WO2023216772A1 - 极片及制作方法、电极组件及制作方法、电池单体和电池 - Google Patents

极片及制作方法、电极组件及制作方法、电池单体和电池 Download PDF

Info

Publication number
WO2023216772A1
WO2023216772A1 PCT/CN2023/086175 CN2023086175W WO2023216772A1 WO 2023216772 A1 WO2023216772 A1 WO 2023216772A1 CN 2023086175 W CN2023086175 W CN 2023086175W WO 2023216772 A1 WO2023216772 A1 WO 2023216772A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
pole
tabs
battery
tab
Prior art date
Application number
PCT/CN2023/086175
Other languages
English (en)
French (fr)
Inventor
薛庆瑞
李伟
张子格
章羽
赵正元
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2023216772A1 publication Critical patent/WO2023216772A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • This application relates to the field of battery technology, in particular to pole pieces and manufacturing methods, electrode assemblies and manufacturing methods, battery cells and batteries.
  • this application proposes a pole piece, which includes: a pole piece current collector, including a main body and a tab extending from the main body; an active layer, coated on at least one side of the main body; wherein, the tab
  • the thickness h1 is greater than the thickness h2 of the main body.
  • the thickness h1 of the pole tab is designed to be greater than the thickness h2 of the main body part, so that there is a thickness difference between the pole tab and the main body part.
  • the tab includes a body and a filling layer provided on at least one side of the body in the thickness direction.
  • a filling layer is provided on at least one side of the body to actively increase the thickness of the body so that the thickness of the tabs is greater than the thickness of the main body of the current collector, ensuring that the gaps between the wound tabs are filled during the battery manufacturing process.
  • filling layers are provided on opposite sides in the thickness direction of the body. With this design, filling layers are provided on both sides of the body, which can further increase the thickness of the tabs, thereby ensuring that the gaps between the tabs are effectively eliminated after winding.
  • the filler layer is a weldment.
  • the filling layer is designed as a welding part to increase the bonding strength between the filling layer and the body while ensuring the effective thickness of the pole tab, thereby improving the structural stability of the pole piece.
  • the tab further includes a solidified layer, which is provided at least on the side of the welding piece facing away from the body to solidify the surface of the welding piece to prevent protruding particles generated during welding from falling off into the battery and causing damage to the battery. Electricity accidents can further improve the safety performance of batteries.
  • the thickness h1 of the tab is greater than the sum of the thicknesses h3 of the main body part and the active layer. In this way, the thickness of the tab is further designed to be greater than the sum of the thicknesses of the main body and the active layer, so that the gap between the tab and the tab can be eliminated during winding, thereby improving the safety performance of the battery.
  • the present application provides an electrode assembly, including a first pole piece and a second pole piece with opposite polarities, and a separator disposed between the first pole piece and the second pole piece.
  • the first pole piece, The second pole piece and the separator are rolled to form a rolled structure; wherein, the first pole piece and/or the second pole piece are any of the above pole pieces.
  • the above-mentioned electrode assembly uses the above pole piece, and there is no need to flatten the tab. Therefore, there is no need to reserve space for flattening on the pole piece, so that the pole piece can make full use of this space to improve the energy density of the battery; at the same time, , can also effectively avoid the risk of short circuit in the tab insertion that may be caused by the flattening process, further improving the safety performance of the battery.
  • the tabs of the first pole piece and the tabs of the second pole piece are respectively located on opposite sides of the electrode assembly, and any tab is wound to form at least two continuous coil layers, and the tabs located on the same side are Two adjacent circles fit together. In this way, the tabs are wound to form at least two continuous coil layers, and the adjacent two coil layers are controlled to fit each other. In this way, there is no gap between the tabs obtained, and the flattening process is eliminated, which is beneficial to improving the battery. safety performance and energy density.
  • the tabs of the first pole piece and the second pole piece each include a body and a filling layer; they are located between two adjacent coil layers on the same side, and the two surfaces of the filling layer are respectively against the winding layer. on the last two bodies. In this way, through the filling layer on one side, the gap between the wound tabs is eliminated, improving the safety performance of the battery.
  • the tabs of the first pole piece and the second pole piece each include a body and filling layers respectively provided on opposite sides in the thickness direction of the body; the two filling layers abut against each other. In this way, through the filling layers on both sides of the body, the gap between the wound tabs and the tabs is further eliminated, thereby further improving the safety performance of the battery.
  • the electrode assembly further includes a current collecting member, and the current collecting member is electrically connected to the wound tab.
  • the current collecting member is electrically connected to the tab, which facilitates the electrical connection between the electrode assembly and the end cover to complete the assembly of the battery cell.
  • the application provides a pole piece manufacturing method, including the following steps: providing a current collector, including a main body and pole tabs extending from the main body; coating an active layer on at least one side of the main body; controlling The thickness h1 of the tab is greater than the thickness h2 of the main body.
  • the thickness h1 of the pole tab is designed to be greater than the thickness h2 of the main body part, so that there is a thickness difference between the pole tab and the main body part. In this way, in battery production, it is helpful to eliminate the gaps between the tabs of the rolled pole pieces, so that the tabs are tightly connected to each other.
  • the step of controlling the thickness h1 of the pole piece to be greater than the thickness h2 of the body part includes: welding a filling layer on at least one side of the body thickness direction of the pole piece, so that the entire filling layer is equal to the thickness of the body The sum is greater than the thickness h2 of the main body. In this way, a filling layer is welded to at least one side of the body, so that the gap between the wound tabs is effectively eliminated, which is beneficial to improving the safety performance of the battery.
  • the step further includes: providing a solidified layer on the surface of the filling layer except for one side surface that is in contact with the body. In this way, the surface of the filling layer is solidified to prevent protruding particles generated during welding from falling off into the interior of the battery and causing battery power accidents, further improving the safety performance of the battery.
  • the step further includes: die-cutting the filling layer and/or the end of the body away from the current collector.
  • the filling layer and/or the end of the body away from the pole piece is cut off through a die-cutting process to expose the welding piece, so as to facilitate the electrical connection between the current collecting component and the wound pole tab.
  • the method further includes: rolling the active layer and the main body part. In this way, through the rolling process, pole pieces with stable structure are obtained.
  • the application provides an electrode assembly manufacturing method, including the following steps: using any of the above pole piece manufacturing methods to manufacture two pole pieces with opposite polarities; stacking the two pole pieces and the separator so that The pole tabs of the two pole pieces extend from opposite sides of the diaphragm respectively; the two pole pieces and the diaphragm are rolled together so that the pole tabs on either side are rolled to form at least two continuous circles that fit each other.
  • the above-mentioned electrode assembly manufacturing method first uses the above pole piece manufacturing method to make two pole pieces with opposite polarities; the two pole pieces and separators are stacked and wound together so that the two adjacent circles are in contact with each other. combine. In this way, it is helpful to eliminate the gap between the tabs of the wound pole piece, so that the tabs are tightly connected to each other.
  • the step before stacking the two pole pieces and the separator, the step further includes: cutting the two pole pieces according to preset sizes. In this way, the slitting process is used to slit the pole pieces to meet the needs of battery production of different specifications.
  • the method further includes: electrically connecting the current collecting member on one side of the rolled tab. In this way, the electrical connection between the electrode assembly and the end cap is facilitated to complete the assembly of the battery cell.
  • the present application provides a battery cell, including the electrode assembly as described in any one of the above.
  • the present application provides a battery, including the battery cell as described above.
  • Figure 1 is a schematic diagram of the battery structure described in some embodiments of the present application.
  • Figure 2 is a schematic structural diagram of a battery cell described in some embodiments of the present application.
  • Figure 3 is a schematic structural diagram of the pole piece when not welded as described in some embodiments of the present application.
  • Figure 4 is a schematic structural diagram of the pole piece during welding described in some embodiments of the present application.
  • Figure 5 is a schematic structural diagram of the die-cut rear pole piece described in some embodiments of the present application.
  • Figure 6 is a schematic cross-sectional view of the rolled electrode assembly described in some embodiments of the present application.
  • Figure 7 is a schematic structural diagram of the rolled electrode assembly described in some embodiments of the present application.
  • Figure 8 is a schematic diagram of the production process of the pole piece described in some embodiments of the present application.
  • Figure 9 is a schematic diagram 2 of the pole piece manufacturing process described in some embodiments of the present application.
  • Figure 10 is a schematic diagram 3 of the pole piece manufacturing process described in some embodiments of the present application.
  • FIG 11 is a schematic diagram 1 of the electrode assembly manufacturing process described in some embodiments of the present application.
  • Figure 12 is a schematic diagram 2 of the electrode assembly manufacturing process described in some embodiments of the present application.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, the safety performance requirements for batteries are getting higher and higher.
  • the positive electrode sheet, separator and negative electrode sheet are stacked and then rolled; after winding, there is usually a certain gap between two adjacent tabs.
  • the top cover When laser welding the top cover, there will be laser leakage in this gap, causing the separator to be easily burned and destroying the internal structure of the battery.
  • particles generated during the welding process will also enter the battery through the gap, causing the risk of battery short circuit and increasing safety risks.
  • a pole piece was designed, and the thickness h1 of the tabs was designed to be larger than the main body.
  • the thickness h1 of the pole tab is designed to be greater than the thickness h2 of the main body part, so that there is a thickness difference between the pole tab and the main body part.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical device can be composed of the battery cells and batteries disclosed in this application. In this way, it is helpful to alleviate and automatically adjust the deterioration of the expansion force of the battery core, supplement the electrolyte consumption, and improve the stability of battery performance and battery life.
  • the electrical devices can be but are not limited to mobile phones, tablets, laptops, electric toys, electric tools, battery cars, electric vehicles, ships, spacecraft, etc.
  • Electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • Spacecraft can include airplanes, rockets, space shuttles, and spaceships.
  • the battery can not only be used as the operating power supply of the vehicle, but also can be used as the driving power supply of the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • Figure 1 is a structural diagram of a battery 10000 provided by some embodiments of the present application
  • Figure 2 is a structural diagram of a battery cell 1000 provided by some embodiments of the present application.
  • the battery 10000 includes a case 2000 and battery cells 1000.
  • the battery cells 1000 are accommodated in the case 2000.
  • the box 2000 is used to provide an accommodation space for the battery cells 1000, and the box 2000 can adopt a variety of structures.
  • the box 2000 may include a first part 2100 and a second part 2200.
  • the first part 2100 and the second part 2200 cover each other.
  • the first part 2100 and the second part 2200 jointly define a space for accommodating the battery cells 1000. of accommodation space.
  • the second part 2200 may be a hollow structure with one end open, and the first part 2100 may be a plate-like structure.
  • the first part 2100 covers the open side of the second part 2200, so that the first part 2100 and the second part 2200 jointly define a receiving space.
  • the first part 2100 and the second part 2200 may also be hollow structures with one side open, and the open side of the first part 2100 is covered with the open side of the second part 2200.
  • the box 2000 formed by the first part 2100 and the second part 2200 can be in various shapes, such as a cylinder, a cuboid, etc.
  • the battery 10000 there may be multiple battery cells 1000, and the multiple battery cells 1000 may be connected in series or in parallel.
  • Hybrid connection or hybrid connection hybrid connection means that multiple battery cells 1000 are both connected in series and in parallel.
  • Multiple battery cells 1000 can be directly connected in series or in parallel or mixed together, and then the whole composed of multiple battery cells 1000 can be accommodated in the box 2000; of course, the battery 10000 can also be multiple battery cells 1000.
  • the battery 10,000 modules are connected in series, parallel, or mixed to form a battery module.
  • multiple battery 10,000 modules are connected in series, parallel, or mixed to form a whole, and are accommodated in the box 2,000.
  • the battery 10000 may also include other structures.
  • the battery 10000 may further include a bus component for realizing electrical connections between multiple battery cells 1000 .
  • Each battery cell 1000 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery 10000, a sodium-ion battery 10000, or a magnesium-ion battery 10000, but is not limited thereto.
  • the battery cell 1000 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes.
  • This application proposes a pole piece 10, including: a current collector 11 and an active layer 112.
  • the current collector 11 includes a main body portion 11a and tabs 12 extending from the main body portion 11a.
  • the active layer 112 is coated on at least one side of the main body portion 11a; wherein the thickness h1 of the tab 12 is greater than the thickness h2 of the main body portion 11a.
  • the current collector 11 refers to a component or part that can not only carry the active material, but also collect and output the current generated by the electrode active material.
  • the material can be, but is not limited to, metal materials such as copper, aluminum, nickel, stainless steel, etc.; of course, it can also be semiconductor materials such as carbon, and composite materials such as conductive resin, titanium-nickel shape memory alloy, and carbon-coated aluminum foil.
  • the current collector 11 usually has two parts: a main body part 11a that needs to be coated with active material and a part that is not coated with active material; and the part that is not coated with active material is generally used as the tab 12.
  • the active layer 112 refers to the active material coated on the current collector 11 , and its specific composition varies depending on the polarity of the pole piece 10 .
  • the active material on the positive electrode sheet 10 may be, but is not limited to, lithium cobalt oxide, lithium manganate, lithium nickel oxide, lithium iron phosphate, ternary materials, etc.
  • the active material on the negative electrode sheet 10 may be, but is not limited to, graphite, lithium titanate, silicon oxide, etc.
  • the tabs 12 are formed by extending from the main body portion 11 a of the current collector 11 , that is, the portion of the current collector 11 that is not coated with active material. According to the different polarities of the pole pieces 10, they are divided into positive pole tabs 12 and negative pole tabs 12.
  • the material of the positive electrode tab 12 is usually aluminum; the material of the negative electrode tab 12 is usually nickel or nickel-plated copper.
  • the pole tab 12 on the pole piece 10 can extend along the entire width of the pole piece 10 , which is a full pole tab 12 structure; it can also be a section structure extending along the width direction of the pole piece 10 , that is, the extension length of the pole tab 12 is shorter than Width of pole piece 10.
  • the thickness h1 of the pole tab 12 is greater than the thickness h2 of the main body portion 11a.
  • the same current collector 11 is controlled to have two different thicknesses, the thicker part is used as the pole lug 12, and the thinner part is used as the main part 11a of the current collector 11, that is, the coating area ;
  • the portion of the current collector 11 that is not coated with active material is thickened, for example, by welding, conductive adhesive bonding, etc. to thicken the portion of the current collector 11 that is not coated with active material. To get pole 12.
  • the tab 12 includes a body 121 and a filling layer 122 provided on at least one side of the body 121 in the thickness direction.
  • the body 121 should be understood as the portion of the main body portion 11a of the current collector 11 that extends outward, and can also be understood as the portion of the current collector 11 that is not coated with active material.
  • the thickness of the body 121 is generally equal to or approximately equal to the thickness of the main body 11a.
  • the thickness of the body 121 can also be set to be smaller than the thickness of the main body 11a.
  • the thickness of the filling layer 122 should be designed to be thicker. The thickness difference between the main body 121 and the main body portion 11a is compensated.
  • the filling layer 122 refers to a component that can fill the gaps between the tabs 12 after being wound. At the same time, in order to ensure that the tab 12 has good electrical conductivity, the filling layer 122 should also have electrical conductivity, such as but not limited to aluminum foil, copper foil, silver foil, etc.
  • the filling layer 122 can be provided on only one side of the body 121, or can be provided on both sides of the body 121 at the same time. When the filling layer 122 is only provided on one side of the main body 121, after the pole piece 10 is rolled, the two surfaces of the filling layer 122 respectively abut against the two rolled bodies 121.
  • the specific structure can be referred to the following. In the embodiment, no detailed introduction will be made here.
  • the filling layer 122 there are many ways to connect the filling layer 122 to the body 121, as long as the filling layer 122 can be fixed on the body 121, such as welding, conductive adhesive bonding, etc.
  • a filling layer 122 is provided on at least one side of the body 121 to actively increase the thickness of the body 121 so that the thickness of the tabs 12 is greater than the thickness of the main body 11a of the current collector 11 to ensure that the tabs 12 after being wound during the manufacturing process of the battery 10000 The gaps between them are filled, replacing the traditional flattening process and improving the safety performance of the battery 10,000.
  • filling layers 122 are provided on opposite sides of the body 121 in the thickness direction.
  • Filling layers 122 are provided on both sides of the main body 121. After the pole piece 10 is wound, there are two filling layers 122 between two adjacent wound bodies 121. At this time, one surface of one filling layer 122 is against one side of the body 121 , and the other surface is against the other filling layer 122 .
  • the thickness of the filling layer 122 on both sides can be consistent or inconsistent.
  • Providing filling layers 122 on both sides of the body 121 can further increase the thickness of the tabs 12, thereby ensuring that the gaps between the tabs 12 are effectively eliminated after winding.
  • the filling layer 122 is a welding piece 12a.
  • the filling layer 122 is a welding piece 12a, which is installed on at least one side of the body 121 in a welding manner.
  • welding technology such as roller welding can be used.
  • the welding pieces 12a on both sides may not be connected; they may also be connected to each other by bypassing the sides of the body 121. At this time, the body 121 appears to be wrapped by the welding pieces 12a. state.
  • the welding piece 12a is first attached to one side of the body 121 (such as aluminum foil, copper foil, etc.); and then the welding piece 12a is welded to the body 121 using roller welding technology.
  • the welding position i.e. the welding mark position
  • the thickness will increase due to the high temperature melting of the metal.
  • the tab 12 can be cut by die-cutting so that the position of the soldering mark is retained on the tab 12; at the same time, the top of the tab 12 is kept flat to facilitate the installation of current collecting components (such as current collecting plates, etc.) welding.
  • the welding piece 12a may be, but is not limited to, aluminum foil, copper foil, silver foil, etc.
  • the filling layer 122 is designed as a welding piece 12a to increase the bonding strength between the filling layer 122 and the body 121 while ensuring the effective thickness of the pole tab 12, thereby improving the structural stability of the pole piece 10.
  • the tab 12 further includes a solidified layer.
  • the solidified layer is at least provided on a side of the welding piece 12a facing away from the body 121 .
  • the solidified layer refers to a layer with a structure that structurally fixes the surface of the welding part 12a.
  • more or less raised particles such as burrs, etc.
  • the structure of these particles on the welding piece 12a is not stable. They will inevitably fall off during the production of the battery 10000, causing the battery 10000 to fail. electrical accidents.
  • a solidified layer is provided on the surface of the welding part 12a to strengthen the surface structure of the welding part 12a.
  • the cured layer has various designs, for example, it can be an insulating glue layer, a conductive glue layer, an adhesive glue layer, etc.
  • the solidified layer can be disposed only on the side of the welding piece 12a facing away from the body 121, or can be disposed on any surface of the welding piece 12a except the surface connected to the body 121.
  • the exposed surface of the welding piece 12a is provided with a solidified layer, the end of the welding piece 12a away from the pole piece 10 can be cut off through die-cutting or other processes to expose the welding piece 12a, so as to facilitate the current collecting member and the winding
  • the rear tab 12 is electrically connected, please refer to Figure 5 for details.
  • a solidified layer is provided on the welding part 12a to solidify the surface of the welding part 12a to prevent protruding particles generated during welding from falling off into the interior of the battery 10000 and causing power accidents of the battery 10000, thereby further improving the safety performance of the battery 10000.
  • the thickness h1 of the tab 12 is greater than the sum h3 of the thicknesses of the main body portion 11 a and the active layer 112 .
  • the thickness h1 of the tab 12 is greater than the sum h3 of the thickness of the main body 11a and the active layer 112 on one side; when both sides of the main body 11a are coated with the active layer 112 , the thickness h1 of the tab 12 is greater than the sum of the thicknesses h3 of the main body 11a and the active layers 112 on both sides;.
  • the thickness of the tab 12 is further designed to be greater than the sum of the thicknesses of the main body 11a and the active layer 112, so that the gap between the tab 12 can be eliminated during winding, thereby improving the safety performance of the battery 10000.
  • the present application provides an electrode assembly 100, including a first pole piece 20 and a second pole piece 30 with opposite polarities, and a first pole piece 20 and a second pole piece 30.
  • the diaphragm 40 between the diode pieces 30.
  • the first pole piece 20 is rolled with the second pole piece 30 and the separator 40 to form a rolled structure.
  • the first pole piece 20 and/or the second pole piece 30 are the pole pieces 10 in any of the above solutions.
  • the first pole piece 20 and the second pole piece 30 have opposite polarities.
  • the first pole piece 20 is the positive pole piece 10 and the second pole piece 30 is the negative pole piece 10; or the first pole piece 20 is the negative pole piece 10.
  • the second pole piece 30 is the positive pole piece 10 .
  • the pole tabs 12 of the first pole piece 20 and the pole tabs 12 of the second pole piece 30 can be located in the electrode group. Opposite sides of the assembly 100; may also be located on the same side of the electrode assembly 100.
  • one of the tabs 12 can be designed to extend out of the diaphragm 40, and the other tab 12 should not exceed the diaphragm 40.
  • the specific structure can be referred to existing literature.
  • the first pole piece 20 and/or the second pole piece 30 is the pole piece 10 in any of the above solutions. It should be understood that at least one of the first pole piece 20 and the second pole piece 30 is the pole piece described above. 10. When one of the first pole piece 20 and the second pole piece 30 is the pole piece 10 in the above solution, it can be ensured that there is no gap after the pole tab 12 on one side is wound. Specifically, in some embodiments, the first pole piece 20 and the second pole piece 30 are both the pole pieces 10 in any of the above solutions.
  • the separator 40 is a porous plastic film that ensures the free passage of lithium ions to form a circuit, and at the same time prevents the two electrodes from contacting each other to act as electronic insulation.
  • the types can be selected from, but are not limited to, polyethylene single-layer films, polypropylene single-layer films, etc.
  • the pole tabs 12 of the first pole piece 20 and the pole tabs 12 of the second pole piece 30 are respectively located on opposite sides of the electrode assembly 100 .
  • Each tab 12 is wound to form at least two continuous coil layers 123 .
  • Two adjacent ring layers 123 located on the same side are attached to each other.
  • the pole tabs 12 of the first pole piece 20 and the pole tabs 12 of the second pole piece 30 are respectively located on opposite sides of the electrode assembly 100. It should be understood that the positive and negative pole tabs are distributed on both sides of the electrode assembly 100 along the preset direction X. . At the same time, the preset direction X can be understood as the height direction of the electrode assembly 100. For details, refer to the direction pointed by any arrow X in FIG. 7.
  • the circle layer 123 refers to the smallest annular unit formed by winding the tab 12 in a certain direction (such as clockwise or counterclockwise). All the circles 123 are connected to each other and are in a continuous state. At the same time, the ring layer 123 and the ring layer 123 are attached to each other, that is, there is no gap between them.
  • the pole tabs 12 are wound to form at least two continuous ring layers 123, and the adjacent two ring layers 123 are controlled to fit each other. In this way, there is no gap between the pole tabs 12, and the flattening process is eliminated, which is beneficial to Improve the safety performance and energy density of battery 10000.
  • the tabs 12 of the first pole piece 20 and the second pole piece 30 each include a body 121 and a filling layer 122 . Located between two adjacent ring layers 123 on the same side, two surfaces of the filling layer 122 respectively abut against the two rolled bodies 121 .
  • the two surfaces of the filling layer 122 respectively bear against the two rolled bodies 121. It should be understood that the filling layer 122 is provided on one side of the body 121 and the filling layer 122 is not provided on the other side. At this time, the wound pole A filling layer 122 is used to fill between the ears 12 .
  • the gap between the wound tabs 12 and the tabs 12 is eliminated, thereby improving the battery performance. 10,000 safety performance.
  • the tabs 12 of the first pole piece 20 and the second pole piece 30 each include a body 121 and filling layers 122 respectively provided on opposite sides of the body 121 in the thickness direction; The two filling layers 122 abut each other.
  • the two filling layers 122 abutting each other means that one surface of one of the filling layers 122 abuts the body 121 and the other surface abuts the other filling layer 122 , that is, there are filling layers 122 on both sides of the body 121 .
  • two filling layers 122 are used to fill the space between the pole tabs 12 located on the same side.
  • the sum of the thicknesses of the two filling layers 122 is greater than or equal to the thickness of the two layers of separators 40 , four layers of active layers 112 and one layer of the first part 2100 after being wound. The sum of thicknesses.
  • the gap between the wound tabs 12 and the tabs 12 is further eliminated, thereby further improving the safety performance of the battery 10000.
  • electrode assembly 100 further includes a current collecting member.
  • the current collecting member is electrically connected to the wound tab 12 .
  • the current collecting member is used to electrically connect the electrode assembly 100 and the electrical connection terminal on the end cap. It includes two states, one is the manufacturing state of the current collecting member after processing is completed; the other is the current collecting member application state.
  • the usage status when the battery cells are 1000. In the process of transforming the current collecting component from the manufacturing state to the use state, corresponding bending processing is required.
  • the current collecting member is generally a plate-like structure in a manufacturing state and has a relatively large length.
  • the connection method with the tab 12 is welding.
  • the electrical connection between the current collecting member and the tab 12 facilitates the electrical connection between the electrode assembly 100 and the end cap, so as to complete the assembly of the battery cell 1000 .
  • a current collector 11 including a main body 11a and tabs 12 extending from the main body 11a;
  • the thickness h1 of the control tab 12 is greater than the thickness h2 of the main body portion 11a.
  • the active layer 112 may be coated on only one side of the main body part 11a; it may also be coated on opposite two sides of the main body part 11a.
  • step S300 there are many ways to control the thickness of the tab 12, such as: when the current collector 11 is formed, controlling at least two molding thicknesses on the current collector 11 to be different; or, thickening the tab 12, for example: A structure with a certain thickness is attached to the tab 12 by welding, bonding, screwing, etc.
  • the thickness h1 of the pole tab 12 is designed to be greater than the thickness h2 of the main body part 11a, so that there is a thickness difference between the pole tab 12 and the main body part 11a. In this way, it is helpful to eliminate the problem of the wound pole piece 10 during battery production.
  • the gap between the pole lugs 12 makes the pole lugs 12 and the pole lugs 12 closely connected.
  • the step of controlling the thickness h1 of the tab 12 of the pole piece 10 to be greater than the thickness h2 of the main body part 11a includes:
  • the filling layer 122 can be welded on one side of the body 121, or the filling layers 122 can be welded on both sides of the body 121 at the same time.
  • the filling layers 122 are welded to both sides, one surface of one filling layer 122 abuts the body 121 and the other surface abuts the other filling layer 122 .
  • a filling layer 122 is welded to at least one side of the body 121 so that the gap between the rolled tabs 12 is effectively eliminated, which is beneficial to improving the safety performance of the battery 10000.
  • S310 after the step of welding the filling layer 122 on at least one side of the body 121 of the tab 12 in the thickness direction, also includes:
  • S320 Provide a solidified layer on the surface of the filling layer 122 except for the side surface that is in contact with the body 121.
  • the surface of the filling layer 122 except the side surface that is in contact with the body 121 should be understood as the surface of the filling layer 122 exposed outside the body 121 , that is, the surface that can be contacted by workers.
  • the surface of the filling layer 122 can be cleaned to remove impurities adhering to the surface of the filling layer 122 .
  • the surface of the filling layer 122 is solidified to prevent protruding particles generated during welding from falling off into the interior of the battery 10000 and causing power accidents of the battery 10000, thereby further improving the safety performance of the battery 10000.
  • S310 after the step of welding the filling layer 122 on at least one side of the body 121 of the tab 12 in the thickness direction, also includes:
  • steps S320 and S330 are not limited.
  • steps S320 and S330 can be executed at the same time, that is, die-cutting while curing.
  • steps S320 and S330 can be executed sequentially, for example, the filling layer 122 is first processed. Curing is performed, and then the cured filling layer 122 is die-cut; or, step S330 is performed first, and then step S320 is performed. Specifically, in some embodiments, step S320 is performed first; and then step S330 is performed.
  • the ends of the filling layer 122 and the body 121 can also be die-cut at the same time.
  • the filling layer 122 and/or the end of the body 121 away from the pole piece 10 is cut off through a die-cutting process to expose the welding member 12 a to facilitate electrical connection between the current collecting member and the wound pole tab 12 .
  • the method further includes:
  • step S200 the active layer 112 is coated on the main body portion 11a, and the specific process is coating.
  • coating is to use relevant equipment to evenly coat the suspension slurry containing positive and negative active materials on the aluminum foil or copper foil sheet, and then The process of drying and film formation.
  • the specific coating process includes at least shear coating, wetting and leveling, drying and other processes. The specific operations of these processes will not be described in detail here, and existing literature can be directly referred to.
  • the active materials are selected differently according to the different polarities of the positive and negative electrodes. For specific materials, please refer to the active materials in the above embodiments.
  • Rolling is usually arranged after the coating and drying process. It is a process in which the coated powder electrode material on the positive and negative metal current collectors 11 is compacted by a roller press, which is used for the rearrangement and densification of the powder.
  • the pole piece 10 with a stable structure is obtained.
  • This application provides an electrode assembly manufacturing method, which includes the following steps:
  • S700 Wind the two pole pieces 10 and the diaphragm 40 together, so that the pole tabs 12 on either side are wound to form at least two continuous coil layers 123 that adhere to each other.
  • the two pole pieces 10 are respectively defined as the first pole piece 20 and the second pole piece 30 with opposite polarities, that is, the positive pole piece and the negative pole piece. That is to say, one pole piece 10 has The active layer 112 on the other pole piece 10 is a positive electrode material; the active layer 112 on the other pole piece 10 is a negative electrode material.
  • step S600 the pole tabs 12 of the pole piece 10 respectively protrude from the opposite sides of the diaphragm 40, which should be understood as: the pole tabs 12 of the first pole piece 20 and the pole tabs 12 of the second pole piece 30 are respectively located on the electrode assembly 100. Opposite two sides, namely one end is the positive electrode lug 12 and the other end is the negative electrode lug 12 .
  • step S700 when the two pole pieces 10 and the separator 40 are wound together, for example, when the first pole piece 20 and the second pole piece 30 are wound together, attention should be paid to the width dimension between them.
  • the width of the first pole piece 20 should be larger than the width of the second pole piece 30; similarly, if the first pole piece 20 is in the outer ring compared with the second pole piece 30, When the second pole piece 30 is located in the outer ring compared with the first pole piece 20 , the width of the second pole piece 30 should be larger than the width of the first pole piece 20 .
  • the above-mentioned electrode assembly manufacturing method first uses the above pole piece manufacturing method to make two pole pieces 10 with opposite polarities; the two pole pieces 10 and the separator 40 are stacked and wound together, so that the two adjacent ring layers 123 fit together. In this way, it is helpful to eliminate the gap between the tabs 12 of the wound pole piece 10, so that the tabs 12 are closely connected to each other. At this time, there is no need to perform a flattening process on the tabs 12 during the production of the battery 10000 of the present application, which effectively prevents particles produced by flattening from falling into the battery 10000, and greatly improves the safety performance of the battery 10000.
  • the step of stacking the two pole pieces 10 and the diaphragm 40 it also includes:
  • S800 Cut the two pole pieces 10 according to preset sizes.
  • Slitting refers to the process of using relevant equipment to cut the large pole piece 10 after coating and rolling into individual pole pieces 10. Specifically, it can be divided into longitudinal cutting and cross cutting. Among them, longitudinal cutting refers to cutting the large pole piece 10 into long strips along the length direction, while transverse cutting refers to cutting operation perpendicular to the length direction. Of course, according to the form of cutting props, it can also be divided into oblique blade shears, flat blade shears, rolling shears and disc shears. In addition, the preset size can also be understood as a required size, which can be determined according to the actual size of the electrode assembly 100 .
  • the two pole pieces 10 are slit to meet the needs of manufacturing batteries 10,000 of different specifications.
  • the current collecting component is connected to the wound tab 12 through laser welding.
  • the current collecting member is electrically connected to the tab 12 to facilitate electrical connection between the electrode assembly 100 and the end cover, so as to complete the assembly of the battery cell 1000 .
  • the present application provides a battery cell 1000 , including the electrode assembly 100 in any of the above solutions.
  • the present application provides a battery 10000, including the battery cell 1000 in the above solution.
  • this application provides a new design structure of the tabs 12 of the cylindrical battery core.
  • Welding parts 12a are welded on the tabs 12 of the pole pieces 10, and the thickness difference of the welding marks is used to make the coil There is no gap between the tabs 12 of the wound bare battery core, thereby preventing the laser from hitting the inside of the bare battery core when welding the top cover.
  • the specific process flow is: coating -> cold pressing (roller pressing) -> roller welding -> gluing -> laser die cutting -> slitting -> winding -> laser welding of current collecting components.

Abstract

本申请涉及一种极片(10)及制作方法、电极组件(100)及制作方法、电池单体(1000)和电池(10000),在极片(10)设计中,将极耳(12)的厚度h1设计为大于主体部(11a)的厚度h2,使得极耳(12)与主体部(11a)之间存在厚度差。这样在电池制作中,有利于消除卷绕后的极片(10)的极耳(12)之间缝隙,使得极耳(12)与极耳(12)之间紧密连接。此时,在本申请电池(10000)制作中无需对极耳(12)进行揉平工艺,有效避免揉平产生的颗粒掉入电池(10000)中,极大提高电池(10000)的安全性能。由于无需对极耳(12)进行揉平,因此,在极片(10)上无需预留揉平所需空间,即可保证极耳(12)间的过流能力,也能充分、高效地利用折极耳(12)空间,以使极片(10)充分利用该空间,提高电池(10000)的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳(12)内插短路风险,进一步提高电池(10000)的安全性能。

Description

极片及制作方法、电极组件及制作方法、电池单体和电池
交叉引用
本申请引用于2022年05月07日递交的名称为“极片及制作方法、电极组件及制作方法、电池单体和电池”的第202210490400X号中国专利申请,其通过引用被全部并入本申请。
技术领域
本申请涉及电池技术领域,特别是涉及极片及制作方法、电极组件及制作方法、电池单体和电池。
背景技术
随着电池的广泛运用,对电池的安全性能要求越来越高。例如:电池制作过程中,为保证极耳之间没有缝隙,通常需对卷绕后的全极耳进行揉平工艺,以消除相邻两个极耳之间的缝隙。然而,揉平中会产生金属颗粒等物质,易掉入裸电池中,导致电池短路风险的发生,增加安全隐患。
发明内容
基于此,有必要提供一种极片及制作方法、电极组件及制作方法、电池单体和电池,避免揉平产生的颗粒掉入电池中,提高电池的安全性能。
第一方面,本申请提出了一种极片,包括:极片集流体,包括主体部和从主体部延伸出的极耳;活性层,涂覆于主体部的至少一侧;其中,极耳的厚度h1大于主体部的厚度h2。
上述的极片,将极耳的厚度h1设计为大于主体部的厚度h2,使得极耳与主体部之间存在厚度差。这样在电池制作中,有利于消除卷绕后的极片的极耳之间缝隙,使得极耳与极耳之间紧密连接。此时,在本申请电池制作中无需对极耳进行揉平工艺,有效避免揉平产生的颗粒掉入电池中,极大提高电池的安全性能。由于无需对极耳进行揉平,因此,在极片上无需预留揉平所需空间,即可保证极耳间的过流能力,也能充分、高效地利用折极耳空间,以使极片充分利用该空间,提高电池的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳内插短路风险,进一步提高电池的安全性能。此外,本申请通过合理控制极耳厚度,取消传统揉平工艺,有效弥补不能采用揉平工艺的复合基材应用在大圆柱电芯中。
在一些实施例中,极耳包括本体及设于本体厚度方向的至少一侧的填补层。
如此,在本体的至少一侧设置填补层,主动增加本体的厚度,使得极耳的厚度值大于集流体的主体部的厚度,保证电池制作过程中卷绕后的极耳之间缝隙被填补,替代传统揉 平工艺,提高电池的安全性能。
在一些实施例中,本体厚度方向的相对两侧上均设有填补层。如此设计,在本体的两侧均设置填补层,能进一步增加极耳的厚度,从而确保卷绕后极耳之间的缝隙有效消除。
在一些实施例中,填补层为焊接件。将填补层设计为焊接件,在保证极耳有效厚度的前提下,提高填补层与本体之间的结合强度,从而提升极片的结构稳定性。
在一些实施例中,极耳还包括固化层,固化层至少设于焊接件背向本体的一侧面上,以固化焊接件的表面,避免焊接时产生的凸出颗粒脱落至电池内部而引起电池用电事故,进一步提高电池的安全性能。
在一些实施例中,极耳的厚度h1大于主体部与活性层的厚度之和h3。如此,将极耳的厚度进一步设计为大于主体部与活性层的厚度之和,使得卷绕时更能确保极耳与极耳之间的间隙消除,从而提升电池的安全性能。
第二方面,本申请提供了一种电极组件,包括极性相反的第一极片与第二极片、以及设于第一极片与第二极片之间的隔膜,第一极片、第二极片和隔膜卷绕形成卷绕结构;其中,第一极片和/或第二极片为以上任一项的极片。
上述的电极组件,采用以上的极片,无需对极耳进行揉平,因此,在极片上无需预留揉平所需空间,使得极片能充分利用该空间,以提高电池的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳内插短路风险,进一步提高电池的安全性能。
在一些实施例中,第一极片的极耳与第二极片的极耳分别位于电极组件的相对两侧,任一极耳卷绕形成连续的至少两个圈层,位于同一侧的相邻两个圈层之间相互贴合。如此,将极耳卷绕形成连续的至少两个圈层,并控制相邻两个圈层之间相互贴合,这样获取的极耳之间不存在间隙,取消揉平工艺,有利于提升电池的安全性能和能量密度。
在一些实施例中,第一极片与第二极片的极耳均包括本体、以及填补层;位于同一侧的相邻两个圈层之间,填补层的两个表面分别抵靠卷绕后的两个本体上。如此,通过一侧的填补层,使得卷绕后的极耳与极耳之间缝隙消除,提升电池的安全性能。
在一些实施例中,第一极片与第二极片的极耳均包括本体、以及分别设于本体厚度方向的相对两侧的填补层;两个填补层相互抵靠。如此,通过本体两侧的填补层,使得卷绕后的极耳与极耳之间缝隙进一步消除,从而使得电池的安全性能得到进一步提升。
在一些实施例中,电极组件还包括集流构件,集流构件与卷绕后的极耳电连接。如此设计,通过集流构件与极耳电连接,便于电极组件与端盖之间实现电连接,以便完成电池单体的装配。
第三方面,本申请提供了一种极片制作方法,包括如下步骤:提供集流体,包括主体部和从主体部延伸出的极耳;将活性层涂覆于主体部的至少一侧;控制极耳的厚度h1大于主体部的厚度h2。
上述的极片制作方法,将极耳的厚度h1设计为大于主体部的厚度h2,使得极耳与主体部之间存在厚度差。这样在电池制作中,有利于消除卷绕后的极片的极耳之间缝隙,使得极耳与极耳之间紧密连接。
在一些实施例中,控制极片的极耳厚度h1大于主体部厚度h2的步骤,包括:在极耳的本体厚度方向的至少一侧上焊接有填补层,使得全部的填补层与本体的厚度之和大于主体部的厚度h2。如此,在本体的至少一侧焊接有填补层,使得卷绕后的极耳之间缝隙得到有效消除,有利于提升电池的安全性能。
在一些实施例中,在极耳的本体厚度方向的至少一侧上焊接有填补层的步骤之后,还包括:在填补层上除与本体贴合的一侧面外的表面设置固化层。这样对填补层的表面进行固化,避免焊接时产生的凸出颗粒脱落至电池内部而引起电池用电事故,进一步提升电池的安全性能。
在一些实施例中,在极耳的本体厚度方向的至少一侧上焊接有填补层的步骤之后,还包括:对填补层和/或本体上远离集流体的一端进行模切。如此设计,通过模切工艺将填补层和/或本体远离极片的一端切除,暴露出焊接件,以便于集流构件与卷绕后的极耳电连接。
在一些实施例中,方法之后,还包括:对活性层与主体部进行辊压。如此,分别通过辊压工序,获取结构稳定的极片。
第四方面,本申请提供了一种电极组件制作方法,包括如下步骤:采用以上任一项的极片制作方法制作两个极性相反的极片;将两个极片及隔膜叠放,使得两个极片的极耳分别延伸出隔膜的相对两侧;将两个极片及隔膜一起卷绕,使得任一侧极耳卷绕形成连续的至少两个圈层相互贴合。
上述的电极组件制作方法,首先采用以上极片制作方法制作两个极性相反的极片;并将两个极片、隔膜层叠放置并一起卷绕,使得相邻两个圈层之间相互贴合。如此,有利于消除卷绕后的极片的极耳之间缝隙,使得极耳与极耳之间紧密连接。
在一些实施例中,将两个极片及隔膜叠放的步骤之前,还包括:对两个极片分别按照预设尺寸进行分切。如此,利用分切工艺,对极片进行分切,以满足不同规格电池制作的需求。
在一些实施例中,方法之后,还包括:在其中一侧卷绕后的极耳上电连接集流构件。如此,便于电极组件与端盖之间实现电连接,以便完成电池单体的装配。
第五方面,本申请提供了一种电池单体,包括如以上任一项所述的电极组件。
第六方面,本申请提供了一种电池,包括如以上所述的电池单体。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明 显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他附图。在附图中:
图1为本申请一些实施例中所述的电池结构示意图;
图2为本申请一些实施例中所述的电池单体结构示意图;
图3为本申请一些实施例中所述的未焊接时极片结构示意图;
图4为本申请一些实施例中所述的焊接时极片结构示意图;
图5为本申请一些实施例中所述的模切后极片结构示意图;
图6为本申请一些实施例中所述的卷绕后电极组件剖视示意图;
图7为本申请一些实施例中所述的卷绕后电极组件结构示意图;
图8为本申请一些实施例中所述的极片制作流程示意图一;
图9为本申请一些实施例中所述的极片制作流程示意图二;
图10为本申请一些实施例中所述的极片制作流程示意图三;
图11为本申请一些实施例中所述的电极组件制作流程示意图一;
图12为本申请一些实施例中所述的电极组件制作流程示意图二。
附图标号:
10000、电池;1000、电池单体;2000、箱体;2100、第一部分;2200、第二部分;
100、电极组件;10、极片;11、集流体;11a、主体部;112、活性层;12、极耳;121、本体;122、填补层;12a、焊接件;123、圈层;20、第一极片;30、第二极片;40、隔膜。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅 是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,对电池的安全性能要求越来越高。
在电池制作过程中,正极片、隔膜和负极片层叠放置后进行卷绕;卷绕后,相邻两个极耳之间通常存在一定的缝隙。在激光焊接顶盖时该缝隙会存在漏激光现象,导致隔膜容易被烧伤,以破坏电池的内部结构。同时,焊接过程中,所产生的颗粒也会通过该缝隙进入电池中,导致电池短路风险的发生,增加安全隐患。
为了消除极耳与极耳之间缝隙的问题,研究发现,可采用揉平工艺将卷绕后的极耳揉平,以消除极耳之间的缝隙。然而,在揉平过程中,或多或少会产生金属颗粒,该颗粒在揉平中会渗入或掉入极耳缝隙中,导致电池内易发生短路风险。同时,采用揉平工艺时,需 在极片上预留揉平所需空间,导致极片在电池单体中所占空间减少,降低电池的能量密度。此外,揉平过程中,也容易发生极耳内插风险,进一步增加电池短路风险。
基于以上考虑,为了解决电池制作过程中考虑极耳的缝隙采用揉平工艺而导致电池能量密度降低以及电池安全性降低的问题,设计了一种极片,将极耳的厚度h1设计为大于主体部的厚度h2。
在这样的极片中,将极耳的厚度h1设计为大于主体部的厚度h2,使得极耳与主体部之间存在厚度差。这样在电池制作中,有利于消除卷绕后的极片的极耳之间缝隙,使得极耳与极耳之间紧密连接。此时,在本申请电池制作中无需对极耳进行揉平工艺,有效避免揉平产生的颗粒掉入电池中,极大提高电池的安全性能。
由于无需对极耳进行揉平,因此,在极片上无需预留揉平所需空间,使得极片能充分利用该空间,以提高电池的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳内插短路风险,进一步提高电池的安全性能。此外,本申请通过合理控制极耳厚度,取消传统揉平工艺,有效弥补不能采用揉平工艺的复合基材应用在大圆柱电芯中。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统,这样,有利于缓解并自动调节电芯膨胀力恶化,补充电解液消耗,提升电池性能的稳定性和电池寿命。其中,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等。而电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等。
在本申请一些实施例中,电池不仅可以作为车辆的操作电源,还可以作为车辆的驱动电源,代替或部分地代替燃油或天然气为车辆提供驱动动力。
请参照图1与图2,图1为本申请一些实施例提供的电池10000结构图;图2为本申请一些实施例提供的电池单体1000结构图。电池10000包括箱体2000和电池单体1000,电池单体1000容纳于箱体2000内。其中,箱体2000用于为电池单体1000提供容纳空间,箱体2000可以采用多种结构。在一些实施例中,箱体2000可以包括第一部分2100和第二部分2200,第一部分2100与第二部分2200相互盖合,第一部分2100和第二部分2200共同限定出用于容纳电池单体1000的容纳空间。第二部分2200可以为一端开口的空心结构,第一部分2100可以为板状结构,第一部分2100盖合于第二部分2200的开口侧,以使第一部分2100与第二部分2200共同限定出容纳空间;第一部分2100和第二部分2200也可以是均为一侧开口的空心结构,第一部分2100的开口侧盖合于第二部分2200的开口侧。当然,第一部分2100和第二部分2200形成的箱体2000可以是多种形状,比如,圆柱体、长方体等。
在电池10000中,电池单体1000可以是多个,多个电池单体1000之间可串联或并 联或混联,混联是指多个电池单体1000中既有串联又有并联。多个电池单体1000之间可直接串联或并联或混联在一起,再将多个电池单体1000构成的整体容纳于箱体2000内;当然,电池10000也可以是多个电池单体1000先串联或并联或混联组成电池10000模块形式,多个电池10000模块再串联或并联或混联形成一个整体,并容纳于箱体2000内。电池10000还可以包括其他结构,例如,该电池10000还可以包括汇流部件,用于实现多个电池单体1000之间的电连接。
其中,每个电池单体1000可以为二次电池或一次电池;还可以是锂硫电池10000、钠离子电池10000或镁离子电池10000,但不局限于此。电池单体1000可呈圆柱体、扁平体、长方体或其它形状等。
根据本申请的一些实施例,请参考图3与图4,本申请提出了一种极片10,包括:集流体11与活性层112。集流体11包括主体部11a和从主体部11a延伸出的极耳12。活性层112涂覆于主体部11a的至少一侧;其中,极耳12的厚度h1大于主体部11a的厚度h2。
集流体11是指不仅能承载活性物质,而且还能将电极活性物质产生的电流汇集并输出的构件或零件。其材料可为但不限于铜、铝、镍、不锈钢等金属材料;当然,也可为碳等半导体材料以及导电树脂、钛镍形状记忆合金、覆碳铝箔等复合材料。集流体11通常具有两部分:需涂覆活性物质的主体部11a和未涂覆活性物质的部分;而未涂覆活性物质的部分一般作为极耳12。
活性层112是指涂覆在集流体11上的活性物质,根据极片10的极性不同,其具体成分不同。比如:正极片10上的活性物质可为但不限于钴酸锂、锰酸锂、镍酸锂、磷酸铁锂、三元材料等。负极片10上的活性物质可为但不限于石墨、钛酸锂、硅氧化物等。
极耳12由集流体11的主体部11a延伸出形成,即为未涂覆活性物质的集流体11部分。根据极片10的极性不同,分为正极耳12和负极耳12。其中,正极耳12的材料通常为铝材;负极耳12的材料通常为镍或者铜镀镍材。极耳12在极片10上可沿极片10的整个宽度延伸,即为全极耳12结构;也可为沿极片10的宽度方向延伸的一段结构,即极耳12的延伸长度短于极片10的宽度。
极耳12的厚度h1大于主体部11a的厚度h2,其实现方式有多种,只需满足两者的厚度关系均可。比如:在材料上游端或者极片10生产工艺中,控制同一集流体11上具有两种不同厚度,较厚处作为极耳12,较薄处作为集流体11的主体部11a,即涂覆区;或者,在电池10000制作过程中,对集流体11未涂覆活性物质的部分加厚处理,例如,采用焊接、导电胶粘接等方式对集流体11未涂覆活性物质的部分加厚,以获取极耳12。
在本申请电池10000制作中无需对极耳12进行揉平工艺,有效避免揉平产生的颗粒掉入电池10000中,极大提高电池10000的安全性能。由于无需对极耳12进行揉平,因此,在极片10上无需预留揉平所需空间,使得极片10能充分利用该空间,以提高电池 10000的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳12内插短路风险,进一步提高电池10000的安全性能。此外,本申请通过合理控制极耳12厚度,取消传统揉平工艺,有效弥补不能采用揉平工艺的复合基材应用在大圆柱电芯中。
根据本申请的一些实施例,请参考图4,极耳12包括本体121及设于本体121厚度方向的至少一侧的填补层122。
本体121应理解为集流体11的主体部11a朝外延伸的部分,也可理解为集流体11上未涂覆活性物质的部分。本体121的厚度一般等于或近似等于主体部11a的厚度,当然,在其他实施例中,本体121的厚度也可设置为小于主体部11a的厚度,此时填补层122的厚度应设计更厚以弥补本体121与主体部11a之间的厚度之差。
填补层122是指能填补卷绕后极耳12之间的缝隙的部件。同时,为保证极耳12具有良好的导电性,填补层122也应具有导电能力,比如:可为但不限于铝箔、铜箔、银箔等。填补层122可仅设置在本体121的一侧面,可同时设置在本体121的两侧面上。当填补层122仅设置在本体121的一侧面时,极片10在卷绕后,该填补层122的两个表面则分别抵靠在卷绕后的两个本体121上,具体结构可参考以下实施例中,在此不作具体介绍。
另外,填补层122在本体121上的连接方式有多种,只需能满足填补层122固定在本体121上均可,比如,焊接、导电胶粘接等。
在本体121的至少一侧设置填补层122,主动增加本体121的厚度,使得极耳12的厚度值大于集流体11的主体部11a的厚度,保证电池10000制作过程中卷绕后的极耳12之间缝隙被填补,替代传统揉平工艺,提高电池10000的安全性能。
根据本申请的一些实施例,请参考图4,本体121厚度方向的相对两侧上均设有填补层122。
本体121的两侧上均设置填补层122,在极片10卷绕后,相邻两个卷绕后的本体121之间具有两层填补层122。此时,一个填补层122的一表面抵靠在一侧本体121上,另一表面抵靠在另一个填补层122上。两侧的填补层122厚度可保持一致,也可不一致。
在本体121的两侧均设置填补层122,能进一步增加极耳12的厚度,从而确保卷绕后极耳12之间的缝隙有效消除。
根据本申请的一些实施例,请参考图4,填补层122为焊接件12a。
填补层122为焊接件12a,以焊接方式安装在本体121的至少一侧上。焊接时,具体可采用辊焊等技术进行。当本体121的相对两侧上均焊接有焊接件12a时,两侧的焊接件12a可不连接;也可绕过本体121的侧边实现相互连接,此时本体121呈现出被焊接件12a包裹的状态。
另外,在焊接过程中,先将焊接件12a贴合在本体121的一侧(比如铝箔、铜箔等);再利用辊焊技术将焊接件12a焊接在本体121上。此时,焊接位置(即焊印位置)上 会因金属高温熔化而导致厚度增加。焊接后,可通过模切方式对极耳12进行切割,使得极耳12上保留焊印的位置;同时也使得极耳12的顶部保持平整,以便于集流构件(比如集流盘等)进行焊接。
示例性地,焊接件12a可为但不限于铝箔、铜箔、银箔等。
将填补层122设计为焊接件12a,在保证极耳12有效厚度的前提下,提高填补层122与本体121之间的结合强度,从而提升极片10的结构稳定性。
根据本申请的一些实施例,极耳12还包括固化层。固化层至少设于焊接件12a背向本体121的一侧面上。
固化层是指一层具有对焊接件12a表面进行结构固定的结构。在焊接时,焊接件12a上或多或少会产生凸起的颗粒(比如毛边等),该颗粒在焊接件12a上的结构并不稳定,在电池10000制作中难免会出现脱落而引起电池10000的用电事故。为此,在焊接件12a的表面上设置固化层,以强化焊接件12a的表面结构。其中,固化层有多种设计,比如:可为绝缘胶层、导电胶层、粘接胶层等。
固化层可仅设置在焊接件12a背向本体121的一侧面上,也可设置焊接件12a上除与本体121连接的面外的任一表面上。当然,若焊接件12a裸露在外的表面上均设有固化层时,可通过模切等工艺将焊接件12a远离极片10的一端切除,暴露出焊接件12a,以便于集流构件与卷绕后的极耳12电连接,具体请参考图5。
在焊接件12a上设置固化层,以固化焊接件12a的表面,避免焊接时产生的凸出颗粒脱落至电池10000内部而引起电池10000用电事故,进一步提高电池10000的安全性能。
根据本申请的一些实施例,请参考图4,极耳12的厚度h1大于主体部11a与活性层112的厚度之和h3。
当主体部11a一侧涂覆活性层112时,极耳12的厚度h1大于主体部11a与一侧的活性层112的厚度之和h3;当主体部11a的两侧均涂覆活性层112时,极耳12的厚度h1大于主体部11a与两侧的活性层112的厚度之和h3;。
将极耳12的厚度进一步设计为大于主体部11a与活性层112的厚度之和,使得卷绕时更能确保极耳12与极耳12之间的间隙消除,从而提升电池10000的安全性能。
根据本申请的一些实施例,请参考图6,本申请提供了一种电极组件100,包括极性相反的第一极片20与第二极片30、以及设于第一极片20与第二极片30之间的隔膜40。第一极片20与第二极片30和隔膜40卷绕形成卷绕结构。其中,第一极片20和/或第二极片30为以上任一方案中的极片10。
第一极片20与第二极片30的极性相反,比如:第一极片20为正极片10,第二极片30为负极片10;或者,第一极片20为负极片10,第二极片30为正极片10。另外,第一极片20与第二极片30卷绕时,第一极片20的极耳12与第二极片30的极耳12可位于电极组 件100的相对两侧;也可位于电极组件100的同一侧。其中,正负极耳12位于同一侧的情况,可将其中一极耳12伸出隔膜40设计,另一极耳12不超过隔膜40设计,具体结构可参考现有文献。
第一极片20和/或第二极片30为以上任一方案中的极片10,应理解为第一极片20和第二极片30两者中,至少一个为上述描述的极片10。当第一极片20和第二极片30中其中一个为上述方案中的极片10时,能保证其中一侧的极耳12卷绕后不存在间隙。具体到一些实施例中,第一极片20和第二极片30均为以上任一方案中的极片10。
隔膜40是一种多孔塑料薄膜,保证锂离子自由通过以形成回路,同时阻止两电极相互接触起到电子绝缘作用。其种类可选为但不限于聚乙烯单层膜、聚丙烯单层膜等。
采用以上极片10,无需对极耳12进行揉平,因此,在极片10上无需预留揉平所需空间,使得极片10能充分利用该空间,以提高电池10000的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳12内插短路风险,进一步提高电池10000的安全性能。此外,本申请通过合理控制极耳12厚度,取消传统揉平工艺,有效弥补不能采用揉平工艺的复合基材应用在大圆柱电芯中。
根据本申请的一些实施例,请参考图7,第一极片20的极耳12与第二极片30的极耳12分别位于电极组件100的相对两侧。任一极耳12均卷绕形成连续的至少两个圈层123。位于同一侧的相邻两个圈层123之间相互贴合。
第一极片20的极耳12与第二极片30的极耳12分别位于电极组件100的相对两侧应理解为:正负极耳分布在电极组件100上沿预设方向X的两侧。同时,预设方向X可理解为电极组件100的高度方向,具体可参考图7中X任一箭头所指的方向。
圈层123是指极耳12沿一定方向(比如顺时针或逆时针)依次卷绕而形成的最小环形单元。所有的圈层123均是相互连接,呈连续的状态。同时,圈层123与圈层123之间相互贴合,即两者之间不存在间隙。
将极耳12卷绕形成连续的至少两个圈层123,并控制相邻两个圈层123之间相互贴合,这样获取的极耳12之间不存在间隙,取消揉平工艺,有利于提升电池10000的安全性能和能量密度。
根据本申请的一些实施例,请参考图6,第一极片20与第二极片30的极耳12均包括本体121、以及填补层122。位于同一侧的相邻两个圈层123之间,填补层122的两个表面分别抵靠卷绕后的两个本体121上。
填补层122的两个表面分别抵靠在卷绕后的两个本体121上应理解为:本体121的一侧设置填补层122,另一侧不设置填补层122,此时卷绕后的极耳12之间则利用一个填补层122进行填补。
通过一侧的填补层122,使得卷绕后的极耳12与极耳12之间缝隙消除,提升电池 10000的安全性能。
根据本申请的一些实施例,请参考图6,第一极片20与第二极片30的极耳12均包括本体121、以及分别设于本体121厚度方向的相对两侧的填补层122;两个填补层122相互抵靠。
两个填补层122相互抵靠是指:其中一个填补层122一表面抵靠本体121,另一表面抵靠另一个填补层122,即本体121的两侧均设有填补层122。第一极片20和第二极片30同时卷绕后,位于同一侧的极耳12与极耳12之间则利用两个填补层122进行填补。此时,位于同一侧的相邻两个圈层123之间,两层填补层122的厚度之和大于或等于卷绕后的两层隔膜40、四层活性层112以及一层第一部分2100的厚度之和。
通过本体121两侧的填补层122,使得卷绕后的极耳12与极耳12之间缝隙进一步消除,从而使得电池10000的安全性能得到进一步提升。
在一些实施例中,电极组件100还包括集流构件。集流构件与卷绕后的极耳12电连接。
集流构件用于电连接电极组件100与端盖上的电连接端子的部件,其包括两种状态,一种为集流构件在加工完成后的制造状态;另一种状态为集流构件应用于电池单体1000时的使用状态。集流构件在由制造状态向使用状态转变的过程中,需要进行相应的弯折处理。
具体地,集流构件在制造状态时大体为板状结构,且具有较大的长度。同时与极耳12的连接方式为焊接。
通过集流构件与极耳12电连接,便于电极组件100与端盖之间实现电连接,以便完成电池单体1000的装配。
根据本申请的一些实施例,请参考图8,本申请提供了一种极片制作方法,包括如下步骤:
S100、提供集流体11,包括主体部11a和从主体部11a延伸出的极耳12;
S200、将活性层112涂覆于主体部11a的至少一侧;
S300、控制极耳12的厚度h1大于主体部11a的厚度h2。
在步骤S200中,活性层112可仅涂覆在主体部11a的一侧面上;也可涂覆在主体部11a的相对两侧面上。
在步骤S300中,控制极耳12厚度的方式有多种,比如:在集流体11成型时,控制集流体11上至少两处成型厚度不同;或者,在极耳12处增厚处理,例如:以焊接、粘接、螺接等方式在极耳12处附接一具有一定厚度的结构等。
上述的极片制作方法,将极耳12的厚度h1设计为大于主体部11a的厚度h2,使得极耳12与主体部11a之间存在厚度差。这样在电池制作中,有利于消除卷绕后的极片10的 极耳12之间缝隙,使得极耳12与极耳12之间紧密连接。
根据本申请的一些实施例,请参考图9,S300、控制极片10的极耳12厚度h1大于主体部11a厚度h2的步骤,包括:
S310、在极耳12的本体121厚度方向的至少一侧上焊接有填补层122,使得全部的填补层122与本体121的厚度之和大于主体部11a的厚度h2。
步骤S310中,可在本体121的一侧焊接填补层122,也可同时在本体121的两侧分别焊接填补层122。当两侧分别焊接有填补层122时,一个填补层122的一表面抵靠在本体121上;另一表面抵靠在另一个填补层122上。
在本体121的至少一侧焊接有填补层122,使得卷绕后的极耳12之间缝隙得到有效消除,有利于提升电池10000的安全性能。
根据本申请的一些实施例,请参考图9,S310、在极耳12的本体121厚度方向的至少一侧上焊接有填补层122的步骤之后,还包括:
S320、在填补层122上除与本体121贴合的一侧面外的表面设置固化层。
填补层122上除与本体121贴合的一侧面外的表面应理解为:填补层122暴露在本体121外的表面,即作业人员能接触到的表面。另外,在对填补层122进行固化前,可对填补层122表面进行清理,去除粘附在填补层122表面的杂质。
对填补层122的表面进行固化,避免焊接时产生的凸出颗粒脱落至电池10000内部而引起电池10000用电事故,进一步提升电池10000的安全性能。
根据本申请的一些实施例,请参考图9,S310、在极耳12的本体121厚度方向的至少一侧上焊接有填补层122的步骤之后,还包括:
S330、对填补层122和/或本体121上远离集流体11的一端进行模切。
步骤S320与步骤S330的执行顺序可不作限定,比如:步骤S320与步骤S330可同时执行,即边固化边模切;或者,步骤S320与步骤S330之间为顺序执行,例如,先对填补层122进行固化,后对固化后的填补层122进行模切;又或者,先执行步骤S330,后执行步骤S320等。具体到一些实施例中,先执行步骤S320;再执行步骤S330。
模切中,可仅对填补层122或本体121一端进行模切;也可同时对填补层122和本体121进行端部模切。
通过模切工艺将填补层122和/或本体121远离极片10的一端切除,暴露出焊接件12a,以便于集流构件与卷绕后的极耳12电连接。
根据本申请的一些实施例,请参考图10,所述方法,还包括:
S400、对活性层112与主体部11a进行辊压。
在步骤S200中,将活性层112涂覆在主体部11a上,其具体工艺为涂布。其中,涂布是利用相关设备将含有正负极活性物质的悬浮液浆料均匀涂布在铝箔或铜箔片幅上,然后 干燥成膜的过程。具体涂布过程至少包括剪切涂布、润湿和流平、干燥等工序。而这些工序的具体操作在此不作赘述,可直接参考现有文献。其中,活性物质根据正负极的极性不同,而选择不同,具体材料可参考以上实施例中的活性物质。
辊压通常安排在涂布干燥工序之后,是正负极金属集流体11上的涂布粉体电极材料经过辊压机压实的过程,用于粉体的重排和致密化的过程。
通过辊压工序,获取结构稳定的极片10。
根据本申请的一些实施例,请参考图11,本申请提供了一种电极组件制作方法,包括如下步骤:
S500、采用以上任一项的极片制作方法制作两个极性相反的极片10;
S600、将两个极片10及隔膜40叠放,使得两个极片10的极耳12分别延伸出隔膜40的相对两侧;
S700、将两个极片10及隔膜40一起卷绕,使得任一侧极耳12卷绕形成连续的至少两个圈层123相互贴合。
在步骤S500中,为了便于说明,将两个极片10分别定义为极性相反的第一极片20和第二极片30,即为正极片和负极片,也就是说一个极片10上的活性层112为正极材料;另一个极片10上的活性层112为负极材料。
在步骤S600中,极片10的极耳12分别伸出隔膜40的相对两侧应理解为:第一极片20的极耳12和第二极片30的极耳12分别位于电极组件100的相对两侧,即一端为正极耳12,另一端为负极耳12。
在步骤S700中,两个极片10和隔膜40一起卷绕时,比如:第一极片20和第二极片30一起卷绕时,需注意两者之间的宽度尺寸。比如,在卷绕时,若第一极片20较之于第二极片30处于外圈时,第一极片20的宽度尺寸理应大于第二极片30的宽度尺寸;同理,若第二极片30较之于第一极片20处于外圈时,第二极片30的宽度尺寸理应大于第一极片20的宽度尺寸。
上述的电极组件制作方法,首先采用以上极片制作方法制作两个极性相反的极片10;并将两个极片10、隔膜40层叠放置并一起卷绕,使得相邻两个圈层123之间相互贴合。如此,有利于消除卷绕后的极片10的极耳12之间缝隙,使得极耳12与极耳12之间紧密连接。此时,在本申请电池10000制作中无需对极耳12进行揉平工艺,有效避免揉平产生的颗粒掉入电池10000中,极大提高电池10000的安全性能。由于无需对极耳12进行揉平,因此,在极片10上无需预留揉平所需空间,使得极片10能充分利用该空间,以提高电池10000的能量密度;同时,也能有效避免因揉平工艺可能造成的极耳12内插短路风险,进一步提高电池10000的安全性能。此外,本申请通过合理控制极耳12厚度,取消传统揉平工艺,有效弥补不能采用揉平工艺的复合基材应用在大圆柱电芯中。
根据本申请的一些实施例,请参考图12,S600、将两个极片10及隔膜40叠放的步骤之前,还包括:
S800、对两个极片10分别按照预设尺寸进行分切。
分切是指利用相关设备将涂布辊压之后的大片极片10分裁成单个极片10的过程,具体可分为纵切和横切。其中,纵切是将大片极片10沿长度方向分切成长条状,而横切是指沿垂直于长度方向进行切断操作。当然,按照剪切道具的形式,也可分为斜刃剪、平刃剪、滚切剪和圆盘剪等。此外,预设尺寸也可理解为所需尺寸,可根据实际电极组件100尺寸而定。
利用分切工艺,对两个极片10进行分切,以满足不同规格电池10000制作的需求。
根据本申请的一些实施例,请参考图12,方法之后,还包括:
S900、在其中一侧卷绕后的极耳12上电连接集流构件。
集流构件与卷绕后的极耳12之间的连接方式有多种,只需两者电连接均可,比如集流构件通过激光焊接方式连接在卷绕后的极耳12上。
在极耳12上电连接集流构件,便于电极组件100与端盖之间实现电连接,以便完成电池单体1000的装配。
根据本申请的一些实施例,请参考图3至图7,本申请提供了一种电池单体1000,包括如以上任一方案中的电极组件100。
根据本申请的一些实施例,本申请提供了一种电池10000,包括如以上方案中的电池单体1000。
根据本申请的一些实施例,本申请提供了一种新型的圆柱电芯的极耳12设计结构,在极片10的极耳12上焊有焊接件12a,利用焊印的厚度差,使卷绕后的裸电芯的极耳12之间无缝隙,从而在焊接顶盖时避免激光打到裸电芯内部。具体的工艺流程为:涂布—>冷压(辊压)—>辊焊—>涂胶—>激光模切—>分条—>卷绕—>激光焊接集流构件。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种极片,包括:
    集流体(11),包括主体部(11a)和从所述主体部(11a)延伸出的极耳(12);
    活性层(112),涂覆于所述主体部(11a)的至少一侧;
    其中,所述极耳(12)的厚度h1大于所述主体部(11a)的厚度h2。
  2. 根据权利要求1所述的极片,其中,所述极耳(12)包括本体(121)及设于所述本体(121)厚度方向的至少一侧的填补层(122)。
  3. 根据权利要求2所述的极片,其中,所述本体(121)厚度方向的相对两侧上均设有所述填补层(122)。
  4. 根据权利要求2或3所述的极片,其中,所述填补层(122)为焊接件(12a)。
  5. 根据权利要求4所述的极片,其中,所述极耳(12)还包括固化层,所述固化层至少设于所述焊接件(12a)背向所述本体(121)的一侧面上。
  6. 根据权利要求1至5任意一项所述的极片,其中,所述极耳(12)的厚度h1大于所述主体部(11a)与所述活性层(112)的厚度之和h3。
  7. 一种电极组件,其中,包括极性相反的第一极片(20)与第二极片(30)、以及设于所述第一极片(20)与所述第二极片(30)之间的隔膜(40),所述第一极片(20)、所述第二极片(30)和所述隔膜(40)卷绕形成卷绕结构;
    其中,所述第一极片(20)和/或所述第二极片(30)为权利要求1-6任一项所述的极片。
  8. 根据权利要求7所述的电极组件,其中,所述第一极片(20)的极耳(12)与所述第二极片(30)的极耳(12)分别位于所述电极组件的相对两侧,任一所述极耳(12)卷绕形成连续的至少两个圈层(123),位于同一侧的相邻两个所述圈层(123)之间相互贴合。
  9. 根据权利要求8所述的电极组件,其中,所述第一极片(20)与所述第二极片(30)的所述极耳(12)均包括本体(121)、以及填补层(122);
    位于同一侧的相邻两个所述圈层(123)之间,所述填补层(122)的两个表面分别抵靠卷绕后的两个所述本体(121)上。
  10. 根据权利要求8至9任意一项所述的电极组件,其中,所述第一极片(20)与所述第二极片(30)的所述极耳(12)均包括本体(121)、以及分别设于所述本体(121)厚度方向的相对两侧的填补层(122),两个所述填补层(122)相互抵靠。
  11. 根据权利要求7至10任意一项所述的电极组件,其中,所述电极组件还包括集流构件,所述集流构件与卷绕后的所述极耳(12)电连接。
  12. 一种极片制作方法,其中,包括如下步骤:
    提供集流体(11),包括主体部(11a)和从所述主体部(11a)延伸出的极耳(12);
    将活性层(112)涂覆于所述主体部(11a)的至少一侧;
    控制所述极耳(12)的厚度h1大于所述主体部(11a)的厚度h2。
  13. 根据权利要求12所述的极片制作方法,其中,控制所述极片的极耳(12)厚度h1大于所述主体部(11a)厚度h2的步骤,包括:
    在所述极耳(12)的本体(121)厚度方向的至少一侧上焊接有填补层(122),使得全部的所述填补层(122)与所述本体(121)的厚度之和大于所述主体部(11a)的厚度h2。
  14. 根据权利要求13所述的极片制作方法,其中,在所述极耳(12)的本体(121)厚度方向的至少一侧上焊接有填补层(122)的步骤之后,还包括:
    在所述填补层(122)上除与所述本体(121)贴合的一侧面外的表面设置固化层。
  15. 根据权利要求13或14所述的极片制作方法,其中,在所述极耳(12)的本体(121)厚度方向的至少一侧上焊接有填补层(122)的步骤之后,还包括:
    对所述填补层(122)和/或所述本体(121)上远离所述集流体(11)的一端进行模切。
  16. 根据权利要求12至15任意一项所述的极片制作方法,其中,所述方法之后,包括:
    对所述活性层(112)与所述主体部(11a)进行辊压。
  17. 一种电极组件制作方法,其中,包括如下步骤:
    采用权利要求12-16任一项所述的极片制作方法制作两个极性相反的极片;
    将两个所述极片及隔膜(40)叠放,使得两个所述极片的极耳(12)分别延伸出所述隔膜(40)的相对两侧;
    将两个所述极片及所述隔膜(40)一起卷绕,使得任一侧所述极耳(12)卷绕形成连续的至少两个圈层(123)相互贴合。
  18. 根据权利要求17所述的电极组件制作方法,其中,将两个所述极片及隔膜(40)叠放的步骤之前,还包括:
    对两个所述极片分别按照预设尺寸进行分切。
  19. 根据权利要求17至18任意一项所述的电极组件制作方法,其中,所述方法之后,还包括:
    在其中一侧卷绕后的所述极耳(12)上电连接集流构件。
  20. 一种电池单体,其中,包括如权利要求7-11任一项所述的电极组件。
  21. 一种电池,其中,包括如权利要求20所述的电池单体。
PCT/CN2023/086175 2022-05-07 2023-04-04 极片及制作方法、电极组件及制作方法、电池单体和电池 WO2023216772A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210490400.X 2022-05-07
CN202210490400.XA CN115842093B (zh) 2022-05-07 2022-05-07 极片及制作方法、电极组件及制作方法、电池单体和电池

Publications (1)

Publication Number Publication Date
WO2023216772A1 true WO2023216772A1 (zh) 2023-11-16

Family

ID=85574662

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086175 WO2023216772A1 (zh) 2022-05-07 2023-04-04 极片及制作方法、电极组件及制作方法、电池单体和电池

Country Status (2)

Country Link
CN (1) CN115842093B (zh)
WO (1) WO2023216772A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115842093B (zh) * 2022-05-07 2024-01-05 宁德时代新能源科技股份有限公司 极片及制作方法、电极组件及制作方法、电池单体和电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208955106U (zh) * 2018-10-17 2019-06-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件
CN208955123U (zh) * 2018-09-27 2019-06-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件
WO2021233214A1 (zh) * 2020-05-19 2021-11-25 东莞塔菲尔新能源科技有限公司 一种极片及其制备方法和锂离子电池
WO2022061562A1 (zh) * 2020-09-23 2022-03-31 宁德新能源科技有限公司 电化学装置和电子装置
CN115842093A (zh) * 2022-05-07 2023-03-24 宁德时代新能源科技股份有限公司 极片及制作方法、电极组件及制作方法、电池单体和电池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101867059B (zh) * 2010-05-25 2012-05-23 陈性保 一种超薄锂锰聚合物电池及其加工方法
JP2013020821A (ja) * 2011-07-12 2013-01-31 Mitsubishi Motors Corp リチウムイオン二次電池
CN102332552A (zh) * 2011-09-23 2012-01-25 深圳市格瑞普电池有限公司 极耳及卷绕式锂离子电芯及软包卷绕式锂离子电池
JP5927623B1 (ja) * 2015-02-03 2016-06-01 株式会社ジェイ・イー・ティ 蓄電装置の製造方法、構造体の検査装置
CN207038612U (zh) * 2017-03-30 2018-02-23 广州汽车集团股份有限公司 一种软包装叠片式锂离子电池及其极耳
CN108376759A (zh) * 2018-01-17 2018-08-07 柔电(武汉)科技有限公司 一种提高能量密度的软包锂电池制备方法
CN108461811B (zh) * 2018-07-20 2019-11-05 瑞浦能源有限公司 一种用于卷绕式锂离子电池的极片及电芯
CN209001017U (zh) * 2018-08-20 2019-06-18 珠海光宇电池有限公司 锂二次电池负极片及锂二次电池
CN112310569B (zh) * 2019-10-29 2022-03-11 宁德时代新能源科技股份有限公司 一种电池单体、电池模块、电池组、装置及加工方法
CN211088397U (zh) * 2020-01-03 2020-07-24 深圳市海鸿新能源技术有限公司 一种二次电池及其极片
WO2022022324A1 (zh) * 2020-07-28 2022-02-03 厦门海辰新能源科技有限公司 双极性集流体、极片及二次电池
CN113366682B (zh) * 2020-09-14 2022-12-20 东莞新能安科技有限公司 电化学装置及电子装置
CN112531142A (zh) * 2020-12-10 2021-03-19 湖南立方新能源科技有限责任公司 一种软包纽扣电池用极片、纽扣电池及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208955123U (zh) * 2018-09-27 2019-06-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件
CN208955106U (zh) * 2018-10-17 2019-06-07 宁德时代新能源科技股份有限公司 二次电池及其电极构件
WO2021233214A1 (zh) * 2020-05-19 2021-11-25 东莞塔菲尔新能源科技有限公司 一种极片及其制备方法和锂离子电池
WO2022061562A1 (zh) * 2020-09-23 2022-03-31 宁德新能源科技有限公司 电化学装置和电子装置
CN115842093A (zh) * 2022-05-07 2023-03-24 宁德时代新能源科技股份有限公司 极片及制作方法、电极组件及制作方法、电池单体和电池

Also Published As

Publication number Publication date
CN115842093B (zh) 2024-01-05
CN115842093A (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
JP4524713B2 (ja) リチウム二次電池とその利用
JP5374885B2 (ja) リチウムイオン電池
CN101106203A (zh) 具有新电极结构的锂电池及其制造方法
WO2023216772A1 (zh) 极片及制作方法、电极组件及制作方法、电池单体和电池
WO2024031859A1 (zh) 电极组件、电池单体、电池及用电装置
EP4181228A1 (en) Electrode and preparation method therefor, battery, and electrical device
US20240079603A1 (en) Current collector, manufacturing method and equipment thereof, and current collector preform
US11944995B2 (en) Coating system
CN217361642U (zh) 电极组件、电池单体、电池和用电设备
WO2023240482A1 (zh) 极片及制作方法、电极组件、二次电池和用电装置
WO2023138416A1 (zh) 电池单体及其制作方法、电池、用电装置
WO2024031353A1 (zh) 极片、电极组件、电池单体、电池及用电设备
WO2024066624A1 (zh) 一种负极极片及其制备方法、电极组件、电池单体、电池和用电装置
WO2024055311A1 (zh) 电池单体、电池及用电设备
WO2023221606A1 (zh) 集流体、极片、电极组件、电池单体、电池及用电装置
WO2024016491A1 (zh) 极片、电极组件、电池单体、电池及用电装置
WO2024016452A1 (zh) 隔膜、电池单体、热压模具、电池和用电装置
WO2023159631A1 (zh) 极片、电极组件、电池单体、电池、用电设备及极片的制造方法和设备
WO2024016447A1 (zh) 集流体、极片、电池单体、热压模具、电池和用电装置
WO2024001318A1 (zh) 电池极片、极片组件、电池和用电设备
EP4333103A1 (en) Compound electrode sheet, electrode assembly, secondary battery and electric apparatus
WO2023212867A1 (zh) 正极极片、电极组件、电池单体、电池及用电装置
WO2024098354A1 (zh) 电极组件及其制备方法、二次电池和用电装置
WO2024082448A1 (zh) 电极组件、电池单体、电池及用电装置
WO2024031236A1 (zh) 二次电池、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23802548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023802548

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023802548

Country of ref document: EP

Effective date: 20240314