WO2023217226A1 - 单体电池、电池包和车辆 - Google Patents

单体电池、电池包和车辆 Download PDF

Info

Publication number
WO2023217226A1
WO2023217226A1 PCT/CN2023/093498 CN2023093498W WO2023217226A1 WO 2023217226 A1 WO2023217226 A1 WO 2023217226A1 CN 2023093498 W CN2023093498 W CN 2023093498W WO 2023217226 A1 WO2023217226 A1 WO 2023217226A1
Authority
WO
WIPO (PCT)
Prior art keywords
side wall
explosion
pole
inner cavity
single cell
Prior art date
Application number
PCT/CN2023/093498
Other languages
English (en)
French (fr)
Inventor
王信月
陈冲
程晗
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2023217226A1 publication Critical patent/WO2023217226A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of vehicle technology, and specifically, to a single battery, a battery pack and a vehicle.
  • the poles of a single battery and the explosion-proof valve are usually located at the same end.
  • the high-temperature gas or flame ejected can easily burn the poles of the single battery and the devices connected to it. Produce high-voltage arcing or secondary hazards.
  • the single cell is provided with a boss, which protrudes toward the interior of the single cell, and the explosion-proof valve is disposed on the boss, thereby separating the explosion-proof valve from the pole.
  • the explosion-proof hole is blocked by the pole core, and the air flow inside the single cell is It cannot circulate normally with the outside world, and the explosion-proof effect is poor.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • one purpose of the present disclosure is to provide a single battery that has the advantages of high safety, smooth air flow, and good explosion-proof effect.
  • Another object of the present disclosure is to provide a battery pack having the above-mentioned single cell.
  • Another object of the present disclosure is to provide a vehicle having the above-mentioned single battery and battery pack.
  • a single cell includes: a casing having an inner cavity and opposite first and second side walls, and the inner wall surface of the second side wall is configured with a first recess and a plurality of second recesses, the first recess and the second recess are recessed in a direction away from the inner cavity, the first recess forms a main airway in the inner cavity, The plurality of second recesses form a plurality of branch airways in the inner cavity, the plurality of branch airways are respectively connected with the main airway, and the second side wall is provided with a connection with the main airway.
  • the single battery according to the embodiment of the present disclosure has the advantages of high safety, smooth air flow, and good explosion-proof effect.
  • the main airway and the plurality of branch airways are arranged at least in a length direction of the second side wall, and the main airway is arranged in a width of the second side wall.
  • the size in the direction is larger than the size of each branch air channel in the width direction of the second side wall.
  • the main air channel extends along the width direction of the second side wall
  • each of the branch air channels extends along the length direction of the second side wall
  • a plurality of the branch air channels The air passages are distributed on both sides of the main air passage in the length direction of the second side wall.
  • a plurality of the branch air channels are arranged on each side of the main air channel in the length direction of the second side wall, and the plurality of branch air channels are arranged along the The width direction of the second side wall is spaced apart; the number of the branch air channels on both sides of the main air channel in the length direction of the second side wall is equal; the main air channel is located on the second side wall.
  • the branch air channels on both sides in the length direction of the side wall are arranged in one-to-one correspondence.
  • the outer wall surface of the second side wall is configured with a first protrusion protruding in a direction away from the inner cavity, and the first protrusion is connected to the The positions of the first recessed parts correspond to each other, and the explosion-proof hole penetrates the first convex part and the first recessed part.
  • the outer wall surface of the second side wall is configured with a plurality of second protrusions, each of the second protrusions protrudes in a direction away from the inner cavity, and the plurality of second protrusions protrude in a direction away from the inner cavity.
  • the two convex parts correspond to the positions of the plurality of second concave parts one-to-one.
  • the first protrusion and the first recess are located at the center of the second side wall in a length direction of the second side wall.
  • the depth of the main airway is 0.5mm ⁇ 3mm; the depth of each branch airway is 0.5mm ⁇ 3mm.
  • the number of the pole cores is multiple, and the plurality of pole cores are arranged in sequence, and the arrangement direction of the plurality of pole cores is consistent with the thickness direction of the pole cores.
  • the pole core corresponds to at least one of the branch airways.
  • the size of the pole core in the length direction of the second side wall is L 1
  • the maximum size of the first recess and the plurality of second recesses on the second side wall is L 1 .
  • the length is L 2 , wherein L 1 and L 2 satisfy: 0.04 ⁇ L 2 /L 1 ⁇ 0.96.
  • the L 1 and L 2 further satisfy: L 1 ⁇ 500mm, L 2 ⁇ 20mm.
  • the main air channel is located at the center of the pole core in the length direction of the second side wall; the explosion-proof hole is located at the center of the main air channel; the explosion-proof hole It is located at the center of the pole core in the thickness direction of the pole core.
  • the single cell further includes: an insulating film, the insulating film is provided in the inner cavity, and the insulating film is located between at least a part of the inner cavity and the explosion-proof valve. .
  • the pole includes a positive pole and a negative pole
  • the housing is an aluminum shell
  • the positive pole is electrically connected to the housing such that the voltage of the positive pole
  • the voltage difference between the voltage of the battery and the housing is not less than 0V and not more than 2.5V.
  • the pole includes a positive pole and a negative pole
  • the housing is a steel shell
  • the negative pole and the housing are electrically connected so that the voltage of the housing and The voltage difference between the negative poles is not less than 0V and not greater than 2.5V.
  • the housing includes: a housing body, the second side wall and the inner cavity are formed on the housing body,
  • the shell body is provided with an opening opposite to the second side wall, the opening is connected with the inner cavity;
  • a shell cover is installed on the shell body, and the shell cover covers the In the inner cavity, the first side wall is formed on the shell cover, and the pole is connected to the shell cover.
  • a battery pack according to a second embodiment of the present disclosure includes: a box; and a single battery according to the first embodiment of the present disclosure, the single battery is installed in the box, and the explosion-proof valve faces The bottom wall of the box.
  • the battery pack according to the embodiment of the second aspect of the present disclosure has the advantages of high safety, smooth air flow, and good explosion-proof effect by utilizing single cells.
  • a vehicle according to a third aspect embodiment of the present disclosure includes a single battery according to the above-mentioned first aspect embodiment of the present disclosure and a battery pack according to the above-mentioned second aspect embodiment of the present disclosure, the first side wall is located at above the second side wall.
  • the vehicle according to the third embodiment of the present disclosure has the advantages of high safety, smooth air flow, and good explosion-proof effect by utilizing single cells and battery packs.
  • Figure 1 is a schematic structural diagram of a single cell according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a single cell from another perspective according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a single cell according to another embodiment of the present disclosure.
  • FIG. 4 is a cross-sectional view along line A-A in FIG. 3 .
  • FIG. 5 is an enlarged view of part B circled in FIG. 4 .
  • FIG. 6 is a cross-sectional view along line C-C in FIG. 3 .
  • Figure 7 is an enlarged view of part D circled in Figure 6;
  • Figure 8 is a schematic diagram of a battery pack according to an embodiment of the present disclosure.
  • Figure 9 is a schematic diagram of a vehicle according to an embodiment of the present disclosure.
  • Figure 10 is a schematic diagram of a vehicle according to another embodiment of the present disclosure.
  • first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. Further, in the description of the present disclosure, unless otherwise stated, the meaning of “plurality” is two or more.
  • a single battery 1 includes a case 100 , a pole 200 , an explosion-proof valve 300 and a pole core 400 .
  • the housing 100 has an inner cavity 110 and opposite first and second side walls 120 and 130.
  • the inner wall surface of the second side wall 130 is configured with a first recess 140 and a plurality of second recesses 150.
  • the first recess 140 and the The two recessed parts 150 are both recessed in the direction away from the inner cavity 110.
  • the first recessed part 140 forms a main airway 141 in the inner cavity 110
  • the plurality of second recessed parts 150 forms a plurality of branch airways 151 in the inner cavity 110.
  • a plurality of branch air channels 151 are respectively connected with the main air channel 141.
  • the second side wall 130 is provided with an explosion-proof hole 160 corresponding to the position of the main air channel 141.
  • the pole 200 is provided on the second side wall 130 of the housing 100.
  • the explosion-proof valve 300 is installed on the second side wall 130, and the explosion-proof valve 300 is used to cover the explosion-proof hole 160.
  • the pole core 400 is arranged in the housing 100, and the pole core 400 is spaced apart from the explosion-proof hole 160.
  • the explosion-proof valve 300 is provided with a burst value.
  • the pressure of the inner chamber 110 of the single cell 1 is less than the burst value of the explosion-proof valve 300, it is in a normal working state; when the pressure of the inner chamber 110 is greater than or equal to the burst value of the explosion-proof valve 300
  • the explosion-proof valve 300 opens and the gas is rapidly discharged, thereby rapidly reducing the pressure in the cavity and preventing the single cell 1 from exploding.
  • the explosion-proof valve 300 plays an explosion-proof role.
  • some embodiments of the present disclosure include an insulating film 500. between valves 300.
  • the explosion-proof valve 300 can be isolated from the electrolyte by the insulating film 500 to prevent the explosion-proof valve 300 from being corroded due to long-term immersion in the electrolyte, thereby preventing battery leakage and preventing the opening pressure of the explosion-proof valve 300 from increasing due to the influence of the electrolyte. Or become smaller, so that the explosion-proof valve 300 can be in a stable and reliable working state.
  • the insulating film 500 may be PP (polypropylene, polypropylene), PE (polyethylene, polyethylene). olefin) or other polyester compounds.
  • the insulating film 500 is spaced apart from the cavity wall of the main airway 141 and the branch airway 151, and the insulating film 500 is airtight.
  • the main airway 141 and the branch airway 151 are not connected to the parts of the inner cavity 110 other than the main airway 141 and the branch airway 151.
  • the air pressure in the inner cavity 110 increases, and the insulating film 500 can be squeezed and deformed.
  • the gas in the parts of the inner cavity 110 except the main air channel 141 and the branch air channel 151 can break through the insulating film 500 and enter the main air channel. 141 and branch airway 151.
  • the insulating film 500 is spaced apart from the cavity walls of the main airway 141 and the branch airway 151 , and the insulating film 500 is breathable, so that the main airway 141 and the branch airway 151 can Maintaining communication with the portion of the inner cavity 110 except the main airway 141 and the branch airway 151 , the gas in the portion of the inner cavity 110 except the main airway 141 and the branch airway 151 can pass through the insulating film 500 Enter the main airway 141 and the branch airway 151.
  • the insulating film 500 can be directly attached to the cavity wall of the main airway 141 and the branch airway 151 , so that the main airway 141 and the branch airway 151 can be in contact with the inner cavity.
  • the portion of the inner cavity 110 other than the main airway 141 and the branch airway 151 remains connected, and the gas in the portion of the inner cavity 110 except the main airway 141 and the branch airway 151 can directly enter the main airway 141 and the branch airway 151 .
  • Within the branch airway 151 Within the branch airway 151.
  • the housing 100 is provided with an inner cavity 110 and opposite first and second side walls 120 and 130, and the pole 200 is provided on the housing 100 except for the second side wall.
  • the second side wall 130 is provided with an explosion-proof hole 160 connected with the main air channel 141.
  • the explosion-proof valve 300 is installed on the second side wall 130 and is used to cover the explosion-proof hole 160.
  • the pole core 400 is provided in the shell. 100 and spaced apart from explosion-proof holes 160. Since the pole 200 and the explosion-proof hole 160 are respectively provided on different side walls of the casing 100, the pole 200 and the explosion-proof hole 160 can be spaced apart.
  • the pole core 400 is disposed in the housing 100 and is spaced apart from the explosion-proof hole 160 . In this way, the pole core 400 does not block the explosion-proof hole 160 , and the gas in the inner cavity 110 can communicate with the outside through the explosion-proof hole 160 .
  • the inner wall surface of the second side wall 130 is configured with a first recess 140 and a plurality of second recesses 150 that are recessed in the direction away from the inner cavity 110.
  • the inner cavity 110 can accommodate the pole core 400.
  • the recess 140 and the second recess 150 are both formed by recessing in the direction away from the first side wall on the second side wall of the casing in the prior art.
  • the first recess 140 and the second recess 150 will not cause an inner cavity.
  • the space of 110 becomes smaller. That is to say, the volume of the inner cavity 110 of the single cell 1 in the embodiment of the present disclosure is the same as that of the existing single cell.
  • the space of the inner cavity 110 is large enough, and the volume of the pole core 400 can be larger. , ensuring the energy density of single cell 1.
  • first recessed portion 140 forms a main airway 141 that communicates with the inner cavity 110
  • the plurality of second recessed portions 150 forms a plurality of branch airways 151 that communicate with the inner cavity 110 .
  • the plurality of branched airways 151 are respectively connected with the main airway. Connected to Route 141.
  • the explosion-proof valve 300 is arranged on the second side wall 130 opposite to the pole post 200. Since the space between the pole core 400 and the second side wall 130 is small, the gas generated by the pole core 400 cannot be stored. Therefore, if no recess is provided, Then the gas generated by the pole core 400 may move between the pole core 400 and the first side wall 120 , so that the pressure in the inner cavity 110 reaches the explosion limit of the explosion-proof valve 300 . When the value is exceeded, the gas in the inner cavity 110 cannot be quickly discharged through the explosion-proof hole 160, which poses a greater risk.
  • the single cell 1 of the present disclosure is provided with a first recess 140 and a plurality of second recesses 150 to form a main air channel 141 and a plurality of branch air channels 151 for storing gas generated by the pole core 400, so that in the inner cavity
  • the explosion-proof valve 300 opens, and part of the gas generated by the pole core 400 is stored in the main air channel 141, and can directly flow to the explosion-proof hole 160 through the main air channel 141, and the pole core 400
  • Another part of the generated gas is stored in the branch air channel 151 and can flow to the main air channel 141 and the explosion-proof hole 160 through the branch air channel 151 to ensure the structural strength of the second side wall 130 and prevent the inner cavity 110 from being damaged.
  • the main air channel 141 plus multiple branch air channels 151 can cover a larger area.
  • the exhaust will be smoother, that is to say, the gas generated by the pole core 400 can pass through the main air channel 141 more quickly and multiple branch air channels 151 flow to the explosion-proof holes 160.
  • the main air channel 141 and the multiple branch air channels 151 can discharge the internal gas to the outside of the single cell 1 more quickly through the explosion-proof holes 160, making the air flow smoother. The explosion-proof effect is better.
  • the single battery 1 according to the embodiment of the present disclosure has the advantages of high safety, smooth air flow, and good explosion-proof effect.
  • the pole 200 is provided on the first side wall 120
  • the explosion-proof hole 160 is provided on the second side wall 130 . That is to say, the pole 200 and the explosion-proof hole 160 are arranged on opposite sides of the housing 100. In this way, the pole 200 and the explosion-proof hole 160 can be better separated, and the distance between the pole 200 and the explosion-proof hole 160 is further. If the battery 1 is out of control, the high-temperature gas or flame ejected from the explosion-proof hole 160 will not burn the pole 200, which more effectively avoids secondary hazards and is safer. Moreover, the pole core 400 will not block the explosion-proof hole 160, and the gas in the first air channel 510 can communicate with the outside through the explosion-proof hole 160.
  • the main airway 141 and the plurality of branch airways 151 are arranged at least in the length direction of the second side wall 130, so that the main airway 141 and the multiple branch air channels 151 cover a larger area in the length direction of the second side wall 130, and the gas generated when the pole core 400 is out of control can pass through the main air channel 141 and the multiple branch air channels more quickly. 151 flows out of the single cell 1.
  • the size of the main air channel 141 in the width direction of the second side wall 130 is larger than the size of each branch air channel 151 in the width direction of the second side wall 130.
  • the main airway 141 can be connected to multiple branch airways 151 on each side of the second side wall 130.
  • the communication between the branch airways 151 and the main airway 141 is more convenient, and the main airway
  • the cross-sectional area of the channel 141 can be larger and the flowability is better.
  • the main air channel 141 extends along the width direction of the second side wall 130
  • each branch air channel 151 extends along the length direction of the second side wall 130
  • a plurality of branch air passages 151 extend and are distributed on both sides of the main air passage 141 in the length direction of the second side wall 130 .
  • the main air channel 141 can cover a larger area along the width direction of the second side wall 130, further improving the exhaust effect of the counter pole core 400. Moreover, the main air channel 141 can cover a larger area in the length direction of the second side wall 130.
  • Multiple branch air channels 151 are provided on both sides of the second side wall 130. The multiple branch air channels 151 and the main air channel 141 can cover a larger area as much as possible in the length direction of the second side wall 130, and the layout is wider and There are basically no dead ends, which further increases the flow rate of the airflow of the main airway 141 and the branch airway 151 when the pole core 400 is out of control, and the explosion-proof effect of the single battery 1 is better.
  • a plurality of branch airways 151 are arranged on each side of the main airway 141 in the length direction of the second side wall 130 .
  • the branch air channels 151 are spaced apart along the width direction of the second side wall 130.
  • the number of the branch air channels 151 on both sides of the main air channel 141 in the length direction of the second side wall 130 is equal.
  • the branch air channels 151 on both sides of the two side walls 130 in the length direction are arranged in one-to-one correspondence.
  • the plurality of branch air channels 151 are arranged symmetrically with respect to the main air channel 141.
  • the pole core is covered by the plurality of branch air channels 151 located on each side of the main air channel 141. 400 have the same area, the air flow consistency on both sides of the main air channel 141 is better, thus avoiding the problem that the air flow on one side of the main air channel 141 is fast and the air flow on the other side of the main air channel 141 is blocked.
  • two branch air channels 151 can be provided on each side of the main air channel 141, which can increase the total volume of the branch air channels 151 and allow faster airflow. At the same time, too many branch air channels 151 can be avoided, the structural strength of the second side wall 130 is relatively high, and the support of the pole core 400 by the second side wall 130 is more reliable.
  • the number of branch air passages 151 on each side of the main air passage 141 can be increased accordingly according to the number of pole cores 400, thereby ensuring that the pole core 400 generates The gas can quickly collect to the position of the main air channel 141 and the explosion-proof hole 160 .
  • the outer wall surface of the second side wall 130 is configured with a first protrusion 131 , and the first protrusion 131 protrudes in a direction away from the inner cavity 110 , the first convex portion 131 corresponds to the position of the first concave portion 140 .
  • the first protruding portion 131 is correspondingly protruded in the direction away from the inner cavity 110 .
  • the second side wall 130 is in the first recessed portion 140
  • the thickness of the first protrusion 131 can be thicker, which is beneficial to improving the structural strength of the second side wall 130 and making the overall structural strength of the housing 100 higher.
  • the explosion-proof hole 160 can penetrate the first concave portion 140 and the first convex portion 131 in a direction perpendicular to the second side wall 130, thereby connecting the inner cavity 110 of the single cell 1 with the outside world.
  • the thickness of the explosion-proof hole 160 can be the same as that of the second side wall 130 , that is, the length of the explosion-proof hole 160 can be shorter, the structure can be simpler, and the air flow can be guided faster.
  • the outer wall surface of the second side wall 130 is configured with a plurality of second protrusions 132 , and each second protrusion 132 faces away from the inner cavity 110
  • the plurality of second convex portions 132 are convex in the direction of the plurality of second concave portions 150 in one-to-one correspondence.
  • the thickness of the second protrusion 132 can be thicker, which is beneficial to improving the structural strength of the second side wall 130 and making the overall structural strength of the housing 100 higher.
  • the thickness of the second side wall 130 at the first convex portion 131 and the first concave portion 140 is the same as the thickness at other locations.
  • the second side wall 130 The thickness at each second protrusion 132 and its corresponding second recess 150 is the same as the thickness at other locations.
  • the consistency of the thickness of the second side wall 130 can be ensured, making the thickness of the second side wall 130 more uniform, avoiding the situation that the second side wall 130 is partially thick and partially thin, and further improving the thickness of the second side wall. 130 of structural strength, the second side wall 130 supports the pole core 400 more reliably, and the overall structural strength of the housing 100 is higher.
  • the first convex portion 131 and the first concave portion 140 are located at the center of the second side wall 130 in the length direction of the second side wall 130 .
  • the pole core 400 of the single cell 1 will generate gas.
  • the main air channel 141 can be located At the center of the length direction of the pole core 400, the gas generated by the pole core 400 can enter the main air channel 141 more easily, and the distance between the main air channel 141 and the two ends of the length direction of the second side wall 130 is the same.
  • the distance between the gas at both ends of the second side wall 130 in the length direction of the second side wall 130 and the main air channel 141 is the same, so it will not be difficult for the gas on one side to enter the main air channel 141, so that the discharge of the single cell 1 Qi is more open.
  • this can make the structure of the housing 100 in the length direction of the second side wall 130 symmetrical, and the structural strength of both ends of the housing 100 in the length direction of the second side wall 130 is the same, which is beneficial to maintaining the structure of the housing 100
  • the strength is consistent, and the structure of the housing 100 can be simplified to facilitate processing.
  • the single cell 1 further includes a protective sheet (not shown in the figure), which is connected to the housing 100 and located on the side of the explosion-proof valve 300 facing away from the inner cavity 110 .
  • the protective sheet can cover the explosion-proof valve 300. Whether the explosion-proof valve 300 is installed on the side of the explosion-proof hole 160 facing the inner cavity 110 or on the side of the explosion-proof hole 160 facing away from the inner cavity 110, the protective sheet can avoid Other parts of the vehicle are in direct contact with the explosion-proof valve 300. At the same time, the protective sheet can also protect the explosion-proof valve 300 during the transportation of the single battery 1, avoid collision damage to the explosion-proof valve 300 during transportation, and extend the use of the single battery 1. life.
  • the depth h 1 of the main airway 141 is 0.5 mm to 3 mm
  • the depth h 2 of each branch airway 151 is 0.5 mm to 3 mm
  • the depth h 1 of each main airway 141 can be 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm or 3mm
  • the depth h 2 of each branch airway 151 can be 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm or 3mm.
  • the depth h 1 of the main airway 141 and the depth h 2 of the branch airway 151 can be made deeper, and the space of the main airway 141 and the branch airway 151 can be larger and can accommodate more
  • the gas generated by the pole core 400 can be discharged more quickly during explosion protection, the air flow is smoother, and the explosion-proof effect is better;
  • the depth h 1 of the main air channel 141 and the depth h 1 of the branch air channel 151 can be avoided h 2 is too deep, so that the space occupied by the main air channel 141 and the branch air channel 151 in the single cell 1 will not be too large, so as to avoid causing a large loss in the capacity of the pole core 400, while ensuring the energy density of the single cell 1 At the same time, the volume of the single battery 1 can be made smaller.
  • the number of pole cores 400 is multiple, and the plurality of pole cores 400 are arranged in sequence, and the arrangement direction of the pole cores 400 is consistent with the thickness direction of the pole cores 400 , each pole core 400 corresponds to at least one branch airway 151. There may be an even number of pole cores 400 such as 2 or 4.
  • each pole core 400 can correspond to the branch air passages 151 corresponding to the positions on both sides of the main air passage 141. This can ensure that each pole core 400 has branch air passages 151 on both sides of the main air passage 141. Partial airflow diversion further improves the exhaust rate of the single cell 1, has better explosion-proof effect, and makes the single cell 1 safer.
  • the size of the pole core 400 in the length direction of the second side wall 130 is L 1
  • the first recess 140 and the plurality of second recesses 150 are located on the second side wall.
  • the maximum length on 130 is L 2 , where L 1 , L 2 Satisfy: 0.04 ⁇ L 2 /L 1 ⁇ 0.96.
  • L 2 /L 1 can be 0.04, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, or 0.96.
  • the first recess 140 or the second recess 150 it is possible to prevent the first recess 140 or the second recess 150 from being too small in the length direction of the second side wall 130, so that the first recess 140 and the second recess 150 are within the length of the second side wall 130.
  • the size in the direction is larger, the space of the main air channel 141 and the branch air channel 151 is larger, and the exhaust is smoother; on the other hand, it can avoid the first recess 140 and the second recess 150 in the length direction of the pole core 400
  • the size of the second side wall 130 other than the first recess 140 and the second recess 150 can also be large. This part can stably support the pole core 400, thereby preventing the pole core 400 from directly contacting the second recess 150.
  • the bottom wall of the first recess 140 or the bottom wall of the second recess 150 is in contact with each other to ensure normal circulation of gas in the main air channel 141 and the branch air channel 151 .
  • the dimension L 1 of the pole core 400 in the length direction of the second side wall 130 is ⁇ 500 mm, and the maximum length L of the first recess 140 and the plurality of second recesses 150 on the second side wall 130 is 2 ⁇ 20mm.
  • the length of the pole core 400 will not be too long, so that the overall length of the single cell 1 will not be too long, which is beneficial to improving the overall structural strength of the single cell 1.
  • the length of the first recess 140 and the plurality of third recesses 140 will not be too long.
  • the length of the second recess 150 will not be too short, which can ensure that the length of the main airway 141 and the branch airway 151 is long enough, the space of the main airway 141 and the branch airway 151 is more abundant, and the exhaust is smoother.
  • the main air channel 141 is located at the center of the pole core 400 in the length direction of the second side wall 130 .
  • the main air channel 141 can be connected with the pole core 400 .
  • the gas generated by the pole core 400 can enter the main air channel 141 more easily, making the exhaust of the single cell 1 more unobstructed.
  • the second side wall 130 is located in its length direction. The dimensions on both sides of the main air channel 141 are the same, that is to say, the structural strength consistency at both ends of the second side wall 130 in the length direction is better, and the support of the pole core 400 by the second side wall 130 is more stable and reliable.
  • the explosion-proof hole 160 is located at the center of the main air channel 141 , and the explosion-proof hole 160 is located at the center of the pole core 400 in the thickness direction of the pole core 400 .
  • the explosion-proof hole 160 may be located at the center of the pole core 400 in the thickness direction and at the center of the pole core 400 in the length direction of the second side wall 130. Normally, the gas generated at the center of the pole core 400 is At most, by locating the explosion-proof hole 160 at the center of the pole core 400, the explosion-proof valve 300 can more effectively sense the air pressure in the single cell 1, so that when the air pressure in the single cell 1 is too high, the explosion-proof valve 300 can immediately It is opened to discharge the gas in the single cell 1, further improving the explosion-proof effect of the single cell 1.
  • the pole 200 includes a positive pole 210 and a negative pole 220
  • the housing 100 is an aluminum shell.
  • the explosion-proof valve 300 can be made of aluminum
  • the positive pole The pole 210 is electrically connected to the casing 100 so that the difference between the voltage of the positive pole 210 and the voltage of the casing 100 is 0V to 2.5V, where the difference between the voltage of the positive pole 210 and the voltage of the casing 100 is , the value of the voltage of the positive pole 210 minus the voltage of the case 100 .
  • the casing 100 and the explosion-proof valve 300 can be made of metal aluminum or aluminum alloy.
  • the electrolyte in the single cell 1 is usually a lithium ion electrolyte. Aluminum will react with lithium ions at low potential. Form metal compounds. In this way, the voltage difference between the positive pole 210 and the case 100 is small, and the voltage of the case 100 will be close to the voltage of the positive pole 210.
  • the potential of the housing 100 is increased to prevent the housing 100 and the explosion-proof valve 300 from being corroded by the lithium ion electrolyte, thereby protecting the housing 100 and the explosion-proof valve 300 installed on the housing 100 and further preventing the housing 100 and the explosion-proof valve 300 from being corroded by the lithium ion electrolyte.
  • the valve 300 is corroded, extending the service life of the single cell 1 .
  • a resistor is connected between the positive pole 210 and the case 100 .
  • the positive pole 210 of the single cell 1 is connected to the negative pole of a battery without a resistor and the case 100 is connected to the battery.
  • the resistance between the positive pole 210 of the single cell 1 and the casing 100 can also protect the single cell 1 to avoid short circuit of the single cell 1 and ensure the safety of the single cell 1. Sex is higher.
  • the pole 200 includes a positive pole 210 and a negative pole 220.
  • the housing 100 is a steel shell.
  • the explosion-proof valve 300 can be made of steel, and the negative pole
  • the column 220 is electrically connected to the casing 100, so that the difference between the voltage of the casing 100 and the voltage of the negative pole 220 is 0V to 2.5V, where the difference between the voltage of the casing 100 and the voltage of the negative pole 220 refers to, The voltage of the casing 100 minus the voltage of the negative electrode post 220 .
  • steel will react with lithium ions to form a metallic compound at low potential.
  • the voltage of the case 100 will be close to the negative electrode post. 220 voltage, that is, the potential of the housing 100 is reduced, preventing the housing 100 and the explosion-proof valve 300 from being corroded by the lithium ion electrolyte, thereby protecting the housing 100 and the explosion-proof valve 300 installed on the housing 100, and further preventing the housing from being corroded by the lithium ion electrolyte.
  • the body 100 and the explosion-proof valve 300 are corroded, which prolongs the service life of the single battery 1 .
  • a resistor is connected between the negative pole 220 and the housing 100 .
  • the negative pole 220 of the single cell 1 and the case 100 form a loop, for example, the negative pole 220 of the single cell 1 is connected to the positive pole of a battery without a resistor and the case 100 is connected to the battery.
  • the resistance between the negative pole 220 of the single cell 1 and the casing 100 can protect the single cell 1, avoid short circuit of the single cell 1, and improve the safety of the single cell 1. higher.
  • the housing 100 includes a housing body 170 and a housing cover 180 .
  • the housing 100 may be made of aluminum alloy.
  • the second side wall 130 and the inner cavity 110 are formed on the shell body 170.
  • the shell body 170 is provided with an opening opposite to the second side wall 130. The opening is connected to the inner cavity 110.
  • the shell cover 180 is installed on the shell body 170, and the shell cover 180 The inner cavity 110 is covered, the first side wall 120 is formed on the shell cover 180 , and the pole 200 is connected to the shell cover 180 .
  • the processing difficulty of the housing 100 can be reduced, thereby simplifying the processing steps of the housing 170 and the housing cover 180, making the processing more convenient; on the other hand, it is convenient to separate the pole core 400 and the electrolyte. Put it into the inner cavity 110.
  • the battery pack 2 includes a box 3 and a single battery 1 according to the first embodiment of the present disclosure.
  • the single battery 1 is installed in the box 3 and
  • the explosion-proof valve 300 faces the bottom wall of the box 3 . In this way, when the single battery 1 is out of control, high-temperature gas or flame can be sprayed to the bottom of the box 3 through the explosion-proof valve 300 .
  • the battery pack 2 by using the above-mentioned single battery 1, it has the characteristics of high safety and smooth air flow. and good explosion-proof effect.
  • a vehicle 4 according to an embodiment of the present disclosure includes a single battery 1 according to the first embodiment of the present disclosure and a battery pack 2 according to the second embodiment of the present disclosure.
  • the battery The bag 2 is installed on the body of the vehicle 4 or the chassis of the vehicle 4 through the box 3 .
  • the vehicle 4 includes the single battery 1 according to the above-mentioned embodiment of the first aspect of the present disclosure, and the single battery 1 is installed on the body of the vehicle 4 or the chassis of the vehicle 4 .
  • the single battery 1 can be directly installed on the body of the vehicle 4 or the chassis of the vehicle 4 , or the single battery 1 can be installed in the box 3 and assembled into a battery pack 2 , and the battery pack 2 can be installed on the vehicle through the box 3 4 body or chassis of a vehicle 4.
  • the vehicle 4 according to the embodiment of the present disclosure has the advantages of high safety, smooth air flow and good explosion-proof effect by using the above-mentioned single battery 1 or battery pack.
  • the single battery 1 or the battery pack 2 is installed on the body of the vehicle 4 or the chassis of the vehicle 4 , and the first side wall 120 is located above the second side wall 130 .
  • the first side wall 120 can face the inside of the vehicle 4, and the second side wall 130 can face the outside of the vehicle 4. That is to say, the explosion-proof valve 300 can face away from the passenger compartment of the vehicle 4.
  • the explosion-proof valve 300 can face away from the passenger compartment of the vehicle 4.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

一种单体电池(1)、电池包(2)和车辆(4),单体电池(1)包括:第二侧壁(130)的内壁面构造有朝背向内腔(110)的方向凹人的第一凹部(140)和多个第二凹部(150),第一凹部(140)在内腔(110)形成内主气道(141),多个第二凹部(150)在内腔(110)内形成多个支路气道(151),多个支路气道(151)分别与主气道(141)连通,第二侧壁(130)设有与主气道(141)位置对应的防爆孔(160);防爆阀(300)安装于第二侧壁(130);极芯(400)设于壳体(100)内且与防爆孔(160)间隔设置。

Description

单体电池、电池包和车辆
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2022年5月12日提交的名称为“单体电池、电池包和车辆”的中国专利申请号“202221130529.1”的优先权。
技术领域
本公开涉及车辆技术领域,具体而言,涉及一种单体电池、电池包和车辆。
背景技术
相关技术中,单体电池的极柱和防爆阀通常设于同一端,而当单体电池发生失控时,喷出的高温气体或者火焰容易会烧伤单体电池的极柱以及与其连接的器件,产生高压拉弧或二次危害。
或者,单体电池设有凸台,凸台向单体电池的内部凸起,防爆阀设于凸台上,从而将防爆阀与极柱间隔开。然而,由于单体电池的内腔与防爆孔之间的连通性较差,且单体电池的极芯会直接与凸台止抵,导致防爆孔被极芯堵住,单体电池内部的气流不能够与外界正常流通,防爆效果较差。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种单体电池,该单体电池具有安全性高、气流流动通畅和防爆效果好等优点。
本公开的另一个目的在于提出了一种具有上述单体电池的电池包。
本公开的再一个目的在于提出了一种具有上述单体电池和电池包的车辆。
根据本公开的第一方面实施例的单体电池,包括:壳体,所述壳体具有内腔以及相对的第一侧壁和第二侧壁,所述第二侧壁的内壁面构造有第一凹部和多个第二凹部,所述第一凹部和所述第二凹部均朝背向所述内腔的方向凹入,所述第一凹部在所述内腔内形成主气道,多个所述第二凹部在所述内腔内形成多个支路气道,多个所述支路气道分别与所述主气道连通,所述第二侧壁设有与所述主气道位置对应的防爆孔;极柱,所述极柱设于所述壳体的除所述第二侧壁之外的壁;防爆阀,所述防爆阀安装于所述第二侧壁,且所述防爆阀用于封盖所述防爆孔;和极芯,所述极芯设于所述壳体内,且所述极芯与所述防爆孔间隔设置。
根据本公开实施例的单体电池,具有安全性高、气流流动通畅和防爆效果好等优点。
根据本公开的一些示例,所述主气道和多个所述支路气道至少在所述第二侧壁的长度方向上排布,所述主气道在所述第二侧壁的宽度方向上的尺寸大于每个所述支路气道在所述第二侧壁的宽度方向上的尺寸。
根据本公开的一些示例,所述主气道沿所述第二侧壁的宽度方向延伸,每个所述支路气道沿所述第二侧壁的长度方向延伸且多个所述支路气道在所述第二侧壁的长度方向上分布于所述主气道的两侧。
根据本公开的一些示例,所述主气道在所述第二侧壁的长度方向上的每一侧均布置有多个所述支路气道,多个所述支路气道沿所述第二侧壁的宽度方向间隔设置;所述主气道在所述第二侧壁的长度方向上的两侧的所述支路气道的数量相等;所述主气道在所述第二侧壁的长度方向上的两侧的所述支路气道一一对应地设置。
根据本公开的一些示例,所述第二侧壁的外壁面构造有第一凸部,所述第一凸部朝背向所述内腔的方向凸出,所述第一凸部与所述第一凹部的位置对应,所述防爆孔贯通所述第一凸部和所述第一凹部。
根据本公开的一些示例,所述第二侧壁的外壁面构造有多个第二凸部,每个所述第二凸部朝背向所述内腔的方向凸出,多个所述第二凸部与多个所述第二凹部的位置一一对应。
根据本公开的一些示例,所述第一凸部和所述第一凹部在所述第二侧壁的长度方向上位于所述第二侧壁的中心处。
根据本公开的一些示例,所述主气道的深度为0.5mm~3mm;每个所述支路气道的深度为0.5mm~3mm。
根据本公开的一些示例,所述极芯的数量为多个,且多个所述极芯依次排布,多个所述极芯的排布方向与所述极芯的厚度方向一致,每个所述极芯至少对应一个所述支路气道。
根据本公开的一些示例,所述极芯在所述第二侧壁的长度方向的尺寸为L1,所述第一凹部和多个所述第二凹部在所述第二侧壁上的最大长度为L2,其中,所述L1、L2满足:0.04≤L2/L1≤0.96。
根据本公开的一些示例,所述L1、L2进一步满足:L1≤500mm,L2≥20mm。
根据本公开的一些示例,所述主气道在所述第二侧壁的长度方向上位于所述极芯的中心处;所述防爆孔位于所述主气道的中心处;所述防爆孔在所述极芯的厚度方向上位于所述极芯的中心处。
根据本公开的一些示例,所述单体电池还包括:绝缘膜,所述绝缘膜设于所述内腔内,且所述绝缘膜位于所述内腔的至少一部分和所述防爆阀之间。
根据本公开的一些示例,所述极柱包括正极极柱和负极极柱,所述壳体为铝壳,所述正极极柱与所述壳体电连接,以使所述正极极柱的电压和所述壳体的电压之差不小于0V且不大于2.5V。
根据本公开的一些示例,所述极柱包括正极极柱和负极极柱,所述壳体为钢壳,所述负极极柱和所述壳体电连接,以使所述壳体的电压和所述负极极柱的电压之差不小于0V且不大于2.5V。
根据本公开的一些示例,所述壳体包括:壳身,所述第二侧壁和所述内腔形成于所述壳身, 所述壳身设有与所述第二侧壁相对的开口,所述开口与所述内腔连通;壳盖,所述壳盖安装于所述壳身,且所述壳盖封盖所述内腔,所述第一侧壁形成于所述壳盖,所述极柱与所述壳盖连接。
根据本公开的第二方面实施例的电池包,包括:箱体;根据本公开上述第一方面实施例的单体电池,所述单体电池安装于所述箱体内,且所述防爆阀朝向所述箱体的底壁。
根据本公开的第二方面实施例的电池包,通过利用单体电池,具有安全性高、气流流动通畅和防爆效果好等优点。
根据本公开的第三方面实施例的车辆,包括根据本公开的上述第一方面实施例的单体电池和根据本公开的上述第二方面实施例的电池包,所述第一侧壁位于所述第二侧壁的上方。
根据本公开的第三方面实施例的车辆,通过利用单体电池和电池包,具有安全性高、气流流动通畅和防爆效果好等优点。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的单体电池的结构示意图。
图2是根据本公开实施例的单体电池的另一视角的结构示意图。
图3是根据本公开实施例的单体电池的又一视角的结构示意图。
图4是沿图3中A-A线的剖视图。
图5是图4中圈示的B部放大图。
图6是沿图3中C-C线的剖视图。
图7是图6中圈示的D部放大图;
图8是根据本公开实施例的电池包的示意图
图9是根据本公开实施例的车辆的示意图;
图10是根据本公开另一个实施例的车辆的示意图。
附图标记:
单体电池1、
壳体100、内腔110、第一侧壁120、第二侧壁130、第一凸部131、第二凸部132、第一
凹部140、主气道141、第二凹部150、支路气道151、防爆孔160、壳身170、壳盖180、
极柱200、正极极柱210、负极极柱220、防爆阀300、极芯400、绝缘膜500;
电池包2、箱体3、车辆4。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面参考附图描述根据本公开实施例的单体电池1。
如图1-图7所示,根据本公开实施例的单体电池1,包括壳体100、极柱200、防爆阀300和极芯400。
壳体100具有内腔110以及相对的第一侧壁120和第二侧壁130,第二侧壁130的内壁面构造有第一凹部140和多个第二凹部150,第一凹部140和第二凹部150均朝背向内腔110的方向凹入,第一凹部140在内腔110内形成主气道141,多个第二凹部150在内腔110内形成多个支路气道151,多个支路气道151分别与主气道141连通,第二侧壁130设有与主气道141位置对应的防爆孔160,极柱200设于壳体100的除第二侧壁130之外的壁,防爆阀300安装于第二侧壁130,且防爆阀300用于封盖防爆孔160,极芯400设于壳体100内,且极芯400与防爆孔160间隔设置。
其中,防爆阀300设有一个爆破值,当单体电池1的内腔110的压强小于防爆阀300的爆破值时为正常工作状态;当内腔110的压强大于或等于防爆阀300的爆破值时,防爆阀300开启,气体急速排放,从而迅速降低腔内压力,防止单体电池1爆破,此时防爆阀300起到防爆的作用。
为了将防爆阀300与内腔110内的电解液隔离开,本公开的一些实施例中绝缘膜500,绝缘膜500设于内腔110内,且绝缘膜500位于内腔110的至少一部分和防爆阀300之间。通过绝缘膜500能够将防爆阀300与电解液隔离开,防止防爆阀300因电解液长期浸泡而被腐蚀,从而防止电池漏液,同时避免防爆阀300开启压力因电解液的影响而发生变大或变小,使防爆阀300能够处于稳定可靠的工作状态。
举例而言,绝缘膜500可以为PP(polypropylene,聚丙烯)、PE(polyethylene,聚乙 烯)或者其他聚酯类化合物制成。
在本公开的一些实施例中,绝缘膜500与主气道141的腔壁和支路气道151的腔壁间隔设置,且绝缘膜500不透气,当内腔110的除了主气道141和支路气道151之外的部分的气压较小时,此时主气道141和支路气道151与内腔110的除主气道141和支路气道151之外的部分不连通,当内腔110内的气压增多,绝缘膜500能够被挤压变形,此时内腔110的除主气道141和支路气道151之外的部分内的气体可以冲破绝缘膜500进入主气道141和支路气道151。
在本公开的一些实施例中,绝缘膜500与主气道141的腔壁和支路气道151的腔壁间隔设置,且绝缘膜500透气,这样主气道141和支路气道151可以与内腔110的除主气道141和支路气道151之外的部分保持连通,内腔110的除主气道141和支路气道151之外的部分内的气体能够通过绝缘膜500进入主气道141和支路气道151。
在本公开的一些实施例中,绝缘膜500可以直接与主气道141的腔壁和支路气道151的腔壁贴合设置,这样主气道141和支路气道151可以与内腔110的除主气道141和支路气道151之外的部分保持连通,内腔110的除主气道141和支路气道151之外的部分内的气体能够直接进入主气道141和支路气道151内。
根据本公开实施例的单体电池1,通过在壳体100设有内腔110以及相对的第一侧壁120和第二侧壁130,极柱200设于壳体100的除第二侧壁130之外的壁,第二侧壁130设有与主气道141连通的防爆孔160,防爆阀300安装于第二侧壁130且用于封盖防爆孔160,极芯400设于壳体100内且与防爆孔160间隔设置。由于极柱200和防爆孔160分别设于壳体100的不同侧壁,极柱200和防爆孔160能够间隔开,即便单体电池1失控,防爆孔160所喷出的高温气体或火焰也不会烧到极柱200,避免了二次危害,安全性更高。并且,极芯400设于壳体100内且与防爆孔160间隔设置,这样,极芯400不会封堵防爆孔160,内腔110内的气体能够通过防爆孔160与外界连通。
另外,第二侧壁130的内壁面构造有朝背向内腔110的方向凹陷的第一凹部140和多个第二凹部150,需要说明的是,内腔110能够容纳极芯400,第一凹部140和第二凹部150都是在现有技术中的壳体的第二侧壁上向远离第一侧壁的方向凹陷而形成的,第一凹部140和第二凹部150不会导致内腔110的空间变小。也就是说,本公开实施例的单体电池1的内腔110的体积与现有技术的单体电池的内腔的体积相同,内腔110的空间足够大,极芯400的体积可以较大,保证单体电池1的能量密度。
并且,第一凹部140形成与内腔110连通的主气道141,多个第二凹部150形成与内腔110连通的多个支路气道151,多个支路气道151分别与主气道141连通。
将防爆阀300设置在与极柱200相对的第二侧壁130,由于极芯400和第二侧壁130之间的空间较小,无法存储极芯400产生的气体,因此若是不设置凹部,则极芯400产生的气体可以会移动至极芯400和第一侧壁120之间,这样在内腔110内的压力达到防爆阀300的爆 破值时,内腔110内的气体也无法通过防爆孔160快速排出,存在较大风险。
而本公开的单体电池1通过设有第一凹部140和多个第二凹部150,来形成存储极芯400产生的气体的主气道141和多个支路气道151,这样在内腔110内的压力达到防爆阀300的爆破值时,防爆阀300打开,极芯400所产生的气体的一部分储存在主气道141中,可以直接通过主气道141流向防爆孔160,极芯400所产生的气体的另一部分储存在支路气道151中,可以通过支路气道151流向主气道141和防爆孔160,在保证第二侧壁130的结构强度,防止因内腔110的压力过大导致第二侧壁130变形,避免影响防爆阀160开启的压力,有利于单体电池1的正常使用,同时主气道141加上多个支路气道151能够覆盖更大面积的第二侧壁130,且主气道141和多个支路气道151同时进行气流流动,排气会更加通畅,也就是说,极芯400所产生的气体能够更加快速地通过主气道141和多个支路气道151流向防爆孔160,主气道141和多个支路气道151能够通过防爆孔160将内部的气体更加快速地排向单体电池1外,气流流通更加顺畅,防爆效果更好。
如此,根据本公开实施例的单体电池1具有安全性高、气流流动通畅和防爆效果好等优点。
在本公开的一些具体实施例中,极柱200设于第一侧壁120,防爆孔160设置再第二侧壁130。也就是说,极柱200和防爆孔160设置在壳体100的相对两侧,这样,极柱200和防爆孔160能够更好地间隔开,极柱200和防爆孔160距离更远,即便单体电池1失控,防爆孔160所喷出的高温气体或火焰也不会烧到极柱200,更有效地避免了二次危害,安全性更高。并且,极芯400不会封堵防爆孔160,第一气道510内的气体能够通过防爆孔160与外界连通。
在本公开的一些具体实施例中,如图2和图3所示,主气道141和多个支路气道151至少在第二侧壁130的长度方向上排布,这样,主气道141和多个支路气道151在第二侧壁130的长度方向上覆盖的面积更大,极芯400失控时所产生的气体能够更快速地通过主气道141和多个支路气道151流向单体电池1外。
并且,主气道141在第二侧壁130的宽度方向上的尺寸大于每个支路气道151在第二侧壁130的宽度方向上的尺寸,通过将主气道141的宽度方向上的尺寸设置较大,主气道141的在第二侧壁130的每一侧能够连接多个支路气道151,支路气道151和主气道141之间的连通更加方便,而且主气道141的横截面积可以较大,流通性更好。
在本公开的一些具体实施例中,如图2和图3所示,主气道141沿第二侧壁130的宽度方向延伸,每个支路气道151沿第二侧壁130的长度方向延伸且多个支路气道151在第二侧壁130的长度方向上分布于主气道141的两侧。
如此,沿第二侧壁130的宽度方向,主气道141能够覆盖更大面积,进一步提高了对极芯400的排气效果,而且,主气道141的在第二侧壁130的长度方向上的两侧都设有多个支路气道151,多个支路气道151和主气道141能够在第二侧壁130的长度方向上尽可能地覆盖更大面积,布局更广且基本无死角,进一步提高极芯400失控时主气道141和支路气道151对气流的流动速率,单体电池1的防爆效果更好。
在本公开的一些具体实施例中,如图2和图3所示,主气道141在第二侧壁130的长度方向上的每一侧均布置有多个支路气道151,多个支路气道151沿第二侧壁130的宽度方向间隔设置,主气道141在第二侧壁130的长度方向上的两侧的支路气道151的数量相等,主气道141在第二侧壁130的长度方向上的两侧的支路气道151一一对应地设置。
换言之,多个支路气道151关于主气道141对称设置,这样,沿第二侧壁130的长度方向,位于主气道141的每一侧的多个支路气道151所覆盖极芯400的面积相同,主气道141的两侧的气流流通一致性更好,避免出现主气道141的一侧气流流动快而主气道141的另一侧气流堵塞的问题。
举例而言,在第二侧壁130的长度方向上,主气道141的每一侧可以设置两个支路气道151,这样能够提高支路气道151的总体积,气流流通更快,同时也能够避免支路气道151设置过多,第二侧壁130的结构强度也比较高,第二侧壁130对极芯400的支撑更加可靠。当然,在第二侧壁130的长度方向上,主气道141的每一侧的支路气道151的数量可以根据极芯400的数量进行相应的增加,从而可以保证极芯400所产生的气体能够快速汇集到主气道141和防爆孔160的位置。
在本公开的一些具体实施例中,如图2和图3所示,第二侧壁130的外壁面构造有第一凸部131,第一凸部131朝背向内腔110的方向凸出,第一凸部131与第一凹部140的位置对应。
也就是说,第一凹部140向远离内腔110的方向凹入的部分,第一凸部131就对应地向远离内腔110的方向凸起,这样,第二侧壁130在第一凹部140和第一凸部131处的厚度能够较厚,有利于提高第二侧壁130的结构强度,使壳体100的整体结构强度较高。
并且,防爆孔160可以沿垂直于第二侧壁130的方向贯穿第一凹部140和第一凸部131,从而能够将单体电池1的内腔110与外界连通,而且防爆孔160的延伸长度可以与第二侧壁130的厚度相同,即防爆孔160的长度可以较短,结构更加简单,对气流的疏导更加快。
在本公开的一些具体实施例中,如图2-图7所示,第二侧壁130的外壁面构造有多个第二凸部132,每个第二凸部132朝背向内腔110的方向凸出,多个第二凸部132与多个第二凹部150的位置一一对应。
也就是说,第二凹部150向远离内腔110的方向凹入的部分,第二凸部132就对应地向远离内腔110的方向凸起,这样,第二侧壁130在第二凹部150和第二凸部132处的厚度能够较厚,有利于提高第二侧壁130的结构强度,使壳体100的整体结构强度较高。
在本公开的一些具体实施例中,如图4-图7所示,第二侧壁130在第一凸部131和第一凹部140处的厚度与其余位置的厚度相同,第二侧壁130在每个第二凸部132和与其对应的第二凹部150处的厚度与其余位置的厚度相同。
由此,可以保证第二侧壁130的厚度一致性,使第二侧壁130的厚度更加均匀,避免了第二侧壁130出现局部厚局部薄的情况出现,进一步地提高了第二侧壁130的结构强度,第二侧壁130对极芯400的支撑更加可靠,壳体100的整体结构强度更高。
在本公开的一些具体实施例中,如图2-图7所示,第一凸部131和第一凹部140在第二侧壁130的长度方向上位于第二侧壁130的中心处。
可以理解的是,单体电池1的极芯400会产生气体,通过将第一凸部131和第一凹部140设于第二侧壁130的长度方向的中心处,可以使主气道141位于极芯400的长度方向的中心处,极芯400所产生的气体能更轻松地进入到主气道141,且主气道141距离第二侧壁130的长度方向的两端距离相同,极芯400的在第二侧壁130的长度方向的两端的气体和主气道141的距离相同,不会出现某一侧的气体难以进入到主气道141内的情况,使单体电池1的排气更加通畅。
而且,这样可以使壳体100在第二侧壁130的长度方向上的结构相对称,壳体100在第二侧壁130的长度方向上的两端的结构强度相同,有利于保持壳体100结构强度的一致性,同时可以简化壳体100的结构,便于加工。
在本公开的一些具体实施例中,单体电池1还包括保护片(图中未示意),保护片与壳体100连接且位于防爆阀300的背向内腔110的一侧。
其中,保护片可以将防爆阀300遮挡起来,无论防爆阀300安装于防爆孔160的朝向内腔110的一侧还是设于防爆孔160的背向内腔110的一侧,保护片都能够避免车辆的其他零部件直接与防爆阀300接触,同时保护片还能够在单体电池1的运输过程中保护防爆阀300,避免运输过程中对防爆阀300造成磕碰损伤,延长单体电池1的使用寿命。
在本公开的一些具体实施例中,主气道141的深度h1为0.5mm~3mm,每个支路气道151的深度h2为0.5mm~3mm。例如,每个主气道141的深度h1可以为0.5mm、1mm、1.5mm、2mm、2.5mm或3mm,每个支路气道151的深度h2可以为0.5mm、1mm、1.5mm、2mm、2.5mm或3mm。
这样,一方面,可以使主气道141的深度h1和支路气道151的深度h2较深,主气道141的空间和支路气道151的的空间更大,能够容纳更多的气体,防爆时能够将极芯400所产生的气体更快速排出,气流流动更加通畅,防爆效果更好;另一方面,可以避免主气道141的深度h1和支路气道151的深度h2过深,这样主气道141和支路气道151所占用单体电池1的空间不会过大,避免使极芯400容量产生较大的损失,在保证单体电池1的能量密度较高的同时,可以使单体电池1的体积较小。
在本公开的一些具体实施例中,如图3所示,极芯400的数量为多个,且多个极芯400依次排布,极芯400的排布方向与极芯400的厚度方向一致,每个极芯400至少对应一个支路气道151。其中,极芯400可以为2个或者4个等偶数个。
例如,每个极芯400可以对应主气道141两侧的位置对应的支路气道151,这样可以保证每个极芯400都有支路气道151为其在主气道141两侧的部分进行气流疏导,更进一步地提高了单体电池1的排气速率,防爆效果更好,单体电池1的安全性更高。
在本公开的一些具体实施例中,如图3所示,极芯400在第二侧壁130的长度方向的尺寸为L1,第一凹部140和多个第二凹部150在第二侧壁130上的最大长度为L2,其中,L1、L2 满足:0.04≤L2/L1≤0.96。例如,L2/L1可以为0.04、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9或0.96。
这样,一方面,可以避免第一凹部140或者第二凹部150在第二侧壁130的长度方向上的尺寸过小,从而使第一凹部140和第二凹部150在第二侧壁130的长度方向上的尺寸较大,主气道141和支路气道151的空间更大,排气更加顺畅;另一方面,可以避免第一凹部140和第二凹部150在极芯400的长度方向上的尺寸过大,这样第二侧壁130的除了第一凹部140和第二凹部150之外的部分的尺寸也可以较大,该部分能够稳定支撑极芯400,从而避免极芯400直接与第一凹部140的底壁或者第二凹部150的底壁接触,保证主气道141和支路气道151内的气体正常流通。
进一步地,如图3所示,极芯400在第二侧壁130的长度方向的尺寸L1≤500mm,第一凹部140和多个第二凹部150在第二侧壁130上的最大长度L2≥20mm。
这样,极芯400的长度不会过长,从而使单体电池1的整体长度不会过长,有利于提高单体电池1的整体结构强度,而且,第一凹部140的长度和多个第二凹部150的长度也不会过短,这样可以保证主气道141和支路气道151的长度足够长,主气道141和支路气道151的空间更加充裕,排气更加通畅。
在本公开的一些具体实施例中,如图2和图3所示,主气道141在第二侧壁130的长度方向上位于极芯400的中心处,这样,主气道141可以与极芯400的中心处相对应,极芯400所产生的气体能更轻松地进入到主气道141,使单体电池1的排气更加通畅,并且,第二侧壁130在其长度方向上位于主气道141的两侧的尺寸相同,也就是说,第二侧壁130的长度方向的两端的结构强度一致性更好,第二侧壁130对极芯400的支撑更加稳定可靠。
并且,防爆孔160位于主气道141的中心处,防爆孔160在极芯400的厚度方向上位于极芯400的中心处。
举例而言,防爆孔160可以既位于极芯400的厚度方向的中心处,也在第二侧壁130长度方向上位于极芯400的中心处,通常情况下极芯400的中心处产生的气体最多,通过将防爆孔160设于极芯400的中心处,防爆阀300可以更有效地感应单体电池1内的气压情况,从而在单体电池1内气压过大时,防爆阀300可以立即打开以排出单体电池1内的气体,进一步地提高了单体电池1的防爆效果。
在本公开的一些具体实施例中,如图1所示,极柱200包括正极极柱210和负极极柱220,壳体100为铝壳,此时防爆阀300可以为铝材制成,正极极柱210与壳体100电连接,以使正极极柱210的电压和壳体100的电压之差为0V~2.5V,其中,正极极柱210的电压和壳体100的电压之差是指,正极极柱210的电压减去壳体100的电压的值。
需要说明的是,壳体100和防爆阀300可以为金属铝或者铝合金制成,单体电池1内的电解液通常为锂离子电解液,铝在低电位的情况下会与锂离子发生反应形成金属化合物。这样,正极极柱210和壳体100之间的电压差较小,壳体100的电压会接近正极极柱210的电压, 即提高了壳体100的电位,避免壳体100和防爆阀300被锂离子电解液腐蚀,从而可以对壳体100和安装于壳体100的防爆阀300进行保护,进一步避免壳体100和防爆阀300被腐蚀,延长了单体电池1的使用寿命。
进一步地,正极极柱210与壳体100之间连接有电阻。如此,即便单体电池1的正极极柱210和壳体100形成一个回路,例如,单体电池1的正极极柱210连接到一个不设有电阻的电池的负极且壳体100连接到该电池的正极,此时,单体电池1的正极极柱210和壳体100之间的电阻也可以起到保护单体电池1的作用,避免单体电池1发生短路,单体电池1的使用安全性更高。
在本公开的一些具体实施例中,如图1所示,极柱200包括正极极柱210和负极极柱220,壳体100为钢壳,此时防爆阀300可以为钢材制成,负极极柱220和壳体100电连接,以使壳体100的电压和负极极柱220的电压之差为0V~2.5V,其中,壳体100的电压和负极极柱220的电压之差是指,壳体100的电压减去负极极柱220的电压的值。
需要说明的是,钢材在低电位的情况下会与锂离子发生发生形成金属化合物,通过将负极极柱220和壳体100之间的电压差较小,壳体100的电压会接近负极极柱220的电压,即降低了壳体100的电位,避免壳体100和防爆阀300被锂离子电解液腐蚀,从而可以对壳体100和安装于壳体100的防爆阀300进行保护,进一步避免壳体100和防爆阀300被腐蚀,延长了单体电池1的使用寿命。
进一步地,负极极柱220和壳体100之间连接有电阻。这样,即便单体电池1的负极极柱220和壳体100形成一个回路,例如,单体电池1的负极极柱220连接到一个不设有电阻的电池的正极且壳体100连接到该电池的负极,此时,单体电池1的负极极柱220和壳体100之间的电阻可以起到保护单体电池1的作用,避免单体电池1发生短路,单体电池1的使用安全性更高。
在本公开的一些具体实施例中,如图1和图2所示,壳体100包括壳身170和壳盖180。其中,壳体100可以为铝合金。
第二侧壁130和内腔110形成于壳身170,壳身170设有与第二侧壁130相对的开口,开口与内腔110连通,壳盖180安装于壳身170,且壳盖180封盖内腔110,第一侧壁120形成于壳盖180,极柱200与壳盖180连接。通过将壳体100分体设置,一方面,可以降低壳体100的加工难度,从而简化壳身170和壳盖180的加工步骤,加工更加方便;另一方面,便于将极芯400和电解液放入内腔110内,装配时可以先将极芯400通过开口装入内腔110,再通过壳盖180封盖开口,从而实现内腔110的密封,以保护单体电池1的极芯400。
如图8所示,根据本公开实施例的电池包2,电池包2包括箱体3和根据本公开上述第一方面实施例的单体电池1,单体电池1安装于箱体3内且防爆阀300朝向箱体3的底壁。这样,当单体电池1失控时,可以通过防爆阀300向箱体3的底部喷射高温气体或者火焰。
根据本公开实施例的电池包2,通过采用上述单体电池1,具有安全性高、气流流动通畅 和防爆效果好等优点。
如图9和图10所示,根据本公开实施例的车辆4,车辆包括根据本公开上述第一方面实施例的单体电池1和根据本公开上述第二方面实施例的电池包2,电池包2通过箱体3安装于车辆4的车身或车辆4的底盘。或者,车辆4包括根据本公开上述第一方面实施例的单体电池1,单体电池1安装于车辆4的车身或车辆4的底盘上。也即,单体电池1可以直接安装在车辆4的车身或车辆4的底盘上,或者,单体电池1安装于箱体3内组装成电池包2,电池包2通过箱体3安装在车辆4的车身或车辆4的底盘。
根据本公开实施例的车辆4,通过采用上述单体电池1或或电池包,具有安全性高、气流流动通畅和防爆效果好等优点。
在本公开的一些具体实施例中,单体电池1或电池包2安装于车辆4的车身或车辆4的底盘,第一侧壁120位于第二侧壁130的上方。
具体地,第一侧壁120可以朝向车辆4的内部,第二侧壁130可以朝向车辆4的外部,也就是说,防爆阀300可以背向车辆4的乘客舱,当单体电池1发生失控时,可以通过防爆阀300向远离车辆4的乘客舱的方向喷射高温气体或者火焰,从而避免了火焰直接喷向车内,降低了车内人员受伤机率,进一步保护了车内的人员安全。
根据本公开实施例的单体电池1、电池包2和车辆4的其他构成以及操作对于本域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (18)

  1. 一种单体电池(1),其特征在于,包括:
    壳体(100),所述壳体(100)具有内腔(110)以及相对的第一侧壁(120)和第二侧壁(130),所述第二侧壁(130)的内壁面构造有第一凹部(140)和多个第二凹部(150),所述第一凹部(140)和所述第二凹部(150)均朝背向所述内腔(110)的方向凹入,所述第一凹部(140)在所述内腔(110)内形成主气道(141),多个所述第二凹部(150)在所述内腔(110)内形成多个支路气道(151),多个所述支路气道(151)分别与所述主气道(141)连通,所述第二侧壁(130)设有与所述主气道(141)位置对应的防爆孔(160);
    极柱(200),所述极柱(200)设于所述壳体(100)的除所述第二侧壁(130)之外的侧壁;
    防爆阀(300),所述防爆阀(300)安装于所述第二侧壁(130),且所述防爆阀(300)用于封盖所述防爆孔(160);和
    极芯(400),所述极芯(400)设于所述壳体(100)内,且所述极芯(400)与所述防爆孔(160)间隔设置。
  2. 根据权利要求1所述的单体电池(1),其特征在于,所述主气道(141)和多个所述支路气道(151)至少在所述第二侧壁(130)的长度方向上排布,所述主气道(141)在所述第二侧壁(130)的宽度方向上的尺寸大于每个所述支路气道(151)在所述第二侧壁(130)的宽度方向上的尺寸。
  3. 根据权利要求1或2所述的单体电池(1),其特征在于,所述主气道(141)沿所述第二侧壁(130)的宽度方向延伸,每个所述支路气道(151)沿所述第二侧壁(130)的长度方向延伸,且多个所述支路气道(151)在所述第二侧壁(130)的长度方向上分布于所述主气道(141)的两侧。
  4. 根据权利要求1-3任一项所述的单体电池(1),其特征在于,所述主气道(141)在所述第二侧壁(130)的长度方向上的每一侧均布置有多个所述支路气道(151),多个所述支路气道(151)沿所述第二侧壁(130)的宽度方向间隔设置;
    所述主气道(141)在所述第二侧壁(130)的长度方向上的两侧的所述支路气道(151)的数量相等;
    所述主气道(141)在所述第二侧壁(130)的长度方向上的两侧的所述支路气道(151)一一对应地设置。
  5. 根据权利要求1-4任一项所述的单体电池(1),其特征在于,所述第二侧壁(130)的外壁面构造有第一凸部(131),所述第一凸部(131)朝背向所述内腔(110)的方向凸出,所述第一凸部(131)与所述第一凹部(140)的位置对应,所述防爆孔(160)贯通所述第一 凸部(131)和所述第一凹部(140)。
  6. 根据权利要求5所述的单体电池(1),其特征在于,所述第二侧壁(130)的外壁面构造有多个第二凸部(132),每个所述第二凸部(132)朝背向所述内腔(110)的方向凸出,多个所述第二凸部(132)与多个所述第二凹部(150)的位置一一对应。
  7. 根据权利要求6所述的单体电池(1),其特征在于,所述第一凸部(131)和所述第一凹部(140)在所述第二侧壁(130)的长度方向上位于所述第二侧壁(130)的中心处。
  8. 根据权利要求1-7任一项所述的单体电池(1),其特征在于,所述主气道(141)的深度为0.5mm~3mm;
    每个所述支路气道(151)的深度为0.5mm~3mm。
  9. 根据权利要求1-8任一项所述的单体电池(1),其特征在于,所述极芯(400)的数量为多个,且多个所述极芯(400)依次排布,多个所述极芯(400)的排布方向与所述极芯(400)的厚度方向一致,每个所述极芯(400)至少对应一个所述支路气道(151)。
  10. 根据权利要求1-9任一项所述的单体电池(1),其特征在于,所述极芯(400)在所述第二侧壁(130)的长度方向的尺寸为L1,所述第一凹部(140)和多个所述第二凹部(150)在所述第二侧壁(130)上的最大长度为L2,其中,所述L1、L2满足:0.04≤L2/L1≤0.96。
  11. 根据权利要求10所述的单体电池(1),其特征在于,所述L1、L2进一步满足:L1≤500mm,L2≥20mm。
  12. 根据权利要求1-11任一项所述的单体电池(1),其特征在于,所述主气道(141)在所述第二侧壁(130)的长度方向上位于所述极芯(400)的中心处;
    所述防爆孔(160)位于所述主气道(141)的中心处;
    所述防爆孔(160)在所述极芯(400)的厚度方向上位于所述极芯(400)的中心处。
  13. 根据权利要求1-12任一项所述的单体电池(1),其特征在于,还包括:
    绝缘膜(500),所述绝缘膜(500)设于所述内腔(110)内,且所述绝缘膜(500)位于所述内腔(110)的至少一部分和所述防爆阀(300)之间。
  14. 根据权利要求1-13任一项所述的单体电池(1),其特征在于,所述极柱(200)包括正极极柱(210)和负极极柱(220),所述壳体(100)为铝壳,所述正极极柱(210)与所述壳体(100)电连接,以使所述正极极柱(210)的电压和所述壳体(100)的电压之差不小于0V且不大于2.5V。
  15. 根据权利要求1-13任一项所述的单体电池(1),其特征在于,所述极柱(200)包括正极极柱(210)和负极极柱(220),所述壳体(100)为钢壳,所述负极极柱(220)和所述壳体(100)电连接,以使所述壳体(100)的电压和所述负极极柱(220)的电压之差不小于0V且不大于2.5V。
  16. 根据权利要求1-15中任一项所述的单体电池(1),其特征在于,所述壳体(100) 包括:
    壳身(170),所述第二侧壁(130)和所述内腔(110)形成于所述壳身(170),所述壳身(170)设有与所述第二侧壁(130)相对的开口,所述开口与所述内腔(110)连通;
    壳盖(180),所述壳盖(180)安装于所述壳身(170),且所述壳盖(180)封盖所述内腔(110),所述第一侧壁(120)形成于所述壳盖(180),所述极柱(200)与所述壳盖(180)连接。
  17. 一种电池包(2),其特征在于,包括:
    箱体(3);
    根据权利要求1-16中任一项所述的单体电池(1),所述单体电池(1)安装于所述箱体(3)内,且所述防爆阀(300)朝向所述箱体(3)的底壁。
  18. 一种车辆(4),其特征在于,包括根据权利要求1-16任一项所述的单体电池(1)或根据权利要求17所述的电池包(2),所述第一侧壁(120)位于所述第二侧壁(130)的上方。
PCT/CN2023/093498 2022-05-12 2023-05-11 单体电池、电池包和车辆 WO2023217226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221130529.1 2022-05-12
CN202221130529.1U CN217387441U (zh) 2022-05-12 2022-05-12 单体电池、电池包和车辆

Publications (1)

Publication Number Publication Date
WO2023217226A1 true WO2023217226A1 (zh) 2023-11-16

Family

ID=83084854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/093498 WO2023217226A1 (zh) 2022-05-12 2023-05-11 单体电池、电池包和车辆

Country Status (2)

Country Link
CN (1) CN217387441U (zh)
WO (1) WO2023217226A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN217387441U (zh) * 2022-05-12 2022-09-06 比亚迪股份有限公司 单体电池、电池包和车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205863226U (zh) * 2016-05-16 2017-01-04 宁德时代新能源科技股份有限公司 二次电池
CN206098459U (zh) * 2016-07-08 2017-04-12 宁德时代新能源科技股份有限公司 二次电池及其电池壳体组件
JP2019133855A (ja) * 2018-01-31 2019-08-08 株式会社豊田自動織機 蓄電装置
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN215771430U (zh) * 2021-12-06 2022-02-08 比亚迪股份有限公司 电池包和具有其的车辆
CN217387441U (zh) * 2022-05-12 2022-09-06 比亚迪股份有限公司 单体电池、电池包和车辆

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205863226U (zh) * 2016-05-16 2017-01-04 宁德时代新能源科技股份有限公司 二次电池
CN206098459U (zh) * 2016-07-08 2017-04-12 宁德时代新能源科技股份有限公司 二次电池及其电池壳体组件
JP2019133855A (ja) * 2018-01-31 2019-08-08 株式会社豊田自動織機 蓄電装置
CN209401662U (zh) * 2019-03-28 2019-09-17 宁德时代新能源科技股份有限公司 电池包
CN215771430U (zh) * 2021-12-06 2022-02-08 比亚迪股份有限公司 电池包和具有其的车辆
CN217387441U (zh) * 2022-05-12 2022-09-06 比亚迪股份有限公司 单体电池、电池包和车辆

Also Published As

Publication number Publication date
CN217387441U (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
CN213026309U (zh) 电池的箱体、电池、用电装置和制备电池的装置
WO2021077565A1 (zh) 一种锂离子电池、电池模组、电池包及汽车
EP3965213B1 (en) Battery and related apparatus thereof, preparation method and preparation device
CN110277533B (zh) 电池模组
KR20170044473A (ko) 배터리 팩
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
CN213636145U (zh) 电池、包括电池的装置和制备电池的设备
WO2023217226A1 (zh) 单体电池、电池包和车辆
CN115472997B (zh) 电池端盖组件、储能装置以及用电设备
WO2023065974A1 (zh) 一种电芯、电池及用电装置
CN217182356U (zh) 端盖组件、电池单体、电池及用电装置
WO2023130924A1 (zh) 排气装置、电池单体、电池以及用电装置
CN115832548B (zh) 电池单体、电池以及用电装置
US20230084044A1 (en) Box body applied to battery, battery assembly, electric apparatus, and method and device for preparing battery assembly
WO2023217212A1 (zh) 单体电池、电池包和车辆
WO2023217223A1 (zh) 单体电池、电池包和车辆
CN219017758U (zh) 电池单体、电池及用电装置
WO2023030404A1 (zh) 泄压装置、电池单体、电池及用电设备
US20220384906A1 (en) End cover assembly, battery cell, battery, and device and method for manufacturing battery cell
WO2023050078A1 (zh) 电池、用电装置、制备电池的方法和装置
KR20230026436A (ko) 전지 박스 본체, 전지, 전기 장치, 전지 제조 방법 및 장치
CN219892347U (zh) 电池及其电池模组
WO2023236220A1 (zh) 电池单体、电池及用电设备
KR20070014656A (ko) 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802995

Country of ref document: EP

Kind code of ref document: A1