WO2023216847A1 - 射频放大电路和射频前端模组 - Google Patents

射频放大电路和射频前端模组 Download PDF

Info

Publication number
WO2023216847A1
WO2023216847A1 PCT/CN2023/089858 CN2023089858W WO2023216847A1 WO 2023216847 A1 WO2023216847 A1 WO 2023216847A1 CN 2023089858 W CN2023089858 W CN 2023089858W WO 2023216847 A1 WO2023216847 A1 WO 2023216847A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase
amplifier
radio frequency
peak
Prior art date
Application number
PCT/CN2023/089858
Other languages
English (en)
French (fr)
Inventor
胡自洁
倪建兴
Original Assignee
锐石创芯(深圳)科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐石创芯(深圳)科技股份有限公司 filed Critical 锐石创芯(深圳)科技股份有限公司
Publication of WO2023216847A1 publication Critical patent/WO2023216847A1/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0288Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of amplifier circuits, and in particular to a radio frequency amplifier circuit and a radio frequency front-end module.
  • Modern wireless communication systems require wireless communication equipment to maintain high-speed communication during rapid movement in order to make full use of spectrum resources and improve transmission efficiency.
  • Modern wireless communication systems generally need to be equipped with radio frequency amplification circuits to amplify radio frequency signals.
  • radio frequency amplification circuits to amplify radio frequency signals.
  • Embodiments of the present application provide a radio frequency amplifier circuit and a radio frequency front-end module, so that the radio frequency amplifier circuit can take into account both gain flatness and impedance matching to ensure circuit stability.
  • Embodiments of the present application provide a radio frequency amplification circuit, including a first coupler, a second coupler, a first Doherty power amplifier and a second Doherty power amplifier.
  • the first Doherty power amplifier and the The second Doherty power amplifier has the same characteristics;
  • the first coupler is configured to perform coupling processing on the input radio frequency signal and generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees;
  • the input end of the first Doherty power amplifier is connected to the first output end of the first coupler, and is configured to amplify the first radio frequency signal and generate a first amplified signal;
  • the input end of the second Doherty power amplifier is connected to the second output end of the first coupler, and is configured to amplify the second radio frequency signal to generate a second amplified signal.
  • a phase difference between an amplified signal and the second amplified signal is 90 degrees;
  • the first input end of the second coupler is connected to the output end of the first Doherty power amplifier, and the second input end of the second coupler is connected to the output end of the second Doherty power amplifier. connected and configured to couple the first amplified signal and the second amplified signal to generate an output radio frequency signal.
  • the radio frequency amplification circuit further includes a signal separator connected to the first coupler and configured to perform signal separation on the first radio frequency signal and the second radio frequency signal, Generate a first carrier signal, a first peak signal, a second carrier signal and a second peak signal;
  • the first Doherty power amplifier is connected to the signal splitter and is configured to amplify the first carrier signal and the first peak signal with a phase difference of 90 degrees to generate a first amplified signal. ;
  • the second Doherty power amplifier is connected to the signal splitter and is configured to amplify the second carrier signal and the second peak signal with a phase difference of 90 degrees to generate a second amplified signal. .
  • the signal splitter includes a third coupler and a fourth coupler
  • the third coupler is connected to the first coupler and is configured to perform coupling processing on the first radio frequency signal to generate a first carrier signal and a first peak signal with a phase difference of 90 degrees;
  • the fourth coupler is connected to the second coupler and is configured to perform coupling processing on the second radio frequency signal to generate a second carrier signal and a second peak signal with a phase difference of 90 degrees.
  • the signal splitter includes a power divider and a first differential circuit
  • the power divider is connected to the first coupler and is configured to power the first radio frequency signal. Distribute to generate a first carrier signal and a second carrier signal with a phase difference of 0 degrees;
  • the first differential circuit is connected to the second coupler and configured to perform differential processing on the second radio frequency signal to generate a first peak signal and a second peak signal with a phase difference of 180 degrees;
  • the power divider is connected to the first coupler and is configured to perform power distribution on the first radio frequency signal and generate a first peak signal and a second peak signal with a phase difference of 0 degrees;
  • the first differential circuit is connected to the second coupler and is configured to perform differential processing on the second radio frequency signal to generate a first carrier signal and a second carrier signal with a phase difference of 180 degrees.
  • the first differential circuit is a first balun.
  • the first Doherty power amplifier and the second Doherty power amplifier include a carrier amplifier, a peak amplifier and a combination circuit;
  • the carrier amplifier is connected to the signal separator and is configured to amplify the original carrier signal and generate an amplified carrier signal;
  • the peak amplifier is connected to the signal separator and is configured to amplify the original peak signal and generate an amplified peak signal;
  • the combination circuit is connected to the output end of the carrier amplifier and the output end of the peak amplifier, and is configured to perform combined processing on the amplified carrier signal and the amplified peak signal to generate a target amplified signal;
  • the original carrier signal is a first carrier signal, the original peak signal is a first peak signal, and the target amplified signal is a first amplified signal; or the original carrier signal is a second carrier signal, and the original peak signal is a first amplified signal.
  • the signal is the second peak signal, and the target amplified signal is the second amplified signal.
  • the first Doherty power amplifier is any one of a current-type Doherty power amplifier and a voltage-type Doherty power amplifier;
  • the second Doherty power amplifier is any one of a current-type Doherty power amplifier and a voltage-type Doherty power amplifier.
  • the combination circuit in the current mode Doherty power amplifier includes a first phase shifting network
  • the first phase-shifting network is connected to the carrier amplifier and is configured to perform phase-shifting processing on the amplified carrier signal and output a first phase-shifting signal so that the first phase-shifting signal is consistent with the amplified peak value.
  • the signal phases are the same;
  • the output end of the first phase-shifting network is connected to the output end of the carrier amplifier to form a signal combination node for generating a target amplified signal.
  • the Doherty power amplifier includes 1 carrier amplifier and N peak amplifiers;
  • the combination circuit in the current mode Doherty power amplifier includes N first phase-shifting networks
  • the input end of the first first phase-shifting network is connected to the carrier amplifier, and the output end of the first first phase-shifting network is connected to the output end of the first peaking amplifier to form the first A signal combination node configured to perform phase-shifting processing on the amplified carrier signal output by the carrier amplifier, and generate a first first phase-shifted signal, so that the first first phase-shifted signal is consistent with the first peak value
  • the amplified peak signals output by the amplifier have the same phase, so that the first signal combination node generates the first first combination signal;
  • the input end of the i-th first phase-shifting network is connected to the i-1-th signal combination node, and the output end of the i-th first phase-shifting network is connected to the output end of the i-th peak amplifier.
  • the first phase-shifted signal has the same phase as the amplified peak signal output by the i-th peak amplifier, so that the i-th signal combination node generates the i-th first combined signal;
  • N ⁇ 2, 2 ⁇ i ⁇ N, and the Nth first combined signal is the target amplified signal.
  • the combination circuit in the voltage-type Doherty power amplifier includes a second phase-shifting network and a second differential circuit;
  • the second phase-shifting network is connected to the peak amplifier and is configured to perform phase-shifting processing on the amplified peak signal and output a second phase-shifting signal, so that the second phase-shifting signal and the amplified peak signal are
  • the carrier signals are 180 degrees out of phase
  • the second differential circuit is connected to the carrier amplifier and the second phase-shifting network, and is configured to convert and synthesize the amplified carrier signal and the second phase-shifting signal to generate the target amplified signal. .
  • the Doherty power amplifier includes 1 carrier amplifier and N peak amplifiers;
  • the combination circuit in the voltage-type Doherty power amplifier includes N second phase-shifting networks and N second differential circuits;
  • the first second phase-shifting network is connected to the first peak amplifier, and is configured to perform phase-shifting processing on the amplified peak signal output by the first peak amplifier, and output the first second phase-shifted network.
  • Phase the signal so that the phase difference between the first second phase-shifted signal and the first amplified carrier signal output by the carrier amplifier is 180 degrees;
  • the input end of the first second differential circuit is connected to the first carrier amplifier and the first second phase-shifting network, and is configured to amplify the carrier signal output by the carrier amplifier and the first
  • the second phase-shifted signal is converted and synthesized to generate the first differential synthesized signal
  • the i-th second phase-shifting network is connected to the i-th peak amplifier, and is configured to perform phase-shifting processing on the amplified peak signal output by the i-th peak amplifier, and output the i-th second phase shift network.
  • Phase the signal so that the phase difference between the i-th second phase-shifted signal and the i-1-th differential composite signal is 180 degrees;
  • the input end of the ith second differential circuit is connected to the ith-1 second differential circuit and the ith second phase-shifting network, and is configured to synthesize the i-1 differential
  • the signal and the i-th second phase-shifted signal are converted and synthesized to generate the i-th differential synthesized signal;
  • N ⁇ 2, 2 ⁇ i ⁇ N, and the Nth differential composite signal is the target amplified signal.
  • the second differential circuit is a second balun.
  • An embodiment of the present application provides a radio frequency front-end module, including the above radio frequency amplifier circuit.
  • An embodiment of the present application provides an electronic device, including the above-mentioned radio frequency amplifier circuit, or the above-mentioned radio frequency front-end module.
  • the above-mentioned radio frequency amplifier circuit and radio frequency front-end module use a first coupler to couple the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees; then two Doherty power supplies with the same characteristics are used
  • the amplifier amplifies the first radio frequency signal and the second radio frequency signal to ensure the gain flatness and linearity of the generated first amplified signal and the second amplified signal; finally, a second coupler is used to amplify the signals with a phase difference of 90 degrees.
  • the first amplified signal and the second amplified signal are coupled to generate an output radio frequency signal.
  • the phase characteristics of the coupler are used so that the reflected signals of the two Doherty power amplifiers with the same characteristics are absorbed at the input end of the second coupler. This is to avoid the impact of impedance mismatch on the radio frequency amplifier circuit, achieve better impedance matching, and thereby improve the stability and tolerance of the radio frequency amplifier circuit.
  • Figure 1 is a circuit schematic diagram of a radio frequency amplifier circuit in an embodiment of the present application
  • Figure 2 is another circuit schematic diagram of a radio frequency amplifier circuit in an embodiment of the present application.
  • Figure 3 is another circuit schematic diagram of a radio frequency amplifier circuit in an embodiment of the present application.
  • Figure 4 is another circuit schematic diagram of a radio frequency amplifier circuit in an embodiment of the present application.
  • Figure 5 is another circuit schematic diagram of a radio frequency amplifier circuit in an embodiment of the present application.
  • Figure 6 is a circuit schematic diagram of a Doherty power amplifier in an embodiment of the present application.
  • Figure 7 is another circuit schematic diagram of the Doherty power amplifier in an embodiment of the present application.
  • Figure 8 is another circuit schematic diagram of the Doherty power amplifier in an embodiment of the present application.
  • Figure 9 is another circuit schematic diagram of the Doherty power amplifier in an embodiment of the present application.
  • Figure 10 is another circuit schematic diagram of the Doherty power amplifier in an embodiment of the present application.
  • FIG. 11 is another circuit schematic diagram of the Doherty power amplifier in an embodiment of the present application.
  • First coupler 2. Second coupler; 3. First Doherty power amplifier; 4. Second Doherty power amplifier; 5. Signal splitter; 51. Third coupler; 52. The fourth coupler; 53. Power divider; 54.
  • the second phase-shifting network 633, second differential circuit; U1, second balun.
  • the radio frequency amplification circuit includes a first coupler 1, a second coupler 2, a first Doherty power amplifier 3 and a second Doherty power amplifier 4.
  • the first Doherty power amplifier 3 and the second Doherty power amplifier 4 have the same characteristics;
  • the first coupler 1 is configured to couple the input radio frequency signal to generate a first radio frequency signal with a phase difference of 90 degrees and second RF signal;
  • the input end of the amplifier 3 is connected to the first output end of the first coupler 1 and is configured to amplify the first radio frequency signal to generate a first amplified signal;
  • the input end of the second Doherty power amplifier 4 is connected to the first output end of the first coupler 1 .
  • the second output end of the first coupler 1 is connected and is configured to amplify the second radio frequency signal and generate a second amplified signal.
  • the first amplified signal and the second amplified signal have a phase difference of 90 degrees; the second coupler 2
  • the first input end of the second coupler 2 is connected to the output end of the first Doherty power amplifier 3, and the second input end of the second coupler 2 is connected to the output end of the second Doherty power amplifier 4, and is configured to pair the first The amplified signal and the second amplified signal are coupled to generate an output radio frequency signal.
  • the first coupler 1 and the second coupler 2 are devices used to implement signal coupling processing.
  • the first Doherty power amplifier 3 and the second Doherty power amplifier 4 are Doherty power amplifiers used to implement signal amplification processing.
  • the Doherty power amplifier includes a carrier amplifier 61 and a peak amplifier 62. When its output power is at a lower power level, only the carrier amplifier 61 is used for amplification. When its output power is at a higher power level (such as reaching the peak value of the carrier amplifier 61 After the saturation point), the carrier amplifier 61 and the peak amplifier 62 are used to perform amplification processing together to ensure the gain flatness and linearity of the circuit.
  • the first Doherty power amplifier 3 and the second Doherty power amplifier 4 with the same characteristics are arranged in parallel between the first coupler 1 and the second coupler 2, so that the radio frequency amplification circuit they form complies with the balance
  • the characteristics of the amplifier can make the reflected signals of the two Doherty power amplifiers be absorbed by the input end of the second coupler 2, improve the stability of the two Doherty power amplifiers and ensure the input matching and/or output of the radio frequency amplifier circuit. match.
  • the first coupler 1 is connected to the signal input end and can perform coupling processing on the input radio frequency signal transmitted by the signal input end to form a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees.
  • the input end of the first Doherty power amplifier 3 is connected to the first output end of the first coupler 1 and can receive the first radio frequency signal output by the first coupler 1.
  • the carrier amplifier 61 is used for amplification processing.
  • the carrier amplifier 61 and the peak amplifier 62 are used for amplification processing simultaneously to generate the first amplified signal, thereby ensuring the gain flatness of the first amplified signal. and linearity.
  • the input end of the second Doherty power amplifier 4 is connected to the second output end of the first coupler 1 and can receive the second radio frequency signal output by the first coupler 1.
  • the carrier amplifier 61 is used for amplification processing.
  • the carrier amplifier 61 and the peak amplifier 62 are used for amplification processing simultaneously to generate the second amplified signal, thereby ensuring the gain flatness of the second amplified signal. and linearity.
  • the first Doherty power amplifier 3 and the second Doherty power amplifier 4 are used to amplify the first radio frequency signal and the second radio frequency signal respectively, so that The generated first amplified signal and the second amplified signal are 90 degrees out of phase.
  • the first input end of the second coupler 2 is connected to the output end of the first Doherty power amplifier 3, and the second input end of the second coupler 2 is connected to the output end of the second Doherty power amplifier 4.
  • the first amplified signal and the second amplified signal with a phase difference of 90 degrees are coupled to generate an output radio frequency signal.
  • the second coupler 2 can re-couple together the first amplified signal output by the first Doherty power amplifier 3 and the second amplified signal output by the second Doherty power amplifier 4. Due to the phase of the coupler characteristics, so that the reflected signals from the first Doherty power amplifier 3 and the second Doherty power amplifier 4 are absorbed at the input end of the second coupler 2, improving the stability of each Doherty power amplifier and ensuring radio frequency amplification.
  • the input matching and/or output matching of the circuit is to avoid the impact of impedance mismatch on the RF amplifier circuit, achieve better impedance matching, and thereby improve the stability and tolerance of the RF amplifier circuit.
  • the first coupler 1 is used to couple the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees; two Doherty power amplifiers are then used The first radio frequency signal and the second radio frequency signal are amplified to ensure the gain flatness and linearity of the generated first amplified signal and the second amplified signal; finally, the second coupler 2 is used to pair two pairs of signals with a phase difference of 90 degrees. The first amplified signal and the second amplified signal are coupled to generate an output radio frequency signal.
  • the phase characteristics of the coupler are used to cause the reflected signals of the two Doherty power amplifiers to be absorbed at the input end of the second coupler 2 to avoid Impedance mismatch affects the radio frequency amplifier circuit to achieve better impedance matching, thereby improving the stability and tolerance of the radio frequency amplifier circuit.
  • the radio frequency amplification circuit further includes a signal separator 5.
  • the signal separator 5 is connected to the first coupler 1 and is configured to perform signal processing on the first radio frequency signal and the second radio frequency signal. Separate and generate the first load wave signal, the first peak signal, the second carrier signal and the second peak signal;
  • the first Doherty power amplifier 3 is connected to the signal splitter 5 and is configured to pair the first carrier signal and the second wave signal with a phase difference of 90 degrees.
  • a peak signal is amplified to generate a first amplified signal;
  • the second Doherty power amplifier 4 is connected to the signal separator 5 and is configured to amplify the second carrier signal and the second peak signal with a phase difference of 90 degrees. processed to generate a second amplified signal.
  • the radio frequency amplifier circuit also includes a signal separator 5, which is connected to the first output end and the second output end of the first coupler 1, and can output a phase difference of 90 degrees from the first coupler 1.
  • the first radio frequency signal and the second radio frequency signal are subjected to signal separation processing to generate four radio frequency signals.
  • the four radio frequency signals include a group of first carrier signals and first peak signals with a phase difference of 90 degrees, and another group of phase differences. 90 degrees to the second carrier signal and the second peak signal.
  • the first Doherty power amplifier 3 is connected to the first output end and the second output end of the signal separator 5 and can receive the first carrier signal and the first peak value output by the signal separator 5 with a phase difference of 90 degrees.
  • the carrier amplifier 61 when the output power is at a lower power level, the carrier amplifier 61 is used to amplify the first carrier signal; when the output power is at a higher power level, the carrier amplifier 61 is used to amplify the first carrier signal and use the peak value
  • the amplifier 62 amplifies the first peak signal to generate a first amplified signal, thereby ensuring gain flatness and linearity of the first amplified signal.
  • the second Doherty power amplifier 4 is connected to the third output end and the fourth output end of the signal separator 5 and can receive the second carrier signal and the second peak value output by the signal separator 5 with a phase difference of 90 degrees.
  • the carrier amplifier 61 when the output power is at a lower power level, the carrier amplifier 61 is used to amplify the second carrier signal; when the output power is at a higher power level, the carrier amplifier 61 is used to amplify the second carrier signal and use the peak value
  • the amplifier 62 amplifies the second peak signal to generate a second amplified signal, thereby ensuring gain flatness and linearity of the second amplified signal.
  • the signal splitter 5 includes a third coupler 51 and a fourth coupler 52; the third coupler 51, connected to the first coupler 1, is configured to The radio frequency signal undergoes coupling processing to generate a first carrier signal and a first peak signal with a phase difference of 90 degrees; the fourth coupler 52 is connected to the second coupler 2 and is configured to couple the second radio frequency signal to generate The second carrier signal and the second peak signal have a phase difference of 90 degrees.
  • the third coupler 51 and the fourth coupler 52 are devices used to implement signal coupling processing, and can perform differential processing on one signal to form two signals with a phase difference of 90 degrees.
  • the first coupler 1 performs coupling processing on the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees.
  • the input end of the third coupler 51 is connected to the first output end of the first coupler 1, and performs coupling processing on the first radio frequency signal output by the first coupler 1 to generate a first carrier signal and a first carrier signal with a phase difference of 90 degrees. Peak signal for subsequent amplification processing using Doherty power amplifier.
  • the input end of the fourth coupler 52 is connected to the first output end of the first coupler 1, and the second radio frequency signal output by the first coupler 1 is coupled to generate a second carrier signal with a phase difference of 90 degrees.
  • the phase of the first radio frequency signal is 90 degrees and the phase of the second radio frequency signal is 0 degrees
  • the third coupler 51 The first radio frequency signal with a phase of 90 degrees is coupled, the phase of the generated first carrier signal is 90 degrees, the phase of the first peak signal is 180 degrees, and the phase difference between the two is 90 degrees
  • the fourth coupler 52 pairs the phase The coupling process is performed for the second radio frequency signal of 0 degrees, the phase of the generated second carrier signal is 0 degrees, the phase of the second peak signal is -90 degrees, and the phase difference between the two is 90 degrees.
  • the first output terminal of the third coupler 51 is connected to the first input terminal of the first Doherty power amplifier 3
  • the second output terminal of the third coupler 51 is connected to the first input terminal of the first Doherty power amplifier 3 .
  • the second input end is connected to output the first carrier signal and the first peak signal with a phase difference of 90 degrees to the first Doherty power amplifier 3, so that the first Doherty power amplifier 3 can detect the first carrier signal and the first peak signal.
  • the signals are coupled and processed to generate a first amplified signal to ensure the gain flatness and linearity of the first amplified signal.
  • the first output terminal of the fourth coupler 52 is connected to the second plurality of The first input end of the Doherty power amplifier 4 is connected, the second output end of the fourth coupler 52 is connected to the second input end of the second Doherty power amplifier 4, and the phase difference is output to the second Doherty power amplifier 4.
  • the second carrier signal and the second peak signal at 90 degrees, so that the second Doherty power amplifier 4 couples the second carrier signal and the second peak signal to generate a second amplified signal to ensure the accuracy of the second amplified signal. Gain flatness and linearity.
  • the signal splitter 5 includes a power divider 53 and a first differential circuit 54; the power divider 53, connected to the first coupler 1, is configured to Perform power distribution to generate a first carrier signal and a second carrier signal with a phase difference of 0 degrees; the first differential circuit 54 is connected to the second coupler 2 and is configured to perform differential processing on the second radio frequency signal to generate a phase difference.
  • the first peak signal and the second peak signal at 180 degrees.
  • the power divider 53 is a device used to implement power distribution processing, and can perform power distribution on one signal to form two signals with the same phase.
  • the first differential circuit 54 is used to perform differential processing on signals, and can perform differential processing on one signal to form two signals with a phase difference of 180 degrees.
  • the first coupler 1 performs coupling processing on the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees.
  • the input end of the power divider 53 is connected to the first output end of the first coupler 1, and performs power distribution on the first radio frequency signal output by the first coupler 1 to generate a first carrier signal and a second carrier signal with a phase difference of 0 degrees. signal for subsequent amplification processing using a Doherty power amplifier.
  • the input end of the first differential circuit 54 is connected to the first output end of the first coupler 1, and differential processing is performed on the second radio frequency signal output by the first coupler 1 to generate a second peak signal with a phase difference of 180 degrees. and the second peak signal for subsequent amplification processing using a Doherty power amplifier.
  • the phase of the first radio frequency signal is 90 degrees and the phase of the second radio frequency signal is 0 degrees;
  • the power divider 53 pairs The first radio frequency signal with a phase of 90 degrees performs power distribution, the phase of the generated first carrier signal is 90 degrees, the phase of the second carrier signal is 90 degrees, and the phase difference between the two is 0 degrees;
  • the phase of the first differential circuit 54 is The second radio frequency signal of 0 degrees is differentially processed, and the phase of the generated first peak signal is 0 degrees, and the phase of the second peak signal is 180 degrees, and the phase difference between the two is 180 degrees.
  • the first output terminal of the power divider 53 is connected to the first input terminal of the first Doherty power amplifier 3
  • the first output terminal of the first differential circuit 54 is connected to the first terminal of the first Doherty power amplifier 3 .
  • the two input terminals are connected to output the first carrier signal (90 degrees) and the first peak signal (0 degrees) with a phase difference of 90 degrees to the first Doherty power amplifier 3, so that the first Doherty power amplifier 3 pairs A carrier signal and a first peak signal are amplified to generate a first amplified signal to ensure gain flatness and linearity of the first amplified signal.
  • the second output terminal of the power divider 53 is connected to the first input terminal of the second Doherty power amplifier 4
  • the second output terminal of the first differential circuit 54 is connected to the second terminal of the second Doherty power amplifier 4 .
  • the input ends are connected to output a second carrier signal (90 degrees) and a second peak signal (180 degrees) with a phase difference of 90 degrees to the second Doherty power amplifier 4, so that the second Doherty power amplifier 4 is
  • the carrier signal and the second peak signal are amplified to generate a second amplified signal to ensure gain flatness and linearity of the second amplified signal.
  • the first differential circuit 54 is a first balun, the input end of the first balun is connected to the signal splitter 5, and the two output ends are respectively connected to the first Doherty power amplifier 3 and the second Doherty power amplifier 3.
  • the power amplifier 4 is connected to perform differential processing on the second radio frequency signal output by the signal separator 5 to generate two radio frequency signals with a phase difference of 180 degrees.
  • Using the first balun as the first differential circuit 54 has the characteristics of simple structure and low cost.
  • the signal splitter 5 includes a power divider 53 and a first differential circuit 54; the power divider 53, connected to the first coupler 1, is configured to Perform power distribution to generate a first peak signal and a second peak signal with a phase difference of 0 degrees; the first differential circuit 54 is connected to the second coupler 2 and is configured to perform differential processing on the second radio frequency signal to generate a phase difference. 180 degrees of the first carrier signal and the second carrier signal.
  • the first coupler 1 performs coupling processing on the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees.
  • the input terminal of the power divider 53 is connected to the first terminal of the first coupler 1
  • the output ends are connected, and the power of the first radio frequency signal output by the first coupler 1 is distributed to generate a first peak signal and a second peak signal with a phase difference of 0 degrees, so that the Doherty power amplifier can be used for subsequent amplification processing.
  • the input end of the first differential circuit 54 is connected to the first output end of the first coupler 1, and differential processing is performed on the second radio frequency signal output by the first coupler 1 to generate a first carrier signal with a phase difference of 180 degrees. and the second carrier signal for subsequent amplification processing using a Doherty power amplifier.
  • the phase of the first radio frequency signal is 0 degrees and the phase of the second radio frequency signal is 90 degrees;
  • the power divider 53 pairs The first radio frequency signal with a phase of 0 degrees performs power distribution, the phase of the generated first peak signal is 0 degrees, the phase of the second peak signal is 0 degrees, and the phase difference between the two is 0 degrees;
  • the phase of the first differential circuit 54 is The second radio frequency signal of 90 degrees is differentially processed, and the phase of the generated first carrier signal is 90 degrees, and the phase of the second carrier signal is -90 degrees, with a phase difference of 180 degrees.
  • the first output terminal of the power divider 53 is connected to the first input terminal of the first Doherty power amplifier 3
  • the first output terminal of the first differential circuit 54 is connected to the first terminal of the first Doherty power amplifier 3 .
  • the two input terminals are connected to output the first carrier signal (90 degrees) and the first peak signal (0 degrees) with a phase difference of 90 degrees to the first Doherty power amplifier 3, so that the first Doherty power amplifier 3 pairs A carrier signal and a first peak signal are amplified to generate a first amplified signal to ensure gain flatness and linearity of the first amplified signal.
  • the second output terminal of the power divider 53 is connected to the first input terminal of the second Doherty power amplifier 4
  • the second output terminal of the first differential circuit 54 is connected to the second terminal of the second Doherty power amplifier 4 .
  • the input ends are connected to output the second carrier signal (-90 degrees) and the second peak signal (0 degrees) with a phase difference of 90 degrees to the second Doherty power amplifier 4, so that the second Doherty power amplifier 4 can
  • the second carrier signal and the second peak signal are amplified to generate a second amplified signal to ensure the gain flatness and linearity of the second amplified signal.
  • the first Doherty power amplifier 3 and the second Doherty power amplifier 4 both include a carrier amplifier 61, a peak amplifier 62 and a combination circuit 63; the carrier amplifier 61 and the signal
  • the splitter 5 is connected and configured to amplify the original carrier signal and generate an amplified carrier signal
  • the peak amplifier 62 is connected to the signal splitter 5 and is configured to amplify the original peak signal and generate an amplified peak signal
  • the combination circuit 63 is connected to the output end of the carrier amplifier 61 and the output end of the peak amplifier 62, and is configured to combine the amplified carrier signal and the amplified peak signal to generate a target amplified signal
  • the original carrier signal is the first carrier signal
  • the original peak signal is the first peak signal
  • the target amplified signal is the first amplified signal
  • the original carrier signal is the second carrier signal
  • the original peak signal is the second peak signal
  • the target amplified signal is the second amplified signal.
  • the original carrier signal refers to the carrier signal received by the Doherty power amplifier.
  • the original peak signal is the peak signal received by the Doherty power amplifier.
  • the target amplified signal is the amplified signal output by the Doherty power amplifier.
  • the original carrier signal is the first carrier signal
  • the original peak signal is the first peak signal
  • the target amplified signal is the first amplified signal
  • the original carrier signal is the second carrier signal
  • the original peak signal is the second peak signal
  • the target amplified signal is the second amplified signal.
  • the input end of the signal splitter 5 is coupled to the first coupler 1, and the two output ends of the signal splitter 5 are respectively connected to the carrier amplifier 61 and the peak amplifier 62, and output the original carrier signal to the carrier amplifier 61 and to Peaking amplifier 62 outputs the original peak signal.
  • the original carrier signal is the first carrier signal
  • the original peak signal is the first peak signal
  • the original carrier signal is the second carrier signal.
  • the input end of the carrier amplifier 61 is coupled to an output end of the signal separator 5, and can amplify the original carrier signal output by the signal separator 5 to generate an amplified carrier signal.
  • the amplified carrier signal is an amplified radio frequency signal of the original carrier signal.
  • the input end of the peak amplifier 62 is coupled to the other output end of the signal separator 5.
  • the peak amplifier 62 starts to work, and the original peak signal output by the signal separator 5 is Perform amplification processing to generate an amplified peak signal.
  • the amplified peak signal is an amplified radio frequency signal of the original peak signal.
  • the output power of the carrier amplifier 61 when the output power of the carrier amplifier 61 is small, only the carrier amplifier 61 works. When the output power of the carrier amplifier 61 reaches the peak saturation range, the peak amplifier 62 and the carrier amplifier 61 work together. Since the original carrier signal and the original peak value The signal is a radio frequency signal with a phase difference of 90 degrees. After the carrier amplifier 61 and the peak amplifier 62 amplify the original carrier signal and the original peak signal respectively, the amplified carrier signal and the amplified peak signal formed are also 90 degrees out of phase. of radio frequency signals.
  • the two input terminals of the combination circuit 63 are respectively coupled to the output terminal of the carrier amplifier 61 and the output terminal of the peak amplifier 62, and can perform the amplified carrier signal output by the carrier amplifier 61 and the amplified peak signal output by the peak amplifier 62. Combined processing to generate a target amplified signal.
  • the target amplified signal is the first amplified signal; in the second Doherty power amplifier 4, the target amplified signal is the second amplified signal.
  • the first Doherty power amplifier 3 is any one of a current-type Doherty power amplifier and a voltage-type Doherty power amplifier; the second Doherty power amplifier 4 is a current-type Doherty power amplifier. amplifier and any of the voltage-type Doherty power amplifiers.
  • the current-type Doherty power amplifier refers to a Doherty power amplifier in which the phases of the two signals are the same after the combination circuit 63 performs phase shifting on the amplified carrier signal and/or the amplified peak signal.
  • the combination circuit 63 in the current-type Doherty power amplifier is configured to be connected to the carrier amplifier 61 and the peak amplifier 62, and can amplify the carrier signal output by the carrier amplifier 61 and/or amplify the peak value output by the peak amplifier 62.
  • the signal is phase-shifted so that the phase-shifted amplified carrier signal and the amplified peak signal have the same phase, and the current can be directly superimposed to generate the target amplified signal.
  • the voltage-type Doherty power amplifier refers to a Doherty power amplifier that requires differential conversion and synthesis after the combination circuit 63 phase-shifts the amplified carrier signal and/or the amplified peak signal.
  • the two signals have different phases.
  • the combination circuit 63 in the voltage-type Doherty power amplifier is configured to be connected to the carrier amplifier 61 and the peak amplifier 62, and can amplify the carrier signal output by the carrier amplifier 61 and/or amplify the peak value output by the peak amplifier 62.
  • the signal is phase-shifted so that the phase-shifted amplified carrier signal and the amplified peak signal have different phases. It is necessary to additionally set up a second differential circuit 633 between the two output terminals for differential conversion and synthesis to generate a target amplified signal.
  • the first Doherty power amplifier 3 and the second Doherty power amplifier 4 can be current-type Doherty power amplifiers, voltage-type Doherty power amplifiers, or current-type power amplifiers respectively.
  • Doherty power amplifiers and voltage-type Doherty power amplifiers can be set independently according to actual needs.
  • the combination circuit 63 in the current mode Doherty power amplifier includes a first phase shift network 631; the first phase shift network 631 is connected to the carrier amplifier 61 and is configured to amplify The carrier signal is phase-shifted and a first phase-shifted signal is output, so that the first phase-shifted signal has the same phase as the amplified peak signal; the output end of the first phase-shifting network 631 is connected to the output end of the carrier amplifier 61 to form a signal combination node , used to generate the target amplified signal.
  • the first phase shift network 631 is a network provided in the current mode Doherty power amplifier for realizing phase shift.
  • the first phase-shifting network 631 may use, but is not limited to, capacitors and inductors, which are connected in series and/or in parallel to form a network that can realize the phase-shifting function.
  • the combination circuit 63 in the current-mode Doherty power amplifier is a first phase-shifting network 631.
  • the input end of the first phase-shifting network 631 is coupled to the output end of the carrier amplifier 61 for outputting to the carrier amplifier 61.
  • the amplified carrier signal is phase-shifted and the first phase-shifted signal is output, so that the phase difference between the first phase-shifted signal and the amplified carrier signal is 90 degrees, and the phase of the first phase-shifted signal and the amplified peak signal are the same.
  • the output end of the first phase shift network 631 is coupled to the output end of the carrier amplifier 61 to form a signal combination node, which processes the first phase shift signal and the amplified peak signal to generate a target amplified signal. Understandably, since the first phase-shifted signal and the amplified peak signal have the same phase, the first phase-shifted signal and the amplified peak signal can be directly superimposed by current to generate a target amplified signal.
  • the Doherty power amplifier includes one carrier amplifier 61 and N peak amplifiers 621/622/62n; the combination circuit 63 in the current-type Doherty power amplifier includes Nth A phase shift network 6311/6312/631n; the input end of the first first phase shift network 6311 is connected to the carrier amplifier 61, the output end of the first first phase shift network 6311 and the output end of the first peak amplifier 62 are connected to form the first signal combination node, which is configured to perform phase-shifting processing on the amplified carrier signal output by the carrier amplifier 61 to generate the first first phase-shifted signal, Make the first first phase-shifted signal have the same phase as the amplified peak signal output by the first peak amplifier 62, so that the first signal combination node generates the first first combined signal; the i-th first phase-shift network 6312 The input terminal of /631n is connected to the i-1 signal combination node, and the output terminal of the i-th first phase shift network 6312/631
  • the N-th signal combination node configured to perform phase-shifting processing on the first combined signal output by the i-1th signal combination node, and generate the i-th first phase-shifted signal, so that the i-th first phase-shifted signal is connected to the i-th peak amplifier
  • the amplified peak signals output by 622/62n have the same phase, so that the i-th signal combination node generates the i-th first combination signal; where, N ⁇ 2, 2 ⁇ i ⁇ N, the N-th first combination signal is the target amplification Signal.
  • the Doherty power amplifier includes 1 carrier amplifier 61 and N peak amplifiers 621/622/62n, N ⁇ 2.
  • the combination circuit 63 in the current-type Doherty power amplifier includes N first Phase shifting network 6311/6312/631n.
  • the output terminal of the signal splitter 5 is coupled to the input terminal of a carrier amplifier 61 and the input terminals of N peak amplifiers 621/622/62n, and performs signal separation on the input radio frequency signal to form an original carrier signal and N original peak signals, 1 original carrier signal and N original peak signals have different phases.
  • the phase difference between the original carrier signal and the first original peak signal is 30 degrees
  • the phase difference between the original carrier signal and the second original peak signal is 60 degrees
  • the phase difference between the original carrier signal and the third original peak signal is 90 degrees.
  • the phase of the original carrier signal is 0 degrees
  • the phases of the three original peak signals are 30 degrees, 60 degrees and 90 degrees in sequence.
  • the input terminal of the first first phase shift network 6311 is coupled to the output terminal of the carrier amplifier 61, and the output terminal of the first first phase shift network 6311 is coupled to the output terminal of the first peak amplifier 621 to form the first signal.
  • the combination node is configured to phase-shift the amplified carrier signal output by the carrier amplifier 61 to generate a first first phase-shifted signal, so that the first first phase-shifted signal is consistent with the amplified peak value output by the first peak amplifier 621
  • the signal phases are the same, so that the first signal combination node performs current superposition on the first phase-shifted signal and the first amplified peak signal to generate the first first combined signal.
  • the input end of the i-th first phase-shifting network 6312/631n is coupled to the i-1th signal combination node, and the output end of the i-th first phase-shifting network 6312/631n is coupled to the i-th peak amplifier 622/62n.
  • the output terminal forms the i-th signal combination node and is configured to perform phase-shifting processing on the first combination signal output by the i-1th signal combination node to generate the i-th first phase-shifted signal so that the i-th first
  • the phase-shifted signal has the same phase as the amplified peak signal output by the i-th peak amplifier 622/62n, so that the i-th signal combination node performs current superposition on the i-th first phase-shifted signal and the i-th amplified peak signal to generate the i-th first phase-shifted signal and the i-th amplified peak signal.
  • i first combination signals when the i-th signal combination node is the last signal combination node, the i-th first combination signal generated by it is the target amplified signal of the current-type Doherty power amplifier.
  • the signal separator 5 separates the input radio frequency signal to form one original carrier signal and N original peak signals, which are output to one carrier amplifier 61 and N peak amplifiers 621/622/62n respectively; the carrier amplifier 61 pair The original carrier signal is amplified and the amplified carrier signal is output; N peak amplifiers 621/622/62n respectively amplify the N original peak signals and output N amplified peak signals respectively; then N first phase-shifting networks 6311/6312 are used /631n performs phase shifting processing to form N first phase shifted signals. By combining the N first phase shifted signals and N amplified peak signals, a target amplified signal is generated, so that the target amplified signal undergoes more amplification combinations. Its performance is better.
  • the combination circuit 63 in the voltage-type Doherty power amplifier includes a second phase shift network 632 and a second differential circuit 633; the second phase shift network 632 is connected to the peak amplifier 62 , is configured to phase-shift the amplified peak signal and output a second phase-shifted signal, so that the phase difference between the second phase-shifted signal and the amplified carrier signal is 180 degrees; the second differential circuit 633 is connected with the carrier amplifier 61 and the second The phase-shifting network 632 is connected and configured to convert and synthesize the amplified carrier signal and the second phase-shifted signal to generate a target amplified signal.
  • the second phase shift network 632 is a network provided in the voltage-type Doherty power amplifier for realizing phase shift.
  • the second phase-shifting network 632 may use, but is not limited to, capacitors and inductors connected in series and/or in parallel to form a network that can achieve a phase-shifting function.
  • the second differential circuit 633 is a circuit provided in the combination circuit 63 of the voltage-type Doherty power amplifier for differential processing of two signals to form one signal output.
  • the combination circuit 63 in the voltage-type Doherty power amplifier includes a second phase shifting network 632 and a second differential circuit 633.
  • the input end of the second phase shift network 632 is coupled to the output end of the peak amplifier 62, and is used to perform phase shift processing on the amplified peak signal output by the peak amplifier 62, and output the second phase shift signal, so that the second phase shift signal is consistent with the amplified peak signal.
  • the signals are 90 degrees out of phase, while the second phase-shifted signal and the amplified carrier signal are 180 degrees out of phase.
  • two input terminals of the second differential circuit 633 are respectively coupled to the output terminal of the carrier amplifier 61 and the output terminal of the second phase shift network 632.
  • One output terminal of the second differential circuit 633 is a voltage-type Doherty power
  • the signal output terminal RFOUT of the amplifier is used to perform differential processing on the amplified carrier signal and the second phase-shifted signal with a phase difference of 180 degrees to generate a target amplified signal.
  • the Doherty power amplifier includes 1 carrier amplifier 61 and N peak amplifiers 621/622/62n; the combination circuit 63 in the voltage-type Doherty power amplifier includes Nth Two phase-shifting networks 6321/6322/632n and N second differential circuits 6331/6332/633n; the first second phase-shifting network 6321 is connected to the first peak amplifier 62 and is configured to pair the first peak amplifier 62 The output amplified peak signal is phase-shifted, and the first second phase-shifted signal is output, so that the phase difference between the first second phase-shifted signal and the amplified carrier signal output by the first carrier amplifier 61 is 180 degrees; The input end of the second differential circuit 633 is connected to the first carrier amplifier 61 and the first second phase shift network 6321, and is configured to convert the amplified carrier signal output by the carrier amplifier 61 and the first second phase shift signal.
  • the i-th second phase shift network 6322/632n is connected to the i-th peak amplifier 622/62n, and is configured to amplify the peak signal output by the i-th peak amplifier 622/62n Phase shift processing, output the i-th second phase-shifted signal, so that the phase difference between the i-th second phase-shifted signal and the i-1th differential composite signal is 180 degrees; the input terminal of the i-th second differential circuit 633 is equal to The i-1 second differential circuit 633 is connected to the i-th second phase-shifting network 6322/632n, and is configured to convert and synthesize the i-1-th differential composite signal and the i-th second phase-shifted signal to generate The i-th differential composite signal; where, N ⁇ 2, 2 ⁇ i ⁇ N, and the N-th differential composite signal is the target amplified signal.
  • the Doherty power amplifier includes 1 carrier amplifier 61 and N peak amplifiers 621/622/62n, N ⁇ 2.
  • the combination circuit 63 in the voltage-type Doherty power amplifier includes N first Phase shifting network 6311/6312/631n.
  • the output terminal of the signal splitter 5 is coupled to the input terminal of a carrier amplifier 61 and the input terminals of N peak amplifiers 621/622/62n, and performs signal separation on the input radio frequency signal to form an original carrier signal and N original peak signals, 1 original carrier signal and N original peak signals have different phases.
  • the phase difference between the original carrier signal and the first original peak signal is 30 degrees
  • the phase difference between the original carrier signal and the second original peak signal is 60 degrees
  • the phase difference between the original carrier signal and the third original peak signal is 90 degrees.
  • the phase of the original carrier signal is 0 degrees
  • the phases of the three original peak signals are 30 degrees, 60 degrees and 90 degrees in sequence.
  • the input end of the first second phase shift network 6321 is coupled to the output end of the first peak amplifier 621, and is configured to perform phase shift processing on the first amplified peak signal output by the first peak amplifier 621, and output the first a second phase-shifted signal, so that the phase difference between the first second phase-shifted signal and the amplified carrier signal output by the carrier amplifier 61 is 180 degrees.
  • the two input terminals of the first second differential circuit 6331 are respectively coupled to the output terminal of the carrier amplifier 61 and the output terminal of the first second phase shift network 6321, and are configured to amplify the carrier signal output by the carrier amplifier 61 and the first second differential circuit 6331.
  • a second phase-shifted signal converts and synthesizes two signals with a phase difference of 180 degrees to generate a first differential synthesized signal.
  • the input terminal of the i-th second phase-shifting network 6322/632n is coupled to the output terminal of the i-th peak amplifier 622/62n, and is configured to shift the i-th amplified peak signal output by the i-th peak amplifier 622/62n.
  • Phase processing outputting the i-th second phase-shifted signal, so that the phase difference between the i-th second phase-shifted signal and the i-1th differential composite signal is 180 degrees.
  • the two input terminals of the i-th second differential circuit 6332/632n are respectively coupled to the output terminal of the i-1 second differential circuit 6332/632n and the output terminal of the i-th second phase shift network 6322/632n, and are It is configured to convert and synthesize the i-1th differential synthesized signal and the i-th second phase-shifted signal, two signals with a phase difference of 180 degrees, to generate the i-th differential synthesized signal; wherein, the N-th differential synthesized signal is The target amplifies the signal.
  • the signal separator 5 separates the input radio frequency signal to form 1 original carrier signal and N original peak values.
  • signals are output to one carrier amplifier 61 and N peak amplifiers 621/622/62n respectively; the carrier amplifier 61 amplifies the original carrier signal and outputs the amplified carrier signal; the N peak amplifiers 621/622/62n respectively
  • the original peak signal is amplified and N amplified peak signals are output respectively;
  • N second phase-shifting networks 6321/6322/632n are then used for phase-shifting processing to form N second phase-shifting signals.
  • the N second phase-shifted signals are converted and synthesized to generate a target amplified signal, so that the target amplified signal undergoes more amplification combinations and has better performance.
  • the second differential circuit 633 is the second balun U1.
  • its combination circuit 63 includes a second phase shift network 632 and a second differential circuit 633, where the second differential circuit 633 may be configured as a second balun U1. That is to say, the signal separator 5 separates the input radio frequency signal and outputs the original carrier signal and the original peak signal to the carrier amplifier 61 and the peak amplifier 62 respectively; the input end of the second phase shift network 632 is coupled to the output end of the peak amplifier 62 , perform phase-shifting processing on the amplified peak signal output by the peak amplifier 62, and output a second phase-shifted signal, so that the phase difference between the second phase-shifted signal and the amplified carrier signal output by the carrier amplifier 61 is 180 degrees; the second balun U1 The two input terminals are respectively coupled to the output terminal of the second phase shift network 632 and the output terminal of the carrier amplifier 61, and process the second phase shift signal and the amplified carrier signal with a phase difference of 180 degrees to generate a target amplified signal
  • the second balun U1 is used as the second differential circuit 633 to perform differential processing on the amplified carrier signal and the second phase-shifted signal with a phase difference of 180 degrees to generate the target amplified signal, which has the characteristics of simple structure and low cost.
  • a radio frequency front-end module including the radio frequency amplifier circuit in the above embodiment.
  • the radio frequency front-end module can be a 4G network module, a 6G network module, a 6G network module or other network modules.
  • the radio frequency front-end module includes the radio frequency in the above embodiment.
  • Amplification circuit, the radio frequency amplification circuit uses the first coupler 1 to couple the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees; and then uses two Doherty power amplifiers to couple the first radio frequency signal
  • the signal and the second radio frequency signal are amplified to ensure the gain flatness and linearity of the generated first amplified signal and the second amplified signal; finally, the second coupler 2 is used to pair the first amplified signal with a phase difference of 90 degrees.
  • the coupling process is performed with the second amplified signal to generate an output radio frequency signal.
  • the phase characteristics of the coupler are used to cause the reflections of the two Doherty power amplifiers to be absorbed at the input end of the second coupler 2, so that the two Doherty power amplifiers are
  • the power amplifier can work in the optimal state of flat gain, and can take into account impedance matching to ensure circuit stability.
  • an electronic device including the radio frequency amplifier circuit in the above embodiment, or the radio frequency front-end module in the above embodiment.
  • This embodiment provides an electronic device, including the radio frequency amplification circuit in the above embodiment, or the radio frequency front-end module in the above embodiment.
  • the radio frequency front-end module includes the radio frequency amplification circuit in the above embodiment.
  • the radio frequency amplifier circuit uses a first coupler 1 to couple the input radio frequency signal to generate a first radio frequency signal and a second radio frequency signal with a phase difference of 90 degrees; and then uses two Doherty power amplifiers to couple the first radio frequency signal and the second radio frequency signal.
  • the two radio frequency signals are amplified to ensure the gain flatness and linearity of the generated first amplified signal and the second amplified signal; finally, the second coupler 2 is used to pair the first amplified signal and the second amplified signal with a phase difference of 90 degrees.
  • the amplified signal is coupled and processed to generate an output radio frequency signal.
  • the phase characteristics of the coupler are used to cause the reflections of the two Doherty power amplifiers to be absorbed at the input end of the second coupler 2, so that the two Doherty power amplifiers can It works in the optimal state of flat gain and can take into account impedance matching to ensure circuit stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本申请公开了一种射频放大电路和射频前端模组。该射频放大电路包括:第一耦合器被配置为对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;第一多尔蒂功率放大器与第一耦合器相连,被配置为对第一射频信号进行放大处理,生成第一放大信号;第二多尔蒂功率放大器与第一耦合器相连,被配置为对第二射频信号进行放大处理,生成第二放大信号,第一放大信号和第二放大信号相位相差90度;第二耦合器与第一多尔蒂功率放大器和第二多尔蒂功率放大器相连,被配置为,对第一放大信号和第二放大信号进行耦合处理,生成输出射频信号。该射频放大电路可达到更好的阻抗匹配目的,进而提高射频放大电路的稳定性和耐受性。

Description

射频放大电路和射频前端模组
本申请要求以2022年05月11日提交的申请号为202210509090.1,名称为“射频放大电路和射频前端模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及放大电路技术领域,尤其涉及一种射频放大电路和射频前端模组。
背景技术
现代无线通信系统,要求无线通信设备在快速移动过程中,仍能保持高速率通信,为了充分利用频谱资源,提高传输效率。现代无线通信系统一般需设置有射频放大电路对射频信号进行放大处理,现有射频放大电路工作过程中,存在无法兼顾增益平坦和阻抗匹配的问题,影响电路稳定性和其他性能。
发明内容
本申请实施例提供一种射频放大电路和射频前端模组,以使射频放大电路可兼顾增益平坦和阻抗匹配,保证电路稳定性。
本申请实施例提供一种射频放大电路,包括第一耦合器、第二耦合器、第一多尔蒂功率放大器和第二多尔蒂功率放大器,所述第一多尔蒂功率放大器和所述第二多尔蒂功率放大器特性相同;
所述第一耦合器,被配置为,对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;
所述第一多尔蒂功率放大器的输入端与所述第一耦合器的第一输出端相连,被配置为,对所述第一射频信号进行放大处理,生成第一放大信号;
所述第二多尔蒂功率放大器的输入端与所述第一耦合器的第二输出端相连,被配置为,对所述第二射频信号进行放大处理,生成第二放大信号,所述第一放大信号和所述第二放大信号相位相差90度;
所述第二耦合器的第一输入端与所述第一多尔蒂功率放大器的输出端相连,所述第二耦合器的第二输入端与所述第二多尔蒂功率放大器的输出端相连,被配置为,对所述第一放大信号和所述第二放大信号进行耦合处理,生成输出射频信号。
优选地,所述射频放大电路还包括信号分离器,所述信号分离器与所述第一耦合器相连,被配置为,对所述第一射频信号和所述第二射频信号进行信号分离,生成第一载波信号、第一峰值信号、第二载波信号和第二峰值信号;
所述第一多尔蒂功率放大器,与所述信号分离器相连,被配置为,对相位相差90度的所述第一载波信号和所述第一峰值信号进行放大处理,生成第一放大信号;
所述第二多尔蒂功率放大器,与所述信号分离器相连,被配置为,对相位相差90度的所述第二载波信号和所述第二峰值信号进行放大处理,生成第二放大信号。
优选地,所述信号分离器包括第三耦合器和第四耦合器;
所述第三耦合器,与所述第一耦合器相连,被配置为,对所述第一射频信号进行耦合处理,生成相位相差90度的第一载波信号和第一峰值信号;
所述第四耦合器,与所述第二耦合器相连,被配置为,对所述第二射频信号进行耦合处理,生成相位相差90度的第二载波信号和第二峰值信号。
优选地,所述信号分离器包括功率分配器和第一差分电路;
所述功率分配器,与所述第一耦合器相连,被配置为,对所述第一射频信号进行功率 分配,生成相位相差0度的第一载波信号和第二载波信号;
所述第一差分电路,与所述第二耦合器相连,被配置为,对所述第二射频信号进行差分处理,生成相位相差180度的第一峰值信号和第二峰值信号;
或者,所述功率分配器,与所述第一耦合器相连,被配置为,对所述第一射频信号进行功率分配,生成相位相差0度的第一峰值信号和第二峰值信号;
所述第一差分电路,与所述第二耦合器相连,被配置为,对所述第二射频信号进行差分处理,生成相位相差180度的第一载波信号和第二载波信号。
优选地,所述第一差分电路为第一巴伦。
优选地,所述第一多尔蒂功率放大器和所述第二多尔蒂功率放大器,均包括载波放大器、峰值放大器和组合电路;
所述载波放大器,与所述信号分离器相连,被配置为,对原始载波信号进行放大处理,生成放大载波信号;
所述峰值放大器,与所述信号分离器相连,被配置为,对原始峰值信号进行放大处理,生成放大峰值信号;
所述组合电路,与所述载波放大器的输出端和所述峰值放大器的输出端相连,被配置为,对所述放大载波信号和所述放大峰值信号进行组合处理,生成目标放大信号;
所述原始载波信号为第一载波信号,所述原始峰值信号为第一峰值信号,所述目标放大信号为第一放大信号;或者,所述原始载波信号为第二载波信号,所述原始峰值信号为第二峰值信号,所述目标放大信号为第二放大信号。
优选地,所述第一多尔蒂功率放大器为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器中的任一个;
所述第二多尔蒂功率放大器为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器中的任一个。
优选地,所述电流型多尔蒂功率放大器中的组合电路包括第一移相网络;
所述第一移相网络,与所述载波放大器相连,被配置为对所述放大载波信号进行移相处理,输出第一移相信号,以使所述第一移相信号与所述放大峰值信号相位相同;
所述第一移相网络的输出端和所述载波放大器的输出端相连,形成信号组合节点,用于生成目标放大信号。
优选地,所述多尔蒂功率放大器包括1个载波放大器和N个峰值放大器;
所述电流型多尔蒂功率放大器中的组合电路包括N个第一移相网络;
第1个所述第一移相网络的输入端与所述载波放大器相连,第1个所述第一移相网络的输出端和第1个所述峰值放大器的输出端相连,形成第1个信号组合节点,被配置为对所述载波放大器输出的放大载波信号进行移相处理,生成第1个第一移相信号,使第1个所述第一移相信号与第1个所述峰值放大器输出的所述放大峰值信号相位相同,以使第1个信号组合节点生成第1个第一组合信号;
第i个所述第一移相网络的输入端与第i-1个所述信号组合节点相连,第i个所述第一移相网络的输出端和第i个所述峰值放大器的输出端相连,形成第i个信号组合节点,被配置为对第i-1个所述信号组合节点输出的第一组合信号进行移相处理,生成第i个第一移相信号,使第i个所述第一移相信号与第i个所述峰值放大器输出的所述放大峰值信号相位相同,以使第i个信号组合节点生成第i个第一组合信号;
其中,N≥2,2≤i≤N,第N个所述第一组合信号为目标放大信号。
优选地,所述电压型多尔蒂功率放大器中的组合电路包括第二移相网络和第二差分电路;
所述第二移相网络,与所述峰值放大器相连,被配置为,对所述放大峰值信号进行移相处理,输出第二移相信号,以使所述第二移相信号和所述放大载波信号相位相差180度;
所述第二差分电路,与所述载波放大器和所述第二移相网络相连,被配置为,对所述放大载波信号和所述第二移相信号进行转换合成,生成所述目标放大信号。
优选地,所述多尔蒂功率放大器包括1个载波放大器和N个峰值放大器;
所述电压型多尔蒂功率放大器中的组合电路包括N个第二移相网络和N个第二差分电路;
第1个所述第二移相网络与第1个所述峰值放大器相连,被配置为对第1个所述峰值放大器输出的所述放大峰值信号进行移相处理,输出第1个第二移相信号,以使第1个第二移相信号和第1个所述载波放大器输出的放大载波信号相位相差180度;
第1个所述第二差分电路的输入端与第1个所述载波放大器和第1个所述第二移相网络相连,被配置为对所述载波放大器输出的放大载波信号和第1个第二移相信号进行转换合成,生成第1个差分合成信号;
第i个所述第二移相网络与第i个所述峰值放大器相连,被配置为对第i个所述峰值放大器输出的所述放大峰值信号进行移相处理,输出第i个第二移相信号,以使第i个第二移相信号与第i-1个所述差分合成信号相位相差180度;
第i个所述第二差分电路的输入端与第i-1个所述第二差分电路和第i个所述第二移相网络相连,被配置为对第i-1个所述差分合成信号和第i个第二移相信号进行转换合成,生成第i个差分合成信号;
其中,N≥2,2≤i≤N,第N个所述差分合成信号为所述目标放大信号。
优选地,所述第二差分电路为第二巴伦。
本申请实施例提供一种射频前端模组,包括上述射频放大电路。
本申请实施例提供一种电子设备,包括上述射频放大电路,或者包括上述射频前端模组。
上述射频放大电路和射频前端模组,采用第一耦合器对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;再采用特性相同的两个多尔蒂功率放大器对第一射频信号和第二射频信号进行放大处理,以保证生成的第一放大信号和第二放大信号的增益平坦度和线性度;最后,再采用第二耦合器对相位相差90度的第一放大信号和第二放大信号进行耦合处理,生成输出射频信号,利用耦合器的相位特性,使得特性相同的两个多尔蒂功率放大器的反射信号在第二耦合器的输入端被吸收,以避免阻抗失配对射频放大电路造成影响,达到更好的阻抗匹配目的,进而提高射频放大电路的稳定性和耐受性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中射频放大电路的一电路示意图;
图2是本申请一实施例中射频放大电路的另一电路示意图;
图3是本申请一实施例中射频放大电路的另一电路示意图;
图4是本申请一实施例中射频放大电路的另一电路示意图;
图5是本申请一实施例中射频放大电路的另一电路示意图;
图6是本申请一实施例中多尔蒂功率放大器的一电路示意图;
图7是本申请一实施例中多尔蒂功率放大器的另一电路示意图;
图8是本申请一实施例中多尔蒂功率放大器的另一电路示意图;
图9是本申请一实施例中多尔蒂功率放大器的另一电路示意图;
图10是本申请一实施例中多尔蒂功率放大器的另一电路示意图;
图11是本申请一实施例中多尔蒂功率放大器的另一电路示意图。
图中:1、第一耦合器;2、第二耦合器;3、第一多尔蒂功率放大器;4、第二多尔蒂功率放大器;5、信号分离器;51、第三耦合器;52、第四耦合器;53、功率分配器;54、第一差分电路;61、载波放大器;62、峰值放大器;63、组合电路;631、第一移相网络;632、第二移相网络;633、第二差分电路;U1、第二巴伦。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在…上”、“与…相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在…上”、“与…直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在…下”、“在…下面”、“下面的”、“在…之下”、“在…之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在…下面”和“在…下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构及步骤,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
本申请实施例提供一种射频放大电路,如图1所示,射频放大电路包括第一耦合器1、第二耦合器2、第一多尔蒂功率放大器3和第二多尔蒂功率放大器4,第一多尔蒂功率放大器3和第二多尔蒂功率放大器4特性相同;第一耦合器1,被配置为,对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;第一多尔蒂功率放 大器3的输入端与第一耦合器1的第一输出端相连,被配置为,对第一射频信号进行放大处理,生成第一放大信号;第二多尔蒂功率放大器4的输入端与第一耦合器1的第二输出端相连,被配置为,对第二射频信号进行放大处理,生成第二放大信号,第一放大信号和第二放大信号相位相差90度;第二耦合器2的第一输入端与第一多尔蒂功率放大器3的输出端相连,第二耦合器2的第二输入端与第二多尔蒂功率放大器4的输出端相连,被配置为,对第一放大信号和第二放大信号进行耦合处理,生成输出射频信号。
其中,第一耦合器1和第二耦合器2是用于实现信号耦合处理的器件。第一多尔蒂功率放大器3和第二多尔蒂功率放大器4是用于实现信号放大处理的多尔蒂功率放大器。多尔蒂功率放大器包括载波放大器61和峰值放大器62,在其输出功率处于较低功率水平时,仅采用载波放大器61进行放大,在其输出功率处于较高功率水平(如达到载波放大器61的峰值饱和点后),采用载波放大器61和峰值放大器62一起进行放大处理,以保证电路的增益平坦度和线性度。本示例中,在第一耦合器1和第二耦合器2之间并联设置特性相同的第一多尔蒂功率放大器3和第二多尔蒂功率放大器4,使其形成的射频放大电路符合平衡放大器的特性,可使两个多尔蒂功率放大器的反射信号被第二耦合器2的输入端被吸收,提高两个尔蒂功率放大器的稳定性以及保证射频放大电路的输入匹配和/或输出匹配。
作为一示例,第一耦合器1与信号输入端相连,可对信号输入端传输的输入射频信号进行耦合处理,形成相位相差90度的第一射频信号和第二射频信号。第一多尔蒂功率放大器3的输入端与第一耦合器1的第一输出端相连,可接收第一耦合器1输出的第一射频信号,在第一射频信号处于较低功率水平时,采用载波放大器61进行放大处理,在第一射频信号处于较高功率水平时,采用载波放大器61和峰值放大器62同时进行放大处理,以生成第一放大信号,从而保证第一放大信号的增益平坦度和线性度。第二多尔蒂功率放大器4的输入端与第一耦合器1的第二输出端相连,可接收第一耦合器1输出的第二射频信号,在第二射频信号处于较低功率水平时,采用载波放大器61进行放大处理,在第二射频信号处于较高功率水平时,采用载波放大器61和峰值放大器62同时进行放大处理,以生成第二放大信号,从而保证第二放大信号的增益平坦度和线性度。由于第一射频信号和第二射频信号相位相差90度,采用第一多尔蒂功率放大器3和第二多尔蒂功率放大器4,分别对第一射频信号和第二射频信号进行放大处理,使得所生成的第一放大信号和第二放大信号相位相差90度。第二耦合器2的第一输入端与第一多尔蒂功率放大器3的输出端相连,第二耦合器2的第二输入端与第二多尔蒂功率放大器4的输出端相连,可对相位相差90度的第一放大信号和第二放大信号进行耦合处理,生成输出射频信号。本示例中,第二耦合器2可将第一多尔蒂功率放大器3输出的第一放大信号和第二多尔蒂功率放大器4输出的第二放大信号重新耦合在一起,由于耦合器的相位特性,使得来自第一多尔蒂功率放大器3和第二多尔蒂功率放大器4的反射信号在第二耦合器2的输入端被吸收,提高各多尔蒂功率放大器的稳定性以及保证射频放大电路的输入匹配和/或输出匹配,以避免阻抗失配对射频放大电路造成影响,达到更好的阻抗匹配目的,进而提高射频放大电路的稳定性和耐受性。
本实施例所提供的射频放大电路中,采用第一耦合器1对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;再采用两个多尔蒂功率放大器对第一射频信号和第二射频信号进行放大处理,以保证生成的第一放大信号和第二放大信号的增益平坦度和线性度;最后,再采用第二耦合器2对相位相差90度的第一放大信号和第二放大信号进行耦合处理,生成输出射频信号,利用耦合器的相位特性,使得两个多尔蒂功率放大器的反射信号在第二耦合器2的输入端被吸收,以避免阻抗失配对射频放大电路造成影响,达到更好的阻抗匹配目的,进而提高射频放大电路的稳定性和耐受性。
在一实施例中,如图2所示,射频放大电路还包括信号分离器5,信号分离器5与第一耦合器1相连,被配置为,对第一射频信号和第二射频信号进行信号分离,生成第一载 波信号、第一峰值信号、第二载波信号和第二峰值信号;第一多尔蒂功率放大器3,与信号分离器5相连,被配置为,对相位相差90度的第一载波信号和第一峰值信号进行放大处理,生成第一放大信号;第二多尔蒂功率放大器4,与信号分离器5相连,被配置为,对相位相差90度的第二载波信号和第二峰值信号进行放大处理,生成第二放大信号。
作为一示例,射频放大电路还包括信号分离器5,该信号分离器5与第一耦合器1的第一输出端和第二输出端相连,可对第一耦合器1输出的相位相差90度的第一射频信号和第二射频信号进行信号分离处理,生成四个射频信号,四个射频信号中包括一组相位相差90度的第一载波信号和第一峰值信号,和另一组相位相差90度的第二载波信号和第二峰值信号。
作为一示例,第一多尔蒂功率放大器3与信号分离器5的第一输出端和第二输出端相连,可接收信号分离器5输出的相位相差90度的第一载波信号和第一峰值信号,在输出功率处于较低功率水平时,采用载波放大器61对第一载波信号进行放大处理,在输出功率处于较高功率水平时,采用载波放大器61对第一载波信号进行放大处理并采用峰值放大器62对第一峰值信号进行放大处理,以生成第一放大信号,从而保证第一放大信号的增益平坦度和线性度。
作为一示例,第二多尔蒂功率放大器4与信号分离器5的第三输出端和第四输出端相连,可接收信号分离器5输出的相位相差90度的第二载波信号和第二峰值信号,在输出功率处于较低功率水平时,采用载波放大器61对第二载波信号进行放大处理,在输出功率处于较高功率水平时,采用载波放大器61对第二载波信号进行放大处理并采用峰值放大器62对第二峰值信号进行放大处理,以生成第二放大信号,从而保证第二放大信号的增益平坦度和线性度。
在一实施例中,如图3所示,信号分离器5包括第三耦合器51和第四耦合器52;第三耦合器51,与第一耦合器1相连,被配置为,对第一射频信号进行耦合处理,生成相位相差90度的第一载波信号和第一峰值信号;第四耦合器52,与第二耦合器2相连,被配置为,对第二射频信号进行耦合处理,生成相位相差90度的第二载波信号和第二峰值信号。
其中,第三耦合器51和第四耦合器52是用于实现信号耦合处理的器件,可对一路信号进行差分处理,形成相位相差90度的两路信号。
作为一示例,如图3所示,第一耦合器1对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号。第三耦合器51的输入端与第一耦合器1的第一输出端相连,对第一耦合器1输出的第一射频信号进行耦合处理,生成相位相差90度的第一载波信号和第一峰值信号,以便后续采用多尔蒂功率放大器进行放大处理。相应地,第四耦合器52的输入端与第一耦合器1的第一输出端相连,对第一耦合器1输出的第二射频信号进行耦合处理,生成相位相差90度的第二载波信号和第二峰值信号,以便后续采用多尔蒂功率放大器进行放大处理。例如,第一耦合器1生成的相位相差90度的第一射频信号和第二射频信号中,第一射频信号的相位为90度,第二射频信号的相位为0度;第三耦合器51对相位为90度的第一射频信号进行耦合处理,生成的第一载波信号的相位为90度,第一峰值信号的相位为180度,两者相位相差90度;第四耦合器52对相位为0度的第二射频信号进行耦合处理,生成的第二载波信号的相位为0度,第二峰值信号的相位为-90度,两者相位相差90度。
本示例中,第三耦合器51的第一输出端与第一多尔蒂功率放大器3的第一输入端相连,第三耦合器51的第二输出端与第一多尔蒂功率放大器3的第二输入端相连,向第一多尔蒂功率放大器3输出相位相差90度的第一载波信号和第一峰值信号,以使第一多尔蒂功率放大器3对第一载波信号和第一峰值信号进行耦合处理,生成第一放大信号,以保证第一放大信号的增益平坦度和线性度。相应地,第四耦合器52的第一输出端与第二多 尔蒂功率放大器4的第一输入端相连,第四耦合器52的第二输出端与第二多尔蒂功率放大器4的第二输入端相连,向第二多尔蒂功率放大器4输出相位相差90度的第二载波信号和第二峰值信号,以使第二多尔蒂功率放大器4对第二载波信号和第二峰值信号进行耦合处理,生成第二放大信号,以保证第二放大信号的增益平坦度和线性度。
在一实施例中,如图4所示,信号分离器5包括功率分配器53和第一差分电路54;功率分配器53,与第一耦合器1相连,被配置为,对第一射频信号进行功率分配,生成相位相差0度的第一载波信号和第二载波信号;第一差分电路54,与第二耦合器2相连,被配置为,对第二射频信号进行差分处理,生成相位相差180度的第一峰值信号和第二峰值信号。
其中,功率分配器53是用于实现功率分配处理的器件,可对一路信号进行功率分配,形成相位相同的两路信号。第一差分电路54是用于实现对信号进行差分处理,可对一路信号进行差分处理,形成相位相差180度的两路信号。
作为一示例,如图4所示,第一耦合器1对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号。功率分配器53的输入端与第一耦合器1的第一输出端相连,对第一耦合器1输出的第一射频信号进行功率分配,生成相位相差0度的第一载波信号和第二载波信号,以便后续采用多尔蒂功率放大器进行放大处理。相应地,第一差分电路54的输入端与第一耦合器1的第一输出端相连,对第一耦合器1输出的第二射频信号进行差分处理,生成相位相差180度的第二峰值信号和第二峰值信号,以便后续采用多尔蒂功率放大器进行放大处理。例如,第一耦合器1生成的相位相差90度的第一射频信号和第二射频信号中,第一射频信号的相位为90度,第二射频信号的相位为0度;功率分配器53对相位为90度的第一射频信号进行功率分配,生成的第一载波信号的相位为90度,第二载波信号的相位为90度,两者相位相差0度;第一差分电路54对相位为0度的第二射频信号进行差分处理,生成的第一峰值信号的相位为0度,第二峰值信号的相位为180度,两者相位相差180度。
本示例中,功率分配器53的第一输出端与第一多尔蒂功率放大器3的第一输入端相连,第一差分电路54的第一输出端与第一多尔蒂功率放大器3的第二输入端相连,向第一多尔蒂功率放大器3输出相位相差90度的第一载波信号(90度)和第一峰值信号(0度),以使第一多尔蒂功率放大器3对第一载波信号和第一峰值信号进行放大处理,生成第一放大信号,以保证第一放大信号的增益平坦度和线性度。相应地,功率分配器53的第二输出端与第二多尔蒂功率放大器4的第一输入端相连,第一差分电路54的第二输出端与第二多尔蒂功率放大器4的第二输入端相连,向第二多尔蒂功率放大器4输出相位相差90度的第二载波信号(90度)和第二峰值信号(180度),以使第二多尔蒂功率放大器4对第二载波信号和第二峰值信号进行放大处理,生成第二放大信号,以保证第二放大信号的增益平坦度和线性度。
在一实施例中,第一差分电路54为第一巴伦,第一巴伦的输入端与信号分离器5相连,两个输出端分别与第一多尔蒂功率放大器3和第二多尔蒂功率放大器4相连,对信号分离器5输出的第二射频信号进行差分处理,生成相位相差180度的两个射频信号。采用第一巴伦作为第一差分电路54,具有结构简单和成本低的特点。
在一实施例中,如图5所示,信号分离器5包括功率分配器53和第一差分电路54;功率分配器53,与第一耦合器1相连,被配置为,对第一射频信号进行功率分配,生成相位相差0度的第一峰值信号和第二峰值信号;第一差分电路54,与第二耦合器2相连,被配置为,对第二射频信号进行差分处理,生成相位相差180度的第一载波信号和第二载波信号。
作为一示例,如图5所示,第一耦合器1对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号。功率分配器53的输入端与第一耦合器1的第一 输出端相连,对第一耦合器1输出的第一射频信号进行功率分配,生成相位相差0度的第一峰值信号和第二峰值信号,以便后续采用多尔蒂功率放大器进行放大处理。相应地,第一差分电路54的输入端与第一耦合器1的第一输出端相连,对第一耦合器1输出的第二射频信号进行差分处理,生成相位相差180度的第一载波信号和第二载波信号,以便后续采用多尔蒂功率放大器进行放大处理。例如,第一耦合器1生成的相位相差90度的第一射频信号和第二射频信号中,第一射频信号的相位为0度,第二射频信号的相位为90度;功率分配器53对相位为0度的第一射频信号进行功率分配,生成的第一峰值信号的相位为0度,第二峰值信号的相位为0度,两者相位相差0度;第一差分电路54对相位为90度的第二射频信号进行差分处理,生成的第一载波信号的相位为90度,第二载波信号的相位为-90度,两者相位相差180度。
本示例中,功率分配器53的第一输出端与第一多尔蒂功率放大器3的第一输入端相连,第一差分电路54的第一输出端与第一多尔蒂功率放大器3的第二输入端相连,向第一多尔蒂功率放大器3输出相位相差90度的第一载波信号(90度)和第一峰值信号(0度),以使第一多尔蒂功率放大器3对第一载波信号和第一峰值信号进行放大处理,生成第一放大信号,以保证第一放大信号的增益平坦度和线性度。相应地,功率分配器53的第二输出端与第二多尔蒂功率放大器4的第一输入端相连,第一差分电路54的第二输出端与第二多尔蒂功率放大器4的第二输入端相连,向第二多尔蒂功率放大器4输出相位相差90度的第二载波信号(-90度)和第二峰值信号(0度),以使第二多尔蒂功率放大器4对第二载波信号和第二峰值信号进行放大处理,生成第二放大信号,以保证第二放大信号的增益平坦度和线性度。
在一实施例中,如图6所示,第一多尔蒂功率放大器3和第二多尔蒂功率放大器4,均包括载波放大器61、峰值放大器62和组合电路63;载波放大器61,与信号分离器5相连,被配置为,对原始载波信号进行放大处理,生成放大载波信号;峰值放大器62,与信号分离器5相连,被配置为,对原始峰值信号进行放大处理,生成放大峰值信号;组合电路63,与载波放大器61的输出端和峰值放大器62的输出端相连,被配置为,对放大载波信号和放大峰值信号进行组合处理,生成目标放大信号;原始载波信号为第一载波信号,原始峰值信号为第一峰值信号,目标放大信号为第一放大信号;或者,原始载波信号为第二载波信号,原始峰值信号为第二峰值信号,目标放大信号为第二放大信号。
其中,原始载波信号是指多尔蒂功率放大器接收到的载波信号。原始峰值信号是多尔蒂功率放大器接收到的峰值信号。目标放大信号是多尔蒂功率放大器输出的放大信号。作为一示例,在第一多尔蒂功率放大器3中,原始载波信号为第一载波信号,原始峰值信号为第一峰值信号,目标放大信号为第一放大信号;在第二多尔蒂功率放大器4中,原始载波信号为第二载波信号,原始峰值信号为第二峰值信号,目标放大信号为第二放大信号。
作为一示例,信号分离器5的输入端耦合至第一耦合器1,信号分离器5的两个输出端,分别与载波放大器61和峰值放大器62相连,向载波放大器61输出原始载波信号并向峰值放大器62输出原始峰值信号。在第一多尔蒂功率放大器3中,原始载波信号为第一载波信号,原始峰值信号为第一峰值信号;在第二多尔蒂功率放大器4中,原始载波信号为第二载波信号。
作为一示例,载波放大器61的输入端耦合至信号分离器5的一输出端,可对信号分离器5输出的原始载波信号进行放大处理,生成放大载波信号。该放大载波信号是原始载波信号进行放大后的射频信号。
作为一示例,峰值放大器62的输入端耦合至信号分离器5的另一输出端,在载波放大器61的输出功率达到饱和功率时,峰值放大器62开始工作,对信号分离器5输出的原始峰值信号进行放大处理,生成放大峰值信号。该放大峰值信号是原始峰值信号进行放大后的射频信号。
本示例中,在载波放大器61的输出功率较小时,只有载波放大器61工作,在载波放大器61的输出功率达到峰值饱和区间时,峰值放大器62和载波放大器61一起工作,由于原始载波信号和原始峰值信号是相位相差90度的射频信号,在载波放大器61和峰值放大器62,分别对原始载波信号和原始峰值信号进行放大处理后,其所形成的放大载波信号和放大峰值信号也为相位相差90度的射频信号。
作为一示例,组合电路63的两个输入端,分别耦合至载波放大器61的输出端和峰值放大器62的输出端,可对载波放大器61输出的放大载波信号和峰值放大器62输出的放大峰值信号进行组合处理,以生成目标放大信号。在第一多尔蒂功率放大器3中,目标放大信号为第一放大信号;在第二多尔蒂功率放大器4中,目标放大信号为第二放大信号。
在一实施例中,第一多尔蒂功率放大器3为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器中的任一个;第二多尔蒂功率放大器4为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器中的任一个。
其中,电流型多尔蒂功率放大器是指组合电路63对放大载波信号和/或放大峰值信号进行移相后,两个信号相位相同的多尔蒂功率放大器。作为一示例,电流型多尔蒂功率放大器中的组合电路63,被配置为与载波放大器61和峰值放大器62相连,可对载波放大器61输出的放大载波信号和/或峰值放大器62输出的放大峰值信号进行移相处理,使得移相后的放大载波信号和放大峰值信号相位相同,可直接进行电流叠加,生成目标放大信号。
其中,电压型多尔蒂功率放大器是指组合电路63对放大载波信号和/或放大峰值信号进行移相后,两个信号相位不同,需进行差分转换合成的多尔蒂功率放大器。作为一示例,电压型多尔蒂功率放大器中的组合电路63,被配置为与载波放大器61和峰值放大器62相连,可对载波放大器61输出的放大载波信号和/或峰值放大器62输出的放大峰值信号进行移相处理,使得移相后的放大载波信号和放大峰值信号相位不同,需要在两个输出端之间额外设置第二差分电路633进行差分转换合成,生成目标放大信号。
作为一示例,第一多尔蒂功率放大器3和第二多尔蒂功率放大器4可以同时为电流型多尔蒂功率放大器,也可以同时为电压型多尔蒂功率放大器,还可以分别为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器,可根据实际需求自主设置。
在一实施例中,如图7所示,电流型多尔蒂功率放大器中的组合电路63包括第一移相网络631;第一移相网络631,与载波放大器61相连,被配置为对放大载波信号进行移相处理,输出第一移相信号,以使第一移相信号与放大峰值信号相位相同;第一移相网络631的输出端和载波放大器61的输出端相连,形成信号组合节点,用于生成目标放大信号。
其中,第一移相网络631是设置在电流型多尔蒂功率放大器中用于实现相位转移的网络。该第一移相网络631可以采用但不限于电容和电感这些元件,串联和/或并联形成的可实现移相功能的网络。
作为一示例,电流型多尔蒂功率放大器中的组合电路63为第一移相网络631,该第一移相网络631的输入端耦合至载波放大器61的输出端,用于对载波放大器61输出的放大载波信号进行移相处理,输出第一移相信号,使得第一移相信号与放大载波信号相位相差90度,而第一移相信号与放大峰值信号相位相同。本示例中,第一移相网络631的输出端耦合至载波放大器61的输出端,形成信号组合节点,对第一移相信号和放大峰值信号进行处理,生成目标放大信号。可理解地,由于第一移相信号和放大峰值信号相位相同,使得第一移相信号和放大峰值信号可直接进行电流叠加,生成目标放大信号。
在一实施例中,如图8所示,多尔蒂功率放大器包括1个载波放大器61和N个峰值放大器621/622/62n;电流型多尔蒂功率放大器中的组合电路63包括N个第一移相网络6311/6312/631n;第1个第一移相网络6311的输入端与载波放大器61相连,第1个第一移相网络6311的输出端和第1个峰值放大器62的输出端相连,形成第1个信号组合节点,被配置为对载波放大器61输出的放大载波信号进行移相处理,生成第1个第一移相信号, 使第1个第一移相信号与第1个峰值放大器62输出的放大峰值信号相位相同,以使第1个信号组合节点生成第1个第一组合信号;第i个第一移相网络6312/631n的输入端与第i-1个信号组合节点相连,第i个第一移相网络6312/631n的输出端和第i个峰值放大器622/62n的输出端相连,形成第i个信号组合节点,被配置为对第i-1个信号组合节点输出的第一组合信号进行移相处理,生成第i个第一移相信号,使第i个第一移相信号与第i个峰值放大器622/62n输出的放大峰值信号相位相同,以使第i个信号组合节点生成第i个第一组合信号;其中,N≥2,2≤i≤N,第N个第一组合信号为目标放大信号。
作为一示例,多尔蒂功率放大器包括1个载波放大器61和N个峰值放大器621/622/62n,N≥2,相应地,电流型多尔蒂功率放大器中的组合电路63包括N个第一移相网络6311/6312/631n。本示例中,信号分离器5的输出端耦合至1个载波放大器61的输入端和N个峰值放大器621/622/62n的输入端,对输入射频信号进行信号分离,形成1个原始载波信号和N个原始峰值信号,1个原始载波信号和N个原始峰值信号相位不同。例如,在多尔蒂功率放大器中设有3个峰值放大器62时,原始载波信号和第1个原始峰值信号的相位相差30度,原始载波信号和第2个原始峰值信号的相位相差60度,原始载波信号和第3个原始峰值信号的相位相差90度,设原始载波信号的相位为0度,由3个原始峰值信号的相位依次为30度、60度和90度。
第1个第一移相网络6311的输入端耦合至载波放大器61的输出端,第1个第一移相网络6311的输出端耦合至第1个峰值放大器621的输出端,形成第1个信号组合节点,被配置为对载波放大器61输出的放大载波信号进行移相处理,生成第1个第一移相信号,使第1个第一移相信号与第1个峰值放大器621输出的放大峰值信号相位相同,以使第1个信号组合节点对第一移相信号和第1个放大峰值信号进行电流叠加,生成第1个第一组合信号。
第i个第一移相网络6312/631n的输入端耦合至第i-1个信号组合节点,第i个第一移相网络6312/631n的输出端耦合至第i个峰值放大器622/62n的输出端,形成第i个信号组合节点,被配置为对第i-1个信号组合节点输出的第一组合信号进行移相处理,生成第i个第一移相信号,使第i个第一移相信号与第i个峰值放大器622/62n输出的放大峰值信号相位相同,以使第i个信号组合节点对第i个第一移相信号和第i个放大峰值信号进行电流叠加,生成第i个第一组合信号,在第i个信号组合节点为最后一个信号组合节点时,其生成的第i个第一组合信号为电流型多尔蒂功率放大器的目标放大信号。
可理解地,信号分离器5将输入射频信号分离形成1个原始载波信号和N个原始峰值信号,分别输出至1个载波放大器61和N个峰值放大器621/622/62n中;载波放大器61对原始载波信号进行放大,输出放大载波信号;N个峰值放大器621/622/62n分别对N个原始峰值信号进行放大,分别输出N个放大峰值信号;再采用N个第一移相网络6311/6312/631n进行移相处理,形成N个第一移相信号,通过对N个第一移相信号和N个放大峰值信号进行组合,生成目标放大信号,使得目标放大信号经过更多次放大组合,其性能更好。
在一实施例中,如图9所示,电压型多尔蒂功率放大器中的组合电路63包括第二移相网络632和第二差分电路633;第二移相网络632,与峰值放大器62相连,被配置为,对放大峰值信号进行移相处理,输出第二移相信号,以使第二移相信号和放大载波信号相位相差180度;第二差分电路633,与载波放大器61和第二移相网络632相连,被配置为,对放大载波信号和第二移相信号进行转换合成,生成目标放大信号。
其中,第二移相网络632是设置在电压型多尔蒂功率放大器中用于实现相位转移的网络。该第二移相网络632可以采用但不限于电容和电感这些元件,串联和/或并联形成的可实现移相功能的网络。第二差分电路633是设置在电压型多尔蒂功率放大器的组合电路63中用于实现对两路信号进行差分处理,形成一路信号输出的电路。
作为一示例,电压型多尔蒂功率放大器中的组合电路63包括第二移相网络632和第二差分电路633。第二移相网络632的输入端耦合至峰值放大器62的输出端,用于对峰值放大器62输出的放大峰值信号进行移相处理,输出第二移相信号,使得第二移相信号与放大峰值信号相位相差90度,而第二移相信号和放大载波信号相位相差180度。本示例中,第二差分电路633的两个输入端分别耦合至载波放大器61的输出端和第二移相网络632的输出端,第二差分电路633的一输出端为电压型多尔蒂功率放大器的信号输出端RFOUT,用于对相位相差180度的放大载波信号和第二移相信号进行差分处理,生成目标放大信号。
在一实施例中,如图10所示,多尔蒂功率放大器包括1个载波放大器61和N个峰值放大器621/622/62n;电压型多尔蒂功率放大器中的组合电路63包括N个第二移相网络6321/6322/632n和N个第二差分电路6331/6332/633n;第1个第二移相网络6321与第1个峰值放大器62相连,被配置为对第1个峰值放大器62输出的放大峰值信号进行移相处理,输出第1个第二移相信号,以使第1个第二移相信号和第1个载波放大器61输出的放大载波信号相位相差180度;第1个第二差分电路633的输入端与第1个载波放大器61和第1个第二移相网络6321相连,被配置为对载波放大器61输出的放大载波信号和第1个第二移相信号进行转换合成,生成第1个差分合成信号;第i个第二移相网络6322/632n与第i个峰值放大器622/62n相连,被配置为对第i个峰值放大器622/62n输出的放大峰值信号进行移相处理,输出第i个第二移相信号,以使第i个第二移相信号与第i-1个差分合成信号相位相差180度;第i个第二差分电路633的输入端与第i-1个第二差分电路633和第i个第二移相网络6322/632n相连,被配置为对第i-1个差分合成信号和第i个第二移相信号进行转换合成,生成第i个差分合成信号;其中,N≥2,2≤i≤N,第N个差分合成信号为目标放大信号。
作为一示例,多尔蒂功率放大器包括1个载波放大器61和N个峰值放大器621/622/62n,N≥2,相应地,电压型多尔蒂功率放大器中的组合电路63包括N个第一移相网络6311/6312/631n。本示例中,信号分离器5的输出端耦合至1个载波放大器61的输入端和N个峰值放大器621/622/62n的输入端,对输入射频信号进行信号分离,形成1个原始载波信号和N个原始峰值信号,1个原始载波信号和N个原始峰值信号相位不同。例如,在多尔蒂功率放大器中设有3个峰值放大器62时,原始载波信号和第1个原始峰值信号的相位相差30度,原始载波信号和第2个原始峰值信号的相位相差60度,原始载波信号和第3个原始峰值信号的相位相差90度,设原始载波信号的相位为0度,由3个原始峰值信号的相位依次为30度、60度和90度。
第1个第二移相网络6321的输入端耦合至第1个峰值放大器621的输出端,被配置为对第1个峰值放大器621输出的第1个放大峰值信号进行移相处理,输出第1个第二移相信号,以使第1个第二移相信号和载波放大器61输出的放大载波信号相位相差180度。第1个第二差分电路6331的两个输入端分别耦合至载波放大器61的输出端和第1个第二移相网络6321的输出端,被配置为对载波放大器61输出的放大载波信号和第1个第二移相信号这两个相位相差180度的信号进行转换合成,生成第1个差分合成信号。
第i个第二移相网络6322/632n的输入端耦合至第i个峰值放大器622/62n的输出端,被配置为对第i个峰值放大器622/62n输出的第i个放大峰值信号进行移相处理,输出第i个第二移相信号,以使第i个第二移相信号与第i-1个差分合成信号相位相差180度。第i个第二差分电路6332/632n的两个输入端分别耦合至第i-1个第二差分电路6332/632n的输出端和第i个第二移相网络6322/632n的输出端,被配置为对第i-1个差分合成信号和第i个第二移相信号这两个相位相差180度的信号进行转换合成,生成第i个差分合成信号;其中,第N个差分合成信号为目标放大信号。
可理解地,信号分离器5将输入射频信号分离形成1个原始载波信号和N个原始峰值 信号,分别输出至1个载波放大器61和N个峰值放大器621/622/62n中;载波放大器61对原始载波信号进行放大,输出放大载波信号;N个峰值放大器621/622/62n分别对N个原始峰值信号进行放大,分别输出N个放大峰值信号;再采用N个第二移相网络6321/6322/632n进行移相处理,形成N个第二移相信号,通过对1个放大载波信号和N个第二移相信号进行转换合成,生成目标放大信号,使得目标放大信号经过更多次放大组合,其性能更好。
在一实施例中,第二差分电路633为第二巴伦U1。
作为一示例,在电压型多尔蒂功率放大器中,其组合电路63包括第二移相网络632和第二差分电路633,此处的第二差分电路633可设置为第二巴伦U1。也就是说,信号分离器5对输入射频信号进行分离,向载波放大器61和峰值放大器62分别输出原始载波信号和原始峰值信号;第二移相网络632的输入端耦合至峰值放大器62的输出端,对峰值放大器62输出的放大峰值信号进行移相处理,输出第二移相信号,以使第二移相信号和载波放大器61输出的放大载波信号的相位相差180度;第二巴伦U1的两个输入端分别耦合至第二移相网络632的输出端和载波放大器61的输出端,对相位相差180度的第二移相信号和放大载波信号进行处理,生成目标放大信号。可理解地,采用第二巴伦U1作为第二差分电路633,对相位相差180度的放大载波信号和第二移相信号进行差分处理,生成目标放大信号,具有结构简单和成本低的特点。
在一实施例中,提供一种射频前端模组,包括上述实施例中的射频放大电路。
本实施例提供一种射频前端模组,该射频前端模组可以为4G网络模组、6G网络模组、6G网络模组或者其他网络模组,该射频前端模组包括上述实施例中的射频放大电路,该射频放大电路采用第一耦合器1对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;再采用两个多尔蒂功率放大器对第一射频信号和第二射频信号进行放大处理,以保证生成的第一放大信号和第二放大信号的增益平坦度和线性度;最后,再采用第二耦合器2对相位相差90度的第一放大信号和第二放大信号进行耦合处理,生成输出射频信号,利用耦合器的相位特性,使得两个多尔蒂功率放大器的反射在第二耦合器2的输入端被吸收,以使两个多尔蒂功率放大器可以工作在增益平坦的最优状态,且可兼顾阻抗匹配,保证电路稳定性。
在一实施例中,提供一种电子设备,包括上述实施例中的射频放大电路,或者包括上述实施例中的射频前端模组。
本实施例提供一种电子设备,包括上述实施例中的射频放大电路,或者包括上述实施例中的射频前端模组,该射频前端模组包括上述实施例中的射频放大电路。该射频放大电路采用第一耦合器1对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;再采用两个多尔蒂功率放大器对第一射频信号和第二射频信号进行放大处理,以保证生成的第一放大信号和第二放大信号的增益平坦度和线性度;最后,再采用第二耦合器2对相位相差90度的第一放大信号和第二放大信号进行耦合处理,生成输出射频信号,利用耦合器的相位特性,使得两个多尔蒂功率放大器的反射在第二耦合器2的输入端被吸收,以使两个多尔蒂功率放大器可以工作在增益平坦的最优状态,且可兼顾阻抗匹配,保证电路稳定性。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (13)

  1. 一种射频放大电路,其中,包括第一耦合器、第二耦合器、第一多尔蒂功率放大器和第二多尔蒂功率放大器,所述第一多尔蒂功率放大器和所述第二多尔蒂功率放大器特性相同;
    所述第一耦合器,被配置为,对输入射频信号进行耦合处理,生成相位相差90度的第一射频信号和第二射频信号;
    所述第一多尔蒂功率放大器的输入端与所述第一耦合器的第一输出端相连,被配置为,对所述第一射频信号进行放大处理,生成第一放大信号;
    所述第二多尔蒂功率放大器的输入端与所述第一耦合器的第二输出端相连,被配置为,对所述第二射频信号进行放大处理,生成第二放大信号,所述第一放大信号和所述第二放大信号相位相差90度;
    所述第二耦合器的第一输入端与所述第一多尔蒂功率放大器的输出端相连,所述第二耦合器的第二输入端与所述第二多尔蒂功率放大器的输出端相连,被配置为,对所述第一放大信号和所述第二放大信号进行耦合处理,生成输出射频信号。
  2. 如权利要求1所述的射频放大电路,其中,所述射频放大电路还包括信号分离器,所述信号分离器与所述第一耦合器相连,被配置为,对所述第一射频信号和所述第二射频信号进行信号分离,生成第一载波信号、第一峰值信号、第二载波信号和第二峰值信号;
    所述第一多尔蒂功率放大器,与所述信号分离器相连,被配置为,对相位相差90度的所述第一载波信号和所述第一峰值信号进行放大处理,生成第一放大信号;
    所述第二多尔蒂功率放大器,与所述信号分离器相连,被配置为,对相位相差90度的所述第二载波信号和所述第二峰值信号进行放大处理,生成第二放大信号。
  3. 如权利要求2所述的射频放大电路,其中,所述信号分离器包括第三耦合器和第四耦合器;
    所述第三耦合器,与所述第一耦合器相连,被配置为,对所述第一射频信号进行耦合处理,生成相位相差90度的第一载波信号和第一峰值信号;
    所述第四耦合器,与所述第二耦合器相连,被配置为,对所述第二射频信号进行耦合处理,生成相位相差90度的第二载波信号和第二峰值信号。
  4. 如权利要求2所述的射频放大电路,其中,所述信号分离器包括功率分配器和第一差分电路;
    所述功率分配器,与所述第一耦合器相连,被配置为,对所述第一射频信号进行功率分配,生成相位相差0度的第一载波信号和第二载波信号;
    所述第一差分电路,与所述第二耦合器相连,被配置为,对所述第二射频信号进行差分处理,生成相位相差180度的第一峰值信号和第二峰值信号;
    或者,所述功率分配器,与所述第一耦合器相连,被配置为,对所述第一射频信号进行功率分配,生成相位相差0度的第一峰值信号和第二峰值信号;
    所述第一差分电路,与所述第二耦合器相连,被配置为,对所述第二射频信号进行差分处理,生成相位相差180度的第一载波信号和第二载波信号。
  5. 如权利要求4所述的射频放大电路,其中,所述第一差分电路为第一巴伦。
  6. 如权利要求2所述的射频放大电路,其中,所述第一多尔蒂功率放大器和所述第二 多尔蒂功率放大器,均包括载波放大器、峰值放大器和组合电路;
    所述载波放大器,与所述信号分离器相连,被配置为,对原始载波信号进行放大处理,生成放大载波信号;
    所述峰值放大器,与所述信号分离器相连,被配置为,对原始峰值信号进行放大处理,生成放大峰值信号;
    所述组合电路,与所述载波放大器的输出端和所述峰值放大器的输出端相连,被配置为,对所述放大载波信号和所述放大峰值信号进行组合处理,生成目标放大信号;
    所述原始载波信号为第一载波信号,所述原始峰值信号为第一峰值信号,所述目标放大信号为第一放大信号;或者,所述原始载波信号为第二载波信号,所述原始峰值信号为第二峰值信号,所述目标放大信号为第二放大信号。
  7. 如权利要求6所述的射频放大电路,其中,所述第一多尔蒂功率放大器为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器中的任一个;
    所述第二多尔蒂功率放大器为电流型多尔蒂功率放大器和电压型多尔蒂功率放大器中的任一个。
  8. 如权利要求7所述的射频放大电路,其中,
    所述电流型多尔蒂功率放大器中的组合电路包括第一移相网络;
    所述第一移相网络,与所述载波放大器相连,被配置为对所述放大载波信号进行移相处理,输出第一移相信号,以使所述第一移相信号与所述放大峰值信号相位相同;
    所述第一移相网络的输出端和所述载波放大器的输出端相连,形成信号组合节点,用于生成目标放大信号。
  9. 如权利要求7所述的射频放大电路,其中,
    所述多尔蒂功率放大器包括1个载波放大器和N个峰值放大器;
    所述电流型多尔蒂功率放大器中的组合电路包括N个第一移相网络;
    第1个所述第一移相网络的输入端与所述载波放大器相连,第1个所述第一移相网络的输出端和第1个所述峰值放大器的输出端相连,形成第1个信号组合节点,被配置为对所述载波放大器输出的放大载波信号进行移相处理,生成第1个第一移相信号,使第1个所述第一移相信号与第1个所述峰值放大器输出的所述放大峰值信号相位相同,以使第1个信号组合节点生成第1个第一组合信号;
    第i个所述第一移相网络的输入端与第i-1个所述信号组合节点相连,第i个所述第一移相网络的输出端和第i个所述峰值放大器的输出端相连,形成第i个信号组合节点,被配置为对第i-1个所述信号组合节点输出的第一组合信号进行移相处理,生成第i个第一移相信号,使第i个所述第一移相信号与第i个所述峰值放大器输出的所述放大峰值信号相位相同,以使第i个信号组合节点生成第i个第一组合信号;
    其中,N≥2,2≤i≤N,第N个所述第一组合信号为目标放大信号。
  10. 如权利要求7所述的射频放大电路,其中,
    所述电压型多尔蒂功率放大器中的组合电路包括第二移相网络和第二差分电路;
    所述第二移相网络,与所述峰值放大器相连,被配置为,对所述放大峰值信号进行移相处理,输出第二移相信号,以使所述第二移相信号和所述放大载波信号相位相差180度;
    所述第二差分电路,与所述载波放大器和所述第二移相网络相连,被配置为,对所述放大载波信号和所述第二移相信号进行转换合成,生成所述目标放大信号。
  11. 如权利要求7所述的射频放大电路,其中,
    所述多尔蒂功率放大器包括1个载波放大器和N个峰值放大器;
    所述电压型多尔蒂功率放大器中的组合电路包括N个第二移相网络和N个第二差分电路;
    第1个所述第二移相网络与第1个所述峰值放大器相连,被配置为对第1个所述峰值放大器输出的所述放大峰值信号进行移相处理,输出第1个第二移相信号,以使第1个第二移相信号和第1个所述载波放大器输出的放大载波信号相位相差180度;
    第1个所述第二差分电路的输入端与第1个所述载波放大器和第1个所述第二移相网络相连,被配置为对所述载波放大器输出的放大载波信号和第1个第二移相信号进行转换合成,生成第1个差分合成信号;
    第i个所述第二移相网络与第i个所述峰值放大器相连,被配置为对第i个所述峰值放大器输出的所述放大峰值信号进行移相处理,输出第i个第二移相信号,以使第i个第二移相信号与第i-1个所述差分合成信号相位相差180度;
    第i个所述第二差分电路的输入端与第i-1个所述第二差分电路和第i个所述第二移相网络相连,被配置为对第i-1个所述差分合成信号和第i个第二移相信号进行转换合成,生成第i个差分合成信号;
    其中,N≥2,2≤i≤N,第N个所述差分合成信号为所述目标放大信号。
  12. 如权利要求10或11所述的射频放大电路,其中,所述第二差分电路为第二巴伦。
  13. 一种射频前端模组,其中,包括权利要求1-12所述的射频放大电路。
PCT/CN2023/089858 2022-05-11 2023-04-21 射频放大电路和射频前端模组 WO2023216847A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210509090.1A CN114915266B (zh) 2022-05-11 2022-05-11 射频放大电路和射频前端模组
CN202210509090.1 2022-05-11

Publications (1)

Publication Number Publication Date
WO2023216847A1 true WO2023216847A1 (zh) 2023-11-16

Family

ID=82766225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/089858 WO2023216847A1 (zh) 2022-05-11 2023-04-21 射频放大电路和射频前端模组

Country Status (2)

Country Link
CN (1) CN114915266B (zh)
WO (1) WO2023216847A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114915266B (zh) * 2022-05-11 2023-08-11 锐石创芯(深圳)科技股份有限公司 射频放大电路和射频前端模组
CN115940839A (zh) * 2022-12-08 2023-04-07 康希通信科技(上海)有限公司 放大电路、无线通信模块和电子设备
CN115800936B (zh) * 2022-12-08 2023-07-21 康希通信科技(上海)有限公司 放大电路、无线通信模块和电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019084911A1 (en) * 2017-11-03 2019-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Doherty power amplifier and radio frequency device comprising the same
CN111133676A (zh) * 2017-08-23 2020-05-08 顺天乡大学工业学院合作基金会 多尔蒂组合器
CN111510076A (zh) * 2020-05-18 2020-08-07 优镓科技(北京)有限公司 一种class-AB驱动的Doherty功率放大器、基站和移动终端
CN112543002A (zh) * 2020-12-23 2021-03-23 杭州电子科技大学 宽带差分Doherty功率放大器及其设计方法和应用
CN114189215A (zh) * 2021-10-29 2022-03-15 锐石创芯(深圳)科技有限公司 射频功率放大电路及射频前端模组
CN114915266A (zh) * 2022-05-11 2022-08-16 锐石创芯(深圳)科技股份有限公司 射频放大电路和射频前端模组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1104093A1 (en) * 1999-11-24 2001-05-30 Telefonaktiebolaget Lm Ericsson Method and apparatus for generation of a RF signal
CN101534093B (zh) * 2009-04-14 2011-08-10 武汉正维电子技术有限公司 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
CN205509994U (zh) * 2016-04-20 2016-08-24 广东工业大学 一种平衡式的高增益高功率的射频功率放大器
US10629552B2 (en) * 2018-04-30 2020-04-21 Nxp Usa, Inc. Amplifiers and amplifier modules with ground plane height variation structures
CN111756451B (zh) * 2020-06-08 2021-10-01 西安空间无线电技术研究所 一种四通道磷化铟光i/q零中频信道化接收芯片
CN113904627A (zh) * 2021-09-14 2022-01-07 中山大学 基于相位可调的宽回退范围Doherty功率放大器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111133676A (zh) * 2017-08-23 2020-05-08 顺天乡大学工业学院合作基金会 多尔蒂组合器
WO2019084911A1 (en) * 2017-11-03 2019-05-09 Telefonaktiebolaget Lm Ericsson (Publ) Doherty power amplifier and radio frequency device comprising the same
CN111510076A (zh) * 2020-05-18 2020-08-07 优镓科技(北京)有限公司 一种class-AB驱动的Doherty功率放大器、基站和移动终端
CN112543002A (zh) * 2020-12-23 2021-03-23 杭州电子科技大学 宽带差分Doherty功率放大器及其设计方法和应用
CN114189215A (zh) * 2021-10-29 2022-03-15 锐石创芯(深圳)科技有限公司 射频功率放大电路及射频前端模组
CN114915266A (zh) * 2022-05-11 2022-08-16 锐石创芯(深圳)科技股份有限公司 射频放大电路和射频前端模组

Also Published As

Publication number Publication date
CN114915266B (zh) 2023-08-11
CN114915266A (zh) 2022-08-16

Similar Documents

Publication Publication Date Title
WO2023216847A1 (zh) 射频放大电路和射频前端模组
US8912846B2 (en) Doherty amplifier arrangement
US9899962B2 (en) Power amplifier
FI124916B (fi) Piiri Doherty-vahvistimien rinnankäyttöä varten
JP6026062B1 (ja) 負荷変調増幅器
US8290453B2 (en) Power combiner, amplifier, and transmitter
CN106411267B (zh) 一种宽带三路Doherty功率放大器及其实现方法
WO2010118645A1 (zh) 用于移动通信基站系统功率放大器的末级三路功率合成放大电路
CN111566940B (zh) 一种信号处理电路、射频信号发射机和通信设备
US11201592B2 (en) Doherty combiner
CN112543002B (zh) 宽带差分Doherty功率放大器及其设计方法和应用
WO2023216846A1 (zh) 多尔蒂功率放大电路和射频前端模组
CN106411275A (zh) 一种基于新型负载调制网络改善带宽的三路Doherty功率放大器及其实现方法
US20110158136A1 (en) Dual-mode mixer
JP2009165037A (ja) ドハティ増幅回路
JP6200635B2 (ja) 広帯域バラン構体
US20210288616A1 (en) Power amplifier circuit
CN113904628A (zh) 宽带Doherty功率放大器和实现方法
US10483940B2 (en) High-performance conversion between single-ended and differential/common-mode signals
CN115700998B (zh) 多尔蒂功率放大器及射频前端模块
CN110380691A (zh) 一种基于Doherty功放的功率放大电路及装置
Kazan et al. A 5-33 GHz 8-Channel Transmit Beamformer with Peak Power of 14 dBm for X/Ku/Ka-band SATCOM Applications
WO2024188077A1 (zh) 功率放大器芯片、模组、电路、射频前端模组及通信设备
US20230111667A1 (en) Ultra-small size broadband coupler
Floyd High-performance millimeter-wave beamformers with built-in self-test

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802621

Country of ref document: EP

Kind code of ref document: A1