWを加工可能なフルエンスの下限値TH_lowest以上になるように、第1光学系16、第2光学系17および第3光学系18における各光学部材の配置や光学性能に基づいて、加工光源2からの加工光EL0の分岐の比率を設定している。
 そして、加工光学系15Aは、ガルバノミラー21を駆動することにより、重畳領域OA1すなわち干渉領域IA1と照射領域RA1とを重ねた状態のまま、ワークWの表面上で移動できる。このため、加工光学系15Aは、ガルバノミラー21の駆動による重畳領域OA1を移動させることのできる領域が加工領域PAとなる。加工光学系15Aは、ガルバノミラー21を駆動して重畳領域OA1を移動させることにより、基本周波数波形Wbを含む重畳領域OA1で加工領域PAの全域を走査する。その後、加工光学系15Aは、光学偏向部材28を配置した状態として、ガルバノミラー21を駆動して重畳領域OA2を移動させることにより、2倍周波数波形Wdを含む重畳領域OA2で加工領域PAの全域を走査する。これにより、加工光学系15Aは、ワークWの表面における加工領域PAの全域を、第1加工光EL11を重ねた状態で、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射できる。このため、加工光学系15Aは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Aは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 (2-3)加工光学系15B
  この加工光学系15Bは、基本的な概念および構成が上記した加工光学系15Aと同様であるので、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。図14に示すように、加工光学系15Bは、第1光学系16と第3光学系18とが加工光学系15Aと同等の構成とされている。そして、加工光学系15Bでは、第1光学系16からの第2加工光EL2を分岐して複数の第2加工光EL22を生成する第2光学系17Bが、加工光学系15Aの第2光学系17とは異なるものとされている。この第2光学系17Bでは、加工光学系15Aの第2光学系17と比較して、光学偏向部材28を設けていないとともに、第2ミラー29Bが異なるものとされている。
 その第2ミラー29Bは、X軸方向に2つの板状部材が組み合わされて形成されており、それぞれがX軸方向に伸びる中心軸を中心としてZ軸方向に対して45度の傾斜を基準位置として、その基準位置に対して上記中心軸を中心として傾斜されて配置されている。この第2ミラー29Bでは、図14の奥側(X軸方向負側(-側))を第1反射部29Baとし、図14の手前側(X軸方向正側(+側))を第2反射部29Bbとする。なお、図14では、理解を容易とするために、第1反射部29Baを破線で示すとともに、第2反射部29Bbを実線で示している。この第2ミラー29Bでは、第1反射部29Baと第2反射部29Bbとの双方が、図14において、基準位置に対して、中心軸を中心に左回り(時計回りとは反対)に傾けられている。なお、この基準位置からの傾ける方向は、第1反射部29Baと第2反射部29Bbとの同じ向きに傾けるものであれば、右回りとしてもよく、この例に限定されない。第2ミラー29は、第1ミラー27からの第2加工光EL221を第1反射部29Baと第2反射部29Bbとの双方で反射して第3ミラー31へと進行させるとともに、第3ミラー31からの第2加工光EL222を第1反射部29Baと第2反射部29Bbとの双方で反射して第1ミラー27へと進行させる。
 そして、第1反射部29Baは、レンズ33を通過させた後の第2加工光EL221と第2加工光EL222との角度が、基本周波数波形Wbの干渉縞IS1を形成できるように、各光学部材の配置や光学性能を鑑みて角度が設定されている。すなわち、第1反射部29Baは、基本周波数波形Wbの干渉縞IS1の周期に合わせて、各光学部材の配置や光学性能に合わせて角度が設定されている。また、第2反射部29Bbは、レンズ33を通過させた後の第2加工光EL221と第2加工光EL222との角度が、2倍周波数波形Wdの干渉縞IS2を形成できるように、各光学部材の配置や光学性能を鑑みて角度が設定されている。すなわち、第2反射部29Bbは、2倍周波数波形Wdの干渉縞IS2の周期に合わせて、各光学部材の配置や光学性能に合わせて角度が設定されている。このため、第2ミラー29Bでは、手前側の第2反射部29Bbが、奥側の第1反射部29Baよりも基準位置に対する傾斜が大きくされている。
 ここで、第2加工光EL221と第2加工光EL222とは、分割面25a上においてX軸方向に伸びる線状の光とされた第2加工光EL2(図15参照)が分割された後に、第2シリンドリカルレンズ26および第3シリンドリカルレンズ32によりX軸方向およびY軸方向に所定の大きさのコリメートされた状態の光(平行な光)とされている。このため、第2加工光EL221と第2加工光EL222とは、X軸方向で所定の大きさを有する状態で第2ミラー29Bに進行しているので、一部が第1反射部29Baで反射されるとともに他の一部が第2反射部29Bbで反射される。
 これにより、第2加工光EL221は、図15に示すように、特殊ビームスプリッタ25の反射面25b上において、X軸方向の上側(図14においてX軸方向の奥側に対応)でX軸方向に伸びる線状の光とされるとともに、X軸方向の下側(図14においてX軸方向の手前側に対応)で右側に変位した位置でX軸方向に伸びる線状の光とされる。また、第2加工光EL222は、特殊ビームスプリッタ25の通過面25c上において、X軸方向の上側(図14においてX軸方向の奥側に対応)でX軸方向に伸びる線状の光とされるとともに、X軸方向の下側(図14においてX軸方向の手前側に対応)で左側に変位した位置でX軸方向に伸びる線状の光とされる。ここで、第2加工光EL221および第2加工光EL222の上側と下側とにおける長さの差異は、干渉領域IAと照射領域RAとを重ねて重畳領域OAを形成する時間の差異であり、基本周波数波形Wbの強度(振幅)と2倍周波数波形Wdの強度(振幅)との差異に合わせて設定されている。
 このため、第2加工光EL221と第2加工光EL222とは、一部が基本周波数波形Wbの干渉縞IS1を形成するものとされるとともに、他の一部が2倍周波数波形Wdの干渉縞IS2を形成するものとされる。このため、第2光学系17Bは、レンズ33を通過させて第2加工光EL221と第2加工光EL222とでワークWの表面を照射することにより、ワークWの表面に基本周波数波形Wbを示す干渉縞IS1と2倍周波数波形Wdの干渉縞IS2を並列させた干渉領域IA3を形成できる(図11参照)。
 次に、この加工光学系15Bの作用について説明する。先ず、加工光源2から射出される加工光EL0は、ガルバノミラー21で反射された後にコリメートレンズ22を通過して、第1光学系16としてのビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐する。その第1加工光EL1は、第3光学系18へと進行され、第2加工光EL2は、第2光学系17Bへと進行される。第2光学系17Bは、その第2加工光EL2を、第1シリンドリカルレンズ24を通過させてX軸方向に伸びる線状の光とし、特殊ビームスプリッタ25の分割面25aにより、第2シリンドリカルレンズ26へと進行する第2加工光EL221と、第3シリンドリカルレンズ32ヘと進行する第2加工光EL222と、に分割する。第2光学系17Bは、加工光学系15Aの第2光学系17Bと同様に、第2加工光EL221と第2加工光EL222とを、互いに異なる回転方向(時計回りの方向および反時計回りの方向)で進行させた後に、特殊ビームスプリッタ25からレンズ33へ向けて進行させる。
 そして、第2光学系17Bは、第2加工光EL221と第2加工光EL222とをレンズ33を通過させることにより、ワークWの表面に集光して干渉縞ISを形成する。その第2加工光EL221と第2加工光EL222とは、図14の奥側が第1反射部29Baで反射され、図14の手前側が第2反射部29Bbで反射されている。このため、第2光学系17Bは、レンズ33を通過させた後の第2加工光EL221と第2加工光EL222により、図14の奥側(X軸方向負側(-側))で基本周波数波形Wbの干渉縞IS1を形成できる角度でワークWの表面に照射するとともに、図14の手前側(X軸方向正側(+側))で2倍周波数波形Wdの干渉縞IS2を形成できる角度でワークWの表面に照射する。これにより、第2光学系17Bは、ワークWの表面に基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、を並べた干渉領域IA3を形成する。
 また、第3光学系18は、第1光学系16からの第1加工光EL1を、第4シリンドリカルレンズ35を通過させてZ軸方向に伸びる線状の第1加工光EL11とする。そして、第3光学系18は、第1加工光EL11を、ワークWの表面において干渉領域IA3が形成された位置でY軸方向に伸びる線状の光として照射して、照射領域RA2を形成する。これにより、加工光学系15Bは、第2光学系17Bにより、ワークWの表面において、干渉領域IA3と照射領域RA2とを重ねて重畳領域OA3を形成できる。
 そして、加工光学系15Bは、ガルバノミラー21を駆動することにより、重畳領域OA3すなわち干渉領域IA3と照射領域RA3とを重ねた状態のまま、ワークWの表面上で移動できる。加工光学系15Bは、ガルバノミラー21を駆動して重畳領域OA3を移動させることにより、基本周波数波形Wbと2倍周波数波形Wdとを含む重畳領域OA3で加工領域PAの全域を走査する。これにより、加工光学系15Bは、ワークWの表面における加工領域PAの全域を、第1加工光EL11を重ねた状態で、基本周波数波形Wbを示す干渉縞IS1と、2倍周波数波形Wdを示す干渉縞IS2と、で照射できる。このため、加工光学系15Bは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Bは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 (2-4)加工光学系15C
  この加工光学系15Cは、基本的な概念および構成が上記した加工光学系15Aと同様であるので、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。図16に示すように、加工光学系15Cは、第2光学系17が加工光学系15Aと同等の構成とされている。そして、加工光学系15Cは、加工光源2からの加工光EL0を第1加工光EL1と第2加工光EL2とに分岐する第1光学系16Cと、その第1加工光EL1から第1加工光EL11を生成してワークWに照射する第3光学系18Cと、が加工光学系15Aの第1光学系16および第3光学系18とは異なるものとされている。さらに、加工光学系15Cは、第1光学系16Cから第2光学系17に至る構成が、加工光学系15Aと異なるものとされている。
 その加工光学系15Cでは、加工光学系15Aと比較して、ガルバノミラー21とコリメートレンズ22とに対する第1光学系16C(ビームスプリッタ23)の位置(配置)が変更されているとともに、新たにレンズ41が設けられている点で異なっている。第1光学系16Cとしてのビームスプリッタ23は、加工光源2からの加工光EL0が進行する位置に設けられ、加工光EL0の一部を反射することにより第3光学系18へと進行する第1加工光EL1を生成し、加工光EL0の他の一部を通過させることにレンズ41へと進行する第2加工光EL2を生成する。
 そのレンズ41は、ビームスプリッタ23を通過した第2加工光EL2をガルバノミラー21(その反射面)上に集光する。この例の加工光学系15Cは、加工光源2からの加工光EL0が略コリメートされた状態の光(平行な光)とされているので、そこから分岐された第1加工光EL1がX軸方向およびY軸方向に所定の大きさのコリメートされた状態の光(平行な光)とされている。そして、レンズ41は、第2加工光EL2の進行方向における後側焦点をガルバノミラー21(その反射面)の近傍に設定しており、第2加工光EL2をガルバノミラー21上に集光する。コリメートレンズ22は、ガルバノミラー21で反射された第2加工光EL2をコリメートされた状態の光(平行な光)とする。尚、レンズ41によって集光される第2加工光EL2は、ガルバノミラー21の反射面上に完全に集光されていなくてもよく、レンズ41による第2加工光EL2の集光線の位置が光軸方向において若干ガルバノミラー21の反射面から外れていてもよい。
 加工光学系15Cの第2光学系17は、加工光学系15Aと同様に、特殊ビームスプリッタ25において、第2加工光EL221を反射面25bで反射してレンズ33へ向けて進行させるとともに、第2加工光EL222を通過面25cから透過させてレンズ33へ向けて進行させる。このとき、加工光学系15Cの第2光学系17は、加工光学系15Aと同様に、光学偏向部材28を外した状態と光学偏向部材28を配置した状態とを切り換えることで、第2加工光EL221と第2加工光EL222との特殊ビームスプリッタ25における間隔を変化させる(図17参照)。そして、加工光学系15Cの第2光学系17は、加工光学系15Aと同様に、ワークWの表面において、基本周波数波形Wbを示す干渉縞IS1の干渉領域IA1と、2倍周波数波形Wdを示す干渉縞IS2の干渉領域IA2と、を形成する。
 また、第3光学系18Cでは、加工光学系15Aの第3光学系18と比較して、第4ミラー34と第4シリンドリカルレンズ35とが設けられておらず、第5ミラー36だけが設けられている点で異なっている。そして、第3光学系18Cでは、第1光学系16Cすなわちビームスプリッタ23からの第1加工光EL1を第5ミラー36で反射して、ワークWの表面へと進行させる。ここで、加工光学系15Cは、加工光源2からの加工光EL0が略コリメートされた状態の光(平行な光)とされているので、そこから分岐された第1加工光EL1がX軸方向およびY軸方向に所定の大きさのコリメートされた状態の光(平行な光)とされている。このため、第3光学系18Cは、第1加工光EL1を第5ミラー36で反射してワークWの表面へと向かわせた第1加工光EL11が、X軸方向およびY軸方向に所定の大きさのコリメートされた状態の光となる。そして、加工光学系15Cは、第1加工光EL11を照射して照射領域RA3を形成し、その照射領域RA3を加工領域PAに等しい大きさとしている(図11参照)。すなわち、加工光学系15Cは、照射領域RA3を加工領域PAに等しい大きさとするように、加工光源2からの加工光EL0を設定している。
 次に、この加工光学系15Cの作用について説明する。先ず、加工光源2から加工光EL0が射出されると、第1光学系16Cにおいて、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐した後、その第1加工光EL1を第3光学系18Cへと進行させる。また、加工光学系15Cは、第1光学系16Cで分岐した第2加工光EL2を、コリメートレンズ22によりコリメートされた状態の光としてから、第2光学系17へと進行させる。
 その第2光学系17は、第1ミラー27と第2ミラー29との間の光路から光学偏向部材28を外すことで、ワークWの表面に基本周波数波形Wbを示す干渉縞IS1の干渉領域IA1を形成する。また、第2光学系17は、第1ミラー27と第2ミラー29との間の光路に光学偏向部材28を配置することで、ワークWの表面に2倍周波数波形Wdを示す干渉縞IS2の干渉領域IA2を形成する。
 そして、第3光学系18Cでは、第1光学系16Cからの第1加工光EL1を第5ミラー36で反射することで、ワークWの表面に形成された干渉領域IA(干渉領域IA1、干渉領域IA2)に重ねて、X軸方向およびY軸方向に所定の大きさの第1加工光EL11を照射して、照射領域RA3を形成する。その照射領域RA3は、加工領域PAに等しい大きさとされている。これにより、加工光学系15Cは、第2光学系17において光学偏向部材28を外した状態とすることで、ワークWの表面において、干渉領域IA1と照射領域RA3とを重ねて重畳領域OA4を形成する(図11参照)。また、加工光学系15Cは、第2光学系17において光学偏向部材28を配置した状態とすることで、ワークWの表面において、干渉領域IA2と照射領域RA3とを重ねて重畳領域OA5を形成する(図11参照)。
 そして、加工光学系15Cは、加工領域PAに照射領域RA3を形成しつつその加工領域PAにおけるX軸方向の一端に干渉領域IA1を形成する。加工光学系15Cは、ガルバノミラー21を駆動して、干渉領域IA1をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査して、加工領域PAの全域に重畳領域OA4を形成する(図11参照)。その後、加工光学系15Cは、加工領域PAに照射領域RA3を形成しつつその加工領域PAにおけるX軸方向の一端に干渉領域IA2を形成する。そして、加工光学系15Cは、ガルバノミラー21を駆動して、その干渉領域IA2をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査して、加工領域PAの全域に重畳領域OA5を形成する(図11参照)。これにより、加工光学系15Cは、ワークWの表面における加工領域PAの全域に対して、基本周波数波形Wbの干渉縞IS1と2倍周波数波形Wdの干渉縞IS2とを第1加工光EL11に重ねて照射できる。このため、加工光学系15Cは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Cは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 (2-5)加工光学系15D
  この加工光学系15Dは、図18に示すように、加工光学系15Cの第1光学系16Cと第3光学系18Cとを用いるとともに、加工光学系15Bの第2光学系17Bを用いたものである。このため、それらと等しい構成の個所には同じ符号を付し、詳細な説明は省略する。
 この加工光学系15Dの作用について説明する。先ず、加工光源2から加工光EL0が射出されると、第1光学系16Cにおいて、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐した後、その第1加工光EL1を第3光学系18Cへと進行させる。また、加工光学系15Dは、第1光学系16Cで分岐した第2加工光EL2を、コリメートレンズ22によりコリメートされた状態の光としてから、第2光学系17Bへと進行させる。
 その第2光学系17Bは、特殊ビームスプリッタ25において、第2加工光EL221が反射面25b上でX軸方向に伸びつつ途中でY軸方向の位置がずれた線状の光とされるとともに、第2加工光EL222が通過面25c上でX軸方向に伸びつつ途中でY軸方向の位置がずれた線状の光とされる(図19参照)。そして、第2光学系17Bは、レンズ33を通過させて第2加工光EL221と第2加工光EL222とでワークWの表面を照射することにより、ワークWの表面に基本周波数波形Wbを示す干渉縞IS1と2倍周波数波形Wdの干渉縞IS2を並列させた干渉領域IA3を形成する(図11参照)。
 そして、第3光学系18Cでは、第1光学系16Cからの第1加工光EL1を第5ミラー36で反射することで、ワークWの表面に形成された干渉領域IA3に重ねて、X軸方向およびY軸方向に所定の大きさの第1加工光EL11を照射して、加工領域PAに等しい大きさの照射領域RA3を形成する。これにより、加工光学系15Dは、第2光学系17Bにより、ワークWの表面において、干渉領域IA3と照射領域RA3とを重ねて重畳領域OA6を形成できる(図11参照)。
 そして、加工光学系15Dは、加工領域PAに照射領域RA3を形成しつつその加工領域PAにおけるX軸方向の一端に干渉領域IA3を形成する。加工光学系15Dは、ガルバノミラー21を駆動して、干渉領域IA3をX軸方向の他端へ向けて移動させることで加工領域PAの全域を走査して、加工領域PAの全域に重畳領域OA6を形成する。これにより、加工光学系15Dは、ワークWの表面における加工領域PAの全域に対して、基本周波数波形Wbの干渉縞IS1と2倍周波数波形Wdの干渉縞IS2とを第1加工光EL11に重ねて照射できる。このため、加工光学系15Dは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Dは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 (2-6)加工光学系15E
  この加工光学系15Eは、図20に示すように、上記した加工光学系15Cの第1光学系16Cと同様の基本的な概念および構成を有する第1光学系16Eを備えている。以下の説明では、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。また、加工光学系15Eは、上記した加工光学系15Aの第2光学系17と同様の基本的な概念および構成を有する第2光学系17Eを備えている。以下の説明では、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。さらに、加工光学系15Eは、加工光学系15Cの第3光学系18Cを用いたものであるので、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。
 加工光学系15Eでは、加工光学系15Cと比較して、ガルバノミラー21とコリメートレンズ22とレンズ41とが設けられておらず、新たにミラー42が設けられている点で異なっている。第1光学系16Eとしてのビームスプリッタ23は、加工光源2からの加工光EL0が進行する位置に設けられ、加工光EL0の一部を反射することにより第3光学系18へと進行する第1加工光EL1を生成し、加工光EL0の他の一部を通過させることにミラー42へと進行する第2加工光EL2を生成する。そのミラー42は、板状部材とされており、ビームスプリッタ23を通過した第2加工光EL2を第2光学系17E(その第1シリンドリカルレンズ24)へ向けて反射する。
 加工光学系15Eの第2光学系17Eは、加工光学系15Aの第2光学系17と比較して、レンズ33に替えて新たに第4シリンドリカルレンズ43が設けられている点で異なっている。第4シリンドリカルレンズ43は、特殊ビームスプリッタ25からのX軸方向に伸びる線状の光とされた第2加工光EL221および第2加工光EL222(図21参照)を、X軸方向に伸びる辺とY軸方向に伸びる辺とを有する矩形状の光とする(図11参照)。この第4シリンドリカルレンズ43は、第2加工光EL221および第2加工光EL222の進行方向における前側焦点が特殊ビームスプリッタ25(その反射面)の近傍に設定されている。このため、第4シリンドリカルレンズ43は、ワークWの表面において、第2加工光EL221および第2加工光EL222を、X軸方向およびY軸方向に所定の大きさのコリメートされた状態の光(平行な光)とする。
 この加工光学系15Eの作用について説明する。先ず、加工光源2から加工光EL0が射出されると、第1光学系16Eにおいて、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐した後、その第1加工光EL1を第3光学系18Cへと進行させる。また、加工光学系15Eは、第1光学系16Eで分岐した第2加工光EL2を、ミラー42で反射して第2光学系17Eへと進行させる。
 その第2光学系17Eは、特殊ビームスプリッタ25からの第2加工光EL221と第2加工光EL222とを第4シリンドリカルレンズ43を通過させることにより、X軸方向およびY軸方向に所定の大きさの光としてワークWの表面を照射する。そして、第2光学系17Eは、第1ミラー27と第2ミラー29との間の光路から光学偏向部材28を外すことで、ワークWの表面に基本周波数波形Wbを示す干渉縞IS1の干渉領域IA4を形成する(図11参照)。また、第2光学系17は、第1ミラー27と第2ミラー29との間の光路に光学偏向部材28を配置することで、ワークWの表面に2倍周波数波形Wdを示す干渉縞IS2の干渉領域IA5を形成する(図11参照)。
 そして、第3光学系18Cでは、第1光学系16Eからの第1加工光EL1を第5ミラー36で反射することで、ワークWの表面に形成された干渉領域IA4に重ねて第1加工光EL11を照射して、加工領域PAに等しい大きさの照射領域RA3を形成する。これにより、加工光学系15Eは、第2光学系17において光学偏向部材28を外した状態とすることで、ワークWの表面において、干渉領域IA4と照射領域RA3とを重ねて加工領域PAに等しい大きさの重畳領域OA7を形成する(図11参照)。また、第3光学系18Cでは、第1光学系16Eからの第1加工光EL1を第5ミラー36で反射することで、ワークWの表面に形成された干渉領域IA5に重ねて第1加工光EL11を照射して、加工領域PAに等しい大きさの照射領域RA3を形成する。これにより、加工光学系15Eは、第2光学系17において光学偏向部材28を配置した状態とすることで、ワークWの表面において、干渉領域IA5と照射領域RA3とを重ねて重畳領域OA8を形成する(図11参照)。
 これにより、加工光学系15Eは、ワークWの表面における加工領域PAの全域に対して、基本周波数波形Wbの干渉縞IS1と2倍周波数波形Wdの干渉縞IS2とを第1加工光EL11に重ねて照射できる。このため、加工光学系15Eは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Eは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 (2-7)変形例としての加工光学系15F
  次に、上記した加工光学系15の変形例としての加工光学系15Fについて説明する。この加工光学系15Fは、図22に示すように、基本的な概念および構成が上記した加工光学系15Aと同様であるので、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。加工光学系15Fでは、加工光源2からの加工光EL0が、2つの異なる偏光方向の成分を有する指向性の高いものとされている。
 加工光学系15Fでは、ガルバノミラー21とコリメートレンズ22とを設けていない点で加工光学系15Aと異なる。加工光学系15Fの第1光学系16Fは、加工光源2からの加工光EL0を、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐する。詳細には、ビームスプリッタ23は、加工光EL0の一部を反射することにより第3光学系18Fへと進行する第1加工光EL1を生成し、加工光EL0の他の一部を通過させることにより第2光学系17Fへと進行する第2加工光EL2を生成する。
 また、加工光学系15Fでは、第1光学系16Fからの第2加工光EL2が入射する第2光学系17Fが、第1シリンドリカルレンズ24と第2シリンドリカルレンズ26と光学偏向部材28と第3シリンドリカルレンズ32とレンズ33とを設けていない点で加工光学系15Aの第2光学系17と異なる。また、加工光学系15Fの第2光学系17Fでは、特殊ビームスプリッタ25の替わりに第1偏光ビームスプリッタ44を設けるとともに、新たに第2偏光ビームスプリッタ45と第1レンズ46と第2レンズ47とを設けている点で加工光学系15Aの第2光学系17と異なる。
 第1偏光ビームスプリッタ44は、第1光学系16Fからの第2加工光EL2を、複数の第2加工光EL22に分割する。以下の説明では、説明の便宜上、第1偏光ビームスプリッタ44が第2加工光EL2を二つの第2加工光EL22(個別に示す際には、一方を第2加工光EL221とし、他方を第2加工光EL222とする)に分割する例について説明する。また、第1偏光ビームスプリッタ44は、分割した二つの第2加工光EL22を合流させて、両第2加工光EL22を、第2偏光ビームスプリッタ45へ向けて進行させる機能も有する。
 この第1偏光ビームスプリッタ44は、矩形状の板状とされた偏光ビームスプリッタとされており、X軸方向に伸びる中心軸を中心としてY軸方向に対して45度の傾斜とされて配置されている。このため、第1偏光ビームスプリッタ44は、Y軸方向に対して45度の傾斜とされた第1偏光分割面44aを有する。第1偏光ビームスプリッタ44は、第1光学系16Fからの第2加工光EL2の一部を反射することにより第2加工光EL221を生成するとともに、第2加工光EL2の残りを通過させることにより第2加工光EL222を生成する。このとき、第1偏光ビームスプリッタ44は、その第1偏光分割面44aにおけるp偏光の成分とs偏光の成分との一方を反射するとともに、そのp偏光の成分とs偏光の成分との他方を通過させる。このため、第1光学系16Fからの第2加工光EL2は、少なくとも第1偏光ビームスプリッタ44に入射する時点で、第1偏光ビームスプリッタ44におけるp偏光の成分とs偏光の成分とを含むものとされている。このことから、加工光源2からの加工光EL0は、入射する時点で第1偏光ビームスプリッタ44におけるp偏光の成分とs偏光の成分とを含むものとなるように、2つの異なる偏光方向が設定されている。ここで、第1偏光ビームスプリッタ44は、Y軸方向に対して45度の傾斜とされて配置されているので反射して生成した第2加工光EL221をZ軸方向と平行に第1ミラー27へと進行させ、通過させて生成した第2加工光EL222をY軸方向と平行に第3ミラー31へと進行させる。
 そして、第2光学系17Fでは、第1シリンドリカルレンズ24と第2シリンドリカルレンズ26と光学偏向部材28と第3シリンドリカルレンズ32とが設けられていないことを除くと、第1偏光ビームスプリッタ44に対する第1ミラー27と第2ミラー29と第3ミラー31との関係が、加工光学系15Aの第2光学系17と等しいものとなっている。このため、第2光学系17Fでは、基本的に第2加工光EL221と第2加工光EL222とを、第1偏光ビームスプリッタ44から互いに異なる回転方向(時計回りの方向および反時計回りの方向)で進行させて、再び第1偏光ビームスプリッタ44に戻るように進行させる。ここで、第2光学系17Fでは、第2ミラー29が基準位置(面)から傾斜して配置されているため、第2加工光EL221と第2加工光EL222とを基本的に等しい光路を通しつつ、第2加工光EL221と第2加工光EL222との射出角度を互いに異なる方向にしている。そして、第2光学系17Fは、第2加工光EL221を第1偏光ビームスプリッタ44で反射して第2偏光ビームスプリッタ45へ向けて進行させるとともに、第2加工光EL222を第1偏光ビームスプリッタ44から透過させて第2偏光ビームスプリッタ45へ向けて進行させる。この第2加工光EL221は、第1偏光ビームスプリッタ44におけるp偏光とs偏光との一方(第1偏光方向)の直線偏光とされ、第2加工光EL222は、第1偏光ビームスプリッタ44におけるp偏光とs偏光との他方(第2偏光方向)の直線偏光とされる。
 このため、第1偏光ビームスプリッタ44は、第1偏光方向の第2加工光EL221と、第2偏光方向の第2加工光EL222と、を射出角度及び射出位置のうち少なくとも一方が異なるように射出する。このことから、第2光学系17Fでは、第1偏光ビームスプリッタ44と第1ミラー27と第2ミラー29と第3ミラー31とが、第1偏光方向の第2加工光EL221と、第2偏光方向の第2加工光EL222と、を射出角度及び射出位置のうち少なくとも一方が異なるように射出する上流光学系となる。
 第2偏光ビームスプリッタ45は、立方体のキューブ状とされた偏光ビームスプリッタ部45aに、その一面に連続する直交三角柱部45bが組み合わされて構成されている。その偏光ビームスプリッタ部45aは、Y軸方向に対して45度の傾斜とされた第2偏光分割面45cを有する。この第2偏光分割面45cは、第2偏光分割面45cにおけるp偏光の成分とs偏光の成分との一方を反射するとともに、そのp偏光の成分とs偏光の成分との他方を通過させる。そして、第2偏光ビームスプリッタ45は、第2偏光分割面45cが、第1偏光ビームスプリッタ44の第1偏光分割面44aに対して非平行となる(互いに異なる面方向となる)ように、第1偏光ビームスプリッタ44に対してY軸方向に伸びる中心軸を中心として回転されて配置されている。ここで、面方向は、その面の法線方向であってもよい。そして、この変形例の第2偏光ビームスプリッタ45は、第2偏光分割面45cがY軸方向に伸びる中心軸を中心とする回転方向で見て、第1偏光分割面44aに対して45度の角度とされている。このため、第1偏光分割面44aに直交する面がX軸方向を含む(平行とされている)ことに対して、第2偏光分割面45cに直交する面がX軸方向に対して所定の角度(この変形例では45度)を為すものとされている。
 この第2偏光分割面45cは、上記のように第1偏光分割面44aに対してY軸方向に伸びる中心軸を中心として回転されて配置されているので、第1偏光ビームスプリッタ44からの、第1偏光方向の直線偏光の第2加工光EL221と、第2偏光方向の直線偏光の第2加工光EL222と、をそれぞれ分割できる。すなわち、第2偏光分割面45cは、第1偏光方向の直線偏光とされた第2加工光EL221の一部を通過させて第3偏光方向の第2加工光EL221とするとともに、第2加工光EL221の残りを反射して第4偏光方向の第2加工光EL221とする。また、第2偏光分割面45cは、第2偏光方向の直線偏光とされた第2加工光EL222の一部を通過させて第3偏光方向の第2加工光EL222とするとともに、第2加工光EL222の残りを反射して第4偏光方向の第2加工光EL222とする。これにより、第2偏光分割面45cは、通過させた第3偏光方向の第2加工光EL221と第3偏光方向の第2加工光EL222とが干渉することを可能とするとともに、反射した第4偏光方向の第2加工光EL221と第4偏光方向の第2加工光EL222とが干渉することを可能とする。そして、第2偏光ビームスプリッタ45は、第3偏光方向とした第2加工光EL221と第2加工光EL222とを、第2偏光分割面45cのY軸方向の下側に向けて射出して、第1レンズ46へ向けて進行させる。
 直交三角柱部45bは、第2偏光分割面45cにより反射された第4偏光方向の第2加工光EL221と第4偏光方向の第2加工光EL222との進行方向に設けられた反射面45dを有する。この変形例の反射面45dは、第2偏光分割面45cと平行とされている。このため、反射面45dは、第2偏光分割面45cと同様に、直交する面がX軸方向に対して所定の角度(この変形例では45度)を為すものとされている。反射面45dは、第4偏光方向とされた第2加工光EL221と第2加工光EL222とを、反射面45dのY軸方向の下側に向けて反射して、第1レンズ46へ向けて進行させる。
 その第1レンズ46は、第2レンズ47とY軸方向で対を為して設けられている。第1レンズ46は、第2レンズ47と協働して、第3偏光方向の第2加工光EL221と第3偏光方向の第2加工光EL222とをワークWの表面における第1位置P1に照射して第1干渉縞(干渉領域IA6の干渉縞IS(図23参照))を形成する。また、第1レンズ46は、第2レンズ47と協働して、第4偏光方向の第2加工光EL221と第4偏光方向の第2加工光EL222とをワークWの表面における第2位置P2に照射して第2干渉縞(干渉領域IA7の干渉縞IS(図23参照))を形成する。そして、第1レンズ46は、第2レンズ47と協働して、ワークWの表面において、第1位置P1の干渉領域IA6の大きさを調整するとともに、第2位置P2の干渉領域IA7の大きさを調整する。すなわち、第1レンズ46は、第2レンズ47と協働して、第3偏光方向の第2加工光EL221と第2加工光EL222とによる第1干渉縞(干渉領域IA6の干渉縞IS)と、第4偏光方向の第2加工光EL221と第2加工光EL222とによる第2干渉縞(干渉領域IA7の干渉縞IS)と、の大きさを調整する。この大きさの調整は、ワークWの表面における干渉領域IA6、干渉領域IA7の大きさを調整することに加えて、ワークWの表面における干渉縞ISの周期を調整することも含む。このため、第1レンズ46と第2レンズ47とは、アフォーカル光学系を構成しているともいえる。
 尚、図示を簡単にするために、図22では第1レンズ46と第2レンズ47とをそれぞれ一枚のレンズで図示しているが、第1レンズ46及び第2レンズ47は、それぞれ複数枚のレンズで構成されていてもよい。そのため、第1レンズ46及び第2レンズ47は、それぞれ第1レンズ群46及び第2レンズ群47と称されてもよい。また、レンズに代えて、或いは加えて反射部材や回折光学素子が用いられてもよい。そのため、第1レンズ46及び第2レンズ47は、それぞれ第1光学部材群46及び第2光学部材群47と称されてもよい。
 この第2光学系17Fは、第1干渉縞(干渉領域IA6の干渉縞IS)の縞ピッチ方向と、第2干渉縞(干渉領域IA7の干渉縞IS)の縞ピッチ方向とを、同じ方向または互いに平行な方向としている。また、第2光学系17Fは、第1干渉縞(干渉領域IA6の干渉縞IS)の縞ピッチと、第2干渉縞(干渉領域IA7の干渉縞IS)の縞ピッチとを等しくしている。そして、第2光学系17Fでは、干渉領域IA6の干渉縞ISの明暗の位相と、干渉領域IA7の干渉縞ISの明暗の位相と、を揃えるものとしている。ここで、双方の干渉縞ISの明暗の位相が揃うとは、干渉領域IA6の干渉縞ISを仮想的に広げて形成したものと、干渉領域IA7の干渉縞ISを仮想的に広げて形成したものと、で明暗の位置が一致すること、すなわち同様な明暗の模様を形成していることを言う。換言すると、双方の干渉縞ISの明暗の位相が揃うとは、干渉領域IA6の干渉縞ISを仮想的に広げて形成したものと、干渉領域IA7の干渉縞ISを仮想的に広げて形成したものと、の互いの位相が整合しているということもできる。
 このため、第2偏光ビームスプリッタ45は、第1偏光方向の第2加工光EL221を、第3偏光方向の第2加工光EL221と第4偏光方向の第2加工光EL221とに分割するとともに、第2偏光方向の第2加工光EL222を、第3偏光方向の第2加工光EL222と第4偏光方向の第2加工光EL222とに分割する。このことから、第2光学系17Fでは、第2偏光ビームスプリッタ45と第1レンズ46と第2レンズ47とが、第1位置P1に第1干渉縞(干渉領域IA6の干渉縞IS)を形成するとともに、第2位置P2に第2干渉縞(干渉領域IA7の干渉縞IS)を形成する下流光学系となる。
 また、第3光学系18Fでは、加工光学系15Aの第3光学系18と比較して、第4シリンドリカルレンズ35に替えて新たにビームスプリッタ48を設けている点で異なっている。第3光学系18Fでは、第4ミラー34が、第1光学系16Fからの第1加工光EL1を反射して、ビームスプリッタ48へと進行させる。
 ビームスプリッタ48は、第1光学系16Fからの第1加工光EL1が入射すると、その第1加工光EL1を、第1加工光EL111と第1加工光EL112とに分岐する。詳細には、ビームスプリッタ48は、第1加工光EL1の一部を反射することによりワークWの表面へと進行する第1加工光EL111を生成し、第1加工光EL1の他の一部を通過させることにより第5ミラー36へと進行する第1加工光EL112を生成する。この第1加工光EL111が照射される領域を照射領域RA4とする。この変形例のビームスプリッタ48(第3光学系18F)は、ワークWの表面において、第1加工光EL111を干渉領域IA6が形成される第1位置P1を照射するように設定されており、照射領域RA4と干渉領域IA6とが重ねられる(図23参照)。このビームスプリッタ48は、振幅分割型のビームスプリッタであってもよく、偏光ビームスプリッタであってもよい。
 第5ミラー36は、ビームスプリッタ48からの第1加工光EL112を反射して、ワークWの表面へと進行させる。この変形例の第5ミラー36(第3光学系18F)は、ワークWの表面において、第1加工光EL112を干渉領域IA7が形成される第2位置P2を照射するように設定されている(図23参照)。この第1加工光EL112が照射される領域を照射領域RA5とする。
 このため、第3光学系18Fは、第1加工光EL1をビームスプリッタ48により、ワークWの表面において干渉領域IA6が形成される領域を照射する第1加工光EL111(照射領域RA4)と、ワークWの表面において干渉領域IA7が形成される領域を照射する第1加工光EL112(照射領域RA5)と、に分岐する。そして、加工光学系15Fは、ワークWの表面において、干渉領域IA6と照射領域RA4とを重ねて重畳領域OA8を形成できるとともに、干渉領域IA7と照射領域RA5とを重ねて重畳領域OA9を形成できる(図23参照)。このため、加工光学系15Fは、重畳領域OA8と重畳領域OA9を合わせた領域を加工領域PAとする。
 この変形例の加工光学系15Fは、重畳領域OA8、重畳領域OA9における加工光の最小フルエンスがワークWを加工可能なフルエンスとするように、第1光学系16F、第2光学系17Fおよび第3光学系18Fにおける各光学部材の配置や光学性能を鑑みて第1加工光EL111、第1加工光EL112のフルエンスを設定している。すなわち、加工光学系15Fは、干渉領域IA7と干渉領域IA8との干渉縞ISのフルエンスが、ワークWを加工可能なフルエンスの下限値TH_lowest以上になるように、第1光学系16F、第2光学系17Fおよび第3光学系18Fにおける各光学部材の配置や光学性能に基づいて、第1光学系16Fのビームスプリッタ23や第3光学系18Fのビームスプリッタ48における分岐の比率を設定している。
 次に、この加工光学系15Fの作用について説明する。先ず、加工光源2から加工光EL0が射出されると、第1光学系16Fにおいて、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐する。その第1加工光EL1は、第3光学系18Fへと進行し、第2加工光EL2は、第2光学系17Fへと進行する。
 その第2光学系17Fでは、その第2加工光EL2の一部を第1偏光ビームスプリッタ44(第1偏光分割面44a)で第1ミラー27へ向けて反射して第2加工光EL221とし、他の一部が第1偏光ビームスプリッタ44(第1偏光分割面44a)を通過して第3ミラー31ヘと向かう第2加工光EL222とする。その第2加工光EL221は、第1ミラー27と第2ミラー29と第3ミラー31とで反射されて第1偏光ビームスプリッタ44へ向けて進行する。また、第2加工光EL222は、第3ミラー31と第2ミラー29と第1ミラー27で反射されて第1偏光ビームスプリッタ44へ向けて進行する。
 ここで、第1偏光ビームスプリッタ44と第1ミラー27と第3ミラー31とが、全て板状部材とされるとともにZ軸方向に対して45度の傾斜とされており、第2ミラー29も板状部材とされるとともにZ軸方向に対して45度の傾斜を基準位置としている。このため、第2光学系17Fでは、基本的に第2加工光EL221と第2加工光EL222とを、第1偏光ビームスプリッタ44から互いに異なる回転方向(時計回りの方向および反時計回りの方向)で進行させて、再び第1偏光ビームスプリッタ44に戻るように進行させている。そして、第2光学系17Fでは、第2ミラー29を、図22において基準位置に対して中心軸を中心に左回りに傾けている。このため、第2ミラー29で反射された第2加工光EL221は、基準位置にある場合と比較して、第3ミラー31における右側にずれた位置に進行し、そこで反射されることで第1偏光ビームスプリッタ44における上側にずれた位置に向けて進行する。また、第2ミラー29で反射された第2加工光EL222は、基準位置にある場合と比較して、第1ミラー27における下側にずれた位置に進行し、そこで反射されることで第1偏光ビームスプリッタ44における下側にずれた位置に向けて進行する。これにより、第2光学系17Fでは、第2加工光EL221と第2加工光EL222とを基本的に等しい光路を通しつつ、第2加工光EL221と第2加工光EL222とに空間的な位置の差を生じさせることができる。このため、第2光学系17F(その上流光学系)は、四角形のサニャック光学系を構成しているともいえる。
 そして、第2光学系17Fは、第2加工光EL221を第1偏光ビームスプリッタ44(第1偏光分割面44a)で反射して第2偏光ビームスプリッタ45へ向けて進行させるとともに、第2加工光EL222を第1偏光ビームスプリッタ44(第1偏光分割面44a)から透過させて第2偏光ビームスプリッタ45へ向けて進行させる。これにより、第2加工光EL221は、第1偏光方向の直線偏光とされ、第2加工光EL222は、第2偏光方向の直線偏光とされる。
 第2偏光ビームスプリッタ45は、第1偏光分割面44aにおいて、第1偏光方向の第2加工光EL221の一部を通過させて第3偏光方向の第2加工光EL221とするとともに、第2偏光方向の第2加工光EL222の一部を通過させて第3偏光方向の第2加工光EL222とする。また、第2偏光ビームスプリッタ45は、第1偏光分割面44aにおいて、第1偏光方向の第2加工光EL221の残りを反射して第4偏光方向の第2加工光EL221とするとともに、第2偏光方向の第2加工光EL222の残りを反射して第4偏光方向の第2加工光EL222とする。そして、第2偏光ビームスプリッタ45は、第3偏光方向の第2加工光EL221と第2加工光EL222とを第1レンズ46へ向けて進行させる。また、第2偏光ビームスプリッタ45は、第4偏光方向の第2加工光EL221と第2加工光EL222とを反射面45dで反射して、第1レンズ46へ向けて進行させる。そして、第1レンズ46と第2レンズ47とが、ワークWの表面において、第3偏光方向の第2加工光EL221と第2加工光EL222とにより第1位置P1に干渉縞IS(干渉領域IA6)を形成する。また、第1レンズ46と第2レンズ47とが、ワークWの表面において、第4偏光方向の第2加工光EL221と第2加工光EL222とにより第2位置P2に干渉縞IS(干渉領域IA7)を形成する。
 また、第3光学系18Fでは、第1光学系16Fからの第1加工光EL1を、第4ミラー34で反射した後にビームスプリッタ48で第1加工光EL111と第1加工光EL112とに分岐する。そして、第3光学系18Fでは、第1加工光EL111をビームスプリッタ48からワークWの表面へと進行させて第1位置P1に照射領域RA4を形成するとともに、第1加工光EL112を第5ミラー36で反射してワークWの表面へと進行させて第2位置P2に照射領域RA5を形成する。これにより、加工光学系15Fは、ワークWの表面において、第1位置P1に干渉領域IA6と照射領域RA4とを重ねて重畳領域OA8を形成するとともに、第2位置P2に干渉領域IA7と照射領域RA5とを重ねて重畳領域OA9を形成する。そして、加工光学系15Fでは、干渉領域IA6の干渉縞ISの明暗の位相と、干渉領域IA7の干渉縞ISの明暗の位相と、を揃えるものとしている。
 これにより、加工光学系15Fは、ワークWの表面における加工領域PAの全域を、第1加工光EL111または第1加工光EL112を重ねた状態の干渉縞ISで照射できる。そして、加工光学系15Fは、重畳領域OA8、重畳領域OA9における加工光の最小フルエンスをワークWを加工可能なフルエンスとするように、第1加工光EL111、第1加工光EL112のフルエンスを設定している。このため、加工光学系15Fは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。また、加工光学系15Fは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。このとき、加工光学系15Fは、重畳領域OA8と重畳領域OA9との干渉縞ISの明暗の位相を揃えているので、重畳領域OA8と重畳領域OA9との双方で同様なリブレット構造RBを形成できる。このため、ワークWに対して相対的に明部および暗部が伸びる方向に加工光学系15Fを移動させることにより、ワークWの表面の任意の位置により効率良くリブレット構造RBを形成できる。
 また、加工光学系15Fでは、第2光学系17Fの上流光学系が、第1偏光方向の直線偏光の第2加工光EL221と、第2偏光方向の直線偏光の第2加工光EL222と、を射出角度及び射出位置のうち少なくとも一方が異なるように第1偏光ビームスプリッタ44から射出する。このとき、加工光学系15Fでは、第1偏光ビームスプリッタ44により第2加工光EL2を第1偏光方向の第2加工光EL221と第2偏光方向の第2加工光EL222とに分割している。このため、加工光学系15Fは、第1偏光ビームスプリッタ44を用いて第2加工光EL2を分割するので、分割する際の光の損失を大幅に抑制できる。
 加えて、加工光学系15Fは、第1偏光ビームスプリッタ44の第1偏光分割面44aと、第2偏光ビームスプリッタ45の第2偏光分割面45cと、をY軸方向に伸びる中心軸を中心として回転させた位置関係としている。これにより、第2偏光分割面45cは、第1偏光分割面44aにおけるp偏光の成分とs偏光の成分とに分割された第2加工光EL221と第2加工光EL222とのそれぞれを、第2偏光分割面45cにおけるp偏光の成分とs偏光の成分とに分割できることとなる。そして、加工光学系15Fでは、第2偏光ビームスプリッタ45の第2偏光分割面45cが、第1偏光方向の第2加工光EL221を、第3偏光方向の第2加工光EL221と第4偏光方向の第2加工光EL221とに分割するとともに、第2偏光方向の第2加工光EL222を、第3偏光方向の第2加工光EL222と第4偏光方向の第2加工光EL222とに分割する。加工光学系15Fは、第1偏光分割面44aを通過した第3偏光方向の第2加工光EL221と第3偏光方向の第2加工光EL222とを、第1レンズ46と第2レンズ47とを通過させてワークWの表面における第1位置P1へと進行させる。また、加工光学系15Fでは、第2偏光ビームスプリッタ45の第2偏光分割面45cの反射方向に反射面45dが設けられている。そして、加工光学系15Fでは、その反射面45dで反射した第4偏光方向の第2加工光EL221と第2加工光EL222とを、第1レンズ46と第2レンズ47とを通過させてワークWの表面における第2位置P2へと進行させている。このように、加工光学系15Fは、第2偏光分割面45cを通過させることと、第2偏光分割面45cで反射することと、により、第2加工光EL221と第2加工光EL222との偏光方向をそれぞれ揃えることができる。これにより、加工光学系15Fは、偏光方向が異なるため干渉できない第2加工光EL221と第2加工光EL222との偏光方向を、第2偏光ビームスプリッタ45を用いることにより干渉できるものとしている。そして、加工光学系15Fは、通過した第3偏光方向の第2加工光EL221と第2加工光EL222とで干渉縞ISを形成するとともに、反射した第4偏光方向の第2加工光EL221と第2加工光EL222とで干渉縞ISを形成する。よって、加工光学系15Fは、第2光学系17Fへ向けて射出された第2加工光EL2を効率良く利用して干渉縞ISを形成することができる。
 なお、上記した加工光学系15Fでは、単一の周波数の干渉縞ISを形成するものとしているが、加工光学系15A、15C、15Eと同様に、基本周波数波形Wbに、1つ以上のn倍周波数波形Wnを重ね合わせるものとしてもよい。この場合、加工光学系15Fは、例えば、第2光学系17Fにおいて、加工光学系15Aの第2光学系17と同様に光学偏向部材28を、第1ミラー27と第2ミラー29との間の光路に配置することと、その光路から外すことと、を可能として設ければよい。
 (2-8)変形例としての加工光学系15G
  次に、上記した加工光学系15の変形例としての加工光学系15Gについて説明する。この加工光学系15Gは、基本的な概念および構成が上記した加工光学系15Aと同様であるので、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。
 加工光学系15Gは、図24に示すように、ガルバノミラー21とコリメートレンズ22とを設けていない点で加工光学系15Aと異なる。このため、第1光学系16Gは、加工光源2からの加工光EL0を、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐する。詳細には、ビームスプリッタ23は、加工光EL0の一部を通過させることにより第3光学系18Gへと進行する第1加工光EL1を生成し、加工光EL0の他の一部を反射することにより第2光学系17Gへと進行する第2加工光EL2を生成する。
 また、加工光学系15Gでは、第1光学系16Gからの第2加工光EL2が入射する第2光学系17Gが、加工光学系15Aの第2光学系17とは異なる構成とされている。この第2光学系17Gは、ビームスプリッタ51とミラー52とミラー53とを有する。ビームスプリッタ51は、第1光学系16Gからの第2加工光EL2が入射し、その第2加工光EL2を複数の第2加工光EL22に分割する光分割部材である。このビームスプリッタ51は、第2加工光EL2を分割することで複数の第2加工光EL2を生成する。以下の説明では、説明の便宜上、ビームスプリッタ51が第2加工光EL22を二つの第2加工光EL22(個別に示す際には、一方を第2加工光EL221とし、他方を第2加工光EL222とする)に分割する例について説明する。
 ビームスプリッタ51は、振幅分割型のビームスプリッタであってもよい。この場合、第2加工光EL2のうちの一部は、第2加工光EL221としてビームスプリッタ51を通過する。一方で、第2加工光EL2のうちの他の一部は、第2加工光EL222としてビームスプリッタ51によって反射される。尚、ビームスプリッタ51は、振幅分割型のビームスプリッタには限定されず、偏光ビームスプリッタであってもよい。このとき、偏光ビームスプリッタで分岐された複数の加工光の光路のうちの1以上に、波長板等の偏光制御部材を配置してもよい。
 ビームスプリッタ51を通過した第2加工光EL221は、ミラー52に入射する。ミラー52は、第2加工光EL221をワークWに向けて反射する。ミラー52は、第2加工光EL221が所定の入射角度θでワークWに入射するように、第2加工光EL221を反射する。
 ビームスプリッタ51が反射した第2加工光EL222は、ミラー53に入射する。ミラー53は、第2加工光EL222をワークWに向けて反射する。ミラー53は、第2加工光EL222が第2加工光EL221とは異なる方向から入射角度θでワークWに入射するように、第2加工光EL221を反射する。
 ミラー52が反射した第2加工光EL221及びミラー53が反射した第2加工光EL222は、ワークW上に設定される干渉領域IA8に照射される。第2光学系17Gは、その干渉領域IA8をX軸方向およびY軸方向に所定の大きさとしている。その結果、干渉領域IA8内において、第2加工光EL221と第2加工光EL222とが干渉することで発生する干渉光が干渉縞ISを形成する。
 加工光学系15Gの第3光学系18Gは、加工光学系15Aの第3光学系18と比較して、第4ミラー34と第4シリンドリカルレンズ35とが設けられておらず、第5ミラー36だけが設けられている点で異なっている。そして、第3光学系18Gでは、第1光学系16Gすなわちビームスプリッタ23からの第1加工光EL1を第5ミラー36で反射して、第1加工光EL11としてワークWの表面へと進行させる。この第3光学系18Gは、ワークWの表面へと向かわせた第1加工光EL11を、X軸方向およびY軸方向に所定の大きさの光としている。この第1加工光EL11が照射される領域を照射領域RA6とする。
 次に、この加工光学系15Gの作用について説明する。先ず、加工光源2から加工光EL0が射出されると、第1光学系16Gにおいて、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐した後、その第1加工光EL1を第3光学系18Gへと進行させるとともに第2加工光EL2を第2光学系17Gへと進行させる。
 その第2光学系17Gは、第1光学系16Gからの第2加工光EL2をビームスプリッタ51で第2加工光EL221と第2加工光EL222とに分割し、それらをミラー52、ミラー53によりワークWの表面へと反射する。これにより、第2光学系17Gは、ワークWの表面に干渉縞ISの干渉領域IA8を形成する。そして、第3光学系18Gは、第1光学系16Gからの第1加工光EL1を第5ミラー36で反射することで、ワークWの表面に形成された干渉領域IA8に重ねて、X軸方向およびY軸方向に所定の大きさの第1加工光EL11を照射して、照射領域RA6を形成する。
 これにより、加工光学系15Gは、ワークWの表面において、干渉領域IA8と照射領域RA6とを重ねて重畳領域OA10を形成する。このため、加工光学系15Gは、重畳領域OA10が加工領域PAとなる。これにより、加工光学系15Gは、ワークWの表面における加工領域PAの全域に対して、干渉縞ISを第1加工光EL11に重ねて照射できる。そして、加工光学系15Gは、重畳領域OA10における加工光の最小フルエンスがワークWを加工可能なフルエンスとするように、第1加工光EL111のフルエンスを設定している。このため、加工光学系15Gは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Gは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 なお、上記した加工光学系15Gでは、単一の周波数の干渉縞ISを形成するものとしているが、加工光学系15A、15C、15Eと同様に、基本周波数波形Wbに、1つ以上のn倍周波数波形Wnを重ね合わせるものとしてもよい。この場合、加工光学系15Gは、例えば、ミラー52とミラー53との少なくとも一方の角度を変更可能としたり、第1ミラー27や第2ミラー29からワークWの表面に至る光路に光を屈折させる光学部材を配置することとその光路から外すこととを可能として設けたりすればよい。また、加工光学系15Gにおいては、第2加工光EL221及びEL222がワークWへ向けて進行する光路と、第1加工光EL11がワークWへ向けて進行する光路と、が同一平面に位置しているが、第1加工光EL11がワークWへ向けて進行する光路は、第2加工光EL221及びEL222の光路と同一平面に位置していなくてもよい。
 (2-9)変形例としての加工光学系15H
  次に、上記した加工光学系15の変形例としての加工光学系15Hについて説明する。この加工光学系15Hは、基本的な概念および構成が上記した加工光学系15Aと同様であるので、等しい構成の個所には同じ符号を付し、詳細な説明は省略する。
 加工光学系15Hは、図25に示すように、ガルバノミラー21とコリメートレンズ22とを設けていない点で加工光学系15Aと異なる。このため、加工光学系15Hの第1光学系16Hは、加工光源2からの加工光EL0を、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐する。詳細には、ビームスプリッタ23は、加工光EL0の一部を通過させることにより第3光学系18Hへと進行する第1加工光EL1を生成し、加工光EL0の他の一部を反射することにより第2光学系17Hへと進行する第2加工光EL2を生成する。この例では、ビームスプリッタ23は、通過させて生成した第2加工光EL2を、Y軸方向と平行に進行するものとしている。
 また、加工光学系15Hでは、第1光学系16Hからの第2加工光EL2が入射する第2光学系17Hが、加工光学系15Aの第2光学系17とは異なる構成とされている。この第2光学系17Hは、ビームスプリッタ55と光学偏向部材56と第1ミラー57と第2ミラー58とを有する。ビームスプリッタ55は、第1光学系16Hからの第2加工光EL2が入射し、その第2加工光EL2を複数の第2加工光EL22に分割する光分割部材である。このビームスプリッタ55は、第1シリンドリカルレンズ24によりX軸方向に伸びる線状の光とされた第2加工光EL2を、複数の第2加工光EL22に分割する。このため、ビームスプリッタ55は、第2加工光EL2を複数の第2加工光EL22に分割する光分割部材として機能する。以下の説明では、説明の便宜上、ビームスプリッタ55が第2加工光EL2を二つの第2加工光EL22(個別に示す際には、一方を第2加工光EL221とし、他方を第2加工光EL222とする)に分割する例について説明する。また、ビームスプリッタ55は、分割した二つの第2加工光EL22を合流させて、両第2加工光EL22を、ワークWへ向けて進行させる機能も有する。
 このビームスプリッタ55は、矩形状の板状部材とされており、X軸方向に伸びる中心軸を中心としてY軸方向に対して45度の傾斜とされて配置されている。このビームスプリッタ55は、振幅分割型のビームスプリッタや偏光ビームスプリッタで構成され、第2加工光EL2の一部を反射することにより第2加工光EL221を生成するとともに、第2加工光EL2の他の一部を通過させることにより第2加工光EL222を生成する。ここで、ビームスプリッタ55は、Y軸方向に対して45度の傾斜とされて配置されているのでビームスプリッタ55で反射して生成した第2加工光EL221をZ軸方向と平行に光学偏向部材56へと進行させ、もう一つのビームスプリッタ55を通過させて生成した第2加工光EL222をY軸方向と平行に第2ミラー58へと進行させる。
 光学偏向部材56は、ビームスプリッタ55と第1ミラー57との間を進行する光(第2加工光EL221、第2加工光EL222)の進行方向を変化(偏向)させる部材である。光学偏向部材56は、X軸方向に伸びた形状を有しY軸方向のみに屈折力を持つ光学部材であって、ビームスプリッタ55と第1ミラー57との間において、光の進行方向をY軸方向の図25における右側か左側のいずれか一方に屈折させる。この例の光学偏向部材56は、X軸方向に直交する断面において、Y軸方向の右側における厚さ(Z軸方向の大きさ)が最も小さくされるとともに、Y軸方向の左側に向かうに連れて厚さが大きくなる台形状(楔形状)とされている。このため、光学偏向部材56は、光学偏向部材56が設けられていない状態と比較して、ビームスプリッタ55と第1ミラー57との一方からの光を、Y軸方向の左側へと屈折させつつビームスプリッタ55と第1ミラー57との他方へと向かわせる。
 第1ミラー57は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して所定の傾斜とされて配置されている。この所定の傾斜は、ビームスプリッタ55で反射されて光学偏向部材56を通過した第2加工光EL221を第2ミラー58へ向けて反射するとともに、第2ミラー58で反射された第2加工光EL222を光学偏向部材56へ向けて反射するように設定される。第1ミラー57は、光学偏向部材56からの第2加工光EL221を反射して、第2ミラー58へと進行させる。また、第1ミラー57は、第2ミラー29からの第2加工光EL222を反射して、光学偏向部材56へと進行させる。
 第2ミラー58は、板状部材とされており、X軸方向に伸びる中心軸を中心としてZ軸方向に対して第1ミラー57とは異なる所定の傾斜とされて配置されている。この第1ミラー57とは異なる所定の傾斜は、ビームスプリッタ55を通過した第2加工光EL222を第1ミラー57へ向けて反射するとともに、第1ミラー57で反射された第2加工光EL221をビームスプリッタ55へ向けて反射するように設定される。
 ビームスプリッタ55は、第2ミラー58で反射された第2加工光EL221を反射してワークWの表面へと進行させるとともに、第1ミラー57で反射されて光学偏向部材56を通過した第2加工光EL222を通過させてワークWの表面の干渉領域IA9へと進行させる。第2光学系17Hは、その干渉領域IA9をX軸方向およびY軸方向に所定の大きさとしている。その結果、干渉領域IA9内において、第2加工光EL221と第2加工光EL222とが干渉することで発生する干渉光が干渉縞ISを形成する。
 加工光学系15Hの第3光学系18Hは、加工光学系15Aの第3光学系18と比較して、第4シリンドリカルレンズ35とが設けられておらず、第4ミラー34と第5ミラー36とが設けられている点で異なっている。そして、第3光学系18Hでは、第1光学系16Hすなわちビームスプリッタ23からの第1加工光EL1を、第4ミラー34で反射した後に第5ミラー36で反射して、第1加工光EL11としてワークWの表面へと進行させる。この第3光学系18Hは、ワークWの表面へと向かわせた第1加工光EL11を、X軸方向およびY軸方向に所定の大きさの光としている。この第1加工光EL11が照射される領域を照射領域RA7とする。
 次に、この加工光学系15Hの作用について説明する。先ず、加工光源2から加工光EL0が射出されると、第1光学系16Hにおいて、ビームスプリッタ23により第1加工光EL1と第2加工光EL2とに分岐した後、その第1加工光EL1を第3光学系18Hへと進行させるとともに第2加工光EL2を第2光学系17Hへと進行させる。
 その第2光学系17Hでは、その第2加工光EL2を、ビームスプリッタ55へと進行させる。すると、第2加工光EL2は、一部がビームスプリッタ55で光学偏向部材56へ向けて反射されて第2加工光EL221とされ、他の一部がビームスプリッタ55を通過して第2ミラー58ヘと向かう第2加工光EL222とされる。その第2加工光EL221は、光学偏向部材56を通過して第1ミラー57で反射され、その後に第2ミラー58で反射されてビームスプリッタ55へ向けて進行する。また、第2加工光EL222は、第2ミラー58と第1ミラー57とで反射され、その後に光学偏向部材56を通過してビームスプリッタ55へ向けて進行する。
 ここで、第2光学系17Hでは、ビームスプリッタ55と第1ミラー57と第2ミラー58とで反射された第2加工光EL221がビームスプリッタ55に進行し、かつビームスプリッタ55と通過して第2ミラー58と第1ミラー57と反射された第2加工光EL222がビームスプリッタ55に進行する。このため、第2光学系17Hでは、基本的に第2加工光EL221と第2加工光EL222とを、ビームスプリッタ55から互いに異なる回転方向(時計回りの方向および反時計回りの方向)で進行させて、再びビームスプリッタ55に戻るように進行させている。そして、第2光学系17Hでは、ビームスプリッタ55と第1ミラー57との間に光学偏向部材56を設けている。
 このため、ビームスプリッタ55で反射された第2加工光EL221は、光学偏向部材56がない場合と比較して、第1ミラー57における左側にずれた位置に進行し、そこで反射されることで第2ミラー58やビームスプリッタ55においても第1ミラー57でのずれが反映された位置に進行する。また、ビームスプリッタ55を通過した第2加工光EL222は、光学偏向部材56がない場合と比較して、第2ミラー58および第1ミラー57で反射された後に光学偏向部材56に入射し、そこで屈折されることでビームスプリッタ55における左側にずれた位置に向けて進行する。このように、第2光学系17Hは、ビームスプリッタ55と第1ミラー57との間に光学偏向部材56を設けているので、第2加工光EL221と第2加工光EL222とが光学偏向部材56により屈折された後に進行する光路の方向に偏りを生じさせている。このため、第2光学系17Hでは、光学偏向部材56で屈折されることによる第2加工光EL221と第2加工光EL222とが受ける影響、すなわち光学偏向部材56を通過することによるずれに差異を生じさせている。これにより、第2光学系17Hでは、第2加工光EL221と第2加工光EL222とを基本的に等しい光路を通しつつ、第2加工光EL221と第2加工光EL222との射出角度を互いに異なる方向にすることができる。このため、第2光学系17Hは、三角形のサニャック光学系を構成しているともいえる。
 そして、第2光学系17Hは、第2加工光EL221をビームスプリッタ55で反射してワークWの表面へ向けて進行させるとともに、第2加工光EL222をビームスプリッタ55を通過させてワークWの表面へ向けて進行させる。第2光学系17Hは、その第2加工光EL221と第2加工光EL222とをワークWの表面に集光することにより、干渉縞ISを形成して干渉領域IA9を形成する。そして、第3光学系18Hは、第1光学系16Hからの第1加工光EL1を第4ミラー34と第5ミラー36とで反射することで、ワークWの表面に形成された干渉領域IA9に重ねて、X軸方向およびY軸方向に所定の大きさの第1加工光EL11を照射して、照射領域RA7を形成する。
 これにより、加工光学系15Hは、ワークWの表面において、干渉領域IA9と照射領域RA7とを重ねて重畳領域OA11を形成する。このため、加工光学系15Hは、重畳領域OA11が加工領域PAとなる。これにより、加工光学系15Hは、ワークWの表面における加工領域PAの全域に対して、干渉縞ISを第1加工光EL11に重ねて照射できる。そして、加工光学系15Hは、重畳領域OA11における加工光の最小フルエンスがワークWを加工可能なフルエンスとするように、第1加工光EL111のフルエンスを設定している。このため、加工光学系15Hは、加工領域PAのワークWの表面に理想的な形状のリブレット構造RBを形成できる。そして、加工光学系15Hは、ステージ13を移動させることにより、ワークWの表面の任意の位置を加工領域PAとすることができ、ワークWの表面の任意の位置に理想的な形状のリブレット構造RBを形成できる。
 なお、上記した加工光学系15Hでは、単一の周波数の干渉縞ISを形成するものとしているが、加工光学系15A、15C、15Eと同様に、基本周波数波形Wbに、1つ以上のn倍周波数波形Wnを重ね合わせるものとしてもよい。この場合、加工光学系15Hは、例えば、第2光学系17Hにおいて、光学偏向部材56と同様に光の進行方向をY軸方向のいずれか一方に屈折させるとともに光学偏向部材56とは屈折角が異なる第2光学偏向部材を、光学偏向部材56と入れ替え可能として設ければよい。
 したがって、本開示に係る加工光学系15等、加工装置1及び加工方法は、理想的な形状のリブレット構造を形成できる。
 以上、本開示の加工光学系、加工装置及び加工方法を各例に基づき説明してきたが、具体的な構成については上記した各例1に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 上述した説明では、加工装置1は、ヘッド駆動系12を備えている。しかしながら、加工装置1は、ヘッド駆動系12を備えていなくてもよい。つまり、加工ヘッド11は、移動可能でなくてもよい。また、上述した説明では、加工装置1は、ステージ駆動系14を備えている。しかしながら、加工装置1は、ステージ駆動系14を備えていなくてもよい。つまり、ステージ13は、移動可能でなくてもよい。或いは、そもそも、加工装置1は、ステージ13を備えていなくてもよい。
 上述した説明では、加工装置1が、金属性のワークW(母材となる物体)にリブレット構造RBを形成する例、及び、加工装置1が、ワークWの表面にコーティングされた膜にリブレット構造RBを形成する例について説明した。しかしながら、加工装置1が行う加工が、上述した例に限定されることはない。例えば、加工装置1は、ワークWの表面にリブレット構造RBを形成し、リブレット構造RBが形成されたワークWの表面が膜でコーティングされてもよい。例えば、加工装置1がワークWの表面にコーティングされた膜にリブレット構造RBを形成する場合には、リブレット構造RBが形成された膜が更に別の膜でコーティングされてもよい。いずれの例においても、リブレット構造RBが膜でコーティングされてもよい。この場合、リブレット構造RBにコーティングされた膜によってリブレット構造RBの機能が低減しないように、膜の厚みが決定されていてもよい。例えば、リブレット構造RBが膜に埋もれてしまう場合に膜によってリブレット構造RBの機能が低減される可能性があるため、リブレット構造RBが膜に埋もれないように、膜の厚みが決定されていてもよい。リブレット構造RBにコーティングされた膜によってリブレット構造RBの機能が低減しないように、リブレット構造RBの形状に沿って(例えば、凸状構造体81又は溝構造82に沿って)膜が形成されていてもよい。
 加工装置1は、除去加工に加えて又は代えて、ワークWに加工光ELを照射することでワークWに新たな構造物を付加する付加加工を行ってもよい。この場合、加工装置1は、付加加工を行うことで、上述したリブレット構造RBをワークWの表面に形成してもよい。或いは、加工装置1は、除去加工及び付加加工の少なくとも一方に加えて又は代えて、ワークWに工具を接触させることでワークWを加工する機械加工を行ってもよい。この場合、加工装置1は、機械加工を行うことで、上述したリブレット構造RBをワークWの表面に形成してもよい。
 上述した説明では、加工システムSYSは、ワークWの表面の流体に対する抵抗を低減させる機能を有するリブレット構造RBを形成している。しかしながら、加工システムSYSは、ワークWの表面の流体に対する抵抗を低減させる機能とは異なる機能を有する構造をワークWに形成してもよい。例えば、加工システムSYSは、流体とワークWの表面とが相対的に移動するときに発生する騒音を低減するためのリブレット構造をワークWに形成してもよい。例えば、加工システムSYSは、ワークWの表面上の流体の流れに対して渦を発生するリブレット構造をワークWに形成してもよい。例えば、加工システムSYSは、ワークWの表面に疎水性を与えるための構造をワークWに形成してもよい。
 上述した説明では、加工システムSYSは、ワークWの表面にリブレット構造RBを形成している。しかしながら、加工システムSYSは、ワークWの表面上に、任意の形状を有する任意の構造を形成してもよい。任意の構造の一例として、ワークWの表面上の流体の流れに対して渦を発生させる構造があげられる。任意の構造の他の一例として、ワークWの表面に疎水性を与えるための構造があげられる。任意の構造の他の一例としては、規則的又は不規則的に形成されたマイクロ・ナノメートルオーダの微細テクスチャ構造(典型的には、山構造及び溝構造を含む凹凸構造)があげられる。微細テクスチャ構造は、流体(気体及び/又は液体)による抵抗を低減させる機能を有するサメ肌構造及びディンプル構造の少なくとも一方を含んでいてもよい。微細なテクスチャ構造は、撥液機能及びセルフクリーニング機能の少なくとも一方を有する(例えば、ロータス効果を有する)ハスの葉表面構造を含んでいてもよい。微細なテクスチャ構造は、液体輸送機能を有する微細突起構造(米国特許公開第2017/0044002号公報参照)、親液性機能を有する凹凸構造、防汚機能を有する凹凸構造、反射率低減機能及び撥液機能の少なくとも一方を有するモスアイ構造、特定波長の光のみを干渉で強めて構造色を呈する凹凸構造、ファンデルワールス力を利用した接着機能を有するピラーアレイ構造、空力騒音低減機能を有する凹凸構造、液滴捕集機能を有するハニカム構造、並びに、表面上に形成される層との密着性を向上させる凹凸構造、摩擦抵抗を低減するための凹凸構造等の少なくとも一つを含んでいてもよい。この場合においても、凹凸構造を構成する凸状構造体は、上述したリブレット構造RBを構成する凸状構造体81と同様の構造を有してもよい。凹凸構造を構成する溝構造は、上述したリブレット構造RBを構成する溝構造82と同様の構造を有してもよい。尚、微細なテクスチャ構造は、特定の機能を有していなくてもよい。
 上述した説明では、加工システムSYSは、ワークWの表面にリブレット構造RBを形成している。しかしながら、加工システムSYSは、ワークWの表面にリブレット構造RBを転写するための型を形成してもよい。この場合、ワークWは、移動体の表面であってもよいし、移動体に貼付可能なフィルムであってもよい。
 上述した説明では、加工システムSYSは、ワークWに加工光ELを照射することで、ワークWを加工している。しかしながら、加工システムSYSは、光とは異なる任意のエネルギービームをワークWに照射して、ワークWを加工させてもよい。この場合、加工システムSYSは、加工光源2に加えて又は代えて、任意のエネルギービームを照射可能なビーム照射装置を備えていてもよい。任意のエネルギービームの一例として、荷電粒子ビーム及び電磁波の少なくとも一方があげられる。荷電粒子ビームの一例として、電子ビーム及びイオンビームの少なくとも一方があげられる。
 上述した説明では、加工システムSYSは、最初の4つの加工光学系15(15Aから15D)において、干渉縞移動部材として単一のガルバノミラー21を第1光学系16(16A、16C)の前後に設けている。しかしながら、干渉縞移動部材は、第2光学系17(17Aから17D)で形成した干渉領域IA(干渉縞IS)の位置を、第2光学系17の光軸と直交する方向に移動させるものであれば、他の構成でもよく、上記した例に限定されない。また、干渉縞移動部材としてのガルバノミラー21は、第1光学系16(16A、16C)の前後に単独で設けているが、加工光源2から第2光学系17を経てワークWに至る光路に複数設けてもよく、また加工光源2から第3光学系18を経てワークWに至る光路に複数設けてもよく、上記した例に限定されない。その一例として、加工光学系15Aにおいて、ガルバノミラー21に加えて、もう1つのガルバノミラーを設けるものとすることができる。このような例では、加工光学系15Aの第2光学系17において、特殊ビームスプリッタ25とレンズ33との間に再結像光学系を配置するとともに、その再結像光学系とレンズ33との間であって特殊ビームスプリッタ25と略共役となる位置にガルバノミラーを設けるものとすることができる。この場合には、再結像光学系とレンズ33との間のガルバノミラーと、ガルバノミラー21と、が干渉縞移動部材として機能することとなる。そして、この場合には、必要であれば加工光源2から第3光学系18を経てワークWに至る光路にもガルバノミラーを設けることができる。
 上述した説明では、加工システムSYSは、加工光学系15(15Aから15H)として、複数の第2光学系17(17Aから17H)の例を示している。しかしながら、第2光学系17は、第1光学系16からの第2加工光EL2を分割することにより、異なる入射方向からワークWに照射して干渉縞ISを形成するための複数の第2加工光EL22を形成するものであれば、他の構成でもよく、上記した例に限定されない。その他の第2光学系17としては、第1光学系16からの第2加工光EL2を回折光学素子(DOE)や光学的なマスク(光の進行を部分的に妨げるもの)を用いることにより、互いに異なる方向に進行する複数の第2加工光EL22を形成するものであってもよい。
 

Claims (33)

  1.  光源からの加工光を第1加工光と第2加工光とに分岐する第1光学系と、
     前記第2加工光を複数の第2加工光に分割し、分割された前記複数の第2加工光をそれぞれ異なる入射方向から物体に照射することで、前記物体の表面に干渉縞を形成する第2光学系と、
     前記第1光学系からの前記第1加工光を、前記物体の前記表面上の、前記干渉縞が形成される干渉領域に向けて照射する第3光学系と、
     を備える加工光学系。
  2.  前記第3光学系は、前記複数の第2加工光と前記第1加工光とを同時に前記物体に照射する
     請求項1に記載の加工光学系。
  3.  前記複数の第2加工光と前記第1加工光とを同時に前記物体に照射することで、少なくとも、前記物体の前記表面に形成される前記干渉縞の暗部における最小フルエンスを、前記物体の前記表面を除去できるフルエンスとする
     請求項2に記載の加工光学系。
  4.  前記第2光学系は、分割された前記複数の第2加工光のうち、少なくとも2つの第2加工光を用いて前記物体の前記表面に第1の干渉縞を形成し、且つ前記少なくとも2つの第2加工光とは異なる少なくとも2つの第2加工光を用いて前記物体の前記表面に前記第1の干渉縞とは異なる第2の干渉縞を形成する
     請求項1または請求項2に記載の加工光学系。
  5.  前記物体の前記表面の前記干渉縞が形成される前記干渉領域は、前記第1の干渉縞が形成される第1領域と、前記第2の干渉縞が形成される第2領域とを含む
     請求項4に記載の加工光学系。
  6.  前記第2光学系は、前記第2加工光を前記複数の第2加工光に分割する光分割部材と、前記光分割部材で分割された複数の第2加工光のうち一の第2加工光が入射する第1光学部材と、前記光分割部材で分割された複数の第2加工光のうち前記一の第2加工光とは異なる他の第2加工光が入射する第2光学部材とを含み、前記第1光学部材からの前記一の第2加工光を前記第2光学部材を介して前記光分割部材へ向け且つ前記第2光学部材からの前記他の第2加工光を前記第1光学部材を介して前記光分割部材へ向ける
     請求項1から請求項5までのいずれか一項に記載の加工光学系。
  7.  前記第1加工光は、前記第2光学系を介さずに前記物体の前記表面に照射される
     請求項1から請求項6までのいずれか一項に記載の加工光学系。
  8.  前記第2光学系は、前記第2加工光を前記複数の第2加工光に分割する光分割部材を有し、前記第1及び第2光学部材を介した前記複数の第2加工光の前記光分割部材に入射する入射角度を変化させることにより、前記干渉縞における振幅と周期との少なくともいずれか一方を調整する
     請求項1から請求項7までのいずれか一項に記載の加工光学系。
  9.  前記第2光学系は、第1の干渉縞と、前記第1の干渉縞とは振幅と周期とのうち少なくとも一方が異なる第2の干渉縞とを前記物体の前記表面上に形成する
     請求項1から請求項8までのいずれか一項に記載の加工光学系。
  10.  前記第2光学系によって前記第1の干渉縞が形成される第1期間と、前記第2光学系によって前記第2の干渉縞が形成される第2期間とは、少なくとも一部が重畳する
     請求項9に記載の加工光学系。
  11.  前記第2光学系によって前記第1の干渉縞が形成される第1期間と、前記第2光学系によって前記第2の干渉縞が形成される第2期間とは、重畳しない
     請求項9に記載の加工光学系。
  12.  前記第1及び第2の干渉縞は、形成するリブレット構造を得るための理想波形をフーリエ変換して得られた複数の種類の干渉縞のうち少なくとも2つの干渉縞である
     請求項9から請求項11までのいずれか一項に記載の加工光学系。
  13.  前記第2光学系は、前記干渉縞における振幅と周期との少なくともいずれか一方の調整が可能である
     請求項1から請求項12までのいずれか一項に記載の加工光学系。
  14.  前記第2光学系は、前記物体の前記表面上の加工領域内の少なくとも一部の干渉領域に前記干渉縞を形成し、
     前記第3光学系は、前記加工領域内の少なくとも一部の領域に照射される光フルエンスの積算値を高くする
     請求項1から請求項10までのいずれか1項に記載の加工光学系。
  15.  前記第2光学系により形成される前記干渉領域と、前記第3光学系によって前記第1加工光が前記物体の前記表面に照射される照射領域との少なくとも一部同士は前記物体の前記表面上の重畳領域で重畳し、
     前記加工領域と前記重畳領域との位置関係を変更しつつ前記物体の前記表面を加工する
     請求項14に記載の加工光学系。
  16.  前記第2光学系に対して前記干渉領域の位置を前記第2光学系の光軸と交差する方向に移動させる干渉縞移動部材をさらに備える
     請求項15に記載の加工光学系。
  17.  前記干渉縞移動部材は、前記第1加工光が前記物体の前記表面に照射される前記照射領域を前記交差する方向に移動させる
     請求項16に記載の加工光学系。
  18.  前記干渉縞移動部材は、前記光源からの光を反射する走査ミラーを備え、
     前記走査ミラーによる反射方向を変更することにより前記干渉領域の位置を前記第2光学系の光軸と交差する方向に移動させる
     請求項16または請求項17に記載の加工光学系。
  19.  前記干渉縞移動部材は、前記光源と前記第1光学系との間の光路中に配置される
     請求項16から請求項18までのいずれか一項に記載の加工光学系。
  20.  前記干渉縞移動部材は、前記第1光学系と前記第2光学系との間の光路中に配置される
     請求項16から請求項19までのいずれか一項に記載の加工光学系。
  21.  前記第3光学系によって前記第1加工光が前記物体の前記表面に照射される照射領域内で前記干渉領域の位置が変更される
     請求項1から請求項20までのいずれか一項に記載の加工光学系。
  22.  前記第3光学系によって前記第1加工光が前記物体の前記表面に照射される照射領域に対して固定された位置に前記干渉領域が形成される
     請求項1から請求項20までのいずれか一項に記載の加工光学系。
  23.  前記第2光学系は、前記物体の前記表面に形成される前記干渉縞の少なくとも振幅と周期とのいずれか一方を変更する
     請求項1から請求項22までのいずれか一項に記載の加工光学系。
  24.  前記第2光学系は、前記物体の前記表面に形成される前記干渉縞の少なくとも振幅と周期とのいずれか一方を変更する
     請求項1から請求項23までのいずれか一項に記載の加工光学系。
  25.  前記第2光学系は、前記第2加工光を互いに偏光方向が異なる第1偏光の第2加工光と第2偏光の第2加工光とに分割する第1偏光ビームスプリッタを含み、前記第1偏光の第2加工光と前記第2偏光の第2加工光とを、射出角度及び射出位置のうち少なくとも一方が異なるように射出する上流光学系と、
     前記第1偏光の第2加工光を互いに偏光方向が異なる第3偏光の第2加工光と第4偏光の第2加工光に分割すると共に、前記第2偏光の第2加工光を前記第3偏光の第2加工光と前記第4偏光の第2加工光とに分割する第2偏光ビームスプリッタを含み、前記第1偏光の前記第2加工光により生成された前記第3偏光の第2加工光と前記第2偏光の前記第2加工光により生成された前記第3偏光の第2加工光とを前記物体の前記表面上の第1位置に照射して第1干渉縞を形成すると共に、前記第1偏光の前記第2加工光により生成された前記第4偏光の第2加工光と前記第2偏光の前記第2加工光により生成された前記第4偏光の第2加工光とを前記物体の前記表面上における前記第1位置とは異なる第2位置に照射して第2干渉縞を形成する下流光学系と、を有する
     請求項1から請求項7までのいずれか1項に記載の加工光学系。
  26.  前記光源からの加工光は、パルス幅がナノ秒以下であるパルス光を含む
     請求項1から請求項25までのいずれか一項に記載の加工光学系。
  27.  前記物体の前記表面上で前記干渉縞が形成される前記干渉領域は、アブレーション加工される
     請求項1から請求項26までのいずれか一項に記載の加工光学系。
  28.  前記第2光学系は、前記第2加工光を回折して前記複数の第2加工光を生成する
     請求項1から請求項27までのいずれか一項に記載の加工光学系。
  29.  発光期間の少なくとも一部同士が重なるパルス光である第1及び第2加工光のうち、前記第2加工光を複数の第2加工光に分割し、分割された前記複数の第2加工光をそれぞれ異なる入射方向から前記物体に照射することで、前記物体の表面に干渉縞を形成する干渉縞形成光学系と、
     前記第1加工光を前記干渉縞が形成される干渉領域に向けて照射する照射光学系と、
    を備える加工光学系。
  30.  光源からの加工光を前記第1加工光及び前記第2加工光に分岐する分岐光学系をさらに備える
     請求項29に記載の加工光学系。
  31.  光源からの光を用いて物体の表面にリブレット加工を行う加工装置であって、
     請求項1から請求項30までのいずれか一項に記載の加工光学系と、
     前記加工光学系により前記物体の前記表面に形成される前記干渉縞と前記物体の前記表面との位置関係を変更する位置関係変更装置と
     を備える加工装置。
  32.  前記位置関係変更装置は、前記干渉縞の縞ピッチ方向と交差する方向における前記位置関係を変更する
     請求項31に記載の加工装置。
  33.  光源からの光を用いて物体の表面にリブレット加工を行う加工方法であって、
     前記光源からの加工光を第1加工光と第2加工光とに分岐することと、
     前記第2加工光を複数の第2加工光に分割し、分割された前記複数の第2加工光をそれぞれ異なる入射方向から前記物体に照射することで前記物体の前記表面に干渉縞を形成することと、
     前記第1加工光を前記物体の前記表面上の、前記干渉縞が形成される干渉領域に向けて照射することと、
     を含む加工方法。
     
PCT/JP2022/019995 2022-05-11 2022-05-11 加工光学系、加工装置及び加工方法 WO2023218580A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019995 WO2023218580A1 (ja) 2022-05-11 2022-05-11 加工光学系、加工装置及び加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/019995 WO2023218580A1 (ja) 2022-05-11 2022-05-11 加工光学系、加工装置及び加工方法

Publications (1)

Publication Number Publication Date
WO2023218580A1 true WO2023218580A1 (ja) 2023-11-16

Family

ID=88730094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/019995 WO2023218580A1 (ja) 2022-05-11 2022-05-11 加工光学系、加工装置及び加工方法

Country Status (1)

Country Link
WO (1) WO2023218580A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431120A1 (en) * 2010-09-16 2012-03-21 Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras Method of forming periodic structures in thin films using interfering laser beams
US20160265570A1 (en) * 2015-03-12 2016-09-15 Ut-Battelle, Llc Laser Nanostructured Surface Preparation for Joining Materials
WO2019082309A1 (ja) * 2017-10-25 2019-05-02 株式会社ニコン 加工装置、塗料、加工方法、及び、移動体の製造方法
JP2020518458A (ja) * 2017-04-26 2020-06-25 4ジェット マイクロテック ゲーエムベーハー リブレットを製造する方法および装置
JP2021509864A (ja) * 2018-01-03 2021-04-08 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 直接レーザ干渉構造化のための光学装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431120A1 (en) * 2010-09-16 2012-03-21 Valstybinis moksliniu tyrimu institutas Fiziniu ir technologijos mokslu centras Method of forming periodic structures in thin films using interfering laser beams
US20160265570A1 (en) * 2015-03-12 2016-09-15 Ut-Battelle, Llc Laser Nanostructured Surface Preparation for Joining Materials
JP2020518458A (ja) * 2017-04-26 2020-06-25 4ジェット マイクロテック ゲーエムベーハー リブレットを製造する方法および装置
WO2019082309A1 (ja) * 2017-10-25 2019-05-02 株式会社ニコン 加工装置、塗料、加工方法、及び、移動体の製造方法
JP2021509864A (ja) * 2018-01-03 2021-04-08 フラウンホーファー−ゲゼルシャフト ツゥア フェアデルング デア アンゲヴァンドテン フォァシュング エー.ファウ. 直接レーザ干渉構造化のための光学装置

Similar Documents

Publication Publication Date Title
JP7346786B2 (ja) リブレットを製造する方法および装置
US10569365B2 (en) Method for preparing a fluid flow surface
CN109590618B (zh) 一种激光切割系统及方法
JP2006196638A (ja) パルスレーザーのレーザー発振制御方法およびパルスレーザーシステム
CN110695523A (zh) 一种激光扫描装置
WO2023218580A1 (ja) 加工光学系、加工装置及び加工方法
TW202212036A (zh) 雷射處理系統及其方法
US10359624B2 (en) Galvanoscanner
WO2020208808A1 (ja) 加工システム、加工方法、ロボットシステム、接続装置及びエンドエフェクタ装置
US20220072662A1 (en) Laser processing device and laser processing method using same
WO2023218581A1 (ja) 加工光学系、加工装置及び加工方法
WO2020036021A1 (ja) レーザ加工機及びレーザ加工方法
CN114161005A (zh) 一种三维扫描式微小孔结构的加工方法及装置
WO2020217349A1 (ja) 加工方法及び加工装置
WO2021039881A1 (ja) 処理システム
CN112162467A (zh) 一种激光曲面加工系统及超疏水、防覆冰和减风阻的制造方法
WO2021245861A1 (ja) 加工装置
WO2024105851A1 (ja) 加工システム
JP7355103B2 (ja) 加工装置、加工方法及び加工システム
WO2023218579A1 (ja) 加工光学系、加工装置、干渉パターン形成方法、及び、加工方法
WO2023095198A1 (ja) 加工装置及び加工方法
US20220072661A1 (en) Laser processing device and laser processing method using same
WO2023170876A1 (ja) 加工装置
JPH1015682A (ja) 塗装鋼板のレーザ切断方法
JP7435626B2 (ja) ビーム加工装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941660

Country of ref document: EP

Kind code of ref document: A1