WO2023217212A1 - 单体电池、电池包和车辆 - Google Patents
单体电池、电池包和车辆 Download PDFInfo
- Publication number
- WO2023217212A1 WO2023217212A1 PCT/CN2023/093419 CN2023093419W WO2023217212A1 WO 2023217212 A1 WO2023217212 A1 WO 2023217212A1 CN 2023093419 W CN2023093419 W CN 2023093419W WO 2023217212 A1 WO2023217212 A1 WO 2023217212A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- side wall
- bottom bracket
- explosion
- pole
- single cell
- Prior art date
Links
- 230000003014 reinforcing effect Effects 0.000 claims description 16
- 125000006850 spacer group Chemical group 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 238000004891 communication Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 15
- 239000003792 electrolyte Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 7
- 238000004880 explosion Methods 0.000 description 7
- 229910001416 lithium ion Inorganic materials 0.000 description 7
- -1 polypropylene Polymers 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012943 hotmelt Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000009172 bursting Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
- H01M50/249—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/342—Non-re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/35—Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
- H01M50/367—Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/588—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/584—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
- H01M50/59—Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
- H01M50/593—Spacers; Insulating plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to the field of vehicle technology, and specifically, to a single battery, a battery pack and a vehicle.
- the poles and explosion-proof valves of a single battery are usually located at the same end.
- the high-temperature gas or flame ejected can easily burn the poles of the single battery and the connection with the single battery. Connected devices may cause high-voltage arcing or secondary hazards.
- a pallet is provided in the casing of the single cell to support the pole of the single cell.
- a through hole is usually provided on the pallet, but the The cross-sectional area of the through hole is small, resulting in insufficient air flow between the through hole and the explosion-proof valve, and the through hole is easily blocked.
- the air flow inside the single cell cannot circulate normally with the outside world, resulting in poor explosion-proof exhaust effect.
- the present disclosure aims to solve at least one of the technical problems existing in the prior art.
- one purpose of the present disclosure is to provide a single battery that has the advantages of high safety, smooth air flow, and good explosion-proof effect.
- the present disclosure also proposes a battery pack having the above-mentioned single cell.
- the present disclosure also proposes a vehicle having the above battery pack.
- a single cell includes: a housing having an inner cavity and opposing first and second side walls, the second side wall being provided with an explosion-proof hole;
- a first bottom bracket and a second bottom bracket, the first bottom bracket and the second bottom bracket are provided in the inner cavity, and the second side wall supports the first bottom bracket and the second bottom bracket.
- the first bottom bracket and the second bottom bracket are spaced apart, and the first bottom bracket and the second bottom bracket define a first air passage, and the explosion-proof hole passes through the first air passage.
- a pole the pole is arranged on the side wall of the housing except the second side wall; an explosion-proof valve, the explosion-proof valve is installed on the second side wall, And the explosion-proof valve is used to cover the explosion-proof hole; and a pole core, the pole core is located in the inner cavity and connected to the pole, the first bottom bracket and the second bottom bracket The pole cores are jointly supported so that the pole cores and the explosion-proof holes are spaced apart.
- the single battery according to the embodiment of the present disclosure has the advantages of high safety, smooth air flow, and good explosion-proof effect.
- At least one of the first bottom bracket and the second bottom bracket faces the second side wall.
- a second air channel is configured on one side of the body, the second air channel is connected with the first air channel, and at least one of the first bottom bracket and the second bottom bracket is provided with a plurality of exhaust holes, A plurality of exhaust holes communicate the second airway with the inner cavity.
- a plurality of support ribs is configured on a side of at least one of the first bottom bracket and the second bottom bracket facing the second side wall, and two adjacent support ribs The second airway is defined therebetween.
- the height of each support rib is 0.5mm ⁇ 3mm.
- the first air channel extends along a direction perpendicular to the second side wall
- the second air channel extends along a length direction of the second side wall
- the size of the pole core in the length direction of the second side wall is L 1
- the length of each of the first bottom bracket and the second bottom bracket is L 2
- the L 1 and L 2 satisfy: 0.04 ⁇ L 2 /L 1 ⁇ 0.45.
- the L 1 and L 2 further satisfy: L 1 ⁇ 500mm, L 2 ⁇ 20mm.
- the first bottom bracket includes a connected first side plate and a first bottom plate, the first bottom plate is connected to the second side wall, and the first bottom plate is connected along the second side wall.
- the side wall extends in the length direction, one end of the first side plate is connected to the first bottom plate, and the other end of the first side plate is connected to one end of the first side wall;
- the second bottom bracket It includes a connected second side plate and a second bottom plate, the second bottom plate is connected to the second side wall, and the second bottom plate extends along the length direction of the second side wall, and the second side plate One end is connected to the second bottom plate, and the other end of the second side plate is connected to the other end of the first side wall; wherein, the first bottom plate and the second bottom plate are spaced apart, and the The first base plate and the second base plate define the first air passage.
- a first reinforcing rib is provided on a side of the first side plate facing the pole core, and the first reinforcing rib extends along the length direction of the first side plate;
- a second reinforcing rib is provided on one side of the two side plates facing the pole core, and the second reinforcing rib extends along the length direction of the second side plate.
- the first side plate is parallel to the second side plate and perpendicular to the second side wall.
- the first side plate is connected to the one end of the first side wall through an insulating spacer, and the second side plate is connected to the first side wall through the insulating spacer.
- the other end is connected; the side of the insulating spacer facing the inner cavity is provided with a first limiting protrusion and a second limiting protrusion, and the first side plate stops against the first limiting protrusion.
- the side of the positioning protrusion facing away from the second limiting protrusion, and the second side plate stops against the side of the second limiting protrusion facing away from the first limiting protrusion.
- the explosion-proof hole is located at the center of the pole core in the thickness direction; and/or the explosion-proof hole is located at the center of the pole core in the length direction of the second side wall.
- the single cell further includes: an insulating film provided on a side of the explosion-proof valve facing the inner cavity.
- the pole is provided on the first side wall.
- the pole includes a positive pole and a negative pole
- the casing is an aluminum shell
- the positive pole and the casing are electrically connected so that the voltage of the positive pole The difference between the voltage of the shell and the shell is not less than 0V and not too large at 2.5V.
- the pole includes a positive pole and a negative pole
- the housing is a steel shell
- the negative pole and the housing are electrically connected so that the voltage of the housing and The voltage difference between the negative poles is not less than 0V and not greater than 2.5V.
- the housing includes a housing body, the second side wall and the inner cavity are formed in the housing body, and the housing body is provided with an opening opposite to the second side wall. , the opening is connected to the inner cavity; a shell cover, the shell cover is installed on the shell body and covers the inner cavity, the first side wall is formed on the shell cover, and the pole and The shell cover is connected.
- a battery pack according to a second embodiment of the present disclosure includes: a box; and a single battery according to the first embodiment of the present disclosure, the single battery is installed in the box and the explosion-proof valve faces The bottom wall of the box.
- the battery pack according to the second embodiment of the present disclosure by using the single battery according to the first embodiment of the present disclosure, has the advantages of high safety, smooth air flow, and good explosion-proof effect.
- a vehicle according to a third embodiment of the present disclosure includes: a single battery according to the first embodiment of the present disclosure or a battery pack according to the second embodiment of the present disclosure, the first side wall is located at above the second side wall.
- a vehicle according to an embodiment of the third aspect of the present disclosure has high safety and smooth airflow by utilizing the single battery according to the first embodiment of the present disclosure and the single unit package according to the second embodiment of the present disclosure. and good explosion-proof effect.
- Figure 1 is a schematic structural diagram of a single cell according to an embodiment of the present disclosure.
- FIG. 2 is a cross-sectional view of a single cell according to an embodiment of the present disclosure.
- FIG. 3 is a detailed view of A of FIG. 2 .
- Figure 4 is a schematic structural diagram of the first bottom bracket, the second bottom bracket and the shell cover according to an embodiment of the present disclosure.
- FIG. 5 is a schematic structural diagram of the first bottom bracket, the second bottom bracket and the shell cover from another perspective according to an embodiment of the present disclosure.
- FIG. 6 is a schematic structural diagram of a second bottom bracket of a single cell according to an embodiment of the present disclosure.
- FIG. 7 is a schematic structural diagram of a second bottom bracket of a single cell according to an embodiment of the present disclosure from another perspective;
- Figure 8 is a schematic diagram of a battery pack according to an embodiment of the present disclosure.
- Figure 9 is a schematic diagram of a vehicle according to an embodiment of the present disclosure.
- Figure 10 is a schematic diagram of a vehicle according to another embodiment of the present disclosure.
- first and second are only used for descriptive purposes and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. Further, in the description of the present disclosure, unless otherwise stated, the meaning of “plurality” is two or more.
- a single cell 1 includes a case 100 , a first bottom bracket 500 , a second bottom bracket 600 , a pole 200 , an explosion-proof valve 300 and a pole core 400 .
- the housing 100 has an inner cavity 110 and opposite first and second side walls 120 and 130 .
- the second side wall 130 is provided with an explosion-proof hole 131 .
- the first bottom bracket 500 and the second bottom bracket 600 are provided in the inner cavity 110, and the second side wall 130 supports the first bottom bracket 500 and the second bottom bracket 600.
- the first bottom bracket 500 and the second bottom bracket 600 are spaced apart.
- the first bottom bracket 500 and the second bottom bracket 600 define a first air passage 510, and the explosion-proof hole 131 communicates with the inner cavity 110 through the first air passage 510.
- the pole 200 is provided on the side wall of the housing 100 except the second side wall 130 .
- the explosion-proof valve 300 is installed on the second side wall 130 , and the explosion-proof valve 300 is used to cover the explosion-proof hole 131 .
- the pole core 400 is disposed in the inner cavity 110 and connected to the pole post 200 .
- the first bottom bracket 500 and the second bottom bracket 600 jointly support the pole core 400 so that the pole core 400 is spaced
- the explosion-proof valve 300 is provided with an explosion value.
- the pressure of the inner cavity 110 of the single cell 1 is less than the explosion value of the explosion-proof valve 300, It is a normal working state when the value is exceeded; when the pressure of the inner chamber 110 is greater than or equal to the burst value of the explosion-proof valve 300, the explosion-proof valve 300 opens and the gas is rapidly discharged, thereby rapidly reducing the pressure of the inner chamber 110 and preventing the single cell 1 from bursting. At this time, the explosion-proof valve 300 plays an explosion-proof role.
- the housing 100 is provided with an inner cavity 110 and opposite first and second side walls 120 and 130, and the pole 200 is provided on the housing 100 except for the second side wall. 130, the second side wall 130 is provided with an explosion-proof hole 131.
- the explosion-proof valve 300 is installed on the second side wall 130 and is used to cover the explosion-proof hole 131.
- the pole core 400 is located in the inner cavity 110 and connected with the pole. 200 connections. Since the pole 200 and the explosion-proof hole 131 are respectively provided on different walls of the casing 100, the pole 200 and the explosion-proof hole 131 can be separated.
- the pole core 400 is disposed in the housing 100 and is spaced apart from the explosion-proof hole 131 . In this way, the pole core 400 does not block the explosion-proof hole 131 , and the gas in the first air channel 510 can communicate with the outside through the explosion-proof hole 131 .
- first bottom bracket 500 and the second bottom bracket 600 are provided in the inner cavity 110 , and the second side wall 130 supports the first bottom bracket 500 and the second bottom bracket 600 . That is to say, the original structure of the case 100 of the single cell 1 in the embodiment of the present disclosure does not need to be changed.
- the first bottom bracket 500 and the second bottom bracket 600 are additional components installed in the inner cavity 110 of the case 100 , the structure of the housing 100 remains unchanged, which reduces the processing difficulty of the housing 100.
- first bottom bracket 500 and the second bottom bracket 600 can support the pole core 400 to space the pole core 400 from the second side wall 130 so that the pole core 400 and the explosion-proof hole 131 are spaced apart, so that the pole core 400 does not
- the explosion-proof hole 131 of the second side wall 130 will be blocked, ensuring smoother ventilation through the explosion-proof hole 131 when the explosion-proof valve 300 is opened.
- first bottom bracket 500 and the second bottom bracket 600 are spaced apart and define a first air channel 510, and the explosion-proof hole 131 communicates with the inner cavity 110 through the first air channel 510.
- the explosion-proof valve 300 Since the explosion-proof valve 300 is disposed on the second side wall 130 on a different side from the pole post 200, the space between the pole core 400 and the second side wall 130 is small and cannot store the gas generated by the pole core 400. If the third side wall is not provided, The first bottom bracket 500 and the second bottom bracket 600 form the first air channel 510, then the gas generated by the pole core 400 can move between the pole core 400 and the first side wall 120, so that the pressure in the inner cavity 110 reaches an explosion-proof level. When the explosion value of the valve 300 reaches the explosion value, the gas in the inner cavity 110 cannot be quickly discharged through the explosion-proof hole 131, which poses a greater risk.
- the first bottom bracket 500 and the second bottom bracket 600 are provided to form a first air passage 510 that stores the gas generated by the pole core 400.
- the explosion-proof valve 300 when the pressure in the inner cavity 110 reaches the explosion value of the explosion-proof valve 300, the explosion-proof When the valve 300 is opened, the first air channel 510 can be connected to the outside through the explosion-proof hole 160, so that the gas inside the single cell 1 can be quickly discharged from the explosion-proof hole 131, resulting in smoother gas circulation, smooth exhaust, and better explosion-proof effect.
- the single battery 1 according to the embodiment of the present disclosure has the advantages of high safety, smooth air flow, and good explosion-proof effect.
- the pole 200 is provided on the first side wall 120
- the explosion-proof hole 131 is provided on the second side wall 130 . That is to say, the pole 200 and the explosion-proof hole 131 are provided on opposite sides of the housing 100 . On both sides, in this way, the pole 200 and the explosion-proof hole 131 can be better separated, and the distance between the pole 200 and the explosion-proof hole 131 is farther. Even if the single battery 1 is out of control, the high-temperature gas or flame ejected from the explosion-proof hole 131 will not It will burn up to 200 poles, which more effectively avoids secondary hazards and is safer. Moreover, the pole core 400 will not block the explosion-proof hole 131 , and the gas in the first air channel 510 can communicate with the outside through the explosion-proof hole 131 .
- a second air channel is configured on a side of at least one of the first bottom bracket 500 and the second bottom bracket 600 facing the second side wall 130 520.
- the second air channel 520 is connected with the first air channel 510.
- At least one of the first bottom bracket 500 and the second bottom bracket 600 is provided with a plurality of exhaust holes 530.
- the multiple exhaust holes 530 connect the second air channel 520 communicates with the inner cavity 110 .
- the second air channel 520 can also be used to store the gas generated by the pole core 400, thereby reducing the volume of the first air channel 510, so that the inner cavity 110 can have more space to arrange the pole core 400 to ensure that the monomer Energy density of battery 1.
- the first bottom bracket 500 may be configured with the second air channel 520 and the exhaust hole 530, and the second bottom bracket 600 may not be configured with the second air channel 520 and the exhaust hole 530; alternatively, the first bottom bracket 500 may not be configured with the second air channel 520 and the exhaust hole 530.
- the second air channel 520 and the exhaust hole 530 are configured, and the second bottom bracket 600 can be configured with the second air channel 520 and the exhaust hole 530; alternatively, both the first bottom bracket 500 and the second bottom bracket 600 can be configured There is a second air passage 520 and an exhaust hole 530.
- the pole core 400 of the single cell 1 will generate gas, and the gas generated by the portion of the pole core 400 corresponding to the first air channel 510 in the length direction of the second side wall 130 can directly pass through the first air channel 510 .
- the air channel 510 flows to the explosion-proof hole 131, and the gas generated by the part of the pole core 400 that stops with the first bottom support 500 can flow to the third air channel 520 through the plurality of exhaust holes 530 and the second air channel 520 on the first bottom support 500.
- An air channel 510 and an explosion-proof hole 131, the gas generated in the part where the pole core 400 and the second bottom bracket 600 are in contact can flow to the second bottom bracket 600 through the plurality of exhaust holes 530 and the second air channel 520.
- the air channel 510 and the explosion-proof hole 131 can maintain communication between different parts of the pole core 400 and the explosion-proof hole 131, and the gas flow is smoother, which further improves the exhaust effect of the single battery 1 and has a better explosion-proof effect.
- a side of at least one of the first bottom bracket 500 and the second bottom bracket 600 facing the second side wall 130 is configured with a plurality of support ribs. 540, a second air channel 520 can be defined between two adjacent support ribs 540.
- the plurality of support ribs 540 can increase the thickness of the first bottom bracket 500 and the thickness of the second bottom bracket 600, so that the structural strength of the first bottom bracket 500 is higher, and the structural strength of the second bottom bracket 600 is stronger.
- the first bottom bracket 500 and the second bottom bracket 600 support the pole core 400 more stably, so that the pole core 400 and the explosion-proof hole 131 can be stably separated by the first bottom bracket 500 and the second bottom bracket 600, and The space of the first airway 510 is larger and the ventilation effect is better.
- the second air channel 520 is directly defined by the adjacent support ribs 540, and the structural composition of the second air channel 520 is simpler, which is conducive to simplifying the structures of the first bottom bracket 500 and the second bottom bracket 600, and the support ribs 540
- the side facing away from the pole core 400 can stop against the second side wall 130, so that the second air channel 520 will not be blocked, and the air flow will be smoother.
- each support rib 540 is 0.5 mm to 3 mm.
- the height of each support rib 540 may be 0.5mm, 1mm, 1.5mm, 2mm, 2.5mm or 3mm.
- the height of the support ribs 540 can be made higher, the space of the second air channel 520 can be larger, the second air channel 520 is not easily blocked and can accommodate more gas, and the gas generated by the pole core 400 can be absorbed during explosion protection.
- the gas is discharged quickly, the air flow is smoother, and the explosion-proof effect is better; on the other hand, the height of the support rib 540 can be avoided, so that the space occupied by the first bottom bracket 500 and the second bottom bracket 600 of the single battery 1 is not will be too large to avoid causing large losses to the 400 capacity of the pole core. Ensure the energy density of single battery 1.
- the first air channel 510 extends along the perpendicular direction to the second side wall 130
- the second air channel 520 extends along the length direction of the second side wall 130 extend.
- the explosion-proof hole 131 can penetrate the second side wall 130 along the thickness direction of the second side wall 130 .
- the extension direction of the first air channel 510 is parallel to the extension direction of the explosion-proof hole 131 .
- the extension length of the first air channel 510 It can be shorter, and the airflow can quickly flow through the first air channel 510 and be discharged to the outside of the single cell 1 through the explosion-proof hole 131 , and the second air channel 520 occupies a direction from the first side wall 120 to the second side wall 130
- the inner cavity 110 has a small space. While ensuring rapid gas circulation, it can also reduce the space occupied by the first bottom bracket 500 and the second bottom bracket 600, further avoiding the loss of the capacity of the pole core 400 and ensuring a single operation. Energy density of battery 1.
- the size of the pole core 400 in the length direction of the second side wall 130 is L 1
- the size of each of the first bottom bracket 500 and the second bottom bracket 600 is L 1
- the length is L 2 , where L 1 and L 2 satisfy: 0.04 ⁇ L 2 /L 1 ⁇ 0.45.
- L 2 /L 1 can be 0.04, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, or 0.45.
- the first bottom bracket 500 and the second bottom bracket 600 can stably support the pole core. 400, thereby preventing the pole core 400 from sinking and directly contacting the explosion-proof hole 131, the explosion-proof hole 131 can circulate normally, and the explosion-proof effect is good; on the other hand, it can avoid that the first bottom bracket 500 and the second bottom bracket 600 are on the second side
- the size of the wall 130 in the length direction is too large, the size of the first air channel 510 in the length direction of the second side wall 130 can be larger, the space of the first air channel 510 is larger, the first bottom bracket 500 and the second
- the bottom bracket 600 will not cover the explosion-proof hole 131, and the exhaust will be smoother. It can also reduce the processing materials of the first bottom bracket 500 and the second bottom bracket 600, reduce the weight of the first bottom bracket 500 and the second bottom bracket 600, and save money. cost.
- the dimension L 1 of the pole core 400 in the length direction of the second side wall 130 is ⁇ 500 mm
- the length L 2 of each of the first bottom bracket 500 and the second bottom bracket 600 is ⁇ 20 mm.
- the length of the pole core 400 will not be too long, so that the overall length of the single cell 1 will not be too long, which will help improve the overall structural strength of the single cell 1.
- the length of the first bottom bracket 500 and the second The length of the bottom bracket 600 will not be too short, so that the length of the first air channel 510 can be kept long enough, so that the first air channel 510 has sufficient space, the first air channel 510 is not easily blocked, and the exhaust is smoother.
- the explosion-proof valve 300 is provided on a side of the second side wall 130 facing the inner cavity 110 or on a side of the second side wall 130 facing away from the inner cavity 110 . side.
- the explosion-proof valve 300 may be connected to the second side wall 130 by welding.
- the explosion-proof valve 300 can be disposed on the side of the second side wall 130 facing the inner cavity 110 , so that the explosion-proof valve 300 does not protrude from the housing 100 , and the housing 100 can protect the explosion-proof valve 300 .
- the explosion-proof valve 300 may be disposed on a side of the second side wall 130 facing away from the inner cavity 110 . That is to say, the explosion-proof valve 300 is arranged outside the housing 100, and the assembly space outside the housing 100 is larger, and the assembly between the explosion-proof valve 300 and the housing 100 is more convenient.
- the single cell 1 further includes a protective sheet (not shown in the figure), which is connected to the housing 100 and located on the side of the explosion-proof valve 300 facing away from the inner cavity 110 .
- the protective sheet can cover the explosion-proof valve 300, whether the explosion-proof valve 300 is installed on the side of the second side wall 130 facing the inner cavity 110, or the explosion-proof valve 300 is installed on the side of the second side wall 130 facing away from the inner cavity 110.
- the protective sheet can prevent other parts of the vehicle 4 from directly contacting the explosion-proof valve 300.
- the protective sheet can also protect the explosion-proof valve 300 during the transportation of the single battery 1 and prevent the explosion-proof valve 300 from being bumped during transportation. damage and extend the service life of the single battery 1.
- the first bottom bracket 500 includes a connected first side plate 550 and a first bottom plate 560
- the second bottom bracket 600 includes a connected second side plate. 610 and the second bottom plate 620.
- the first bottom plate 560 is connected to the second side wall 130 , and the first bottom plate 560 extends along the length direction of the second side wall 130 .
- One end of the first side plate 550 is connected to the first bottom plate 560 , and the other end of the first side plate 550 is connected to the first bottom plate 560 .
- One end is connected to one end of the first side wall 120 .
- the second bottom plate 620 is connected to the second side wall 130 , and the second bottom plate 620 extends along the length direction of the second side wall 130 .
- One end of the second side plate 610 is connected to the second bottom plate 620 , and the other end of the second side plate 610 is connected to the second bottom plate 620 .
- One end is connected to the other end of the first side wall 120 .
- the first bottom plate 560 and the second bottom plate 620 are spaced apart, and the first bottom plate 560 and the second bottom plate 620 define the first air channel 510 .
- the contact area between the first bottom bracket 500 and the second bottom bracket 600 and the side wall of the inner cavity 110 is larger, and the connection structure is more stable and reliable, thereby preventing the first bottom bracket 500 and the second bottom bracket 600 from contacting the shell.
- the relative position between the bodies 100 changes. Through the arrangement of the first side plate 550 and the second side plate 610, two new force transmission paths are added between the first side wall 120 and the second side wall 130, so that the shell The body 100 has a higher structural strength.
- connection between the other end of the first side plate 550 and the first side wall 120 may be a direct connection or an indirect connection. That is to say, the other end of the first side plate 550 may be directly connected to the first side wall. One end of the first side wall 120; alternatively, the first side plate 550 can be connected to one end of the first side wall 120 through the insulating spacer 800. Similarly, the other end of the second side plate 610 can be directly connected to the first side wall 120 or indirectly connected. That is to say, the other end of the second side plate 610 can be directly connected to the first side wall 120 . The other end; alternatively, the second side plate 610 may be connected to the other end of the first side wall 120 through the insulating spacer 800 .
- a first reinforcing rib 551 is provided on the side of the first side plate 550 facing the pole core 400 , and the first reinforcing rib 551 extends along the first side plate. 550 extends in the length direction.
- a second reinforcing rib 611 is provided on the side of the second side plate 610 facing the pole core 400 . The second reinforcing rib 611 extends along the length direction of the second side plate 610 .
- the structural strength of the first side plate 550 can be improved, the overall structural strength of the first bottom bracket 500 is higher, the connection between the first side plate 550 and the first side wall 120 is more reliable, and the second The reinforcing ribs 611 can improve the structural strength of the second side plate 610, the overall structural strength of the second bottom bracket 600 is higher, and the connection between the second side plate 610 and the first side wall 120 is more reliable, thereby making the first bottom bracket 500 and the second bottom bracket 600 enhance the structural strength of the housing 100 .
- the first side plate 550 is parallel to the second side plate 610 and perpendicular to the second side wall 130 .
- both the first side plate 550 and the second side plate 610 are parallel to the side walls connected to both ends of the second side wall 130 in the length direction.
- the first side plate 550 and the second side plate 610 can fit against the side walls of the inner cavity 110, so that the first side plate 550 and the second side plate 610 can be
- the side plate 550 and the second side plate 610 occupy less space in the inner cavity 110 , and the first side plate 550 and the second side plate 610 cause less loss to the capacity of the pole core 400 , thus ensuring the energy of the single battery 1 density.
- the side of the insulating spacer 800 facing the inner cavity 110 may define a first limiting protrusion 121 and a second limiting protrusion 122, and the first side plate 550 stops against the first limiting protrusion 121 and the second limiting protrusion 122.
- first side plate 550 facing away from the second side wall 130 and the first limiting protrusion 121 can be connected through, but not limited to, hot melt connection, snap connection or pin hole connection.
- One end of the plate 610 facing away from the second side wall 130 and the second limiting protrusion 122 may be connected through, but are not limited to, hot melt connection, snap connection, or pin hole connection.
- first limiting protrusion 121 and the second limiting protrusion 122 can limit the first bottom bracket 500 and the second bottom bracket 600 in the length direction of the first side wall 120 to avoid the first side wall 120
- the relative position changes of the first bottom bracket 500 and the second bottom bracket 600 make the first bottom bracket 500 and the second bottom bracket 600 support the pole core 400 more stably.
- the explosion-proof hole 131 is located at the center of the pole core 400 in the thickness direction; and/or, the explosion-proof hole 131 is located in the length direction of the second side wall 130 of the pole core 400 at the center.
- the explosion-proof hole 131 may be located at the center of the pole core 400 in the thickness direction and also at the center of the pole core 400 in the length direction of the second side wall 130. Normally, the explosion-proof hole 131 is formed at the center of the pole core 400. The gas is the largest.
- the explosion-proof valve 300 can more effectively sense the air pressure in the single cell 1. Therefore, when the air pressure in the single cell 1 is too high, the explosion-proof valve 300 can It is opened immediately to discharge the gas in the single cell 1, further improving the explosion-proof effect of the single cell 1.
- this can make the structure of the housing 100 in the length direction of the second side wall 130 symmetrical, and the structural strength of both ends of the housing 100 in the length direction of the second side wall 130 is the same, which is beneficial to maintaining the structure of the housing 100 Consistency of intensity.
- the single cell 1 further includes an insulating film 700 , and the insulating film 700 is provided on the side of the explosion-proof valve 300 facing the inner cavity 110 .
- the insulating film 700 may be made of PP (polypropylene, polypropylene), PE (polyethylene, polyethylene) or other polyester compounds.
- the insulating film 700 is provided in the inner cavity 110 and between the explosion-proof valve 300 and the pole core 400.
- the explosion-proof valve 300 can be isolated from the electrolyte and prevent the explosion-proof valve 300 from being soaked in the electrolyte for a long time. It is corroded, thereby preventing battery leakage, and at the same time preventing the opening pressure of the explosion-proof valve 300 from becoming larger or smaller due to the influence of the electrolyte, so that the explosion-proof valve 300 can be in a stable and reliable working state.
- the pole 200 includes a positive pole 210 and a negative pole 220
- the housing 100 is an aluminum shell.
- the explosion-proof valve 300 can be made of aluminum.
- the positive pole 210 and the case 100 are electrically connected, so that the difference between the voltage of the positive pole 210 and the voltage of the case 100 is 0V to 2.5V.
- the difference between the voltage of the positive pole 210 and the voltage of the case 100 refers to the voltage of the positive pole 210 minus the voltage of the case 100 .
- the casing 100 and the explosion-proof valve 300 can be made of metal aluminum or aluminum alloy.
- the electrolyte in the single cell 1 is usually a lithium ion electrolyte. Aluminum will react with lithium ions at low potential. Form metal compounds. In this way, the voltage difference between the positive pole 210 and the case 100 is small, and the voltage of the case 100 will be close to the voltage of the positive pole 210.
- the potential of the housing 100 is increased to prevent the housing 100 and the explosion-proof valve 300 from being corroded by the lithium ion electrolyte, thereby protecting the housing 100 and the explosion-proof valve 300 installed on the housing 100 and further preventing the housing 100 and the explosion-proof valve 300 from being corroded by the lithium ion electrolyte.
- the valve 300 is corroded, extending the service life of the single cell 1 .
- a resistor is connected between the positive pole 210 and the housing 100 .
- the positive pole 210 of the single cell 1 is connected to the negative pole of a battery without a resistor and the case 100 is connected to the battery.
- the resistance between the positive pole 210 of the single cell 1 and the casing 100 can protect the single cell 1, avoid short circuit of the single cell 1, and improve the safety of the single cell 1. higher.
- the pole 200 includes a positive pole 210 and a negative pole 220, and the housing 100 is a steel shell.
- the explosion-proof valve 300 can be made of steel.
- the negative pole 220 and the casing 100 are electrically connected, so that the difference between the voltage of the casing 100 and the voltage of the negative pole 220 is 0V to 2.5V, where the difference between the voltage of the casing 100 and the voltage of the negative pole 220 It refers to the value obtained by subtracting the voltage of the negative electrode post 220 from the voltage of the case 100 .
- a resistor is connected between the negative pole 220 and the housing 100 .
- the negative pole 220 of the single cell 1 and the case 100 form a loop, for example, the negative pole 220 of the single cell 1 is connected to the positive pole of a battery without a resistor and the case 100 is connected to the battery.
- the resistance between the negative pole 220 of the single cell 1 and the casing 100 can protect the single cell 1, avoid short circuit of the single cell 1, and improve the safety of the single cell 1. higher.
- the housing 100 includes a housing body 140 and a housing cover 150 .
- the housing 100 may be made of aluminum alloy.
- the second side wall 130 and the inner cavity 110 are formed on the shell body 140.
- the shell body 140 is provided with an opening opposite to the second side wall 130. The opening is connected to the inner cavity 110.
- the shell cover 150 is installed on the shell body 140 and covers the inner cavity. 110.
- the first side wall 120 is formed on the shell cover 150, and the pole 200 is connected to the shell cover 150.
- the battery pack 2 includes a box 3 and a single battery 1 according to the first embodiment of the present disclosure.
- the single battery 1 is installed in the box. 3 and the explosion-proof valve 300 faces the bottom wall of the box 3 . In this way, when a single battery is out of control, high-temperature gas or flame can be sprayed to the bottom of the box 3 through the explosion-proof valve 300 .
- the battery pack 2 according to the embodiment of the present disclosure by using the single battery 1 according to the above embodiment of the present disclosure, has the advantages of high safety, smooth air flow, and good explosion-proof effect.
- a vehicle 4 As shown in FIGS. 9 and 10 , a vehicle 4 according to a third embodiment of the present disclosure, the vehicle 4 includes a single battery 1 according to the first embodiment of the present disclosure and a battery according to the second embodiment of the present disclosure.
- Pack 2 the battery pack 2 is installed on the body of the vehicle 4 or the chassis of the vehicle 4 through the box 3.
- the vehicle 4 includes the single battery 1 according to the above-described embodiment of the present disclosure, and the single battery 1 is installed on the body of the vehicle 4 or the chassis of the vehicle 4 .
- the single battery 1 can be directly installed on the body of the vehicle 4 or the chassis of the vehicle 4 , or the single battery 1 can be installed in the box 3 and assembled into a battery pack 2 , and the battery pack 2 can be installed on the vehicle through the box 3 4 body or chassis of a vehicle 4.
- the vehicle 4 according to the embodiment of the present disclosure by using the single battery 1 according to the above embodiment of the present disclosure and the battery pack 80 according to the above embodiment of the present disclosure, has the advantages of high safety, smooth air flow, and good explosion-proof effect.
- the single battery 1 or the battery pack 2 is installed on the body of the vehicle 4 or the chassis of the vehicle 4 , and the first side wall 120 is located above the second side wall 130 .
- the first side wall 120 can face the inside of the vehicle 4, and the second side wall 130 can face the outside of the vehicle 4. That is to say, the explosion-proof valve 300 can face away from the passenger compartment of the vehicle 4.
- the explosion-proof valve 300 can face away from the passenger compartment of the vehicle 4.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Battery Mounting, Suspending (AREA)
Abstract
一种单体电池(1)、电池包(2)和车辆(4),单体电池(1)包括:壳体(100)具有内腔(110)、第一侧壁(120)和第二侧壁(130),第二侧壁(130)设有防爆孔(131);第二侧壁(130)支撑第一底托(500)和第二底托(600),第一底托(500)和第二底托(600)间隔设置且限定出第一气道(510),防爆孔(131)通过第一气道(510)与内腔(110)连通;极柱(200)设于壳体(100)的除第二侧壁(130)之外的侧壁;防爆阀(300)用于封盖防爆孔(131);第一底托(500)和第二底托(600)共同支撑极芯(400),以使极芯(400)与防爆孔(131)间隔设置。
Description
相关申请的交叉引用
本申请要求比亚迪股份有限公司于2022年5月12日提交的名称为“单体电池、电池包和车辆”的中国专利申请号“202221130465.5”的优先权。
本公开涉及车辆技术领域,具体而言,涉及一种单体电池、电池包和车辆。
相关技术中,单体电池的极柱和防爆阀通常设于同一端,而当单体电池发生失控时,喷出的高温气体或者火焰容易会烧伤单体电池的极柱,以及与单体电池连接的器件,从而会产生高压拉弧或二次危害。
并且,在单体电池的壳体内设置托板用于支撑单体电池的极柱,为了使单体电池的内腔与防爆阀连通,通常会在托板上设置通孔,但托板上的通孔的横截面积较小,导致通孔和防爆阀之间的气流流动不够通畅,且通孔易被堵塞,单体电池内部的气流无法与外界正常流通,导致防爆排气效果较差。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开的一个目的在于提出一种单体电池,该单体电池具有安全性高、气流流动通畅和防爆效果好等优点。
本公开还提出了一种具有上述单体电池的电池包。
本公开还提出了一种具有上述电池包的车辆。
根据本公开的第一方面实施例的单体电池,包括:壳体,所述壳体具有内腔以及相对的第一侧壁和第二侧壁,所述第二侧壁设有防爆孔;第一底托和第二底托,所述第一底托和所述第二底托设于所述内腔,且所述第二侧壁支撑所述第一底托和所述第二底托,所述第一底托和所述第二底托间隔设置,且所述第一底托和所述第二底托限定出第一气道,所述防爆孔通过所述第一气道与所述内腔连通;极柱,所述极柱设于所述壳体的除所述第二侧壁之外的侧壁;防爆阀,所述防爆阀安装于所述第二侧壁,且所述防爆阀用于封盖所述防爆孔;以及极芯,所述极芯设于所述内腔内且与所述极柱连接,所述第一底托和所述第二底托共同支撑所述极芯,以使所述极芯与所述防爆孔间隔设置。
根据本公开实施例的单体电池,具有安全性高、气流流动通畅和防爆效果好等优点。
根据本公开的一些示例,所述第一底托和所述第二底托中的至少一个的朝向所述第二侧壁
的一侧构造有第二气道,所述第二气道与所述第一气道连通,所述第一底托和所述第二底托中的至少一个设有多个排气孔,多个所述排气孔将所述第二气道与所述内腔连通。
根据本公开的一些示例,所述第一底托和所述第二底托中的至少一个的朝向所述第二侧壁的一侧构造有多个支撑筋,相邻两个所述支撑筋之间限定出所述第二气道。
根据本公开的一些示例,每个所述支撑筋的高度为0.5mm~3mm。
根据本公开的一些示例,所述第一气道沿与所述第二侧壁的垂直方向延伸,所述第二气道沿所述第二侧壁的长度方向延伸。
根据本公开的一些示例,所述极芯在所述第二侧壁的长度方向上的尺寸为L1,所述第一底托和所述第二底托中每个的长度为L2,其中,所述L1和L2满足:0.04≤L2/L1≤0.45。
根据本公开的一些示例,所述L1和L2进一步满足:L1≤500mm,L2≥20mm。
根据本公开的一些示例,所述第一底托包括连接的第一侧板和第一底板,所述第一底板与所述第二侧壁连接,且所述第一底板沿所述第二侧壁的长度方向延伸,所述第一侧板的一端与所述第一底板连接,且所述第一侧板的另一端与所述第一侧壁的一端连接;所述第二底托包括连接的第二侧板和第二底板,所述第二底板与所述第二侧壁连接,且所述第二底板沿所述第二侧壁的长度方向延伸,所述第二侧板的一端与所述第二底板连接,且所述第二侧板的另一端与所述第一侧壁的另一端连接;其中,所述第一底板和所述第二底板间隔设置,且所述第一底板和所述第二底板限定出所述第一气道。
根据本公开的一些示例,所述第一侧板的朝向所述极芯的一侧设有第一加强筋,所述第一加强筋沿所述第一侧板的长度方向延伸;所述第二侧板的朝向所述极芯的一侧设有第二加强筋,所述第二加强筋沿所述第二侧板的长度方向延伸。
根据本公开的一些示例,所述第一侧板与所述第二侧板平行且与所述第二侧壁垂直。
根据本公开的一些示例,所述第一侧板通过绝缘隔圈与所述第一侧壁的所述一端连接,所述第二侧板通过所述绝缘隔圈与所述第一侧壁的所述另一端连接;所述绝缘隔圈的朝向所述内腔的一侧设有第一限位凸起和第二限位凸起,所述第一侧板止抵于所述第一限位凸起的背向所述第二限位凸起的一侧,所述第二侧板止抵于所述第二限位凸起的背向所述第一限位凸起的一侧。
根据本公开的一些示例,所述防爆孔位于所述极芯的厚度方向的中心;和/或所述防爆孔在所述第二侧壁的长度方向上位于所述极芯的中心处。
根据本公开的一些示例,所述单体电池还包括:绝缘膜,所述绝缘膜设于所述防爆阀的朝向所述内腔的一侧。
根据本公开的一些示例,所述极柱设于所述第一侧壁。
根据本公开的一些示例,所述极柱包括正极极柱和负极极柱,所述壳体为铝壳,所述正极极柱和所述壳体电连接,以使所述正极极柱的电压和所述壳体的电压之差为不小于0V且不大
于2.5V。
根据本公开的一些示例,所述极柱包括正极极柱和负极极柱,所述壳体为钢壳,所述负极极柱和所述壳体电连接,以使所述壳体的电压和所述负极极柱的电压之差不小于0V且不大于2.5V。
根据本公开的一些示例,所述壳体包括:壳身,所述第二侧壁和所述内腔形成于所述壳身,所述壳身设有与所述第二侧壁相对的开口,所述开口与所述内腔连通;壳盖,所述壳盖安装于所述壳身且封盖所述内腔,所述第一侧壁形成于所述壳盖,所述极柱与所述壳盖连接。
根据本公开的第二方面实施例的电池包,包括:箱体;根据本公开的上述第一方面实施例的单体电池,所述单体电池安装于所述箱体内且所述防爆阀朝向所述箱体的底壁。
根据本公开的第二方面实施例的电池包,通过利用根据本公开的第一方面实施例的单体电池,具有安全性高、气流流动通畅和防爆效果好等优点。
根据本公开的第三方面实施例的车辆,包括:根据本公开上述第一方面实施例的单体电池或根据本公开的上述第二方面实施例的电池包,所述第一侧壁位于所述第二侧壁的上方。
根据本公开的第三方面实施例的车辆,通过利用根据本公开的第一方面实施例的单体电池和根据本公开的第二方面实施例的单体包,具有安全性高、气流流动通畅和防爆效果好等优点。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
本公开的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本公开实施例的单体电池的结构示意图。
图2是根据本公开实施例的单体电池的剖视图。
图3是图2的A处的详细视图。
图4是根据本公开实施例的第一底托、第二底托和壳盖的结构示意图。
图5是根据本公开实施例的第一底托、第二底托和壳盖的另一视角的结构示意图。
图6是根据本公开实施例的单体电池的第二底托的结构示意图。
图7是根据本公开实施例的单体电池的第二底托的另一视角的结构示意图;
图8是根据本公开实施例的电池包的示意图;
图9是根据本公开实施例的车辆的示意图;
图10是根据本公开另一个实施例的车辆的示意图。
附图标记:
单体电池1、
壳体100、内腔110、第一侧壁120、第一限位凸起121、第二限位凸起122、第二侧壁130、
防爆孔131、壳身140、壳盖150、
极柱200、正极极柱210、负极极柱220、防爆阀300、极芯400、
第一底托500、第一气道510、第二气道520、排气孔530、支撑筋540、第一侧板550、
第一加强筋551、第一底板560、
第二底托600、第二侧板610、第二加强筋611、第二底板620、绝缘膜700、绝缘隔圈800、
电池包2、箱体3、车辆4。
单体电池1、
壳体100、内腔110、第一侧壁120、第一限位凸起121、第二限位凸起122、第二侧壁130、
防爆孔131、壳身140、壳盖150、
极柱200、正极极柱210、负极极柱220、防爆阀300、极芯400、
第一底托500、第一气道510、第二气道520、排气孔530、支撑筋540、第一侧板550、
第一加强筋551、第一底板560、
第二底托600、第二侧板610、第二加强筋611、第二底板620、绝缘膜700、绝缘隔圈800、
电池包2、箱体3、车辆4。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
在本公开的描述中,需要理解的是,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
需要说明的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。进一步地,在本公开的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面参考附图描述根据本公开实施例的单体电池1。
如图1-图7所示,根据本公开实施例的单体电池1,包括壳体100、第一底托500、第二底托600、极柱200、防爆阀300和极芯400。
壳体100具有内腔110以及相对的第一侧壁120和第二侧壁130,第二侧壁130设有防爆孔131。第一底托500和第二底托600设于内腔110,且第二侧壁130支撑第一底托500和第二底托600,第一底托500和第二底托600间隔设置,且第一底托500和第二底托600限定出第一气道510,防爆孔131通过第一气道510与内腔110连通。极柱200设于壳体100的除第二侧壁130之外的侧壁,防爆阀300安装于第二侧壁130,且防爆阀300用于封盖防爆孔131。极芯400设于内腔110内且与极柱200连接,第一底托500和第二底托600共同支撑极芯400,以使极芯400与防爆孔131间隔设置。
其中,防爆阀300设有一个爆破值,当单体电池1的内腔110的压强小于防爆阀300的爆
破值时为正常工作状态;当内腔110的压强大于或等于防爆阀300的爆破值时,防爆阀300开启,气体急速排放,从而迅速降低内腔110的压力,防止单体电池1爆破,此时防爆阀300起到防爆的作用。
根据本公开实施例的单体电池1,通过在壳体100设有内腔110以及相对的第一侧壁120和第二侧壁130,极柱200设于壳体100的除第二侧壁130之外的侧壁,第二侧壁130设有防爆孔131,防爆阀300安装于第二侧壁130且用于封盖防爆孔131,极芯400设于内腔110内且与极柱200连接。由于极柱200和防爆孔131分别设于壳体100的不同壁,极柱200和防爆孔131能够间隔开,即便单体电池1失控,防爆孔131所喷出的高温气体或火焰也不会烧到极柱200,避免了二次危害,安全性更高。并且,极芯400设于壳体100内且与防爆孔131间隔设置,这样,极芯400不会封堵防爆孔131,第一气道510内的气体能够通过防爆孔131与外界连通。
另外,第一底托500和第二底托600设于内腔110,且第二侧壁130支撑第一底托500和第二底托600。也就是说,本公开实施例中的单体电池1的壳体100的原有结构不需要改变,第一底托500和第二底托600为增设的部件安到壳体100的内腔110,壳体100的结构不变,减少了壳体100的加工难度。
并且,第一底托500和第二底托600能够支撑起极芯400,使极芯400与第二侧壁130间隔开,以使极芯400和防爆孔131间隔设置,这样极芯400不会封堵第二侧壁130的防爆孔131,可以保证防爆阀300打开时防爆孔131通气更加流畅。
此外,第一底托500和第二底托600间隔设置且限定出第一气道510,防爆孔131通过第一气道510与内腔110连通。
由于将防爆阀300设置在与极柱200不同侧的第二侧壁130,因此极芯400和第二侧壁130之间的空间较小,无法存储极芯400产生的气体,若是不设置第一底托500和第二底托600以形成第一气道510,则极芯400产生的气体可以会移动至极芯400和第一侧壁120之间,这样在内腔110内的压力达到防爆阀300的爆破值时,内腔110内的气体也无法通过防爆孔131快速排出,存在较大风险。
而本公开通过设置第一底托500和第二底托600以形成存储极芯400产生的气体的第一气道510,这样在内腔110内的压力达到防爆阀300的爆破值时,防爆阀300打开,第一气道510能够通过防爆孔160与外界连通,从而实现单体电池1的内气体可以从防爆孔131快速排出,气体流通更加顺畅,排气流畅,防爆效果更好。
如此,根据本公开实施例的单体电池1具有安全性高、气流流动通畅和防爆效果好等优点。
在本公开的一些具体实施例中,极柱200设于第一侧壁120,防爆孔131设置在第二侧壁130,也就是说,极柱200和防爆孔131设置在壳体100的相对两侧,这样,极柱200和防爆孔131能够更好地间隔开,极柱200和防爆孔131距离更远,即便单体电池1失控,防爆孔131所喷出的高温气体或火焰也不会烧到极柱200,更有效地避免了二次危害,安全性更高。
并且,极芯400不会封堵防爆孔131,第一气道510内的气体能够通过防爆孔131与外界连通。
在本公开的一些具体实施例中,如图2-图7所示,第一底托500和第二底托600中的至少一个的朝向第二侧壁130的一侧构造有第二气道520,第二气道520与第一气道510连通,第一底托500和第二底托600中的至少一个设有多个排气孔530,多个排气孔530将第二气道520与内腔110连通。
其中,第二气道520也可以用来存储极芯400产生气体,从而可以减小第一气道510的容积,这样内腔110可以有更大的空间来布置极芯400,以保证单体电池1的能量密度。其中,第一底托500可以构造有第二气道520和排气孔530,且第二底托600可以不构造第二气道520和排气孔530;或者,第一底托500可以不构造有第二气道520和排气孔530,且第二底托600可以构造有第二气道520和排气孔530;再或者,第一底托500和第二底托600都可以构造有第二气道520和排气孔530。
可以理解的是,单体电池1的极芯400会产生气体,且极芯400在第二侧壁130的长度方向上与第一气道510相对应的部分所产生的气体能够直接通过第一气道510流向防爆孔131,而极芯400与第一底托500相止抵的部分所产生的气体能够由第一底托500上的多个排气孔530和第二气道520流向第一气道510和防爆孔131,极芯400与第二底托600相止抵的部分所产生的气体能够由第二底托600上的多个排气孔530和第二气道520流向第一气道510和防爆孔131,极芯400的不同部位与防爆孔131之间都能够保持连通,气体流动更加通畅,进一步提高了单体电池1的排气效果,防爆效果更好。
在本公开的一些具体实施例中,如图6和图7所示,第一底托500和第二底托600中的至少一个的朝向第二侧壁130的一侧构造有多个支撑筋540,相邻两个支撑筋540之间可以限定出第二气道520。
这样,多个支撑筋540可以增大第一底托500的厚度以及第二底托600的厚度,以使第一底托500的结构强度更高,且使第二底托600的结构强度更高,第一底托500和第二底托600对极芯400的支撑更加稳定,从而能够通过第一底托500和第二底托600稳定地将极芯400与防爆孔131间隔开,且使第一气道510的空间较大,通气效果更好。
并且,通过相邻的支撑筋540直接限定出第二气道520,第二气道520的结构组成更加简单,有利于简化第一底托500和第二底托600的结构,而且支撑筋540的背向极芯400的一侧可以与第二侧壁130相止抵,这样不会封堵第二气道520,气流流动更加顺畅。
在本公开的一些具体实施例中,如图2所示,每个支撑筋540的高度为0.5mm~3mm。例如,每个支撑筋540的高度可以为0.5mm、1mm、1.5mm、2mm、2.5mm或3mm。
这样,一方面,可以使支撑筋540的高度较高,第二气道520的空间更大,第二气道520不易被堵塞且能够容纳更多的气体,防爆时能够将极芯400所产生的气体快速排出,气流流动更加通畅,防爆效果更好;另一方面,可以避免支撑筋540的高度过高,这样第一底托500和第二底托600所占用单体电池1的空间不会过大,避免对极芯400容量产生较大的损失,
保证单体电池1的能量密度。
在本公开的一些具体实施例中,如图2和图4所示,第一气道510沿与第二侧壁130的垂直方向延伸,第二气道520沿第二侧壁130的长度方向延伸。
需要说明的是,防爆孔131可以沿第二侧壁130的厚度方向贯穿第二侧壁130,第一气道510的延伸方向与防爆孔131的延伸方向平行,第一气道510的延伸长度可以较短,气流可以快速流经第一气道510而通过防爆孔131排向单体电池1外,并且,第二气道520在第一侧壁120至第二侧壁130的方向上占据内腔110的空间较小,在保证气体快速流通的同时,还可以减小第一底托500和第二底托600的占用空间,进一步避免了对极芯400的容量造成的损失,保证单体电池1的能量密度。
在本公开的一些具体实施例中,如图2所示,极芯400在第二侧壁130的长度方向上的尺寸为L1,第一底托500和第二底托600中每个的长度为L2,其中,L1和L2满足:0.04≤L2/L1≤0.45。例如,L2/L1可以为0.04、0.1、0.15、0.2、0.25、0.3、0.35、0.4或者0.45。
这样,一方面,可以避免第一底托500和第二底托600在第二侧壁130的长度方向上的尺寸过小,第一底托500和第二底托600能够稳定地支撑极芯400,从而可以避免极芯400下沉而直接与防爆孔131接触,防爆孔131能够正常流通,防爆效果好;另一方面,可以避免第一底托500和第二底托600在第二侧壁130的长度方向上的尺寸过大,第一气道510在第二侧壁130的长度方向上的尺寸可以较大,第一气道510的空间更大,第一底托500和第二底托600也不会遮盖防爆孔131,排气更加顺畅,而且能够减少第一底托500和第二底托600的加工材料,减轻第一底托500和第二底托600的重量,节约成本。
进一步地,极芯400在第二侧壁130的长度方向的尺寸L1≤500mm,第一底托500和第二底托600中每个的长度L2≥20mm。
这样,极芯400的长度不会过长,从而使单体电池1的整体长度不会过长,有利于提高单体电池1的整体结构强度,而且,第一底托500的长度和第二底托600的长度也不会过短,这样可以保持第一气道510的长度足够长,使第一气道510的空间充裕,第一气道510不易被堵塞,排气更加通畅。
在本公开的一些具体实施例中,如图3所示,防爆阀300设于第二侧壁130的朝向内腔110的一侧或设于第二侧壁130的背向内腔110的一侧。其中,防爆阀300可以通过焊接的方式连接于第二侧壁130。
举例而言,防爆阀300可以设于第二侧壁130的朝向内腔110的一侧,这样防爆阀300不会凸出于壳体100,壳体100能够保护防爆阀300。或者,防爆阀300可以设于第二侧壁130的背向内腔110的一侧。也就是说,防爆阀300设于壳体100的外部,壳体100外部的装配空间更大,防爆阀300与壳体100之间的装配更加方便。
在本公开的一些具体实施例中,单体电池1还包括保护片(图中未示意),保护片与壳体100连接且位于防爆阀300的背向内腔110的一侧。
其中,保护片可以将防爆阀300遮挡起来,无论防爆阀300安装于第二侧壁130的朝向内腔110的一侧,还是防爆阀300设于第二侧壁130的背向内腔110的一侧,保护片都能够避免车辆4的其它零部件直接与防爆阀300接触,同时保护片还能够在单体电池1的运输过程中保护防爆阀300,避免运输过程中对防爆阀300造成磕碰损伤,延长单体电池1的使用寿命。
在本公开的一些具体实施例中,如图6和图7所示,第一底托500包括连接的第一侧板550和第一底板560,第二底托600包括连接的第二侧板610和第二底板620。
第一底板560与第二侧壁130连接,且第一底板560沿第二侧壁130的长度方向延伸,第一侧板550的一端与第一底板560连接,且第一侧板550的另一端与第一侧壁120的一端连接。第二底板620与第二侧壁130连接,且第二底板620沿第二侧壁130的长度方向延伸,第二侧板610的一端与第二底板620连接,且第二侧板610的另一端与第一侧壁120的另一端连接。其中,第一底板560和第二底板620间隔设置,且第一底板560和第二底板620限定出第一气道510。
这样,第一底托500和第二底托600与内腔110的侧壁之间的接触面积更大,连接结构也更加稳定可靠,从而避免第一底托500和第二底托600与壳体100之间的相对位置发生变化,通过第一侧板550以及第二侧板610的设置,在第一侧壁120和第二侧壁130之间新增了两条传力路径,使壳体100的结构强度更高。
需要说明的是,第一侧板550的另一端与第一侧壁120的连接方式可以为直接连接或者间接连接,也就是说,第一侧板550的另一端可以直接连接到第一侧壁120的一端;或者,第一侧板550可以通过绝缘隔圈800连接到第一侧壁120的一端。同理,第二侧板610的另一端与第一侧壁120的连接方式可以为直接连接或者间接连接,也就是说,第二侧板610的另一端可以直接连接到第一侧壁120的另一端;或者,第二侧板610可以通过绝缘隔圈800连接到第一侧壁120的另一端。
在本公开的一些具体实施例中,如图4-图6所示,第一侧板550的朝向极芯400的一侧设有第一加强筋551,第一加强筋551沿第一侧板550的长度方向延伸,第二侧板610的朝向极芯400的一侧设有第二加强筋611,第二加强筋611沿第二侧板610的长度方向延伸。
通过设置第一加强筋551能够提高第一侧板550的结构强度,第一底托500的整体结构强度更高,第一侧板550与第一侧壁120的连接更为可靠,以及第二加强筋611能够提高第二侧板610的结构强度,第二底托600的整体结构强度更高,第二侧板610与第一侧壁120的连接更为可靠,从而使第一底托500和第二底托600加强壳体100的结构强度。
在本公开的一些具体实施例中,如图2和图4所示,第一侧板550与第二侧板610平行且与第二侧壁130垂直。
可以理解的是,壳体100的与第二侧壁130的长度方向的两端所连接的侧壁均垂直于第二侧壁130。也就是说,第一侧板550和第二侧板610都平行于与第二侧壁130的长度方向的两端连接的侧壁。这样第一侧板550和第二侧板610能够贴合于内腔110的侧壁,从而使第一
侧板550和第二侧板610所占据内腔110的空间较小,第一侧板550和第二侧板610对极芯400的容量造成的损失更小,能够保证单体电池1的能量密度。
在本公开的一些具体实施例中,绝缘隔圈800的朝向内腔110的一侧可以限定有第一限位凸起121和第二限位凸起122,第一侧板550止抵于第一限位凸起121的背向第二限位凸起122的一侧,第二侧板610止抵于第二限位凸起122的背向第一限位凸起121的一侧。
举例而言,第一侧板550的背向第二侧壁130的一端和第一限位凸起121可以通过但不限于热熔连接、卡扣连接或销孔连接等方式连接,第二侧板610的背向第二侧壁130的一端和第二限位凸起122可以通过但不限于热熔连接、卡扣连接或销孔连接等方式连接。
这样,第一限位凸起121和第二限位凸起122能够对第一底托500和第二底托600在第一侧壁120的长度方向上进行限位,避免第一侧壁120的、第一底托500以及第二底托600相对位置变化,使第一底托500和第二底托600对极芯400的支撑更加稳定。
在本公开的一些具体实施例中,如图1所示,防爆孔131位于极芯400的厚度方向的中心;和/或,防爆孔131在第二侧壁130的长度方向上位于极芯400的中心处。
举例而言,防爆孔131可以既位于极芯400的厚度方向的中心处,也在第二侧壁130的长度方向上位于极芯400的中心处,通常情况下极芯400的中心处产生的气体最多,通过将防爆孔131设于极芯400的中心处,防爆阀300可以更有效地感应单体电池1内的气压情况,从而在单体电池1内气压过大时,防爆阀300可以立即打开以排出单体电池1内的气体,进一步地提高了单体电池1的防爆效果。
而且,这样可以使壳体100在第二侧壁130的长度方向上的结构相对称,壳体100在第二侧壁130的长度方向上的两端的结构强度相同,有利于保持壳体100结构强度的一致性。
在本公开的一些具体实施例中,单体电池1还包括绝缘膜700,绝缘膜700设于防爆阀300的朝向内腔110的一侧。举例而言,举例而言,绝缘膜700可以为PP(polypropylene,聚丙烯)、PE(polyethylene,聚乙烯)或者其他聚酯类化合物。
具体地,绝缘膜700设于内腔110内且位于防爆阀300和极芯400之间,通过设置绝缘膜700,能够将防爆阀300与电解液隔离开,防止防爆阀300因电解液长期浸泡而被腐蚀,从而防止电池漏液,同时避免防爆阀300开启压力因电解液的影响而发生变大或变小,使防爆阀300能够处于稳定可靠的工作状态。
在本公开的一些具体实施例中,如图4和图5所示,极柱200包括正极极柱210和负极极柱220,壳体100为铝壳,此时防爆阀300可以为铝材制成,正极极柱210和壳体100电连接,以使正极极柱210的电压和壳体100的电压之差为0V~2.5V。其中,正极极柱210的电压和壳体100的电压之差是指,正极极柱210的电压减去壳体100的电压的值。
需要说明的是,壳体100和防爆阀300可以为金属铝或者铝合金制成,单体电池1内的电解液通常为锂离子电解液,铝在低电位的情况下会与锂离子发生发生形成金属化合物。这样,正极极柱210和壳体100之间的电压差较小,壳体100的电压会接近正极极柱210的电压,
即提高了壳体100的电位,避免壳体100和防爆阀300被锂离子电解液腐蚀,从而可以对壳体100和安装于壳体100的防爆阀300进行保护,进一步避免壳体100和防爆阀300被腐蚀,延长了单体电池1的使用寿命。
进一步地,正极极柱210和壳体100之间连接有电阻。这样,即便单体电池1的正极极柱210和壳体100形成一个回路,例如,单体电池1的正极极柱210连接到一个不设有电阻的电池的负极且壳体100连接到该电池的正极,此时,单体电池1的正极极柱210和壳体100之间的电阻可以起到保护单体电池1的作用,避免单体电池1发生短路,单体电池1的使用安全性更高。
在本公开的一些具体实施例中,如图4和图5所示,极柱200包括正极极柱210和负极极柱220,壳体100为钢壳,此时防爆阀300可以为钢材制成,负极极柱220和壳体100电连接,以使壳体100的电压和负极极柱220的电压之差为0V~2.5V,其中,壳体100的电压和负极极柱220的电压之差是指,壳体100的电压减去负极极柱220的电压的值。
需要说明的是,钢材在高电位的情况下会与锂离子发生发生形成金属化合物,通过将负极极柱220和壳体100之间的电压差较小,壳体100的电压会接近负极极柱220的电压,即降低了壳体100的电位,避免壳体100和防爆阀300被锂离子电解液腐蚀,从而可以对壳体100和安装于壳体100的防爆阀300进行保护,进一步避免壳体100和防爆阀300被腐蚀,延长了单体电池1的使用寿命。
进一步地,负极极柱220和壳体100之间连接有电阻。这样,即便单体电池1的负极极柱220和壳体100形成一个回路,例如,单体电池1的负极极柱220连接到一个不设有电阻的电池的正极且壳体100连接到该电池的负极,此时,单体电池1的负极极柱220和壳体100之间的电阻可以起到保护单体电池1的作用,避免单体电池1发生短路,单体电池1的使用安全性更高。
在本公开的一些具体实施例中,如图1、图2和图5所示,壳体100包括壳身140和壳盖150。其中,壳体100可以为铝合金。
第二侧壁130和内腔110形成于壳身140,壳身140设有与第二侧壁130相对的开口,开口与内腔110连通,壳盖150安装于壳身140且封盖内腔110,第一侧壁120形成于壳盖150,极柱200与壳盖150连接。通过将壳体100分体设置,一方面,可以降低壳体100的加工难度,从而简化壳身140和壳盖150的加工步骤,加工更加方便;另一方面,便于将极芯400和电解液放入内腔110内。
如图8所示,根据本公开第二方面实施例的电池包2,电池包2包括箱体3和根据本公开上述第一方面实施例的单体电池1,单体电池1安装于箱体3内且防爆阀300朝向箱体3的底壁。这样,当单体电池失控时,可以通过防爆阀300向箱体3的底部喷射高温气体或者火焰。
根据本公开实施例的电池包2,通过利用根据本公开上述实施例的单体电池1,具有安全性高、气流流动通畅和防爆效果好等优点。
如图9和图10所示,根据本公开第三方面实施例的车辆4,车辆4包括根据本公开上述第一方面实施例的单体电池1和根据本公开上述第二方面实施例的电池包2,电池包2通过箱体3安装于车辆4的车身或车辆4的底盘。或者,车辆4包括根据本公开上述实施例的单体电池1,单体电池1安装于车辆4的车身或车辆4的底盘上。也即,单体电池1可以直接安装在车辆4的车身或车辆4的底盘上,或者,单体电池1安装于箱体3内组装成电池包2,电池包2通过箱体3安装在车辆4的车身或车辆4的底盘。
根据本公开实施例的车辆4,通过利用根据本公开上述实施例的单体电池1和根据本公开上述实施例的电池包80,具有安全性高、气流流动通畅和防爆效果好等优点。
在本公开的一些具体实施例中,单体电池1或电池包2安装于车辆4的车身或车辆4的底盘,第一侧壁120位于第二侧壁130的上方。
具体地,第一侧壁120可以朝向车辆4的内部,第二侧壁130可以朝向车辆4的外部,也就是说,防爆阀300可以背向车辆4的乘客舱,当单体电池1发生失控时,可以通过防爆阀300向远离车辆4的乘客舱的方向喷射高温气体或者火焰,从而避免了火焰直接喷向车内,降低了车内人员受伤几率,进一步保护了车内的人员安全。
根据本公开实施例的单体电池1、电池包2和车辆4的其他构成以及操作对于本域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。
Claims (19)
- 一种单体电池(1),其特征在于,包括:壳体(100),所述壳体(100)具有内腔(110)以及相对的第一侧壁(120)和第二侧壁(130),所述第二侧壁(130)设有防爆孔(131);第一底托(500)和第二底托(600),所述第一底托(500)和所述第二底托(600)设于所述内腔(110),且所述第二侧壁(130)支撑所述第一底托(500)和所述第二底托(600),所述第一底托(500)和所述第二底托(600)间隔设置,且所述第一底托(500)和所述第二底托(600)限定出第一气道(510),所述防爆孔(131)通过所述第一气道(510)与所述内腔(110)连通;极柱(200),所述极柱(200)设于所述壳体(100)的除所述第二侧壁(130)之外的侧壁;防爆阀(300),所述防爆阀(300)安装于所述第二侧壁(130),且所述防爆阀(300)用于封盖所述防爆孔(131);以及极芯(400),所述极芯(400)设于所述内腔(110)内且与所述极柱(200)连接,所述第一底托(500)和所述第二底托(600)共同支撑所述极芯(400),以使所述极芯(400)与所述防爆孔(131)间隔设置。
- 根据权利要求1所述的单体电池(1),其特征在于,所述第一底托(500)和所述第二底托(600)中的至少一个的朝向所述第二侧壁(130)的一侧构造有第二气道(520),所述第二气道(520)与所述第一气道连通,所述第一底托(500)和所述第二底托(6500)中的至少一个设有多个排气孔(530),多个所述排气孔(530)将所述第二气道(520)与所述内腔(110)连通。
- 根据权利要求2所述的单体电池(1),其特征在于,所述第一底托(500)和所述第二底托(600)中的至少一个的朝向所述第二侧壁(130)的一侧构造有多个支撑筋(540),相邻两个所述支撑筋(540)之间限定出所述第二气道(520)。
- 根据权利要求3所述的单体电池(1),其特征在于,每个所述支撑筋(540)的高度为0.5mm~3mm。
- 根据权利要求2-4中任一项所述的单体电池(1),其特征在于,所述第一气道(510)沿与所述第二侧壁(130)的垂直方向延伸,所述第二气道(520)沿所述第二侧壁(130)的长度方向延伸。
- 根据权利要求1-5中任一项所述的单体电池(1),其特征在于,所述极芯(400)在所述第二侧壁(130)的长度方向上的尺寸为L1,所述第一底托(500)和所述第二底托(600)中每个的长度为L2,其中,所述L1和L2满足:0.04≤L2/L1≤0.45。
- 根据权利要求6所述的单体电池(1),其特征在于,所述L1和L2进一步满足:L1≤500mm,L2≥20mm。
- 根据权利要求1-7中任一项所述的单体电池(1),其特征在于,所述第一底托(500)包括连接的第一侧板(550)和第一底板(560),所述第一底板(560)与所述第二侧壁(130)连接,且所述第一底板(560)沿所述第二侧壁(130)的长度方向延伸,所述第一侧板(550)的一端与所述第一底板(56)连接,且所述第一侧板(550)的另一端与所述第一侧壁(120)的一端连接;所述第二底托(600)包括连接的第二侧板(610)和第二底板(620),所述第二底板(620)与所述第二侧壁(130)连接,且所述第二底板(620)沿所述第二侧壁(130)的长度方向延伸,所述第二侧板(610)的一端与所述第二底板(620)连接,且所述第二侧板(610)的另一端与所述第一侧壁(120)的另一端连接;其中,所述第一底板(560)和所述第二底板(620)间隔设置,且所述第一底板(560)和所述第二底板(620)限定出所述第一气道(51)。
- 根据权利要求8所述的单体电池(1),其特征在于,所述第一侧板(550)的朝向所述极芯(400)的一侧设有第一加强筋(551),所述第一加强筋(551)沿所述第一侧板(550)的长度方向延伸;所述第二侧板(610)的朝向所述极芯(400)的一侧设有第二加强筋(611),所述第二加强筋(611)沿所述第二侧板(610)的长度方向延伸。
- 根据权利要求8或9所述的单体电池(1),其特征在于,所述第一侧板(550)与所述第二侧板(610)平行且与所述第二侧壁(130)垂直。
- 根据权利要求8-10中任一项所述的单体电池(1),其特征在于,所述第一侧板(550)通过绝缘隔圈(800)与所述第一侧壁(120)的所述一端连接,所述第二侧板(610)通过所述绝缘隔圈(800)与所述第一侧壁(120)的所述另一端连接;所述绝缘隔圈(800)的朝向所述内腔(110)的一侧设有第一限位凸起(121)和第二限位凸起(122),所述第一侧板(550)止抵于所述第一限位凸起(121)的背向所述第二限位凸起(122)的一侧,所述第二侧板(610)止抵于所述第二限位凸起(122)的背向所述第一限位凸起(121)的一侧。
- 根据权利要求1-11任一项所述的单体电池(1),其特征在于,所述防爆孔(131)位于所述极芯(400)的厚度方向的中心;和/或所述防爆孔(131)在所述第二侧壁(130)的长度方向上位于所述极芯(400)的中心处。
- 根据权利要求1-12任一项所述的单体电池(1),其特征在于,还包括:绝缘膜(700),所述绝缘膜(700)设于所述防爆阀(300)的朝向所述内腔(110)的一侧。
- 根据权利要求1-13任一项所述的单体电池(1),其特征在于,所述极柱(200)设于所述第一侧壁(120)。
- 根据权利要求1-14任一项所述的单体电池(1),其特征在于,所述极柱(200)包括正极极柱(210)和负极极柱(220),所述壳体(100)为铝壳,所述正极极柱(210)(200)和所述壳体(100)电连接,以使所述正极极柱(210)的电压和所述壳体(100)的电压之差不小于0V且不大于2.5V。
- 根据权利要求1-14任一项所述的单体电池(1),其特征在于,所述极柱(200)包括正极极柱(210)和负极极柱(220),所述壳体(100)为钢壳,所述负极极柱(220)和所述壳体(100)电连接,以使所述壳体(100)的电压和所述负极极柱(220)的电压之差不小于0V且不大于2.5V。
- 根据权利要求1-16中任一项所述的单体电池(1),其特征在于,所述壳体(100)包括:壳身(140),所述第二侧壁(130)和所述内腔(110)形成于所述壳身(140),所述壳身(140)设有与所述第二侧壁(130)相对的开口,所述开口与所述内腔(110)连通;壳盖(150),所述壳盖(150)安装于所述壳身(140)且封盖所述内腔(110),所述第一侧壁(120)形成于所述壳盖(150),所述极柱(200)与所述壳盖(150)连接。
- 一种电池包(2),其特征在于,包括:箱体(3);根据权利要求1-17中任一项所述的单体电池,所述单体电池(1)安装于所述箱体(3)内且所述防爆阀(300)朝向所述箱体(3)的底壁。
- 一种车辆(4),其特征在于,包括:根据权利要求1-17任一项所述的单体电池(1)或根据权利要求18所述的电池包(2),所述第一侧壁(120)位于所述第二侧壁(130)的上方。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202221130465.5 | 2022-05-12 | ||
CN202221130465.5U CN217788703U (zh) | 2022-05-12 | 2022-05-12 | 单体电池、电池包和车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023217212A1 true WO2023217212A1 (zh) | 2023-11-16 |
Family
ID=83909638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/093419 WO2023217212A1 (zh) | 2022-05-12 | 2023-05-11 | 单体电池、电池包和车辆 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN217788703U (zh) |
WO (1) | WO2023217212A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN217788703U (zh) * | 2022-05-12 | 2022-11-11 | 比亚迪股份有限公司 | 单体电池、电池包和车辆 |
CN219067123U (zh) * | 2022-12-21 | 2023-05-23 | 蜂巢能源科技股份有限公司 | 电池单体 |
CN115842212A (zh) * | 2022-12-29 | 2023-03-24 | 蜂巢能源科技股份有限公司 | 电池及动力设备 |
WO2024152293A1 (zh) * | 2023-01-19 | 2024-07-25 | 宁德时代新能源科技股份有限公司 | 电池单体、电池及用电装置 |
CN219498080U (zh) * | 2023-02-20 | 2023-08-08 | 蜂巢能源科技股份有限公司 | 一种塑胶板、盖板组件及电池 |
CN117613401A (zh) * | 2023-11-30 | 2024-02-27 | 蜂巢能源科技股份有限公司 | 单体电池及电池包 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012009317A (ja) * | 2010-06-25 | 2012-01-12 | Hitachi Vehicle Energy Ltd | リチウムイオン二次電池および組電池 |
JP2014010986A (ja) * | 2012-06-28 | 2014-01-20 | Gs Yuasa Corp | 蓄電素子集合体、および、単蓄電素子 |
CN107394063A (zh) * | 2016-05-16 | 2017-11-24 | 宁德时代新能源科技股份有限公司 | 二次电池 |
CN207938693U (zh) * | 2018-03-07 | 2018-10-02 | 深圳市领域通科技有限公司 | 一种新型抗压锂电池 |
CN217788703U (zh) * | 2022-05-12 | 2022-11-11 | 比亚迪股份有限公司 | 单体电池、电池包和车辆 |
-
2022
- 2022-05-12 CN CN202221130465.5U patent/CN217788703U/zh active Active
-
2023
- 2023-05-11 WO PCT/CN2023/093419 patent/WO2023217212A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012009317A (ja) * | 2010-06-25 | 2012-01-12 | Hitachi Vehicle Energy Ltd | リチウムイオン二次電池および組電池 |
JP2014010986A (ja) * | 2012-06-28 | 2014-01-20 | Gs Yuasa Corp | 蓄電素子集合体、および、単蓄電素子 |
CN107394063A (zh) * | 2016-05-16 | 2017-11-24 | 宁德时代新能源科技股份有限公司 | 二次电池 |
CN207938693U (zh) * | 2018-03-07 | 2018-10-02 | 深圳市领域通科技有限公司 | 一种新型抗压锂电池 |
CN217788703U (zh) * | 2022-05-12 | 2022-11-11 | 比亚迪股份有限公司 | 单体电池、电池包和车辆 |
Also Published As
Publication number | Publication date |
---|---|
CN217788703U (zh) | 2022-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023217212A1 (zh) | 单体电池、电池包和车辆 | |
EP3965213B1 (en) | Battery and related apparatus thereof, preparation method and preparation device | |
CN213782158U (zh) | 电池、包括电池的装置和制备电池的设备 | |
WO2023004723A1 (zh) | 电池单体及其制造方法和制造系统、电池以及用电装置 | |
KR102686170B1 (ko) | 전지 및 그 관련장치, 제조방법 및 제조설비 | |
CN115472997B (zh) | 电池端盖组件、储能装置以及用电设备 | |
CN213636145U (zh) | 电池、包括电池的装置和制备电池的设备 | |
US20240347822A1 (en) | End cover assembly, battery cell, battery, and electrical apparatus | |
US11894583B2 (en) | Box body applied to battery, battery assembly, electric apparatus, and method and device for preparing battery assembly | |
CN115832548B (zh) | 电池单体、电池以及用电装置 | |
WO2022205076A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
WO2023065974A1 (zh) | 一种电芯、电池及用电装置 | |
WO2023133722A1 (zh) | 电池的箱体、电池、用电装置、制备电池的方法和装置 | |
WO2023217226A1 (zh) | 单体电池、电池包和车辆 | |
WO2023217223A1 (zh) | 单体电池、电池包和车辆 | |
WO2022006896A1 (zh) | 电池及其相关装置、制备方法和制备设备 | |
CN219180740U (zh) | 电池、电池包和车辆 | |
CN219419389U (zh) | 一种极组组件及锂电池 | |
WO2023236220A1 (zh) | 电池单体、电池及用电设备 | |
WO2023050078A1 (zh) | 电池、用电装置、制备电池的方法和装置 | |
KR102590339B1 (ko) | 전지 박스 본체, 전지, 전기 장치, 전지 제조 방법 및 장치 | |
KR102642182B1 (ko) | 전지 박스 본체, 전지, 전기 장치, 전지 제조 방법 및 장치 | |
KR20070014656A (ko) | 이차 전지 | |
CN219892347U (zh) | 电池及其电池模组 | |
CN221304922U (zh) | 电池单体、电池及用电装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23802981 Country of ref document: EP Kind code of ref document: A1 |