WO2023216968A1 - 流量传输方法、装置、设备和存储介质 - Google Patents

流量传输方法、装置、设备和存储介质 Download PDF

Info

Publication number
WO2023216968A1
WO2023216968A1 PCT/CN2023/092142 CN2023092142W WO2023216968A1 WO 2023216968 A1 WO2023216968 A1 WO 2023216968A1 CN 2023092142 W CN2023092142 W CN 2023092142W WO 2023216968 A1 WO2023216968 A1 WO 2023216968A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
internet
traffic
message traffic
transmission link
Prior art date
Application number
PCT/CN2023/092142
Other languages
English (en)
French (fr)
Inventor
缪昭侠
王鹏飞
朱帅
张程
Original Assignee
阿里云计算有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿里云计算有限公司 filed Critical 阿里云计算有限公司
Publication of WO2023216968A1 publication Critical patent/WO2023216968A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L51/00User-to-user messaging in packet-switching networks, transmitted according to store-and-forward or real-time protocols, e.g. e-mail
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks

Definitions

  • the present application relates to the field of computer technology, and in particular, to a traffic transmission method, device, equipment and storage medium.
  • the IOT platform can provide data support for IOT devices connected to the platform, such as large gateway devices.
  • IOT devices connected to the platform
  • large gateway devices such as large gateway devices.
  • the messages of the sub-devices are transmitted through the IOT device and the IOT platform, resulting in excessive message traffic, which will have an impact on the IOT platform and IOT devices, causing the IOT platform to abnormal.
  • Embodiments of the present application provide a traffic transmission method, device, equipment and storage medium, which can improve the message processing performance and traffic transmission of IOT devices and IOT platforms.
  • a traffic transmission method including:
  • Obtain the message traffic which includes the traffic of sub-devices connected to the Internet of Things device;
  • Message traffic is transmitted to the IoT platform through multiple transmission links.
  • a traffic transmission device including:
  • the acquisition module is used to obtain message traffic, which includes traffic of sub-devices connected to the Internet of Things device;
  • the transmission module is used to transmit message traffic to the IoT platform through multiple transmission links.
  • a computer device including: a memory and a processor;
  • the processor is configured to execute a computer program stored in the memory. When the computer program is run, the processor performs the steps of the traffic transmission method shown in the first aspect.
  • a computer-readable storage medium is provided. Programs or instructions are stored on the computer-readable storage medium. When the programs or instructions are executed by a computer device, the computer device executes the first aspect as described in the first aspect. The steps of the traffic transfer method are shown.
  • a computer program product including a computer program that, when the computer program is executed by a computer device, causes the computer device to perform the steps of the traffic transmission method shown in the first aspect.
  • the message traffic in the Internet of Things device can be allocated to different transmission link, and then transmit message traffic to the IoT platform through multiple transmission links.
  • the IoT platform does not need to limit the flow of IoT devices with large message volumes.
  • Figure 1 is a schematic diagram showing a traffic transmission architecture
  • Figure 2 is one of the schematic diagrams showing a traffic transmission architecture according to an embodiment
  • Figure 3 is a second schematic diagram showing a traffic transmission architecture according to an embodiment
  • Figure 4 is a flow chart illustrating a traffic transmission method according to an embodiment
  • Figure 5 is a schematic structural diagram illustrating a situation of business message isolation according to an embodiment
  • Figure 6 is a schematic structural diagram illustrating a multi-network link disaster recovery situation according to one embodiment
  • Figure 7 is a schematic structural diagram illustrating a situation of selecting a transmission link with a higher priority according to an embodiment
  • Figure 8 is a flow chart illustrating a traffic transmission method based on an Internet of Things platform according to one embodiment
  • Figure 9 is a schematic structural diagram showing a traffic transmission device according to an embodiment
  • Figure 10 is a schematic structural diagram showing a traffic transmission device based on an Internet of Things platform according to one embodiment
  • FIG. 11 is a schematic diagram showing the hardware structure of a computer device according to one embodiment.
  • large gateway devices When IOT devices such as large gateway devices are connected to the IOT platform, large gateway devices generally have the following characteristics: 1) The message traffic is large, many sub-devices are connected to the large gateway device, and messages are sent and received through the large gateway device; 2) Equipment performance requirements are high, and large gateway equipment has strong processing capabilities; 3) There are many messages. If the message processing efficiency of the IOT platform is low, messages from large gateway equipment will be blocked; 4) Equipment stability requirements are high, and large gateway equipment will fail. Being offline means that all sub-devices are offline, which affects the traffic transmission of sub-devices and causes abnormalities in large gateway devices. For the IoT platform, due to the access of large gateway devices, the received message traffic increases, which will have an impact on the IoT platform and cause serious traffic tilt. In extreme cases, it may exceed the performance bottleneck of the IoT platform. Causes abnormalities in the IoT platform.
  • AMQP Advanced Message Queuing Protocol
  • the IOT device 101 can access the AMQP access point 30 corresponding to the AMQP link 20 through an AMQP link 20 to send traffic to the IOT platform 40 through the AMQP access point 30.
  • the AMQP access point 30 Increase the traffic limit to achieve large traffic upload, and after the traffic is uploaded, the IOT platform 40 can also be based on the AMQP corresponding to the AMQP link 20
  • the access point 30 performs traffic distribution. However, since the AMQP link 20 corresponds to one AMQP access point 30, traffic congestion may occur in the AMQP access point 30, affecting the traffic processing process of the IOT platform 40.
  • embodiments of the present application provide a traffic transmission method.
  • the message traffic in the IoT device can be allocated to different transmission links.
  • the message traffic is transmitted to the IoT platform through multiple transmission links.
  • the IoT platform does not need to limit the flow of IoT devices with large message volumes, which can be achieved
  • IoT devices such as large gateway devices are connected to the IoT platform, they are not subject to traffic restrictions. They can meet the requirements of large gateway devices for large message traffic, high performance requirements, and stability, and improve the message processing of IoT devices and IoT platforms. performance and traffic transmission efficiency.
  • the IoT platform it can also break up the traffic without causing any impact on the IoT platform, thereby improving the disaster recovery capability of the equipment.
  • the traffic transmission architecture proposed by the embodiment of this application includes a sub-device 201 , an IoT device 202 and an IoT platform 203 .
  • the sub-device 201 may be a user terminal.
  • the user terminal may be an electronic device.
  • the electronic device may be a mobile phone, a tablet computer, a handheld computer, a wearable device, or other devices capable of data transmission with the Internet of Things device 202.
  • the embodiment of this application does not specifically limit the sub-device 201.
  • the number of sub-devices 201 in this embodiment of the present application may be multiple.
  • the sub-devices 201 may include sub-devices 2011, sub-devices 2012, sub-devices 2013... and sub-devices 201M, where M is an integer greater than 1. .
  • Each sub-device can perform data interaction with the IoT platform 203 through at least one IoT device 202.
  • the Internet of Things device 202 may be a gateway device connected to at least one sub-device.
  • the connected sub-device When the number of devices is greater than the preset number, the gateway device may be a large gateway device.
  • the IoT device 202 has the function of single device multiple connections.
  • the single device multiple connections means that the IoT device 202 and the IoT platform 203 establish a transmission control protocol (Transmission Control Protocol, TCP) transmission link 204 with the IoT platform.
  • TCP Transmission Control Protocol
  • the number of transmission links 204 is multiple, such as transmission link 2041, transmission link 2042, transmission link 2043,..., transmission link 204Y, where Y is an integer greater than 1, specifically
  • the number of transmission links 204 is the same as the number of sub-devices, that is, the values of Y and Z can be the same.
  • the IoT device 202 is used to control upstream messages, that is, determine the transmission link for transmitting upstream messages, that is, message traffic, to the IoT platform 203 . It should be noted that in the embodiment of this application, if there is more than one transmission link between the IoT device and the IoT platform, it means that the IoT device is online. On the contrary, if all the transmission links are disconnected, it means that the IoT device is offline. .
  • the Internet of Things platform 203 may be an integrated platform that integrates capabilities such as device management, data security communication, and message subscription. Downwardly, it supports the connection of massive IoT devices 202, collects the data of IoT devices 202 and transmits it to the cloud platform in IoT platform 203; upwardly, it provides cloud platform refers to application programming interface (Application Programming Interface, API), IoT platform 203 Remote control can be achieved by calling the cloud platform API to issue instructions to the IoT device 202.
  • the cloud platform API in the embodiment of the present application may include at least two devices connected to multiple transmission links. Access point, here we take two access points as an example, such as access point 2051 and access point 2052.
  • the access point is used to transmit the transmission link to the Internet of Things platform 203 when the transmission link is connected. message traffic on.
  • the cloud platform API in the embodiment of the present application may include an access point connected to each of multiple transmission links, that is, providing each transmission link with Its corresponding access point, such as access point 2051, access point 2052, access point 2053,..., access point 205Z, Z is an integer greater than 1, here, the value of Z is the same as Y, at this time , each access point is used to transmit the message traffic on the transmission link to the Internet of Things platform 203 when its corresponding transmission link is connected.
  • the transmission link 2041 when the transmission link 2041 is connected to the access point 2051, it can be The access point 2051 transmits the message traffic on the transmission link 2041 to the IoT platform 203. Based on this, the IoT platform 203 is used to control message downlink, that is, to determine a transmission link for transmitting downlink messages, that is, feedback traffic of message traffic, to the IoT device 202 .
  • the Internet of Things device 202 obtains the message traffic of the sub-device 201 connected to the Internet of Things device 202.
  • the IoT device 202 establishes multiple transmission links between the IoT device 202 and the IoT platform 203 according to the message traffic.
  • the Internet of Things device 202 may allocate the message traffic to different transmission links, and access the access point corresponding to each of the multiple transmission links through the multiple transmission links. Message traffic on the transmission link of the Internet of Things platform 203.
  • the The message traffic can be allocated to different transmission links, and then the message traffic is transmitted to the IoT platform through multiple transmission links.
  • the IoT platform does not need to deal with the large amount of messages.
  • Current limiting for large IoT devices can allow IoT devices such as large gateway devices to access the IoT platform without traffic restrictions, which improves the message processing performance and traffic transmission efficiency of IoT devices and IoT platforms. At the same time, It also improves the access experience of sub-devices connected to IoT devices.
  • the traffic transmission method in the embodiment of the present application can be applied to the scenario of traffic transmission between IoT devices and IoT platforms.
  • Figure 4 is a flowchart illustrating a traffic transmission method according to one embodiment.
  • the traffic transmission method can be applied to the traffic transmission architecture shown in Figure 1, and specifically can be used in the server shown in Figure 1.
  • the traffic transmission method can specifically include:
  • Step 410 Obtain message traffic, which includes traffic of sub-devices connected to the IoT device; Step 420: Establish multiple transmission links between the IoT device and the IoT platform based on the message traffic; Step 430: Through multiple A transmission link to transmit message traffic to the IoT platform.
  • the message traffic in the embodiment of this application may refer to the number of messages per unit time.
  • the transmission link in the embodiment of the present application adopts a TCP transmission link.
  • message traffic can be transmitted through multiple TCP transmission links to reduce the probability of message congestion and improve message traffic transmission efficiency.
  • step 420 may specifically include: calculating the number of transmission links established between the IoT device and the IoT platform based on message traffic;
  • the device can determine the number of transmission links based on the message traffic. If the message traffic is greater than or equal to the preset traffic, the number of links must be greater than or equal to the first preset number 20; conversely, if the message traffic If the flow rate is less than the preset flow rate, the number of links should be less than the first preset number of 20 and greater than or equal to the second preset number of 10, and the second preset number should be less than the first preset number.
  • the data transmission status of the transmission link between the IoT device and the IoT platform is determined by the IoT device, where the data transmission status may include a connected state or a disconnected state.
  • the traffic transmission method May also include:
  • the transmission link is identified by a connection identifier; where the connection identifier is used to identify the transmission link on which data is being transmitted between the IoT platform and the IoT device.
  • the transmission link can be identified by adding a parameter Connection Identifier (CID).
  • CID Connection Identifier
  • a single CID connection can be kept unique, so that in the case where multiple transmission links include at least two first transmission links identified by the same connection identifier, through One of at least two first transmission links transmits message traffic to the Internet of Things platform.
  • multiple transmission links between the Internet of Things device and the Internet of Things platform are established on the Internet of Things device 202, such as transmission link 2041 (identification CID1) and transmission link 2042 (identification CID2).
  • transmission link 2041 identity CID1
  • transmission link 2042 identity CID2
  • the transmission link 2043 will be disconnected and the transmission link 2043 will be sent to the IoT platform 203.
  • Transport message traffic if the transmission link 2043 continues to be established and is identified as CID1, in order to ensure that only one connection with the same CID can be connected to the IoT platform 203, the transmission link 2041 will be disconnected and the transmission link 2043 will be sent to the IoT platform 203.
  • Transport message traffic Transport message traffic.
  • the traffic transmission method provided by the embodiment of the present application is to break up the traffic without causing impact on the Internet of Things platform, so as to improve the disaster recovery capability of the equipment, and also provides based on the number of different access points. Two ways to transmit message traffic to the IoT platform.
  • this step 430 may specifically include:
  • Message traffic on multiple transmission links is transmitted to the IoT platform through at least two access points.
  • this step 430 may specifically include:
  • the message traffic on each transmission link is transmitted to the IoT platform through the access point corresponding to each transmission link.
  • step 430 may specifically include:
  • Message traffic is transmitted to the Internet of Things platform through one of the at least two first transmission links.
  • multiple transmission links between the Internet of Things device and the Internet of Things platform are established on the Internet of Things device 202, such as transmission link 2041 (identification CID1) and transmission link 2042 (identification CID2).
  • transmission link 2041 identity CID1
  • transmission link 2042 identity CID2
  • the transmission link 2043 will be disconnected and the transmission link 2043 will be sent to the IoT platform 203.
  • Transport message traffic if the transmission link 2043 continues to be established and is identified as CID1, in order to ensure that only one connection with the same CID can be connected to the IoT platform 203, the transmission link 2041 will be disconnected and the transmission link 2043 will be sent to the IoT platform 203.
  • Transport message traffic Transport message traffic.
  • step 430 may also include:
  • Step 4301 Screen at least two second transmission links among multiple transmission links
  • Step 4302 Transmit service traffic to the Internet of Things platform through at least two second transmission links.
  • step 4302 may specifically include:
  • service traffic is transmitted to the Internet of Things platform.
  • two second transmission links are taken as an example. If the transmission link 2042 and the transmission link 2043 are transmission links for transmitting service traffic, then the transmission link 2042 and the transmission link 2043 (transmission link 2043) are obtained respectively. service traffic). At this time, if the network delay of the transmission link 2042 is less than the network delay of the transmission link 2043, the transmission link 2042 is determined to be the third transmission link. Alternatively, if the network delay of the transmission link 2042 is less than or equal to the first preset threshold, the transmission link 2042 is determined to be the third transmission link.
  • the above description of the embodiments of the present application refers to the situation of multiple connections.
  • the embodiments of the present application can also support multiple network links, and the Internet of Things devices can perform intelligent processing according to business needs to improve the efficiency of message traffic transmission. , and improve the disaster recovery capability of the equipment. Step 430 is explained below based on different scenarios.
  • IoT devices provide many services through the IoT platform, such as sensor data reporting services, control command issuance services, file transfer services, and over-the-air download services (Over-the-Air Technology, OTA) Wait, because IoT devices support multiple connection capabilities, IoT devices can select dedicated transmission links based on the type of service.
  • IoT devices provide many services through the IoT platform, such as sensor data reporting services, control command issuance services, file transfer services, and over-the-air download services (Over-the-Air Technology, OTA) Wait, because IoT devices support multiple connection capabilities, IoT devices can select dedicated transmission links based on the type of service.
  • OTA Over-the-Air Technology
  • This step 430 may also include:
  • the first message traffic is transmitted to the Internet of Things platform through the third transmission link
  • the second message traffic is transmitted to the Internet of Things platform through the fourth transmission link.
  • the first type of business service is the transmission signaling service
  • the first message traffic is the control instruction traffic of the transmission signaling service
  • the second type of business service is the transmission data service
  • the second message traffic OTA upgrade traffic for transmission data services. Due to the high real-time requirements for transmitting signaling services and small data, the real-time performance of transmitting data services is The requirements are not high, but the amount of data is large. Therefore, the transmission link that transmits the control command traffic can be separated from the transmission link that transmits the OTA upgrade traffic, that is, the control command traffic is transmitted to the Internet of Things platform through the transmission link 2041, and Through the transmission link 2042, OTA upgrade traffic is transmitted to the Internet of Things platform to achieve separation of signaling and data and improve signaling transmission efficiency.
  • IoT devices can isolate the traffic of different services, achieve partial service degradation, and improve the transmission efficiency of important service message traffic.
  • Multi-network link disaster recovery that is, network failure will cause IoT devices to be unavailable.
  • IoT devices can still interact with the IoT platform when a single network fails.
  • the Internet of Things device includes multiple network cards.
  • the multiple network cards include a first network card and a second network card.
  • the first network card corresponds to the first connection mode
  • the second network card corresponds to the second connection mode.
  • step 430 may also include :
  • message traffic is transmitted to the Internet of Things platform through at least one transmission link corresponding to the second connection method.
  • the first network card corresponds to the first connection mode, that is, wireless network communication (WIFi)
  • WIFi wireless network communication
  • the second network card corresponds to the second connection mode, that is, Wired network
  • at least one transmission link corresponding to the wired network such as transmission link 2042
  • the transmission link of the wired network can be used. Route 2042 then establishes the same connection to ensure continuous service for users.
  • IoT devices can improve equipment disaster recovery capabilities, allow access through multiple network links, and improve the stability of external services for IoT devices and IoT platforms.
  • step 430 may also include:
  • the message traffic is transmitted to the IoT platform through the target transmission link selected among multiple transmission links.
  • the network delay of each transmission link in multiple transmission links such as transmission link 2041 and transmission link 2042 is obtained.
  • the network delay of transmission link 2041 is If the delay is 10 milliseconds and the network delay of transmission link 2042 is 20 milliseconds, then the priority of transmission link 2041 is higher than the priority of transmission link 2042.
  • the transmission link 2041 can be determined as the target transmission link.
  • IoT devices can select the optimal transmission link to send message traffic and improve the transmission efficiency of message traffic.
  • a transmission link with a network delay of 10 milliseconds is only 2041.
  • at least two transmission links with a network delay of 10 milliseconds can be selected as target transmission links among multiple transmission links 2041 to 204Y. Therefore, the above embodiment only takes one transmission link as an example.
  • the number of transmission links is not limited to 1.
  • the traffic transmission method may also include:
  • the data transmission status of each transmission link is controlled.
  • the data transmission status includes a connected state or a disconnected state.
  • the Internet of Things device can detect and maintain the heartbeat information of each transmission link.
  • the IoT device When detecting the loss of the heartbeat information of the transmission link 2041 and the transmission link 2042, determine the transmission link 2041 and the transmission link 2042. 2042 is disconnected.
  • the IoT device will also ensure that other transmission links that can detect heartbeat information, such as transmission link 2043, interact with the IoT platform.
  • the message traffic in the IoT device can be distributed to different transmission links. Then, through multiple transmission links, the message traffic in the IoT device can be distributed to the IoT platform.
  • the platform transmits message traffic. In this way, since the traffic is distributed to different transmission links, the IoT platform does not need to limit the flow of IoT devices with large message volumes. It can enable IoT devices such as large gateway devices to access the IoT.
  • the platform is not subject to traffic restrictions and can meet the requirements of large gateway equipment for large message traffic, high performance requirements, and stability. It improves the message processing performance and traffic transmission efficiency of IoT devices and IoT platforms. At the same time, it is also important for IoT platforms. It is said that it can also break up the traffic without causing any impact on the IoT platform, thereby improving the disaster recovery capability of the equipment.
  • the traffic transmission method provided by the embodiments of this application can achieve traffic dispersion without limiting the flow of IoT devices with large message traffic, which improves the access experience of sub-device users.
  • large gateway devices can be accessed without traffic restrictions, improving traffic transmission efficiency and achieving load balancing on the Internet of Things platform.
  • the service message traffic can be isolated and the response time of the control service can be accelerated;
  • the multi-connection feature in the case of multi-network link disaster recovery, multiple network links can be used to achieve a single Disaster recovery for network anomalies;
  • the optimal path can be selected for transmission to improve traffic transmission efficiency.
  • embodiments of the present application also provide a traffic transmission method based on the IoT platform corresponding to the IoT device.
  • Figure 8 is a flow chart illustrating a traffic transmission method based on an Internet of Things platform according to one embodiment.
  • the traffic transmission method can be applied to the traffic transmission architecture shown in Figure 2 or Figure 3.
  • the traffic transmission method may specifically include:
  • Step 810 Receive message traffic sent by the IoT device through multiple transmission links between the IoT device and the IoT platform; Step 820: Obtain feedback traffic corresponding to the message traffic based on the message traffic; Step 830: Through multiple A transmission link sends feedback traffic to IoT devices.
  • step 830 in order to ensure the transmission efficiency of message traffic, the embodiment of the present application may select a link with a smaller network delay for transmission of service traffic of the same service. Based on this, step 830 may specifically include:
  • the message traffic is transmitted to the IoT platform through the target transmission link selected among multiple transmission links.
  • the network delay of each transmission link in multiple transmission links such as transmission link 2041 and transmission link 2042 is obtained.
  • the network delay of transmission link 2041 is delay 10 milliseconds
  • the network delay of transmission link 2042 is 20 milliseconds
  • the priority of transmission link 2041 is higher than the priority of transmission link 2042.
  • the transmission link 2041 can be determined as the target transmission link.
  • the IoT platform can select the optimal transmission link to send message traffic and improve the transmission efficiency of message traffic.
  • the message traffic in the IoT device can be distributed to different transmission links. Then, through multiple transmission links, the message traffic in the IoT device can be distributed to the IoT platform.
  • the device transmits message traffic.
  • the IoT platform does not need to limit the flow of IoT devices with large message volumes. It can enable IoT devices such as large gateway devices to access the IoT.
  • the platform is not subject to traffic restrictions and can meet the requirements of large gateway equipment for large message traffic, high performance requirements, and stability. It improves the message processing performance and traffic transmission efficiency of IoT devices and IoT platforms. At the same time, it is also important for IoT platforms. It is said that it can also break up the traffic without causing any impact on the IoT platform, thereby improving the disaster recovery capability of the equipment.
  • this application provides a traffic transmission device corresponding to the above-mentioned traffic transmission method. Detailed description will be given in conjunction with Figure 9 .
  • Figure 9 is a schematic structural diagram showing a traffic transmission device according to an embodiment.
  • the traffic transmission device 90 is applied to the Internet of Things equipment as shown in Figure 2 or Figure 3.
  • the traffic transmission device 90 may specifically include:
  • the acquisition module 901 is used to obtain message traffic, which includes traffic of sub-devices connected to the Internet of Things device;
  • the establishment module 902 is used to establish multiple transmission links between the Internet of Things device and the Internet of Things platform according to the message traffic;
  • the transmission module 903 is used to transmit message traffic to the Internet of Things platform through multiple transmission links.
  • the traffic transmission device 90 provided in the embodiment of the present application is described in detail below:
  • the transmission module 903 may be configured to access at least two access points through multiple transmission links when multiple transmission links correspond to at least two access points. point;
  • Message traffic on multiple transmission links is transmitted to the IoT platform through at least two access points.
  • the transmission module 903 may be configured to connect multiple transmission links through each transmission link when each transmission link corresponds to an access point respectively. Input the access point corresponding to each transmission link to transmit message traffic;
  • the message traffic on each transmission link is transmitted to the IoT platform through the access point corresponding to each transmission link.
  • the traffic transmission device 90 in the embodiment of the present application may also include an identification module for identifying the transmission link through a connection identifier; wherein the connection identifier is used to identify the Internet of Things The transmission link through which data is being transmitted between the platform and IoT devices.
  • the transmission module 903 may be configured to, in the case where multiple transmission links include at least two first transmission links with the same connection identifier, through at least two first transmission links. One of the first transmission links transmits message traffic to the IoT platform.
  • the establishment module 902 may be configured to calculate the number of transmission links established between the Internet of Things device and the Internet of Things platform based on message traffic;
  • the traffic transmission device 90 in the embodiment of the present application may also include a control module configured to control the heartbeat information of each transmission link in multiple transmission links.
  • the data transmission status includes connected status or disconnected status.
  • the traffic transmission device 90 in the embodiment of the present application may also include a filtering module, configured to include the service traffic of a target service in the message traffic.
  • the target service is an Internet of Things device in the Internet of Things.
  • the service subscribed by the platform selects at least two second transmission links among multiple transmission links;
  • the transmission module 903 can also be used to transmit service traffic to the Internet of Things platform through at least two second transmission links.
  • the traffic transmission device 90 in the embodiment of the present application may also include a determination module; wherein,
  • the obtaining module 901 may also be used to obtain the network delay of each second transmission link in the at least two second transmission links. hour;
  • a determination module configured to determine that the transmission link whose network delay is less than or equal to the first preset threshold is the third transmission link;
  • the transmission module 903 can also be used to transmit service traffic to the Internet of Things platform through the third transmission link.
  • the transmission module 903 may be configured to: when multiple transmission links include a third transmission link and a fourth transmission link, the message traffic includes the first type of business service. In the case of first message traffic and second message traffic of the second type of business service, the first message traffic is transmitted to the Internet of Things platform through the third transmission link, and the second message traffic is transmitted to the Internet of Things platform through the fourth transmission link. Message traffic.
  • the transmission module 903 can be specifically used to: when the Internet of Things device includes multiple network cards, the multiple network cards include a first network card and a second network card, and the first network card corresponds to the first connection method. , when the second network card corresponds to the second connection mode, and when at least one transmission link corresponding to the first connection mode is disconnected, the IoT platform is transmitted to the Internet of Things platform through at least one transmission link corresponding to the second connection mode. Transport message traffic.
  • the traffic transmission device 90 in the embodiment of the present application may also include a generation module; wherein,
  • Obtaining module 901 is used to obtain the network delay of each transmission link in multiple transmission links;
  • a generation module for generating transmission link priorities of multiple transmission links based on the network delay of each transmission link
  • the transmission module 903 can also be used to transmit message traffic to the Internet of Things platform through a target transmission link selected from multiple transmission links according to the priority of the transmission link.
  • embodiments of the present application also provide a traffic transmission device based on the Internet of Things platform.
  • the traffic transmission device provided by the embodiment of the present application will be described in detail below with reference to FIG. 10 .
  • Figure 10 is a schematic structural diagram showing a traffic transmission device based on an Internet of Things platform according to one embodiment.
  • the traffic transmission device 100 is applied to the Internet of Things platform as shown in Figure 2 or Figure 3.
  • the traffic transmission device 100 may specifically include:
  • the receiving module 1001 is used to receive message traffic sent by the Internet of Things device through multiple transmission links between the Internet of Things device and the Internet of Things platform;
  • the acquisition module 1002 is used to obtain feedback traffic corresponding to the message traffic based on the message traffic;
  • the sending module 1003 is used to send feedback traffic to the Internet of Things device through multiple transmission links.
  • the traffic transmission device 100 provided by the embodiment of the present application is described in detail below:
  • the traffic transmission device 100 may further include a generation module; wherein,
  • the acquisition module 1002 can also be used to acquire the network delay of each transmission link among the multiple transmission links;
  • a generation module for generating transmission link priorities of multiple transmission links based on the network delay of each transmission link
  • the sending module 1003 can also be used to transmit message traffic to the Internet of Things platform through a target transmission link selected from multiple transmission links according to the priority of the transmission link.
  • the message traffic in the IoT device can be distributed to different transmission links. Then, through multiple transmission links, the message traffic in the IoT device can be distributed to the IoT platform.
  • the platform transmits message traffic. In this way, since the traffic is distributed to different transmission links, the IoT platform does not need to limit the flow of IoT devices with large message volumes. It can enable IoT devices such as large gateway devices to access the IoT.
  • the platform is not subject to traffic restrictions and can meet the requirements of large gateway equipment for large message traffic, high performance requirements, and stability. It improves the message processing performance and traffic transmission efficiency of IoT devices and IoT platforms. At the same time, it is also important for IoT platforms. It is said that it can also break up the traffic without causing any impact on the IoT platform, thereby improving the disaster recovery capability of the equipment.
  • FIG. 11 is a schematic diagram showing the hardware structure of a computer device according to one embodiment.
  • computer device 1100 includes an input device 1101, an input interface 1102, a processor 1103, a memory 1104, an output interface 1105, and an output device 1106.
  • the input interface 1102, the processor 1103, the memory 1104, and the output interface 1105 are connected to each other through a bus 1110.
  • the input device 1101 and the output device 1106 are connected to the bus 1110 through the input interface 1102 and the output interface 1105 respectively, and then to other components of the computer device 1100 connect.
  • the input device 1101 receives input information from the outside and transmits the input information to the processor 1103 through the input interface 1102;
  • the processor 1103 processes the input information based on computer-executable instructions stored in the memory 1104 to generate output information,
  • the output information is temporarily or permanently stored in the memory 1104, and then transmitted to the output device 1106 through the output interface 1105; the output device 1106 outputs the output information to the outside of the computer device 1100 for use by the user.
  • the computer device 1100 shown in FIG. 11 may be implemented as a traffic transmission device.
  • the traffic transmission device may include: a memory configured to store programs; a processor configured to run a program stored in the memory. Program to execute the traffic transmission method described in the above embodiment.
  • the memory can also be used to store message traffic and calculation results of each step in the traffic transmission process described in connection with the above-mentioned FIGS. 1 to 10 .
  • embodiments of the present application may be implemented as a computer-readable storage medium.
  • embodiments of the present application include a computer-readable storage medium, which includes storing a program or instructions on the computer-readable storage medium.
  • the program or instructions When executed by a computer device, the computer device performs the steps of the above method. .
  • embodiments of the present application include a computer program product including a computer program tangibly embodied on a machine-readable medium, the computer program including program code for performing the method illustrated in the flowchart.
  • the computer program can be downloaded and installed from the Internet, and/or installed from removable storage media.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions, which when run on a computer, cause the computer to perform the methods described in the above embodiments.
  • computer program instructions When computer program instructions are loaded and executed on a computer, processes or functions according to embodiments of the present application are generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • Computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, e.g., computer instructions may be transmitted from a website, computer, server or data center via a wired link (e.g. Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means to transmit to another website site, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that includes one or more available media. Available media may be magnetic media (eg, floppy disk, hard disk, tape), optical media (eg, DVD), or semiconductor media (eg, solid state drive), etc.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in one place. , or it can be distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请公开了一种流量传输方法、装置、设备和存储介质,涉及计算机技术领域。该流量传输方法可以建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的消息流量可以分配到不同的传输链路,接着,通过多个传输链路向物联网平台传输消息流量,实现了在物联网设备如大型网关设备接入物联网平台时,不受流量限制,提高物联网设备与物联网平台的消息处理性能和流量传输效率。

Description

流量传输方法、装置、设备和存储介质
本申请要求于2022年05月09日提交中国专利局、申请号为202210499752.1、申请名称为“流量传输方法、装置、设备和存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及计算机技术领域,尤其涉及一种流量传输方法、装置、设备和存储介质。
背景技术
随着物联网(Internet of Things,IOT)的兴起,IOT平台可以为接入该平台的IOT设备如大型网关设备提供数据支持。IOT设备在接入IOT平台时,由于IOT设备连接很多子设备,子设备的消息都通过IOT设备与IOT平台进行传输,使得消息流量过大,会对IOT平台和IOT设备造成冲击,导致IOT平台异常。
在相关技术中,可以对单个IOT设备进行限流,但是,这样会影响IOT设备和IOT平台的消息处理性能以及流量传输。
发明内容
本申请实施例提供一种流量传输方法、装置、设备和存储介质,可以提高IOT设备与IOT平台的消息处理性能和流量传输。
根据本申请实施例的第一方面,提供一种流量传输方法,包括:
获取消息流量,消息流量包括接入物联网设备的子设备的流量;
根据消息流量,建立物联网设备与物联网平台之间的多个传输链路;
通过多个传输链路,向物联网平台传输消息流量。
根据本申请实施例的第二方面,提供一种流量传输装置,包括:
获取模块,用于获取消息流量,消息流量包括接入物联网设备的子设备的流量;
建立模块,用于根据消息流量,建立物联网设备与物联网平台之间的多个传输链路;
传输模块,用于通过多个传输链路,向物联网平台传输消息流量。
根据本申请实施例的第三方面,提供一种计算机设备,包括:存储器和处理器;
存储器,用于存储有计算机程序;
处理器,用于执行存储器中存储的计算机程序,计算机程序运行时使得处理器执行如第一方面所示的流量传输方法的步骤。
根据本申请实施例的第四方面,提供一种计算机可读存储介质,计算机可读存储介质上存储程序或指令,在程序或指令被计算机设备执行的情况下,使得计算机设备执行如第一方面所示的流量传输方法的步骤。
根据本申请实施例的第五方面,提供一种计算机程序产品,包括计算机程序,在计算机程序被计算机设备执行的情况下,使得计算机设备执行如第一方面所示的流量传输方法的步骤。
根据本申请实施例中的流量传输方法、装置、设备和存储介质,通过建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的消息流量可以分配到不同的传输链路,接着,通过多个传输链路,向物联网平台传输消息流量,这样,由于流量被分配到不同的传输链路,所以物联网平台无需对消息量较大的物联网设备进行限流,可以实现在物联网设备如大型网关设备接入物联网平台时,不受流量限制,提高了物联网设备和物联网平台的消息处理性能以及流量传输效率,同时也提高了接入物联网设备的子设备的接入体验。
附图说明
从下面结合附图对本申请的具体实施方式的描述中可以更好地理解本申请其中,相同或相似的附图标记表示相同或相似的特征。
图1是示出一种流量传输架构示意图;
图2是示出根据一个实施例的一种流量传输架构示意图之一;
图3是示出根据一个实施例的一种流量传输架构示意图之二;
图4是示出根据一个实施例的一种流量传输方法的流程图;
图5是示出根据一个实施例的一种业务消息隔离的情况的结构示意图;
图6是示出根据一个实施例的一种多网络链路容灾的情况的结构示意示意图;
图7是示出根据一个实施例的一种选择优先级较高的传输链路的情况的结构示意图;
图8是示出根据一个实施例的一种基于物联网平台的流量传输方法的流程图;
图9是示出根据一个实施例的一种流量传输装置的结构示意图;
图10是示出根据一个实施例的一种基于物联网平台的流量传输装置结构示意图;
图11是示出根据一个实施例的计算机设备的硬件结构示意图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括要素的过程、方法、物品或者设备中还存在另外的相同要素。
IOT设备如大型网关设备在接入IOT平台时,对于大型网关设备来说,一般会包括如下特点:1)消息流量大,很多子设备接在大型网关设备上,消息都通过大型网关设备收发;2)设备性能要求高,大型网关设备处理能力强;3)消息多,如果IOT平台消息处理效率低的话,会导致大型网关设备的消息会堵塞;4)设备稳定性要求高,大型网关设备掉线意味子设备都掉线,影响子设备的流量传输,造成大型网关设备异常。对于物联网平台来说,由于大型网关设备的接入,使得接收到的消息流量增大,会对物联网平台造成冲击,造成严重的流量倾斜,极端的可能会超过物联网平台的性能瓶颈,造成物联网平台异常。
在相关技术中,一般的处理办法是对单个IOT设备进行限流,但是,这样会影响IOT设备和IOT平台的消息处理性能以及流量传输。或者,针对大型网关设备接入IOT平台,可以使用提供统一消息服务的应用层标准高级消息队列协议(Advanced Message Queuing Protocol,AMQP)的方式进行接入,如图1所示,AMQP作为底层链路,IOT设备10中的每个IOT设备如IOT设备101、IOT设备102、IOT设备103、……、IOT设备10N(N为大于1的整数),在这个AMQP链路20上建立一条通道,如IOT设备101在AMQP链路20上建立通道1011,该通道1011代表IOT设备101。这样,可以使得IOT设备101通过一条AMQP链路20接入AMQP链路20对应的AMQP接入点30,以通过AMQP接入点30将流量发送到IOT平台40,在AMQP接入点30上可以加大流量的限制,实现大流量上传,并且在流量上传之后,IOT平台40还可以基于AMQP链路20对应的AMQP 接入点30进行流量分发。但是,由于AMQP链路20对应一个AMQP接入点30,所以流量在AMQP接入点30中可能会出现流量拥塞,影响IOT平台40的流量处理过程。
另外,若要满足这类IOT设备的接入,则需要有负载均衡、提高消息处理性能、容灾能力等能力。以上几种能力,在互联网行业的处理方法已经很成熟了,但是,互联网设备接入互联网平台不同于IOT设备接入IOT平台的是,传统的互联网的行业流量基本上是基于超文本传输协议(Hyper Text Transfer Protocol,HTTP)实现,是短连接,可以较好的进行流量打散,以实现负载均衡,使得具备设备容灾的能力;IOT设备接入IOT平台是基于消息队列遥测传输(Message Queuing Telemetry Transport,MQTT)实现的,是长连接,连接上以后流量就不能做负载均衡,从而不具备设备容灾的能力。
因此,亟需提供一种适用于物联网场景下的流量传输方法,既能够满足IOT设备如大型网关设备消息流量大、性能要求高、稳定性的要求,同时对于IOT平台来说,也能够将流量打散,实现负载均衡的同时不会对IOT平台造成冲击,以提高设备容灾的能力。
基于此,本申请实施例提供了一种流量传输方法,通过建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的消息流量可以分配到不同的传输链路,接着,通过多个传输链路,向物联网平台传输消息流量,这样,由于流量被分配到不同的传输链路,所以物联网平台无需对消息量较大的物联网设备进行限流,可以实现在物联网设备如大型网关设备接入物联网平台时,不受流量限制,能够满足大型网关设备消息流量大、性能要求高、稳定性的要求,提高了物联网设备和物联网平台的消息处理性能以及流量传输效率,同时对于物联网平台来说,也能够将流量打散,不会对物联网平台造成冲击,以提高设备容灾的能力。
基于此,下面结合附图2所示的本申请实施例中的流量传输架构,对本申请实施例提供的流量传输方法进行详细地说明。
在一种或者多种可能的实施例中,如图2所示,本申请实施例提出的流量传输架构包括子设备201、物联网设备202和物联网平台203。
子设备201可以为用户端,在一个示例中,用户端可以为电子设备,其中,电子设备可以为手机、平板电脑、掌上电脑、可穿戴设备等具备与物联网设备202进行数据传输功能的设备,本申请实施例不对子设备201作出具体限定。如图2所示,本申请实施例中子设备201的数量可以为多个,该子设备201可以包括子设备2011、子设备2012、子设备2013……和子设备201M,M为大于1的整数。每个子设备可以通过至少一个物联网设备202与物联网平台203进行数据交互。
物联网设备202可以为连接至少一个子设备的网关设备,在一个示例中,在连接的子 设备的数量大于预设数量时,网关设备具体可以为大型网关设备。物联网设备202具备单设备多连接的功能,单设备多连接是指物联网设备202与物联网平台203建立与物联网平台的传输控制协议(Transmission Control Protocol,TCP)传输链路204,这里,为了提高设备容灾的能力,传输链路204的个数为多个,如传输链路2041、传输链路2042、传输链路2043、……、传输链路204Y,Y为大于1的整数,具体地,其传输链路204的个数与子设备的数量相同即Y和Z的取值可相同。基于此,物联网设备202用于控制消息上行,即确定向物联网平台203传输上行消息即消息流量的传输链路。需要说明的是,在本申请实施例中,物联网设备与物联网平台之间若存在一个以上传输链接即表征物联网设备在线,反之,若所有的传输链接断开即表征物联网设备掉线。
物联网平台203,可以为集成了设备管理、数据安全通信和消息订阅等能力的一体化平台。向下支持连接海量物联网设备202,采集物联网设备202的数据并传输到物联网平台203中的云平台;向上提供云平台指应用程序编程接口(Application Programming Interface,API),物联网平台203可通过调用云平台API将指令下发至物联网设备202,实现远程控制,具体地,在一个示例中,本申请实施例中的云平台API可以包括与多个传输链路连接的至少两个接入点,这里以两个接入点为例进行说明,如接入点2051和接入点2052,接入点用于在传输链路接入时,向物联网平台203传输该传输链路上的消息流量。在另一个示例中,如图3所示,本申请实施例中的云平台API可以包括与多个传输链路中每个传输链路连接的接入点,即为每个传输链路分别提供其对应的接入点,如接入点2051、接入点2052、接入点2053、……、接入点205Z,Z为大于1的整数,这里,Z的取值与Y相同,此时,每个接入点用于在其对应的传输链路接入时,向物联网平台203传输该传输链路上的消息流量,如传输链路2041接入该接入点2051时,可通过接入点2051向物联网平台203传输该传输链路2041上的消息流量。基于此,物联网平台203用于控制消息下行,即确定向物联网设备202传输下行消息即消息流量的反馈流量的传输链路。
基于上述显示架构,下面基于图2所示的流量传输架构,结合图3,对本申请实施例提供的流量传输方法进行详细地说明。
如图3所示,物联网设备202获取接入物联网设备202的子设备201的消息流量。接着,物联网设备202根据消息流量,建立物联网设备202与物联网平台203之间的多个传输链路。然后,物联网设备202将消息流量可以分配到不同的传输链路,并通过多个传输链路接入与多个传输链路中每个传输链路对应的接入点,通过接入点向物联网平台203传输链路上的消息流量。
由此,通过建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的 消息流量可以分配到不同的传输链路,接着,通过多个传输链路,向物联网平台传输消息流量,这样,由于流量被分配到不同的传输链路,所以物联网平台无需对消息量较大的物联网设备进行限流,可以实现在物联网设备如大型网关设备接入物联网平台时,不受流量限制,提高了物联网设备和物联网平台的消息处理性能以及流量传输效率,同时也提高了接入物联网设备的子设备的接入体验。
需要说明的是,本申请实施例中的流量传输方法可以应用于物联网设备和物联网平台之间的流量传输的场景。
根据上述架构以及应用场景,下面分别结合图4对本申请实施例提供的流量传输方法进行详细说明。
图4是示出根据一个实施例的一种流量传输方法的流程图。
如图4所示,流量传输方法可以应用于如图1所示的流量传输架构,具体可以用于如图1所示的服务器,该流量传输方法具体可以包括:
步骤410,获取消息流量,消息流量包括接入物联网设备的子设备的流量;步骤420,根据消息流量,建立物联网设备与物联网平台之间的多个传输链路;步骤430,通过多个传输链路,向物联网平台传输消息流量。
下面对上述步骤进行详细说明,具体如下所示。
首先,涉及步骤410,本申请实施例中的消息流量可以指单位时间内的消息数。
接着,涉及步骤420,本申请实施例中的传输链路采用TCP传输链路,这样,可以通过多个TCP传输链路传输消息流量,以降低消息拥塞的概率,提升消息流量传输效率。
由于本申请实施例中采用了多个传输链路,进一步地,为了减少资源占用率,可以基于消息流量确定物联网设备与物联网平台之间的传输链路的数量,即在降低消息拥塞的概率,提升消息流量传输效率的同时,还可以减少资源占用率。基于此,该步骤420具体可以包括:根据消息流量,计算物联网设备与物联网平台建立传输链路的链路数量;
基于传输链路的链路数量,建立物联网设备与物联网平台之间的多个传输链路。
示例性地,设备可根据消息流量来决定传输链路的链路数量,若消息流量大于或者等于预设流量,则链路数量要大于或者等于第一预设个数20;反之,若消息流量小于预设流量,则链路数量要小于第一预设个数20且大于或者等于第二预设个数10,第二预设个数的数值小于第一预设个数的数值。
需要说明的是,物联网设备与物联网平台之间的传输链路的数据传输状态由物联网设备确定,其中,数据传输状态可以包括连接状态或者断开状态。
基于此,由于本申请实施例中建立了多个传输链路,为了便于标记哪一个传输链路对 应哪一个物联网设备(以及子设备),可以将每个传输链路进行标记,由此,在建立物联网设备与物联网平台之间的多个传输链路的情况下,该流量传输方法还可以包括:
通过连接标识符标识传输链路;其中,连接标识符用于标识物联网平台与物联网设备之间正在进行数据传输的传输链路。
示例性地,在物联网设备建立与物联网平台之间的传输链路的情况下,可以通过增加参数连接标识符(Connection Identifier,CID)标识传输链路。
进一步地,为了保持每个传输链路的连接稳定性,可以保持单个CID连接唯一,以便在多个传输链路包括具有相同连接标识符标识的至少两个第一传输链路的情况下,通过至少两个第一传输链路中的一条传输链路,向物联网平台传输消息流量。
示例性地,如图2所示,在物联网设备202建立物联网设备与物联网平台之间的多个传输链路如传输链路2041(标识CID1)、传输链路2042(标识CID2)的情况下,若继续建立传输链路2043且标识为CID1时,为了保证相同的CID只能有一个连接上物联网平台203,则断开传输链路2041,通过传输链路2043向物联网平台203传输消息流量。
然后,涉及步骤430,本申请实施例提供的流量传输方法为了能够将流量打散,不会对物联网平台造成冲击,以提高设备容灾的能力,还基于不同接入点的数量,提供了两种向物联网平台传输消息流量的方式。
方式1,参考图2,在多个传输链路对应至少两个接入点(以两个接入点为例)的情况下,该步骤430具体可以包括:
通过多个传输链路接入至少两个接入点;
通过至少两个接入点,向物联网平台传输多个传输链路上的消息流量。
方式2,参考图3,在多个传输链路中每个传输链路分别对应一个接入点的情况下,该步骤430具体可以包括:
通过每个传输链路接入与每个传输链路对应的接入点传输消息流量;
通过每个传输链路对应的接入点,向物联网平台传输每个传输链路上的消息流量。
在一种可能的实施例中,基于步骤420的可能,在多个传输链路包括具有相同连接标识符标识的至少两个第一传输链路的情况下,该步骤430具体可以包括:
通过至少两个第一传输链路中的一条传输链路,向物联网平台传输消息流量。
示例性地,如图2所示,在物联网设备202建立物联网设备与物联网平台之间的多个传输链路如传输链路2041(标识CID1)、传输链路2042(标识CID2)的情况下,若继续建立传输链路2043且标识为CID1时,为了保证相同的CID只能有一个连接上物联网平台203,则断开传输链路2041,通过传输链路2043向物联网平台203传输消息流量。
在另一种可能的实施例中,为了避免重复订阅,浪费流量,且可能订阅不统一的问题,本申请实施例可以在多个传输链路确定传输服务的传输链路,基于此,在消息流量包括目标服务的服务流量,目标服务为物联网设备在物联网平台订阅的服务的情况下,该步骤430还可以包括:
步骤4301,在多个传输链路中筛选至少两个第二传输链路;
步骤4302,通过至少两个第二传输链路,向物联网平台传输服务流量。
进一步地,本申请实施例为了保证消息流量的传输效率,传输相同服务的服务流量的传输链路,可以选择网络延时较小的链路进行传输,基于此,步骤4302具体可以包括:
获取至少两个第二传输链路中每个第二传输链路的网络延时;
确定网络延时小于或者等于第一预设阈值的传输链路为第三传输链路;
通过第三传输链路,向物联网平台传输服务流量。
示例性地,以两个第二传输链路为例进行说明,若传输链路2042和传输链路2043为传输服务流量的传输链路,则分别获取传输链路2042和传输链路2043(传输服务流量)的网络延时,此时,若传输链路2042的网络时延小于传输链路2043的网络时延,则确定传输链路2042为第三传输链路。或者,若传输链路2042的网络时延小于或者等于第一预设阈值,则确定传输链路2042为第三传输链路。
此外,本申请实施例上述描述的是多个连接的情况,当然,本申请实施例还可以支持多个网络链路,物联网设备可以根据业务需求做智能化处理,以提升消息流量传输的效率,以及提高设备容灾的能力,下面基于不同的场景,分别对步骤430进行说明。
(1)业务消息隔离的情况,即物联网设备经过物联网平台的服务很多,如传感器数据上报服务,控制指令下发服务,文件传输服务,空中下载服务(Over-the-Air Technology,OTA)等等,由于物联网设备支持了多连接能力,物联网设备可以根据服务的类型,选择专用的传输链路。
基于此,在多个传输链路包括第三传输链路和第四传输链路,消息流量包括第一类业务服务的第一消息流量和第二类业务服务的第二消息流量的情况下,该步骤430还可以包括:
通过第三传输链路,向物联网平台传输第一消息流量,以及通过第四传输链路,向物联网平台传输第二消息流量。
示例性地,如图5所示,以第一类业务服务为传输信令服务,第一消息流量为传输信令服务的控制指令流量,第二类业务服务为传输数据服务,第二消息流量为传输数据服务的OTA升级流量。由于传输信令服务的实时性要求高,数据少,传输数据服务的实时性 要求并不高,但是数据量大,所以,可以将传输控制指令流量的传输链路与传输OTA升级流量的传输链路分开,即通过传输链路2041,向物联网平台传输控制指令流量,以及通过传输链路2042,向物联网平台传输OTA升级流量,以实现信令与数据分离,提高信令的传输效率。
由此,物联网设备可以实现不同服务的流量隔离,实现部分服务降级,提高重要服务消息流量的传输效率。
(2)多网络链路容灾的情况,即网络故障会导致物联网设备不可用,使用多连接方案后,可以实现当单个网络出故障后,物联网设备依然可以与物联网平台交互。
基于此,物联网设备包括多个网卡,多个网卡包括第一网卡和第二网卡,第一网卡对应第一连接方式,第二网卡对应第二连接方式,基于此,该步骤430还可以包括:
在与第一连接方式对应的至少一个传输链路断开的情况下,通过与第二连接方式对应的至少一个传输链路,向物联网平台传输消息流量。
示例性地,如图6所示,以第一网卡对应第一连接方式即无线网络通信(WIFi),WIFi对应的至少一个传输链路如传输链路2041,第二网卡对应第二连接方式即有线网络,有线网络对应的至少一个传输链路如传输链路2042为例进行说明,当WIFi断网后,有线网络的传输链路2042还处于连接状态的情况下,可以通过有线网络的传输链路2042再建立相同的连接,保证为用户提供持续服务。
由此,物联网设备可以提高设备容灾能力,允许通过多种网络链路接入,提高物联网设备和物联网平台对外服务的稳定性。
(3)选择优先级较高的传输链路的情况,即基于多个传输链路,可以监测单个传输链路的网络延时,按照网络延时由低到高的顺序确定传输链路的优先级,网络延时越小,优先级越高,反之网络延时越大,优先级越低,基于此,该步骤430还可以包括:
获取多个传输链路中每个传输链路的网络延时;
基于每个传输链路的网络延时,生成多个传输链路的传输链路优先级;
按照传输链路优先级,通过在多个传输链路中选择的目标传输链路,向物联网平台传输消息流量。
示例性地,如图7所示,获取多个传输链路如传输链路2041和输链路2042中每个传输链路的网络延时,此时,若传输链路2041的网络延时为延时10毫秒,传输链路2042的网络延时为延时20毫秒,则传输链路2041的优先级高于传输链路2042的优先级。此时,可以将传输链路2041确定为目标传输链路。
由此,物联网设备可以选择最优的传输链接发送消息流量,提高消息流量的传输效率。
需要说明的是,上述情况(1)至情况(3)均以每个例子为一个传输链路为例进行的说明,如网络延时为延时10毫秒的传输链路仅为2041,当然,本申请实施例可以在多个传输链路2041至204Y中选择网络延时为延时10毫秒的至少两个传输链路作为目标传输链路,所以,上述实施例仅以一个传输链路为例进行说明,并不限定其传输链路的个数为1。
此外,在步骤430之后,该流量传输方法还可以包括:
通过检测多个传输链路中每个传输链路的心跳信息,控制每个传输链路的数据传输状态,数据传输状态包括连接状态或者断开状态。
示例性地,物联网设备可以检测并维护每个传输链路的心跳信息,在检测到传输链路2041和传输链路2042的心跳信息丢失的情况下,确定该传输链路2041和传输链路2042断开,此时,物联网设备还会保证其他可以检测到心跳信息的传输链路如传输链路2043与物联网平台进行交互。
由此,通过建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的消息流量可以分配到不同的传输链路,接着,通过多个传输链路,向物联网平台传输消息流量,这样,由于流量被分配到不同的传输链路,所以物联网平台无需对消息量较大的物联网设备进行限流,可以实现在物联网设备如大型网关设备接入物联网平台时,不受流量限制,能够满足大型网关设备消息流量大、性能要求高、稳定性的要求,提高了物联网设备和物联网平台的消息处理性能以及流量传输效率,同时对于物联网平台来说,也能够将流量打散,不会对物联网平台造成冲击,以提高设备容灾的能力。
另外,本申请实施例提供的流量传输方法可以在实现流量打散的同时,不会对消息流量较大的物联网设备进行限流,提高了子设备用户的接入体验。在单设备支持多连接的场景下,可以实现大型网关设备接入可以不受流量限制,提高流量传输效率以及实现物联网平台的负载均衡。基于多连接特性,针对业务消息隔离的情况,可以实现服务消息流量的隔离,加快控制服务的响应时间;基于多连接特性,针对多网络链路容灾的情况,可以使用多网络链路实现单一网络异常的容灾;基于多连接特性,针对选择优先级较高的传输链路的情况,可以选择最优路径进行传输,提高流量传输效率。
基于相同的发明构思,基于上述架构和场景中的物联网设备的流量传输方法,本申请实施例还提供了基于与物联网设备对应的物联网平台的流量传输方法。
下面分别结合图8对本申请实施例提供的流量传输方法进行详细说明。
图8是示出根据一个实施例的一种基于物联网平台的流量传输方法的流程图。
如图8所示,流量传输方法可以应用于如图2或者图3所示的流量传输架构,具体可 以用于如图2和图3所示的物联网平台,该流量传输方法具体可以包括:
步骤810,通过物联网设备与物联网平台之间的多个传输链路,接收物联网设备发送的消息流量;步骤820,基于消息流量,获取与消息流量对应的反馈流量;步骤830,通过多个传输链路向物联网设备发送反馈流量。
下面对上述步骤进行详细说明,具体如下所示。
涉及步骤830,本申请实施例为了保证消息流量的传输效率,传输相同服务的服务流量的传输链路,可以选择网络延时较小的链路进行传输,基于此,步骤830具体可以包括:
获取多个传输链路中每个传输链路的网络延时;
基于每个传输链路的网络延时,生成多个传输链路的传输链路优先级;
按照传输链路优先级,通过在多个传输链路中选择的目标传输链路,向物联网平台传输消息流量。
示例性地,参考图7,获取多个传输链路如传输链路2041和输链路2042中每个传输链路的网络延时,此时,若传输链路2041的网络延时为延时10毫秒,传输链路2042的网络延时为延时20毫秒,则传输链路2041的优先级高于传输链路2042的优先级。此时,可以将传输链路2041确定为目标传输链路。
由此,物联网平台可以选择最优的传输链接发送消息流量,提高消息流量的传输效率。
由此,通过建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的消息流量可以分配到不同的传输链路,接着,通过多个传输链路,向物联网设备传输消息流量,这样,由于流量被分配到不同的传输链路,所以物联网平台无需对消息量较大的物联网设备进行限流,可以实现在物联网设备如大型网关设备接入物联网平台时,不受流量限制,能够满足大型网关设备消息流量大、性能要求高、稳定性的要求,提高了物联网设备和物联网平台的消息处理性能以及流量传输效率,同时对于物联网平台来说,也能够将流量打散,不会对物联网平台造成冲击,以提高设备容灾的能力。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
基于相同的发明构思,本申请提供了与上述涉及的流量传输方法对应的流量传输装置。具体结合图9进行详细说明。
图9是示出根据一个实施例的一种流量传输装置的结构示意图。
如图9所示,流量传输装置90应用于如图2或者如图3所示的物联网设备,流量传输装置90具体可以包括:
获取模块901,用于获取消息流量,消息流量包括接入物联网设备的子设备的流量;
建立模块902,用于根据消息流量,建立物联网设备与物联网平台之间的多个传输链路;
传输模块903,用于通过多个传输链路,向物联网平台传输消息流量。
基于此,下面对本申请实施例提供的流量传输装置90进行详细说明:
在一种或者多种可能的实施例中,传输模块903具体可以用于,在多个传输链路对应至少两个接入点的情况下,通过多个传输链路接入至少两个接入点;
通过至少两个接入点,向物联网平台传输多个传输链路上的消息流量。
在另一种或者多种可能的实施例中,传输模块903具体可以用于,在多个传输链路中每个传输链路分别对应一个接入点的情况下,通过每个传输链路接入与每个传输链路对应的接入点传输消息流量;
通过每个传输链路对应的接入点,向物联网平台传输每个传输链路上的消息流量。
在又一种或者多种可能的实施例中,本申请实施例中的流量传输装置90还可以包括标识模块,用于通过连接标识符标识传输链路;其中,连接标识符用于标识物联网平台与物联网设备之间正在进行数据传输的传输链路。
在再一种或者多种可能的实施例中,传输模块903具体可以用于,在多个传输链路包括具有相同连接标识符标识的至少两个第一传输链路的情况下,通过至少两个第一传输链路中的一条传输链路,向物联网平台传输消息流量。
在再一种或者多种可能的实施例中,建立模块902具体可以用于,根据消息流量,计算物联网设备与物联网平台建立传输链路的链路数量;
基于传输链路的链路数量,建立物联网设备与物联网平台之间的多个传输链路。
在再一种或者多种可能的实施例中,本申请实施例中的流量传输装置90还可以包括控制模块,用于通过检测多个传输链路中每个传输链路的心跳信息,控制每个传输链路的数据传输状态,数据传输状态包括连接状态或者断开状态。
在再一种或者多种可能的实施例中,本申请实施例中的流量传输装置90还可以包括筛选模块,用于在消息流量包括目标服务的服务流量,目标服务为物联网设备在物联网平台订阅的服务,在多个传输链路中筛选至少两个第二传输链路;
传输模块903还可以用于,通过至少两个第二传输链路,向物联网平台传输服务流量。
在再一种或者多种可能的实施例中,本申请实施例中的流量传输装置90还可以包括确定模块;其中,
获取模块901还可以用于,获取至少两个第二传输链路中每个第二传输链路的网络延 时;
确定模块,用于确定网络延时小于或者等于第一预设阈值的传输链路为第三传输链路;
传输模块903还可以用于,通过第三传输链路,向物联网平台传输服务流量。
在再一种或者多种可能的实施例中,传输模块903具体可以用于,在多个传输链路包括第三传输链路和第四传输链路,消息流量包括第一类业务服务的第一消息流量和第二类业务服务的第二消息流量的情况下,通过第三传输链路,向物联网平台传输第一消息流量,以及通过第四传输链路,向物联网平台传输第二消息流量。
在再一种或者多种可能的实施例中,传输模块903具体可以用于,在物联网设备包括多个网卡,多个网卡包括第一网卡和第二网卡,第一网卡对应第一连接方式,第二网卡对应第二连接方式的情况下,在与第一连接方式对应的至少一个传输链路断开的情况下,通过与第二连接方式对应的至少一个传输链路,向物联网平台传输消息流量。
在再一种或者多种可能的实施例中,本申请实施例中的流量传输装置90还可以包括生成模块;其中,
获取模块901,用于获取多个传输链路中每个传输链路的网络延时;
生成模块,用于基于每个传输链路的网络延时,生成多个传输链路的传输链路优先级;
传输模块903还可以用于,按照传输链路优先级,通过在多个传输链路中选择的目标传输链路,向物联网平台传输消息流量。
基于相同的发明构思,基于上述架构和场景中基于物联网平台的流量传输方法,本申请实施例还提供了基于物联网平台的流量传输装置。
下面分别结合图10对本申请实施例提供的流量传输装置进行详细说明。
图10是示出根据一个实施例的一种基于物联网平台的流量传输装置结构示意图。
如图10所示,流量传输装置100应用于如图2或者如图3所示的物联网平台,流量传输装置100具体可以包括:
接收模块1001,用于通过物联网设备与物联网平台之间的多个传输链路,接收物联网设备发送的消息流量;
获取模块1002,用于基于消息流量,获取与消息流量对应的反馈流量;
发送模块1003,用于通过多个传输链路向物联网设备发送反馈流量。
基于此,下面对本申请实施例提供的流量传输装置100进行详细说明:
在一种或者多种的实施例中,流量传输装置100还可以包括生成模块;其中,
获取模块1002还可以用于,获取多个传输链路中每个传输链路的网络延时;
生成模块,用于基于每个传输链路的网络延时,生成多个传输链路的传输链路优先级;
发送模块1003还可以用于,按照传输链路优先级,通过在多个传输链路中选择的目标传输链路,向物联网平台传输消息流量。
由此,通过建立物联网设备与物联网平台之间的多个传输链路,使得物联网设备中的消息流量可以分配到不同的传输链路,接着,通过多个传输链路,向物联网平台传输消息流量,这样,由于流量被分配到不同的传输链路,所以物联网平台无需对消息量较大的物联网设备进行限流,可以实现在物联网设备如大型网关设备接入物联网平台时,不受流量限制,能够满足大型网关设备消息流量大、性能要求高、稳定性的要求,提高了物联网设备和物联网平台的消息处理性能以及流量传输效率,同时对于物联网平台来说,也能够将流量打散,不会对物联网平台造成冲击,以提高设备容灾的能力。
图11是示出根据一个实施例的计算机设备的硬件结构示意图。
如图11所示,计算机设备1100包括输入设备1101、输入接口1102、处理器1103、存储器1104、输出接口1105、以及输出设备1106。
输入接口1102、处理器1103、存储器1104、以及输出接口1105通过总线1110相互连接,输入设备1101和输出设备1106分别通过输入接口1102和输出接口1105与总线1110连接,进而与计算机设备1100的其他组件连接。具体地,输入设备1101接收来自外部的输入信息,并通过输入接口1102将输入信息传送到处理器1103;处理器1103基于存储器1104中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器1104中,然后通过输出接口1105将输出信息传送到输出设备1106;输出设备1106将输出信息输出到计算机设备1100的外部供用户使用。
在一个实施例中,图11所示的计算机设备1100可以被实现为一种流量传输设备,该流量传输设备可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的流量传输方法。
在一个实施例中,该存储器还可以用于存储消息流量以及结合上述图1至图10描述的流量传输过程中每个步骤的计算结果。
根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机可读存储介质。例如,本申请的实施例包括一种计算机可读存储介质,其包括在计算机可读存储介质上存储程序或指令,在程序或指令被计算机设备执行的情况下,使得计算机设备执行上述方法的步骤。
根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括有形地包括在机器可读介质上的计算机程序,计算机程序包括用于执行流程图所示的方法的程序代码。在这样的实施例中, 该计算机程序可以从网络上被下载和安装,和/或从可拆卸存储介质被安装。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令,当其在计算机上运行时,使得计算机执行上述各个实施例中描述的方法。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所描述的装置实施例仅仅是示意性的,其中作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种流量传输方法,包括:
    获取消息流量,所述消息流量包括接入物联网设备的子设备的流量;
    根据所述消息流量,建立所述物联网设备与物联网平台之间的多个传输链路;
    通过所述多个传输链路,向所述物联网平台传输所述消息流量。
  2. 根据权利要求1所述的方法,其中,所述多个传输链路对应至少两个接入点;所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    通过所述多个传输链路接入所述至少两个接入点;
    通过所述至少两个接入点,向所述物联网平台传输所述多个传输链路上的消息流量。
  3. 根据权利要求1所述的方法,其中,所述多个传输链路中每个传输链路分别对应一个接入点;所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    通过所述每个传输链路接入与所述每个传输链路对应的接入点传输所述消息流量;
    通过所述每个传输链路对应的接入点,向所述物联网平台传输所述每个传输链路上的消息流量。
  4. 根据权利要求1所述的方法,其中,所述方法还包括:
    通过连接标识符标识所述传输链路;其中,所述连接标识符用于标识所述物联网平台与物联网设备之间正在进行数据传输的传输链路。
  5. 根据权利要求4所述的方法,其中,所述多个传输链路包括具有相同连接标识符标识的至少两个第一传输链路;所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    通过所述至少两个第一传输链路中的一条传输链路,向所述物联网平台传输所述消息流量。
  6. 根据权利要求1所述的方法,其中,所述根据所述消息流量,建立所述物联网设备与物联网平台之间的多个传输链路,包括:
    根据所述消息流量,计算所述物联网设备与所述物联网平台建立传输链路的链路数量;
    基于所述传输链路的链路数量,建立所述物联网设备与所述物联网平台之间的多个传输链路。
  7. 根据权利要求1所述的方法,其中,所述方法还包括:
    通过检测所述多个传输链路中每个传输链路的心跳信息,控制所述每个传输链路的数据传输状态,所述数据传输状态包括连接状态或者断开状态。
  8. 根据权利要求1所述的方法,其中,所述消息流量包括目标服务的服务流量,所述目标服务为所述物联网设备在所述物联网平台订阅的服务;所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    在所述多个传输链路中筛选至少两个第二传输链路;
    通过所述至少两个第二传输链路,向所述物联网平台传输所述服务流量。
  9. 根据权利要求8所述的方法,其中,所述通过所述至少两个第二传输链路,向所述物联网平台传输所述服务流量,包括:
    获取所述至少两个第二传输链路中每个第二传输链路的网络延时;
    确定网络延时小于或者等于第一预设阈值的传输链路为第三传输链路;
    通过所述第三传输链路,向所述物联网平台传输所述服务流量。
  10. 根据权利要求1所述的方法,其中,所述多个传输链路包括第三传输链路和所述第四传输链路,所述消息流量包括第一类业务服务的第一消息流量和第二类业务服务的第二消息流量;所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    通过所述第三传输链路,向所述物联网平台传输所述第一消息流量,以及通过所述第四传输链路,向所述物联网平台传输所述第二消息流量。
  11. 根据权利要求1所述的方法,其中,所述物联网设备包括多个网卡,所述多个网卡包括第一网卡和第二网卡,所述第一网卡对应第一连接方式,所述第二网卡对应第二连接方式;所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    在与所述第一连接方式对应的至少一个传输链路断开的情况下,通过与所述第二连接方式对应的至少一个传输链路,向所述物联网平台传输所述消息流量。
  12. 根据权利要求1所述的方法,其中,所述通过所述多个传输链路,向所述物联网平台传输所述消息流量,包括:
    获取所述多个传输链路中每个传输链路的网络延时;
    基于所述每个传输链路的网络延时,生成所述多个传输链路的传输链路优先级;
    按照所述传输链路优先级,通过在所述多个传输链路中选择的目标传输链路,向所述物联网平台传输所述消息流量。
  13. 一种流量传输装置,包括:
    获取模块,用于获取消息流量,所述消息流量包括接入物联网设备的子设备的流量;
    建立模块,用于根据所述消息流量,建立所述物联网设备与物联网平台之间的多个传输链路;
    传输模块,用于通过所述多个传输链路,向所述物联网平台传输所述消息流量。
  14. 一种计算机设备,包括:存储器和处理器,
    所述存储器,用于存储有计算机程序;
    所述处理器,用于执行所述存储器中存储的计算机程序,所述计算机程序运行时使得所述处理器执行权利要求1至12中任意一项所述的流量传输方法的步骤。
  15. 一种计算机可读存储介质,所述计算机可读存储介质上存储程序或指令,在所述程序或指令被计算机设备执行的情况下,使得所述计算机设备执行如权利要求1至12中任意一项所述的流量传输方法的步骤。
  16. 一种计算机程序产品,包括计算机程序,在所述计算机程序被计算机设备执行的情况下,使得所述计算机设备执行如1至12中任意一项所述的流量传输方法的步骤。
PCT/CN2023/092142 2022-05-09 2023-05-05 流量传输方法、装置、设备和存储介质 WO2023216968A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210499752.1A CN115002238A (zh) 2022-05-09 2022-05-09 流量传输方法、装置、设备和存储介质
CN202210499752.1 2022-05-09

Publications (1)

Publication Number Publication Date
WO2023216968A1 true WO2023216968A1 (zh) 2023-11-16

Family

ID=83024719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/092142 WO2023216968A1 (zh) 2022-05-09 2023-05-05 流量传输方法、装置、设备和存储介质

Country Status (2)

Country Link
CN (1) CN115002238A (zh)
WO (1) WO2023216968A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115002238A (zh) * 2022-05-09 2022-09-02 阿里云计算有限公司 流量传输方法、装置、设备和存储介质
WO2024078050A1 (zh) * 2022-10-14 2024-04-18 华为云计算技术有限公司 进行数据传输的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699692A (zh) * 2014-01-11 2014-04-02 樊建 物联网接入平台数据管理方法
CN110928258A (zh) * 2019-12-04 2020-03-27 北京杰控科技有限公司 一种工业数据采集系统
CN113904977A (zh) * 2021-10-13 2022-01-07 中国电信股份有限公司 多链路网关数据传输方法、装置、电子设备和可读介质
CN115002238A (zh) * 2022-05-09 2022-09-02 阿里云计算有限公司 流量传输方法、装置、设备和存储介质

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8553541B2 (en) * 2008-06-13 2013-10-08 Telefonaktiebolaget Lm Ericsson Network traffic transfer between a radio base station node and a gateway node
KR101906074B1 (ko) * 2017-11-15 2018-10-08 재단법인 경북아이티융합 산업기술원 IoT 디바이스 운용 플랫폼 시스템
KR102178880B1 (ko) * 2018-03-30 2020-11-16 대구가톨릭대학교산학협력단 디바이스 클러스터링에 기반한 로라 통신 네트워크 시스템 및 데이터 전송 방법
JP7152585B2 (ja) * 2018-07-12 2022-10-12 コニンクリーケ・ケイピーエヌ・ナムローゼ・フェンノートシャップ モバイル通信ネットワークにおけるマルチホップ中継
CN110958281B (zh) * 2018-09-26 2021-07-09 华为技术有限公司 基于物联网的数据传输方法及通信装置
CN110995617B (zh) * 2019-10-31 2022-06-03 南京戎光软件科技有限公司 基于mqtt的数据报送方法、装置、计算机设备和存储介质
CN111211980B (zh) * 2019-12-17 2022-06-03 中移(杭州)信息技术有限公司 传输链路管理方法、装置、电子设备及存储介质
CN111770478A (zh) * 2020-06-29 2020-10-13 吴义魁 基于无线物联网的数据传输控制方法及相关装置
CN112217884B (zh) * 2020-09-27 2021-12-10 深圳市超算科技开发有限公司 物联网数据传输方法、系统及电子设备
CN112383472A (zh) * 2020-11-13 2021-02-19 Oppo广东移动通信有限公司 网络传输方法、装置、存储介质及电子设备
CN112291816B (zh) * 2020-11-13 2023-03-24 Oppo广东移动通信有限公司 数据传输方法、装置、存储介质及电子设备
CN113194133A (zh) * 2021-04-27 2021-07-30 华北电力大学 一种配电物联网海量消息传递的mqtt协议通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103699692A (zh) * 2014-01-11 2014-04-02 樊建 物联网接入平台数据管理方法
CN110928258A (zh) * 2019-12-04 2020-03-27 北京杰控科技有限公司 一种工业数据采集系统
CN113904977A (zh) * 2021-10-13 2022-01-07 中国电信股份有限公司 多链路网关数据传输方法、装置、电子设备和可读介质
CN115002238A (zh) * 2022-05-09 2022-09-02 阿里云计算有限公司 流量传输方法、装置、设备和存储介质

Also Published As

Publication number Publication date
CN115002238A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2023216968A1 (zh) 流量传输方法、装置、设备和存储介质
US11071013B2 (en) Method and system for group communication, group server, and group member device
KR102415845B1 (ko) 사물 인터넷 리소스 구독 방법, 디바이스, 및 시스템
EP3072260B1 (en) Methods, systems, and computer readable media for a network function virtualization information concentrator
CN108886531B (zh) 使用服务层能力进行网络和应用管理
CN103024081B (zh) 适用于有时效保证通讯系统的点对点通讯的终端调度方法
US20210274328A1 (en) Internet of vehicles message notification method and apparatus
CN110808948B (zh) 远程过程调用方法、装置及系统
CN102739411A (zh) 提供证明服务
US20220124547A1 (en) Systems and methods to automate slice admission control
US10193763B2 (en) Reducing multicast service traffic for matching and streaming in SDN (software defined networking enabled networks
CN106851682B (zh) 一种用户设备及其实现数据传输的方法
EP3979071B1 (en) Method, user equipment, and application server for downloading application
CN108551571B (zh) 一种监控视频分发方法、装置、系统以及分发服务器
CN114268938A (zh) 用户前置设备的纳管方法、装置、设备以及存储介质
US20120047204A1 (en) Apparatus and method for providing a device management package and a method for receiving the device management package
WO2019015755A1 (en) METHODS AND NODES FOR PROVIDING OR SELECTING USER TRAFFIC NODE
US20180314950A1 (en) System and method for real-time decisioning and triggering of actions in a communication network
CN114885020A (zh) 数据传输系统以及方法
CN105210347A (zh) 监控服务器、解析服务器、请求设备及节点选择方法
CN113079055B (zh) 一种agv运行数据的动态采集方法和装置
WO2020253330A1 (zh) 客户端设备配置管理的方法和装置
CN114189890A (zh) 更新网络服务质量模型的方法、装置、设备及存储介质
CN111866100A (zh) 一种控制数据传输速率的方法、装置和系统
CN115699823A (zh) 支持无线通信网络中收集和分析网络数据的移动性的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802740

Country of ref document: EP

Kind code of ref document: A1